MemoryDependenceAnalysis.cpp revision dd696052f0e4ecc973d105be19cf1b4b72f9a0c4
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/Support/PredIteratorCache.h"
29#include "llvm/Support/Debug.h"
30using namespace llvm;
31
32STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
33STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
34STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
35
36STATISTIC(NumCacheNonLocalPtr,
37          "Number of fully cached non-local ptr responses");
38STATISTIC(NumCacheDirtyNonLocalPtr,
39          "Number of cached, but dirty, non-local ptr responses");
40STATISTIC(NumUncacheNonLocalPtr,
41          "Number of uncached non-local ptr responses");
42STATISTIC(NumCacheCompleteNonLocalPtr,
43          "Number of block queries that were completely cached");
44
45char MemoryDependenceAnalysis::ID = 0;
46
47// Register this pass...
48static RegisterPass<MemoryDependenceAnalysis> X("memdep",
49                                     "Memory Dependence Analysis", false, true);
50
51MemoryDependenceAnalysis::MemoryDependenceAnalysis()
52: FunctionPass(&ID), PredCache(0) {
53}
54MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
55}
56
57/// Clean up memory in between runs
58void MemoryDependenceAnalysis::releaseMemory() {
59  LocalDeps.clear();
60  NonLocalDeps.clear();
61  NonLocalPointerDeps.clear();
62  ReverseLocalDeps.clear();
63  ReverseNonLocalDeps.clear();
64  ReverseNonLocalPtrDeps.clear();
65  PredCache->clear();
66}
67
68
69
70/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
71///
72void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
73  AU.setPreservesAll();
74  AU.addRequiredTransitive<AliasAnalysis>();
75}
76
77bool MemoryDependenceAnalysis::runOnFunction(Function &) {
78  AA = &getAnalysis<AliasAnalysis>();
79  if (PredCache == 0)
80    PredCache.reset(new PredIteratorCache());
81  return false;
82}
83
84/// RemoveFromReverseMap - This is a helper function that removes Val from
85/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
86template <typename KeyTy>
87static void RemoveFromReverseMap(DenseMap<Instruction*,
88                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
89                                 Instruction *Inst, KeyTy Val) {
90  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
91  InstIt = ReverseMap.find(Inst);
92  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
93  bool Found = InstIt->second.erase(Val);
94  assert(Found && "Invalid reverse map!"); Found=Found;
95  if (InstIt->second.empty())
96    ReverseMap.erase(InstIt);
97}
98
99
100/// getCallSiteDependencyFrom - Private helper for finding the local
101/// dependencies of a call site.
102MemDepResult MemoryDependenceAnalysis::
103getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
104                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
105  // Walk backwards through the block, looking for dependencies
106  while (ScanIt != BB->begin()) {
107    Instruction *Inst = --ScanIt;
108
109    // If this inst is a memory op, get the pointer it accessed
110    Value *Pointer = 0;
111    uint64_t PointerSize = 0;
112    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
113      Pointer = S->getPointerOperand();
114      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
115    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
116      Pointer = V->getOperand(0);
117      PointerSize = AA->getTypeStoreSize(V->getType());
118    } else if (isFreeCall(Inst)) {
119      Pointer = Inst->getOperand(1);
120      // calls to free() erase the entire structure
121      PointerSize = ~0ULL;
122    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
123      // Debug intrinsics don't cause dependences.
124      if (isa<DbgInfoIntrinsic>(Inst)) continue;
125      CallSite InstCS = CallSite::get(Inst);
126      // If these two calls do not interfere, look past it.
127      switch (AA->getModRefInfo(CS, InstCS)) {
128      case AliasAnalysis::NoModRef:
129        // If the two calls don't interact (e.g. InstCS is readnone) keep
130        // scanning.
131        continue;
132      case AliasAnalysis::Ref:
133        // If the two calls read the same memory locations and CS is a readonly
134        // function, then we have two cases: 1) the calls may not interfere with
135        // each other at all.  2) the calls may produce the same value.  In case
136        // #1 we want to ignore the values, in case #2, we want to return Inst
137        // as a Def dependence.  This allows us to CSE in cases like:
138        //   X = strlen(P);
139        //    memchr(...);
140        //   Y = strlen(P);  // Y = X
141        if (isReadOnlyCall) {
142          if (CS.getCalledFunction() != 0 &&
143              CS.getCalledFunction() == InstCS.getCalledFunction())
144            return MemDepResult::getDef(Inst);
145          // Ignore unrelated read/read call dependences.
146          continue;
147        }
148        // FALL THROUGH
149      default:
150        return MemDepResult::getClobber(Inst);
151      }
152    } else {
153      // Non-memory instruction.
154      continue;
155    }
156
157    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
158      return MemDepResult::getClobber(Inst);
159  }
160
161  // No dependence found.  If this is the entry block of the function, it is a
162  // clobber, otherwise it is non-local.
163  if (BB != &BB->getParent()->getEntryBlock())
164    return MemDepResult::getNonLocal();
165  return MemDepResult::getClobber(ScanIt);
166}
167
168/// getPointerDependencyFrom - Return the instruction on which a memory
169/// location depends.  If isLoad is true, this routine ignore may-aliases with
170/// read-only operations.
171MemDepResult MemoryDependenceAnalysis::
172getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
173                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
174
175  Value *invariantTag = 0;
176
177  // Walk backwards through the basic block, looking for dependencies.
178  while (ScanIt != BB->begin()) {
179    Instruction *Inst = --ScanIt;
180
181    // If we're in an invariant region, no dependencies can be found before
182    // we pass an invariant-begin marker.
183    if (invariantTag == Inst) {
184      invariantTag = 0;
185      continue;
186    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
187      // If we pass an invariant-end marker, then we've just entered an
188      // invariant region and can start ignoring dependencies.
189      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
190        uint64_t invariantSize = ~0ULL;
191        if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(2)))
192          invariantSize = CI->getZExtValue();
193
194        AliasAnalysis::AliasResult R =
195          AA->alias(II->getOperand(3), invariantSize, MemPtr, MemSize);
196        if (R == AliasAnalysis::MustAlias) {
197          invariantTag = II->getOperand(1);
198          continue;
199        }
200
201      // If we reach a lifetime begin or end marker, then the query ends here
202      // because the value is undefined.
