MemoryDependenceAnalysis.cpp revision 84b9a56d11c119d2eadbc2ff4d56d33c25a07460
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
32STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
33STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48bool MemoryDependenceAnalysis::runOnFunction(Function &) {
49  AA = &getAnalysis<AliasAnalysis>();
50  TD = &getAnalysis<TargetData>();
51  return false;
52}
53
54
55/// getCallSiteDependency - Private helper for finding the local dependencies
56/// of a call site.
57MemDepResult MemoryDependenceAnalysis::
58getCallSiteDependency(CallSite CS, BasicBlock::iterator ScanIt, BasicBlock *BB) {
59  // Walk backwards through the block, looking for dependencies
60  while (ScanIt != BB->begin()) {
61    Instruction *Inst = --ScanIt;
62
63    // If this inst is a memory op, get the pointer it accessed
64    Value *Pointer = 0;
65    uint64_t PointerSize = 0;
66    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
67      Pointer = S->getPointerOperand();
68      PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
69    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
70      Pointer = V->getOperand(0);
71      PointerSize = TD->getTypeStoreSize(V->getType());
72    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
73      Pointer = F->getPointerOperand();
74
75      // FreeInsts erase the entire structure
76      PointerSize = ~0UL;
77    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
78      CallSite InstCS = CallSite::get(Inst);
79      // If these two calls do not interfere, look past it.
80      if (AA->getModRefInfo(CS, InstCS) == AliasAnalysis::NoModRef)
81        continue;
82
83      // FIXME: If this is a ref/ref result, we should ignore it!
84      //  X = strlen(P);
85      //  Y = strlen(Q);
86      //  Z = strlen(P);  // Z = X
87
88      // If they interfere, we generally return clobber.  However, if they are
89      // calls to the same read-only functions we return Def.
90      if (!AA->onlyReadsMemory(CS) || CS.getCalledFunction() == 0 ||
91          CS.getCalledFunction() != InstCS.getCalledFunction())
92        return MemDepResult::getClobber(Inst);
93      return MemDepResult::getDef(Inst);
94    } else {
95      // Non-memory instruction.
96      continue;
97    }
98
99    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
100      return MemDepResult::getClobber(Inst);
101  }
102
103  // No dependence found.
104  return MemDepResult::getNonLocal();
105}
106
107/// getDependencyFrom - Return the instruction on which a memory operation
108/// depends.
109MemDepResult MemoryDependenceAnalysis::
110getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
111                  BasicBlock *BB) {
112  // The first instruction in a block is always non-local.
113  if (ScanIt == BB->begin())
114    return MemDepResult::getNonLocal();
115
116  // Get the pointer value for which dependence will be determined
117  Value *MemPtr = 0;
118  uint64_t MemSize = 0;
119  bool MemVolatile = false;
120
121  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
122    MemPtr = S->getPointerOperand();
123    MemSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
124    MemVolatile = S->isVolatile();
125  } else if (LoadInst* LI = dyn_cast<LoadInst>(QueryInst)) {
126    MemPtr = LI->getPointerOperand();
127    MemSize = TD->getTypeStoreSize(LI->getType());
128    MemVolatile = LI->isVolatile();
129  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
130    MemPtr = F->getPointerOperand();
131    // FreeInsts erase the entire structure, not just a field.
132    MemSize = ~0UL;
133  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
134    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
135  } else {
136    // Otherwise, this is a vaarg or non-memory instruction, just return a
137    // clobber dependency on the previous inst.
138    return MemDepResult::getClobber(--ScanIt);
139  }
140
141  // Walk backwards through the basic block, looking for dependencies
142  while (ScanIt != BB->begin()) {
143    Instruction *Inst = --ScanIt;
144
145    // Values depend on loads if the pointers are must aliased.  This means that
146    // a load depends on another must aliased load from the same value.
147    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
148      // If the access is volatile and this is volatile, return a dependence.
149      if (MemVolatile && LI->isVolatile())
150        return MemDepResult::getClobber(LI);
151
152      Value *Pointer = LI->getPointerOperand();
153      uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
154
155      // If we found a pointer, check if it could be the same as our pointer.
