MemoryDependenceAnalysis.cpp revision f6f1f062cc8029aa75ca7d0e99fbc1e0b453d07e
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Analysis/PHITransAddr.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/PredIteratorCache.h"
31#include "llvm/Support/Debug.h"
32using namespace llvm;
33
34STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
35STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
36STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
37
38STATISTIC(NumCacheNonLocalPtr,
39          "Number of fully cached non-local ptr responses");
40STATISTIC(NumCacheDirtyNonLocalPtr,
41          "Number of cached, but dirty, non-local ptr responses");
42STATISTIC(NumUncacheNonLocalPtr,
43          "Number of uncached non-local ptr responses");
44STATISTIC(NumCacheCompleteNonLocalPtr,
45          "Number of block queries that were completely cached");
46
47char MemoryDependenceAnalysis::ID = 0;
48
49// Register this pass...
50INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
51                "Memory Dependence Analysis", false, true)
52INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
53INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
54                      "Memory Dependence Analysis", false, true)
55
56MemoryDependenceAnalysis::MemoryDependenceAnalysis()
57: FunctionPass(ID), PredCache(0) {
58  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
59}
60MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
61}
62
63/// Clean up memory in between runs
64void MemoryDependenceAnalysis::releaseMemory() {
65  LocalDeps.clear();
66  NonLocalDeps.clear();
67  NonLocalPointerDeps.clear();
68  ReverseLocalDeps.clear();
69  ReverseNonLocalDeps.clear();
70  ReverseNonLocalPtrDeps.clear();
71  PredCache->clear();
72}
73
74
75
76/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
77///
78void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
79  AU.setPreservesAll();
80  AU.addRequiredTransitive<AliasAnalysis>();
81}
82
83bool MemoryDependenceAnalysis::runOnFunction(Function &) {
84  AA = &getAnalysis<AliasAnalysis>();
85  if (PredCache == 0)
86    PredCache.reset(new PredIteratorCache());
87  return false;
88}
89
90/// RemoveFromReverseMap - This is a helper function that removes Val from
91/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
92template <typename KeyTy>
93static void RemoveFromReverseMap(DenseMap<Instruction*,
94                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
95                                 Instruction *Inst, KeyTy Val) {
96  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
97  InstIt = ReverseMap.find(Inst);
98  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
99  bool Found = InstIt->second.erase(Val);
100  assert(Found && "Invalid reverse map!"); Found=Found;
101  if (InstIt->second.empty())
102    ReverseMap.erase(InstIt);
103}
104
105/// GetLocation - If the given instruction references a specific memory
106/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
107/// Return a ModRefInfo value describing the general behavior of the
108/// instruction.
109static
110AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
111                                        AliasAnalysis::Location &Loc,
112                                        AliasAnalysis *AA) {
113  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
114    if (LI->isVolatile()) {
115      Loc = AliasAnalysis::Location();
116      return AliasAnalysis::ModRef;
117    }
118    Loc = AA->getLocation(LI);
119    return AliasAnalysis::Ref;
120  }
121
122  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
123    if (SI->isVolatile()) {
124      Loc = AliasAnalysis::Location();
125      return AliasAnalysis::ModRef;
126    }
127    Loc = AA->getLocation(SI);
128    return AliasAnalysis::Mod;
129  }
130
131  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
132    Loc = AA->getLocation(V);
133    return AliasAnalysis::ModRef;
134  }
135
136  if (const CallInst *CI = isFreeCall(Inst)) {
137    // calls to free() deallocate the entire structure
138    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
139    return AliasAnalysis::Mod;
140  }
141
142  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
143    switch (II->getIntrinsicID()) {
144    case Intrinsic::lifetime_start:
145    case Intrinsic::lifetime_end:
146    case Intrinsic::invariant_start:
147      Loc = AliasAnalysis::Location(II->getArgOperand(1),
148                                    cast<ConstantInt>(II->getArgOperand(0))
149                                      ->getZExtValue(),
150                                    II->getMetadata(LLVMContext::MD_tbaa));
151      // These intrinsics don't really modify the memory, but returning Mod
152      // will allow them to be handled conservatively.
153      return AliasAnalysis::Mod;
154    case Intrinsic::invariant_end:
155      Loc = AliasAnalysis::Location(II->getArgOperand(2),
156                                    cast<ConstantInt>(II->getArgOperand(1))
157                                      ->getZExtValue(),
158                                    II->getMetadata(LLVMContext::MD_tbaa));
159      // These intrinsics don't really modify the memory, but returning Mod
160      // will allow them to be handled conservatively.
161      return AliasAnalysis::Mod;
162    default:
163      break;
164    }
165
166  // Otherwise, just do the coarse-grained thing that always works.
167  if (Inst->mayWriteToMemory())
168    return AliasAnalysis::ModRef;
169  if (Inst->mayReadFromMemory())
170    return AliasAnalysis::Ref;
171  return AliasAnalysis::NoModRef;
172}
173
174/// getCallSiteDependencyFrom - Private helper for finding the local
175/// dependencies of a call site.
176MemDepResult MemoryDependenceAnalysis::
177getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
178                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
179  // Walk backwards through the block, looking for dependencies
180  while (ScanIt != BB->begin()) {
181    Instruction *Inst = --ScanIt;
182
183    // If this inst is a memory op, get the pointer it accessed
184    AliasAnalysis::Location Loc;
185    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
186    if (Loc.Ptr) {
187      // A simple instruction.
