MemoryDependenceAnalysis.cpp revision 9f47fb66370e5513bb9f737923e8cb476088acec
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/Function.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CaptureTracking.h"
26#include "llvm/Analysis/Dominators.h"
27#include "llvm/Analysis/InstructionSimplify.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/PHITransAddr.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/PredIteratorCache.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Target/TargetData.h"
36using namespace llvm;
37
38STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
39STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
40STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
41
42STATISTIC(NumCacheNonLocalPtr,
43          "Number of fully cached non-local ptr responses");
44STATISTIC(NumCacheDirtyNonLocalPtr,
45          "Number of cached, but dirty, non-local ptr responses");
46STATISTIC(NumUncacheNonLocalPtr,
47          "Number of uncached non-local ptr responses");
48STATISTIC(NumCacheCompleteNonLocalPtr,
49          "Number of block queries that were completely cached");
50
51// Limit for the number of instructions to scan in a block.
52// FIXME: Figure out what a sane value is for this.
53//        (500 is relatively insane.)
54static const int BlockScanLimit = 500;
55
56char MemoryDependenceAnalysis::ID = 0;
57
58// Register this pass...
59INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
60                "Memory Dependence Analysis", false, true)
61INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
62INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
63                      "Memory Dependence Analysis", false, true)
64
65MemoryDependenceAnalysis::MemoryDependenceAnalysis()
66: FunctionPass(ID), PredCache(0) {
67  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
68}
69MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
70}
71
72/// Clean up memory in between runs
73void MemoryDependenceAnalysis::releaseMemory() {
74  LocalDeps.clear();
75  NonLocalDeps.clear();
76  NonLocalPointerDeps.clear();
77  ReverseLocalDeps.clear();
78  ReverseNonLocalDeps.clear();
79  ReverseNonLocalPtrDeps.clear();
80  PredCache->clear();
81}
82
83
84
85/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
86///
87void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
88  AU.setPreservesAll();
89  AU.addRequiredTransitive<AliasAnalysis>();
90}
91
92bool MemoryDependenceAnalysis::runOnFunction(Function &) {
93  AA = &getAnalysis<AliasAnalysis>();
94  TD = getAnalysisIfAvailable<TargetData>();
95  DT = getAnalysisIfAvailable<DominatorTree>();
96  if (PredCache == 0)
97    PredCache.reset(new PredIteratorCache());
98  return false;
99}
100
101/// RemoveFromReverseMap - This is a helper function that removes Val from
102/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
103template <typename KeyTy>
104static void RemoveFromReverseMap(DenseMap<Instruction*,
105                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
106                                 Instruction *Inst, KeyTy Val) {
107  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
108  InstIt = ReverseMap.find(Inst);
109  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
110  bool Found = InstIt->second.erase(Val);
111  assert(Found && "Invalid reverse map!"); (void)Found;
112  if (InstIt->second.empty())
113    ReverseMap.erase(InstIt);
114}
115
116/// GetLocation - If the given instruction references a specific memory
117/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
118/// Return a ModRefInfo value describing the general behavior of the
119/// instruction.
120static
121AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
122                                        AliasAnalysis::Location &Loc,
123                                        AliasAnalysis *AA) {
124  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
125    if (LI->isUnordered()) {
126      Loc = AA->getLocation(LI);
127      return AliasAnalysis::Ref;
128    } else if (LI->getOrdering() == Monotonic) {
129      Loc = AA->getLocation(LI);
130      return AliasAnalysis::ModRef;
131    }
132    Loc = AliasAnalysis::Location();
133    return AliasAnalysis::ModRef;
134  }
135
136  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
137    if (SI->isUnordered()) {
138      Loc = AA->getLocation(SI);
139      return AliasAnalysis::Mod;
140    } else if (SI->getOrdering() == Monotonic) {
141      Loc = AA->getLocation(SI);
142      return AliasAnalysis::ModRef;
143    }
144    Loc = AliasAnalysis::Location();
145    return AliasAnalysis::ModRef;
146  }
147
148  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
149    Loc = AA->getLocation(V);
150    return AliasAnalysis::ModRef;
151  }
152
153  if (const CallInst *CI = isFreeCall(Inst)) {
154    // calls to free() deallocate the entire structure
155    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
156    return AliasAnalysis::Mod;
157  }
158
159  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
160    switch (II->getIntrinsicID()) {
161    case Intrinsic::lifetime_start:
162    case Intrinsic::lifetime_end:
163    case Intrinsic::invariant_start:
164      Loc = AliasAnalysis::Location(II->getArgOperand(1),
165                                    cast<ConstantInt>(II->getArgOperand(0))
166                                      ->getZExtValue(),
167                                    II->getMetadata(LLVMContext::MD_tbaa));
168      // These intrinsics don't really modify the memory, but returning Mod
169      // will allow them to be handled conservatively.
170      return AliasAnalysis::Mod;
171    case Intrinsic::invariant_end:
172      Loc = AliasAnalysis::Location(II->getArgOperand(2),
173                                    cast<ConstantInt>(II->getArgOperand(1))
174                                      ->getZExtValue(),
175                                    II->getMetadata(LLVMContext::MD_tbaa));
176      // These intrinsics don't really modify the memory, but returning Mod
177      // will allow them to be handled conservatively.
178      return AliasAnalysis::Mod;
179    default:
180      break;
181    }
182
183  // Otherwise, just do the coarse-grained thing that always works.
184  if (Inst->mayWriteToMemory())
185    return AliasAnalysis::ModRef;
186  if (Inst->mayReadFromMemory())
187    return AliasAnalysis::Ref;
188  return AliasAnalysis::NoModRef;
189}
190
191/// getCallSiteDependencyFrom - Private helper for finding the local
192/// dependencies of a call site.
193MemDepResult MemoryDependenceAnalysis::
194getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
195                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
196  unsigned Limit = BlockScanLimit;
197
198  // Walk backwards through the block, looking for dependencies
199  while (ScanIt != BB->begin()) {
200    // Limit the amount of scanning we do so we don't end up with quadratic
201    // running time on extreme testcases.
202    --Limit;
203    if (!Limit)
204      return MemDepResult::getUnknown();
205
206    Instruction *Inst = --ScanIt;
207
208    // If this inst is a memory op, get the pointer it accessed
209    AliasAnalysis::Location Loc;
210    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
211    if (Loc.Ptr) {
212      // A simple instruction.
213      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
214        return MemDepResult::getClobber(Inst);
215      continue;
216    }
217
218    if (CallSite InstCS = cast<Value>(Inst)) {
219      // Debug intrinsics don't cause dependences.