156      AliasAnalysis::AliasResult R =
157        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
158      if (R == AliasAnalysis::NoAlias)
159        continue;
160
161      // May-alias loads don't depend on each other without a dependence.
162      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
163        continue;
164      return MemDepResult::getDef(Inst);
165    }
166
167    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
168      // If the access is volatile and this is volatile, return a dependence.
169      if (MemVolatile && SI->isVolatile())
170        return MemDepResult::getClobber(SI);
171
172      Value *Pointer = SI->getPointerOperand();
173      uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
174
175      // If we found a pointer, check if it could be the same as our pointer.
176      AliasAnalysis::AliasResult R =
177        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
178
179      if (R == AliasAnalysis::NoAlias)
180        continue;
181      if (R == AliasAnalysis::MayAlias)
182        return MemDepResult::getClobber(Inst);
183      return MemDepResult::getDef(Inst);
184    }
185
186    // If this is an allocation, and if we know that the accessed pointer is to
187    // the allocation, return Def.  This means that there is no dependence and
188    // the access can be optimized based on that.  For example, a load could
189    // turn into undef.
190    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
191      Value *AccessPtr = MemPtr->getUnderlyingObject();
192
193      if (AccessPtr == AI ||
194          AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
195        return MemDepResult::getDef(AI);
196      continue;
197    }
198
199    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
200    if (AA->getModRefInfo(Inst, MemPtr, MemSize) == AliasAnalysis::NoModRef)
201      continue;
202
203    // Otherwise, there is a dependence.
204    return MemDepResult::getClobber(Inst);
205  }
206
207  // If we found nothing, return the non-local flag.
208  return MemDepResult::getNonLocal();
209}
210
211/// getDependency - Return the instruction on which a memory operation
212/// depends.
213MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
214  Instruction *ScanPos = QueryInst;
215
216  // Check for a cached result
217  MemDepResult &LocalCache = LocalDeps[QueryInst];
218
219  // If the cached entry is non-dirty, just return it.  Note that this depends
220  // on MemDepResult's default constructing to 'dirty'.
221  if (!LocalCache.isDirty())
222    return LocalCache;
223
224  // Otherwise, if we have a dirty entry, we know we can start the scan at that
225  // instruction, which may save us some work.
226  if (Instruction *Inst = LocalCache.getInst()) {
227    ScanPos = Inst;
228
229    SmallPtrSet<Instruction*, 4> &InstMap = ReverseLocalDeps[Inst];
230    InstMap.erase(QueryInst);
231    if (InstMap.empty())
232      ReverseLocalDeps.erase(Inst);
233  }
234
235  // Do the scan.
236  LocalCache = getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
237
238  // Remember the result!
239  if (Instruction *I = LocalCache.getInst())
240    ReverseLocalDeps[I].insert(QueryInst);
241
242  return LocalCache;
243}
244
245/// getNonLocalDependency - Perform a full dependency query for the
246/// specified instruction, returning the set of blocks that the value is
247/// potentially live across.  The returned set of results will include a
248/// "NonLocal" result for all blocks where the value is live across.
249///
250/// This method assumes the instruction returns a "nonlocal" dependency
251/// within its own block.
252///
253const MemoryDependenceAnalysis::NonLocalDepInfo &
254MemoryDependenceAnalysis::getNonLocalDependency(Instruction *QueryInst) {
255  assert(getDependency(QueryInst).isNonLocal() &&
256     "getNonLocalDependency should only be used on insts with non-local deps!");
257  PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
258
259  NonLocalDepInfo &Cache = CacheP.first;
260
261  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
262  /// the cached case, this can happen due to instructions being deleted etc. In
263  /// the uncached case, this starts out as the set of predecessors we care
264  /// about.
265  SmallVector<BasicBlock*, 32> DirtyBlocks;
266
267  if (!Cache.empty()) {
268    // Okay, we have a cache entry.  If we know it is not dirty, just return it
269    // with no computation.
270    if (!CacheP.second) {
271      NumCacheNonLocal++;
272      return Cache;
273    }
274
275    // If we already have a partially computed set of results, scan them to
276    // determine what is dirty, seeding our initial DirtyBlocks worklist.