203      } else if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
204                   II->getIntrinsicID() == Intrinsic::lifetime_end) {
205        uint64_t invariantSize = ~0ULL;
206        if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(1)))
207          invariantSize = CI->getZExtValue();
208
209        AliasAnalysis::AliasResult R =
210          AA->alias(II->getOperand(2), invariantSize, MemPtr, MemSize);
211        if (R == AliasAnalysis::MustAlias)
212          return MemDepResult::getDef(II);
213      }
214    }
215
216    // If we're querying on a load and we're in an invariant region, we're done
217    // at this point. Nothing a load depends on can live in an invariant region.
218    if (isLoad && invariantTag) continue;
219
220    // Debug intrinsics don't cause dependences.
221    if (isa<DbgInfoIntrinsic>(Inst)) continue;
222
223    // Values depend on loads if the pointers are must aliased.  This means that
224    // a load depends on another must aliased load from the same value.
225    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
226      Value *Pointer = LI->getPointerOperand();
227      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
228
229      // If we found a pointer, check if it could be the same as our pointer.
230      AliasAnalysis::AliasResult R =
231        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
232      if (R == AliasAnalysis::NoAlias)
233        continue;
234
235      // May-alias loads don't depend on each other without a dependence.
236      if (isLoad && R == AliasAnalysis::MayAlias)
237        continue;
238      // Stores depend on may and must aliased loads, loads depend on must-alias
239      // loads.
240      return MemDepResult::getDef(Inst);
241    }
242
243    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
244      // There can't be stores to the value we care about inside an
245      // invariant region.
246      if (invariantTag) continue;
247
248      // If alias analysis can tell that this store is guaranteed to not modify
249      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
250      // the query pointer points to constant memory etc.
251      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
252        continue;
253
254      // Ok, this store might clobber the query pointer.  Check to see if it is
255      // a must alias: in this case, we want to return this as a def.
256      Value *Pointer = SI->getPointerOperand();
257      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
258
259      // If we found a pointer, check if it could be the same as our pointer.
260      AliasAnalysis::AliasResult R =
261        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
262
263      if (R == AliasAnalysis::NoAlias)
264        continue;
265      if (R == AliasAnalysis::MayAlias)
266        return MemDepResult::getClobber(Inst);
267      return MemDepResult::getDef(Inst);
268    }
269
270    // If this is an allocation, and if we know that the accessed pointer is to
271    // the allocation, return Def.  This means that there is no dependence and
272    // the access can be optimized based on that.  For example, a load could
273    // turn into undef.
274    // Note: Only determine this to be a malloc if Inst is the malloc call, not
275    // a subsequent bitcast of the malloc call result.  There can be stores to
276    // the malloced memory between the malloc call and its bitcast uses, and we
277    // need to continue scanning until the malloc call.
278    if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
279      Value *AccessPtr = MemPtr->getUnderlyingObject();
280
281      if (AccessPtr == Inst ||
282          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
283        return MemDepResult::getDef(Inst);
284      continue;
285    }
286
287    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
288    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
289    case AliasAnalysis::NoModRef:
290      // If the call has no effect on the queried pointer, just ignore it.
291      continue;
292    case AliasAnalysis::Mod:
293      // If we're in an invariant region, we can ignore calls that ONLY
294      // modify the pointer.
295      if (invariantTag) continue;
296      return MemDepResult::getClobber(Inst);
297    case AliasAnalysis::Ref:
298      // If the call is known to never store to the pointer, and if this is a
299      // load query, we can safely ignore it (scan past it).
300      if (isLoad)
301        continue;
302    default:
303      // Otherwise, there is a potential dependence.  Return a clobber.
304      return MemDepResult::getClobber(Inst);
305    }
306  }
307
308  // No dependence found.  If this is the entry block of the function, it is a
309  // clobber, otherwise it is non-local.
310  if (BB != &BB->getParent()->getEntryBlock())
311    return MemDepResult::getNonLocal();
312  return MemDepResult::getClobber(ScanIt);
313}
314
315/// getDependency - Return the instruction on which a memory operation
316/// depends.
317MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
318  Instruction *ScanPos = QueryInst;
319
320  // Check for a cached result
321  MemDepResult &LocalCache = LocalDeps[QueryInst];
322
323  // If the cached entry is non-dirty, just return it.  Note that this depends
324  // on MemDepResult's default constructing to 'dirty'.
325  if (!LocalCache.isDirty())
326    return LocalCache;
327
328  // Otherwise, if we have a dirty entry, we know we can start the scan at that
329  // instruction, which may save us some work.
330  if (Instruction *Inst = LocalCache.getInst()) {
331    ScanPos = Inst;
332
333    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
334  }
335
336  BasicBlock *QueryParent = QueryInst->getParent();
337
338  Value *MemPtr = 0;
339  uint64_t MemSize = 0;
340
341  // Do the scan.
342  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
343    // No dependence found.  If this is the entry block of the function, it is a
344    // clobber, otherwise it is non-local.
345    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
346      LocalCache = MemDepResult::getNonLocal();
347    else
348      LocalCache = MemDepResult::getClobber(QueryInst);
349  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
350    // If this is a volatile store, don't mess around with it.  Just return the
351    // previous instruction as a clobber.
352    if (SI->isVolatile())
353      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
354    else {
355      MemPtr = SI->getPointerOperand();
356      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
357    }
358  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
359    // If this is a volatile load, don't mess around with it.  Just return the
360    // previous instruction as a clobber.
361    if (LI->isVolatile())
362      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
363    else {
364      MemPtr = LI->getPointerOperand();
365      MemSize = AA->getTypeStoreSize(LI->getType());
366    }
367  } else if (isFreeCall(QueryInst)) {
368    MemPtr = QueryInst->getOperand(1);
369    // calls to free() erase the entire structure, not just a field.
370    MemSize = ~0UL;
371  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
372    CallSite QueryCS = CallSite::get(QueryInst);
373    bool isReadOnly = AA->onlyReadsMemory(QueryCS);
374    LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
375                                           QueryParent);
376  } else {
377    // Non-memory instruction.
378    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
379  }
380
381  // If we need to do a pointer scan, make it happen.
382  if (MemPtr)
383    LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
384                                          isa<LoadInst>(QueryInst),
385                                          ScanPos, QueryParent);
386
387  // Remember the result!
