MemoryDependenceAnalysis.cpp revision 9f1e12a2f281bc16770999caf15489dd7285824f
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/PredIteratorCache.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Target/TargetData.h"
27using namespace llvm;
28
29STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
30STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
31STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
32
33STATISTIC(NumCacheNonLocalPtr,
34          "Number of fully cached non-local ptr responses");
35STATISTIC(NumCacheDirtyNonLocalPtr,
36          "Number of cached, but dirty, non-local ptr responses");
37STATISTIC(NumUncacheNonLocalPtr,
38          "Number of uncached non-local ptr responses");
39STATISTIC(NumCacheCompleteNonLocalPtr,
40          "Number of block queries that were completely cached");
41
42char MemoryDependenceAnalysis::ID = 0;
43
44// Register this pass...
45static RegisterPass<MemoryDependenceAnalysis> X("memdep",
46                                     "Memory Dependence Analysis", false, true);
47
48MemoryDependenceAnalysis::MemoryDependenceAnalysis()
49: FunctionPass(&ID), PredCache(0) {
50}
51MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
52}
53
54/// Clean up memory in between runs
55void MemoryDependenceAnalysis::releaseMemory() {
56  LocalDeps.clear();
57  NonLocalDeps.clear();
58  NonLocalPointerDeps.clear();
59  ReverseLocalDeps.clear();
60  ReverseNonLocalDeps.clear();
61  ReverseNonLocalPtrDeps.clear();
62  PredCache->clear();
63}
64
65
66
67/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
68///
69void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
70  AU.setPreservesAll();
71  AU.addRequiredTransitive<AliasAnalysis>();
72  AU.addRequiredTransitive<TargetData>();
73}
74
75bool MemoryDependenceAnalysis::runOnFunction(Function &) {
76  AA = &getAnalysis<AliasAnalysis>();
77  TD = &getAnalysis<TargetData>();
78  if (PredCache == 0)
79    PredCache.reset(new PredIteratorCache());
80  return false;
81}
82
83/// RemoveFromReverseMap - This is a helper function that removes Val from
84/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
85template <typename KeyTy>
86static void RemoveFromReverseMap(DenseMap<Instruction*,
87                                 SmallPtrSet<KeyTy*, 4> > &ReverseMap,
88                                 Instruction *Inst, KeyTy *Val) {
89  typename DenseMap<Instruction*, SmallPtrSet<KeyTy*, 4> >::iterator
90  InstIt = ReverseMap.find(Inst);
91  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
92  bool Found = InstIt->second.erase(Val);
93  assert(Found && "Invalid reverse map!"); Found=Found;
94  if (InstIt->second.empty())
95    ReverseMap.erase(InstIt);
96}
97
98
99/// getCallSiteDependencyFrom - Private helper for finding the local
100/// dependencies of a call site.
101MemDepResult MemoryDependenceAnalysis::
102getCallSiteDependencyFrom(CallSite CS, BasicBlock::iterator ScanIt,
103                          BasicBlock *BB) {
104  // Walk backwards through the block, looking for dependencies
105  while (ScanIt != BB->begin()) {
106    Instruction *Inst = --ScanIt;
107
108    // If this inst is a memory op, get the pointer it accessed
109    Value *Pointer = 0;
110    uint64_t PointerSize = 0;
111    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
112      Pointer = S->getPointerOperand();
113      PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
114    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
115      Pointer = V->getOperand(0);
116      PointerSize = TD->getTypeStoreSize(V->getType());
117    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
118      Pointer = F->getPointerOperand();
119
120      // FreeInsts erase the entire structure
121      PointerSize = ~0ULL;
122    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
123      CallSite InstCS = CallSite::get(Inst);
124      // If these two calls do not interfere, look past it.
125      if (AA->getModRefInfo(CS, InstCS) == AliasAnalysis::NoModRef)
126        continue;
127
128      // FIXME: If this is a ref/ref result, we should ignore it!
