MemoryDependenceAnalysis.cpp revision 7bce462c15356229e13d78d14560feaac30a0f5f
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/PHITransAddr.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/PredIteratorCache.h"
34using namespace llvm;
35
36STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
37STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
38STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
39
40STATISTIC(NumCacheNonLocalPtr,
41          "Number of fully cached non-local ptr responses");
42STATISTIC(NumCacheDirtyNonLocalPtr,
43          "Number of cached, but dirty, non-local ptr responses");
44STATISTIC(NumUncacheNonLocalPtr,
45          "Number of uncached non-local ptr responses");
46STATISTIC(NumCacheCompleteNonLocalPtr,
47          "Number of block queries that were completely cached");
48
49// Limit for the number of instructions to scan in a block.
50// FIXME: Figure out what a sane value is for this.
51//        (500 is relatively insane.)
52static const int BlockScanLimit = 500;
53
54char MemoryDependenceAnalysis::ID = 0;
55
56// Register this pass...
57INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
58                "Memory Dependence Analysis", false, true)
59INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
60INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
61                      "Memory Dependence Analysis", false, true)
62
63MemoryDependenceAnalysis::MemoryDependenceAnalysis()
64: FunctionPass(ID), PredCache(0) {
65  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
66}
67MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
68}
69
70/// Clean up memory in between runs
71void MemoryDependenceAnalysis::releaseMemory() {
72  LocalDeps.clear();
73  NonLocalDeps.clear();
74  NonLocalPointerDeps.clear();
75  ReverseLocalDeps.clear();
76  ReverseNonLocalDeps.clear();
77  ReverseNonLocalPtrDeps.clear();
78  PredCache->clear();
79}
80
81
82
83/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
84///
85void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
86  AU.setPreservesAll();
87  AU.addRequiredTransitive<AliasAnalysis>();
88}
89
90bool MemoryDependenceAnalysis::runOnFunction(Function &) {
91  AA = &getAnalysis<AliasAnalysis>();
92  TD = getAnalysisIfAvailable<DataLayout>();
93  DT = getAnalysisIfAvailable<DominatorTree>();
94  if (PredCache == 0)
95    PredCache.reset(new PredIteratorCache());
96  return false;
97}
98
99/// RemoveFromReverseMap - This is a helper function that removes Val from
100/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
101template <typename KeyTy>
102static void RemoveFromReverseMap(DenseMap<Instruction*,
103                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
104                                 Instruction *Inst, KeyTy Val) {
105  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
106  InstIt = ReverseMap.find(Inst);
107  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
108  bool Found = InstIt->second.erase(Val);
109  assert(Found && "Invalid reverse map!"); (void)Found;
110  if (InstIt->second.empty())
111    ReverseMap.erase(InstIt);
112}
113
114/// GetLocation - If the given instruction references a specific memory
115/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116/// Return a ModRefInfo value describing the general behavior of the
117/// instruction.
118static
119AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
120                                        AliasAnalysis::Location &Loc,
121                                        AliasAnalysis *AA) {
122  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
123    if (LI->isUnordered()) {
124      Loc = AA->getLocation(LI);
125      return AliasAnalysis::Ref;
126    } else if (LI->getOrdering() == Monotonic) {
127      Loc = AA->getLocation(LI);
128      return AliasAnalysis::ModRef;
129    }
130    Loc = AliasAnalysis::Location();
131    return AliasAnalysis::ModRef;
132  }
133
134  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
135    if (SI->isUnordered()) {
136      Loc = AA->getLocation(SI);
137      return AliasAnalysis::Mod;
138    } else if (SI->getOrdering() == Monotonic) {
139      Loc = AA->getLocation(SI);
140      return AliasAnalysis::ModRef;
141    }
142    Loc = AliasAnalysis::Location();
143    return AliasAnalysis::ModRef;
144  }
145
146  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147    Loc = AA->getLocation(V);
148    return AliasAnalysis::ModRef;
149  }
150
151  if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
152    // calls to free() deallocate the entire structure
153    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
154    return AliasAnalysis::Mod;
155  }
156
157  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
158    switch (II->getIntrinsicID()) {
159    case Intrinsic::lifetime_start:
160    case Intrinsic::lifetime_end:
161    case Intrinsic::invariant_start:
162      Loc = AliasAnalysis::Location(II->getArgOperand(1),
163                                    cast<ConstantInt>(II->getArgOperand(0))
164                                      ->getZExtValue(),
165                                    II->getMetadata(LLVMContext::MD_tbaa));
166      // These intrinsics don't really modify the memory, but returning Mod
167      // will allow them to be handled conservatively.
168      return AliasAnalysis::Mod;
169    case Intrinsic::invariant_end:
170      Loc = AliasAnalysis::Location(II->getArgOperand(2),
171                                    cast<ConstantInt>(II->getArgOperand(1))
172                                      ->getZExtValue(),
173                                    II->getMetadata(LLVMContext::MD_tbaa));
174      // These intrinsics don't really modify the memory, but returning Mod
175      // will allow them to be handled conservatively.
176      return AliasAnalysis::Mod;
177    default:
178      break;
179    }
180
181  // Otherwise, just do the coarse-grained thing that always works.
182  if (Inst->mayWriteToMemory())
183    return AliasAnalysis::ModRef;
184  if (Inst->mayReadFromMemory())
185    return AliasAnalysis::Ref;
186  return AliasAnalysis::NoModRef;
187}
188
189/// getCallSiteDependencyFrom - Private helper for finding the local
190/// dependencies of a call site.
191MemDepResult MemoryDependenceAnalysis::
192getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
193                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
194  unsigned Limit = BlockScanLimit;
195
196  // Walk backwards through the block, looking for dependencies
197  while (ScanIt != BB->begin()) {
198    // Limit the amount of scanning we do so we don't end up with quadratic
199    // running time on extreme testcases.
200    --Limit;
201    if (!Limit)
202      return MemDepResult::getUnknown();
203
204    Instruction *Inst = --ScanIt;
205
206    // If this inst is a memory op, get the pointer it accessed
207    AliasAnalysis::Location Loc;
208    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
209    if (Loc.Ptr) {
210      // A simple instruction.
211      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
212        return MemDepResult::getClobber(Inst);
213      continue;
214    }
215
216    if (CallSite InstCS = cast<Value>(Inst)) {
217      // Debug intrinsics don't cause dependences.