277    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
278       I != E; ++I)
279      if (I->second.isDirty())
280        DirtyBlocks.push_back(I->first);
281
282    // Sort the cache so that we can do fast binary search lookups below.
283    std::sort(Cache.begin(), Cache.end());
284
285    ++NumCacheDirtyNonLocal;
286    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
287    //     << Cache.size() << " cached: " << *QueryInst;
288  } else {
289    // Seed DirtyBlocks with each of the preds of QueryInst's block.
290    BasicBlock *QueryBB = QueryInst->getParent();
291    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
292    NumUncacheNonLocal++;
293  }
294
295  // Visited checked first, vector in sorted order.
296  SmallPtrSet<BasicBlock*, 64> Visited;
297
298  unsigned NumSortedEntries = Cache.size();
299
300  // Iterate while we still have blocks to update.
301  while (!DirtyBlocks.empty()) {
302    BasicBlock *DirtyBB = DirtyBlocks.back();
303    DirtyBlocks.pop_back();
304
305    // Already processed this block?
306    if (!Visited.insert(DirtyBB))
307      continue;
308
309    // Do a binary search to see if we already have an entry for this block in
310    // the cache set.  If so, find it.
311    NonLocalDepInfo::iterator Entry =
312      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
313                       std::make_pair(DirtyBB, MemDepResult()));
314    if (Entry != Cache.begin() && (&*Entry)[-1].first == DirtyBB)
315      --Entry;
316
317    MemDepResult *ExistingResult = 0;
318    if (Entry != Cache.begin()+NumSortedEntries &&
319        Entry->first == DirtyBB) {
320      // If we already have an entry, and if it isn't already dirty, the block
321      // is done.
322      if (!Entry->second.isDirty())
323        continue;
324
325      // Otherwise, remember this slot so we can update the value.
326      ExistingResult = &Entry->second;
327    }
328
329    // If the dirty entry has a pointer, start scanning from it so we don't have
330    // to rescan the entire block.
331    BasicBlock::iterator ScanPos = DirtyBB->end();
332    if (ExistingResult) {
333      if (Instruction *Inst = ExistingResult->getInst()) {
334        ScanPos = Inst;
335
336        // We're removing QueryInst's use of Inst.
337        SmallPtrSet<Instruction*, 4> &InstMap = ReverseNonLocalDeps[Inst];
338        InstMap.erase(QueryInst);
339        if (InstMap.empty()) ReverseNonLocalDeps.erase(Inst);
340      }
341    }
342
343    // Find out if this block has a local dependency for QueryInst.
344    MemDepResult Dep = getDependencyFrom(QueryInst, ScanPos, DirtyBB);
345
346    // If we had a dirty entry for the block, update it.  Otherwise, just add
347    // a new entry.
348    if (ExistingResult)
349      *ExistingResult = Dep;
350    else
351      Cache.push_back(std::make_pair(DirtyBB, Dep));
352
353    // If the block has a dependency (i.e. it isn't completely transparent to
354    // the value), remember the association!
355    if (!Dep.isNonLocal()) {
356      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
357      // update this when we remove instructions.
358      if (Instruction *Inst = Dep.getInst())
359        ReverseNonLocalDeps[Inst].insert(QueryInst);
360    } else {
361
362      // If the block *is* completely transparent to the load, we need to check
363      // the predecessors of this block.  Add them to our worklist.
364      DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
365    }
366  }
367
368  return Cache;
369}
370
371/// removeInstruction - Remove an instruction from the dependence analysis,
372/// updating the dependence of instructions that previously depended on it.
373/// This method attempts to keep the cache coherent using the reverse map.
374void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
375  // Walk through the Non-local dependencies, removing this one as the value
376  // for any cached queries.
377  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
378  if (NLDI != NonLocalDeps.end()) {
379    NonLocalDepInfo &BlockMap = NLDI->second.first;
380    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
381         DI != DE; ++DI)
382      if (Instruction *Inst = DI->second.getInst())
383        ReverseNonLocalDeps[Inst].erase(RemInst);
384    NonLocalDeps.erase(NLDI);
385  }
386
387  // If we have a cached local dependence query for this instruction, remove it.
388  //
389  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
390  if (LocalDepEntry != LocalDeps.end()) {
391    // Remove us from DepInst's reverse set now that the local dep info is gone.
