MemoryDependenceAnalysis.cpp revision f7624bc6dd57d5b4deea7c336c3e3aec67f38c9b
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Analysis/PHITransAddr.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/PredIteratorCache.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Target/TargetData.h"
34using namespace llvm;
35
36STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
37STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
38STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
39
40STATISTIC(NumCacheNonLocalPtr,
41          "Number of fully cached non-local ptr responses");
42STATISTIC(NumCacheDirtyNonLocalPtr,
43          "Number of cached, but dirty, non-local ptr responses");
44STATISTIC(NumUncacheNonLocalPtr,
45          "Number of uncached non-local ptr responses");
46STATISTIC(NumCacheCompleteNonLocalPtr,
47          "Number of block queries that were completely cached");
48
49char MemoryDependenceAnalysis::ID = 0;
50
51// Register this pass...
52INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
53                "Memory Dependence Analysis", false, true)
54INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
55INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
56                      "Memory Dependence Analysis", false, true)
57
58MemoryDependenceAnalysis::MemoryDependenceAnalysis()
59: FunctionPass(ID), PredCache(0) {
60  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
61}
62MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
63}
64
65/// Clean up memory in between runs
66void MemoryDependenceAnalysis::releaseMemory() {
67  LocalDeps.clear();
68  NonLocalDeps.clear();
69  NonLocalPointerDeps.clear();
70  ReverseLocalDeps.clear();
71  ReverseNonLocalDeps.clear();
72  ReverseNonLocalPtrDeps.clear();
73  PredCache->clear();
74}
75
76
77
78/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
79///
80void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
81  AU.setPreservesAll();
82  AU.addRequiredTransitive<AliasAnalysis>();
83}
84
85bool MemoryDependenceAnalysis::runOnFunction(Function &) {
86  AA = &getAnalysis<AliasAnalysis>();
87  TD = getAnalysisIfAvailable<TargetData>();
88  if (PredCache == 0)
89    PredCache.reset(new PredIteratorCache());
90  return false;
91}
92
93/// RemoveFromReverseMap - This is a helper function that removes Val from
94/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
95template <typename KeyTy>
96static void RemoveFromReverseMap(DenseMap<Instruction*,
97                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
98                                 Instruction *Inst, KeyTy Val) {
99  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
100  InstIt = ReverseMap.find(Inst);
101  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
102  bool Found = InstIt->second.erase(Val);
103  assert(Found && "Invalid reverse map!"); (void)Found;
104  if (InstIt->second.empty())
105    ReverseMap.erase(InstIt);
106}
107
108/// GetLocation - If the given instruction references a specific memory
109/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
110/// Return a ModRefInfo value describing the general behavior of the
111/// instruction.
112static
113AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
114                                        AliasAnalysis::Location &Loc,
115                                        AliasAnalysis *AA) {
116  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
117    if (LI->isVolatile()) {
118      Loc = AliasAnalysis::Location();
119      return AliasAnalysis::ModRef;
120    }
121    Loc = AA->getLocation(LI);
122    return AliasAnalysis::Ref;
123  }
124
125  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
126    if (SI->isVolatile()) {
127      Loc = AliasAnalysis::Location();
128      return AliasAnalysis::ModRef;
129    }
130    Loc = AA->getLocation(SI);
131    return AliasAnalysis::Mod;
132  }
133
134  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
135    Loc = AA->getLocation(V);
136    return AliasAnalysis::ModRef;
137  }
138
139  if (const CallInst *CI = isFreeCall(Inst)) {
140    // calls to free() deallocate the entire structure
141    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
142    return AliasAnalysis::Mod;
143  }
144
145  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
146    switch (II->getIntrinsicID()) {
147    case Intrinsic::lifetime_start:
148    case Intrinsic::lifetime_end:
149    case Intrinsic::invariant_start:
150      Loc = AliasAnalysis::Location(II->getArgOperand(1),
151                                    cast<ConstantInt>(II->getArgOperand(0))
152                                      ->getZExtValue(),
153                                    II->getMetadata(LLVMContext::MD_tbaa));
154      // These intrinsics don't really modify the memory, but returning Mod
155      // will allow them to be handled conservatively.