129      //  X = strlen(P);
130      //  Y = strlen(Q);
131      //  Z = strlen(P);  // Z = X
132
133      // If they interfere, we generally return clobber.  However, if they are
134      // calls to the same read-only functions we return Def.
135      if (!AA->onlyReadsMemory(CS) || CS.getCalledFunction() == 0 ||
136          CS.getCalledFunction() != InstCS.getCalledFunction())
137        return MemDepResult::getClobber(Inst);
138      return MemDepResult::getDef(Inst);
139    } else {
140      // Non-memory instruction.
141      continue;
142    }
143
144    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
145      return MemDepResult::getClobber(Inst);
146  }
147
148  // No dependence found.  If this is the entry block of the function, it is a
149  // clobber, otherwise it is non-local.
150  if (BB != &BB->getParent()->getEntryBlock())
151    return MemDepResult::getNonLocal();
152  return MemDepResult::getClobber(ScanIt);
153}
154
155/// getPointerDependencyFrom - Return the instruction on which a memory
156/// location depends.  If isLoad is true, this routine ignore may-aliases with
157/// read-only operations.
158MemDepResult MemoryDependenceAnalysis::
159getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
160                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
161
162  // Walk backwards through the basic block, looking for dependencies.
163  while (ScanIt != BB->begin()) {
164    Instruction *Inst = --ScanIt;
165
166    // Values depend on loads if the pointers are must aliased.  This means that
167    // a load depends on another must aliased load from the same value.
168    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
169      Value *Pointer = LI->getPointerOperand();
170      uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
171
172      // If we found a pointer, check if it could be the same as our pointer.
173      AliasAnalysis::AliasResult R =
174        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
175      if (R == AliasAnalysis::NoAlias)
176        continue;
177
178      // May-alias loads don't depend on each other without a dependence.
179      if (isLoad && R == AliasAnalysis::MayAlias)
180        continue;
181      // Stores depend on may and must aliased loads, loads depend on must-alias
182      // loads.
183      return MemDepResult::getDef(Inst);
184    }
185
186    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
187      Value *Pointer = SI->getPointerOperand();
188      uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
189
190      // If we found a pointer, check if it could be the same as our pointer.
191      AliasAnalysis::AliasResult R =
192        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
193
194      if (R == AliasAnalysis::NoAlias)
195        continue;
196      if (R == AliasAnalysis::MayAlias)
197        return MemDepResult::getClobber(Inst);
198      return MemDepResult::getDef(Inst);
199    }
200
201    // If this is an allocation, and if we know that the accessed pointer is to
202    // the allocation, return Def.  This means that there is no dependence and
203    // the access can be optimized based on that.  For example, a load could
204    // turn into undef.
205    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
206      Value *AccessPtr = MemPtr->getUnderlyingObject();
207
208      if (AccessPtr == AI ||
209          AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
210        return MemDepResult::getDef(AI);
211      continue;
212    }
213
214    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
215    // FIXME: If this is a load, we should ignore readonly calls!
216    if (AA->getModRefInfo(Inst, MemPtr, MemSize) == AliasAnalysis::NoModRef)
217      continue;
218
219    // Otherwise, there is a dependence.
220    return MemDepResult::getClobber(Inst);
221  }
222
223  // No dependence found.  If this is the entry block of the function, it is a
224  // clobber, otherwise it is non-local.
225  if (BB != &BB->getParent()->getEntryBlock())
226    return MemDepResult::getNonLocal();
227  return MemDepResult::getClobber(ScanIt);
228}
229
230/// getDependency - Return the instruction on which a memory operation
231/// depends.
232MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
233  Instruction *ScanPos = QueryInst;
234
235  // Check for a cached result
236  MemDepResult &LocalCache = LocalDeps[QueryInst];
237
238  // If the cached entry is non-dirty, just return it.  Note that this depends
239  // on MemDepResult's default constructing to 'dirty'.
240  if (!LocalCache.isDirty())
241    return LocalCache;
242
243  // Otherwise, if we have a dirty entry, we know we can start the scan at that
244  // instruction, which may save us some work.