188      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
189        return MemDepResult::getClobber(Inst);
190      continue;
191    }
192
193    if (CallSite InstCS = cast<Value>(Inst)) {
194      // Debug intrinsics don't cause dependences.
195      if (isa<DbgInfoIntrinsic>(Inst)) continue;
196      // If these two calls do not interfere, look past it.
197      switch (AA->getModRefInfo(CS, InstCS)) {
198      case AliasAnalysis::NoModRef:
199        // If the two calls are the same, return InstCS as a Def, so that
200        // CS can be found redundant and eliminated.
201        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
202            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
203          return MemDepResult::getDef(Inst);
204
205        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
206        // keep scanning.
207        break;
208      default:
209        return MemDepResult::getClobber(Inst);
210      }
211    }
212  }
213
214  // No dependence found.  If this is the entry block of the function, it is a
215  // clobber, otherwise it is non-local.
216  if (BB != &BB->getParent()->getEntryBlock())
217    return MemDepResult::getNonLocal();
218  return MemDepResult::getClobber(ScanIt);
219}
220
221/// getPointerDependencyFrom - Return the instruction on which a memory
222/// location depends.  If isLoad is true, this routine ignores may-aliases with
223/// read-only operations.  If isLoad is false, this routine ignores may-aliases
224/// with reads from read-only locations.
225MemDepResult MemoryDependenceAnalysis::
226getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
227                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
228
229  Value *InvariantTag = 0;
230
231  // Walk backwards through the basic block, looking for dependencies.
232  while (ScanIt != BB->begin()) {
233    Instruction *Inst = --ScanIt;
234
235    // If we're in an invariant region, no dependencies can be found before
236    // we pass an invariant-begin marker.
237    if (InvariantTag == Inst) {
238      InvariantTag = 0;
239      continue;
240    }
241
242    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
243      // Debug intrinsics don't (and can't) cause dependences.
244      if (isa<DbgInfoIntrinsic>(II)) continue;
245
246      // If we pass an invariant-end marker, then we've just entered an
247      // invariant region and can start ignoring dependencies.
248      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
249        // FIXME: This only considers queries directly on the invariant-tagged
250        // pointer, not on query pointers that are indexed off of them.  It'd
251        // be nice to handle that at some point.
252        AliasAnalysis::AliasResult R =
253          AA->alias(AliasAnalysis::Location(II->getArgOperand(2)), MemLoc);
254        if (R == AliasAnalysis::MustAlias)
255          InvariantTag = II->getArgOperand(0);
256
257        continue;
258      }
259
260      // If we reach a lifetime begin or end marker, then the query ends here
261      // because the value is undefined.
262      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
263        // FIXME: This only considers queries directly on the invariant-tagged
264        // pointer, not on query pointers that are indexed off of them.  It'd
265        // be nice to handle that at some point.
266        AliasAnalysis::AliasResult R =
267          AA->alias(AliasAnalysis::Location(II->getArgOperand(1)), MemLoc);
268        if (R == AliasAnalysis::MustAlias)
269          return MemDepResult::getDef(II);
270        continue;
271      }
272    }
273
274    // If we're querying on a load and we're in an invariant region, we're done
275    // at this point. Nothing a load depends on can live in an invariant region.
276    //
277    // FIXME: this will prevent us from returning load/load must-aliases, so GVN
278    // won't remove redundant loads.
279    if (isLoad && InvariantTag) continue;
280
281    // Values depend on loads if the pointers are must aliased.  This means that
282    // a load depends on another must aliased load from the same value.
283    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
284      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
285
286      // If we found a pointer, check if it could be the same as our pointer.
287      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
288      if (R == AliasAnalysis::NoAlias)
289        continue;
290
291      // May-alias loads don't depend on each other without a dependence.
292      if (isLoad && R == AliasAnalysis::MayAlias)
293        continue;
294
295      // Stores don't alias loads from read-only memory.
296      if (!isLoad && AA->pointsToConstantMemory(LoadLoc))
297        continue;
298
299      // Stores depend on may and must aliased loads, loads depend on must-alias
300      // loads.
301      return MemDepResult::getDef(Inst);
302    }
303
304    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
305      // There can't be stores to the value we care about inside an
306      // invariant region.
307      if (InvariantTag) continue;
308
309      // If alias analysis can tell that this store is guaranteed to not modify
310      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
311      // the query pointer points to constant memory etc.
312      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
313        continue;
314
315      // Ok, this store might clobber the query pointer.  Check to see if it is
316      // a must alias: in this case, we want to return this as a def.
317      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
318
319      // If we found a pointer, check if it could be the same as our pointer.
320      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
321
322      if (R == AliasAnalysis::NoAlias)
323        continue;
324      if (R == AliasAnalysis::MayAlias)
325        return MemDepResult::getClobber(Inst);
326      return MemDepResult::getDef(Inst);
327    }
328
329    // If this is an allocation, and if we know that the accessed pointer is to
330    // the allocation, return Def.  This means that there is no dependence and
331    // the access can be optimized based on that.  For example, a load could
332    // turn into undef.
333    // Note: Only determine this to be a malloc if Inst is the malloc call, not
334    // a subsequent bitcast of the malloc call result.  There can be stores to
335    // the malloced memory between the malloc call and its bitcast uses, and we
336    // need to continue scanning until the malloc call.