220      if (isa<DbgInfoIntrinsic>(Inst)) continue;
221      // If these two calls do not interfere, look past it.
222      switch (AA->getModRefInfo(CS, InstCS)) {
223      case AliasAnalysis::NoModRef:
224        // If the two calls are the same, return InstCS as a Def, so that
225        // CS can be found redundant and eliminated.
226        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
227            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
228          return MemDepResult::getDef(Inst);
229
230        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
231        // keep scanning.
232        break;
233      default:
234        return MemDepResult::getClobber(Inst);
235      }
236    }
237  }
238
239  // No dependence found.  If this is the entry block of the function, it is
240  // unknown, otherwise it is non-local.
241  if (BB != &BB->getParent()->getEntryBlock())
242    return MemDepResult::getNonLocal();
243  return MemDepResult::getNonFuncLocal();
244}
245
246/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
247/// would fully overlap MemLoc if done as a wider legal integer load.
248///
249/// MemLocBase, MemLocOffset are lazily computed here the first time the
250/// base/offs of memloc is needed.
251static bool
252isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
253                                       const Value *&MemLocBase,
254                                       int64_t &MemLocOffs,
255                                       const LoadInst *LI,
256                                       const TargetData *TD) {
257  // If we have no target data, we can't do this.
258  if (TD == 0) return false;
259
260  // If we haven't already computed the base/offset of MemLoc, do so now.
261  if (MemLocBase == 0)
262    MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
263
264  unsigned Size = MemoryDependenceAnalysis::
265    getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
266                                    LI, *TD);
267  return Size != 0;
268}
269
270/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
271/// looks at a memory location for a load (specified by MemLocBase, Offs,
272/// and Size) and compares it against a load.  If the specified load could
273/// be safely widened to a larger integer load that is 1) still efficient,
274/// 2) safe for the target, and 3) would provide the specified memory
275/// location value, then this function returns the size in bytes of the
276/// load width to use.  If not, this returns zero.
277unsigned MemoryDependenceAnalysis::
278getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
279                                unsigned MemLocSize, const LoadInst *LI,
280                                const TargetData &TD) {
281  // We can only extend simple integer loads.
282  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
283
284  // Get the base of this load.
285  int64_t LIOffs = 0;
286  const Value *LIBase =
287    GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
288
289  // If the two pointers are not based on the same pointer, we can't tell that
290  // they are related.
291  if (LIBase != MemLocBase) return 0;
292
293  // Okay, the two values are based on the same pointer, but returned as
294  // no-alias.  This happens when we have things like two byte loads at "P+1"
295  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
296  // alignment (or the largest native integer type) will allow us to load all
297  // the bits required by MemLoc.
298
299  // If MemLoc is before LI, then no widening of LI will help us out.
300  if (MemLocOffs < LIOffs) return 0;
301
302  // Get the alignment of the load in bytes.  We assume that it is safe to load
303  // any legal integer up to this size without a problem.  For example, if we're
304  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
305  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
306  // to i16.
307  unsigned LoadAlign = LI->getAlignment();
308
309  int64_t MemLocEnd = MemLocOffs+MemLocSize;
310
311  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
312  if (LIOffs+LoadAlign < MemLocEnd) return 0;
313
314  // This is the size of the load to try.  Start with the next larger power of
315  // two.
316  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
317  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
318
319  while (1) {
320    // If this load size is bigger than our known alignment or would not fit
321    // into a native integer register, then we fail.
322    if (NewLoadByteSize > LoadAlign ||
323        !TD.fitsInLegalInteger(NewLoadByteSize*8))
324      return 0;
325
326    // If a load of this width would include all of MemLoc, then we succeed.
327    if (LIOffs+NewLoadByteSize >= MemLocEnd)
328      return NewLoadByteSize;
329
330    NewLoadByteSize <<= 1;
331  }
332
333  return 0;
334}
335
336namespace {
337  /// Only find pointer captures which happen before the given instruction. Uses
338  /// the dominator tree to determine whether one instruction is before another.
339  struct CapturesBefore : public CaptureTracker {
340    CapturesBefore(const Instruction *I, DominatorTree *DT)
341      : BeforeHere(I), DT(DT), Captured(false) {}
342
343    void tooManyUses() { Captured = true; }
344
345    bool shouldExplore(Use *U) {
346      Instruction *I = cast<Instruction>(U->getUser());
347      if (BeforeHere != I && DT->dominates(BeforeHere, I))
348        return false;
349      return true;
350    }
351
352    bool captured(Instruction *I) {
353      if (BeforeHere != I && DT->dominates(BeforeHere, I))
354        return false;
355      Captured = true;
356      return true;
357    }
358
359    const Instruction *BeforeHere;
360    DominatorTree *DT;
361
362    bool Captured;
363  };
364}
365
366AliasAnalysis::ModRefResult
367MemoryDependenceAnalysis::getModRefInfo(const Instruction *Inst,
368                                        const AliasAnalysis::Location &MemLoc) {
369  AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
370  if (MR != AliasAnalysis::ModRef) return MR;
371
372  // FIXME: this is really just shoring-up a deficiency in alias analysis.
373  // BasicAA isn't willing to spend linear time determining whether an alloca
374  // was captured before or after this particular call, while we are. However,
375  // with a smarter AA in place, this test is just wasting compile time.
376  if (!DT) return AliasAnalysis::ModRef;
377  const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD);
378  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object))
379    return AliasAnalysis::ModRef;
380  ImmutableCallSite CS(Inst);
381  if (!CS.getInstruction()) return AliasAnalysis::ModRef;
382
383  CapturesBefore CB(Inst, DT);
384  llvm::PointerMayBeCaptured(Object, &CB);
385
386  if (isa<Constant>(Object) || CS.getInstruction() == Object || CB.Captured)
387    return AliasAnalysis::ModRef;
388
389  unsigned ArgNo = 0;
390  for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
391       CI != CE; ++CI, ++ArgNo) {
392    // Only look at the no-capture or byval pointer arguments.  If this
393    // pointer were passed to arguments that were neither of these, then it
394    // couldn't be no-capture.
395    if (!(*CI)->getType()->isPointerTy() ||
396        (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
397      continue;
398
399    // If this is a no-capture pointer argument, see if we can tell that it
400    // is impossible to alias the pointer we're checking.  If not, we have to
401    // assume that the call could touch the pointer, even though it doesn't
402    // escape.