245  if (Instruction *Inst = LocalCache.getInst()) {
246    ScanPos = Inst;
247
248    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
249  }
250
251  BasicBlock *QueryParent = QueryInst->getParent();
252
253  Value *MemPtr = 0;
254  uint64_t MemSize = 0;
255
256  // Do the scan.
257  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
258    // No dependence found.  If this is the entry block of the function, it is a
259    // clobber, otherwise it is non-local.
260    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
261      LocalCache = MemDepResult::getNonLocal();
262    else
263      LocalCache = MemDepResult::getClobber(QueryInst);
264  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
265    // If this is a volatile store, don't mess around with it.  Just return the
266    // previous instruction as a clobber.
267    if (SI->isVolatile())
268      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
269    else {
270      MemPtr = SI->getPointerOperand();
271      MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
272    }
273  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
274    // If this is a volatile load, don't mess around with it.  Just return the
275    // previous instruction as a clobber.
276    if (LI->isVolatile())
277      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
278    else {
279      MemPtr = LI->getPointerOperand();
280      MemSize = TD->getTypeStoreSize(LI->getType());
281    }
282  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
283    LocalCache = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
284                                           QueryParent);
285  } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) {
286    MemPtr = FI->getPointerOperand();
287    // FreeInsts erase the entire structure, not just a field.
288    MemSize = ~0UL;
289  } else {
290    // Non-memory instruction.
291    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
292  }
293
294  // If we need to do a pointer scan, make it happen.
295  if (MemPtr)
296    LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
297                                          isa<LoadInst>(QueryInst),
298                                          ScanPos, QueryParent);
299
300  // Remember the result!
301  if (Instruction *I = LocalCache.getInst())
302    ReverseLocalDeps[I].insert(QueryInst);
303
304  return LocalCache;
305}
306
307/// getNonLocalDependency - Perform a full dependency query for the
308/// specified instruction, returning the set of blocks that the value is
309/// potentially live across.  The returned set of results will include a
310/// "NonLocal" result for all blocks where the value is live across.
311///
312/// This method assumes the instruction returns a "nonlocal" dependency
313/// within its own block.
314///
315const MemoryDependenceAnalysis::NonLocalDepInfo &
316MemoryDependenceAnalysis::getNonLocalDependency(Instruction *QueryInst) {
317  // FIXME: Make this only be for callsites in the future.
318  assert(isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst) ||
319         isa<LoadInst>(QueryInst) || isa<StoreInst>(QueryInst));
320  assert(getDependency(QueryInst).isNonLocal() &&
321     "getNonLocalDependency should only be used on insts with non-local deps!");
322  PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
323  NonLocalDepInfo &Cache = CacheP.first;
324
325  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
326  /// the cached case, this can happen due to instructions being deleted etc. In
327  /// the uncached case, this starts out as the set of predecessors we care
328  /// about.
329  SmallVector<BasicBlock*, 32> DirtyBlocks;
330
331  if (!Cache.empty()) {
332    // Okay, we have a cache entry.  If we know it is not dirty, just return it
333    // with no computation.
334    if (!CacheP.second) {
335      NumCacheNonLocal++;
336      return Cache;
337    }
338
339    // If we already have a partially computed set of results, scan them to
340    // determine what is dirty, seeding our initial DirtyBlocks worklist.
341    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
342       I != E; ++I)
343      if (I->second.isDirty())
344        DirtyBlocks.push_back(I->first);
345
346    // Sort the cache so that we can do fast binary search lookups below.
347    std::sort(Cache.begin(), Cache.end());
348
349    ++NumCacheDirtyNonLocal;
350    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
351    //     << Cache.size() << " cached: " << *QueryInst;
352  } else {
353    // Seed DirtyBlocks with each of the preds of QueryInst's block.
354    BasicBlock *QueryBB = QueryInst->getParent();
355    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
356      DirtyBlocks.push_back(*PI);
357    NumUncacheNonLocal++;
358  }
359
360  // Visited checked first, vector in sorted order.
