MemoryDependenceAnalysis.cpp revision d8dd934d16d1190881d45b065daec4a1ba82133f
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/Instructions.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30
31STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
32STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
33STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
34char MemoryDependenceAnalysis::ID = 0;
35
36// Register this pass...
37static RegisterPass<MemoryDependenceAnalysis> X("memdep",
38                                     "Memory Dependence Analysis", false, true);
39
40/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
41///
42void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
43  AU.setPreservesAll();
44  AU.addRequiredTransitive<AliasAnalysis>();
45  AU.addRequiredTransitive<TargetData>();
46}
47
48bool MemoryDependenceAnalysis::runOnFunction(Function &) {
49  AA = &getAnalysis<AliasAnalysis>();
50  TD = &getAnalysis<TargetData>();
51  return false;
52}
53
54
55/// getCallSiteDependencyFrom - Private helper for finding the local
56/// dependencies of a call site.
57MemDepResult MemoryDependenceAnalysis::
58getCallSiteDependencyFrom(CallSite CS, BasicBlock::iterator ScanIt,
59                          BasicBlock *BB) {
60  // Walk backwards through the block, looking for dependencies
61  while (ScanIt != BB->begin()) {
62    Instruction *Inst = --ScanIt;
63
64    // If this inst is a memory op, get the pointer it accessed
65    Value *Pointer = 0;
66    uint64_t PointerSize = 0;
67    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
68      Pointer = S->getPointerOperand();
69      PointerSize = TD->getTypeStoreSize(S->getOperand(0)->getType());
70    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
71      Pointer = V->getOperand(0);
72      PointerSize = TD->getTypeStoreSize(V->getType());
73    } else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
74      Pointer = F->getPointerOperand();
75
76      // FreeInsts erase the entire structure
77      PointerSize = ~0UL;
78    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
79      CallSite InstCS = CallSite::get(Inst);
80      // If these two calls do not interfere, look past it.
81      if (AA->getModRefInfo(CS, InstCS) == AliasAnalysis::NoModRef)
82        continue;
83
84      // FIXME: If this is a ref/ref result, we should ignore it!
85      //  X = strlen(P);
86      //  Y = strlen(Q);
87      //  Z = strlen(P);  // Z = X
88
89      // If they interfere, we generally return clobber.  However, if they are
90      // calls to the same read-only functions we return Def.
91      if (!AA->onlyReadsMemory(CS) || CS.getCalledFunction() == 0 ||
92          CS.getCalledFunction() != InstCS.getCalledFunction())
93        return MemDepResult::getClobber(Inst);
94      return MemDepResult::getDef(Inst);
95    } else {
96      // Non-memory instruction.
97      continue;
98    }
99
100    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
101      return MemDepResult::getClobber(Inst);
102  }
103
104  // No dependence found.
105  return MemDepResult::getNonLocal();
106}
107
108/// getDependencyFrom - Return the instruction on which a memory operation
109/// depends.
110MemDepResult MemoryDependenceAnalysis::
111getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
112                  BasicBlock *BB) {
113  // The first instruction in a block is always non-local.
114  if (ScanIt == BB->begin())
115    return MemDepResult::getNonLocal();
116
117  // Get the pointer value for which dependence will be determined
118  Value *MemPtr = 0;
119  uint64_t MemSize = 0;
120
121  if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
122    // If this is a volatile store, don't mess around with it.  Just return the
123    // previous instruction as a clobber.
124    if (SI->isVolatile())
125      return MemDepResult::getClobber(--ScanIt);
126
127    MemPtr = SI->getPointerOperand();
128    MemSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
129  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
130    // If this is a volatile load, don't mess around with it.  Just return the
131    // previous instruction as a clobber.
132    if (LI->isVolatile())
133      return MemDepResult::getClobber(--ScanIt);
134
135    MemPtr = LI->getPointerOperand();
136    MemSize = TD->getTypeStoreSize(LI->getType());
137  } else if (FreeInst *FI = dyn_cast<FreeInst>(QueryInst)) {
138    MemPtr = FI->getPointerOperand();
139    // FreeInsts erase the entire structure, not just a field.
140    MemSize = ~0UL;
141  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
142    assert(0 && "Should use getCallSiteDependencyFrom!");
143    return getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanIt, BB);
144  } else {
145    // Otherwise, this is a vaarg or non-memory instruction, just return a
146    // clobber dependency on the previous inst.
147    return MemDepResult::getClobber(--ScanIt);
148  }
149
150  // Walk backwards through the basic block, looking for dependencies
151  while (ScanIt != BB->begin()) {
152    Instruction *Inst = --ScanIt;
153
154    // Values depend on loads if the pointers are must aliased.  This means that
155    // a load depends on another must aliased load from the same value.
