MemoryDependenceAnalysis.cpp revision 8e0d1c03ca7fd86e6879b4e37d0d7f0e982feef6
1544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//
3544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//                     The LLVM Compiler Infrastructure
4544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//
5544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// This file is distributed under the University of Illinois Open Source
6544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// License. See LICENSE.TXT for details.
7544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//
8544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//===----------------------------------------------------------------------===//
9544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//
10544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// This file implements an analysis that determines, for a given memory
11544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// operation, what preceding memory operations it depends on.  It builds on
12544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// alias analysis information, and tries to provide a lazy, caching interface to
13544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// a common kind of alias information query.
14544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//
15544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//===----------------------------------------------------------------------===//
16544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
17544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#define DEBUG_TYPE "memdep"
18544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Instructions.h"
20544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/IntrinsicInst.h"
21544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Function.h"
22544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/LLVMContext.h"
23544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Analysis/AliasAnalysis.h"
24544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Analysis/Dominators.h"
25544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Analysis/InstructionSimplify.h"
26544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Analysis/MemoryBuiltins.h"
27544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Analysis/PHITransAddr.h"
28544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Analysis/ValueTracking.h"
29544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/ADT/Statistic.h"
30544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/ADT/STLExtras.h"
31544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Support/PredIteratorCache.h"
32544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin#include "llvm/Support/Debug.h"
33287c94ea4987033f9c99a2f91c5750c9083504caKeith Whitwell#include "llvm/Target/TargetData.h"
34544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusinusing namespace llvm;
35544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
36544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinSTATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
37544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinSTATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
38544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinSTATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
39544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
40544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinSTATISTIC(NumCacheNonLocalPtr,
41544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin          "Number of fully cached non-local ptr responses");
42544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinSTATISTIC(NumCacheDirtyNonLocalPtr,
43544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin          "Number of cached, but dirty, non-local ptr responses");
44544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinSTATISTIC(NumUncacheNonLocalPtr,
45544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin          "Number of uncached non-local ptr responses");
46e5f0384ad06359aa1b9dc1b4bc6f475f7a119af2Roland ScheideggerSTATISTIC(NumCacheCompleteNonLocalPtr,
47544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin          "Number of block queries that were completely cached");
48544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
49544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// Limit for the number of instructions to scan in a block.
50544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// FIXME: Figure out what a sane value is for this.
51544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin//        (500 is relatively insane.)
52544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusinstatic const int BlockScanLimit = 500;
53544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
54544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusinchar MemoryDependenceAnalysis::ID = 0;
55544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
56544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin// Register this pass...
57544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinINITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
58544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin                "Memory Dependence Analysis", false, true)
59544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
60544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinINITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
61544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin                      "Memory Dependence Analysis", false, true)
62544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
63544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinMemoryDependenceAnalysis::MemoryDependenceAnalysis()
64544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin: FunctionPass(ID), PredCache(0) {
65544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
66544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin}
67544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack RusinMemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
68544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin}
69544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
70544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin/// Clean up memory in between runs
71544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusinvoid MemoryDependenceAnalysis::releaseMemory() {
72544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  LocalDeps.clear();
73544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  NonLocalDeps.clear();
74544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  NonLocalPointerDeps.clear();
75544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  ReverseLocalDeps.clear();
76544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  ReverseNonLocalDeps.clear();
77544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  ReverseNonLocalPtrDeps.clear();
78544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  PredCache->clear();
79544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin}
80544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
81544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
8234f466d4e6a720138c0846ab6233c32dc039fe58Chia-I Wu
83544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
84544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin///
85544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusinvoid MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
86544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  AU.setPreservesAll();
87544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  AU.addRequiredTransitive<AliasAnalysis>();
88544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin}
89544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
90544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusinbool MemoryDependenceAnalysis::runOnFunction(Function &) {
91544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  AA = &getAnalysis<AliasAnalysis>();
92e5f0384ad06359aa1b9dc1b4bc6f475f7a119af2Roland Scheidegger  TD = getAnalysisIfAvailable<TargetData>();
93544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  DT = getAnalysisIfAvailable<DominatorTree>();
94544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  if (PredCache == 0)
95544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin    PredCache.reset(new PredIteratorCache());
96544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin  return false;
97544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin}
98544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin
99544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin/// RemoveFromReverseMap - This is a helper function that removes Val from
100544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
101544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusintemplate <typename KeyTy>
102544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusinstatic void RemoveFromReverseMap(DenseMap<Instruction*,
103544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
104544dd4b11f7be76bb00fe29a60eaf2772dcc69caZack Rusin                                 Instruction *Inst, KeyTy Val) {
105  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
106  InstIt = ReverseMap.find(Inst);
107  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
108  bool Found = InstIt->second.erase(Val);
109  assert(Found && "Invalid reverse map!"); (void)Found;
110  if (InstIt->second.empty())
111    ReverseMap.erase(InstIt);
112}
113
114/// GetLocation - If the given instruction references a specific memory
115/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116/// Return a ModRefInfo value describing the general behavior of the
117/// instruction.
118static
119AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
120                                        AliasAnalysis::Location &Loc,
121                                        AliasAnalysis *AA) {
122  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
123    if (LI->isUnordered()) {
124      Loc = AA->getLocation(LI);
125      return AliasAnalysis::Ref;
126    } else if (LI->getOrdering() == Monotonic) {
127      Loc = AA->getLocation(LI);
128      return AliasAnalysis::ModRef;
129    }
130    Loc = AliasAnalysis::Location();
131    return AliasAnalysis::ModRef;
132  }
133
134  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
135    if (SI->isUnordered()) {
136      Loc = AA->getLocation(SI);
137      return AliasAnalysis::Mod;
138    } else if (SI->getOrdering() == Monotonic) {
139      Loc = AA->getLocation(SI);
140      return AliasAnalysis::ModRef;
141    }
142    Loc = AliasAnalysis::Location();
143    return AliasAnalysis::ModRef;
144  }
145
146  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147    Loc = AA->getLocation(V);
148    return AliasAnalysis::ModRef;
149  }
150
151  if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
152    // calls to free() deallocate the entire structure
153    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
154    return AliasAnalysis::Mod;
155  }
156
157  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
158    switch (II->getIntrinsicID()) {
159    case Intrinsic::lifetime_start:
160    case Intrinsic::lifetime_end:
161    case Intrinsic::invariant_start:
162      Loc = AliasAnalysis::Location(II->getArgOperand(1),
163                                    cast<ConstantInt>(II->getArgOperand(0))
164                                      ->getZExtValue(),
165                                    II->getMetadata(LLVMContext::MD_tbaa));
166      // These intrinsics don't really modify the memory, but returning Mod
167      // will allow them to be handled conservatively.