218      if (isa<DbgInfoIntrinsic>(Inst)) continue;
219      // If these two calls do not interfere, look past it.
220      switch (AA->getModRefInfo(CS, InstCS)) {
221      case AliasAnalysis::NoModRef:
222        // If the two calls are the same, return InstCS as a Def, so that
223        // CS can be found redundant and eliminated.
224        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
225            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
226          return MemDepResult::getDef(Inst);
227
228        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
229        // keep scanning.
230        continue;
231      default:
232        return MemDepResult::getClobber(Inst);
233      }
234    }
235
236    // If we could not obtain a pointer for the instruction and the instruction
237    // touches memory then assume that this is a dependency.
238    if (MR != AliasAnalysis::NoModRef)
239      return MemDepResult::getClobber(Inst);
240  }
241
242  // No dependence found.  If this is the entry block of the function, it is
243  // unknown, otherwise it is non-local.
244  if (BB != &BB->getParent()->getEntryBlock())
245    return MemDepResult::getNonLocal();
246  return MemDepResult::getNonFuncLocal();
247}
248
249/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
250/// would fully overlap MemLoc if done as a wider legal integer load.
251///
252/// MemLocBase, MemLocOffset are lazily computed here the first time the
253/// base/offs of memloc is needed.
254static bool
255isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
256                                       const Value *&MemLocBase,
257                                       int64_t &MemLocOffs,
258                                       const LoadInst *LI,
259                                       const DataLayout *TD) {
260  // If we have no target data, we can't do this.
261  if (TD == 0) return false;
262
263  // If we haven't already computed the base/offset of MemLoc, do so now.
264  if (MemLocBase == 0)
265    MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD);
266
267  unsigned Size = MemoryDependenceAnalysis::
268    getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
269                                    LI, *TD);
270  return Size != 0;
271}
272
273/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
274/// looks at a memory location for a load (specified by MemLocBase, Offs,
275/// and Size) and compares it against a load.  If the specified load could
276/// be safely widened to a larger integer load that is 1) still efficient,
277/// 2) safe for the target, and 3) would provide the specified memory
278/// location value, then this function returns the size in bytes of the
279/// load width to use.  If not, this returns zero.
280unsigned MemoryDependenceAnalysis::
281getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
282                                unsigned MemLocSize, const LoadInst *LI,
283                                const DataLayout &TD) {
284  // We can only extend simple integer loads.
285  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
286
287  // Load widening is hostile to ThreadSanitizer: it may cause false positives
288  // or make the reports more cryptic (access sizes are wrong).
289  if (LI->getParent()->getParent()->getAttributes().
290      hasAttribute(AttributeSet::FunctionIndex, Attribute::ThreadSafety))
291    return 0;
292
293  // Get the base of this load.
294  int64_t LIOffs = 0;
295  const Value *LIBase =
296    GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD);
297
298  // If the two pointers are not based on the same pointer, we can't tell that
299  // they are related.
300  if (LIBase != MemLocBase) return 0;
301
302  // Okay, the two values are based on the same pointer, but returned as
303  // no-alias.  This happens when we have things like two byte loads at "P+1"
304  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
305  // alignment (or the largest native integer type) will allow us to load all
306  // the bits required by MemLoc.
307
308  // If MemLoc is before LI, then no widening of LI will help us out.
309  if (MemLocOffs < LIOffs) return 0;
310
311  // Get the alignment of the load in bytes.  We assume that it is safe to load
312  // any legal integer up to this size without a problem.  For example, if we're
313  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
314  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
315  // to i16.
316  unsigned LoadAlign = LI->getAlignment();
317
318  int64_t MemLocEnd = MemLocOffs+MemLocSize;
319
320  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
321  if (LIOffs+LoadAlign < MemLocEnd) return 0;
322
323  // This is the size of the load to try.  Start with the next larger power of
324  // two.
325  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
326  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
327
328  while (1) {
329    // If this load size is bigger than our known alignment or would not fit
330    // into a native integer register, then we fail.
331    if (NewLoadByteSize > LoadAlign ||
332        !TD.fitsInLegalInteger(NewLoadByteSize*8))
333      return 0;
334
335    if (LIOffs+NewLoadByteSize > MemLocEnd &&
336        LI->getParent()->getParent()->getAttributes().
337          hasAttribute(AttributeSet::FunctionIndex, Attribute::AddressSafety))
338      // We will be reading past the location accessed by the original program.
339      // While this is safe in a regular build, Address Safety analysis tools
340      // may start reporting false warnings. So, don't do widening.
341      return 0;
342
343    // If a load of this width would include all of MemLoc, then we succeed.
344    if (LIOffs+NewLoadByteSize >= MemLocEnd)
345      return NewLoadByteSize;
346
347    NewLoadByteSize <<= 1;
348  }
349}
350
351/// getPointerDependencyFrom - Return the instruction on which a memory
352/// location depends.  If isLoad is true, this routine ignores may-aliases with
353/// read-only operations.  If isLoad is false, this routine ignores may-aliases
354/// with reads from read-only locations.
355MemDepResult MemoryDependenceAnalysis::
356getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
357                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
358
359  const Value *MemLocBase = 0;
360  int64_t MemLocOffset = 0;
361
362  unsigned Limit = BlockScanLimit;
363
364  // Walk backwards through the basic block, looking for dependencies.
365  while (ScanIt != BB->begin()) {
366    // Limit the amount of scanning we do so we don't end up with quadratic
367    // running time on extreme testcases.
368    --Limit;
369    if (!Limit)
370      return MemDepResult::getUnknown();
371
372    Instruction *Inst = --ScanIt;
373
374    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
375      // Debug intrinsics don't (and can't) cause dependences.
376      if (isa<DbgInfoIntrinsic>(II)) continue;
377
378      // If we reach a lifetime begin or end marker, then the query ends here
379      // because the value is undefined.
380      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
381        // FIXME: This only considers queries directly on the invariant-tagged
382        // pointer, not on query pointers that are indexed off of them.  It'd
383        // be nice to handle that at some point (the right approach is to use
384        // GetPointerBaseWithConstantOffset).
385        if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
386                            MemLoc))
387          return MemDepResult::getDef(II);
388        continue;
389      }
390    }
391
392    // Values depend on loads if the pointers are must aliased.  This means that
393    // a load depends on another must aliased load from the same value.
394    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
395      // Atomic loads have complications involved.
