MemoryDependenceAnalysis.cpp revision b51deb929ca95ce62e622b0475a05d83f26ab04d
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
32STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
33STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48bool MemoryDependenceAnalysis::runOnFunction(Function &) {
49  AA = &getAnalysis<AliasAnalysis>();
50  TD = &getAnalysis<TargetData>();
51  return false;
52}
53
54
55/// getCallSiteDependency - Private helper for finding the local dependencies
56/// of a call site.
57MemDepResult MemoryDependenceAnalysis::
58getCallSiteDependency(CallSite CS, BasicBlock::iterator ScanIt, BasicBlock *BB) {
59  // Walk backwards through the block, looking for dependencies
60  while (ScanIt != BB->begin()) {
61    Instruction *Inst = --ScanIt;
62
63    // If this inst is a memory op, get the pointer it accessed
64    Value *Pointer = 0;
65    uint64_t PointerSize = 0;
66    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
67      Pointer = S->getPointerOperand();
68      PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
69    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
70      Pointer = V->getOperand(0);
71      PointerSize = TD->getTypeStoreSize(V->getType());
72    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
73      Pointer = F->getPointerOperand();
74
75      // FreeInsts erase the entire structure
76      PointerSize = ~0UL;
77    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
78      CallSite InstCS = CallSite::get(Inst);
79      // If these two calls do not interfere, look past it.
80      if (AA->getModRefInfo(CS, InstCS) == AliasAnalysis::NoModRef)
81        continue;
82
83      // FIXME: If this is a ref/ref result, we should ignore it!
84      //  X = strlen(P);
85      //  Y = strlen(Q);
86      //  Z = strlen(P);  // Z = X
87
88      // If they interfere, we generally return clobber.  However, if they are
89      // calls to the same read-only functions we return Def.
90      if (!AA->onlyReadsMemory(CS) || CS.getCalledFunction() == 0 ||
91          CS.getCalledFunction() != InstCS.getCalledFunction())
92        return MemDepResult::getClobber(Inst);
93      return MemDepResult::getDef(Inst);
94    } else {
95      // Non-memory instruction.
96      continue;
97    }
98
99    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
100      return MemDepResult::getClobber(Inst);
101  }
102
103  // No dependence found.
104  return MemDepResult::getNonLocal();
105}
106
107/// getDependencyFrom - Return the instruction on which a memory operation
108/// depends.
109MemDepResult MemoryDependenceAnalysis::
110getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
111                  BasicBlock *BB) {
112  // Get the pointer value for which dependence will be determined
113  Value *MemPtr = 0;
114  uint64_t MemSize = 0;
115  bool MemVolatile = false;
116
117  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
118    MemPtr = S->getPointerOperand();
119    MemSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
120    MemVolatile = S->isVolatile();
121  } else if (LoadInst* LI = dyn_cast<LoadInst>(QueryInst)) {
122    MemPtr = LI->getPointerOperand();
123    MemSize = TD->getTypeStoreSize(LI->getType());
124    MemVolatile = LI->isVolatile();
125  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
126    MemPtr = V->getOperand(0);
127    MemSize = TD->getTypeStoreSize(V->getType());
128  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
129    MemPtr = F->getPointerOperand();
130    // FreeInsts erase the entire structure, not just a field.
131    MemSize = ~0UL;
132  } else {
133    assert((isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) &&
134            "Can only get dependency info for memory instructions!");
135    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
136  }
137
138  // Walk backwards through the basic block, looking for dependencies
139  while (ScanIt != BB->begin()) {
140    Instruction *Inst = --ScanIt;
141
142    // Values depend on loads if the pointers are must aliased.  This means that
143    // a load depends on another must aliased load from the same value.
144    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
145      // If the access is volatile and this is volatile, return a dependence.
146      if (MemVolatile && LI->isVolatile())
147        return MemDepResult::getClobber(LI);
148
149      Value *Pointer = LI->getPointerOperand();
150      uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
151
152      // If we found a pointer, check if it could be the same as our pointer.
153      AliasAnalysis::AliasResult R =
154        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
155      if (R == AliasAnalysis::NoAlias)
156        continue;
157
158      // May-alias loads don't depend on each other without a dependence.