168      return AliasAnalysis::Mod;
169    case Intrinsic::invariant_end:
170      Loc = AliasAnalysis::Location(II->getArgOperand(2),
171                                    cast<ConstantInt>(II->getArgOperand(1))
172                                      ->getZExtValue(),
173                                    II->getMetadata(LLVMContext::MD_tbaa));
174      // These intrinsics don't really modify the memory, but returning Mod
175      // will allow them to be handled conservatively.
176      return AliasAnalysis::Mod;
177    default:
178      break;
179    }
180
181  // Otherwise, just do the coarse-grained thing that always works.
182  if (Inst->mayWriteToMemory())
183    return AliasAnalysis::ModRef;
184  if (Inst->mayReadFromMemory())
185    return AliasAnalysis::Ref;
186  return AliasAnalysis::NoModRef;
187}
188
189/// getCallSiteDependencyFrom - Private helper for finding the local
190/// dependencies of a call site.
191MemDepResult MemoryDependenceAnalysis::
192getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
193                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
194  unsigned Limit = BlockScanLimit;
195
196  // Walk backwards through the block, looking for dependencies
197  while (ScanIt != BB->begin()) {
198    // Limit the amount of scanning we do so we don't end up with quadratic
199    // running time on extreme testcases.
200    --Limit;
201    if (!Limit)
202      return MemDepResult::getUnknown();
203
204    Instruction *Inst = --ScanIt;
205
206    // If this inst is a memory op, get the pointer it accessed
207    AliasAnalysis::Location Loc;
208    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
209    if (Loc.Ptr) {
210      // A simple instruction.
211      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
212        return MemDepResult::getClobber(Inst);
213      continue;
214    }
215
216    if (CallSite InstCS = cast<Value>(Inst)) {
217      // Debug intrinsics don't cause dependences.
218      if (isa<DbgInfoIntrinsic>(Inst)) continue;
219      // If these two calls do not interfere, look past it.
220      switch (AA->getModRefInfo(CS, InstCS)) {
221      case AliasAnalysis::NoModRef:
222        // If the two calls are the same, return InstCS as a Def, so that
223        // CS can be found redundant and eliminated.
224        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
225            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
226          return MemDepResult::getDef(Inst);
227
228        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
229        // keep scanning.
230        continue;
231      default:
232        return MemDepResult::getClobber(Inst);
233      }
234    }
235
236    // If we could not obtain a pointer for the instruction and the instruction
237    // touches memory then assume that this is a dependency.
238    if (MR != AliasAnalysis::NoModRef)
239      return MemDepResult::getClobber(Inst);
240  }
241
242  // No dependence found.  If this is the entry block of the function, it is
243  // unknown, otherwise it is non-local.
244  if (BB != &BB->getParent()->getEntryBlock())
245    return MemDepResult::getNonLocal();
246  return MemDepResult::getNonFuncLocal();
247}
248
249/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
250/// would fully overlap MemLoc if done as a wider legal integer load.
251///
252/// MemLocBase, MemLocOffset are lazily computed here the first time the
253/// base/offs of memloc is needed.
254static bool
255isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
256                                       const Value *&MemLocBase,
257                                       int64_t &MemLocOffs,
258                                       const LoadInst *LI,
259                                       const TargetData *TD) {
260  // If we have no target data, we can't do this.
261  if (TD == 0) return false;
262
263  // If we haven't already computed the base/offset of MemLoc, do so now.
264  if (MemLocBase == 0)
265    MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
266
267  unsigned Size = MemoryDependenceAnalysis::
268    getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
269                                    LI, *TD);
270  return Size != 0;
271}
272
273/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
274/// looks at a memory location for a load (specified by MemLocBase, Offs,
275/// and Size) and compares it against a load.  If the specified load could
276/// be safely widened to a larger integer load that is 1) still efficient,
277/// 2) safe for the target, and 3) would provide the specified memory
278/// location value, then this function returns the size in bytes of the
279/// load width to use.  If not, this returns zero.
280unsigned MemoryDependenceAnalysis::
281getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
282                                unsigned MemLocSize, const LoadInst *LI,
283                                const TargetData &TD) {
284  // We can only extend simple integer loads.
285  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
286
287  // Get the base of this load.
288  int64_t LIOffs = 0;
289  const Value *LIBase =
290    GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
291
292  // If the two pointers are not based on the same pointer, we can't tell that
293  // they are related.
294  if (LIBase != MemLocBase) return 0;
295
296  // Okay, the two values are based on the same pointer, but returned as
297  // no-alias.  This happens when we have things like two byte loads at "P+1"
298  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
299  // alignment (or the largest native integer type) will allow us to load all
300  // the bits required by MemLoc.
301
302  // If MemLoc is before LI, then no widening of LI will help us out.
303  if (MemLocOffs < LIOffs) return 0;
304
305  // Get the alignment of the load in bytes.  We assume that it is safe to load
306  // any legal integer up to this size without a problem.  For example, if we're
307  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
308  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
309  // to i16.
310  unsigned LoadAlign = LI->getAlignment();
311
312  int64_t MemLocEnd = MemLocOffs+MemLocSize;
313
314  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
315  if (LIOffs+LoadAlign < MemLocEnd) return 0;
316
317  // This is the size of the load to try.  Start with the next larger power of
318  // two.
319  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
320  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
321
322  while (1) {
323    // If this load size is bigger than our known alignment or would not fit
324    // into a native integer register, then we fail.
325    if (NewLoadByteSize > LoadAlign ||
326        !TD.fitsInLegalInteger(NewLoadByteSize*8))
327      return 0;
328
329    if (LIOffs+NewLoadByteSize > MemLocEnd &&
330        LI->getParent()->getParent()->hasFnAttr(Attribute::AddressSafety)) {
331      // We will be reading past the location accessed by the original program.
332      // While this is safe in a regular build, Address Safety analysis tools
333      // may start reporting false warnings. So, don't do widening.
334      return 0;
335    }
336
337    // If a load of this width would include all of MemLoc, then we succeed.
338    if (LIOffs+NewLoadByteSize >= MemLocEnd)
339      return NewLoadByteSize;
340
341    NewLoadByteSize <<= 1;
342  }
343}
344
345/// getPointerDependencyFrom - Return the instruction on which a memory
346/// location depends.  If isLoad is true, this routine ignores may-aliases with
347/// read-only operations.  If isLoad is false, this routine ignores may-aliases
348/// with reads from read-only locations.