396      // FIXME: This is overly conservative.
397      if (!LI->isUnordered())
398        return MemDepResult::getClobber(LI);
399
400      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
401
402      // If we found a pointer, check if it could be the same as our pointer.
403      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
404
405      if (isLoad) {
406        if (R == AliasAnalysis::NoAlias) {
407          // If this is an over-aligned integer load (for example,
408          // "load i8* %P, align 4") see if it would obviously overlap with the
409          // queried location if widened to a larger load (e.g. if the queried
410          // location is 1 byte at P+1).  If so, return it as a load/load
411          // clobber result, allowing the client to decide to widen the load if
412          // it wants to.
413          if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
414            if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
415                isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
416                                                       MemLocOffset, LI, TD))
417              return MemDepResult::getClobber(Inst);
418
419          continue;
420        }
421
422        // Must aliased loads are defs of each other.
423        if (R == AliasAnalysis::MustAlias)
424          return MemDepResult::getDef(Inst);
425
426#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
427      // in terms of clobbering loads, but since it does this by looking
428      // at the clobbering load directly, it doesn't know about any
429      // phi translation that may have happened along the way.
430
431        // If we have a partial alias, then return this as a clobber for the
432        // client to handle.
433        if (R == AliasAnalysis::PartialAlias)
434          return MemDepResult::getClobber(Inst);
435#endif
436
437        // Random may-alias loads don't depend on each other without a
438        // dependence.
439        continue;
440      }
441
442      // Stores don't depend on other no-aliased accesses.
443      if (R == AliasAnalysis::NoAlias)
444        continue;
445
446      // Stores don't alias loads from read-only memory.
447      if (AA->pointsToConstantMemory(LoadLoc))
448        continue;
449
450      // Stores depend on may/must aliased loads.
451      return MemDepResult::getDef(Inst);
452    }
453
454    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
455      // Atomic stores have complications involved.
456      // FIXME: This is overly conservative.
457      if (!SI->isUnordered())
458        return MemDepResult::getClobber(SI);
459
460      // If alias analysis can tell that this store is guaranteed to not modify
461      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
462      // the query pointer points to constant memory etc.
463      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
464        continue;
465
466      // Ok, this store might clobber the query pointer.  Check to see if it is
467      // a must alias: in this case, we want to return this as a def.
468      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
469
470      // If we found a pointer, check if it could be the same as our pointer.
471      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
472
473      if (R == AliasAnalysis::NoAlias)
474        continue;
475      if (R == AliasAnalysis::MustAlias)
476        return MemDepResult::getDef(Inst);
477      return MemDepResult::getClobber(Inst);
478    }
479
480    // If this is an allocation, and if we know that the accessed pointer is to
481    // the allocation, return Def.  This means that there is no dependence and
482    // the access can be optimized based on that.  For example, a load could
483    // turn into undef.
484    // Note: Only determine this to be a malloc if Inst is the malloc call, not
485    // a subsequent bitcast of the malloc call result.  There can be stores to
486    // the malloced memory between the malloc call and its bitcast uses, and we
487    // need to continue scanning until the malloc call.
488    const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
489    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
490      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
491
492      if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
493        return MemDepResult::getDef(Inst);
494      // Be conservative if the accessed pointer may alias the allocation.
495      if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
496        return MemDepResult::getClobber(Inst);
497      // If the allocation is not aliased and does not read memory (like
498      // strdup), it is safe to ignore.
499      if (isa<AllocaInst>(Inst) ||
500          isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
501        continue;
502    }
503
504    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
505    AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
506    // If necessary, perform additional analysis.
507    if (MR == AliasAnalysis::ModRef)
508      MR = AA->callCapturesBefore(Inst, MemLoc, DT);
509    switch (MR) {
510    case AliasAnalysis::NoModRef:
511      // If the call has no effect on the queried pointer, just ignore it.
512      continue;
513    case AliasAnalysis::Mod:
514      return MemDepResult::getClobber(Inst);
515    case AliasAnalysis::Ref:
516      // If the call is known to never store to the pointer, and if this is a
517      // load query, we can safely ignore it (scan past it).
518      if (isLoad)
519        continue;
520    default:
521      // Otherwise, there is a potential dependence.  Return a clobber.
522      return MemDepResult::getClobber(Inst);
523    }
524  }
525
526  // No dependence found.  If this is the entry block of the function, it is
527  // unknown, otherwise it is non-local.
528  if (BB != &BB->getParent()->getEntryBlock())
529    return MemDepResult::getNonLocal();
530  return MemDepResult::getNonFuncLocal();
531}
532
533/// getDependency - Return the instruction on which a memory operation
534/// depends.
535MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
536  Instruction *ScanPos = QueryInst;
537
538  // Check for a cached result
539  MemDepResult &LocalCache = LocalDeps[QueryInst];
540
541  // If the cached entry is non-dirty, just return it.  Note that this depends
542  // on MemDepResult's default constructing to 'dirty'.
543  if (!LocalCache.isDirty())
544    return LocalCache;
545
546  // Otherwise, if we have a dirty entry, we know we can start the scan at that
547  // instruction, which may save us some work.
548  if (Instruction *Inst = LocalCache.getInst()) {
549    ScanPos = Inst;
550
551    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
552  }
553
554  BasicBlock *QueryParent = QueryInst->getParent();
555
556  // Do the scan.
557  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
558    // No dependence found.  If this is the entry block of the function, it is
559    // unknown, otherwise it is non-local.
560    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
561      LocalCache = MemDepResult::getNonLocal();
562    else
563      LocalCache = MemDepResult::getNonFuncLocal();
564  } else {
565    AliasAnalysis::Location MemLoc;
566    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
567    if (MemLoc.Ptr) {
568      // If we can do a pointer scan, make it happen.
569      bool isLoad = !(MR & AliasAnalysis::Mod);
570      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
571        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
572
573      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
574                                            QueryParent);
575    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
576      CallSite QueryCS(QueryInst);
577      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
578      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
579                                             QueryParent);
580    } else
581      // Non-memory instruction.
582      LocalCache = MemDepResult::getUnknown();
583  }
584
585  // Remember the result!
586  if (Instruction *I = LocalCache.getInst())
587    ReverseLocalDeps[I].insert(QueryInst);
588
589  return LocalCache;
590}
591
592#ifndef NDEBUG
593/// AssertSorted - This method is used when -debug is specified to verify that
594/// cache arrays are properly kept sorted.
