MemoryDependenceAnalysis.cpp revision f062f10231590919d9d78ee2f7d3cb29f1c09e66
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/MemoryDependenceAnalysis.h"
18#include "llvm/Constants.h"
19#include "llvm/Instructions.h"
20#include "llvm/Function.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/ADT/Statistic.h"
26
27#define DEBUG_TYPE "memdep"
28
29using namespace llvm;
30
31namespace {
32  // Control the calculation of non-local dependencies by only examining the
33  // predecessors if the basic block has less than X amount (50 by default).
34  cl::opt<int>
35  PredLimit("nonlocaldep-threshold", cl::Hidden, cl::init(50),
36            cl::desc("Control the calculation of non-local"
37                     "dependencies (default = 50)"));
38}
39
40STATISTIC(NumCacheNonlocal, "Number of cached non-local responses");
41STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");
42
43char MemoryDependenceAnalysis::ID = 0;
44
45Instruction* const MemoryDependenceAnalysis::NonLocal = (Instruction*)-3;
46Instruction* const MemoryDependenceAnalysis::None = (Instruction*)-4;
47Instruction* const MemoryDependenceAnalysis::Dirty = (Instruction*)-5;
48
49// Register this pass...
50static RegisterPass<MemoryDependenceAnalysis> X("memdep",
51                                                "Memory Dependence Analysis", false, true);
52
53void MemoryDependenceAnalysis::ping(Instruction *D) {
54  for (depMapType::iterator I = depGraphLocal.begin(), E = depGraphLocal.end();
55       I != E; ++I) {
56    assert(I->first != D);
57    assert(I->second.first != D);
58  }
59
60  for (nonLocalDepMapType::iterator I = depGraphNonLocal.begin(), E = depGraphNonLocal.end();
61       I != E; ++I) {
62    assert(I->first != D);
63  }
64
65  for (reverseDepMapType::iterator I = reverseDep.begin(), E = reverseDep.end();
66       I != E; ++I)
67    for (SmallPtrSet<Instruction*, 4>::iterator II = I->second.begin(), EE = I->second.end();
68         II != EE; ++II)
69      assert(*II != D);
70
71  for (reverseDepMapType::iterator I = reverseDepNonLocal.begin(), E = reverseDepNonLocal.end();
72       I != E; ++I)
73    for (SmallPtrSet<Instruction*, 4>::iterator II = I->second.begin(), EE = I->second.end();
74         II != EE; ++II)
75      assert(*II != D);
76}
77
78/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
79///
80void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
81  AU.setPreservesAll();
82  AU.addRequiredTransitive<AliasAnalysis>();
83  AU.addRequiredTransitive<TargetData>();
84}
85
86/// getCallSiteDependency - Private helper for finding the local dependencies
87/// of a call site.
88Instruction* MemoryDependenceAnalysis::getCallSiteDependency(CallSite C,
89                                                           Instruction* start,
90                                                            BasicBlock* block) {
91
92  std::pair<Instruction*, bool>& cachedResult =
93                                              depGraphLocal[C.getInstruction()];
94  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
95  TargetData& TD = getAnalysis<TargetData>();
96  BasicBlock::iterator blockBegin = C.getInstruction()->getParent()->begin();
97  BasicBlock::iterator QI = C.getInstruction();
98
99  // If the starting point was specifiy, use it
100  if (start) {
101    QI = start;
102    blockBegin = start->getParent()->begin();
103  // If the starting point wasn't specified, but the block was, use it
104  } else if (!start && block) {
105    QI = block->end();
106    blockBegin = block->begin();
107  }
108
109  // Walk backwards through the block, looking for dependencies
110  while (QI != blockBegin) {
111    --QI;
112
113    // If this inst is a memory op, get the pointer it accessed
114    Value* pointer = 0;
115    uint64_t pointerSize = 0;
116    if (StoreInst* S = dyn_cast<StoreInst>(QI)) {
117      pointer = S->getPointerOperand();
118      pointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
119    } else if (AllocationInst* AI = dyn_cast<AllocationInst>(QI)) {
120      pointer = AI;
121      if (ConstantInt* C = dyn_cast<ConstantInt>(AI->getArraySize()))
122        pointerSize = C->getZExtValue() * \
123                      TD.getABITypeSize(AI->getAllocatedType());
124      else
125        pointerSize = ~0UL;
126    } else if (VAArgInst* V = dyn_cast<VAArgInst>(QI)) {
127      pointer = V->getOperand(0);
128      pointerSize = TD.getTypeStoreSize(V->getType());