337    if (isa<AllocaInst>(Inst) ||
338        (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
339      const Value *AccessPtr = MemLoc.Ptr->getUnderlyingObject();
340
341      if (AccessPtr == Inst ||
342          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
343        return MemDepResult::getDef(Inst);
344      continue;
345    }
346
347    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
348    switch (AA->getModRefInfo(Inst, MemLoc)) {
349    case AliasAnalysis::NoModRef:
350      // If the call has no effect on the queried pointer, just ignore it.
351      continue;
352    case AliasAnalysis::Mod:
353      // If we're in an invariant region, we can ignore calls that ONLY
354      // modify the pointer.
355      if (InvariantTag) continue;
356      return MemDepResult::getClobber(Inst);
357    case AliasAnalysis::Ref:
358      // If the call is known to never store to the pointer, and if this is a
359      // load query, we can safely ignore it (scan past it).
360      if (isLoad)
361        continue;
362    default:
363      // Otherwise, there is a potential dependence.  Return a clobber.
364      return MemDepResult::getClobber(Inst);
365    }
366  }
367
368  // No dependence found.  If this is the entry block of the function, it is a
369  // clobber, otherwise it is non-local.
370  if (BB != &BB->getParent()->getEntryBlock())
371    return MemDepResult::getNonLocal();
372  return MemDepResult::getClobber(ScanIt);
373}
374
375/// getDependency - Return the instruction on which a memory operation
376/// depends.
377MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
378  Instruction *ScanPos = QueryInst;
379
380  // Check for a cached result
381  MemDepResult &LocalCache = LocalDeps[QueryInst];
382
383  // If the cached entry is non-dirty, just return it.  Note that this depends
384  // on MemDepResult's default constructing to 'dirty'.
385  if (!LocalCache.isDirty())
386    return LocalCache;
387
388  // Otherwise, if we have a dirty entry, we know we can start the scan at that
389  // instruction, which may save us some work.
390  if (Instruction *Inst = LocalCache.getInst()) {
391    ScanPos = Inst;
392
393    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
394  }
395
396  BasicBlock *QueryParent = QueryInst->getParent();
397
398  // Do the scan.
399  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
400    // No dependence found.  If this is the entry block of the function, it is a
401    // clobber, otherwise it is non-local.
402    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
403      LocalCache = MemDepResult::getNonLocal();
404    else
405      LocalCache = MemDepResult::getClobber(QueryInst);
406  } else {
407    AliasAnalysis::Location MemLoc;
408    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
409    if (MemLoc.Ptr) {
410      // If we can do a pointer scan, make it happen.
411      bool isLoad = !(MR & AliasAnalysis::Mod);
412      if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst))
413        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
414
415      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
416                                            QueryParent);
417    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
418      CallSite QueryCS(QueryInst);
419      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
420      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
421                                             QueryParent);
422    } else
423      // Non-memory instruction.
424      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
425  }
426
427  // Remember the result!
428  if (Instruction *I = LocalCache.getInst())
429    ReverseLocalDeps[I].insert(QueryInst);
430
431  return LocalCache;
432}
433
434#ifndef NDEBUG
435/// AssertSorted - This method is used when -debug is specified to verify that
436/// cache arrays are properly kept sorted.
437static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
438                         int Count = -1) {
439  if (Count == -1) Count = Cache.size();
440  if (Count == 0) return;
441
442  for (unsigned i = 1; i != unsigned(Count); ++i)
443    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
444}
445#endif
446
447/// getNonLocalCallDependency - Perform a full dependency query for the
448/// specified call, returning the set of blocks that the value is
449/// potentially live across.  The returned set of results will include a
450/// "NonLocal" result for all blocks where the value is live across.
451///
452/// This method assumes the instruction returns a "NonLocal" dependency
453/// within its own block.
454///
455/// This returns a reference to an internal data structure that may be
456/// invalidated on the next non-local query or when an instruction is
457/// removed.  Clients must copy this data if they want it around longer than
458/// that.
459const MemoryDependenceAnalysis::NonLocalDepInfo &
460MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
461  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
462 "getNonLocalCallDependency should only be used on calls with non-local deps!");
463  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
464  NonLocalDepInfo &Cache = CacheP.first;
465
466  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
467  /// the cached case, this can happen due to instructions being deleted etc. In
468  /// the uncached case, this starts out as the set of predecessors we care
469  /// about.
470  SmallVector<BasicBlock*, 32> DirtyBlocks;
471
472  if (!Cache.empty()) {
473    // Okay, we have a cache entry.  If we know it is not dirty, just return it
474    // with no computation.
475    if (!CacheP.second) {
476      ++NumCacheNonLocal;
477      return Cache;
478    }
479
480    // If we already have a partially computed set of results, scan them to
481    // determine what is dirty, seeding our initial DirtyBlocks worklist.
482    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
483       I != E; ++I)
484      if (I->getResult().isDirty())
485        DirtyBlocks.push_back(I->getBB());
486
487    // Sort the cache so that we can do fast binary search lookups below.
488    std::sort(Cache.begin(), Cache.end());
489
490    ++NumCacheDirtyNonLocal;
491    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
492    //     << Cache.size() << " cached: " << *QueryInst;
493  } else {
494    // Seed DirtyBlocks with each of the preds of QueryInst's block.
495    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
496    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
497      DirtyBlocks.push_back(*PI);
498    ++NumUncacheNonLocal;
499  }
500
501  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
502  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
503
504  SmallPtrSet<BasicBlock*, 64> Visited;
505
506  unsigned NumSortedEntries = Cache.size();
507  DEBUG(AssertSorted(Cache));
508
509  // Iterate while we still have blocks to update.