349MemDepResult MemoryDependenceAnalysis::
350getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
351                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
352
353  const Value *MemLocBase = 0;
354  int64_t MemLocOffset = 0;
355
356  unsigned Limit = BlockScanLimit;
357
358  // Walk backwards through the basic block, looking for dependencies.
359  while (ScanIt != BB->begin()) {
360    // Limit the amount of scanning we do so we don't end up with quadratic
361    // running time on extreme testcases.
362    --Limit;
363    if (!Limit)
364      return MemDepResult::getUnknown();
365
366    Instruction *Inst = --ScanIt;
367
368    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
369      // Debug intrinsics don't (and can't) cause dependences.
370      if (isa<DbgInfoIntrinsic>(II)) continue;
371
372      // If we reach a lifetime begin or end marker, then the query ends here
373      // because the value is undefined.
374      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
375        // FIXME: This only considers queries directly on the invariant-tagged
376        // pointer, not on query pointers that are indexed off of them.  It'd
377        // be nice to handle that at some point (the right approach is to use
378        // GetPointerBaseWithConstantOffset).
379        if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
380                            MemLoc))
381          return MemDepResult::getDef(II);
382        continue;
383      }
384    }
385
386    // Values depend on loads if the pointers are must aliased.  This means that
387    // a load depends on another must aliased load from the same value.
388    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
389      // Atomic loads have complications involved.
390      // FIXME: This is overly conservative.
391      if (!LI->isUnordered())
392        return MemDepResult::getClobber(LI);
393
394      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
395
396      // If we found a pointer, check if it could be the same as our pointer.
397      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
398
399      if (isLoad) {
400        if (R == AliasAnalysis::NoAlias) {
401          // If this is an over-aligned integer load (for example,
402          // "load i8* %P, align 4") see if it would obviously overlap with the
403          // queried location if widened to a larger load (e.g. if the queried
404          // location is 1 byte at P+1).  If so, return it as a load/load
405          // clobber result, allowing the client to decide to widen the load if
406          // it wants to.
407          if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
408            if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
409                isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
410                                                       MemLocOffset, LI, TD))
411              return MemDepResult::getClobber(Inst);
412
413          continue;
414        }
415
416        // Must aliased loads are defs of each other.
417        if (R == AliasAnalysis::MustAlias)
418          return MemDepResult::getDef(Inst);
419
420#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
421      // in terms of clobbering loads, but since it does this by looking
422      // at the clobbering load directly, it doesn't know about any
423      // phi translation that may have happened along the way.
424
425        // If we have a partial alias, then return this as a clobber for the
426        // client to handle.
427        if (R == AliasAnalysis::PartialAlias)
428          return MemDepResult::getClobber(Inst);
429#endif
430
431        // Random may-alias loads don't depend on each other without a
432        // dependence.
433        continue;
434      }
435
436      // Stores don't depend on other no-aliased accesses.
437      if (R == AliasAnalysis::NoAlias)
438        continue;
439
440      // Stores don't alias loads from read-only memory.
441      if (AA->pointsToConstantMemory(LoadLoc))
442        continue;
443
444      // Stores depend on may/must aliased loads.
445      return MemDepResult::getDef(Inst);
446    }
447
448    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
449      // Atomic stores have complications involved.
450      // FIXME: This is overly conservative.
451      if (!SI->isUnordered())
452        return MemDepResult::getClobber(SI);
453
454      // If alias analysis can tell that this store is guaranteed to not modify
455      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
456      // the query pointer points to constant memory etc.
457      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
458        continue;
459
460      // Ok, this store might clobber the query pointer.  Check to see if it is
461      // a must alias: in this case, we want to return this as a def.
462      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
463
464      // If we found a pointer, check if it could be the same as our pointer.
465      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
466
467      if (R == AliasAnalysis::NoAlias)
468        continue;
469      if (R == AliasAnalysis::MustAlias)
470        return MemDepResult::getDef(Inst);
471      return MemDepResult::getClobber(Inst);
472    }
473
474    // If this is an allocation, and if we know that the accessed pointer is to
475    // the allocation, return Def.  This means that there is no dependence and
476    // the access can be optimized based on that.  For example, a load could
477    // turn into undef.
478    // Note: Only determine this to be a malloc if Inst is the malloc call, not
479    // a subsequent bitcast of the malloc call result.  There can be stores to
480    // the malloced memory between the malloc call and its bitcast uses, and we
481    // need to continue scanning until the malloc call.
482    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, AA->getTargetLibraryInfo())){
483      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
484
485      if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
486        return MemDepResult::getDef(Inst);
487      continue;
488    }
489
490    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
491    AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
492    // If necessary, perform additional analysis.
493    if (MR == AliasAnalysis::ModRef)
494      MR = AA->callCapturesBefore(Inst, MemLoc, DT);
495    switch (MR) {
496    case AliasAnalysis::NoModRef:
497      // If the call has no effect on the queried pointer, just ignore it.
498      continue;
499    case AliasAnalysis::Mod:
500      return MemDepResult::getClobber(Inst);
501    case AliasAnalysis::Ref:
502      // If the call is known to never store to the pointer, and if this is a
503      // load query, we can safely ignore it (scan past it).
504      if (isLoad)
505        continue;
506    default:
507      // Otherwise, there is a potential dependence.  Return a clobber.
508      return MemDepResult::getClobber(Inst);
509    }
510  }
511
512  // No dependence found.  If this is the entry block of the function, it is
513  // unknown, otherwise it is non-local.
514  if (BB != &BB->getParent()->getEntryBlock())
515    return MemDepResult::getNonLocal();
516  return MemDepResult::getNonFuncLocal();
517}
518
519/// getDependency - Return the instruction on which a memory operation
520/// depends.
521MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
522  Instruction *ScanPos = QueryInst;
523
524  // Check for a cached result
525  MemDepResult &LocalCache = LocalDeps[QueryInst];
526
527  // If the cached entry is non-dirty, just return it.  Note that this depends
528  // on MemDepResult's default constructing to 'dirty'.
529  if (!LocalCache.isDirty())
530    return LocalCache;
531
532  // Otherwise, if we have a dirty entry, we know we can start the scan at that
533  // instruction, which may save us some work.
534  if (Instruction *Inst = LocalCache.getInst()) {
535    ScanPos = Inst;
536
537    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
538  }
539
540  BasicBlock *QueryParent = QueryInst->getParent();
541
542  // Do the scan.