129    } else if (FreeInst* F = dyn_cast<FreeInst>(QI)) {
130      pointer = F->getPointerOperand();
131
132      // FreeInsts erase the entire structure
133      pointerSize = ~0UL;
134    } else if (isa<CallInst>(QI)) {
135      AliasAnalysis::ModRefBehavior result =
136                   AA.getModRefBehavior(CallSite::get(QI));
137      if (result != AliasAnalysis::DoesNotAccessMemory &&
138          result != AliasAnalysis::OnlyReadsMemory) {
139        if (!start && !block) {
140          cachedResult.first = QI;
141          cachedResult.second = true;
142          reverseDep[QI].insert(C.getInstruction());
143        }
144        return QI;
145      } else {
146        continue;
147      }
148    } else
149      continue;
150
151    if (AA.getModRefInfo(C, pointer, pointerSize) != AliasAnalysis::NoModRef) {
152      if (!start && !block) {
153        cachedResult.first = QI;
154        cachedResult.second = true;
155        reverseDep[QI].insert(C.getInstruction());
156      }
157      return QI;
158    }
159  }
160
161  // No dependence found
162  cachedResult.first = NonLocal;
163  cachedResult.second = true;
164  reverseDep[NonLocal].insert(C.getInstruction());
165  return NonLocal;
166}
167
168/// nonLocalHelper - Private helper used to calculate non-local dependencies
169/// by doing DFS on the predecessors of a block to find its dependencies
170void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query,
171                                              BasicBlock* block,
172                                         DenseMap<BasicBlock*, Value*>& resp) {
173  // Set of blocks that we've already visited in our DFS
174  SmallPtrSet<BasicBlock*, 4> visited;
175  // If we're updating a dirtied cache entry, we don't need to reprocess
176  // already computed entries.
177  for (DenseMap<BasicBlock*, Value*>::iterator I = resp.begin(),
178       E = resp.end(); I != E; ++I)
179    if (I->second != Dirty)
180      visited.insert(I->first);
181
182  // Current stack of the DFS
183  SmallVector<BasicBlock*, 4> stack;
184  for (pred_iterator PI = pred_begin(block), PE = pred_end(block);
185       PI != PE; ++PI)
186    stack.push_back(*PI);
187
188  // Do a basic DFS
189  while (!stack.empty()) {
190    BasicBlock* BB = stack.back();
191
192    // If we've already visited this block, no need to revist
193    if (visited.count(BB)) {
194      stack.pop_back();
195      continue;
196    }
197
198    // If we find a new block with a local dependency for query,
199    // then we insert the new dependency and backtrack.
200    if (BB != block) {
201      visited.insert(BB);
202
203      Instruction* localDep = getDependency(query, 0, BB);
204      if (localDep != NonLocal) {
205        resp.insert(std::make_pair(BB, localDep));
206        stack.pop_back();
207
208        continue;
209      }
210    // If we re-encounter the starting block, we still need to search it
211    // because there might be a dependency in the starting block AFTER
212    // the position of the query.  This is necessary to get loops right.
213    } else if (BB == block) {
214      visited.insert(BB);
215
216      Instruction* localDep = getDependency(query, 0, BB);
217      if (localDep != query)
218        resp.insert(std::make_pair(BB, localDep));
219
220      stack.pop_back();
221
222      continue;
223    }
224
225    // If we didn't find anything, recurse on the precessors of this block
226    // Only do this for blocks with a small number of predecessors.
227    bool predOnStack = false;
228    bool inserted = false;
229    if (std::distance(pred_begin(BB), pred_end(BB)) <= PredLimit) {
230      for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
231           PI != PE; ++PI)
232        if (!visited.count(*PI)) {
233          stack.push_back(*PI);
234          inserted = true;
235        } else
236          predOnStack = true;
237    }
238
239    // If we inserted a new predecessor, then we'll come back to this block
240    if (inserted)
241      continue;
242    // If we didn't insert because we have no predecessors, then this
243    // query has no dependency at all.
244    else if (!inserted && !predOnStack) {
245      resp.insert(std::make_pair(BB, None));
246    // If we didn't insert because our predecessors are already on the stack,
247    // then we might still have a dependency, but it will be discovered during
248    // backtracking.