510  while (!DirtyBlocks.empty()) {
511    BasicBlock *DirtyBB = DirtyBlocks.back();
512    DirtyBlocks.pop_back();
513
514    // Already processed this block?
515    if (!Visited.insert(DirtyBB))
516      continue;
517
518    // Do a binary search to see if we already have an entry for this block in
519    // the cache set.  If so, find it.
520    DEBUG(AssertSorted(Cache, NumSortedEntries));
521    NonLocalDepInfo::iterator Entry =
522      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
523                       NonLocalDepEntry(DirtyBB));
524    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
525      --Entry;
526
527    NonLocalDepEntry *ExistingResult = 0;
528    if (Entry != Cache.begin()+NumSortedEntries &&
529        Entry->getBB() == DirtyBB) {
530      // If we already have an entry, and if it isn't already dirty, the block
531      // is done.
532      if (!Entry->getResult().isDirty())
533        continue;
534
535      // Otherwise, remember this slot so we can update the value.
536      ExistingResult = &*Entry;
537    }
538
539    // If the dirty entry has a pointer, start scanning from it so we don't have
540    // to rescan the entire block.
541    BasicBlock::iterator ScanPos = DirtyBB->end();
542    if (ExistingResult) {
543      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
544        ScanPos = Inst;
545        // We're removing QueryInst's use of Inst.
546        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
547                             QueryCS.getInstruction());
548      }
549    }
550
551    // Find out if this block has a local dependency for QueryInst.
552    MemDepResult Dep;
553
554    if (ScanPos != DirtyBB->begin()) {
555      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
556    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
557      // No dependence found.  If this is the entry block of the function, it is
558      // a clobber, otherwise it is non-local.
559      Dep = MemDepResult::getNonLocal();
560    } else {
561      Dep = MemDepResult::getClobber(ScanPos);
562    }
563
564    // If we had a dirty entry for the block, update it.  Otherwise, just add
565    // a new entry.
566    if (ExistingResult)
567      ExistingResult->setResult(Dep);
568    else
569      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
570
571    // If the block has a dependency (i.e. it isn't completely transparent to
572    // the value), remember the association!
573    if (!Dep.isNonLocal()) {
574      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
575      // update this when we remove instructions.
576      if (Instruction *Inst = Dep.getInst())
577        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
578    } else {
579
580      // If the block *is* completely transparent to the load, we need to check
581      // the predecessors of this block.  Add them to our worklist.
582      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
583        DirtyBlocks.push_back(*PI);
584    }
585  }
586
587  return Cache;
588}
589
590/// getNonLocalPointerDependency - Perform a full dependency query for an
591/// access to the specified (non-volatile) memory location, returning the
592/// set of instructions that either define or clobber the value.
593///
594/// This method assumes the pointer has a "NonLocal" dependency within its
595/// own block.
596///
597void MemoryDependenceAnalysis::
598getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
599                             BasicBlock *FromBB,
600                             SmallVectorImpl<NonLocalDepResult> &Result) {
601  assert(Loc.Ptr->getType()->isPointerTy() &&
602         "Can't get pointer deps of a non-pointer!");
603  Result.clear();
604
605  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
606
607  // This is the set of blocks we've inspected, and the pointer we consider in
608  // each block.  Because of critical edges, we currently bail out if querying
609  // a block with multiple different pointers.  This can happen during PHI
610  // translation.
611  DenseMap<BasicBlock*, Value*> Visited;
612  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
613                                   Result, Visited, true))
614    return;
615  Result.clear();
616  Result.push_back(NonLocalDepResult(FromBB,
617                                     MemDepResult::getClobber(FromBB->begin()),
618                                     const_cast<Value *>(Loc.Ptr)));
619}
620
621/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
622/// Pointer/PointeeSize using either cached information in Cache or by doing a
623/// lookup (which may use dirty cache info if available).  If we do a lookup,
624/// add the result to the cache.
625MemDepResult MemoryDependenceAnalysis::
626GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
627                        bool isLoad, BasicBlock *BB,
628                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
629
630  // Do a binary search to see if we already have an entry for this block in
631  // the cache set.  If so, find it.
632  NonLocalDepInfo::iterator Entry =
633    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
634                     NonLocalDepEntry(BB));
635  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
636    --Entry;
637
638  NonLocalDepEntry *ExistingResult = 0;
639  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
640    ExistingResult = &*Entry;
641
642  // If we have a cached entry, and it is non-dirty, use it as the value for
643  // this dependency.
644  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
645    ++NumCacheNonLocalPtr;
646    return ExistingResult->getResult();
647  }
648
649  // Otherwise, we have to scan for the value.  If we have a dirty cache
650  // entry, start scanning from its position, otherwise we scan from the end
651  // of the block.
652  BasicBlock::iterator ScanPos = BB->end();
653  if (ExistingResult && ExistingResult->getResult().getInst()) {
654    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
655           "Instruction invalidated?");
656    ++NumCacheDirtyNonLocalPtr;
657    ScanPos = ExistingResult->getResult().getInst();
658
659    // Eliminating the dirty entry from 'Cache', so update the reverse info.
660    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
661    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
662  } else {
663    ++NumUncacheNonLocalPtr;
664  }
665
666  // Scan the block for the dependency.
667  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
668
669  // If we had a dirty entry for the block, update it.  Otherwise, just add
670  // a new entry.
671  if (ExistingResult)
672    ExistingResult->setResult(Dep);
673  else
674    Cache->push_back(NonLocalDepEntry(BB, Dep));
675
676  // If the block has a dependency (i.e. it isn't completely transparent to
677  // the value), remember the reverse association because we just added it
678  // to Cache!