595static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
596                         int Count = -1) {
597  if (Count == -1) Count = Cache.size();
598  if (Count == 0) return;
599
600  for (unsigned i = 1; i != unsigned(Count); ++i)
601    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
602}
603#endif
604
605/// getNonLocalCallDependency - Perform a full dependency query for the
606/// specified call, returning the set of blocks that the value is
607/// potentially live across.  The returned set of results will include a
608/// "NonLocal" result for all blocks where the value is live across.
609///
610/// This method assumes the instruction returns a "NonLocal" dependency
611/// within its own block.
612///
613/// This returns a reference to an internal data structure that may be
614/// invalidated on the next non-local query or when an instruction is
615/// removed.  Clients must copy this data if they want it around longer than
616/// that.
617const MemoryDependenceAnalysis::NonLocalDepInfo &
618MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
619  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
620 "getNonLocalCallDependency should only be used on calls with non-local deps!");
621  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
622  NonLocalDepInfo &Cache = CacheP.first;
623
624  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
625  /// the cached case, this can happen due to instructions being deleted etc. In
626  /// the uncached case, this starts out as the set of predecessors we care
627  /// about.
628  SmallVector<BasicBlock*, 32> DirtyBlocks;
629
630  if (!Cache.empty()) {
631    // Okay, we have a cache entry.  If we know it is not dirty, just return it
632    // with no computation.
633    if (!CacheP.second) {
634      ++NumCacheNonLocal;
635      return Cache;
636    }
637
638    // If we already have a partially computed set of results, scan them to
639    // determine what is dirty, seeding our initial DirtyBlocks worklist.
640    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
641       I != E; ++I)
642      if (I->getResult().isDirty())
643        DirtyBlocks.push_back(I->getBB());
644
645    // Sort the cache so that we can do fast binary search lookups below.
646    std::sort(Cache.begin(), Cache.end());
647
648    ++NumCacheDirtyNonLocal;
649    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
650    //     << Cache.size() << " cached: " << *QueryInst;
651  } else {
652    // Seed DirtyBlocks with each of the preds of QueryInst's block.
653    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
654    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
655      DirtyBlocks.push_back(*PI);
656    ++NumUncacheNonLocal;
657  }
658
659  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
660  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
661
662  SmallPtrSet<BasicBlock*, 64> Visited;
663
664  unsigned NumSortedEntries = Cache.size();
665  DEBUG(AssertSorted(Cache));
666
667  // Iterate while we still have blocks to update.
668  while (!DirtyBlocks.empty()) {
669    BasicBlock *DirtyBB = DirtyBlocks.back();
670    DirtyBlocks.pop_back();
671
672    // Already processed this block?
673    if (!Visited.insert(DirtyBB))
674      continue;
675
676    // Do a binary search to see if we already have an entry for this block in
677    // the cache set.  If so, find it.
678    DEBUG(AssertSorted(Cache, NumSortedEntries));
679    NonLocalDepInfo::iterator Entry =
680      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
681                       NonLocalDepEntry(DirtyBB));
682    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
683      --Entry;
684
685    NonLocalDepEntry *ExistingResult = 0;
686    if (Entry != Cache.begin()+NumSortedEntries &&
687        Entry->getBB() == DirtyBB) {
688      // If we already have an entry, and if it isn't already dirty, the block
689      // is done.
690      if (!Entry->getResult().isDirty())
691        continue;
692
693      // Otherwise, remember this slot so we can update the value.
694      ExistingResult = &*Entry;
695    }
696
697    // If the dirty entry has a pointer, start scanning from it so we don't have
698    // to rescan the entire block.
699    BasicBlock::iterator ScanPos = DirtyBB->end();
700    if (ExistingResult) {
701      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
702        ScanPos = Inst;
703        // We're removing QueryInst's use of Inst.
704        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
705                             QueryCS.getInstruction());
706      }
707    }
708
709    // Find out if this block has a local dependency for QueryInst.
710    MemDepResult Dep;
711
712    if (ScanPos != DirtyBB->begin()) {
713      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
714    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
715      // No dependence found.  If this is the entry block of the function, it is
716      // a clobber, otherwise it is unknown.
717      Dep = MemDepResult::getNonLocal();
718    } else {
719      Dep = MemDepResult::getNonFuncLocal();
720    }
721
722    // If we had a dirty entry for the block, update it.  Otherwise, just add
723    // a new entry.
724    if (ExistingResult)
725      ExistingResult->setResult(Dep);
726    else
727      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
728
729    // If the block has a dependency (i.e. it isn't completely transparent to
730    // the value), remember the association!
731    if (!Dep.isNonLocal()) {
732      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
733      // update this when we remove instructions.
734      if (Instruction *Inst = Dep.getInst())
735        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
736    } else {
737
738      // If the block *is* completely transparent to the load, we need to check
739      // the predecessors of this block.  Add them to our worklist.
740      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
741        DirtyBlocks.push_back(*PI);
742    }
743  }
744
745  return Cache;
746}
747
748/// getNonLocalPointerDependency - Perform a full dependency query for an
749/// access to the specified (non-volatile) memory location, returning the
750/// set of instructions that either define or clobber the value.
751///
752/// This method assumes the pointer has a "NonLocal" dependency within its
753/// own block.
754///
755void MemoryDependenceAnalysis::
756getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
757                             BasicBlock *FromBB,
758                             SmallVectorImpl<NonLocalDepResult> &Result) {
759  assert(Loc.Ptr->getType()->isPointerTy() &&
760         "Can't get pointer deps of a non-pointer!");
761  Result.clear();
762
763  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
764
765  // This is the set of blocks we've inspected, and the pointer we consider in
766  // each block.  Because of critical edges, we currently bail out if querying
767  // a block with multiple different pointers.  This can happen during PHI
768  // translation.
769  DenseMap<BasicBlock*, Value*> Visited;
770  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
771                                   Result, Visited, true))
772    return;
773  Result.clear();
774  Result.push_back(NonLocalDepResult(FromBB,
775                                     MemDepResult::getUnknown(),
776                                     const_cast<Value *>(Loc.Ptr)));
777}
778
779/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
780/// Pointer/PointeeSize using either cached information in Cache or by doing a
781/// lookup (which may use dirty cache info if available).  If we do a lookup,
782/// add the result to the cache.