156    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
157      Value *Pointer = LI->getPointerOperand();
158      uint64_t PointerSize = TD->getTypeStoreSize(LI->getType());
159
160      // If we found a pointer, check if it could be the same as our pointer.
161      AliasAnalysis::AliasResult R =
162        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
163      if (R == AliasAnalysis::NoAlias)
164        continue;
165
166      // May-alias loads don't depend on each other without a dependence.
167      if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
168        continue;
169      return MemDepResult::getDef(Inst);
170    }
171
172    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
173      Value *Pointer = SI->getPointerOperand();
174      uint64_t PointerSize = TD->getTypeStoreSize(SI->getOperand(0)->getType());
175
176      // If we found a pointer, check if it could be the same as our pointer.
177      AliasAnalysis::AliasResult R =
178        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
179
180      if (R == AliasAnalysis::NoAlias)
181        continue;
182      if (R == AliasAnalysis::MayAlias)
183        return MemDepResult::getClobber(Inst);
184      return MemDepResult::getDef(Inst);
185    }
186
187    // If this is an allocation, and if we know that the accessed pointer is to
188    // the allocation, return Def.  This means that there is no dependence and
189    // the access can be optimized based on that.  For example, a load could
190    // turn into undef.
191    if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
192      Value *AccessPtr = MemPtr->getUnderlyingObject();
193
194      if (AccessPtr == AI ||
195          AA->alias(AI, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
196        return MemDepResult::getDef(AI);
197      continue;
198    }
199
200    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
201    if (AA->getModRefInfo(Inst, MemPtr, MemSize) == AliasAnalysis::NoModRef)
202      continue;
203
204    // Otherwise, there is a dependence.
205    return MemDepResult::getClobber(Inst);
206  }
207
208  // If we found nothing, return the non-local flag.
209  return MemDepResult::getNonLocal();
210}
211
212/// getDependency - Return the instruction on which a memory operation
213/// depends.
214MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
215  Instruction *ScanPos = QueryInst;
216
217  // Check for a cached result
218  MemDepResult &LocalCache = LocalDeps[QueryInst];
219
220  // If the cached entry is non-dirty, just return it.  Note that this depends
221  // on MemDepResult's default constructing to 'dirty'.
222  if (!LocalCache.isDirty())
223    return LocalCache;
224
225  // Otherwise, if we have a dirty entry, we know we can start the scan at that
226  // instruction, which may save us some work.
227  if (Instruction *Inst = LocalCache.getInst()) {
228    ScanPos = Inst;
229
230    SmallPtrSet<Instruction*, 4> &InstMap = ReverseLocalDeps[Inst];
231    InstMap.erase(QueryInst);
232    if (InstMap.empty())
233      ReverseLocalDeps.erase(Inst);
234  }
235
236  // Do the scan.
237  if (!isa<CallInst>(QueryInst) && !isa<InvokeInst>(QueryInst))
238    LocalCache = getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
239  else
240    LocalCache = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
241                                           QueryInst->getParent());
242
243  // Remember the result!
244  if (Instruction *I = LocalCache.getInst())
245    ReverseLocalDeps[I].insert(QueryInst);
246
247  return LocalCache;
248}
249
250/// getNonLocalDependency - Perform a full dependency query for the
251/// specified instruction, returning the set of blocks that the value is
252/// potentially live across.  The returned set of results will include a
253/// "NonLocal" result for all blocks where the value is live across.
254///
255/// This method assumes the instruction returns a "nonlocal" dependency
256/// within its own block.
257///
258const MemoryDependenceAnalysis::NonLocalDepInfo &
259MemoryDependenceAnalysis::getNonLocalDependency(Instruction *QueryInst) {
260  assert(getDependency(QueryInst).isNonLocal() &&
261     "getNonLocalDependency should only be used on insts with non-local deps!");
262  PerInstNLInfo &CacheP = NonLocalDeps[QueryInst];
263
264  NonLocalDepInfo &Cache = CacheP.first;
265
266  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
267  /// the cached case, this can happen due to instructions being deleted etc. In
268  /// the uncached case, this starts out as the set of predecessors we care
269  /// about.
270  SmallVector<BasicBlock*, 32> DirtyBlocks;
271
272  if (!Cache.empty()) {
273    // Okay, we have a cache entry.  If we know it is not dirty, just return it
274    // with no computation.