388  if (Instruction *I = LocalCache.getInst())
389    ReverseLocalDeps[I].insert(QueryInst);
390
391  return LocalCache;
392}
393
394#ifndef NDEBUG
395/// AssertSorted - This method is used when -debug is specified to verify that
396/// cache arrays are properly kept sorted.
397static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
398                         int Count = -1) {
399  if (Count == -1) Count = Cache.size();
400  if (Count == 0) return;
401
402  for (unsigned i = 1; i != unsigned(Count); ++i)
403    assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
404}
405#endif
406
407/// getNonLocalCallDependency - Perform a full dependency query for the
408/// specified call, returning the set of blocks that the value is
409/// potentially live across.  The returned set of results will include a
410/// "NonLocal" result for all blocks where the value is live across.
411///
412/// This method assumes the instruction returns a "NonLocal" dependency
413/// within its own block.
414///
415/// This returns a reference to an internal data structure that may be
416/// invalidated on the next non-local query or when an instruction is
417/// removed.  Clients must copy this data if they want it around longer than
418/// that.
419const MemoryDependenceAnalysis::NonLocalDepInfo &
420MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
421  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
422 "getNonLocalCallDependency should only be used on calls with non-local deps!");
423  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
424  NonLocalDepInfo &Cache = CacheP.first;
425
426  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
427  /// the cached case, this can happen due to instructions being deleted etc. In
428  /// the uncached case, this starts out as the set of predecessors we care
429  /// about.
430  SmallVector<BasicBlock*, 32> DirtyBlocks;
431
432  if (!Cache.empty()) {
433    // Okay, we have a cache entry.  If we know it is not dirty, just return it
434    // with no computation.
435    if (!CacheP.second) {
436      NumCacheNonLocal++;
437      return Cache;
438    }
439
440    // If we already have a partially computed set of results, scan them to
441    // determine what is dirty, seeding our initial DirtyBlocks worklist.
442    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
443       I != E; ++I)
444      if (I->second.isDirty())
445        DirtyBlocks.push_back(I->first);
446
447    // Sort the cache so that we can do fast binary search lookups below.
448    std::sort(Cache.begin(), Cache.end());
449
450    ++NumCacheDirtyNonLocal;
451    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
452    //     << Cache.size() << " cached: " << *QueryInst;
453  } else {
454    // Seed DirtyBlocks with each of the preds of QueryInst's block.
455    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
456    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
457      DirtyBlocks.push_back(*PI);
458    NumUncacheNonLocal++;
459  }
460
461  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
462  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
463
464  SmallPtrSet<BasicBlock*, 64> Visited;
465
466  unsigned NumSortedEntries = Cache.size();
467  DEBUG(AssertSorted(Cache));
468
469  // Iterate while we still have blocks to update.
470  while (!DirtyBlocks.empty()) {
471    BasicBlock *DirtyBB = DirtyBlocks.back();
472    DirtyBlocks.pop_back();
473
474    // Already processed this block?
475    if (!Visited.insert(DirtyBB))
476      continue;
477
478    // Do a binary search to see if we already have an entry for this block in
479    // the cache set.  If so, find it.
480    DEBUG(AssertSorted(Cache, NumSortedEntries));
481    NonLocalDepInfo::iterator Entry =
482      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
483                       std::make_pair(DirtyBB, MemDepResult()));
484    if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
485      --Entry;
486
487    MemDepResult *ExistingResult = 0;
488    if (Entry != Cache.begin()+NumSortedEntries &&
489        Entry->first == DirtyBB) {
490      // If we already have an entry, and if it isn't already dirty, the block
491      // is done.
492      if (!Entry->second.isDirty())
493        continue;
494
495      // Otherwise, remember this slot so we can update the value.
496      ExistingResult = &Entry->second;
497    }
498
499    // If the dirty entry has a pointer, start scanning from it so we don't have
500    // to rescan the entire block.
501    BasicBlock::iterator ScanPos = DirtyBB->end();
502    if (ExistingResult) {
503      if (Instruction *Inst = ExistingResult->getInst()) {
504        ScanPos = Inst;
505        // We're removing QueryInst's use of Inst.
506        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
507                             QueryCS.getInstruction());
508      }
509    }
510
511    // Find out if this block has a local dependency for QueryInst.
512    MemDepResult Dep;
513
514    if (ScanPos != DirtyBB->begin()) {
515      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
516    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
517      // No dependence found.  If this is the entry block of the function, it is
518      // a clobber, otherwise it is non-local.
519      Dep = MemDepResult::getNonLocal();
520    } else {
521      Dep = MemDepResult::getClobber(ScanPos);
522    }
523
524    // If we had a dirty entry for the block, update it.  Otherwise, just add
525    // a new entry.
526    if (ExistingResult)
527      *ExistingResult = Dep;
528    else
529      Cache.push_back(std::make_pair(DirtyBB, Dep));
530
531    // If the block has a dependency (i.e. it isn't completely transparent to
532    // the value), remember the association!
533    if (!Dep.isNonLocal()) {
534      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
535      // update this when we remove instructions.
536      if (Instruction *Inst = Dep.getInst())
537        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
538    } else {
539
540      // If the block *is* completely transparent to the load, we need to check
541      // the predecessors of this block.  Add them to our worklist.
542      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
543        DirtyBlocks.push_back(*PI);
544    }
545  }
546
547  return Cache;
548}
549
550/// getNonLocalPointerDependency - Perform a full dependency query for an
551/// access to the specified (non-volatile) memory location, returning the
552/// set of instructions that either define or clobber the value.
553///
554/// This method assumes the pointer has a "NonLocal" dependency within its
555/// own block.
556///
557void MemoryDependenceAnalysis::
558getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
559                             SmallVectorImpl<NonLocalDepEntry> &Result) {
560  assert(isa<PointerType>(Pointer->getType()) &&
561         "Can't get pointer deps of a non-pointer!");
562  Result.clear();
563
564  // We know that the pointer value is live into FromBB find the def/clobbers
565  // from presecessors.
566  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
567  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
568
569  // This is the set of blocks we've inspected, and the pointer we consider in
570  // each block.  Because of critical edges, we currently bail out if querying
571  // a block with multiple different pointers.  This can happen during PHI
572  // translation.