249    } else if (!inserted && predOnStack){
250      resp.insert(std::make_pair(BB, NonLocal));
251    }
252
253    stack.pop_back();
254  }
255}
256
257/// getNonLocalDependency - Fills the passed-in map with the non-local
258/// dependencies of the queries.  The map will contain NonLocal for
259/// blocks between the query and its dependencies.
260void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query,
261                                         DenseMap<BasicBlock*, Value*>& resp) {
262  if (depGraphNonLocal.count(query)) {
263    DenseMap<BasicBlock*, Value*>& cached = depGraphNonLocal[query];
264    NumCacheNonlocal++;
265
266    SmallVector<BasicBlock*, 4> dirtied;
267    for (DenseMap<BasicBlock*, Value*>::iterator I = cached.begin(),
268         E = cached.end(); I != E; ++I)
269      if (I->second == Dirty)
270        dirtied.push_back(I->first);
271
272    for (SmallVector<BasicBlock*, 4>::iterator I = dirtied.begin(),
273         E = dirtied.end(); I != E; ++I) {
274      Instruction* localDep = getDependency(query, 0, *I);
275      if (localDep != NonLocal)
276        cached[*I] = localDep;
277      else {
278        cached.erase(*I);
279        nonLocalHelper(query, *I, cached);
280      }
281    }
282
283    resp = cached;
284
285    return;
286  } else
287    NumUncacheNonlocal++;
288
289  // If not, go ahead and search for non-local deps.
290  nonLocalHelper(query, query->getParent(), resp);
291
292  // Update the non-local dependency cache
293  for (DenseMap<BasicBlock*, Value*>::iterator I = resp.begin(), E = resp.end();
294       I != E; ++I) {
295    depGraphNonLocal[query].insert(*I);
296    reverseDepNonLocal[I->second].insert(query);
297  }
298}
299
300/// getDependency - Return the instruction on which a memory operation
301/// depends.  The local paramter indicates if the query should only
302/// evaluate dependencies within the same basic block.
303Instruction* MemoryDependenceAnalysis::getDependency(Instruction* query,
304                                                     Instruction* start,
305                                                     BasicBlock* block) {
306  // Start looking for dependencies with the queried inst
307  BasicBlock::iterator QI = query;
308
309  // Check for a cached result
310  std::pair<Instruction*, bool>& cachedResult = depGraphLocal[query];
311  // If we have a _confirmed_ cached entry, return it
312  if (!block && !start) {
313    if (cachedResult.second)
314      return cachedResult.first;
315    else if (cachedResult.first && cachedResult.first != NonLocal)
316      // If we have an unconfirmed cached entry, we can start our search from there
317      QI = cachedResult.first;
318  }
319
320  if (start)
321    QI = start;
322  else if (!start && block)
323    QI = block->end();
324
325  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
326  TargetData& TD = getAnalysis<TargetData>();
327
328  // Get the pointer value for which dependence will be determined
329  Value* dependee = 0;
330  uint64_t dependeeSize = 0;
331  bool queryIsVolatile = false;
332  if (StoreInst* S = dyn_cast<StoreInst>(query)) {
333    dependee = S->getPointerOperand();
334    dependeeSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
335    queryIsVolatile = S->isVolatile();
336  } else if (LoadInst* L = dyn_cast<LoadInst>(query)) {
337    dependee = L->getPointerOperand();
338    dependeeSize = TD.getTypeStoreSize(L->getType());
339    queryIsVolatile = L->isVolatile();
340  } else if (VAArgInst* V = dyn_cast<VAArgInst>(query)) {
341    dependee = V->getOperand(0);
342    dependeeSize = TD.getTypeStoreSize(V->getType());
343  } else if (FreeInst* F = dyn_cast<FreeInst>(query)) {
344    dependee = F->getPointerOperand();
345
346    // FreeInsts erase the entire structure, not just a field
347    dependeeSize = ~0UL;
348  } else if (CallSite::get(query).getInstruction() != 0)
349    return getCallSiteDependency(CallSite::get(query), start, block);
350  else if (isa<AllocationInst>(query))