361  SmallPtrSet<BasicBlock*, 64> Visited;
362
363  unsigned NumSortedEntries = Cache.size();
364
365  // Iterate while we still have blocks to update.
366  while (!DirtyBlocks.empty()) {
367    BasicBlock *DirtyBB = DirtyBlocks.back();
368    DirtyBlocks.pop_back();
369
370    // Already processed this block?
371    if (!Visited.insert(DirtyBB))
372      continue;
373
374    // Do a binary search to see if we already have an entry for this block in
375    // the cache set.  If so, find it.
376    NonLocalDepInfo::iterator Entry =
377      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
378                       std::make_pair(DirtyBB, MemDepResult()));
379    if (Entry != Cache.begin() && (&*Entry)[-1].first == DirtyBB)
380      --Entry;
381
382    MemDepResult *ExistingResult = 0;
383    if (Entry != Cache.begin()+NumSortedEntries &&
384        Entry->first == DirtyBB) {
385      // If we already have an entry, and if it isn't already dirty, the block
386      // is done.
387      if (!Entry->second.isDirty())
388        continue;
389
390      // Otherwise, remember this slot so we can update the value.
391      ExistingResult = &Entry->second;
392    }
393
394    // If the dirty entry has a pointer, start scanning from it so we don't have
395    // to rescan the entire block.
396    BasicBlock::iterator ScanPos = DirtyBB->end();
397    if (ExistingResult) {
398      if (Instruction *Inst = ExistingResult->getInst()) {
399        ScanPos = Inst;
400        // We're removing QueryInst's use of Inst.
401        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, QueryInst);
402      }
403    }
404
405    // Find out if this block has a local dependency for QueryInst.
406    MemDepResult Dep;
407
408    Value *MemPtr = 0;
409    uint64_t MemSize = 0;
410
411    if (ScanPos == DirtyBB->begin()) {
412      // No dependence found.  If this is the entry block of the function, it is a
413      // clobber, otherwise it is non-local.
414      if (DirtyBB != &DirtyBB->getParent()->getEntryBlock())
415        Dep = MemDepResult::getNonLocal();
416      else
417        Dep = MemDepResult::getClobber(ScanPos);
418    } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
419      // If this is a volatile store, don't mess around with it.  Just return the
420      // previous instruction as a clobber.
421      if (SI->isVolatile())
422        Dep = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
423      else {
424        MemPtr = SI->getPointerOperand();
425        MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
426      }
427    } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
428      // If this is a volatile load, don't mess around with it.  Just return the
429      // previous instruction as a clobber.
430      if (LI->isVolatile())
431        Dep = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
432      else {
433        MemPtr = LI->getPointerOperand();
434        MemSize = TD->getTypeStoreSize(LI->getType());
435      }
436    } else {
437      assert(isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst));
438      Dep = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
439                                      DirtyBB);
440    }
441
442    if (MemPtr)
443      Dep = getPointerDependencyFrom(MemPtr, MemSize, isa<LoadInst>(QueryInst),
444                                     ScanPos, DirtyBB);
445
446    // If we had a dirty entry for the block, update it.  Otherwise, just add
447    // a new entry.
448    if (ExistingResult)
449      *ExistingResult = Dep;
450    else
451      Cache.push_back(std::make_pair(DirtyBB, Dep));
452
453    // If the block has a dependency (i.e. it isn't completely transparent to
454    // the value), remember the association!
455    if (!Dep.isNonLocal()) {
456      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
457      // update this when we remove instructions.
458      if (Instruction *Inst = Dep.getInst())
459        ReverseNonLocalDeps[Inst].insert(QueryInst);
460    } else {
461
462      // If the block *is* completely transparent to the load, we need to check
463      // the predecessors of this block.  Add them to our worklist.
464      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
465        DirtyBlocks.push_back(*PI);
466    }
467  }
468
469  return Cache;
470}
471
472/// getNonLocalPointerDependency - Perform a full dependency query for an
473/// access to the specified (non-volatile) memory location, returning the
474/// set of instructions that either define or clobber the value.