573  DenseMap<BasicBlock*, Value*> Visited;
574  if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
575                                   Result, Visited, true))
576    return;
577  Result.clear();
578  Result.push_back(std::make_pair(FromBB,
579                                  MemDepResult::getClobber(FromBB->begin())));
580}
581
582/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
583/// Pointer/PointeeSize using either cached information in Cache or by doing a
584/// lookup (which may use dirty cache info if available).  If we do a lookup,
585/// add the result to the cache.
586MemDepResult MemoryDependenceAnalysis::
587GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
588                        bool isLoad, BasicBlock *BB,
589                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
590
591  // Do a binary search to see if we already have an entry for this block in
592  // the cache set.  If so, find it.
593  NonLocalDepInfo::iterator Entry =
594    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
595                     std::make_pair(BB, MemDepResult()));
596  if (Entry != Cache->begin() && prior(Entry)->first == BB)
597    --Entry;
598
599  MemDepResult *ExistingResult = 0;
600  if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
601    ExistingResult = &Entry->second;
602
603  // If we have a cached entry, and it is non-dirty, use it as the value for
604  // this dependency.
605  if (ExistingResult && !ExistingResult->isDirty()) {
606    ++NumCacheNonLocalPtr;
607    return *ExistingResult;
608  }
609
610  // Otherwise, we have to scan for the value.  If we have a dirty cache
611  // entry, start scanning from its position, otherwise we scan from the end
612  // of the block.
613  BasicBlock::iterator ScanPos = BB->end();
614  if (ExistingResult && ExistingResult->getInst()) {
615    assert(ExistingResult->getInst()->getParent() == BB &&
616           "Instruction invalidated?");
617    ++NumCacheDirtyNonLocalPtr;
618    ScanPos = ExistingResult->getInst();
619
620    // Eliminating the dirty entry from 'Cache', so update the reverse info.
621    ValueIsLoadPair CacheKey(Pointer, isLoad);
622    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
623  } else {
624    ++NumUncacheNonLocalPtr;
625  }
626
627  // Scan the block for the dependency.
628  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
629                                              ScanPos, BB);
630
631  // If we had a dirty entry for the block, update it.  Otherwise, just add
632  // a new entry.
633  if (ExistingResult)
634    *ExistingResult = Dep;
635  else
636    Cache->push_back(std::make_pair(BB, Dep));
637
638  // If the block has a dependency (i.e. it isn't completely transparent to
639  // the value), remember the reverse association because we just added it
640  // to Cache!
641  if (Dep.isNonLocal())
642    return Dep;
643
644  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
645  // update MemDep when we remove instructions.
646  Instruction *Inst = Dep.getInst();
647  assert(Inst && "Didn't depend on anything?");
648  ValueIsLoadPair CacheKey(Pointer, isLoad);
649  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
650  return Dep;
651}
652
653/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
654/// number of elements in the array that are already properly ordered.  This is
655/// optimized for the case when only a few entries are added.
656static void
657SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
658                         unsigned NumSortedEntries) {
659  switch (Cache.size() - NumSortedEntries) {
660  case 0:
661    // done, no new entries.
662    break;
663  case 2: {
664    // Two new entries, insert the last one into place.
665    MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
666    Cache.pop_back();
667    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
668      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
669    Cache.insert(Entry, Val);
670    // FALL THROUGH.
671  }
672  case 1:
673    // One new entry, Just insert the new value at the appropriate position.
674    if (Cache.size() != 1) {
675      MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
676      Cache.pop_back();
677      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
678        std::upper_bound(Cache.begin(), Cache.end(), Val);
679      Cache.insert(Entry, Val);
680    }
681    break;
682  default:
683    // Added many values, do a full scale sort.
684    std::sort(Cache.begin(), Cache.end());
685    break;
686  }
687}
688
689/// isPHITranslatable - Return true if the specified computation is derived from
690/// a PHI node in the current block and if it is simple enough for us to handle.
691static bool isPHITranslatable(Instruction *Inst) {
692  if (isa<PHINode>(Inst))
693    return true;
694
695  // We can handle bitcast of a PHI, but the PHI needs to be in the same block
696  // as the bitcast.
697  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
698    Instruction *OpI = dyn_cast<Instruction>(BC->getOperand(0));
699    if (OpI == 0 || OpI->getParent() != Inst->getParent())
700      return true;
701    return isPHITranslatable(OpI);
702  }
703
704  // We can translate a GEP if all of its operands defined in this block are phi
705  // translatable.
706  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
707    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
708      Instruction *OpI = dyn_cast<Instruction>(GEP->getOperand(i));
709      if (OpI == 0 || OpI->getParent() != Inst->getParent())
710        continue;
711
712      if (!isPHITranslatable(OpI))
713        return false;
714    }
715    return true;
716  }
717
718  if (Inst->getOpcode() == Instruction::Add &&
719      isa<ConstantInt>(Inst->getOperand(1))) {
720    Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
721    if (OpI == 0 || OpI->getParent() != Inst->getParent())
722      return true;
723    return isPHITranslatable(OpI);
724  }
725
726  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
727  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
728  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
729
730  return false;
731}
732
733/// GetPHITranslatedValue - Given a computation that satisfied the
734/// isPHITranslatable predicate, see if we can translate the computation into
735/// the specified predecessor block.  If so, return that value.
736Value *MemoryDependenceAnalysis::
737GetPHITranslatedValue(Value *InVal, BasicBlock *CurBB, BasicBlock *Pred,
738                      const TargetData *TD) const {
739  // If the input value is not an instruction, or if it is not defined in CurBB,
740  // then we don't need to phi translate it.
741  Instruction *Inst = dyn_cast<Instruction>(InVal);
742  if (Inst == 0 || Inst->getParent() != CurBB)
743    return InVal;
744
745  if (PHINode *PN = dyn_cast<PHINode>(Inst))
746    return PN->getIncomingValueForBlock(Pred);
747
748  // Handle bitcast of PHI.
749  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
750    // PHI translate the input operand.
751    Value *PHIIn = GetPHITranslatedValue(BC->getOperand(0), CurBB, Pred, TD);
752    if (PHIIn == 0) return 0;
753
754    // Constants are trivial to phi translate.