403    if (!AA->isNoAlias(AliasAnalysis::Location(*CI),
404                       AliasAnalysis::Location(Object))) {
405      return AliasAnalysis::ModRef;
406    }
407  }
408  return AliasAnalysis::NoModRef;
409}
410
411/// getPointerDependencyFrom - Return the instruction on which a memory
412/// location depends.  If isLoad is true, this routine ignores may-aliases with
413/// read-only operations.  If isLoad is false, this routine ignores may-aliases
414/// with reads from read-only locations.
415MemDepResult MemoryDependenceAnalysis::
416getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
417                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
418
419  const Value *MemLocBase = 0;
420  int64_t MemLocOffset = 0;
421
422  unsigned Limit = BlockScanLimit;
423
424  // Walk backwards through the basic block, looking for dependencies.
425  while (ScanIt != BB->begin()) {
426    // Limit the amount of scanning we do so we don't end up with quadratic
427    // running time on extreme testcases.
428    --Limit;
429    if (!Limit)
430      return MemDepResult::getUnknown();
431
432    Instruction *Inst = --ScanIt;
433
434    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
435      // Debug intrinsics don't (and can't) cause dependences.
436      if (isa<DbgInfoIntrinsic>(II)) continue;
437
438      // If we reach a lifetime begin or end marker, then the query ends here
439      // because the value is undefined.
440      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
441        // FIXME: This only considers queries directly on the invariant-tagged
442        // pointer, not on query pointers that are indexed off of them.  It'd
443        // be nice to handle that at some point (the right approach is to use
444        // GetPointerBaseWithConstantOffset).
445        if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
446                            MemLoc))
447          return MemDepResult::getDef(II);
448        continue;
449      }
450    }
451
452    // Values depend on loads if the pointers are must aliased.  This means that
453    // a load depends on another must aliased load from the same value.
454    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
455      // Atomic loads have complications involved.
456      // FIXME: This is overly conservative.
457      if (!LI->isUnordered())
458        return MemDepResult::getClobber(LI);
459
460      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
461
462      // If we found a pointer, check if it could be the same as our pointer.
463      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
464
465      if (isLoad) {
466        if (R == AliasAnalysis::NoAlias) {
467          // If this is an over-aligned integer load (for example,
468          // "load i8* %P, align 4") see if it would obviously overlap with the
469          // queried location if widened to a larger load (e.g. if the queried
470          // location is 1 byte at P+1).  If so, return it as a load/load
471          // clobber result, allowing the client to decide to widen the load if
472          // it wants to.
473          if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
474            if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
475                isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
476                                                       MemLocOffset, LI, TD))
477              return MemDepResult::getClobber(Inst);
478
479          continue;
480        }
481
482        // Must aliased loads are defs of each other.
483        if (R == AliasAnalysis::MustAlias)
484          return MemDepResult::getDef(Inst);
485
486#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
487      // in terms of clobbering loads, but since it does this by looking
488      // at the clobbering load directly, it doesn't know about any
489      // phi translation that may have happened along the way.
490
491        // If we have a partial alias, then return this as a clobber for the
492        // client to handle.
493        if (R == AliasAnalysis::PartialAlias)
494          return MemDepResult::getClobber(Inst);
495#endif
496
497        // Random may-alias loads don't depend on each other without a
498        // dependence.
499        continue;
500      }
501
502      // Stores don't depend on other no-aliased accesses.
503      if (R == AliasAnalysis::NoAlias)
504        continue;
505
506      // Stores don't alias loads from read-only memory.
507      if (AA->pointsToConstantMemory(LoadLoc))
508        continue;
509
510      // Stores depend on may/must aliased loads.
511      return MemDepResult::getDef(Inst);
512    }
513
514    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
515      // Atomic stores have complications involved.
516      // FIXME: This is overly conservative.
517      if (!SI->isUnordered())
518        return MemDepResult::getClobber(SI);
519
520      // If alias analysis can tell that this store is guaranteed to not modify
521      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
522      // the query pointer points to constant memory etc.
523      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
524        continue;
525
526      // Ok, this store might clobber the query pointer.  Check to see if it is
527      // a must alias: in this case, we want to return this as a def.
528      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
529
530      // If we found a pointer, check if it could be the same as our pointer.
531      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
532
533      if (R == AliasAnalysis::NoAlias)
534        continue;
535      if (R == AliasAnalysis::MustAlias)
536        return MemDepResult::getDef(Inst);
537      return MemDepResult::getClobber(Inst);
538    }
539
540    // If this is an allocation, and if we know that the accessed pointer is to
541    // the allocation, return Def.  This means that there is no dependence and
542    // the access can be optimized based on that.  For example, a load could
543    // turn into undef.
544    // Note: Only determine this to be a malloc if Inst is the malloc call, not
545    // a subsequent bitcast of the malloc call result.  There can be stores to
546    // the malloced memory between the malloc call and its bitcast uses, and we
547    // need to continue scanning until the malloc call.
548    if (isa<AllocaInst>(Inst) ||
549        (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
550      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
551
552      if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
553        return MemDepResult::getDef(Inst);
554      continue;
555    }
556
557    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
558    switch (getModRefInfo(Inst, MemLoc)) {
559    case AliasAnalysis::NoModRef:
560      // If the call has no effect on the queried pointer, just ignore it.
561      continue;
562    case AliasAnalysis::Mod:
563      return MemDepResult::getClobber(Inst);
564    case AliasAnalysis::Ref:
565      // If the call is known to never store to the pointer, and if this is a
566      // load query, we can safely ignore it (scan past it).
567      if (isLoad)
568        continue;
569    default:
570      // Otherwise, there is a potential dependence.  Return a clobber.
571      return MemDepResult::getClobber(Inst);
572    }
573  }
574
575  // No dependence found.  If this is the entry block of the function, it is
576  // unknown, otherwise it is non-local.
577  if (BB != &BB->getParent()->getEntryBlock())
578    return MemDepResult::getNonLocal();
579  return MemDepResult::getNonFuncLocal();
580}
581
582/// getDependency - Return the instruction on which a memory operation
583/// depends.
584MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
585  Instruction *ScanPos = QueryInst;
586
587  // Check for a cached result
588  MemDepResult &LocalCache = LocalDeps[QueryInst];
589
590  // If the cached entry is non-dirty, just return it.  Note that this depends
591  // on MemDepResult's default constructing to 'dirty'.
592  if (!LocalCache.isDirty())
593    return LocalCache;
594
595  // Otherwise, if we have a dirty entry, we know we can start the scan at that
596  // instruction, which may save us some work.
597  if (Instruction *Inst = LocalCache.getInst()) {
598    ScanPos = Inst;
599
600    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
601  }
602
603  BasicBlock *QueryParent = QueryInst->getParent();
604
605  // Do the scan.