543  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
544    // No dependence found.  If this is the entry block of the function, it is
545    // unknown, otherwise it is non-local.
546    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
547      LocalCache = MemDepResult::getNonLocal();
548    else
549      LocalCache = MemDepResult::getNonFuncLocal();
550  } else {
551    AliasAnalysis::Location MemLoc;
552    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
553    if (MemLoc.Ptr) {
554      // If we can do a pointer scan, make it happen.
555      bool isLoad = !(MR & AliasAnalysis::Mod);
556      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
557        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
558
559      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
560                                            QueryParent);
561    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
562      CallSite QueryCS(QueryInst);
563      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
564      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
565                                             QueryParent);
566    } else
567      // Non-memory instruction.
568      LocalCache = MemDepResult::getUnknown();
569  }
570
571  // Remember the result!
572  if (Instruction *I = LocalCache.getInst())
573    ReverseLocalDeps[I].insert(QueryInst);
574
575  return LocalCache;
576}
577
578#ifndef NDEBUG
579/// AssertSorted - This method is used when -debug is specified to verify that
580/// cache arrays are properly kept sorted.
581static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
582                         int Count = -1) {
583  if (Count == -1) Count = Cache.size();
584  if (Count == 0) return;
585
586  for (unsigned i = 1; i != unsigned(Count); ++i)
587    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
588}
589#endif
590
591/// getNonLocalCallDependency - Perform a full dependency query for the
592/// specified call, returning the set of blocks that the value is
593/// potentially live across.  The returned set of results will include a
594/// "NonLocal" result for all blocks where the value is live across.
595///
596/// This method assumes the instruction returns a "NonLocal" dependency
597/// within its own block.
598///
599/// This returns a reference to an internal data structure that may be
600/// invalidated on the next non-local query or when an instruction is
601/// removed.  Clients must copy this data if they want it around longer than
602/// that.
603const MemoryDependenceAnalysis::NonLocalDepInfo &
604MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
605  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
606 "getNonLocalCallDependency should only be used on calls with non-local deps!");
607  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
608  NonLocalDepInfo &Cache = CacheP.first;
609
610  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
611  /// the cached case, this can happen due to instructions being deleted etc. In
612  /// the uncached case, this starts out as the set of predecessors we care
613  /// about.
614  SmallVector<BasicBlock*, 32> DirtyBlocks;
615
616  if (!Cache.empty()) {
617    // Okay, we have a cache entry.  If we know it is not dirty, just return it
618    // with no computation.
619    if (!CacheP.second) {
620      ++NumCacheNonLocal;
621      return Cache;
622    }
623
624    // If we already have a partially computed set of results, scan them to
625    // determine what is dirty, seeding our initial DirtyBlocks worklist.
626    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
627       I != E; ++I)
628      if (I->getResult().isDirty())
629        DirtyBlocks.push_back(I->getBB());
630
631    // Sort the cache so that we can do fast binary search lookups below.
632    std::sort(Cache.begin(), Cache.end());
633
634    ++NumCacheDirtyNonLocal;
635    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
636    //     << Cache.size() << " cached: " << *QueryInst;
637  } else {
638    // Seed DirtyBlocks with each of the preds of QueryInst's block.
639    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
640    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
641      DirtyBlocks.push_back(*PI);
642    ++NumUncacheNonLocal;
643  }
644
645  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
646  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
647
648  SmallPtrSet<BasicBlock*, 64> Visited;
649
650  unsigned NumSortedEntries = Cache.size();
651  DEBUG(AssertSorted(Cache));
652
653  // Iterate while we still have blocks to update.
654  while (!DirtyBlocks.empty()) {
655    BasicBlock *DirtyBB = DirtyBlocks.back();
656    DirtyBlocks.pop_back();
657
658    // Already processed this block?
659    if (!Visited.insert(DirtyBB))
660      continue;
661
662    // Do a binary search to see if we already have an entry for this block in
663    // the cache set.  If so, find it.
664    DEBUG(AssertSorted(Cache, NumSortedEntries));
665    NonLocalDepInfo::iterator Entry =
666      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
667                       NonLocalDepEntry(DirtyBB));
668    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
669      --Entry;
670
671    NonLocalDepEntry *ExistingResult = 0;
672    if (Entry != Cache.begin()+NumSortedEntries &&
673        Entry->getBB() == DirtyBB) {
674      // If we already have an entry, and if it isn't already dirty, the block
675      // is done.
676      if (!Entry->getResult().isDirty())
677        continue;
678
679      // Otherwise, remember this slot so we can update the value.
680      ExistingResult = &*Entry;
681    }
682
683    // If the dirty entry has a pointer, start scanning from it so we don't have
684    // to rescan the entire block.
685    BasicBlock::iterator ScanPos = DirtyBB->end();
686    if (ExistingResult) {
687      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
688        ScanPos = Inst;
689        // We're removing QueryInst's use of Inst.
690        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
691                             QueryCS.getInstruction());
692      }
693    }
694
695    // Find out if this block has a local dependency for QueryInst.
696    MemDepResult Dep;
697
698    if (ScanPos != DirtyBB->begin()) {
699      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
700    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
701      // No dependence found.  If this is the entry block of the function, it is
702      // a clobber, otherwise it is unknown.
703      Dep = MemDepResult::getNonLocal();
704    } else {
705      Dep = MemDepResult::getNonFuncLocal();
706    }
707
708    // If we had a dirty entry for the block, update it.  Otherwise, just add
709    // a new entry.
710    if (ExistingResult)
711      ExistingResult->setResult(Dep);
712    else
713      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
714
715    // If the block has a dependency (i.e. it isn't completely transparent to
716    // the value), remember the association!
717    if (!Dep.isNonLocal()) {
718      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
719      // update this when we remove instructions.
720      if (Instruction *Inst = Dep.getInst())
721        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
722    } else {
723
724      // If the block *is* completely transparent to the load, we need to check
725      // the predecessors of this block.  Add them to our worklist.
726      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
727        DirtyBlocks.push_back(*PI);
728    }
729  }
730
731  return Cache;
732}
733
734/// getNonLocalPointerDependency - Perform a full dependency query for an
735/// access to the specified (non-volatile) memory location, returning the
736/// set of instructions that either define or clobber the value.
737///
738/// This method assumes the pointer has a "NonLocal" dependency within its
739/// own block.