783MemDepResult MemoryDependenceAnalysis::
784GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
785                        bool isLoad, BasicBlock *BB,
786                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
787
788  // Do a binary search to see if we already have an entry for this block in
789  // the cache set.  If so, find it.
790  NonLocalDepInfo::iterator Entry =
791    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
792                     NonLocalDepEntry(BB));
793  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
794    --Entry;
795
796  NonLocalDepEntry *ExistingResult = 0;
797  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
798    ExistingResult = &*Entry;
799
800  // If we have a cached entry, and it is non-dirty, use it as the value for
801  // this dependency.
802  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
803    ++NumCacheNonLocalPtr;
804    return ExistingResult->getResult();
805  }
806
807  // Otherwise, we have to scan for the value.  If we have a dirty cache
808  // entry, start scanning from its position, otherwise we scan from the end
809  // of the block.
810  BasicBlock::iterator ScanPos = BB->end();
811  if (ExistingResult && ExistingResult->getResult().getInst()) {
812    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
813           "Instruction invalidated?");
814    ++NumCacheDirtyNonLocalPtr;
815    ScanPos = ExistingResult->getResult().getInst();
816
817    // Eliminating the dirty entry from 'Cache', so update the reverse info.
818    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
819    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
820  } else {
821    ++NumUncacheNonLocalPtr;
822  }
823
824  // Scan the block for the dependency.
825  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
826
827  // If we had a dirty entry for the block, update it.  Otherwise, just add
828  // a new entry.
829  if (ExistingResult)
830    ExistingResult->setResult(Dep);
831  else
832    Cache->push_back(NonLocalDepEntry(BB, Dep));
833
834  // If the block has a dependency (i.e. it isn't completely transparent to
835  // the value), remember the reverse association because we just added it
836  // to Cache!
837  if (!Dep.isDef() && !Dep.isClobber())
838    return Dep;
839
840  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
841  // update MemDep when we remove instructions.
842  Instruction *Inst = Dep.getInst();
843  assert(Inst && "Didn't depend on anything?");
844  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
845  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
846  return Dep;
847}
848
849/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
850/// number of elements in the array that are already properly ordered.  This is
851/// optimized for the case when only a few entries are added.
852static void
853SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
854                         unsigned NumSortedEntries) {
855  switch (Cache.size() - NumSortedEntries) {
856  case 0:
857    // done, no new entries.
858    break;
859  case 2: {
860    // Two new entries, insert the last one into place.
861    NonLocalDepEntry Val = Cache.back();
862    Cache.pop_back();
863    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
864      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
865    Cache.insert(Entry, Val);
866    // FALL THROUGH.
867  }
868  case 1:
869    // One new entry, Just insert the new value at the appropriate position.
870    if (Cache.size() != 1) {
871      NonLocalDepEntry Val = Cache.back();
872      Cache.pop_back();
873      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
874        std::upper_bound(Cache.begin(), Cache.end(), Val);
875      Cache.insert(Entry, Val);
876    }
877    break;
878  default:
879    // Added many values, do a full scale sort.
880    std::sort(Cache.begin(), Cache.end());
881    break;
882  }
883}
884
885/// getNonLocalPointerDepFromBB - Perform a dependency query based on
886/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
887/// results to the results vector and keep track of which blocks are visited in
888/// 'Visited'.
889///
890/// This has special behavior for the first block queries (when SkipFirstBlock
891/// is true).  In this special case, it ignores the contents of the specified
892/// block and starts returning dependence info for its predecessors.
893///
894/// This function returns false on success, or true to indicate that it could
895/// not compute dependence information for some reason.  This should be treated
896/// as a clobber dependence on the first instruction in the predecessor block.
897bool MemoryDependenceAnalysis::
898getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
899                            const AliasAnalysis::Location &Loc,
900                            bool isLoad, BasicBlock *StartBB,
901                            SmallVectorImpl<NonLocalDepResult> &Result,
902                            DenseMap<BasicBlock*, Value*> &Visited,
903                            bool SkipFirstBlock) {
904
905  // Look up the cached info for Pointer.
906  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
907
908  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
909  // CacheKey, this value will be inserted as the associated value. Otherwise,
910  // it'll be ignored, and we'll have to check to see if the cached size and
911  // tbaa tag are consistent with the current query.
912  NonLocalPointerInfo InitialNLPI;
913  InitialNLPI.Size = Loc.Size;
914  InitialNLPI.TBAATag = Loc.TBAATag;
915
916  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
917  // already have one.
918  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
919    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
920  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
921
922  // If we already have a cache entry for this CacheKey, we may need to do some
923  // work to reconcile the cache entry and the current query.
924  if (!Pair.second) {
925    if (CacheInfo->Size < Loc.Size) {
926      // The query's Size is greater than the cached one. Throw out the
927      // cached data and proceed with the query at the greater size.
928      CacheInfo->Pair = BBSkipFirstBlockPair();
929      CacheInfo->Size = Loc.Size;
930      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
931           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
932        if (Instruction *Inst = DI->getResult().getInst())
933          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
934      CacheInfo->NonLocalDeps.clear();
935    } else if (CacheInfo->Size > Loc.Size) {
936      // This query's Size is less than the cached one. Conservatively restart
937      // the query using the greater size.
938      return getNonLocalPointerDepFromBB(Pointer,
939                                         Loc.getWithNewSize(CacheInfo->Size),
940                                         isLoad, StartBB, Result, Visited,
941                                         SkipFirstBlock);
942    }
943
944    // If the query's TBAATag is inconsistent with the cached one,
945    // conservatively throw out the cached data and restart the query with
946    // no tag if needed.
947    if (CacheInfo->TBAATag != Loc.TBAATag) {
948      if (CacheInfo->TBAATag) {
949        CacheInfo->Pair = BBSkipFirstBlockPair();
950        CacheInfo->TBAATag = 0;
951        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
952             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
953          if (Instruction *Inst = DI->getResult().getInst())
954            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
955        CacheInfo->NonLocalDeps.clear();
956      }
957      if (Loc.TBAATag)
958        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
959                                           isLoad, StartBB, Result, Visited,
960                                           SkipFirstBlock);
961    }
962  }
963
964  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
965
966  // If we have valid cached information for exactly the block we are
967  // investigating, just return it with no recomputation.