606  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
607    // No dependence found.  If this is the entry block of the function, it is
608    // unknown, otherwise it is non-local.
609    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
610      LocalCache = MemDepResult::getNonLocal();
611    else
612      LocalCache = MemDepResult::getNonFuncLocal();
613  } else {
614    AliasAnalysis::Location MemLoc;
615    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
616    if (MemLoc.Ptr) {
617      // If we can do a pointer scan, make it happen.
618      bool isLoad = !(MR & AliasAnalysis::Mod);
619      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
620        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
621
622      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
623                                            QueryParent);
624    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
625      CallSite QueryCS(QueryInst);
626      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
627      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
628                                             QueryParent);
629    } else
630      // Non-memory instruction.
631      LocalCache = MemDepResult::getUnknown();
632  }
633
634  // Remember the result!
635  if (Instruction *I = LocalCache.getInst())
636    ReverseLocalDeps[I].insert(QueryInst);
637
638  return LocalCache;
639}
640
641#ifndef NDEBUG
642/// AssertSorted - This method is used when -debug is specified to verify that
643/// cache arrays are properly kept sorted.
644static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
645                         int Count = -1) {
646  if (Count == -1) Count = Cache.size();
647  if (Count == 0) return;
648
649  for (unsigned i = 1; i != unsigned(Count); ++i)
650    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
651}
652#endif
653
654/// getNonLocalCallDependency - Perform a full dependency query for the
655/// specified call, returning the set of blocks that the value is
656/// potentially live across.  The returned set of results will include a
657/// "NonLocal" result for all blocks where the value is live across.
658///
659/// This method assumes the instruction returns a "NonLocal" dependency
660/// within its own block.
661///
662/// This returns a reference to an internal data structure that may be
663/// invalidated on the next non-local query or when an instruction is
664/// removed.  Clients must copy this data if they want it around longer than
665/// that.
666const MemoryDependenceAnalysis::NonLocalDepInfo &
667MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
668  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
669 "getNonLocalCallDependency should only be used on calls with non-local deps!");
670  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
671  NonLocalDepInfo &Cache = CacheP.first;
672
673  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
674  /// the cached case, this can happen due to instructions being deleted etc. In
675  /// the uncached case, this starts out as the set of predecessors we care
676  /// about.
677  SmallVector<BasicBlock*, 32> DirtyBlocks;
678
679  if (!Cache.empty()) {
680    // Okay, we have a cache entry.  If we know it is not dirty, just return it
681    // with no computation.
682    if (!CacheP.second) {
683      ++NumCacheNonLocal;
684      return Cache;
685    }
686
687    // If we already have a partially computed set of results, scan them to
688    // determine what is dirty, seeding our initial DirtyBlocks worklist.
689    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
690       I != E; ++I)
691      if (I->getResult().isDirty())
692        DirtyBlocks.push_back(I->getBB());
693
694    // Sort the cache so that we can do fast binary search lookups below.
695    std::sort(Cache.begin(), Cache.end());
696
697    ++NumCacheDirtyNonLocal;
698    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
699    //     << Cache.size() << " cached: " << *QueryInst;
700  } else {
701    // Seed DirtyBlocks with each of the preds of QueryInst's block.
702    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
703    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
704      DirtyBlocks.push_back(*PI);
705    ++NumUncacheNonLocal;
706  }
707
708  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
709  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
710
711  SmallPtrSet<BasicBlock*, 64> Visited;
712
713  unsigned NumSortedEntries = Cache.size();
714  DEBUG(AssertSorted(Cache));
715
716  // Iterate while we still have blocks to update.
717  while (!DirtyBlocks.empty()) {
718    BasicBlock *DirtyBB = DirtyBlocks.back();
719    DirtyBlocks.pop_back();
720
721    // Already processed this block?
722    if (!Visited.insert(DirtyBB))
723      continue;
724
725    // Do a binary search to see if we already have an entry for this block in
726    // the cache set.  If so, find it.
727    DEBUG(AssertSorted(Cache, NumSortedEntries));
728    NonLocalDepInfo::iterator Entry =
729      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
730                       NonLocalDepEntry(DirtyBB));
731    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
732      --Entry;
733
734    NonLocalDepEntry *ExistingResult = 0;
735    if (Entry != Cache.begin()+NumSortedEntries &&
736        Entry->getBB() == DirtyBB) {
737      // If we already have an entry, and if it isn't already dirty, the block
738      // is done.
739      if (!Entry->getResult().isDirty())
740        continue;
741
742      // Otherwise, remember this slot so we can update the value.
743      ExistingResult = &*Entry;
744    }
745
746    // If the dirty entry has a pointer, start scanning from it so we don't have
747    // to rescan the entire block.
748    BasicBlock::iterator ScanPos = DirtyBB->end();
749    if (ExistingResult) {
750      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
751        ScanPos = Inst;
752        // We're removing QueryInst's use of Inst.
753        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
754                             QueryCS.getInstruction());
755      }
756    }
757
758    // Find out if this block has a local dependency for QueryInst.
759    MemDepResult Dep;
760
761    if (ScanPos != DirtyBB->begin()) {
762      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
763    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
764      // No dependence found.  If this is the entry block of the function, it is
765      // a clobber, otherwise it is unknown.
766      Dep = MemDepResult::getNonLocal();
767    } else {
768      Dep = MemDepResult::getNonFuncLocal();
769    }
770
771    // If we had a dirty entry for the block, update it.  Otherwise, just add
772    // a new entry.
773    if (ExistingResult)
774      ExistingResult->setResult(Dep);
775    else
776      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
777
778    // If the block has a dependency (i.e. it isn't completely transparent to
779    // the value), remember the association!
780    if (!Dep.isNonLocal()) {
781      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
782      // update this when we remove instructions.
783      if (Instruction *Inst = Dep.getInst())
784        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
785    } else {
786
787      // If the block *is* completely transparent to the load, we need to check
788      // the predecessors of this block.  Add them to our worklist.
789      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
790        DirtyBlocks.push_back(*PI);
791    }
792  }
793
794  return Cache;
795}
796
797/// getNonLocalPointerDependency - Perform a full dependency query for an
798/// access to the specified (non-volatile) memory location, returning the
799/// set of instructions that either define or clobber the value.
800///
801/// This method assumes the pointer has a "NonLocal" dependency within its
802/// own block.