475///
476/// This method assumes the pointer has a "NonLocal" dependency within its
477/// own block.
478///
479void MemoryDependenceAnalysis::
480getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
481                             SmallVectorImpl<NonLocalDepEntry> &Result) {
482  assert(isa<PointerType>(Pointer->getType()) &&
483         "Can't get pointer deps of a non-pointer!");
484  Result.clear();
485
486  // We know that the pointer value is live into FromBB find the def/clobbers
487  // from presecessors.
488  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
489  uint64_t PointeeSize = TD->getTypeStoreSize(EltTy);
490
491  // While we have blocks to analyze, get their values.
492  SmallPtrSet<BasicBlock*, 64> Visited;
493  getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
494                              Result, Visited);
495}
496
497/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
498/// Pointer/PointeeSize using either cached information in Cache or by doing a
499/// lookup (which may use dirty cache info if available).  If we do a lookup,
500/// add the result to the cache.
501MemDepResult MemoryDependenceAnalysis::
502GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
503                        bool isLoad, BasicBlock *BB,
504                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
505
506  // Do a binary search to see if we already have an entry for this block in
507  // the cache set.  If so, find it.
508  NonLocalDepInfo::iterator Entry =
509    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
510                     std::make_pair(BB, MemDepResult()));
511  if (Entry != Cache->begin() && (&*Entry)[-1].first == BB)
512    --Entry;
513
514  MemDepResult *ExistingResult = 0;
515  if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
516    ExistingResult = &Entry->second;
517
518  // If we have a cached entry, and it is non-dirty, use it as the value for
519  // this dependency.
520  if (ExistingResult && !ExistingResult->isDirty()) {
521    ++NumCacheNonLocalPtr;
522    return *ExistingResult;
523  }
524
525  // Otherwise, we have to scan for the value.  If we have a dirty cache
526  // entry, start scanning from its position, otherwise we scan from the end
527  // of the block.
528  BasicBlock::iterator ScanPos = BB->end();
529  if (ExistingResult && ExistingResult->getInst()) {
530    assert(ExistingResult->getInst()->getParent() == BB &&
531           "Instruction invalidated?");
532    ++NumCacheDirtyNonLocalPtr;
533    ScanPos = ExistingResult->getInst();
534
535    // Eliminating the dirty entry from 'Cache', so update the reverse info.
536    ValueIsLoadPair CacheKey(Pointer, isLoad);
537    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos,
538                         CacheKey.getOpaqueValue());
539  } else {
540    ++NumUncacheNonLocalPtr;
541  }
542
543  // Scan the block for the dependency.
544  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
545                                              ScanPos, BB);
546
547  // If we had a dirty entry for the block, update it.  Otherwise, just add
548  // a new entry.
549  if (ExistingResult)
550    *ExistingResult = Dep;
551  else
552    Cache->push_back(std::make_pair(BB, Dep));
553
554  // If the block has a dependency (i.e. it isn't completely transparent to
555  // the value), remember the reverse association because we just added it
556  // to Cache!
557  if (Dep.isNonLocal())
558    return Dep;
559
560  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
561  // update MemDep when we remove instructions.
562  Instruction *Inst = Dep.getInst();
563  assert(Inst && "Didn't depend on anything?");
564  ValueIsLoadPair CacheKey(Pointer, isLoad);
565  ReverseNonLocalPtrDeps[Inst].insert(CacheKey.getOpaqueValue());
566  return Dep;
567}
568
569
570/// getNonLocalPointerDepFromBB -
571void MemoryDependenceAnalysis::
572getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
573                            bool isLoad, BasicBlock *StartBB,
574                            SmallVectorImpl<NonLocalDepEntry> &Result,
575                            SmallPtrSet<BasicBlock*, 64> &Visited) {
576  // Look up the cached info for Pointer.