392    if (Instruction *Inst = LocalDepEntry->second.getInst()) {
393      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
394      RLD.erase(RemInst);
395      if (RLD.empty())
396        ReverseLocalDeps.erase(Inst);
397    }
398
399    // Remove this local dependency info.
400    LocalDeps.erase(LocalDepEntry);
401  }
402
403  // Loop over all of the things that depend on the instruction we're removing.
404  //
405  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
406
407  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
408  if (ReverseDepIt != ReverseLocalDeps.end()) {
409    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
410    // RemInst can't be the terminator if it has stuff depending on it.
411    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
412           "Nothing can locally depend on a terminator");
413
414    // Anything that was locally dependent on RemInst is now going to be
415    // dependent on the instruction after RemInst.  It will have the dirty flag
416    // set so it will rescan.  This saves having to scan the entire block to get
417    // to this point.
418    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
419
420    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
421         E = ReverseDeps.end(); I != E; ++I) {
422      Instruction *InstDependingOnRemInst = *I;
423      assert(InstDependingOnRemInst != RemInst &&
424             "Already removed our local dep info");
425
426      LocalDeps[InstDependingOnRemInst] = MemDepResult::getDirty(NewDepInst);
427
428      // Make sure to remember that new things depend on NewDepInst.
429      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
430                                                InstDependingOnRemInst));
431    }
432
433    ReverseLocalDeps.erase(ReverseDepIt);
434
435    // Add new reverse deps after scanning the set, to avoid invalidating the
436    // 'ReverseDeps' reference.
437    while (!ReverseDepsToAdd.empty()) {
438      ReverseLocalDeps[ReverseDepsToAdd.back().first]
439        .insert(ReverseDepsToAdd.back().second);
440      ReverseDepsToAdd.pop_back();
441    }
442  }
443
444  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
445  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
446    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
447    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
448         I != E; ++I) {
449      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
450
451      PerInstNLInfo &INLD = NonLocalDeps[*I];
452      // The information is now dirty!
453      INLD.second = true;
454
455      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
456           DE = INLD.first.end(); DI != DE; ++DI) {
457        if (DI->second.getInst() != RemInst) continue;
458
459        // Convert to a dirty entry for the subsequent instruction.
460        Instruction *NextI = 0;
461        if (!RemInst->isTerminator()) {
462          NextI = next(BasicBlock::iterator(RemInst));
463          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
464        }
465        DI->second = MemDepResult::getDirty(NextI);
466      }
467    }
468
469    ReverseNonLocalDeps.erase(ReverseDepIt);
470
471    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
472    while (!ReverseDepsToAdd.empty()) {
473      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
474        .insert(ReverseDepsToAdd.back().second);
475      ReverseDepsToAdd.pop_back();
476    }
477  }
478
479  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
480  AA->deleteValue(RemInst);
481  DEBUG(verifyRemoved(RemInst));
482}
483
484/// verifyRemoved - Verify that the specified instruction does not occur
485/// in our internal data structures.
486void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
487  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
488       E = LocalDeps.end(); I != E; ++I) {
489    assert(I->first != D && "Inst occurs in data structures");
490    assert(I->second.getInst() != D &&
491           "Inst occurs in data structures");
492  }
493
494  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
495       E = NonLocalDeps.end(); I != E; ++I) {
496    assert(I->first != D && "Inst occurs in data structures");
497    const PerInstNLInfo &INLD = I->second;
498    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
499         EE = INLD.first.end(); II  != EE; ++II)
500      assert(II->second.getInst() != D && "Inst occurs in data structures");
501  }
502
503  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
504       E = ReverseLocalDeps.end(); I != E; ++I) {
505    assert(I->first != D && "Inst occurs in data structures");
506    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
507         EE = I->second.end(); II != EE; ++II)
508      assert(*II != D && "Inst occurs in data structures");
509  }
510
511  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
512       E = ReverseNonLocalDeps.end();
513       I != E; ++I) {
514    assert(I->first != D && "Inst occurs in data structures");
515    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
516         EE = I->second.end(); II != EE; ++II)
517      assert(*II != D && "Inst occurs in data structures");
518  }
519}
520