755    if (Constant *C = dyn_cast<Constant>(PHIIn))
756      return ConstantExpr::getBitCast(C, BC->getType());
757
758    // Otherwise we have to see if a bitcasted version of the incoming pointer
759    // is available.  If so, we can use it, otherwise we have to fail.
760    for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
761         UI != E; ++UI) {
762      if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI))
763        if (BCI->getType() == BC->getType())
764          return BCI;
765    }
766    return 0;
767  }
768
769  // Handle getelementptr with at least one PHI translatable operand.
770  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
771    SmallVector<Value*, 8> GEPOps;
772    BasicBlock *CurBB = GEP->getParent();
773    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
774      Value *GEPOp = GEP->getOperand(i);
775      // No PHI translation is needed of operands whose values are live in to
776      // the predecessor block.
777      if (!isa<Instruction>(GEPOp) ||
778          cast<Instruction>(GEPOp)->getParent() != CurBB) {
779        GEPOps.push_back(GEPOp);
780        continue;
781      }
782
783      // If the operand is a phi node, do phi translation.
784      Value *InOp = GetPHITranslatedValue(GEPOp, CurBB, Pred, TD);
785      if (InOp == 0) return 0;
786
787      GEPOps.push_back(InOp);
788    }
789
790    // Simplify the GEP to handle 'gep x, 0' -> x etc.
791    if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD))
792      return V;
793
794    // Scan to see if we have this GEP available.
795    Value *APHIOp = GEPOps[0];
796    for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
797         UI != E; ++UI) {
798      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
799        if (GEPI->getType() == GEP->getType() &&
800            GEPI->getNumOperands() == GEPOps.size() &&
801            GEPI->getParent()->getParent() == CurBB->getParent()) {
802          bool Mismatch = false;
803          for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
804            if (GEPI->getOperand(i) != GEPOps[i]) {
805              Mismatch = true;
806              break;
807            }
808          if (!Mismatch)
809            return GEPI;
810        }
811    }
812    return 0;
813  }
814
815  // Handle add with a constant RHS.
816  if (Inst->getOpcode() == Instruction::Add &&
817      isa<ConstantInt>(Inst->getOperand(1))) {
818    // PHI translate the LHS.
819    Value *LHS;
820    Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
821    Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
822    bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
823    bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
824
825    if (OpI == 0 || OpI->getParent() != Inst->getParent())
826      LHS = Inst->getOperand(0);
827    else {
828      LHS = GetPHITranslatedValue(Inst->getOperand(0), CurBB, Pred, TD);
829      if (LHS == 0)
830        return 0;
831    }
832
833    // If the PHI translated LHS is an add of a constant, fold the immediates.
834    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
835      if (BOp->getOpcode() == Instruction::Add)
836        if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
837          LHS = BOp->getOperand(0);
838          RHS = ConstantExpr::getAdd(RHS, CI);
839          isNSW = isNUW = false;
840        }
841
842    // See if the add simplifies away.
843    if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD))
844      return Res;
845
846    // Otherwise, see if we have this add available somewhere.
847    for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
848         UI != E; ++UI) {
849      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
850        if (BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
851            BO->getParent()->getParent() == CurBB->getParent())
852          return BO;
853    }
854
855    return 0;
856  }
857
858  return 0;
859}
860
861/// GetAvailablePHITranslatePointer - Return the value computed by
862/// PHITranslatePointer if it dominates PredBB, otherwise return null.
863Value *MemoryDependenceAnalysis::
864GetAvailablePHITranslatedValue(Value *V,
865                               BasicBlock *CurBB, BasicBlock *PredBB,
866                               const TargetData *TD,
867                               const DominatorTree &DT) const {
868  // See if PHI translation succeeds.
869  V = GetPHITranslatedValue(V, CurBB, PredBB, TD);
870  if (V == 0) return 0;
871
872  // Make sure the value is live in the predecessor.
873  if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
874    if (!DT.dominates(Inst->getParent(), PredBB))
875      return 0;
876  return V;
877}
878
879
880/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
881/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
882/// block.  All newly created instructions are added to the NewInsts list.
883///
884Value *MemoryDependenceAnalysis::
885InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB,
886                           BasicBlock *PredBB, const TargetData *TD,
887                           const DominatorTree &DT,
888                           SmallVectorImpl<Instruction*> &NewInsts) const {
889  // See if we have a version of this value already available and dominating
890  // PredBB.  If so, there is no need to insert a new copy.
891  if (Value *Res = GetAvailablePHITranslatedValue(InVal, CurBB, PredBB, TD, DT))
892    return Res;
893
894  // If we don't have an available version of this value, it must be an
895  // instruction.
896  Instruction *Inst = cast<Instruction>(InVal);
897
898  // Handle bitcast of PHI translatable value.
899  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
900    Value *OpVal = InsertPHITranslatedPointer(BC->getOperand(0),
901                                              CurBB, PredBB, TD, DT, NewInsts);
902    if (OpVal == 0) return 0;
903
904    // Otherwise insert a bitcast at the end of PredBB.
905    BitCastInst *New = new BitCastInst(OpVal, InVal->getType(),
906                                       InVal->getName()+".phi.trans.insert",
907                                       PredBB->getTerminator());
908    NewInsts.push_back(New);
909    return New;
910  }
911
912  // Handle getelementptr with at least one PHI operand.
913  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
914    SmallVector<Value*, 8> GEPOps;
915    BasicBlock *CurBB = GEP->getParent();
916    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
917      Value *OpVal = InsertPHITranslatedPointer(GEP->getOperand(i),
918                                                CurBB, PredBB, TD, DT, NewInsts);
919      if (OpVal == 0) return 0;
920      GEPOps.push_back(OpVal);
921    }
922
923    GetElementPtrInst *Result =
924      GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
925                                InVal->getName()+".phi.trans.insert",
926                                PredBB->getTerminator());
927    Result->setIsInBounds(GEP->isInBounds());
928    NewInsts.push_back(Result);
929    return Result;
930  }
931
932#if 0
933  // FIXME: This code works, but it is unclear that we actually want to insert
934  // a big chain of computation in order to make a value available in a block.
935  // This needs to be evaluated carefully to consider its cost trade offs.
936
937  // Handle add with a constant RHS.
938  if (Inst->getOpcode() == Instruction::Add &&
939      isa<ConstantInt>(Inst->getOperand(1))) {
940    // PHI translate the LHS.