968  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
969    // We have a fully cached result for this query then we can just return the
970    // cached results and populate the visited set.  However, we have to verify
971    // that we don't already have conflicting results for these blocks.  Check
972    // to ensure that if a block in the results set is in the visited set that
973    // it was for the same pointer query.
974    if (!Visited.empty()) {
975      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
976           I != E; ++I) {
977        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
978        if (VI == Visited.end() || VI->second == Pointer.getAddr())
979          continue;
980
981        // We have a pointer mismatch in a block.  Just return clobber, saying
982        // that something was clobbered in this result.  We could also do a
983        // non-fully cached query, but there is little point in doing this.
984        return true;
985      }
986    }
987
988    Value *Addr = Pointer.getAddr();
989    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
990         I != E; ++I) {
991      Visited.insert(std::make_pair(I->getBB(), Addr));
992      if (!I->getResult().isNonLocal() && DT->isReachableFromEntry(I->getBB()))
993        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
994    }
995    ++NumCacheCompleteNonLocalPtr;
996    return false;
997  }
998
999  // Otherwise, either this is a new block, a block with an invalid cache
1000  // pointer or one that we're about to invalidate by putting more info into it
1001  // than its valid cache info.  If empty, the result will be valid cache info,
1002  // otherwise it isn't.
1003  if (Cache->empty())
1004    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1005  else
1006    CacheInfo->Pair = BBSkipFirstBlockPair();
1007
1008  SmallVector<BasicBlock*, 32> Worklist;
1009  Worklist.push_back(StartBB);
1010
1011  // PredList used inside loop.
1012  SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1013
1014  // Keep track of the entries that we know are sorted.  Previously cached
1015  // entries will all be sorted.  The entries we add we only sort on demand (we
1016  // don't insert every element into its sorted position).  We know that we
1017  // won't get any reuse from currently inserted values, because we don't
1018  // revisit blocks after we insert info for them.
1019  unsigned NumSortedEntries = Cache->size();
1020  DEBUG(AssertSorted(*Cache));
1021
1022  while (!Worklist.empty()) {
1023    BasicBlock *BB = Worklist.pop_back_val();
1024
1025    // Skip the first block if we have it.
1026    if (!SkipFirstBlock) {
1027      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1028      // been here.
1029      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1030
1031      // Get the dependency info for Pointer in BB.  If we have cached
1032      // information, we will use it, otherwise we compute it.
1033      DEBUG(AssertSorted(*Cache, NumSortedEntries));
1034      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1035                                                 NumSortedEntries);
1036
1037      // If we got a Def or Clobber, add this to the list of results.
1038      if (!Dep.isNonLocal() && DT->isReachableFromEntry(BB)) {
1039        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1040        continue;
1041      }
1042    }
1043
1044    // If 'Pointer' is an instruction defined in this block, then we need to do
1045    // phi translation to change it into a value live in the predecessor block.
1046    // If not, we just add the predecessors to the worklist and scan them with
1047    // the same Pointer.
1048    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1049      SkipFirstBlock = false;
1050      SmallVector<BasicBlock*, 16> NewBlocks;
1051      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1052        // Verify that we haven't looked at this block yet.
1053        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1054          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1055        if (InsertRes.second) {
1056          // First time we've looked at *PI.
1057          NewBlocks.push_back(*PI);
1058          continue;
1059        }
1060
1061        // If we have seen this block before, but it was with a different
1062        // pointer then we have a phi translation failure and we have to treat
1063        // this as a clobber.
1064        if (InsertRes.first->second != Pointer.getAddr()) {
1065          // Make sure to clean up the Visited map before continuing on to
1066          // PredTranslationFailure.
1067          for (unsigned i = 0; i < NewBlocks.size(); i++)
1068            Visited.erase(NewBlocks[i]);
1069          goto PredTranslationFailure;
1070        }
1071      }
1072      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1073      continue;
1074    }
1075
1076    // We do need to do phi translation, if we know ahead of time we can't phi
1077    // translate this value, don't even try.
1078    if (!Pointer.IsPotentiallyPHITranslatable())
1079      goto PredTranslationFailure;
1080
1081    // We may have added values to the cache list before this PHI translation.
1082    // If so, we haven't done anything to ensure that the cache remains sorted.
1083    // Sort it now (if needed) so that recursive invocations of
1084    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1085    // value will only see properly sorted cache arrays.
1086    if (Cache && NumSortedEntries != Cache->size()) {
1087      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1088      NumSortedEntries = Cache->size();
1089    }
1090    Cache = 0;
1091
1092    PredList.clear();
1093    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1094      BasicBlock *Pred = *PI;
1095      PredList.push_back(std::make_pair(Pred, Pointer));
1096
1097      // Get the PHI translated pointer in this predecessor.  This can fail if
1098      // not translatable, in which case the getAddr() returns null.
1099      PHITransAddr &PredPointer = PredList.back().second;
1100      PredPointer.PHITranslateValue(BB, Pred, 0);
1101
1102      Value *PredPtrVal = PredPointer.getAddr();
1103
1104      // Check to see if we have already visited this pred block with another
1105      // pointer.  If so, we can't do this lookup.  This failure can occur
1106      // with PHI translation when a critical edge exists and the PHI node in
1107      // the successor translates to a pointer value different than the
1108      // pointer the block was first analyzed with.
1109      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1110        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1111
1112      if (!InsertRes.second) {
1113        // We found the pred; take it off the list of preds to visit.
1114        PredList.pop_back();
1115
1116        // If the predecessor was visited with PredPtr, then we already did
1117        // the analysis and can ignore it.
1118        if (InsertRes.first->second == PredPtrVal)
1119          continue;
1120
1121        // Otherwise, the block was previously analyzed with a different
1122        // pointer.  We can't represent the result of this case, so we just
1123        // treat this as a phi translation failure.
1124
1125        // Make sure to clean up the Visited map before continuing on to
1126        // PredTranslationFailure.
1127        for (unsigned i = 0; i < PredList.size(); i++)
1128          Visited.erase(PredList[i].first);
1129
1130        goto PredTranslationFailure;
1131      }
1132    }
1133
1134    // Actually process results here; this need to be a separate loop to avoid
1135    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1136    // any results for.  (getNonLocalPointerDepFromBB will modify our
1137    // datastructures in ways the code after the PredTranslationFailure label
1138    // doesn't expect.)
