MemoryDependenceAnalysis.cpp revision cfbb634225007b2eddfbfcbf2adff2291b9c03bd
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of cached non-local responses");
32STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48/// getCallSiteDependency - Private helper for finding the local dependencies
49/// of a call site.
50MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
51getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
52                      BasicBlock *BB) {
53  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
54  TargetData &TD = getAnalysis<TargetData>();
55
56  // Walk backwards through the block, looking for dependencies
57  while (ScanIt != BB->begin()) {
58    Instruction *Inst = --ScanIt;
59
60    // If this inst is a memory op, get the pointer it accessed
61    Value *Pointer = 0;
62    uint64_t PointerSize = 0;
63    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
64      Pointer = S->getPointerOperand();
65      PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
66    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
67      Pointer = V->getOperand(0);
68      PointerSize = TD.getTypeStoreSize(V->getType());
69    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
70      Pointer = F->getPointerOperand();
71
72      // FreeInsts erase the entire structure
73      PointerSize = ~0UL;
74    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
75      if (AA.getModRefBehavior(CallSite::get(Inst)) ==
76            AliasAnalysis::DoesNotAccessMemory)
77        continue;
78      return DepResultTy(Inst, Normal);
79    } else {
80      // Non-memory instruction.
81      continue;
82    }
83
84    if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
85      return DepResultTy(Inst, Normal);
86  }
87
88  // No dependence found.
89  return DepResultTy(0, NonLocal);
90}
91
92/// getDependency - Return the instruction on which a memory operation
93/// depends.  The local parameter indicates if the query should only
94/// evaluate dependencies within the same basic block.
95MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
96getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
97                          BasicBlock *BB) {
98  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
99  TargetData &TD = getAnalysis<TargetData>();
100
101  // Get the pointer value for which dependence will be determined
102  Value *MemPtr = 0;
103  uint64_t MemSize = 0;
104  bool MemVolatile = false;
105
106  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
107    MemPtr = S->getPointerOperand();
108    MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
109    MemVolatile = S->isVolatile();
110  } else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
111    MemPtr = L->getPointerOperand();
112    MemSize = TD.getTypeStoreSize(L->getType());
113    MemVolatile = L->isVolatile();
114  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
115    MemPtr = V->getOperand(0);
116    MemSize = TD.getTypeStoreSize(V->getType());
117  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
118    MemPtr = F->getPointerOperand();
119    // FreeInsts erase the entire structure, not just a field.
120    MemSize = ~0UL;
121  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
122    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
123  else  // Non-memory instructions depend on nothing.
124    return DepResultTy(0, None);
125
126  // Walk backwards through the basic block, looking for dependencies
127  while (ScanIt != BB->begin()) {
128    Instruction *Inst = --ScanIt;
129
130    // If the access is volatile and this is a volatile load/store, return a
131    // dependence.
132    if (MemVolatile &&
133        ((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
134         (isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
135      return DepResultTy(Inst, Normal);
136
137    // Values depend on loads if the pointers are must aliased.  This means that
138    // a load depends on another must aliased load from the same value.
139    if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
140      Value *Pointer = L->getPointerOperand();
141      uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
142
143      // If we found a pointer, check if it could be the same as our pointer
144      AliasAnalysis::AliasResult R =
145        AA.alias(Pointer, PointerSize, MemPtr, MemSize);
146
147      if (R == AliasAnalysis::NoAlias)
148        continue;
149
150      // May-alias loads don't depend on each other without a dependence.
151      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
152        continue;
153      return DepResultTy(Inst, Normal);
154    }
155
156    // If this is an allocation, and if we know that the accessed pointer is to
157    // the allocation, return None.  This means that there is no dependence and
158    // the access can be optimized based on that.  For example, a load could
159    // turn into undef.
160    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
161      Value *AccessPtr = MemPtr->getUnderlyingObject();
162
163      if (AccessPtr == AI ||
164          AA.alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
165        return DepResultTy(0, None);
166      continue;
167    }
168
169    // See if this instruction mod/ref's the pointer.
170    AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
171
172    if (MRR == AliasAnalysis::NoModRef)
173      continue;
174
175    // Loads don't depend on read-only instructions.
176    if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
177      continue;
178
179    // Otherwise, there is a dependence.
180    return DepResultTy(Inst, Normal);
181  }
182
183  // If we found nothing, return the non-local flag.
184  return DepResultTy(0, NonLocal);
185}
186
187/// getDependency - Return the instruction on which a memory operation
188/// depends.
189MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
190  Instruction *ScanPos = QueryInst;
191
192  // Check for a cached result
193  DepResultTy &LocalCache = LocalDeps[QueryInst];
194
195  // If the cached entry is non-dirty, just return it.  Note that this depends
196  // on DepResultTy's default constructing to 'dirty'.
197  if (LocalCache.getInt() != Dirty)
198    return ConvToResult(LocalCache);
199
200  // Otherwise, if we have a dirty entry, we know we can start the scan at that
201  // instruction, which may save us some work.
202  if (Instruction *Inst = LocalCache.getPointer())
203    ScanPos = Inst;
204
205  // Do the scan.
206  LocalCache = getDependencyFromInternal(QueryInst, ScanPos,
207                                         QueryInst->getParent());
208
209  // Remember the result!
210  if (Instruction *I = LocalCache.getPointer())
211    ReverseLocalDeps[I].insert(QueryInst);
212
213  return ConvToResult(LocalCache);
214}
215
216/// getNonLocalDependency - Perform a full dependency query for the
217/// specified instruction, returning the set of blocks that the value is
218/// potentially live across.  The returned set of results will include a
219/// "NonLocal" result for all blocks where the value is live across.
220///
221/// This method assumes the instruction returns a "nonlocal" dependency
222/// within its own block.
223///
224void MemoryDependenceAnalysis::
225getNonLocalDependency(Instruction *QueryInst,
226                      SmallVectorImpl<std::pair<BasicBlock*,
227                                                      MemDepResult> > &Result) {
228  assert(getDependency(QueryInst).isNonLocal() &&
229     "getNonLocalDependency should only be used on insts with non-local deps!");
230  DenseMap<BasicBlock*, DepResultTy> &Cache = NonLocalDeps[QueryInst];
231
232  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
233  /// the cached case, this can happen due to instructions being deleted etc. In
234  /// the uncached case, this starts out as the set of predecessors we care
235  /// about.
236  SmallVector<BasicBlock*, 32> DirtyBlocks;
237
238  if (!Cache.empty()) {
239    // If we already have a partially computed set of results, scan them to
240    // determine what is dirty, seeding our initial DirtyBlocks worklist.
241    // FIXME: In the "don't need to be updated" case, this is expensive, why not
242    // have a per-"cache" flag saying it is undirty?
243    for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
244         E = Cache.end(); I != E; ++I)
245      if (I->second.getInt() == Dirty)
246        DirtyBlocks.push_back(I->first);
247
248    NumCacheNonLocal++;
249
250    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
251    //     << Cache.size() << " cached: " << *QueryInst;
252  } else {
253    // Seed DirtyBlocks with each of the preds of QueryInst's block.
254    BasicBlock *QueryBB = QueryInst->getParent();
255    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
256    NumUncacheNonLocal++;
257  }
258
259  // Iterate while we still have blocks to update.
260  while (!DirtyBlocks.empty()) {
261    BasicBlock *DirtyBB = DirtyBlocks.back();
262    DirtyBlocks.pop_back();
263
264    // Get the entry for this block.  Note that this relies on DepResultTy
265    // default initializing to Dirty.
266    DepResultTy &DirtyBBEntry = Cache[DirtyBB];
267
268    // If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
269    if (DirtyBBEntry.getInt() != Dirty) continue;
270
271    // If the dirty entry has a pointer, start scanning from it so we don't have
272    // to rescan the entire block.
273    BasicBlock::iterator ScanPos = DirtyBB->end();
274    if (Instruction *Inst = DirtyBBEntry.getPointer())
275      ScanPos = Inst;
276
277    // Find out if this block has a local dependency for QueryInst.
278    DirtyBBEntry = getDependencyFromInternal(QueryInst, ScanPos, DirtyBB);
279
280    // If the block has a dependency (i.e. it isn't completely transparent to
281    // the value), remember it!
282    if (DirtyBBEntry.getInt() != NonLocal) {
283      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
284      // update this when we remove instructions.
285      if (Instruction *Inst = DirtyBBEntry.getPointer())
286        ReverseNonLocalDeps[Inst].insert(QueryInst);
287      continue;
288    }
289
290    // If the block *is* completely transparent to the load, we need to check
291    // the predecessors of this block.  Add them to our worklist.
292    DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
293  }
294
295
296  // Copy the result into the output set.
297  for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
298       E = Cache.end(); I != E; ++I)
299    Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
300}
301
302/// removeInstruction - Remove an instruction from the dependence analysis,
303/// updating the dependence of instructions that previously depended on it.
304/// This method attempts to keep the cache coherent using the reverse map.