156      return AliasAnalysis::Mod;
157    case Intrinsic::invariant_end:
158      Loc = AliasAnalysis::Location(II->getArgOperand(2),
159                                    cast<ConstantInt>(II->getArgOperand(1))
160                                      ->getZExtValue(),
161                                    II->getMetadata(LLVMContext::MD_tbaa));
162      // These intrinsics don't really modify the memory, but returning Mod
163      // will allow them to be handled conservatively.
164      return AliasAnalysis::Mod;
165    default:
166      break;
167    }
168
169  // Otherwise, just do the coarse-grained thing that always works.
170  if (Inst->mayWriteToMemory())
171    return AliasAnalysis::ModRef;
172  if (Inst->mayReadFromMemory())
173    return AliasAnalysis::Ref;
174  return AliasAnalysis::NoModRef;
175}
176
177/// getCallSiteDependencyFrom - Private helper for finding the local
178/// dependencies of a call site.
179MemDepResult MemoryDependenceAnalysis::
180getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
181                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
182  // Walk backwards through the block, looking for dependencies
183  while (ScanIt != BB->begin()) {
184    Instruction *Inst = --ScanIt;
185
186    // If this inst is a memory op, get the pointer it accessed
187    AliasAnalysis::Location Loc;
188    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
189    if (Loc.Ptr) {
190      // A simple instruction.
191      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
192        return MemDepResult::getClobber(Inst);
193      continue;
194    }
195
196    if (CallSite InstCS = cast<Value>(Inst)) {
197      // Debug intrinsics don't cause dependences.
198      if (isa<DbgInfoIntrinsic>(Inst)) continue;
199      // If these two calls do not interfere, look past it.
200      switch (AA->getModRefInfo(CS, InstCS)) {
201      case AliasAnalysis::NoModRef:
202        // If the two calls are the same, return InstCS as a Def, so that
203        // CS can be found redundant and eliminated.
204        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
205            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
206          return MemDepResult::getDef(Inst);
207
208        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
209        // keep scanning.
210        break;
211      default:
212        return MemDepResult::getClobber(Inst);
213      }
214    }
215  }
216
217  // No dependence found.  If this is the entry block of the function, it is a
218  // clobber, otherwise it is non-local.
219  if (BB != &BB->getParent()->getEntryBlock())
220    return MemDepResult::getNonLocal();
221  return MemDepResult::getClobber(ScanIt);
222}
223
224/// getPointerDependencyFrom - Return the instruction on which a memory
225/// location depends.  If isLoad is true, this routine ignores may-aliases with
226/// read-only operations.  If isLoad is false, this routine ignores may-aliases
227/// with reads from read-only locations.
228MemDepResult MemoryDependenceAnalysis::
229getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
230                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
231
232  Value *InvariantTag = 0;
233
234  // Walk backwards through the basic block, looking for dependencies.
235  while (ScanIt != BB->begin()) {
236    Instruction *Inst = --ScanIt;
237
238    // If we're in an invariant region, no dependencies can be found before
239    // we pass an invariant-begin marker.
240    if (InvariantTag == Inst) {
241      InvariantTag = 0;
242      continue;
243    }
244
245    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
246      // Debug intrinsics don't (and can't) cause dependences.
247      if (isa<DbgInfoIntrinsic>(II)) continue;
248
249      // If we pass an invariant-end marker, then we've just entered an
250      // invariant region and can start ignoring dependencies.
251      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
252        // FIXME: This only considers queries directly on the invariant-tagged
253        // pointer, not on query pointers that are indexed off of them.  It'd
254        // be nice to handle that at some point.
255        AliasAnalysis::AliasResult R =
256          AA->alias(AliasAnalysis::Location(II->getArgOperand(2)), MemLoc);
257        if (R == AliasAnalysis::MustAlias)
258          InvariantTag = II->getArgOperand(0);
259
260        continue;
261      }
262
263      // If we reach a lifetime begin or end marker, then the query ends here
264      // because the value is undefined.