740///
741void MemoryDependenceAnalysis::
742getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
743                             BasicBlock *FromBB,
744                             SmallVectorImpl<NonLocalDepResult> &Result) {
745  assert(Loc.Ptr->getType()->isPointerTy() &&
746         "Can't get pointer deps of a non-pointer!");
747  Result.clear();
748
749  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
750
751  // This is the set of blocks we've inspected, and the pointer we consider in
752  // each block.  Because of critical edges, we currently bail out if querying
753  // a block with multiple different pointers.  This can happen during PHI
754  // translation.
755  DenseMap<BasicBlock*, Value*> Visited;
756  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
757                                   Result, Visited, true))
758    return;
759  Result.clear();
760  Result.push_back(NonLocalDepResult(FromBB,
761                                     MemDepResult::getUnknown(),
762                                     const_cast<Value *>(Loc.Ptr)));
763}
764
765/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
766/// Pointer/PointeeSize using either cached information in Cache or by doing a
767/// lookup (which may use dirty cache info if available).  If we do a lookup,
768/// add the result to the cache.
769MemDepResult MemoryDependenceAnalysis::
770GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
771                        bool isLoad, BasicBlock *BB,
772                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
773
774  // Do a binary search to see if we already have an entry for this block in
775  // the cache set.  If so, find it.
776  NonLocalDepInfo::iterator Entry =
777    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
778                     NonLocalDepEntry(BB));
779  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
780    --Entry;
781
782  NonLocalDepEntry *ExistingResult = 0;
783  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
784    ExistingResult = &*Entry;
785
786  // If we have a cached entry, and it is non-dirty, use it as the value for
787  // this dependency.
788  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
789    ++NumCacheNonLocalPtr;
790    return ExistingResult->getResult();
791  }
792
793  // Otherwise, we have to scan for the value.  If we have a dirty cache
794  // entry, start scanning from its position, otherwise we scan from the end
795  // of the block.
796  BasicBlock::iterator ScanPos = BB->end();
797  if (ExistingResult && ExistingResult->getResult().getInst()) {
798    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
799           "Instruction invalidated?");
800    ++NumCacheDirtyNonLocalPtr;
801    ScanPos = ExistingResult->getResult().getInst();
802
803    // Eliminating the dirty entry from 'Cache', so update the reverse info.
804    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
805    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
806  } else {
807    ++NumUncacheNonLocalPtr;
808  }
809
810  // Scan the block for the dependency.
811  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
812
813  // If we had a dirty entry for the block, update it.  Otherwise, just add
814  // a new entry.
815  if (ExistingResult)
816    ExistingResult->setResult(Dep);
817  else
818    Cache->push_back(NonLocalDepEntry(BB, Dep));
819
820  // If the block has a dependency (i.e. it isn't completely transparent to
821  // the value), remember the reverse association because we just added it
822  // to Cache!
823  if (!Dep.isDef() && !Dep.isClobber())
824    return Dep;
825
826  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
827  // update MemDep when we remove instructions.
828  Instruction *Inst = Dep.getInst();
829  assert(Inst && "Didn't depend on anything?");
830  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
831  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
832  return Dep;
833}
834
835/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
836/// number of elements in the array that are already properly ordered.  This is
837/// optimized for the case when only a few entries are added.
838static void
839SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
840                         unsigned NumSortedEntries) {
841  switch (Cache.size() - NumSortedEntries) {
842  case 0:
843    // done, no new entries.
844    break;
845  case 2: {
846    // Two new entries, insert the last one into place.
847    NonLocalDepEntry Val = Cache.back();
848    Cache.pop_back();
849    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
850      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
851    Cache.insert(Entry, Val);
852    // FALL THROUGH.
853  }
854  case 1:
855    // One new entry, Just insert the new value at the appropriate position.
856    if (Cache.size() != 1) {
857      NonLocalDepEntry Val = Cache.back();
858      Cache.pop_back();
859      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
860        std::upper_bound(Cache.begin(), Cache.end(), Val);
861      Cache.insert(Entry, Val);
862    }
863    break;
864  default:
865    // Added many values, do a full scale sort.
866    std::sort(Cache.begin(), Cache.end());
867    break;
868  }
869}
870
871/// getNonLocalPointerDepFromBB - Perform a dependency query based on
872/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
873/// results to the results vector and keep track of which blocks are visited in
874/// 'Visited'.
875///
876/// This has special behavior for the first block queries (when SkipFirstBlock
877/// is true).  In this special case, it ignores the contents of the specified
878/// block and starts returning dependence info for its predecessors.
879///
880/// This function returns false on success, or true to indicate that it could
881/// not compute dependence information for some reason.  This should be treated
882/// as a clobber dependence on the first instruction in the predecessor block.
883bool MemoryDependenceAnalysis::
884getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
885                            const AliasAnalysis::Location &Loc,
886                            bool isLoad, BasicBlock *StartBB,
887                            SmallVectorImpl<NonLocalDepResult> &Result,
888                            DenseMap<BasicBlock*, Value*> &Visited,
889                            bool SkipFirstBlock) {
890
891  // Look up the cached info for Pointer.
892  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
893
894  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
895  // CacheKey, this value will be inserted as the associated value. Otherwise,
896  // it'll be ignored, and we'll have to check to see if the cached size and
897  // tbaa tag are consistent with the current query.
898  NonLocalPointerInfo InitialNLPI;
899  InitialNLPI.Size = Loc.Size;
900  InitialNLPI.TBAATag = Loc.TBAATag;
901
902  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
903  // already have one.
904  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
905    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
906  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
907
908  // If we already have a cache entry for this CacheKey, we may need to do some
909  // work to reconcile the cache entry and the current query.
910  if (!Pair.second) {
911    if (CacheInfo->Size < Loc.Size) {
912      // The query's Size is greater than the cached one. Throw out the
913      // cached data and proceed with the query at the greater size.
914      CacheInfo->Pair = BBSkipFirstBlockPair();
915      CacheInfo->Size = Loc.Size;
916      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
917           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
918        if (Instruction *Inst = DI->getResult().getInst())
919          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
920      CacheInfo->NonLocalDeps.clear();
921    } else if (CacheInfo->Size > Loc.Size) {
922      // This query's Size is less than the cached one. Conservatively restart
923      // the query using the greater size.
924      return getNonLocalPointerDepFromBB(Pointer,
925                                         Loc.getWithNewSize(CacheInfo->Size),
926                                         isLoad, StartBB, Result, Visited,
927                                         SkipFirstBlock);
928    }
929
930    // If the query's TBAATag is inconsistent with the cached one,
931    // conservatively throw out the cached data and restart the query with
932    // no tag if needed.