275    if (!CacheP.second) {
276      NumCacheNonLocal++;
277      return Cache;
278    }
279
280    // If we already have a partially computed set of results, scan them to
281    // determine what is dirty, seeding our initial DirtyBlocks worklist.
282    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
283       I != E; ++I)
284      if (I->second.isDirty())
285        DirtyBlocks.push_back(I->first);
286
287    // Sort the cache so that we can do fast binary search lookups below.
288    std::sort(Cache.begin(), Cache.end());
289
290    ++NumCacheDirtyNonLocal;
291    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
292    //     << Cache.size() << " cached: " << *QueryInst;
293  } else {
294    // Seed DirtyBlocks with each of the preds of QueryInst's block.
295    BasicBlock *QueryBB = QueryInst->getParent();
296    DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
297    NumUncacheNonLocal++;
298  }
299
300  // Visited checked first, vector in sorted order.
301  SmallPtrSet<BasicBlock*, 64> Visited;
302
303  unsigned NumSortedEntries = Cache.size();
304
305  // Iterate while we still have blocks to update.
306  while (!DirtyBlocks.empty()) {
307    BasicBlock *DirtyBB = DirtyBlocks.back();
308    DirtyBlocks.pop_back();
309
310    // Already processed this block?
311    if (!Visited.insert(DirtyBB))
312      continue;
313
314    // Do a binary search to see if we already have an entry for this block in
315    // the cache set.  If so, find it.
316    NonLocalDepInfo::iterator Entry =
317      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
318                       std::make_pair(DirtyBB, MemDepResult()));
319    if (Entry != Cache.begin() && (&*Entry)[-1].first == DirtyBB)
320      --Entry;
321
322    MemDepResult *ExistingResult = 0;
323    if (Entry != Cache.begin()+NumSortedEntries &&
324        Entry->first == DirtyBB) {
325      // If we already have an entry, and if it isn't already dirty, the block
326      // is done.
327      if (!Entry->second.isDirty())
328        continue;
329
330      // Otherwise, remember this slot so we can update the value.
331      ExistingResult = &Entry->second;
332    }
333
334    // If the dirty entry has a pointer, start scanning from it so we don't have
335    // to rescan the entire block.
336    BasicBlock::iterator ScanPos = DirtyBB->end();
337    if (ExistingResult) {
338      if (Instruction *Inst = ExistingResult->getInst()) {
339        ScanPos = Inst;
340
341        // We're removing QueryInst's use of Inst.
342        SmallPtrSet<Instruction*, 4> &InstMap = ReverseNonLocalDeps[Inst];
343        InstMap.erase(QueryInst);
344        if (InstMap.empty()) ReverseNonLocalDeps.erase(Inst);
345      }
346    }
347
348    // Find out if this block has a local dependency for QueryInst.
349    MemDepResult Dep;
350    if (!isa<CallInst>(QueryInst) && !isa<InvokeInst>(QueryInst))
351      Dep = getDependencyFrom(QueryInst, ScanPos, DirtyBB);
352    else
353      Dep = getCallSiteDependencyFrom(CallSite::get(QueryInst), ScanPos,
354                                      DirtyBB);
355
356    // If we had a dirty entry for the block, update it.  Otherwise, just add
357    // a new entry.
358    if (ExistingResult)
359      *ExistingResult = Dep;
360    else
361      Cache.push_back(std::make_pair(DirtyBB, Dep));
362
363    // If the block has a dependency (i.e. it isn't completely transparent to
364    // the value), remember the association!
365    if (!Dep.isNonLocal()) {
366      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
367      // update this when we remove instructions.
368      if (Instruction *Inst = Dep.getInst())
369        ReverseNonLocalDeps[Inst].insert(QueryInst);
370    } else {
371
372      // If the block *is* completely transparent to the load, we need to check
373      // the predecessors of this block.  Add them to our worklist.
374      DirtyBlocks.append(pred_begin(DirtyBB), pred_end(DirtyBB));
375    }
376  }
377
378  return Cache;
379}
380
381
382/// removeInstruction - Remove an instruction from the dependence analysis,
383/// updating the dependence of instructions that previously depended on it.
384/// This method attempts to keep the cache coherent using the reverse map.
385void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
386  // Walk through the Non-local dependencies, removing this one as the value
387  // for any cached queries.
388  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
389  if (NLDI != NonLocalDeps.end()) {
390    NonLocalDepInfo &BlockMap = NLDI->second.first;
391    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
392         DI != DE; ++DI)
393      if (Instruction *Inst = DI->second.getInst())
394        ReverseNonLocalDeps[Inst].erase(RemInst);
395    NonLocalDeps.erase(NLDI);
396  }
397
398  // If we have a cached local dependence query for this instruction, remove it.