1139    for (unsigned i = 0; i < PredList.size(); i++) {
1140      BasicBlock *Pred = PredList[i].first;
1141      PHITransAddr &PredPointer = PredList[i].second;
1142      Value *PredPtrVal = PredPointer.getAddr();
1143
1144      bool CanTranslate = true;
1145      // If PHI translation was unable to find an available pointer in this
1146      // predecessor, then we have to assume that the pointer is clobbered in
1147      // that predecessor.  We can still do PRE of the load, which would insert
1148      // a computation of the pointer in this predecessor.
1149      if (PredPtrVal == 0)
1150        CanTranslate = false;
1151
1152      // FIXME: it is entirely possible that PHI translating will end up with
1153      // the same value.  Consider PHI translating something like:
1154      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1155      // to recurse here, pedantically speaking.
1156
1157      // If getNonLocalPointerDepFromBB fails here, that means the cached
1158      // result conflicted with the Visited list; we have to conservatively
1159      // assume it is unknown, but this also does not block PRE of the load.
1160      if (!CanTranslate ||
1161          getNonLocalPointerDepFromBB(PredPointer,
1162                                      Loc.getWithNewPtr(PredPtrVal),
1163                                      isLoad, Pred,
1164                                      Result, Visited)) {
1165        // Add the entry to the Result list.
1166        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1167        Result.push_back(Entry);
1168
1169        // Since we had a phi translation failure, the cache for CacheKey won't
1170        // include all of the entries that we need to immediately satisfy future
1171        // queries.  Mark this in NonLocalPointerDeps by setting the
1172        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1173        // cached value to do more work but not miss the phi trans failure.
1174        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1175        NLPI.Pair = BBSkipFirstBlockPair();
1176        continue;
1177      }
1178    }
1179
1180    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1181    CacheInfo = &NonLocalPointerDeps[CacheKey];
1182    Cache = &CacheInfo->NonLocalDeps;
1183    NumSortedEntries = Cache->size();
1184
1185    // Since we did phi translation, the "Cache" set won't contain all of the
1186    // results for the query.  This is ok (we can still use it to accelerate
1187    // specific block queries) but we can't do the fastpath "return all
1188    // results from the set"  Clear out the indicator for this.
1189    CacheInfo->Pair = BBSkipFirstBlockPair();
1190    SkipFirstBlock = false;
1191    continue;
1192
1193  PredTranslationFailure:
1194    // The following code is "failure"; we can't produce a sane translation
1195    // for the given block.  It assumes that we haven't modified any of
1196    // our datastructures while processing the current block.
1197
1198    if (Cache == 0) {
1199      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1200      CacheInfo = &NonLocalPointerDeps[CacheKey];
1201      Cache = &CacheInfo->NonLocalDeps;
1202      NumSortedEntries = Cache->size();
1203    }
1204
1205    // Since we failed phi translation, the "Cache" set won't contain all of the
1206    // results for the query.  This is ok (we can still use it to accelerate
1207    // specific block queries) but we can't do the fastpath "return all
1208    // results from the set".  Clear out the indicator for this.
1209    CacheInfo->Pair = BBSkipFirstBlockPair();
1210
1211    // If *nothing* works, mark the pointer as unknown.
1212    //
1213    // If this is the magic first block, return this as a clobber of the whole
1214    // incoming value.  Since we can't phi translate to one of the predecessors,
1215    // we have to bail out.
1216    if (SkipFirstBlock)
1217      return true;
1218
1219    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1220      assert(I != Cache->rend() && "Didn't find current block??");
1221      if (I->getBB() != BB)
1222        continue;
1223
1224      assert(I->getResult().isNonLocal() &&
1225             "Should only be here with transparent block");
1226      I->setResult(MemDepResult::getUnknown());
1227      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1228                                         Pointer.getAddr()));
1229      break;
1230    }
1231  }
1232
1233  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1234  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1235  DEBUG(AssertSorted(*Cache));
1236  return false;
1237}
1238
1239/// RemoveCachedNonLocalPointerDependencies - If P exists in
1240/// CachedNonLocalPointerInfo, remove it.
1241void MemoryDependenceAnalysis::
1242RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1243  CachedNonLocalPointerInfo::iterator It =
1244    NonLocalPointerDeps.find(P);
1245  if (It == NonLocalPointerDeps.end()) return;
1246
1247  // Remove all of the entries in the BB->val map.  This involves removing
1248  // instructions from the reverse map.
1249  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1250
1251  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1252    Instruction *Target = PInfo[i].getResult().getInst();
1253    if (Target == 0) continue;  // Ignore non-local dep results.
1254    assert(Target->getParent() == PInfo[i].getBB());
1255
1256    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1257    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1258  }
1259
1260  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1261  NonLocalPointerDeps.erase(It);
1262}
1263
1264
1265/// invalidateCachedPointerInfo - This method is used to invalidate cached
1266/// information about the specified pointer, because it may be too
1267/// conservative in memdep.  This is an optional call that can be used when
1268/// the client detects an equivalence between the pointer and some other
1269/// value and replaces the other value with ptr. This can make Ptr available
1270/// in more places that cached info does not necessarily keep.
1271void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1272  // If Ptr isn't really a pointer, just ignore it.
1273  if (!Ptr->getType()->isPointerTy()) return;
1274  // Flush store info for the pointer.
1275  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1276  // Flush load info for the pointer.
1277  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1278}
1279
1280/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1281/// This needs to be done when the CFG changes, e.g., due to splitting
1282/// critical edges.
1283void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1284  PredCache->clear();
1285}
1286
1287/// removeInstruction - Remove an instruction from the dependence analysis,
1288/// updating the dependence of instructions that previously depended on it.
1289/// This method attempts to keep the cache coherent using the reverse map.
1290void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1291  // Walk through the Non-local dependencies, removing this one as the value
1292  // for any cached queries.
1293  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1294  if (NLDI != NonLocalDeps.end()) {
1295    NonLocalDepInfo &BlockMap = NLDI->second.first;
1296    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1297         DI != DE; ++DI)
1298      if (Instruction *Inst = DI->getResult().getInst())
1299        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1300    NonLocalDeps.erase(NLDI);
1301  }
1302
1303  // If we have a cached local dependence query for this instruction, remove it.
1304  //
1305  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1306  if (LocalDepEntry != LocalDeps.end()) {
1307    // Remove us from DepInst's reverse set now that the local dep info is gone.
1308    if (Instruction *Inst = LocalDepEntry->second.getInst())
1309      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1310
1311    // Remove this local dependency info.