803///
804void MemoryDependenceAnalysis::
805getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
806                             BasicBlock *FromBB,
807                             SmallVectorImpl<NonLocalDepResult> &Result) {
808  assert(Loc.Ptr->getType()->isPointerTy() &&
809         "Can't get pointer deps of a non-pointer!");
810  Result.clear();
811
812  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
813
814  // This is the set of blocks we've inspected, and the pointer we consider in
815  // each block.  Because of critical edges, we currently bail out if querying
816  // a block with multiple different pointers.  This can happen during PHI
817  // translation.
818  DenseMap<BasicBlock*, Value*> Visited;
819  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
820                                   Result, Visited, true))
821    return;
822  Result.clear();
823  Result.push_back(NonLocalDepResult(FromBB,
824                                     MemDepResult::getUnknown(),
825                                     const_cast<Value *>(Loc.Ptr)));
826}
827
828/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
829/// Pointer/PointeeSize using either cached information in Cache or by doing a
830/// lookup (which may use dirty cache info if available).  If we do a lookup,
831/// add the result to the cache.
832MemDepResult MemoryDependenceAnalysis::
833GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
834                        bool isLoad, BasicBlock *BB,
835                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
836
837  // Do a binary search to see if we already have an entry for this block in
838  // the cache set.  If so, find it.
839  NonLocalDepInfo::iterator Entry =
840    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
841                     NonLocalDepEntry(BB));
842  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
843    --Entry;
844
845  NonLocalDepEntry *ExistingResult = 0;
846  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
847    ExistingResult = &*Entry;
848
849  // If we have a cached entry, and it is non-dirty, use it as the value for
850  // this dependency.
851  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
852    ++NumCacheNonLocalPtr;
853    return ExistingResult->getResult();
854  }
855
856  // Otherwise, we have to scan for the value.  If we have a dirty cache
857  // entry, start scanning from its position, otherwise we scan from the end
858  // of the block.
859  BasicBlock::iterator ScanPos = BB->end();
860  if (ExistingResult && ExistingResult->getResult().getInst()) {
861    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
862           "Instruction invalidated?");
863    ++NumCacheDirtyNonLocalPtr;
864    ScanPos = ExistingResult->getResult().getInst();
865
866    // Eliminating the dirty entry from 'Cache', so update the reverse info.
867    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
868    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
869  } else {
870    ++NumUncacheNonLocalPtr;
871  }
872
873  // Scan the block for the dependency.
874  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
875
876  // If we had a dirty entry for the block, update it.  Otherwise, just add
877  // a new entry.
878  if (ExistingResult)
879    ExistingResult->setResult(Dep);
880  else
881    Cache->push_back(NonLocalDepEntry(BB, Dep));
882
883  // If the block has a dependency (i.e. it isn't completely transparent to
884  // the value), remember the reverse association because we just added it
885  // to Cache!
886  if (!Dep.isDef() && !Dep.isClobber())
887    return Dep;
888
889  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
890  // update MemDep when we remove instructions.
891  Instruction *Inst = Dep.getInst();
892  assert(Inst && "Didn't depend on anything?");
893  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
894  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
895  return Dep;
896}
897
898/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
899/// number of elements in the array that are already properly ordered.  This is
900/// optimized for the case when only a few entries are added.
901static void
902SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
903                         unsigned NumSortedEntries) {
904  switch (Cache.size() - NumSortedEntries) {
905  case 0:
906    // done, no new entries.
907    break;
908  case 2: {
909    // Two new entries, insert the last one into place.
910    NonLocalDepEntry Val = Cache.back();
911    Cache.pop_back();
912    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
913      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
914    Cache.insert(Entry, Val);
915    // FALL THROUGH.
916  }
917  case 1:
918    // One new entry, Just insert the new value at the appropriate position.
919    if (Cache.size() != 1) {
920      NonLocalDepEntry Val = Cache.back();
921      Cache.pop_back();
922      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
923        std::upper_bound(Cache.begin(), Cache.end(), Val);
924      Cache.insert(Entry, Val);
925    }
926    break;
927  default:
928    // Added many values, do a full scale sort.
929    std::sort(Cache.begin(), Cache.end());
930    break;
931  }
932}
933
934/// getNonLocalPointerDepFromBB - Perform a dependency query based on
935/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
936/// results to the results vector and keep track of which blocks are visited in
937/// 'Visited'.
938///
939/// This has special behavior for the first block queries (when SkipFirstBlock
940/// is true).  In this special case, it ignores the contents of the specified
941/// block and starts returning dependence info for its predecessors.
942///
943/// This function returns false on success, or true to indicate that it could
944/// not compute dependence information for some reason.  This should be treated
945/// as a clobber dependence on the first instruction in the predecessor block.
946bool MemoryDependenceAnalysis::
947getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
948                            const AliasAnalysis::Location &Loc,
949                            bool isLoad, BasicBlock *StartBB,
950                            SmallVectorImpl<NonLocalDepResult> &Result,
951                            DenseMap<BasicBlock*, Value*> &Visited,
952                            bool SkipFirstBlock) {
953
954  // Look up the cached info for Pointer.
955  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
956
957  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
958  // CacheKey, this value will be inserted as the associated value. Otherwise,
959  // it'll be ignored, and we'll have to check to see if the cached size and
960  // tbaa tag are consistent with the current query.
961  NonLocalPointerInfo InitialNLPI;
962  InitialNLPI.Size = Loc.Size;
963  InitialNLPI.TBAATag = Loc.TBAATag;
964
965  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
966  // already have one.
967  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
968    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
969  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
970
971  // If we already have a cache entry for this CacheKey, we may need to do some
972  // work to reconcile the cache entry and the current query.
973  if (!Pair.second) {
974    if (CacheInfo->Size < Loc.Size) {
975      // The query's Size is greater than the cached one. Throw out the
976      // cached data and procede with the query at the greater size.
977      CacheInfo->Pair = BBSkipFirstBlockPair();
978      CacheInfo->Size = Loc.Size;
979      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
980           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
981        if (Instruction *Inst = DI->getResult().getInst())
982          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
983      CacheInfo->NonLocalDeps.clear();
984    } else if (CacheInfo->Size > Loc.Size) {
985      // This query's Size is less than the cached one. Conservatively restart
986      // the query using the greater size.
987      return getNonLocalPointerDepFromBB(Pointer,
988                                         Loc.getWithNewSize(CacheInfo->Size),
989                                         isLoad, StartBB, Result, Visited,
990                                         SkipFirstBlock);
991    }
992
993    // If the query's TBAATag is inconsistent with the cached one,
994    // conservatively throw out the cached data and restart the query with
995    // no tag if needed.