351    return None;
352  else
353    return None;
354
355  BasicBlock::iterator blockBegin = block ? block->begin()
356                                          : query->getParent()->begin();
357
358  // Walk backwards through the basic block, looking for dependencies
359  while (QI != blockBegin) {
360    --QI;
361
362    // If this inst is a memory op, get the pointer it accessed
363    Value* pointer = 0;
364    uint64_t pointerSize = 0;
365    if (StoreInst* S = dyn_cast<StoreInst>(QI)) {
366      // All volatile loads/stores depend on each other
367      if (queryIsVolatile && S->isVolatile()) {
368        if (!start && !block) {
369          cachedResult.first = S;
370          cachedResult.second = true;
371          reverseDep[S].insert(query);
372        }
373
374        return S;
375      }
376
377      pointer = S->getPointerOperand();
378      pointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
379    } else if (LoadInst* L = dyn_cast<LoadInst>(QI)) {
380      // All volatile loads/stores depend on each other
381      if (queryIsVolatile && L->isVolatile()) {
382        if (!start && !block) {
383          cachedResult.first = L;
384          cachedResult.second = true;
385          reverseDep[L].insert(query);
386        }
387
388        return L;
389      }
390
391      pointer = L->getPointerOperand();
392      pointerSize = TD.getTypeStoreSize(L->getType());
393    } else if (AllocationInst* AI = dyn_cast<AllocationInst>(QI)) {
394      pointer = AI;
395      if (ConstantInt* C = dyn_cast<ConstantInt>(AI->getArraySize()))
396        pointerSize = C->getZExtValue() * \
397                      TD.getABITypeSize(AI->getAllocatedType());
398      else
399        pointerSize = ~0UL;
400    } else if (VAArgInst* V = dyn_cast<VAArgInst>(QI)) {
401      pointer = V->getOperand(0);
402      pointerSize = TD.getTypeStoreSize(V->getType());
403    } else if (FreeInst* F = dyn_cast<FreeInst>(QI)) {
404      pointer = F->getPointerOperand();
405
406      // FreeInsts erase the entire structure
407      pointerSize = ~0UL;
408    } else if (CallSite::get(QI).getInstruction() != 0) {
409      // Call insts need special handling. Check if they can modify our pointer
410      AliasAnalysis::ModRefResult MR = AA.getModRefInfo(CallSite::get(QI),
411                                                      dependee, dependeeSize);
412
413      if (MR != AliasAnalysis::NoModRef) {
414        // Loads don't depend on read-only calls
415        if (isa<LoadInst>(query) && MR == AliasAnalysis::Ref)
416          continue;
417
418        if (!start && !block) {
419          cachedResult.first = QI;
420          cachedResult.second = true;
421          reverseDep[QI].insert(query);
422        }
423
424        return QI;
425      } else {
426        continue;
427      }
428    }
429
430    // If we found a pointer, check if it could be the same as our pointer
431    if (pointer) {
432      AliasAnalysis::AliasResult R = AA.alias(pointer, pointerSize,
433                                              dependee, dependeeSize);
434
435      if (R != AliasAnalysis::NoAlias) {
436        // May-alias loads don't depend on each other
437        if (isa<LoadInst>(query) && isa<LoadInst>(QI) &&
438            R == AliasAnalysis::MayAlias)
439          continue;
440
441        if (!start && !block) {
442          cachedResult.first = QI;
443          cachedResult.second = true;
444          reverseDep[QI].insert(query);
445        }
446
447        return QI;
448      }
449    }
450  }
451
452  // If we found nothing, return the non-local flag
453  if (!start && !block) {
454    cachedResult.first = NonLocal;
455    cachedResult.second = true;
456    reverseDep[NonLocal].insert(query);
457  }
458
459  return NonLocal;
460}
461
462/// dropInstruction - Remove an instruction from the analysis, making
463/// absolutely conservative assumptions when updating the cache.  This is
464/// useful, for example when an instruction is changed rather than removed.