941    Value *OpVal = InsertPHITranslatedPointer(Inst->getOperand(0),
942                                              CurBB, PredBB, TD, DT, NewInsts);
943    if (OpVal == 0) return 0;
944
945    BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
946                                           InVal->getName()+".phi.trans.insert",
947                                                    PredBB->getTerminator());
948    Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
949    Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
950    NewInsts.push_back(Res);
951    return Res;
952  }
953#endif
954
955  return 0;
956}
957
958/// getNonLocalPointerDepFromBB - Perform a dependency query based on
959/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
960/// results to the results vector and keep track of which blocks are visited in
961/// 'Visited'.
962///
963/// This has special behavior for the first block queries (when SkipFirstBlock
964/// is true).  In this special case, it ignores the contents of the specified
965/// block and starts returning dependence info for its predecessors.
966///
967/// This function returns false on success, or true to indicate that it could
968/// not compute dependence information for some reason.  This should be treated
969/// as a clobber dependence on the first instruction in the predecessor block.
970bool MemoryDependenceAnalysis::
971getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
972                            bool isLoad, BasicBlock *StartBB,
973                            SmallVectorImpl<NonLocalDepEntry> &Result,
974                            DenseMap<BasicBlock*, Value*> &Visited,
975                            bool SkipFirstBlock) {
976
977  // Look up the cached info for Pointer.
978  ValueIsLoadPair CacheKey(Pointer, isLoad);
979
980  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
981    &NonLocalPointerDeps[CacheKey];
982  NonLocalDepInfo *Cache = &CacheInfo->second;
983
984  // If we have valid cached information for exactly the block we are
985  // investigating, just return it with no recomputation.
986  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
987    // We have a fully cached result for this query then we can just return the
988    // cached results and populate the visited set.  However, we have to verify
989    // that we don't already have conflicting results for these blocks.  Check
990    // to ensure that if a block in the results set is in the visited set that
991    // it was for the same pointer query.
992    if (!Visited.empty()) {
993      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
994           I != E; ++I) {
995        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
996        if (VI == Visited.end() || VI->second == Pointer) continue;
997
998        // We have a pointer mismatch in a block.  Just return clobber, saying
999        // that something was clobbered in this result.  We could also do a
1000        // non-fully cached query, but there is little point in doing this.
1001        return true;
1002      }
1003    }
1004
1005    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1006         I != E; ++I) {
1007      Visited.insert(std::make_pair(I->first, Pointer));
1008      if (!I->second.isNonLocal())
1009        Result.push_back(*I);
1010    }
1011    ++NumCacheCompleteNonLocalPtr;
1012    return false;
1013  }
1014
1015  // Otherwise, either this is a new block, a block with an invalid cache
1016  // pointer or one that we're about to invalidate by putting more info into it
1017  // than its valid cache info.  If empty, the result will be valid cache info,
1018  // otherwise it isn't.
1019  if (Cache->empty())
1020    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1021  else
1022    CacheInfo->first = BBSkipFirstBlockPair();
1023
1024  SmallVector<BasicBlock*, 32> Worklist;
1025  Worklist.push_back(StartBB);
1026
1027  // Keep track of the entries that we know are sorted.  Previously cached
1028  // entries will all be sorted.  The entries we add we only sort on demand (we
1029  // don't insert every element into its sorted position).  We know that we
1030  // won't get any reuse from currently inserted values, because we don't
1031  // revisit blocks after we insert info for them.
1032  unsigned NumSortedEntries = Cache->size();
1033  DEBUG(AssertSorted(*Cache));
1034
1035  while (!Worklist.empty()) {
1036    BasicBlock *BB = Worklist.pop_back_val();
1037
1038    // Skip the first block if we have it.
1039    if (!SkipFirstBlock) {
1040      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1041      // been here.
1042      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1043
1044      // Get the dependency info for Pointer in BB.  If we have cached
1045      // information, we will use it, otherwise we compute it.
1046      DEBUG(AssertSorted(*Cache, NumSortedEntries));
1047      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
1048                                                 BB, Cache, NumSortedEntries);
1049
1050      // If we got a Def or Clobber, add this to the list of results.
1051      if (!Dep.isNonLocal()) {
1052        Result.push_back(NonLocalDepEntry(BB, Dep));
1053        continue;
1054      }
1055    }
1056
1057    // If 'Pointer' is an instruction defined in this block, then we need to do
1058    // phi translation to change it into a value live in the predecessor block.
1059    // If phi translation fails, then we can't continue dependence analysis.
1060    Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
1061    bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
1062
1063    // If no PHI translation is needed, just add all the predecessors of this
1064    // block to scan them as well.
1065    if (!NeedsPHITranslation) {
1066      SkipFirstBlock = false;
1067      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1068        // Verify that we haven't looked at this block yet.
1069        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1070          InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
1071        if (InsertRes.second) {
1072          // First time we've looked at *PI.
1073          Worklist.push_back(*PI);
1074          continue;
1075        }
1076
1077        // If we have seen this block before, but it was with a different
1078        // pointer then we have a phi translation failure and we have to treat
1079        // this as a clobber.
1080        if (InsertRes.first->second != Pointer)
1081          goto PredTranslationFailure;
1082      }
1083      continue;
1084    }
1085
1086    // If we do need to do phi translation, then there are a bunch of different
1087    // cases, because we have to find a Value* live in the predecessor block. We
1088    // know that PtrInst is defined in this block at least.
1089
1090    // We may have added values to the cache list before this PHI translation.
1091    // If so, we haven't done anything to ensure that the cache remains sorted.
1092    // Sort it now (if needed) so that recursive invocations of
1093    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1094    // value will only see properly sorted cache arrays.
1095    if (Cache && NumSortedEntries != Cache->size()) {
1096      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1097      NumSortedEntries = Cache->size();
1098    }
1099
1100    // If this is a computation derived from a PHI node, use the suitably
1101    // translated incoming values for each pred as the phi translated version.
1102    if (!isPHITranslatable(PtrInst))
1103      goto PredTranslationFailure;
1104
1105    Cache = 0;
1106
1107    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1108      BasicBlock *Pred = *PI;
1109      // Get the PHI translated pointer in this predecessor.  This can fail and
1110      // return null if not translatable.