399  //
400  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
401  if (LocalDepEntry != LocalDeps.end()) {
402    // Remove us from DepInst's reverse set now that the local dep info is gone.
403    if (Instruction *Inst = LocalDepEntry->second.getInst()) {
404      SmallPtrSet<Instruction*, 4> &RLD = ReverseLocalDeps[Inst];
405      RLD.erase(RemInst);
406      if (RLD.empty())
407        ReverseLocalDeps.erase(Inst);
408    }
409
410    // Remove this local dependency info.
411    LocalDeps.erase(LocalDepEntry);
412  }
413
414  // Loop over all of the things that depend on the instruction we're removing.
415  //
416  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
417
418  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
419  if (ReverseDepIt != ReverseLocalDeps.end()) {
420    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
421    // RemInst can't be the terminator if it has stuff depending on it.
422    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
423           "Nothing can locally depend on a terminator");
424
425    // Anything that was locally dependent on RemInst is now going to be
426    // dependent on the instruction after RemInst.  It will have the dirty flag
427    // set so it will rescan.  This saves having to scan the entire block to get
428    // to this point.
429    Instruction *NewDepInst = next(BasicBlock::iterator(RemInst));
430
431    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
432         E = ReverseDeps.end(); I != E; ++I) {
433      Instruction *InstDependingOnRemInst = *I;
434      assert(InstDependingOnRemInst != RemInst &&
435             "Already removed our local dep info");
436
437      LocalDeps[InstDependingOnRemInst] = MemDepResult::getDirty(NewDepInst);
438
439      // Make sure to remember that new things depend on NewDepInst.
440      ReverseDepsToAdd.push_back(std::make_pair(NewDepInst,
441                                                InstDependingOnRemInst));
442    }
443
444    ReverseLocalDeps.erase(ReverseDepIt);
445
446    // Add new reverse deps after scanning the set, to avoid invalidating the
447    // 'ReverseDeps' reference.
448    while (!ReverseDepsToAdd.empty()) {
449      ReverseLocalDeps[ReverseDepsToAdd.back().first]
450        .insert(ReverseDepsToAdd.back().second);
451      ReverseDepsToAdd.pop_back();
452    }
453  }
454
455  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
456  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
457    SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
458    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
459         I != E; ++I) {
460      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
461
462      PerInstNLInfo &INLD = NonLocalDeps[*I];
463      // The information is now dirty!
464      INLD.second = true;
465
466      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
467           DE = INLD.first.end(); DI != DE; ++DI) {
468        if (DI->second.getInst() != RemInst) continue;
469
470        // Convert to a dirty entry for the subsequent instruction.
471        Instruction *NextI = 0;
472        if (!RemInst->isTerminator()) {
473          NextI = next(BasicBlock::iterator(RemInst));
474          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
475        }
476        DI->second = MemDepResult::getDirty(NextI);
477      }
478    }
479
480    ReverseNonLocalDeps.erase(ReverseDepIt);
481
482    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
483    while (!ReverseDepsToAdd.empty()) {
484      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
485        .insert(ReverseDepsToAdd.back().second);
486      ReverseDepsToAdd.pop_back();
487    }
488  }
489
490  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
491  AA->deleteValue(RemInst);
492  DEBUG(verifyRemoved(RemInst));
493}
494
495/// verifyRemoved - Verify that the specified instruction does not occur
496/// in our internal data structures.
497void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
498  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
499       E = LocalDeps.end(); I != E; ++I) {
500    assert(I->first != D && "Inst occurs in data structures");
501    assert(I->second.getInst() != D &&
502           "Inst occurs in data structures");
503  }
504
505  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
506       E = NonLocalDeps.end(); I != E; ++I) {
507    assert(I->first != D && "Inst occurs in data structures");
508    const PerInstNLInfo &INLD = I->second;
509    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
510         EE = INLD.first.end(); II  != EE; ++II)
511      assert(II->second.getInst() != D && "Inst occurs in data structures");
512  }
513
514  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
515       E = ReverseLocalDeps.end(); I != E; ++I) {
516    assert(I->first != D && "Inst occurs in data structures");
517    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
518         EE = I->second.end(); II != EE; ++II)
519      assert(*II != D && "Inst occurs in data structures");
520  }
521
522  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
523       E = ReverseNonLocalDeps.end();
524       I != E; ++I) {
525    assert(I->first != D && "Inst occurs in data structures");
526    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
527         EE = I->second.end(); II != EE; ++II)
528      assert(*II != D && "Inst occurs in data structures");
529  }
530}
531