465void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) {
466  depMapType::iterator depGraphEntry = depGraphLocal.find(drop);
467  if (depGraphEntry != depGraphLocal.end())
468    reverseDep[depGraphEntry->second.first].erase(drop);
469
470  // Drop dependency information for things that depended on this instr
471  SmallPtrSet<Instruction*, 4>& set = reverseDep[drop];
472  for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
473       I != E; ++I)
474    depGraphLocal.erase(*I);
475
476  depGraphLocal.erase(drop);
477  reverseDep.erase(drop);
478
479  for (DenseMap<BasicBlock*, Value*>::iterator DI =
480       depGraphNonLocal[drop].begin(), DE = depGraphNonLocal[drop].end();
481       DI != DE; ++DI)
482    if (DI->second != None)
483      reverseDepNonLocal[DI->second].erase(drop);
484
485  if (reverseDepNonLocal.count(drop)) {
486    SmallPtrSet<Instruction*, 4>& set = reverseDepNonLocal[drop];
487    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
488         I != E; ++I)
489      for (DenseMap<BasicBlock*, Value*>::iterator DI =
490           depGraphNonLocal[*I].begin(), DE = depGraphNonLocal[*I].end();
491           DI != DE; ++DI)
492        if (DI->second == drop)
493          DI->second = Dirty;
494  }
495
496  reverseDepNonLocal.erase(drop);
497  nonLocalDepMapType::iterator I = depGraphNonLocal.find(drop);
498  if (I != depGraphNonLocal.end())
499    depGraphNonLocal.erase(I);
500}
501
502/// removeInstruction - Remove an instruction from the dependence analysis,
503/// updating the dependence of instructions that previously depended on it.
504/// This method attempts to keep the cache coherent using the reverse map.
505void MemoryDependenceAnalysis::removeInstruction(Instruction* rem) {
506  // Figure out the new dep for things that currently depend on rem
507  Instruction* newDep = NonLocal;
508
509  for (DenseMap<BasicBlock*, Value*>::iterator DI =
510       depGraphNonLocal[rem].begin(), DE = depGraphNonLocal[rem].end();
511       DI != DE; ++DI)
512    if (DI->second != None)
513      reverseDepNonLocal[DI->second].erase(rem);
514
515  depMapType::iterator depGraphEntry = depGraphLocal.find(rem);
516
517  if (depGraphEntry != depGraphLocal.end()) {
518    reverseDep[depGraphEntry->second.first].erase(rem);
519
520    if (depGraphEntry->second.first != NonLocal &&
521        depGraphEntry->second.first != None &&
522        depGraphEntry->second.second) {
523      // If we have dep info for rem, set them to it
524      BasicBlock::iterator RI = depGraphEntry->second.first;
525      RI++;
526      newDep = RI;
527    } else if ( (depGraphEntry->second.first == NonLocal ||
528                 depGraphEntry->second.first == None ) &&
529               depGraphEntry->second.second ) {
530      // If we have a confirmed non-local flag, use it
531      newDep = depGraphEntry->second.first;
532    } else {
533      // Otherwise, use the immediate successor of rem
534      // NOTE: This is because, when getDependence is called, it will first
535      // check the immediate predecessor of what is in the cache.
536      BasicBlock::iterator RI = rem;
537      RI++;
538      newDep = RI;
539    }
540  } else {
541    // Otherwise, use the immediate successor of rem
542    // NOTE: This is because, when getDependence is called, it will first
543    // check the immediate predecessor of what is in the cache.
544    BasicBlock::iterator RI = rem;
545    RI++;
546    newDep = RI;
547  }
548
549  SmallPtrSet<Instruction*, 4>& set = reverseDep[rem];
550  for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
551       I != E; ++I) {
552    // Insert the new dependencies
553    // Mark it as unconfirmed as long as it is not the non-local flag
554    depGraphLocal[*I] = std::make_pair(newDep, (newDep == NonLocal ||
555                                                newDep == None));
556  }
557
558  depGraphLocal.erase(rem);
559  reverseDep.erase(rem);
560
561  if (reverseDepNonLocal.count(rem)) {
562    SmallPtrSet<Instruction*, 4>& set = reverseDepNonLocal[rem];
563    for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
564         I != E; ++I)
565      for (DenseMap<BasicBlock*, Value*>::iterator DI =
566           depGraphNonLocal[*I].begin(), DE = depGraphNonLocal[*I].end();
567           DI != DE; ++DI)
568        if (DI->second == rem)
569          DI->second = Dirty;
570
571  }
572
573  reverseDepNonLocal.erase(rem);
574  nonLocalDepMapType::iterator I = depGraphNonLocal.find(rem);
575  if (I != depGraphNonLocal.end())
576    depGraphNonLocal.erase(I);
577
578  getAnalysis<AliasAnalysis>().deleteValue(rem);
579}
580