996    if (CacheInfo->TBAATag != Loc.TBAATag) {
997      if (CacheInfo->TBAATag) {
998        CacheInfo->Pair = BBSkipFirstBlockPair();
999        CacheInfo->TBAATag = 0;
1000        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1001             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1002          if (Instruction *Inst = DI->getResult().getInst())
1003            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1004        CacheInfo->NonLocalDeps.clear();
1005      }
1006      if (Loc.TBAATag)
1007        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
1008                                           isLoad, StartBB, Result, Visited,
1009                                           SkipFirstBlock);
1010    }
1011  }
1012
1013  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1014
1015  // If we have valid cached information for exactly the block we are
1016  // investigating, just return it with no recomputation.
1017  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1018    // We have a fully cached result for this query then we can just return the
1019    // cached results and populate the visited set.  However, we have to verify
1020    // that we don't already have conflicting results for these blocks.  Check
1021    // to ensure that if a block in the results set is in the visited set that
1022    // it was for the same pointer query.
1023    if (!Visited.empty()) {
1024      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1025           I != E; ++I) {
1026        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1027        if (VI == Visited.end() || VI->second == Pointer.getAddr())
1028          continue;
1029
1030        // We have a pointer mismatch in a block.  Just return clobber, saying
1031        // that something was clobbered in this result.  We could also do a
1032        // non-fully cached query, but there is little point in doing this.
1033        return true;
1034      }
1035    }
1036
1037    Value *Addr = Pointer.getAddr();
1038    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1039         I != E; ++I) {
1040      Visited.insert(std::make_pair(I->getBB(), Addr));
1041      if (!I->getResult().isNonLocal())
1042        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1043    }
1044    ++NumCacheCompleteNonLocalPtr;
1045    return false;
1046  }
1047
1048  // Otherwise, either this is a new block, a block with an invalid cache
1049  // pointer or one that we're about to invalidate by putting more info into it
1050  // than its valid cache info.  If empty, the result will be valid cache info,
1051  // otherwise it isn't.
1052  if (Cache->empty())
1053    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1054  else
1055    CacheInfo->Pair = BBSkipFirstBlockPair();
1056
1057  SmallVector<BasicBlock*, 32> Worklist;
1058  Worklist.push_back(StartBB);
1059
1060  // PredList used inside loop.
1061  SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1062
1063  // Keep track of the entries that we know are sorted.  Previously cached
1064  // entries will all be sorted.  The entries we add we only sort on demand (we
1065  // don't insert every element into its sorted position).  We know that we
1066  // won't get any reuse from currently inserted values, because we don't
1067  // revisit blocks after we insert info for them.
1068  unsigned NumSortedEntries = Cache->size();
1069  DEBUG(AssertSorted(*Cache));
1070
1071  while (!Worklist.empty()) {
1072    BasicBlock *BB = Worklist.pop_back_val();
1073
1074    // Skip the first block if we have it.
1075    if (!SkipFirstBlock) {
1076      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1077      // been here.
1078      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1079
1080      // Get the dependency info for Pointer in BB.  If we have cached
1081      // information, we will use it, otherwise we compute it.
1082      DEBUG(AssertSorted(*Cache, NumSortedEntries));
1083      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1084                                                 NumSortedEntries);
1085
1086      // If we got a Def or Clobber, add this to the list of results.
1087      if (!Dep.isNonLocal()) {
1088        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1089        continue;
1090      }
1091    }
1092
1093    // If 'Pointer' is an instruction defined in this block, then we need to do
1094    // phi translation to change it into a value live in the predecessor block.
1095    // If not, we just add the predecessors to the worklist and scan them with
1096    // the same Pointer.
1097    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1098      SkipFirstBlock = false;
1099      SmallVector<BasicBlock*, 16> NewBlocks;
1100      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1101        // Verify that we haven't looked at this block yet.
1102        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1103          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1104        if (InsertRes.second) {
1105          // First time we've looked at *PI.
1106          NewBlocks.push_back(*PI);
1107          continue;
1108        }
1109
1110        // If we have seen this block before, but it was with a different
1111        // pointer then we have a phi translation failure and we have to treat
1112        // this as a clobber.
1113        if (InsertRes.first->second != Pointer.getAddr()) {
1114          // Make sure to clean up the Visited map before continuing on to
1115          // PredTranslationFailure.
1116          for (unsigned i = 0; i < NewBlocks.size(); i++)
1117            Visited.erase(NewBlocks[i]);
1118          goto PredTranslationFailure;
1119        }
1120      }
1121      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1122      continue;
1123    }
1124
1125    // We do need to do phi translation, if we know ahead of time we can't phi
1126    // translate this value, don't even try.
1127    if (!Pointer.IsPotentiallyPHITranslatable())
1128      goto PredTranslationFailure;
1129
1130    // We may have added values to the cache list before this PHI translation.
1131    // If so, we haven't done anything to ensure that the cache remains sorted.
1132    // Sort it now (if needed) so that recursive invocations of
1133    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1134    // value will only see properly sorted cache arrays.
1135    if (Cache && NumSortedEntries != Cache->size()) {
1136      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1137      NumSortedEntries = Cache->size();
1138    }
1139    Cache = 0;
1140
1141    PredList.clear();
1142    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1143      BasicBlock *Pred = *PI;
1144      PredList.push_back(std::make_pair(Pred, Pointer));
1145
1146      // Get the PHI translated pointer in this predecessor.  This can fail if
1147      // not translatable, in which case the getAddr() returns null.
1148      PHITransAddr &PredPointer = PredList.back().second;
1149      PredPointer.PHITranslateValue(BB, Pred, 0);
1150
1151      Value *PredPtrVal = PredPointer.getAddr();
1152
1153      // Check to see if we have already visited this pred block with another
1154      // pointer.  If so, we can't do this lookup.  This failure can occur
1155      // with PHI translation when a critical edge exists and the PHI node in
1156      // the successor translates to a pointer value different than the
1157      // pointer the block was first analyzed with.
1158      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1159        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1160
1161      if (!InsertRes.second) {
1162        // We found the pred; take it off the list of preds to visit.
1163        PredList.pop_back();
1164
1165        // If the predecessor was visited with PredPtr, then we already did
1166        // the analysis and can ignore it.
1167        if (InsertRes.first->second == PredPtrVal)
1168          continue;
1169
1170        // Otherwise, the block was previously analyzed with a different
1171        // pointer.  We can't represent the result of this case, so we just
1172        // treat this as a phi translation failure.
1173
1174        // Make sure to clean up the Visited map before continuing on to
1175        // PredTranslationFailure.