679  if (Dep.isNonLocal())
680    return Dep;
681
682  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
683  // update MemDep when we remove instructions.
684  Instruction *Inst = Dep.getInst();
685  assert(Inst && "Didn't depend on anything?");
686  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
687  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
688  return Dep;
689}
690
691/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
692/// number of elements in the array that are already properly ordered.  This is
693/// optimized for the case when only a few entries are added.
694static void
695SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
696                         unsigned NumSortedEntries) {
697  switch (Cache.size() - NumSortedEntries) {
698  case 0:
699    // done, no new entries.
700    break;
701  case 2: {
702    // Two new entries, insert the last one into place.
703    NonLocalDepEntry Val = Cache.back();
704    Cache.pop_back();
705    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
706      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
707    Cache.insert(Entry, Val);
708    // FALL THROUGH.
709  }
710  case 1:
711    // One new entry, Just insert the new value at the appropriate position.
712    if (Cache.size() != 1) {
713      NonLocalDepEntry Val = Cache.back();
714      Cache.pop_back();
715      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
716        std::upper_bound(Cache.begin(), Cache.end(), Val);
717      Cache.insert(Entry, Val);
718    }
719    break;
720  default:
721    // Added many values, do a full scale sort.
722    std::sort(Cache.begin(), Cache.end());
723    break;
724  }
725}
726
727/// getNonLocalPointerDepFromBB - Perform a dependency query based on
728/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
729/// results to the results vector and keep track of which blocks are visited in
730/// 'Visited'.
731///
732/// This has special behavior for the first block queries (when SkipFirstBlock
733/// is true).  In this special case, it ignores the contents of the specified
734/// block and starts returning dependence info for its predecessors.
735///
736/// This function returns false on success, or true to indicate that it could
737/// not compute dependence information for some reason.  This should be treated
738/// as a clobber dependence on the first instruction in the predecessor block.
739bool MemoryDependenceAnalysis::
740getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
741                            const AliasAnalysis::Location &Loc,
742                            bool isLoad, BasicBlock *StartBB,
743                            SmallVectorImpl<NonLocalDepResult> &Result,
744                            DenseMap<BasicBlock*, Value*> &Visited,
745                            bool SkipFirstBlock) {
746
747  // Look up the cached info for Pointer.
748  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
749
750  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
751  // CacheKey, this value will be inserted as the associated value. Otherwise,
752  // it'll be ignored, and we'll have to check to see if the cached size and
753  // tbaa tag are consistent with the current query.
754  NonLocalPointerInfo InitialNLPI;
755  InitialNLPI.Size = Loc.Size;
756  InitialNLPI.TBAATag = Loc.TBAATag;
757
758  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
759  // already have one.
760  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
761    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
762  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
763
764  // If we already have a cache entry for this CacheKey, we may need to do some
765  // work to reconcile the cache entry and the current query.
766  if (!Pair.second) {
767    if (CacheInfo->Size < Loc.Size) {
768      // The query's Size is greater than the cached one. Throw out the
769      // cached data and procede with the query at the greater size.
770      CacheInfo->Pair = BBSkipFirstBlockPair();
771      CacheInfo->Size = Loc.Size;
772      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
773           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
774        if (Instruction *Inst = DI->getResult().getInst())
775          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
776      CacheInfo->NonLocalDeps.clear();
777    } else if (CacheInfo->Size > Loc.Size) {
778      // This query's Size is less than the cached one. Conservatively restart
779      // the query using the greater size.
780      return getNonLocalPointerDepFromBB(Pointer,
781                                         Loc.getWithNewSize(CacheInfo->Size),
782                                         isLoad, StartBB, Result, Visited,
783                                         SkipFirstBlock);
784    }
785
786    // If the query's TBAATag is inconsistent with the cached one,
787    // conservatively throw out the cached data and restart the query with
788    // no tag if needed.
789    if (CacheInfo->TBAATag != Loc.TBAATag) {
790      if (CacheInfo->TBAATag) {
791        CacheInfo->Pair = BBSkipFirstBlockPair();
792        CacheInfo->TBAATag = 0;
793        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
794             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
795          if (Instruction *Inst = DI->getResult().getInst())
796            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
797        CacheInfo->NonLocalDeps.clear();
798      }
799      if (Loc.TBAATag)
800        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
801                                           isLoad, StartBB, Result, Visited,
802                                           SkipFirstBlock);
803    }
804  }
805
806  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
807
808  // If we have valid cached information for exactly the block we are
809  // investigating, just return it with no recomputation.
810  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
811    // We have a fully cached result for this query then we can just return the
812    // cached results and populate the visited set.  However, we have to verify
813    // that we don't already have conflicting results for these blocks.  Check
814    // to ensure that if a block in the results set is in the visited set that
815    // it was for the same pointer query.
816    if (!Visited.empty()) {
817      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
818           I != E; ++I) {
819        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
820        if (VI == Visited.end() || VI->second == Pointer.getAddr())
821          continue;
822
823        // We have a pointer mismatch in a block.  Just return clobber, saying
824        // that something was clobbered in this result.  We could also do a
825        // non-fully cached query, but there is little point in doing this.
826        return true;
827      }
828    }
829
830    Value *Addr = Pointer.getAddr();
831    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
832         I != E; ++I) {
833      Visited.insert(std::make_pair(I->getBB(), Addr));
834      if (!I->getResult().isNonLocal())
835        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
836    }
837    ++NumCacheCompleteNonLocalPtr;
838    return false;
839  }
840
841  // Otherwise, either this is a new block, a block with an invalid cache
842  // pointer or one that we're about to invalidate by putting more info into it
843  // than its valid cache info.  If empty, the result will be valid cache info,
844  // otherwise it isn't.
