MemoryDependenceAnalysis.cpp revision d777d405cdda8d418ba8e8818e5c1272dfd999a0
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of cached non-local responses");
32STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48bool MemoryDependenceAnalysis::runOnFunction(Function &) {
49  AA = &getAnalysis<AliasAnalysis>();
50  TD = &getAnalysis<TargetData>();
51  return false;
52}
53
54/// getCallSiteDependency - Private helper for finding the local dependencies
55/// of a call site.
56MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
57getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
58                      BasicBlock *BB) {
59  // Walk backwards through the block, looking for dependencies
60  while (ScanIt != BB->begin()) {
61    Instruction *Inst = --ScanIt;
62
63    // If this inst is a memory op, get the pointer it accessed
64    Value *Pointer = 0;
65    uint64_t PointerSize = 0;
66    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
67      Pointer = S->getPointerOperand();
68      PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
69    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
70      Pointer = V->getOperand(0);
71      PointerSize = TD->getTypeStoreSize(V->getType());
72    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
73      Pointer = F->getPointerOperand();
74
75      // FreeInsts erase the entire structure
76      PointerSize = ~0UL;
77    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
78      if (AA->getModRefBehavior(CallSite::get(Inst)) ==
79            AliasAnalysis::DoesNotAccessMemory)
80        continue;
81      return DepResultTy(Inst, Normal);
82    } else {
83      // Non-memory instruction.
84      continue;
85    }
86
87    if (AA->getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
88      return DepResultTy(Inst, Normal);
89  }
90
91  // No dependence found.
92  return DepResultTy(0, NonLocal);
93}
94
95/// getDependency - Return the instruction on which a memory operation
96/// depends.  The local parameter indicates if the query should only
97/// evaluate dependencies within the same basic block.
98MemoryDependenceAnalysis::DepResultTy MemoryDependenceAnalysis::
99getDependencyFromInternal(Instruction *QueryInst, BasicBlock::iterator ScanIt,
100                          BasicBlock *BB) {
101  // Get the pointer value for which dependence will be determined
102  Value *MemPtr = 0;
103  uint64_t MemSize = 0;
104  bool MemVolatile = false;
105
106  if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
107    MemPtr = S->getPointerOperand();
108    MemSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
109    MemVolatile = S->isVolatile();
110  } else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
111    MemPtr = L->getPointerOperand();
112    MemSize = TD->getTypeStoreSize(L->getType());
113    MemVolatile = L->isVolatile();
114  } else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
115    MemPtr = V->getOperand(0);
116    MemSize = TD->getTypeStoreSize(V->getType());
117  } else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
118    MemPtr = F->getPointerOperand();
119    // FreeInsts erase the entire structure, not just a field.
120    MemSize = ~0UL;
121  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
122    return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
123  else  // Non-memory instructions depend on nothing.
124    return DepResultTy(0, None);
125
126  // Walk backwards through the basic block, looking for dependencies
127  while (ScanIt != BB->begin()) {
128    Instruction *Inst = --ScanIt;
129
130    // If the access is volatile and this is a volatile load/store, return a
131    // dependence.
132    if (MemVolatile &&
133        ((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
134         (isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
135      return DepResultTy(Inst, Normal);
136
137    // Values depend on loads if the pointers are must aliased.  This means that
138    // a load depends on another must aliased load from the same value.
139    if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
140      Value *Pointer = L->getPointerOperand();
141      uint64_t PointerSize = TD->getTypeStoreSize(L->getType());
142
143      // If we found a pointer, check if it could be the same as our pointer
144      AliasAnalysis::AliasResult R =
145        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
146
147      if (R == AliasAnalysis::NoAlias)
148        continue;
149
150      // May-alias loads don't depend on each other without a dependence.
151      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
152        continue;
153      return DepResultTy(Inst, Normal);
154    }
155
156    // If this is an allocation, and if we know that the accessed pointer is to
157    // the allocation, return None.  This means that there is no dependence and
158    // the access can be optimized based on that.  For example, a load could
159    // turn into undef.
160    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
161      Value *AccessPtr = MemPtr->getUnderlyingObject();
162
163      if (AccessPtr == AI ||
164          AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
165        return DepResultTy(0, None);
166      continue;
167    }
168
169    // See if this instruction mod/ref's the pointer.
170    AliasAnalysis::ModRefResult MRR = AA->getModRefInfo(Inst, MemPtr, MemSize);
171
172    if (MRR == AliasAnalysis::NoModRef)
173      continue;
174
175    // Loads don't depend on read-only instructions.
176    if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
177      continue;
178
179    // Otherwise, there is a dependence.
180    return DepResultTy(Inst, Normal);
181  }
182
183  // If we found nothing, return the non-local flag.
184  return DepResultTy(0, NonLocal);
185}
186
187/// getDependency - Return the instruction on which a memory operation
188/// depends.
189MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
190  Instruction *ScanPos = QueryInst;
191
192  // Check for a cached result
193  DepResultTy &LocalCache = LocalDeps[QueryInst];
194
195  // If the cached entry is non-dirty, just return it.  Note that this depends
196  // on DepResultTy's default constructing to 'dirty'.