159      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
160        continue;
161      return MemDepResult::getDef(Inst);
162    }
163
164    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
165      // If the access is volatile and this is volatile, return a dependence.
166      if (MemVolatile && SI->isVolatile())
167        return MemDepResult::getClobber(SI);
168
169      Value *Pointer = SI->getPointerOperand();
170      uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
171
172      // If we found a pointer, check if it could be the same as our pointer.
173      AliasAnalysis::AliasResult R =
174        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
175
176      if (R == AliasAnalysis::NoAlias)
177        continue;
178      if (R == AliasAnalysis::MayAlias)
179        return MemDepResult::getClobber(Inst);
180      return MemDepResult::getDef(Inst);
181    }
182
183    // If this is an allocation, and if we know that the accessed pointer is to
184    // the allocation, return Def.  This means that there is no dependence and
185    // the access can be optimized based on that.  For example, a load could
186    // turn into undef.
187    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
188      Value *AccessPtr = MemPtr->getUnderlyingObject();
189
190      if (AccessPtr == AI ||
191          AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
192        return MemDepResult::getDef(AI);
193      continue;
194    }
195
196    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
197    if (AA->getModRefInfo(Inst, MemPtr, MemSize) == AliasAnalysis::NoModRef)
198      continue;
199
200    // Otherwise, there is a dependence.
201    return MemDepResult::getClobber(Inst);
202  }
203
204  // If we found nothing, return the non-local flag.
205  return MemDepResult::getNonLocal();
206}
207
208/// getDependency - Return the instruction on which a memory operation
209/// depends.
210MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
211  Instruction *ScanPos = QueryInst;
212
213  // Check for a cached result
214  MemDepResult &LocalCache = LocalDeps[QueryInst];
215
216  // If the cached entry is non-dirty, just return it.  Note that this depends
217  // on MemDepResult's default constructing to 'dirty'.
218  if (!LocalCache.isDirty())
219    return LocalCache;
220
221  // Otherwise, if we have a dirty entry, we know we can start the scan at that
222  // instruction, which may save us some work.
223  if (Instruction *Inst = LocalCache.getInst()) {
224    ScanPos = Inst;
225
226    SmallPtrSet<Instruction*, 4> &InstMap = ReverseLocalDeps[Inst];
227    InstMap.erase(QueryInst);
228    if (InstMap.empty())
229      ReverseLocalDeps.erase(Inst);
230  }
231
232  // Do the scan.
233  LocalCache = getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
234
235  // Remember the result!
236  if (Instruction *I = LocalCache.getInst())
237    ReverseLocalDeps[I].insert(QueryInst);
238
239  return LocalCache;
240}
241
242/// getNonLocalDependency - Perform a full dependency query for the
243/// specified instruction, returning the set of blocks that the value is
244/// potentially live across.  The returned set of results will include a
245/// "NonLocal" result for all blocks where the value is live across.
246///
247/// This method assumes the instruction returns a "nonlocal" dependency
248/// within its own block.
249///
250const MemoryDependenceAnalysis::NonLocalDepInfo &
251MemoryDependenceAnalysis::getNonLocalDependency(Instruction *QueryInst) {
252  assert(getDependency(QueryInst).isNonLocal() &&
253     "getNonLocalDependency should only be used on insts with non-local deps!");
254  PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
255
256  NonLocalDepInfo &Cache = CacheP.first;
257
258  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
259  /// the cached case, this can happen due to instructions being deleted etc. In
260  /// the uncached case, this starts out as the set of predecessors we care
261  /// about.
262  SmallVector<BasicBlock*, 32> DirtyBlocks;
263
264  if (!Cache.empty()) {
265    // Okay, we have a cache entry.  If we know it is not dirty, just return it
266    // with no computation.
267    if (!CacheP.second) {
268      NumCacheNonLocal++;
269      return Cache;
270    }
271
272    // If we already have a partially computed set of results, scan them to
273    // determine what is dirty, seeding our initial DirtyBlocks worklist.
274    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
275       I != E; ++I)
276      if (I->second.isDirty())
277        DirtyBlocks.push_back(I->first);
278
279    // Sort the cache so that we can do fast binary search lookups below.