577  ValueIsLoadPair CacheKey(Pointer, isLoad);
578
579  std::pair<BasicBlock*, NonLocalDepInfo> &CacheInfo =
580    NonLocalPointerDeps[CacheKey];
581  NonLocalDepInfo *Cache = &CacheInfo.second;
582
583  // If we have valid cached information for exactly the block we are
584  // investigating, just return it with no recomputation.
585  if (CacheInfo.first == StartBB) {
586    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
587         I != E; ++I)
588      if (!I->second.isNonLocal())
589        Result.push_back(*I);
590    ++NumCacheCompleteNonLocalPtr;
591    return;
592  }
593
594  // Otherwise, either this is a new block, a block with an invalid cache
595  // pointer or one that we're about to invalidate by putting more info into it
596  // than its valid cache info.  If empty, the result will be valid cache info,
597  // otherwise it isn't.
598  CacheInfo.first = Cache->empty() ? StartBB : 0;
599
600  SmallVector<BasicBlock*, 32> Worklist;
601  Worklist.push_back(StartBB);
602
603  // Keep track of the entries that we know are sorted.  Previously cached
604  // entries will all be sorted.  The entries we add we only sort on demand (we
605  // don't insert every element into its sorted position).  We know that we
606  // won't get any reuse from currently inserted values, because we don't
607  // revisit blocks after we insert info for them.
608  unsigned NumSortedEntries = Cache->size();
609
610  // SkipFirstBlock - If this is the very first block that we're processing, we
611  // don't want to scan or think about its body, because the client was supposed
612  // to do a local dependence query.  Instead, just start processing it by
613  // adding its predecessors to the worklist and iterating.
614  bool SkipFirstBlock = Visited.empty();
615
616  while (!Worklist.empty()) {
617    BasicBlock *BB = Worklist.pop_back_val();
618
619    // Skip the first block if we have it.
620    if (SkipFirstBlock) {
621      SkipFirstBlock = false;
622    } else {
623      // Analyze the dependency of *Pointer in FromBB.  See if we already have
624      // been here.
625      if (!Visited.insert(BB))
626        continue;
627
628      // Get the dependency info for Pointer in BB.  If we have cached
629      // information, we will use it, otherwise we compute it.
630      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
631                                                 BB, Cache, NumSortedEntries);
632
633      // If we got a Def or Clobber, add this to the list of results.
634      if (!Dep.isNonLocal()) {
635        Result.push_back(NonLocalDepEntry(BB, Dep));
636        continue;
637      }
638    }
639
640    // Otherwise, we have to process all the predecessors of this block to scan
641    // them as well.
642    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
643      // TODO: PHI TRANSLATE.
644      Worklist.push_back(*PI);
645    }
646  }
647
648  // Okay, we're done now.  If we added new values to the cache, re-sort it.
649  switch (Cache->size()-NumSortedEntries) {
650  case 0:
651    // done, no new entries.
652    break;
653  case 2: {
654    // Two new entries, insert the last one into place.
655    NonLocalDepEntry Val = Cache->back();
656    Cache->pop_back();
657    NonLocalDepInfo::iterator Entry =
658    std::upper_bound(Cache->begin(), Cache->end()-1, Val);
659    Cache->insert(Entry, Val);
660    // FALL THROUGH.
661  }
662  case 1: {
663    // One new entry, Just insert the new value at the appropriate position.
664    NonLocalDepEntry Val = Cache->back();
665    Cache->pop_back();
666    NonLocalDepInfo::iterator Entry =
667      std::upper_bound(Cache->begin(), Cache->end(), Val);
668    Cache->insert(Entry, Val);
669    break;
670  }
671  default:
672    // Added many values, do a full scale sort.
673    std::sort(Cache->begin(), Cache->end());
674  }
675}
676
677/// RemoveCachedNonLocalPointerDependencies - If P exists in
678/// CachedNonLocalPointerInfo, remove it.
679void MemoryDependenceAnalysis::
680RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
681  CachedNonLocalPointerInfo::iterator It =
682    NonLocalPointerDeps.find(P);
683  if (It == NonLocalPointerDeps.end()) return;
684
685  // Remove all of the entries in the BB->val map.  This involves removing
686  // instructions from the reverse map.