197  if (LocalCache.getInt() != Dirty)
198    return ConvToResult(LocalCache);
199
200  // Otherwise, if we have a dirty entry, we know we can start the scan at that
201  // instruction, which may save us some work.
202  if (Instruction *Inst = LocalCache.getPointer()) {
203    ScanPos = Inst;
204
205    SmallPtrSet<Instruction*, 4> &InstMap = ReverseLocalDeps[Inst];
206    InstMap.erase(QueryInst);
207    if (InstMap.empty())
208      ReverseLocalDeps.erase(Inst);
209  }
210
211  // Do the scan.
212  LocalCache = getDependencyFromInternal(QueryInst, ScanPos,
213                                         QueryInst->getParent());
214
215  // Remember the result!
216  if (Instruction *I = LocalCache.getPointer())
217    ReverseLocalDeps[I].insert(QueryInst);
218
219  return ConvToResult(LocalCache);
220}
221
222/// getNonLocalDependency - Perform a full dependency query for the
223/// specified instruction, returning the set of blocks that the value is
224/// potentially live across.  The returned set of results will include a
225/// "NonLocal" result for all blocks where the value is live across.
226///
227/// This method assumes the instruction returns a "nonlocal" dependency
228/// within its own block.
229///
230void MemoryDependenceAnalysis::
231getNonLocalDependency(Instruction *QueryInst,
232                      SmallVectorImpl<std::pair<BasicBlock*,
233                                                      MemDepResult> > &Result) {
234  assert(getDependency(QueryInst).isNonLocal() &&
235     "getNonLocalDependency should only be used on insts with non-local deps!");
236  PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
237  if (CacheP.getPointer() == 0) CacheP.setPointer(new NonLocalDepInfo());
238
239  NonLocalDepInfo &Cache = *CacheP.getPointer();
240
241  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
242  /// the cached case, this can happen due to instructions being deleted etc. In
243  /// the uncached case, this starts out as the set of predecessors we care
244  /// about.
245  SmallVector<BasicBlock*, 32> DirtyBlocks;
246
247  if (!Cache.empty()) {
248    // If we already have a partially computed set of results, scan them to
249    // determine what is dirty, seeding our initial DirtyBlocks worklist.  The
250    // Int bit of CacheP tells us if we have anything dirty.
251    if (CacheP.getInt())
252      for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
253         I != E; ++I)
254        if (I->second.getInt() == Dirty)
255          DirtyBlocks.push_back(I->first);
256
257    NumCacheNonLocal++;
258
259    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
260    //     << Cache.size() << " cached: " << *QueryInst;
261  } else {
262    // Seed DirtyBlocks with each of the preds of QueryInst's block.
263    BasicBlock *QueryBB = QueryInst->getParent();
264    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
265    NumUncacheNonLocal++;
266  }
267
268  // Iterate while we still have blocks to update.
269  while (!DirtyBlocks.empty()) {
270    BasicBlock *DirtyBB = DirtyBlocks.back();
271    DirtyBlocks.pop_back();
272
273    // Get the entry for this block.  Note that this relies on DepResultTy
274    // default initializing to Dirty.
275    DepResultTy &DirtyBBEntry = Cache[DirtyBB];
276
277    // If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
278    if (DirtyBBEntry.getInt() != Dirty) continue;
279
280    // If the dirty entry has a pointer, start scanning from it so we don't have
281    // to rescan the entire block.
282    BasicBlock::iterator ScanPos = DirtyBB->end();
283    if (Instruction *Inst = DirtyBBEntry.getPointer()) {
284      ScanPos = Inst;
285
286      // We're removing QueryInst's dependence on Inst.
287      SmallPtrSet<Instruction*, 4> &InstMap = ReverseNonLocalDeps[Inst];
288      InstMap.erase(QueryInst);
289      if (InstMap.empty()) ReverseNonLocalDeps.erase(Inst);
290    }
291
292    // Find out if this block has a local dependency for QueryInst.
293    DirtyBBEntry = getDependencyFromInternal(QueryInst, ScanPos, DirtyBB);
294
295    // If the block has a dependency (i.e. it isn't completely transparent to
296    // the value), remember it!
297    if (DirtyBBEntry.getInt() != NonLocal) {
298      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
299      // update this when we remove instructions.
300      if (Instruction *Inst = DirtyBBEntry.getPointer())
301        ReverseNonLocalDeps[Inst].insert(QueryInst);
302      continue;
303    }
304
305    // If the block *is* completely transparent to the load, we need to check
306    // the predecessors of this block.  Add them to our worklist.
307    DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
308  }
309
310
311  // Copy the result into the output set.
312  for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end(); I != E;++I)
313    Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
314}
315
316/// removeInstruction - Remove an instruction from the dependence analysis,
317/// updating the dependence of instructions that previously depended on it.
318/// This method attempts to keep the cache coherent using the reverse map.
319void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
320  // Walk through the Non-local dependencies, removing this one as the value
321  // for any cached queries.