845  if (Cache->empty())
846    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
847  else
848    CacheInfo->Pair = BBSkipFirstBlockPair();
849
850  SmallVector<BasicBlock*, 32> Worklist;
851  Worklist.push_back(StartBB);
852
853  // Keep track of the entries that we know are sorted.  Previously cached
854  // entries will all be sorted.  The entries we add we only sort on demand (we
855  // don't insert every element into its sorted position).  We know that we
856  // won't get any reuse from currently inserted values, because we don't
857  // revisit blocks after we insert info for them.
858  unsigned NumSortedEntries = Cache->size();
859  DEBUG(AssertSorted(*Cache));
860
861  while (!Worklist.empty()) {
862    BasicBlock *BB = Worklist.pop_back_val();
863
864    // Skip the first block if we have it.
865    if (!SkipFirstBlock) {
866      // Analyze the dependency of *Pointer in FromBB.  See if we already have
867      // been here.
868      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
869
870      // Get the dependency info for Pointer in BB.  If we have cached
871      // information, we will use it, otherwise we compute it.
872      DEBUG(AssertSorted(*Cache, NumSortedEntries));
873      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
874                                                 NumSortedEntries);
875
876      // If we got a Def or Clobber, add this to the list of results.
877      if (!Dep.isNonLocal()) {
878        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
879        continue;
880      }
881    }
882
883    // If 'Pointer' is an instruction defined in this block, then we need to do
884    // phi translation to change it into a value live in the predecessor block.
885    // If not, we just add the predecessors to the worklist and scan them with
886    // the same Pointer.
887    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
888      SkipFirstBlock = false;
889      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
890        // Verify that we haven't looked at this block yet.
891        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
892          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
893        if (InsertRes.second) {
894          // First time we've looked at *PI.
895          Worklist.push_back(*PI);
896          continue;
897        }
898
899        // If we have seen this block before, but it was with a different
900        // pointer then we have a phi translation failure and we have to treat
901        // this as a clobber.
902        if (InsertRes.first->second != Pointer.getAddr())
903          goto PredTranslationFailure;
904      }
905      continue;
906    }
907
908    // We do need to do phi translation, if we know ahead of time we can't phi
909    // translate this value, don't even try.
910    if (!Pointer.IsPotentiallyPHITranslatable())
911      goto PredTranslationFailure;
912
913    // We may have added values to the cache list before this PHI translation.
914    // If so, we haven't done anything to ensure that the cache remains sorted.
915    // Sort it now (if needed) so that recursive invocations of
916    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
917    // value will only see properly sorted cache arrays.
918    if (Cache && NumSortedEntries != Cache->size()) {
919      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
920      NumSortedEntries = Cache->size();
921    }
922    Cache = 0;
923
924    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
925      BasicBlock *Pred = *PI;
926
927      // Get the PHI translated pointer in this predecessor.  This can fail if
928      // not translatable, in which case the getAddr() returns null.
929      PHITransAddr PredPointer(Pointer);
930      PredPointer.PHITranslateValue(BB, Pred, 0);
931
932      Value *PredPtrVal = PredPointer.getAddr();
933
934      // Check to see if we have already visited this pred block with another
935      // pointer.  If so, we can't do this lookup.  This failure can occur
936      // with PHI translation when a critical edge exists and the PHI node in
937      // the successor translates to a pointer value different than the
938      // pointer the block was first analyzed with.
939      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
940        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
941
942      if (!InsertRes.second) {
943        // If the predecessor was visited with PredPtr, then we already did
944        // the analysis and can ignore it.
945        if (InsertRes.first->second == PredPtrVal)
946          continue;
947
948        // Otherwise, the block was previously analyzed with a different
949        // pointer.  We can't represent the result of this case, so we just
950        // treat this as a phi translation failure.
951        goto PredTranslationFailure;
952      }
953
954      // If PHI translation was unable to find an available pointer in this
955      // predecessor, then we have to assume that the pointer is clobbered in
956      // that predecessor.  We can still do PRE of the load, which would insert
957      // a computation of the pointer in this predecessor.
958      if (PredPtrVal == 0) {
959        // Add the entry to the Result list.
960        NonLocalDepResult Entry(Pred,
961                                MemDepResult::getClobber(Pred->getTerminator()),
962                                PredPtrVal);
963        Result.push_back(Entry);
964
965        // Since we had a phi translation failure, the cache for CacheKey won't
966        // include all of the entries that we need to immediately satisfy future
967        // queries.  Mark this in NonLocalPointerDeps by setting the
968        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
969        // cached value to do more work but not miss the phi trans failure.
970        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
971        NLPI.Pair = BBSkipFirstBlockPair();
972        continue;
973      }
974
975      // FIXME: it is entirely possible that PHI translating will end up with
976      // the same value.  Consider PHI translating something like:
977      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
978      // to recurse here, pedantically speaking.
979
980      // If we have a problem phi translating, fall through to the code below
981      // to handle the failure condition.