687  NonLocalDepInfo &PInfo = It->second.second;
688
689  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
690    Instruction *Target = PInfo[i].second.getInst();
691    if (Target == 0) continue;  // Ignore non-local dep results.
692    assert(Target->getParent() == PInfo[i].first && Target != P.getPointer());
693
694    // Eliminating the dirty entry from 'Cache', so update the reverse info.
695    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P.getOpaqueValue());
696  }
697
698  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
699  NonLocalPointerDeps.erase(It);
700}
701
702
703/// removeInstruction - Remove an instruction from the dependence analysis,
704/// updating the dependence of instructions that previously depended on it.
705/// This method attempts to keep the cache coherent using the reverse map.
706void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
707  // Walk through the Non-local dependencies, removing this one as the value
708  // for any cached queries.
709  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
710  if (NLDI != NonLocalDeps.end()) {
711    NonLocalDepInfo &BlockMap = NLDI->second.first;
712    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
713         DI != DE; ++DI)
714      if (Instruction *Inst = DI->second.getInst())
715        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
716    NonLocalDeps.erase(NLDI);
717  }
718
719  // If we have a cached local dependence query for this instruction, remove it.
720  //
721  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
722  if (LocalDepEntry != LocalDeps.end()) {
723    // Remove us from DepInst's reverse set now that the local dep info is gone.
724    if (Instruction *Inst = LocalDepEntry->second.getInst())
725      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
726
727    // Remove this local dependency info.
728    LocalDeps.erase(LocalDepEntry);
729  }
730
731  // If we have any cached pointer dependencies on this instruction, remove
732  // them.  If the instruction has non-pointer type, then it can't be a pointer
733  // base.
734
735  // Remove it from both the load info and the store info.  The instruction
736  // can't be in either of these maps if it is non-pointer.
737  if (isa<PointerType>(RemInst->getType())) {
738    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
739    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
740  }
741
742  // Loop over all of the things that depend on the instruction we're removing.
743  //
744  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
745
746  // If we find RemInst as a clobber or Def in any of the maps for other values,
747  // we need to replace its entry with a dirty version of the instruction after
748  // it.  If RemInst is a terminator, we use a null dirty value.
749  //
750  // Using a dirty version of the instruction after RemInst saves having to scan
751  // the entire block to get to this point.
752  MemDepResult NewDirtyVal;
753  if (!RemInst->isTerminator())
754    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
755
756  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
757  if (ReverseDepIt != ReverseLocalDeps.end()) {
758    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
759    // RemInst can't be the terminator if it has local stuff depending on it.
760    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
761           "Nothing can locally depend on a terminator");
762
763    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
764         E = ReverseDeps.end(); I != E; ++I) {
765      Instruction *InstDependingOnRemInst = *I;
766      assert(InstDependingOnRemInst != RemInst &&
767             "Already removed our local dep info");
768
769      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
770
771      // Make sure to remember that new things depend on NewDepInst.
772      assert(NewDirtyVal.getInst() && "There is no way something else can have "
773             "a local dep on this if it is a terminator!");
774      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
775                                                InstDependingOnRemInst));
776    }
777
778    ReverseLocalDeps.erase(ReverseDepIt);
779
780    // Add new reverse deps after scanning the set, to avoid invalidating the
781    // 'ReverseDeps' reference.
782    while (!ReverseDepsToAdd.empty()) {
783      ReverseLocalDeps[ReverseDepsToAdd.back().first]
784        .insert(ReverseDepsToAdd.back().second);
785      ReverseDepsToAdd.pop_back();
786    }
787  }
788
789  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
790  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
791    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
792    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
793         I != E; ++I) {
794      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
795
796      PerInstNLInfo &INLD = NonLocalDeps[*I];
797      // The information is now dirty!
798      INLD.second = true;
799
800      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
801           DE = INLD.first.end(); DI != DE; ++DI) {
802        if (DI->second.getInst() != RemInst) continue;
803
804        // Convert to a dirty entry for the subsequent instruction.