322  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
323  if (NLDI != NonLocalDeps.end()) {
324    NonLocalDepInfo &BlockMap = *NLDI->second.getPointer();
325    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
326         DI != DE; ++DI)
327      if (Instruction *Inst = DI->second.getPointer())
328        ReverseNonLocalDeps[Inst].erase(RemInst);
329    delete &BlockMap;
330    NonLocalDeps.erase(NLDI);
331  }
332
333  // If we have a cached local dependence query for this instruction, remove it.
334  //
335  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
336  if (LocalDepEntry != LocalDeps.end()) {
337    // Remove us from DepInst's reverse set now that the local dep info is gone.
338    if (Instruction *Inst = LocalDepEntry->second.getPointer()) {
339      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
340      RLD.erase(RemInst);
341      if (RLD.empty())
342        ReverseLocalDeps.erase(Inst);
343    }
344
345    // Remove this local dependency info.
346    LocalDeps.erase(LocalDepEntry);
347  }
348
349  // Loop over all of the things that depend on the instruction we're removing.
350  //
351  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
352
353  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
354  if (ReverseDepIt != ReverseLocalDeps.end()) {
355    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
356    // RemInst can't be the terminator if it has stuff depending on it.
357    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
358           "Nothing can locally depend on a terminator");
359
360    // Anything that was locally dependent on RemInst is now going to be
361    // dependent on the instruction after RemInst.  It will have the dirty flag
362    // set so it will rescan.  This saves having to scan the entire block to get
363    // to this point.
364    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
365
366    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
367         E = ReverseDeps.end(); I != E; ++I) {
368      Instruction *InstDependingOnRemInst = *I;
369      assert(InstDependingOnRemInst != RemInst &&
370             "Already removed our local dep info");
371
372      LocalDeps[InstDependingOnRemInst] = DepResultTy(NewDepInst, Dirty);
373
374      // Make sure to remember that new things depend on NewDepInst.
375      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
376                                                InstDependingOnRemInst));
377    }
378
379    ReverseLocalDeps.erase(ReverseDepIt);
380
381    // Add new reverse deps after scanning the set, to avoid invalidating the
382    // 'ReverseDeps' reference.
383    while (!ReverseDepsToAdd.empty()) {
384      ReverseLocalDeps[ReverseDepsToAdd.back().first]
385        .insert(ReverseDepsToAdd.back().second);
386      ReverseDepsToAdd.pop_back();
387    }
388  }
389
390  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
391  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
392    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
393    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
394         I != E; ++I) {
395      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
396
397      PerInstNLInfo &INLD = NonLocalDeps[*I];
398      assert(INLD.getPointer() != 0 && "Reverse mapping out of date?");
399      // The information is now dirty!
400      INLD.setInt(true);
401
402      for (NonLocalDepInfo::iterator DI = INLD.getPointer()->begin(),
403           DE = INLD.getPointer()->end(); DI != DE; ++DI) {
404        if (DI->second.getPointer() != RemInst) continue;
405
406        // Convert to a dirty entry for the subsequent instruction.
407        DI->second.setInt(Dirty);
408        if (RemInst->isTerminator())
409          DI->second.setPointer(0);
410        else {
411          Instruction *NextI = next(BasicBlock::iterator(RemInst));
412          DI->second.setPointer(NextI);
413          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
414        }
415      }
416    }
417
418    ReverseNonLocalDeps.erase(ReverseDepIt);
419
420    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
421    while (!ReverseDepsToAdd.empty()) {
422      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
423        .insert(ReverseDepsToAdd.back().second);
424      ReverseDepsToAdd.pop_back();
425    }
426  }
427
428  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
429  AA->deleteValue(RemInst);
430  DEBUG(verifyRemoved(RemInst));
431}
432
433/// verifyRemoved - Verify that the specified instruction does not occur
434/// in our internal data structures.
435void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
436  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
437       E = LocalDeps.end(); I != E; ++I) {
438    assert(I->first != D && "Inst occurs in data structures");
439    assert(I->second.getPointer() != D &&
440           "Inst occurs in data structures");
441  }
442
443  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
444       E = NonLocalDeps.end(); I != E; ++I) {
445    assert(I->first != D && "Inst occurs in data structures");
446    const PerInstNLInfo &INLD = I->second;
447    for (NonLocalDepInfo::iterator II = INLD.getPointer()->begin(),
448         EE = INLD.getPointer()->end(); II  != EE; ++II)
449      assert(II->second.getPointer() != D && "Inst occurs in data structures");
450  }
451
452  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
453       E = ReverseLocalDeps.end(); I != E; ++I) {
454    assert(I->first != D && "Inst occurs in data structures");
455    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
456         EE = I->second.end(); II != EE; ++II)
457      assert(*II != D && "Inst occurs in data structures");
458  }
459
460  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
461       E = ReverseNonLocalDeps.end();
462       I != E; ++I) {
463    assert(I->first != D && "Inst occurs in data structures");
464    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
465         EE = I->second.end(); II != EE; ++II)
466      assert(*II != D && "Inst occurs in data structures");
467  }
468}
469