982      if (getNonLocalPointerDepFromBB(PredPointer,
983                                      Loc.getWithNewPtr(PredPointer.getAddr()),
984                                      isLoad, Pred,
985                                      Result, Visited))
986        goto PredTranslationFailure;
987    }
988
989    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
990    CacheInfo = &NonLocalPointerDeps[CacheKey];
991    Cache = &CacheInfo->NonLocalDeps;
992    NumSortedEntries = Cache->size();
993
994    // Since we did phi translation, the "Cache" set won't contain all of the
995    // results for the query.  This is ok (we can still use it to accelerate
996    // specific block queries) but we can't do the fastpath "return all
997    // results from the set"  Clear out the indicator for this.
998    CacheInfo->Pair = BBSkipFirstBlockPair();
999    SkipFirstBlock = false;
1000    continue;
1001
1002  PredTranslationFailure:
1003
1004    if (Cache == 0) {
1005      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1006      CacheInfo = &NonLocalPointerDeps[CacheKey];
1007      Cache = &CacheInfo->NonLocalDeps;
1008      NumSortedEntries = Cache->size();
1009    }
1010
1011    // Since we failed phi translation, the "Cache" set won't contain all of the
1012    // results for the query.  This is ok (we can still use it to accelerate
1013    // specific block queries) but we can't do the fastpath "return all
1014    // results from the set".  Clear out the indicator for this.
1015    CacheInfo->Pair = BBSkipFirstBlockPair();
1016
1017    // If *nothing* works, mark the pointer as being clobbered by the first
1018    // instruction in this block.
1019    //
1020    // If this is the magic first block, return this as a clobber of the whole
1021    // incoming value.  Since we can't phi translate to one of the predecessors,
1022    // we have to bail out.
1023    if (SkipFirstBlock)
1024      return true;
1025
1026    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1027      assert(I != Cache->rend() && "Didn't find current block??");
1028      if (I->getBB() != BB)
1029        continue;
1030
1031      assert(I->getResult().isNonLocal() &&
1032             "Should only be here with transparent block");
1033      I->setResult(MemDepResult::getClobber(BB->begin()));
1034      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
1035      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1036                                         Pointer.getAddr()));
1037      break;
1038    }
1039  }
1040
1041  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1042  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1043  DEBUG(AssertSorted(*Cache));
1044  return false;
1045}
1046
1047/// RemoveCachedNonLocalPointerDependencies - If P exists in
1048/// CachedNonLocalPointerInfo, remove it.
1049void MemoryDependenceAnalysis::
1050RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1051  CachedNonLocalPointerInfo::iterator It =
1052    NonLocalPointerDeps.find(P);
1053  if (It == NonLocalPointerDeps.end()) return;
1054
1055  // Remove all of the entries in the BB->val map.  This involves removing
1056  // instructions from the reverse map.
1057  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1058
1059  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1060    Instruction *Target = PInfo[i].getResult().getInst();
1061    if (Target == 0) continue;  // Ignore non-local dep results.
1062    assert(Target->getParent() == PInfo[i].getBB());
1063
1064    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1065    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1066  }
1067
1068  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1069  NonLocalPointerDeps.erase(It);
1070}
1071
1072
1073/// invalidateCachedPointerInfo - This method is used to invalidate cached
1074/// information about the specified pointer, because it may be too
1075/// conservative in memdep.  This is an optional call that can be used when
1076/// the client detects an equivalence between the pointer and some other
1077/// value and replaces the other value with ptr. This can make Ptr available
1078/// in more places that cached info does not necessarily keep.
1079void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1080  // If Ptr isn't really a pointer, just ignore it.
1081  if (!Ptr->getType()->isPointerTy()) return;
1082  // Flush store info for the pointer.
1083  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1084  // Flush load info for the pointer.
1085  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1086}
1087
1088/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1089/// This needs to be done when the CFG changes, e.g., due to splitting
1090/// critical edges.
1091void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1092  PredCache->clear();
1093}
1094
1095/// removeInstruction - Remove an instruction from the dependence analysis,
1096/// updating the dependence of instructions that previously depended on it.
1097/// This method attempts to keep the cache coherent using the reverse map.
1098void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1099  // Walk through the Non-local dependencies, removing this one as the value
1100  // for any cached queries.
1101  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1102  if (NLDI != NonLocalDeps.end()) {
1103    NonLocalDepInfo &BlockMap = NLDI->second.first;
1104    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1105         DI != DE; ++DI)
1106      if (Instruction *Inst = DI->getResult().getInst())
1107        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1108    NonLocalDeps.erase(NLDI);
1109  }
1110
1111  // If we have a cached local dependence query for this instruction, remove it.
1112  //
1113  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1114  if (LocalDepEntry != LocalDeps.end()) {
1115    // Remove us from DepInst's reverse set now that the local dep info is gone.
1116    if (Instruction *Inst = LocalDepEntry->second.getInst())
1117      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1118
1119    // Remove this local dependency info.
1120    LocalDeps.erase(LocalDepEntry);
1121  }
1122
1123  // If we have any cached pointer dependencies on this instruction, remove
1124  // them.  If the instruction has non-pointer type, then it can't be a pointer
1125  // base.
1126
1127  // Remove it from both the load info and the store info.  The instruction
1128  // can't be in either of these maps if it is non-pointer.
1129  if (RemInst->getType()->isPointerTy()) {
1130    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1131    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1132  }
1133
1134  // Loop over all of the things that depend on the instruction we're removing.
1135  //
1136  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1137
1138  // If we find RemInst as a clobber or Def in any of the maps for other values,
1139  // we need to replace its entry with a dirty version of the instruction after
1140  // it.  If RemInst is a terminator, we use a null dirty value.
1141  //
1142  // Using a dirty version of the instruction after RemInst saves having to scan
1143  // the entire block to get to this point.