805        DI->second = NewDirtyVal;
806
807        if (Instruction *NextI = NewDirtyVal.getInst())
808          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
809      }
810    }
811
812    ReverseNonLocalDeps.erase(ReverseDepIt);
813
814    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
815    while (!ReverseDepsToAdd.empty()) {
816      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
817        .insert(ReverseDepsToAdd.back().second);
818      ReverseDepsToAdd.pop_back();
819    }
820  }
821
822  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
823  // value in the NonLocalPointerDeps info.
824  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
825    ReverseNonLocalPtrDeps.find(RemInst);
826  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
827    SmallPtrSet<void*, 4> &Set = ReversePtrDepIt->second;
828    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
829
830    for (SmallPtrSet<void*, 4>::iterator I = Set.begin(), E = Set.end();
831         I != E; ++I) {
832      ValueIsLoadPair P;
833      P.setFromOpaqueValue(*I);
834      assert(P.getPointer() != RemInst &&
835             "Already removed NonLocalPointerDeps info for RemInst");
836
837      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
838
839      // The cache is not valid for any specific block anymore.
840      NonLocalPointerDeps[P].first = 0;
841
842      // Update any entries for RemInst to use the instruction after it.
843      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
844           DI != DE; ++DI) {
845        if (DI->second.getInst() != RemInst) continue;
846
847        // Convert to a dirty entry for the subsequent instruction.
848        DI->second = NewDirtyVal;
849
850        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
851          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
852      }
853    }
854
855    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
856
857    while (!ReversePtrDepsToAdd.empty()) {
858      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
859        .insert(ReversePtrDepsToAdd.back().second.getOpaqueValue());
860      ReversePtrDepsToAdd.pop_back();
861    }
862  }
863
864
865  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
866  AA->deleteValue(RemInst);
867  DEBUG(verifyRemoved(RemInst));
868}
869
870/// verifyRemoved - Verify that the specified instruction does not occur
871/// in our internal data structures.
872void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
873  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
874       E = LocalDeps.end(); I != E; ++I) {
875    assert(I->first != D && "Inst occurs in data structures");
876    assert(I->second.getInst() != D &&
877           "Inst occurs in data structures");
878  }
879
880  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
881       E = NonLocalPointerDeps.end(); I != E; ++I) {
882    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
883    const NonLocalDepInfo &Val = I->second.second;
884    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
885         II != E; ++II)
886      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
887  }
888
889  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
890       E = NonLocalDeps.end(); I != E; ++I) {
891    assert(I->first != D && "Inst occurs in data structures");
892    const PerInstNLInfo &INLD = I->second;
893    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
894         EE = INLD.first.end(); II  != EE; ++II)
895      assert(II->second.getInst() != D && "Inst occurs in data structures");
896  }
897
898  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
899       E = ReverseLocalDeps.end(); I != E; ++I) {
900    assert(I->first != D && "Inst occurs in data structures");
901    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
902         EE = I->second.end(); II != EE; ++II)
903      assert(*II != D && "Inst occurs in data structures");
904  }
905
906  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
907       E = ReverseNonLocalDeps.end();
908       I != E; ++I) {
909    assert(I->first != D && "Inst occurs in data structures");
910    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
911         EE = I->second.end(); II != EE; ++II)
912      assert(*II != D && "Inst occurs in data structures");
913  }
914
915  for (ReverseNonLocalPtrDepTy::const_iterator
916       I = ReverseNonLocalPtrDeps.begin(),
917       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
918    assert(I->first != D && "Inst occurs in rev NLPD map");
919
920    for (SmallPtrSet<void*, 4>::const_iterator II = I->second.begin(),
921         E = I->second.end(); II != E; ++II)
922      assert(*II != ValueIsLoadPair(D, false).getOpaqueValue() &&
923             *II != ValueIsLoadPair(D, true).getOpaqueValue() &&
924             "Inst occurs in ReverseNonLocalPtrDeps map");
925  }
926
927}
928