933    if (CacheInfo->TBAATag != Loc.TBAATag) {
934      if (CacheInfo->TBAATag) {
935        CacheInfo->Pair = BBSkipFirstBlockPair();
936        CacheInfo->TBAATag = 0;
937        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
938             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
939          if (Instruction *Inst = DI->getResult().getInst())
940            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
941        CacheInfo->NonLocalDeps.clear();
942      }
943      if (Loc.TBAATag)
944        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
945                                           isLoad, StartBB, Result, Visited,
946                                           SkipFirstBlock);
947    }
948  }
949
950  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
951
952  // If we have valid cached information for exactly the block we are
953  // investigating, just return it with no recomputation.
954  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
955    // We have a fully cached result for this query then we can just return the
956    // cached results and populate the visited set.  However, we have to verify
957    // that we don't already have conflicting results for these blocks.  Check
958    // to ensure that if a block in the results set is in the visited set that
959    // it was for the same pointer query.
960    if (!Visited.empty()) {
961      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
962           I != E; ++I) {
963        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
964        if (VI == Visited.end() || VI->second == Pointer.getAddr())
965          continue;
966
967        // We have a pointer mismatch in a block.  Just return clobber, saying
968        // that something was clobbered in this result.  We could also do a
969        // non-fully cached query, but there is little point in doing this.
970        return true;
971      }
972    }
973
974    Value *Addr = Pointer.getAddr();
975    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
976         I != E; ++I) {
977      Visited.insert(std::make_pair(I->getBB(), Addr));
978      if (!I->getResult().isNonLocal())
979        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
980    }
981    ++NumCacheCompleteNonLocalPtr;
982    return false;
983  }
984
985  // Otherwise, either this is a new block, a block with an invalid cache
986  // pointer or one that we're about to invalidate by putting more info into it
987  // than its valid cache info.  If empty, the result will be valid cache info,
988  // otherwise it isn't.
989  if (Cache->empty())
990    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
991  else
992    CacheInfo->Pair = BBSkipFirstBlockPair();
993
994  SmallVector<BasicBlock*, 32> Worklist;
995  Worklist.push_back(StartBB);
996
997  // PredList used inside loop.
998  SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
999
1000  // Keep track of the entries that we know are sorted.  Previously cached
1001  // entries will all be sorted.  The entries we add we only sort on demand (we
1002  // don't insert every element into its sorted position).  We know that we
1003  // won't get any reuse from currently inserted values, because we don't
1004  // revisit blocks after we insert info for them.
1005  unsigned NumSortedEntries = Cache->size();
1006  DEBUG(AssertSorted(*Cache));
1007
1008  while (!Worklist.empty()) {
1009    BasicBlock *BB = Worklist.pop_back_val();
1010
1011    // Skip the first block if we have it.
1012    if (!SkipFirstBlock) {
1013      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1014      // been here.
1015      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1016
1017      // Get the dependency info for Pointer in BB.  If we have cached
1018      // information, we will use it, otherwise we compute it.
1019      DEBUG(AssertSorted(*Cache, NumSortedEntries));
1020      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1021                                                 NumSortedEntries);
1022
1023      // If we got a Def or Clobber, add this to the list of results.
1024      if (!Dep.isNonLocal()) {
1025        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1026        continue;
1027      }
1028    }
1029
1030    // If 'Pointer' is an instruction defined in this block, then we need to do
1031    // phi translation to change it into a value live in the predecessor block.
1032    // If not, we just add the predecessors to the worklist and scan them with
1033    // the same Pointer.
1034    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1035      SkipFirstBlock = false;
1036      SmallVector<BasicBlock*, 16> NewBlocks;
1037      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1038        // Verify that we haven't looked at this block yet.
1039        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1040          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1041        if (InsertRes.second) {
1042          // First time we've looked at *PI.
1043          NewBlocks.push_back(*PI);
1044          continue;
1045        }
1046
1047        // If we have seen this block before, but it was with a different
1048        // pointer then we have a phi translation failure and we have to treat
1049        // this as a clobber.
1050        if (InsertRes.first->second != Pointer.getAddr()) {
1051          // Make sure to clean up the Visited map before continuing on to
1052          // PredTranslationFailure.
1053          for (unsigned i = 0; i < NewBlocks.size(); i++)
1054            Visited.erase(NewBlocks[i]);
1055          goto PredTranslationFailure;
1056        }
1057      }
1058      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1059      continue;
1060    }
1061
1062    // We do need to do phi translation, if we know ahead of time we can't phi
1063    // translate this value, don't even try.
1064    if (!Pointer.IsPotentiallyPHITranslatable())
1065      goto PredTranslationFailure;
1066
1067    // We may have added values to the cache list before this PHI translation.
1068    // If so, we haven't done anything to ensure that the cache remains sorted.
1069    // Sort it now (if needed) so that recursive invocations of
1070    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1071    // value will only see properly sorted cache arrays.
1072    if (Cache && NumSortedEntries != Cache->size()) {
1073      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1074      NumSortedEntries = Cache->size();
1075    }
1076    Cache = 0;
1077
1078    PredList.clear();
1079    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1080      BasicBlock *Pred = *PI;
1081      PredList.push_back(std::make_pair(Pred, Pointer));
1082
1083      // Get the PHI translated pointer in this predecessor.  This can fail if
1084      // not translatable, in which case the getAddr() returns null.
1085      PHITransAddr &PredPointer = PredList.back().second;
1086      PredPointer.PHITranslateValue(BB, Pred, 0);
1087
1088      Value *PredPtrVal = PredPointer.getAddr();
1089
1090      // Check to see if we have already visited this pred block with another
1091      // pointer.  If so, we can't do this lookup.  This failure can occur
1092      // with PHI translation when a critical edge exists and the PHI node in
1093      // the successor translates to a pointer value different than the
1094      // pointer the block was first analyzed with.
1095      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1096        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1097
1098      if (!InsertRes.second) {
1099        // We found the pred; take it off the list of preds to visit.
1100        PredList.pop_back();
1101
1102        // If the predecessor was visited with PredPtr, then we already did
1103        // the analysis and can ignore it.
1104        if (InsertRes.first->second == PredPtrVal)
1105          continue;
1106
1107        // Otherwise, the block was previously analyzed with a different
1108        // pointer.  We can't represent the result of this case, so we just
1109        // treat this as a phi translation failure.
1110
1111        // Make sure to clean up the Visited map before continuing on to
1112        // PredTranslationFailure.