1144  MemDepResult NewDirtyVal;
1145  if (!RemInst->isTerminator())
1146    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1147
1148  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1149  if (ReverseDepIt != ReverseLocalDeps.end()) {
1150    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1151    // RemInst can't be the terminator if it has local stuff depending on it.
1152    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1153           "Nothing can locally depend on a terminator");
1154
1155    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1156         E = ReverseDeps.end(); I != E; ++I) {
1157      Instruction *InstDependingOnRemInst = *I;
1158      assert(InstDependingOnRemInst != RemInst &&
1159             "Already removed our local dep info");
1160
1161      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1162
1163      // Make sure to remember that new things depend on NewDepInst.
1164      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1165             "a local dep on this if it is a terminator!");
1166      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1167                                                InstDependingOnRemInst));
1168    }
1169
1170    ReverseLocalDeps.erase(ReverseDepIt);
1171
1172    // Add new reverse deps after scanning the set, to avoid invalidating the
1173    // 'ReverseDeps' reference.
1174    while (!ReverseDepsToAdd.empty()) {
1175      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1176        .insert(ReverseDepsToAdd.back().second);
1177      ReverseDepsToAdd.pop_back();
1178    }
1179  }
1180
1181  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1182  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1183    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1184    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1185         I != E; ++I) {
1186      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1187
1188      PerInstNLInfo &INLD = NonLocalDeps[*I];
1189      // The information is now dirty!
1190      INLD.second = true;
1191
1192      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1193           DE = INLD.first.end(); DI != DE; ++DI) {
1194        if (DI->getResult().getInst() != RemInst) continue;
1195
1196        // Convert to a dirty entry for the subsequent instruction.
1197        DI->setResult(NewDirtyVal);
1198
1199        if (Instruction *NextI = NewDirtyVal.getInst())
1200          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1201      }
1202    }
1203
1204    ReverseNonLocalDeps.erase(ReverseDepIt);
1205
1206    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1207    while (!ReverseDepsToAdd.empty()) {
1208      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1209        .insert(ReverseDepsToAdd.back().second);
1210      ReverseDepsToAdd.pop_back();
1211    }
1212  }
1213
1214  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1215  // value in the NonLocalPointerDeps info.
1216  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1217    ReverseNonLocalPtrDeps.find(RemInst);
1218  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1219    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1220    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1221
1222    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1223         E = Set.end(); I != E; ++I) {
1224      ValueIsLoadPair P = *I;
1225      assert(P.getPointer() != RemInst &&
1226             "Already removed NonLocalPointerDeps info for RemInst");
1227
1228      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1229
1230      // The cache is not valid for any specific block anymore.
1231      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1232
1233      // Update any entries for RemInst to use the instruction after it.
1234      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1235           DI != DE; ++DI) {
1236        if (DI->getResult().getInst() != RemInst) continue;
1237
1238        // Convert to a dirty entry for the subsequent instruction.
1239        DI->setResult(NewDirtyVal);
1240
1241        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1242          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1243      }
1244
1245      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1246      // subsequent value may invalidate the sortedness.
1247      std::sort(NLPDI.begin(), NLPDI.end());
1248    }
1249
1250    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1251
1252    while (!ReversePtrDepsToAdd.empty()) {
1253      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1254        .insert(ReversePtrDepsToAdd.back().second);
1255      ReversePtrDepsToAdd.pop_back();
1256    }
1257  }
1258
1259
1260  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1261  AA->deleteValue(RemInst);
1262  DEBUG(verifyRemoved(RemInst));
1263}
1264/// verifyRemoved - Verify that the specified instruction does not occur
1265/// in our internal data structures.
1266void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1267  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1268       E = LocalDeps.end(); I != E; ++I) {
1269    assert(I->first != D && "Inst occurs in data structures");
1270    assert(I->second.getInst() != D &&
1271           "Inst occurs in data structures");
1272  }
1273
1274  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1275       E = NonLocalPointerDeps.end(); I != E; ++I) {
1276    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1277    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1278    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1279         II != E; ++II)
1280      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1281  }
1282
1283  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1284       E = NonLocalDeps.end(); I != E; ++I) {
1285    assert(I->first != D && "Inst occurs in data structures");
1286    const PerInstNLInfo &INLD = I->second;
1287    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1288         EE = INLD.first.end(); II  != EE; ++II)
1289      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1290  }
1291
1292  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1293       E = ReverseLocalDeps.end(); I != E; ++I) {
1294    assert(I->first != D && "Inst occurs in data structures");
1295    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1296         EE = I->second.end(); II != EE; ++II)
1297      assert(*II != D && "Inst occurs in data structures");
1298  }
1299
1300  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1301       E = ReverseNonLocalDeps.end();
1302       I != E; ++I) {
1303    assert(I->first != D && "Inst occurs in data structures");
1304    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1305         EE = I->second.end(); II != EE; ++II)
1306      assert(*II != D && "Inst occurs in data structures");
1307  }
1308
1309  for (ReverseNonLocalPtrDepTy::const_iterator
1310       I = ReverseNonLocalPtrDeps.begin(),
1311       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1312    assert(I->first != D && "Inst occurs in rev NLPD map");
1313
1314    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1315         E = I->second.end(); II != E; ++II)
1316      assert(*II != ValueIsLoadPair(D, false) &&
1317             *II != ValueIsLoadPair(D, true) &&
1318             "Inst occurs in ReverseNonLocalPtrDeps map");
1319  }
1320
1321}
1322