1111      Value *PredPtr = GetPHITranslatedValue(PtrInst, BB, Pred, TD);
1112
1113      // Check to see if we have already visited this pred block with another
1114      // pointer.  If so, we can't do this lookup.  This failure can occur
1115      // with PHI translation when a critical edge exists and the PHI node in
1116      // the successor translates to a pointer value different than the
1117      // pointer the block was first analyzed with.
1118      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1119        InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
1120
1121      if (!InsertRes.second) {
1122        // If the predecessor was visited with PredPtr, then we already did
1123        // the analysis and can ignore it.
1124        if (InsertRes.first->second == PredPtr)
1125          continue;
1126
1127        // Otherwise, the block was previously analyzed with a different
1128        // pointer.  We can't represent the result of this case, so we just
1129        // treat this as a phi translation failure.
1130        goto PredTranslationFailure;
1131      }
1132
1133      // If PHI translation was unable to find an available pointer in this
1134      // predecessor, then we have to assume that the pointer is clobbered in
1135      // that predecessor.  We can still do PRE of the load, which would insert
1136      // a computation of the pointer in this predecessor.
1137      if (PredPtr == 0) {
1138        Result.push_back(NonLocalDepEntry(Pred,
1139                              MemDepResult::getClobber(Pred->getTerminator())));
1140        continue;
1141      }
1142
1143      // FIXME: it is entirely possible that PHI translating will end up with
1144      // the same value.  Consider PHI translating something like:
1145      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1146      // to recurse here, pedantically speaking.
1147
1148      // If we have a problem phi translating, fall through to the code below
1149      // to handle the failure condition.
1150      if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
1151                                      Result, Visited))
1152        goto PredTranslationFailure;
1153    }
1154
1155    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1156    CacheInfo = &NonLocalPointerDeps[CacheKey];
1157    Cache = &CacheInfo->second;
1158    NumSortedEntries = Cache->size();
1159
1160    // Since we did phi translation, the "Cache" set won't contain all of the
1161    // results for the query.  This is ok (we can still use it to accelerate
1162    // specific block queries) but we can't do the fastpath "return all
1163    // results from the set"  Clear out the indicator for this.
1164    CacheInfo->first = BBSkipFirstBlockPair();
1165    SkipFirstBlock = false;
1166    continue;
1167
1168  PredTranslationFailure:
1169
1170    if (Cache == 0) {
1171      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1172      CacheInfo = &NonLocalPointerDeps[CacheKey];
1173      Cache = &CacheInfo->second;
1174      NumSortedEntries = Cache->size();
1175    }
1176
1177    // Since we did phi translation, the "Cache" set won't contain all of the
1178    // results for the query.  This is ok (we can still use it to accelerate
1179    // specific block queries) but we can't do the fastpath "return all
1180    // results from the set"  Clear out the indicator for this.
1181    CacheInfo->first = BBSkipFirstBlockPair();
1182
1183    // If *nothing* works, mark the pointer as being clobbered by the first
1184    // instruction in this block.
1185    //
1186    // If this is the magic first block, return this as a clobber of the whole
1187    // incoming value.  Since we can't phi translate to one of the predecessors,
1188    // we have to bail out.
1189    if (SkipFirstBlock)
1190      return true;
1191
1192    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1193      assert(I != Cache->rend() && "Didn't find current block??");
1194      if (I->first != BB)
1195        continue;
1196
1197      assert(I->second.isNonLocal() &&
1198             "Should only be here with transparent block");
1199      I->second = MemDepResult::getClobber(BB->begin());
1200      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
1201      Result.push_back(*I);
1202      break;
1203    }
1204  }
1205
1206  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1207  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1208  DEBUG(AssertSorted(*Cache));
1209  return false;
1210}
1211
1212/// RemoveCachedNonLocalPointerDependencies - If P exists in
1213/// CachedNonLocalPointerInfo, remove it.
1214void MemoryDependenceAnalysis::
1215RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1216  CachedNonLocalPointerInfo::iterator It =
1217    NonLocalPointerDeps.find(P);
1218  if (It == NonLocalPointerDeps.end()) return;
1219
1220  // Remove all of the entries in the BB->val map.  This involves removing
1221  // instructions from the reverse map.
1222  NonLocalDepInfo &PInfo = It->second.second;
1223
1224  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1225    Instruction *Target = PInfo[i].second.getInst();
1226    if (Target == 0) continue;  // Ignore non-local dep results.
1227    assert(Target->getParent() == PInfo[i].first);
1228
1229    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1230    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1231  }
1232
1233  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1234  NonLocalPointerDeps.erase(It);
1235}
1236
1237
1238/// invalidateCachedPointerInfo - This method is used to invalidate cached
1239/// information about the specified pointer, because it may be too
1240/// conservative in memdep.  This is an optional call that can be used when
1241/// the client detects an equivalence between the pointer and some other
1242/// value and replaces the other value with ptr. This can make Ptr available
1243/// in more places that cached info does not necessarily keep.
1244void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1245  // If Ptr isn't really a pointer, just ignore it.
1246  if (!isa<PointerType>(Ptr->getType())) return;
1247  // Flush store info for the pointer.
1248  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1249  // Flush load info for the pointer.
1250  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1251}
1252
1253/// removeInstruction - Remove an instruction from the dependence analysis,
1254/// updating the dependence of instructions that previously depended on it.
1255/// This method attempts to keep the cache coherent using the reverse map.
1256void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1257  // Walk through the Non-local dependencies, removing this one as the value
1258  // for any cached queries.
1259  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1260  if (NLDI != NonLocalDeps.end()) {
1261    NonLocalDepInfo &BlockMap = NLDI->second.first;
1262    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1263         DI != DE; ++DI)
1264      if (Instruction *Inst = DI->second.getInst())
1265        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1266    NonLocalDeps.erase(NLDI);
1267  }
1268
1269  // If we have a cached local dependence query for this instruction, remove it.
1270  //
1271  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1272  if (LocalDepEntry != LocalDeps.end()) {
1273    // Remove us from DepInst's reverse set now that the local dep info is gone.
1274    if (Instruction *Inst = LocalDepEntry->second.getInst())
1275      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1276
1277    // Remove this local dependency info.
1278    LocalDeps.erase(LocalDepEntry);
1279  }
1280
1281  // If we have any cached pointer dependencies on this instruction, remove
1282  // them.  If the instruction has non-pointer type, then it can't be a pointer
1283  // base.