280    std::sort(Cache.begin(), Cache.end());
281
282    ++NumCacheDirtyNonLocal;
283    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
284    //     << Cache.size() << " cached: " << *QueryInst;
285  } else {
286    // Seed DirtyBlocks with each of the preds of QueryInst's block.
287    BasicBlock *QueryBB = QueryInst->getParent();
288    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
289    NumUncacheNonLocal++;
290  }
291
292  // Visited checked first, vector in sorted order.
293  SmallPtrSet<BasicBlock*, 64> Visited;
294
295  unsigned NumSortedEntries = Cache.size();
296
297  // Iterate while we still have blocks to update.
298  while (!DirtyBlocks.empty()) {
299    BasicBlock *DirtyBB = DirtyBlocks.back();
300    DirtyBlocks.pop_back();
301
302    // Already processed this block?
303    if (!Visited.insert(DirtyBB))
304      continue;
305
306    // Do a binary search to see if we already have an entry for this block in
307    // the cache set.  If so, find it.
308    NonLocalDepInfo::iterator Entry =
309      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
310                       std::make_pair(DirtyBB, MemDepResult()));
311    if (Entry != Cache.begin() && (&*Entry)[-1].first == DirtyBB)
312      --Entry;
313
314    MemDepResult *ExistingResult = 0;
315    if (Entry != Cache.begin()+NumSortedEntries &&
316        Entry->first == DirtyBB) {
317      // If we already have an entry, and if it isn't already dirty, the block
318      // is done.
319      if (!Entry->second.isDirty())
320        continue;
321
322      // Otherwise, remember this slot so we can update the value.
323      ExistingResult = &Entry->second;
324    }
325
326    // If the dirty entry has a pointer, start scanning from it so we don't have
327    // to rescan the entire block.
328    BasicBlock::iterator ScanPos = DirtyBB->end();
329    if (ExistingResult) {
330      if (Instruction *Inst = ExistingResult->getInst()) {
331        ScanPos = Inst;
332
333        // We're removing QueryInst's use of Inst.
334        SmallPtrSet<Instruction*, 4> &InstMap = ReverseNonLocalDeps[Inst];
335        InstMap.erase(QueryInst);
336        if (InstMap.empty()) ReverseNonLocalDeps.erase(Inst);
337      }
338    }
339
340    // Find out if this block has a local dependency for QueryInst.
341    MemDepResult Dep = getDependencyFrom(QueryInst, ScanPos, DirtyBB);
342
343    // If we had a dirty entry for the block, update it.  Otherwise, just add
344    // a new entry.
345    if (ExistingResult)
346      *ExistingResult = Dep;
347    else
348      Cache.push_back(std::make_pair(DirtyBB, Dep));
349
350    // If the block has a dependency (i.e. it isn't completely transparent to
351    // the value), remember the association!
352    if (!Dep.isNonLocal()) {
353      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
354      // update this when we remove instructions.
355      if (Instruction *Inst = Dep.getInst())
356        ReverseNonLocalDeps[Inst].insert(QueryInst);
357    } else {
358
359      // If the block *is* completely transparent to the load, we need to check
360      // the predecessors of this block.  Add them to our worklist.
361      DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
362    }
363  }
364
365  return Cache;
366}
367
368/// removeInstruction - Remove an instruction from the dependence analysis,
369/// updating the dependence of instructions that previously depended on it.
370/// This method attempts to keep the cache coherent using the reverse map.
371void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
372  // Walk through the Non-local dependencies, removing this one as the value
373  // for any cached queries.
374  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
375  if (NLDI != NonLocalDeps.end()) {
376    NonLocalDepInfo &BlockMap = NLDI->second.first;
377    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
378         DI != DE; ++DI)
379      if (Instruction *Inst = DI->second.getInst())
380        ReverseNonLocalDeps[Inst].erase(RemInst);
381    NonLocalDeps.erase(NLDI);
382  }
383
384  // If we have a cached local dependence query for this instruction, remove it.
385  //
386  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
387  if (LocalDepEntry != LocalDeps.end()) {
388    // Remove us from DepInst's reverse set now that the local dep info is gone.