1312    LocalDeps.erase(LocalDepEntry);
1313  }
1314
1315  // If we have any cached pointer dependencies on this instruction, remove
1316  // them.  If the instruction has non-pointer type, then it can't be a pointer
1317  // base.
1318
1319  // Remove it from both the load info and the store info.  The instruction
1320  // can't be in either of these maps if it is non-pointer.
1321  if (RemInst->getType()->isPointerTy()) {
1322    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1323    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1324  }
1325
1326  // Loop over all of the things that depend on the instruction we're removing.
1327  //
1328  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1329
1330  // If we find RemInst as a clobber or Def in any of the maps for other values,
1331  // we need to replace its entry with a dirty version of the instruction after
1332  // it.  If RemInst is a terminator, we use a null dirty value.
1333  //
1334  // Using a dirty version of the instruction after RemInst saves having to scan
1335  // the entire block to get to this point.
1336  MemDepResult NewDirtyVal;
1337  if (!RemInst->isTerminator())
1338    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1339
1340  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1341  if (ReverseDepIt != ReverseLocalDeps.end()) {
1342    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1343    // RemInst can't be the terminator if it has local stuff depending on it.
1344    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1345           "Nothing can locally depend on a terminator");
1346
1347    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1348         E = ReverseDeps.end(); I != E; ++I) {
1349      Instruction *InstDependingOnRemInst = *I;
1350      assert(InstDependingOnRemInst != RemInst &&
1351             "Already removed our local dep info");
1352
1353      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1354
1355      // Make sure to remember that new things depend on NewDepInst.
1356      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1357             "a local dep on this if it is a terminator!");
1358      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1359                                                InstDependingOnRemInst));
1360    }
1361
1362    ReverseLocalDeps.erase(ReverseDepIt);
1363
1364    // Add new reverse deps after scanning the set, to avoid invalidating the
1365    // 'ReverseDeps' reference.
1366    while (!ReverseDepsToAdd.empty()) {
1367      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1368        .insert(ReverseDepsToAdd.back().second);
1369      ReverseDepsToAdd.pop_back();
1370    }
1371  }
1372
1373  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1374  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1375    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1376    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1377         I != E; ++I) {
1378      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1379
1380      PerInstNLInfo &INLD = NonLocalDeps[*I];
1381      // The information is now dirty!
1382      INLD.second = true;
1383
1384      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1385           DE = INLD.first.end(); DI != DE; ++DI) {
1386        if (DI->getResult().getInst() != RemInst) continue;
1387
1388        // Convert to a dirty entry for the subsequent instruction.
1389        DI->setResult(NewDirtyVal);
1390
1391        if (Instruction *NextI = NewDirtyVal.getInst())
1392          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1393      }
1394    }
1395
1396    ReverseNonLocalDeps.erase(ReverseDepIt);
1397
1398    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1399    while (!ReverseDepsToAdd.empty()) {
1400      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1401        .insert(ReverseDepsToAdd.back().second);
1402      ReverseDepsToAdd.pop_back();
1403    }
1404  }
1405
1406  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1407  // value in the NonLocalPointerDeps info.
1408  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1409    ReverseNonLocalPtrDeps.find(RemInst);
1410  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1411    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1412    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1413
1414    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1415         E = Set.end(); I != E; ++I) {
1416      ValueIsLoadPair P = *I;
1417      assert(P.getPointer() != RemInst &&
1418             "Already removed NonLocalPointerDeps info for RemInst");
1419
1420      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1421
1422      // The cache is not valid for any specific block anymore.
1423      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1424
1425      // Update any entries for RemInst to use the instruction after it.
1426      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1427           DI != DE; ++DI) {
1428        if (DI->getResult().getInst() != RemInst) continue;
1429
1430        // Convert to a dirty entry for the subsequent instruction.
1431        DI->setResult(NewDirtyVal);
1432
1433        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1434          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1435      }
1436
1437      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1438      // subsequent value may invalidate the sortedness.
1439      std::sort(NLPDI.begin(), NLPDI.end());
1440    }
1441
1442    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1443
1444    while (!ReversePtrDepsToAdd.empty()) {
1445      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1446        .insert(ReversePtrDepsToAdd.back().second);
1447      ReversePtrDepsToAdd.pop_back();
1448    }
1449  }
1450
1451
1452  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1453  AA->deleteValue(RemInst);
1454  DEBUG(verifyRemoved(RemInst));
1455}
1456/// verifyRemoved - Verify that the specified instruction does not occur
1457/// in our internal data structures.
1458void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1459  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1460       E = LocalDeps.end(); I != E; ++I) {
1461    assert(I->first != D && "Inst occurs in data structures");
1462    assert(I->second.getInst() != D &&
1463           "Inst occurs in data structures");
1464  }
1465
1466  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1467       E = NonLocalPointerDeps.end(); I != E; ++I) {
1468    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1469    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1470    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1471         II != E; ++II)
1472      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1473  }
1474
1475  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1476       E = NonLocalDeps.end(); I != E; ++I) {
1477    assert(I->first != D && "Inst occurs in data structures");
1478    const PerInstNLInfo &INLD = I->second;
1479    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1480         EE = INLD.first.end(); II  != EE; ++II)
1481      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1482  }
1483
1484  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1485       E = ReverseLocalDeps.end(); I != E; ++I) {
1486    assert(I->first != D && "Inst occurs in data structures");
1487    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1488         EE = I->second.end(); II != EE; ++II)
1489      assert(*II != D && "Inst occurs in data structures");
1490  }
1491
1492  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1493       E = ReverseNonLocalDeps.end();
1494       I != E; ++I) {
1495    assert(I->first != D && "Inst occurs in data structures");
1496    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1497         EE = I->second.end(); II != EE; ++II)
1498      assert(*II != D && "Inst occurs in data structures");
1499  }
1500
1501  for (ReverseNonLocalPtrDepTy::const_iterator
1502       I = ReverseNonLocalPtrDeps.begin(),
1503       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1504    assert(I->first != D && "Inst occurs in rev NLPD map");
1505
1506    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1507         E = I->second.end(); II != E; ++II)
1508      assert(*II != ValueIsLoadPair(D, false) &&
1509             *II != ValueIsLoadPair(D, true) &&
1510             "Inst occurs in ReverseNonLocalPtrDeps map");
1511  }
1512
1513}
1514