1176        for (unsigned i = 0; i < PredList.size(); i++)
1177          Visited.erase(PredList[i].first);
1178
1179        goto PredTranslationFailure;
1180      }
1181    }
1182
1183    // Actually process results here; this need to be a separate loop to avoid
1184    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1185    // any results for.  (getNonLocalPointerDepFromBB will modify our
1186    // datastructures in ways the code after the PredTranslationFailure label
1187    // doesn't expect.)
1188    for (unsigned i = 0; i < PredList.size(); i++) {
1189      BasicBlock *Pred = PredList[i].first;
1190      PHITransAddr &PredPointer = PredList[i].second;
1191      Value *PredPtrVal = PredPointer.getAddr();
1192
1193      bool CanTranslate = true;
1194      // If PHI translation was unable to find an available pointer in this
1195      // predecessor, then we have to assume that the pointer is clobbered in
1196      // that predecessor.  We can still do PRE of the load, which would insert
1197      // a computation of the pointer in this predecessor.
1198      if (PredPtrVal == 0)
1199        CanTranslate = false;
1200
1201      // FIXME: it is entirely possible that PHI translating will end up with
1202      // the same value.  Consider PHI translating something like:
1203      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1204      // to recurse here, pedantically speaking.
1205
1206      // If getNonLocalPointerDepFromBB fails here, that means the cached
1207      // result conflicted with the Visited list; we have to conservatively
1208      // assume it is unknown, but this also does not block PRE of the load.
1209      if (!CanTranslate ||
1210          getNonLocalPointerDepFromBB(PredPointer,
1211                                      Loc.getWithNewPtr(PredPtrVal),
1212                                      isLoad, Pred,
1213                                      Result, Visited)) {
1214        // Add the entry to the Result list.
1215        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1216        Result.push_back(Entry);
1217
1218        // Since we had a phi translation failure, the cache for CacheKey won't
1219        // include all of the entries that we need to immediately satisfy future
1220        // queries.  Mark this in NonLocalPointerDeps by setting the
1221        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1222        // cached value to do more work but not miss the phi trans failure.
1223        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1224        NLPI.Pair = BBSkipFirstBlockPair();
1225        continue;
1226      }
1227    }
1228
1229    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1230    CacheInfo = &NonLocalPointerDeps[CacheKey];
1231    Cache = &CacheInfo->NonLocalDeps;
1232    NumSortedEntries = Cache->size();
1233
1234    // Since we did phi translation, the "Cache" set won't contain all of the
1235    // results for the query.  This is ok (we can still use it to accelerate
1236    // specific block queries) but we can't do the fastpath "return all
1237    // results from the set"  Clear out the indicator for this.
1238    CacheInfo->Pair = BBSkipFirstBlockPair();
1239    SkipFirstBlock = false;
1240    continue;
1241
1242  PredTranslationFailure:
1243    // The following code is "failure"; we can't produce a sane translation
1244    // for the given block.  It assumes that we haven't modified any of
1245    // our datastructures while processing the current block.
1246
1247    if (Cache == 0) {
1248      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1249      CacheInfo = &NonLocalPointerDeps[CacheKey];
1250      Cache = &CacheInfo->NonLocalDeps;
1251      NumSortedEntries = Cache->size();
1252    }
1253
1254    // Since we failed phi translation, the "Cache" set won't contain all of the
1255    // results for the query.  This is ok (we can still use it to accelerate
1256    // specific block queries) but we can't do the fastpath "return all
1257    // results from the set".  Clear out the indicator for this.
1258    CacheInfo->Pair = BBSkipFirstBlockPair();
1259
1260    // If *nothing* works, mark the pointer as unknown.
1261    //
1262    // If this is the magic first block, return this as a clobber of the whole
1263    // incoming value.  Since we can't phi translate to one of the predecessors,
1264    // we have to bail out.
1265    if (SkipFirstBlock)
1266      return true;
1267
1268    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1269      assert(I != Cache->rend() && "Didn't find current block??");
1270      if (I->getBB() != BB)
1271        continue;
1272
1273      assert(I->getResult().isNonLocal() &&
1274             "Should only be here with transparent block");
1275      I->setResult(MemDepResult::getUnknown());
1276      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1277                                         Pointer.getAddr()));
1278      break;
1279    }
1280  }
1281
1282  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1283  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1284  DEBUG(AssertSorted(*Cache));
1285  return false;
1286}
1287
1288/// RemoveCachedNonLocalPointerDependencies - If P exists in
1289/// CachedNonLocalPointerInfo, remove it.
1290void MemoryDependenceAnalysis::
1291RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1292  CachedNonLocalPointerInfo::iterator It =
1293    NonLocalPointerDeps.find(P);
1294  if (It == NonLocalPointerDeps.end()) return;
1295
1296  // Remove all of the entries in the BB->val map.  This involves removing
1297  // instructions from the reverse map.
1298  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1299
1300  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1301    Instruction *Target = PInfo[i].getResult().getInst();
1302    if (Target == 0) continue;  // Ignore non-local dep results.
1303    assert(Target->getParent() == PInfo[i].getBB());
1304
1305    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1306    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1307  }
1308
1309  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1310  NonLocalPointerDeps.erase(It);
1311}
1312
1313
1314/// invalidateCachedPointerInfo - This method is used to invalidate cached
1315/// information about the specified pointer, because it may be too
1316/// conservative in memdep.  This is an optional call that can be used when
1317/// the client detects an equivalence between the pointer and some other
1318/// value and replaces the other value with ptr. This can make Ptr available
1319/// in more places that cached info does not necessarily keep.
1320void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1321  // If Ptr isn't really a pointer, just ignore it.
1322  if (!Ptr->getType()->isPointerTy()) return;
1323  // Flush store info for the pointer.
1324  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1325  // Flush load info for the pointer.
1326  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1327}
1328
1329/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1330/// This needs to be done when the CFG changes, e.g., due to splitting
1331/// critical edges.
1332void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1333  PredCache->clear();
1334}
1335
1336/// removeInstruction - Remove an instruction from the dependence analysis,
1337/// updating the dependence of instructions that previously depended on it.
1338/// This method attempts to keep the cache coherent using the reverse map.
1339void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1340  // Walk through the Non-local dependencies, removing this one as the value
1341  // for any cached queries.
1342  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1343  if (NLDI != NonLocalDeps.end()) {
1344    NonLocalDepInfo &BlockMap = NLDI->second.first;
1345    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1346         DI != DE; ++DI)
1347      if (Instruction *Inst = DI->getResult().getInst())
1348        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1349    NonLocalDeps.erase(NLDI);
1350  }
1351
1352  // If we have a cached local dependence query for this instruction, remove it.