1284
1285  // Remove it from both the load info and the store info.  The instruction
1286  // can't be in either of these maps if it is non-pointer.
1287  if (isa<PointerType>(RemInst->getType())) {
1288    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1289    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1290  }
1291
1292  // Loop over all of the things that depend on the instruction we're removing.
1293  //
1294  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1295
1296  // If we find RemInst as a clobber or Def in any of the maps for other values,
1297  // we need to replace its entry with a dirty version of the instruction after
1298  // it.  If RemInst is a terminator, we use a null dirty value.
1299  //
1300  // Using a dirty version of the instruction after RemInst saves having to scan
1301  // the entire block to get to this point.
1302  MemDepResult NewDirtyVal;
1303  if (!RemInst->isTerminator())
1304    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1305
1306  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1307  if (ReverseDepIt != ReverseLocalDeps.end()) {
1308    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1309    // RemInst can't be the terminator if it has local stuff depending on it.
1310    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1311           "Nothing can locally depend on a terminator");
1312
1313    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1314         E = ReverseDeps.end(); I != E; ++I) {
1315      Instruction *InstDependingOnRemInst = *I;
1316      assert(InstDependingOnRemInst != RemInst &&
1317             "Already removed our local dep info");
1318
1319      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1320
1321      // Make sure to remember that new things depend on NewDepInst.
1322      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1323             "a local dep on this if it is a terminator!");
1324      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1325                                                InstDependingOnRemInst));
1326    }
1327
1328    ReverseLocalDeps.erase(ReverseDepIt);
1329
1330    // Add new reverse deps after scanning the set, to avoid invalidating the
1331    // 'ReverseDeps' reference.
1332    while (!ReverseDepsToAdd.empty()) {
1333      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1334        .insert(ReverseDepsToAdd.back().second);
1335      ReverseDepsToAdd.pop_back();
1336    }
1337  }
1338
1339  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1340  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1341    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1342    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1343         I != E; ++I) {
1344      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1345
1346      PerInstNLInfo &INLD = NonLocalDeps[*I];
1347      // The information is now dirty!
1348      INLD.second = true;
1349
1350      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1351           DE = INLD.first.end(); DI != DE; ++DI) {
1352        if (DI->second.getInst() != RemInst) continue;
1353
1354        // Convert to a dirty entry for the subsequent instruction.
1355        DI->second = NewDirtyVal;
1356
1357        if (Instruction *NextI = NewDirtyVal.getInst())
1358          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1359      }
1360    }
1361
1362    ReverseNonLocalDeps.erase(ReverseDepIt);
1363
1364    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1365    while (!ReverseDepsToAdd.empty()) {
1366      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1367        .insert(ReverseDepsToAdd.back().second);
1368      ReverseDepsToAdd.pop_back();
1369    }
1370  }
1371
1372  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1373  // value in the NonLocalPointerDeps info.
1374  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1375    ReverseNonLocalPtrDeps.find(RemInst);
1376  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1377    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1378    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1379
1380    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1381         E = Set.end(); I != E; ++I) {
1382      ValueIsLoadPair P = *I;
1383      assert(P.getPointer() != RemInst &&
1384             "Already removed NonLocalPointerDeps info for RemInst");
1385
1386      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1387
1388      // The cache is not valid for any specific block anymore.
1389      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1390
1391      // Update any entries for RemInst to use the instruction after it.
1392      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1393           DI != DE; ++DI) {
1394        if (DI->second.getInst() != RemInst) continue;
1395
1396        // Convert to a dirty entry for the subsequent instruction.
1397        DI->second = NewDirtyVal;
1398
1399        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1400          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1401      }
1402
1403      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1404      // subsequent value may invalidate the sortedness.
1405      std::sort(NLPDI.begin(), NLPDI.end());
1406    }
1407
1408    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1409
1410    while (!ReversePtrDepsToAdd.empty()) {
1411      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1412        .insert(ReversePtrDepsToAdd.back().second);
1413      ReversePtrDepsToAdd.pop_back();
1414    }
1415  }
1416
1417
1418  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1419  AA->deleteValue(RemInst);
1420  DEBUG(verifyRemoved(RemInst));
1421}
1422/// verifyRemoved - Verify that the specified instruction does not occur
1423/// in our internal data structures.
1424void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1425  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1426       E = LocalDeps.end(); I != E; ++I) {
1427    assert(I->first != D && "Inst occurs in data structures");
1428    assert(I->second.getInst() != D &&
1429           "Inst occurs in data structures");
1430  }
1431
1432  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1433       E = NonLocalPointerDeps.end(); I != E; ++I) {
1434    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1435    const NonLocalDepInfo &Val = I->second.second;
1436    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1437         II != E; ++II)
1438      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1439  }
1440
1441  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1442       E = NonLocalDeps.end(); I != E; ++I) {
1443    assert(I->first != D && "Inst occurs in data structures");
1444    const PerInstNLInfo &INLD = I->second;
1445    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1446         EE = INLD.first.end(); II  != EE; ++II)
1447      assert(II->second.getInst() != D && "Inst occurs in data structures");
1448  }
1449
1450  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1451       E = ReverseLocalDeps.end(); I != E; ++I) {
1452    assert(I->first != D && "Inst occurs in data structures");
1453    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1454         EE = I->second.end(); II != EE; ++II)
1455      assert(*II != D && "Inst occurs in data structures");
1456  }
1457
1458  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1459       E = ReverseNonLocalDeps.end();
1460       I != E; ++I) {
1461    assert(I->first != D && "Inst occurs in data structures");
1462    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1463         EE = I->second.end(); II != EE; ++II)
1464      assert(*II != D && "Inst occurs in data structures");
1465  }
1466
1467  for (ReverseNonLocalPtrDepTy::const_iterator
1468       I = ReverseNonLocalPtrDeps.begin(),
1469       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1470    assert(I->first != D && "Inst occurs in rev NLPD map");
1471
1472    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1473         E = I->second.end(); II != E; ++II)
1474      assert(*II != ValueIsLoadPair(D, false) &&
1475             *II != ValueIsLoadPair(D, true) &&
1476             "Inst occurs in ReverseNonLocalPtrDeps map");
1477  }
1478
1479}
1480