1113        for (unsigned i = 0; i < PredList.size(); i++)
1114          Visited.erase(PredList[i].first);
1115
1116        goto PredTranslationFailure;
1117      }
1118    }
1119
1120    // Actually process results here; this need to be a separate loop to avoid
1121    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1122    // any results for.  (getNonLocalPointerDepFromBB will modify our
1123    // datastructures in ways the code after the PredTranslationFailure label
1124    // doesn't expect.)
1125    for (unsigned i = 0; i < PredList.size(); i++) {
1126      BasicBlock *Pred = PredList[i].first;
1127      PHITransAddr &PredPointer = PredList[i].second;
1128      Value *PredPtrVal = PredPointer.getAddr();
1129
1130      bool CanTranslate = true;
1131      // If PHI translation was unable to find an available pointer in this
1132      // predecessor, then we have to assume that the pointer is clobbered in
1133      // that predecessor.  We can still do PRE of the load, which would insert
1134      // a computation of the pointer in this predecessor.
1135      if (PredPtrVal == 0)
1136        CanTranslate = false;
1137
1138      // FIXME: it is entirely possible that PHI translating will end up with
1139      // the same value.  Consider PHI translating something like:
1140      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1141      // to recurse here, pedantically speaking.
1142
1143      // If getNonLocalPointerDepFromBB fails here, that means the cached
1144      // result conflicted with the Visited list; we have to conservatively
1145      // assume it is unknown, but this also does not block PRE of the load.
1146      if (!CanTranslate ||
1147          getNonLocalPointerDepFromBB(PredPointer,
1148                                      Loc.getWithNewPtr(PredPtrVal),
1149                                      isLoad, Pred,
1150                                      Result, Visited)) {
1151        // Add the entry to the Result list.
1152        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1153        Result.push_back(Entry);
1154
1155        // Since we had a phi translation failure, the cache for CacheKey won't
1156        // include all of the entries that we need to immediately satisfy future
1157        // queries.  Mark this in NonLocalPointerDeps by setting the
1158        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1159        // cached value to do more work but not miss the phi trans failure.
1160        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1161        NLPI.Pair = BBSkipFirstBlockPair();
1162        continue;
1163      }
1164    }
1165
1166    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1167    CacheInfo = &NonLocalPointerDeps[CacheKey];
1168    Cache = &CacheInfo->NonLocalDeps;
1169    NumSortedEntries = Cache->size();
1170
1171    // Since we did phi translation, the "Cache" set won't contain all of the
1172    // results for the query.  This is ok (we can still use it to accelerate
1173    // specific block queries) but we can't do the fastpath "return all
1174    // results from the set"  Clear out the indicator for this.
1175    CacheInfo->Pair = BBSkipFirstBlockPair();
1176    SkipFirstBlock = false;
1177    continue;
1178
1179  PredTranslationFailure:
1180    // The following code is "failure"; we can't produce a sane translation
1181    // for the given block.  It assumes that we haven't modified any of
1182    // our datastructures while processing the current block.
1183
1184    if (Cache == 0) {
1185      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1186      CacheInfo = &NonLocalPointerDeps[CacheKey];
1187      Cache = &CacheInfo->NonLocalDeps;
1188      NumSortedEntries = Cache->size();
1189    }
1190
1191    // Since we failed phi translation, the "Cache" set won't contain all of the
1192    // results for the query.  This is ok (we can still use it to accelerate
1193    // specific block queries) but we can't do the fastpath "return all
1194    // results from the set".  Clear out the indicator for this.
1195    CacheInfo->Pair = BBSkipFirstBlockPair();
1196
1197    // If *nothing* works, mark the pointer as unknown.
1198    //
1199    // If this is the magic first block, return this as a clobber of the whole
1200    // incoming value.  Since we can't phi translate to one of the predecessors,
1201    // we have to bail out.
1202    if (SkipFirstBlock)
1203      return true;
1204
1205    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1206      assert(I != Cache->rend() && "Didn't find current block??");
1207      if (I->getBB() != BB)
1208        continue;
1209
1210      assert(I->getResult().isNonLocal() &&
1211             "Should only be here with transparent block");
1212      I->setResult(MemDepResult::getUnknown());
1213      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1214                                         Pointer.getAddr()));
1215      break;
1216    }
1217  }
1218
1219  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1220  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1221  DEBUG(AssertSorted(*Cache));
1222  return false;
1223}
1224
1225/// RemoveCachedNonLocalPointerDependencies - If P exists in
1226/// CachedNonLocalPointerInfo, remove it.
1227void MemoryDependenceAnalysis::
1228RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1229  CachedNonLocalPointerInfo::iterator It =
1230    NonLocalPointerDeps.find(P);
1231  if (It == NonLocalPointerDeps.end()) return;
1232
1233  // Remove all of the entries in the BB->val map.  This involves removing
1234  // instructions from the reverse map.
1235  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1236
1237  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1238    Instruction *Target = PInfo[i].getResult().getInst();
1239    if (Target == 0) continue;  // Ignore non-local dep results.
1240    assert(Target->getParent() == PInfo[i].getBB());
1241
1242    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1243    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1244  }
1245
1246  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1247  NonLocalPointerDeps.erase(It);
1248}
1249
1250
1251/// invalidateCachedPointerInfo - This method is used to invalidate cached
1252/// information about the specified pointer, because it may be too
1253/// conservative in memdep.  This is an optional call that can be used when
1254/// the client detects an equivalence between the pointer and some other
1255/// value and replaces the other value with ptr. This can make Ptr available
1256/// in more places that cached info does not necessarily keep.
1257void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1258  // If Ptr isn't really a pointer, just ignore it.
1259  if (!Ptr->getType()->isPointerTy()) return;
1260  // Flush store info for the pointer.
1261  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1262  // Flush load info for the pointer.
1263  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1264}
1265
1266/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1267/// This needs to be done when the CFG changes, e.g., due to splitting
1268/// critical edges.
1269void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1270  PredCache->clear();
1271}
1272
1273/// removeInstruction - Remove an instruction from the dependence analysis,
1274/// updating the dependence of instructions that previously depended on it.
1275/// This method attempts to keep the cache coherent using the reverse map.
1276void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1277  // Walk through the Non-local dependencies, removing this one as the value
1278  // for any cached queries.
1279  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1280  if (NLDI != NonLocalDeps.end()) {
1281    NonLocalDepInfo &BlockMap = NLDI->second.first;
1282    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1283         DI != DE; ++DI)
1284      if (Instruction *Inst = DI->getResult().getInst())
1285        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1286    NonLocalDeps.erase(NLDI);
1287  }
1288
1289  // If we have a cached local dependence query for this instruction, remove it.