1353  //
1354  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1355  if (LocalDepEntry != LocalDeps.end()) {
1356    // Remove us from DepInst's reverse set now that the local dep info is gone.
1357    if (Instruction *Inst = LocalDepEntry->second.getInst())
1358      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1359
1360    // Remove this local dependency info.
1361    LocalDeps.erase(LocalDepEntry);
1362  }
1363
1364  // If we have any cached pointer dependencies on this instruction, remove
1365  // them.  If the instruction has non-pointer type, then it can't be a pointer
1366  // base.
1367
1368  // Remove it from both the load info and the store info.  The instruction
1369  // can't be in either of these maps if it is non-pointer.
1370  if (RemInst->getType()->isPointerTy()) {
1371    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1372    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1373  }
1374
1375  // Loop over all of the things that depend on the instruction we're removing.
1376  //
1377  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1378
1379  // If we find RemInst as a clobber or Def in any of the maps for other values,
1380  // we need to replace its entry with a dirty version of the instruction after
1381  // it.  If RemInst is a terminator, we use a null dirty value.
1382  //
1383  // Using a dirty version of the instruction after RemInst saves having to scan
1384  // the entire block to get to this point.
1385  MemDepResult NewDirtyVal;
1386  if (!RemInst->isTerminator())
1387    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1388
1389  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1390  if (ReverseDepIt != ReverseLocalDeps.end()) {
1391    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1392    // RemInst can't be the terminator if it has local stuff depending on it.
1393    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1394           "Nothing can locally depend on a terminator");
1395
1396    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1397         E = ReverseDeps.end(); I != E; ++I) {
1398      Instruction *InstDependingOnRemInst = *I;
1399      assert(InstDependingOnRemInst != RemInst &&
1400             "Already removed our local dep info");
1401
1402      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1403
1404      // Make sure to remember that new things depend on NewDepInst.
1405      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1406             "a local dep on this if it is a terminator!");
1407      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1408                                                InstDependingOnRemInst));
1409    }
1410
1411    ReverseLocalDeps.erase(ReverseDepIt);
1412
1413    // Add new reverse deps after scanning the set, to avoid invalidating the
1414    // 'ReverseDeps' reference.
1415    while (!ReverseDepsToAdd.empty()) {
1416      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1417        .insert(ReverseDepsToAdd.back().second);
1418      ReverseDepsToAdd.pop_back();
1419    }
1420  }
1421
1422  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1423  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1424    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1425    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1426         I != E; ++I) {
1427      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1428
1429      PerInstNLInfo &INLD = NonLocalDeps[*I];
1430      // The information is now dirty!
1431      INLD.second = true;
1432
1433      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1434           DE = INLD.first.end(); DI != DE; ++DI) {
1435        if (DI->getResult().getInst() != RemInst) continue;
1436
1437        // Convert to a dirty entry for the subsequent instruction.
1438        DI->setResult(NewDirtyVal);
1439
1440        if (Instruction *NextI = NewDirtyVal.getInst())
1441          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1442      }
1443    }
1444
1445    ReverseNonLocalDeps.erase(ReverseDepIt);
1446
1447    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1448    while (!ReverseDepsToAdd.empty()) {
1449      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1450        .insert(ReverseDepsToAdd.back().second);
1451      ReverseDepsToAdd.pop_back();
1452    }
1453  }
1454
1455  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1456  // value in the NonLocalPointerDeps info.
1457  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1458    ReverseNonLocalPtrDeps.find(RemInst);
1459  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1460    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1461    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1462
1463    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1464         E = Set.end(); I != E; ++I) {
1465      ValueIsLoadPair P = *I;
1466      assert(P.getPointer() != RemInst &&
1467             "Already removed NonLocalPointerDeps info for RemInst");
1468
1469      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1470
1471      // The cache is not valid for any specific block anymore.
1472      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1473
1474      // Update any entries for RemInst to use the instruction after it.
1475      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1476           DI != DE; ++DI) {
1477        if (DI->getResult().getInst() != RemInst) continue;
1478
1479        // Convert to a dirty entry for the subsequent instruction.
1480        DI->setResult(NewDirtyVal);
1481
1482        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1483          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1484      }
1485
1486      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1487      // subsequent value may invalidate the sortedness.
1488      std::sort(NLPDI.begin(), NLPDI.end());
1489    }
1490
1491    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1492
1493    while (!ReversePtrDepsToAdd.empty()) {
1494      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1495        .insert(ReversePtrDepsToAdd.back().second);
1496      ReversePtrDepsToAdd.pop_back();
1497    }
1498  }
1499
1500
1501  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1502  AA->deleteValue(RemInst);
1503  DEBUG(verifyRemoved(RemInst));
1504}
1505/// verifyRemoved - Verify that the specified instruction does not occur
1506/// in our internal data structures.
1507void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1508  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1509       E = LocalDeps.end(); I != E; ++I) {
1510    assert(I->first != D && "Inst occurs in data structures");
1511    assert(I->second.getInst() != D &&
1512           "Inst occurs in data structures");
1513  }
1514
1515  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1516       E = NonLocalPointerDeps.end(); I != E; ++I) {
1517    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1518    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1519    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1520         II != E; ++II)
1521      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1522  }
1523
1524  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1525       E = NonLocalDeps.end(); I != E; ++I) {
1526    assert(I->first != D && "Inst occurs in data structures");
1527    const PerInstNLInfo &INLD = I->second;
1528    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1529         EE = INLD.first.end(); II  != EE; ++II)
1530      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1531  }
1532
1533  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1534       E = ReverseLocalDeps.end(); I != E; ++I) {
1535    assert(I->first != D && "Inst occurs in data structures");
1536    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1537         EE = I->second.end(); II != EE; ++II)
1538      assert(*II != D && "Inst occurs in data structures");
1539  }
1540
1541  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1542       E = ReverseNonLocalDeps.end();
1543       I != E; ++I) {
1544    assert(I->first != D && "Inst occurs in data structures");
1545    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1546         EE = I->second.end(); II != EE; ++II)
1547      assert(*II != D && "Inst occurs in data structures");
1548  }
1549
1550  for (ReverseNonLocalPtrDepTy::const_iterator
1551       I = ReverseNonLocalPtrDeps.begin(),
1552       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1553    assert(I->first != D && "Inst occurs in rev NLPD map");
1554
1555    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1556         E = I->second.end(); II != E; ++II)
1557      assert(*II != ValueIsLoadPair(D, false) &&
1558             *II != ValueIsLoadPair(D, true) &&
1559             "Inst occurs in ReverseNonLocalPtrDeps map");
1560  }
1561
1562}
1563