389    if (Instruction *Inst = LocalDepEntry->second.getInst()) {
390      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
391      RLD.erase(RemInst);
392      if (RLD.empty())
393        ReverseLocalDeps.erase(Inst);
394    }
395
396    // Remove this local dependency info.
397    LocalDeps.erase(LocalDepEntry);
398  }
399
400  // Loop over all of the things that depend on the instruction we're removing.
401  //
402  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
403
404  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
405  if (ReverseDepIt != ReverseLocalDeps.end()) {
406    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
407    // RemInst can't be the terminator if it has stuff depending on it.
408    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
409           "Nothing can locally depend on a terminator");
410
411    // Anything that was locally dependent on RemInst is now going to be
412    // dependent on the instruction after RemInst.  It will have the dirty flag
413    // set so it will rescan.  This saves having to scan the entire block to get
414    // to this point.
415    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
416
417    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
418         E = ReverseDeps.end(); I != E; ++I) {
419      Instruction *InstDependingOnRemInst = *I;
420      assert(InstDependingOnRemInst != RemInst &&
421             "Already removed our local dep info");
422
423      LocalDeps[InstDependingOnRemInst] = MemDepResult::getDirty(NewDepInst);
424
425      // Make sure to remember that new things depend on NewDepInst.
426      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
427                                                InstDependingOnRemInst));
428    }
429
430    ReverseLocalDeps.erase(ReverseDepIt);
431
432    // Add new reverse deps after scanning the set, to avoid invalidating the
433    // 'ReverseDeps' reference.
434    while (!ReverseDepsToAdd.empty()) {
435      ReverseLocalDeps[ReverseDepsToAdd.back().first]
436        .insert(ReverseDepsToAdd.back().second);
437      ReverseDepsToAdd.pop_back();
438    }
439  }
440
441  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
442  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
443    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
444    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
445         I != E; ++I) {
446      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
447
448      PerInstNLInfo &INLD = NonLocalDeps[*I];
449      // The information is now dirty!
450      INLD.second = true;
451
452      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
453           DE = INLD.first.end(); DI != DE; ++DI) {
454        if (DI->second.getInst() != RemInst) continue;
455
456        // Convert to a dirty entry for the subsequent instruction.
457        Instruction *NextI = 0;
458        if (!RemInst->isTerminator()) {
459          NextI = next(BasicBlock::iterator(RemInst));
460          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
461        }
462        DI->second = MemDepResult::getDirty(NextI);
463      }
464    }
465
466    ReverseNonLocalDeps.erase(ReverseDepIt);
467
468    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
469    while (!ReverseDepsToAdd.empty()) {
470      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
471        .insert(ReverseDepsToAdd.back().second);
472      ReverseDepsToAdd.pop_back();
473    }
474  }
475
476  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
477  AA->deleteValue(RemInst);
478  DEBUG(verifyRemoved(RemInst));
479}
480
481/// verifyRemoved - Verify that the specified instruction does not occur
482/// in our internal data structures.
483void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
484  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
485       E = LocalDeps.end(); I != E; ++I) {
486    assert(I->first != D && "Inst occurs in data structures");
487    assert(I->second.getInst() != D &&
488           "Inst occurs in data structures");
489  }
490
491  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
492       E = NonLocalDeps.end(); I != E; ++I) {
493    assert(I->first != D && "Inst occurs in data structures");
494    const PerInstNLInfo &INLD = I->second;
495    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
496         EE = INLD.first.end(); II  != EE; ++II)
497      assert(II->second.getInst() != D && "Inst occurs in data structures");
498  }
499
500  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
501       E = ReverseLocalDeps.end(); I != E; ++I) {
502    assert(I->first != D && "Inst occurs in data structures");
503    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
504         EE = I->second.end(); II != EE; ++II)
505      assert(*II != D && "Inst occurs in data structures");
506  }
507
508  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
509       E = ReverseNonLocalDeps.end();
510       I != E; ++I) {
511    assert(I->first != D && "Inst occurs in data structures");
512    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
513         EE = I->second.end(); II != EE; ++II)
514      assert(*II != D && "Inst occurs in data structures");
515  }
516}
517