1290  //
1291  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1292  if (LocalDepEntry != LocalDeps.end()) {
1293    // Remove us from DepInst's reverse set now that the local dep info is gone.
1294    if (Instruction *Inst = LocalDepEntry->second.getInst())
1295      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1296
1297    // Remove this local dependency info.
1298    LocalDeps.erase(LocalDepEntry);
1299  }
1300
1301  // If we have any cached pointer dependencies on this instruction, remove
1302  // them.  If the instruction has non-pointer type, then it can't be a pointer
1303  // base.
1304
1305  // Remove it from both the load info and the store info.  The instruction
1306  // can't be in either of these maps if it is non-pointer.
1307  if (RemInst->getType()->isPointerTy()) {
1308    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1309    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1310  }
1311
1312  // Loop over all of the things that depend on the instruction we're removing.
1313  //
1314  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1315
1316  // If we find RemInst as a clobber or Def in any of the maps for other values,
1317  // we need to replace its entry with a dirty version of the instruction after
1318  // it.  If RemInst is a terminator, we use a null dirty value.
1319  //
1320  // Using a dirty version of the instruction after RemInst saves having to scan
1321  // the entire block to get to this point.
1322  MemDepResult NewDirtyVal;
1323  if (!RemInst->isTerminator())
1324    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1325
1326  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1327  if (ReverseDepIt != ReverseLocalDeps.end()) {
1328    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1329    // RemInst can't be the terminator if it has local stuff depending on it.
1330    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1331           "Nothing can locally depend on a terminator");
1332
1333    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1334         E = ReverseDeps.end(); I != E; ++I) {
1335      Instruction *InstDependingOnRemInst = *I;
1336      assert(InstDependingOnRemInst != RemInst &&
1337             "Already removed our local dep info");
1338
1339      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1340
1341      // Make sure to remember that new things depend on NewDepInst.
1342      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1343             "a local dep on this if it is a terminator!");
1344      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1345                                                InstDependingOnRemInst));
1346    }
1347
1348    ReverseLocalDeps.erase(ReverseDepIt);
1349
1350    // Add new reverse deps after scanning the set, to avoid invalidating the
1351    // 'ReverseDeps' reference.
1352    while (!ReverseDepsToAdd.empty()) {
1353      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1354        .insert(ReverseDepsToAdd.back().second);
1355      ReverseDepsToAdd.pop_back();
1356    }
1357  }
1358
1359  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1360  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1361    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1362    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1363         I != E; ++I) {
1364      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1365
1366      PerInstNLInfo &INLD = NonLocalDeps[*I];
1367      // The information is now dirty!
1368      INLD.second = true;
1369
1370      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1371           DE = INLD.first.end(); DI != DE; ++DI) {
1372        if (DI->getResult().getInst() != RemInst) continue;
1373
1374        // Convert to a dirty entry for the subsequent instruction.
1375        DI->setResult(NewDirtyVal);
1376
1377        if (Instruction *NextI = NewDirtyVal.getInst())
1378          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1379      }
1380    }
1381
1382    ReverseNonLocalDeps.erase(ReverseDepIt);
1383
1384    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1385    while (!ReverseDepsToAdd.empty()) {
1386      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1387        .insert(ReverseDepsToAdd.back().second);
1388      ReverseDepsToAdd.pop_back();
1389    }
1390  }
1391
1392  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1393  // value in the NonLocalPointerDeps info.
1394  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1395    ReverseNonLocalPtrDeps.find(RemInst);
1396  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1397    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1398    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1399
1400    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1401         E = Set.end(); I != E; ++I) {
1402      ValueIsLoadPair P = *I;
1403      assert(P.getPointer() != RemInst &&
1404             "Already removed NonLocalPointerDeps info for RemInst");
1405
1406      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1407
1408      // The cache is not valid for any specific block anymore.
1409      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1410
1411      // Update any entries for RemInst to use the instruction after it.
1412      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1413           DI != DE; ++DI) {
1414        if (DI->getResult().getInst() != RemInst) continue;
1415
1416        // Convert to a dirty entry for the subsequent instruction.
1417        DI->setResult(NewDirtyVal);
1418
1419        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1420          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1421      }
1422
1423      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1424      // subsequent value may invalidate the sortedness.
1425      std::sort(NLPDI.begin(), NLPDI.end());
1426    }
1427
1428    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1429
1430    while (!ReversePtrDepsToAdd.empty()) {
1431      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1432        .insert(ReversePtrDepsToAdd.back().second);
1433      ReversePtrDepsToAdd.pop_back();
1434    }
1435  }
1436
1437
1438  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1439  AA->deleteValue(RemInst);
1440  DEBUG(verifyRemoved(RemInst));
1441}
1442/// verifyRemoved - Verify that the specified instruction does not occur
1443/// in our internal data structures.
1444void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1445  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1446       E = LocalDeps.end(); I != E; ++I) {
1447    assert(I->first != D && "Inst occurs in data structures");
1448    assert(I->second.getInst() != D &&
1449           "Inst occurs in data structures");
1450  }
1451
1452  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1453       E = NonLocalPointerDeps.end(); I != E; ++I) {
1454    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1455    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1456    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1457         II != E; ++II)
1458      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1459  }
1460
1461  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1462       E = NonLocalDeps.end(); I != E; ++I) {
1463    assert(I->first != D && "Inst occurs in data structures");
1464    const PerInstNLInfo &INLD = I->second;
1465    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1466         EE = INLD.first.end(); II  != EE; ++II)
1467      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1468  }
1469
1470  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1471       E = ReverseLocalDeps.end(); I != E; ++I) {
1472    assert(I->first != D && "Inst occurs in data structures");
1473    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1474         EE = I->second.end(); II != EE; ++II)
1475      assert(*II != D && "Inst occurs in data structures");
1476  }
1477
1478  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1479       E = ReverseNonLocalDeps.end();
1480       I != E; ++I) {
1481    assert(I->first != D && "Inst occurs in data structures");
1482    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1483         EE = I->second.end(); II != EE; ++II)
1484      assert(*II != D && "Inst occurs in data structures");
1485  }
1486
1487  for (ReverseNonLocalPtrDepTy::const_iterator
1488       I = ReverseNonLocalPtrDeps.begin(),
1489       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1490    assert(I->first != D && "Inst occurs in rev NLPD map");
1491
1492    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1493         E = I->second.end(); II != E; ++II)
1494      assert(*II != ValueIsLoadPair(D, false) &&
1495             *II != ValueIsLoadPair(D, true) &&
1496             "Inst occurs in ReverseNonLocalPtrDeps map");
1497  }
1498
1499}
1500