305void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
306  // Walk through the Non-local dependencies, removing this one as the value
307  // for any cached queries.
308  for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
309       NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
310       DI != DE; ++DI)
311    if (Instruction *Inst = DI->second.getPointer())
312      ReverseNonLocalDeps[Inst].erase(RemInst);
313
314  // If we have a cached local dependence query for this instruction, remove it.
315  //
316  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
317  if (LocalDepEntry != LocalDeps.end()) {
318    // Remove us from DepInst's reverse set now that the local dep info is gone.
319    if (Instruction *Inst = LocalDepEntry->second.getPointer()) {
320      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
321      RLD.erase(RemInst);
322      if (RLD.empty())
323        ReverseLocalDeps.erase(Inst);
324    }
325
326    // Remove this local dependency info.
327    LocalDeps.erase(LocalDepEntry);
328  }
329
330  // Loop over all of the things that depend on the instruction we're removing.
331  //
332  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
333
334  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
335  if (ReverseDepIt != ReverseLocalDeps.end()) {
336    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
337    // RemInst can't be the terminator if it has stuff depending on it.
338    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
339           "Nothing can locally depend on a terminator");
340
341    // Anything that was locally dependent on RemInst is now going to be
342    // dependent on the instruction after RemInst.  It will have the dirty flag
343    // set so it will rescan.  This saves having to scan the entire block to get
344    // to this point.
345    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
346
347    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
348         E = ReverseDeps.end(); I != E; ++I) {
349      Instruction *InstDependingOnRemInst = *I;
350
351      // If we thought the instruction depended on itself (possible for
352      // unconfirmed dependencies) ignore the update.
353      if (InstDependingOnRemInst == RemInst) continue;
354
355      LocalDeps[InstDependingOnRemInst] = DepResultTy(NewDepInst, Dirty);
356
357      // Make sure to remember that new things depend on NewDepInst.
358      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
359                                                InstDependingOnRemInst));
360    }
361
362    ReverseLocalDeps.erase(ReverseDepIt);
363
364    // Add new reverse deps after scanning the set, to avoid invalidating the
365    // 'ReverseDeps' reference.
366    while (!ReverseDepsToAdd.empty()) {
367      ReverseLocalDeps[ReverseDepsToAdd.back().first]
368        .insert(ReverseDepsToAdd.back().second);
369      ReverseDepsToAdd.pop_back();
370    }
371  }
372
373  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
374  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
375    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
376    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
377         I != E; ++I)
378      for (DenseMap<BasicBlock*, DepResultTy>::iterator
379           DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
380           DI != DE; ++DI)
381        if (DI->second.getPointer() == RemInst) {
382          // Convert to a dirty entry for the subsequent instruction.
383          DI->second.setInt(Dirty);
384          if (RemInst->isTerminator())
385            DI->second.setPointer(0);
386          else {
387            Instruction *NextI = next(BasicBlock::iterator(RemInst));
388            DI->second.setPointer(NextI);
389            assert(NextI != RemInst);
390            ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
391          }
392        }
393
394    ReverseNonLocalDeps.erase(ReverseDepIt);
395
396    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
397    while (!ReverseDepsToAdd.empty()) {
398      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
399        .insert(ReverseDepsToAdd.back().second);
400      ReverseDepsToAdd.pop_back();
401    }
402  }
403
404  NonLocalDeps.erase(RemInst);
405  getAnalysis<AliasAnalysis>().deleteValue(RemInst);
406  DEBUG(verifyRemoved(RemInst));
407}
408
409/// verifyRemoved - Verify that the specified instruction does not occur
410/// in our internal data structures.
411void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
412  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
413       E = LocalDeps.end(); I != E; ++I) {
414    assert(I->first != D && "Inst occurs in data structures");
415    assert(I->second.getPointer() != D &&
416           "Inst occurs in data structures");
417  }
418
419  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
420       E = NonLocalDeps.end(); I != E; ++I) {
421    assert(I->first != D && "Inst occurs in data structures");
422    for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
423         EE = I->second.end(); II  != EE; ++II)
424      assert(II->second.getPointer() != D && "Inst occurs in data structures");
425  }
426
427  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
428       E = ReverseLocalDeps.end(); I != E; ++I)
429    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
430         EE = I->second.end(); II != EE; ++II)
431      assert(*II != D && "Inst occurs in data structures");
432
433  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
434       E = ReverseNonLocalDeps.end();
435       I != E; ++I)
436    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
437         EE = I->second.end(); II != EE; ++II)
438      assert(*II != D && "Inst occurs in data structures");
439}
440