265      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
266        // FIXME: This only considers queries directly on the invariant-tagged
267        // pointer, not on query pointers that are indexed off of them.  It'd
268        // be nice to handle that at some point.
269        AliasAnalysis::AliasResult R =
270          AA->alias(AliasAnalysis::Location(II->getArgOperand(1)), MemLoc);
271        if (R == AliasAnalysis::MustAlias)
272          return MemDepResult::getDef(II);
273        continue;
274      }
275    }
276
277    // If we're querying on a load and we're in an invariant region, we're done
278    // at this point. Nothing a load depends on can live in an invariant region.
279    //
280    // FIXME: this will prevent us from returning load/load must-aliases, so GVN
281    // won't remove redundant loads.
282    if (isLoad && InvariantTag) continue;
283
284    // Values depend on loads if the pointers are must aliased.  This means that
285    // a load depends on another must aliased load from the same value.
286    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
287      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
288
289      // If we found a pointer, check if it could be the same as our pointer.
290      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
291      if (R == AliasAnalysis::NoAlias)
292        continue;
293
294      // May-alias loads don't depend on each other without a dependence.
295      if (isLoad && R != AliasAnalysis::MustAlias)
296        continue;
297
298      // Stores don't alias loads from read-only memory.
299      if (!isLoad && AA->pointsToConstantMemory(LoadLoc))
300        continue;
301
302      // Stores depend on may and must aliased loads, loads depend on must-alias
303      // loads.
304      return MemDepResult::getDef(Inst);
305    }
306
307    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
308      // There can't be stores to the value we care about inside an
309      // invariant region.
310      if (InvariantTag) continue;
311
312      // If alias analysis can tell that this store is guaranteed to not modify
313      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
314      // the query pointer points to constant memory etc.
315      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
316        continue;
317
318      // Ok, this store might clobber the query pointer.  Check to see if it is
319      // a must alias: in this case, we want to return this as a def.
320      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
321
322      // If we found a pointer, check if it could be the same as our pointer.
323      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
324
325      if (R == AliasAnalysis::NoAlias)
326        continue;
327      if (R == AliasAnalysis::MustAlias)
328        return MemDepResult::getDef(Inst);
329      return MemDepResult::getClobber(Inst);
330    }
331
332    // If this is an allocation, and if we know that the accessed pointer is to
333    // the allocation, return Def.  This means that there is no dependence and
334    // the access can be optimized based on that.  For example, a load could
335    // turn into undef.
336    // Note: Only determine this to be a malloc if Inst is the malloc call, not
337    // a subsequent bitcast of the malloc call result.  There can be stores to
338    // the malloced memory between the malloc call and its bitcast uses, and we
339    // need to continue scanning until the malloc call.
340    if (isa<AllocaInst>(Inst) ||
341        (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
342      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr);
343
344      if (AccessPtr == Inst ||
345          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
346        return MemDepResult::getDef(Inst);
347      continue;
348    }
349
350    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
351    switch (AA->getModRefInfo(Inst, MemLoc)) {
352    case AliasAnalysis::NoModRef:
353      // If the call has no effect on the queried pointer, just ignore it.
354      continue;
355    case AliasAnalysis::Mod:
356      // If we're in an invariant region, we can ignore calls that ONLY
357      // modify the pointer.
358      if (InvariantTag) continue;
359      return MemDepResult::getClobber(Inst);
360    case AliasAnalysis::Ref:
361      // If the call is known to never store to the pointer, and if this is a
362      // load query, we can safely ignore it (scan past it).
363      if (isLoad)
364        continue;
365    default:
366      // Otherwise, there is a potential dependence.  Return a clobber.
367      return MemDepResult::getClobber(Inst);
368    }
369  }
370
371  // No dependence found.  If this is the entry block of the function, it is a
372  // clobber, otherwise it is non-local.
373  if (BB != &BB->getParent()->getEntryBlock())
374    return MemDepResult::getNonLocal();
375  return MemDepResult::getClobber(ScanIt);
376}
377
378/// getDependency - Return the instruction on which a memory operation
379/// depends.
380MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
381  Instruction *ScanPos = QueryInst;
382
383  // Check for a cached result
384  MemDepResult &LocalCache = LocalDeps[QueryInst];
385
386  // If the cached entry is non-dirty, just return it.  Note that this depends
387  // on MemDepResult's default constructing to 'dirty'.
388  if (!LocalCache.isDirty())
389    return LocalCache;
390
391  // Otherwise, if we have a dirty entry, we know we can start the scan at that
392  // instruction, which may save us some work.
393  if (Instruction *Inst = LocalCache.getInst()) {
394    ScanPos = Inst;
395
396    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
397  }
398
399  BasicBlock *QueryParent = QueryInst->getParent();
400
401  // Do the scan.
402  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
403    // No dependence found.  If this is the entry block of the function, it is a
404    // clobber, otherwise it is non-local.
405    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
406      LocalCache = MemDepResult::getNonLocal();
407    else
408      LocalCache = MemDepResult::getClobber(QueryInst);
409  } else {
410    AliasAnalysis::Location MemLoc;
411    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
412    if (MemLoc.Ptr) {
413      // If we can do a pointer scan, make it happen.
414      bool isLoad = !(MR & AliasAnalysis::Mod);
415      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
416        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
417
418      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
419                                            QueryParent);
420    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
421      CallSite QueryCS(QueryInst);
422      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
423      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
424                                             QueryParent);
425    } else
426      // Non-memory instruction.
427      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
428  }
429
430  // Remember the result!
431  if (Instruction *I = LocalCache.getInst())
432    ReverseLocalDeps[I].insert(QueryInst);
433
434  return LocalCache;
435}
436
437#ifndef NDEBUG
438/// AssertSorted - This method is used when -debug is specified to verify that
439/// cache arrays are properly kept sorted.
440static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
441                         int Count = -1) {
442  if (Count == -1) Count = Cache.size();
443  if (Count == 0) return;
444
445  for (unsigned i = 1; i != unsigned(Count); ++i)
446    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
447}
448#endif
449
450/// getNonLocalCallDependency - Perform a full dependency query for the
451/// specified call, returning the set of blocks that the value is
452/// potentially live across.  The returned set of results will include a
453/// "NonLocal" result for all blocks where the value is live across.
454///
455/// This method assumes the instruction returns a "NonLocal" dependency
456/// within its own block.
457///
458/// This returns a reference to an internal data structure that may be
459/// invalidated on the next non-local query or when an instruction is
460/// removed.  Clients must copy this data if they want it around longer than
461/// that.
462const MemoryDependenceAnalysis::NonLocalDepInfo &
463MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
464  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
465 "getNonLocalCallDependency should only be used on calls with non-local deps!");
466  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
467  NonLocalDepInfo &Cache = CacheP.first;
468
469  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
470  /// the cached case, this can happen due to instructions being deleted etc. In
471  /// the uncached case, this starts out as the set of predecessors we care
472  /// about.
473  SmallVector<BasicBlock*, 32> DirtyBlocks;
474
475  if (!Cache.empty()) {
476    // Okay, we have a cache entry.  If we know it is not dirty, just return it
477    // with no computation.
478    if (!CacheP.second) {
479      ++NumCacheNonLocal;
480      return Cache;
481    }
482
483    // If we already have a partially computed set of results, scan them to
484    // determine what is dirty, seeding our initial DirtyBlocks worklist.
485    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
486       I != E; ++I)
487      if (I->getResult().isDirty())
488        DirtyBlocks.push_back(I->getBB());
489
490    // Sort the cache so that we can do fast binary search lookups below.
491    std::sort(Cache.begin(), Cache.end());
492
493    ++NumCacheDirtyNonLocal;
494    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
495    //     << Cache.size() << " cached: " << *QueryInst;
496  } else {
497    // Seed DirtyBlocks with each of the preds of QueryInst's block.
498    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
499    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
500      DirtyBlocks.push_back(*PI);
501    ++NumUncacheNonLocal;
502  }
503
504  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
505  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
506
507  SmallPtrSet<BasicBlock*, 64> Visited;
508
509  unsigned NumSortedEntries = Cache.size();
510  DEBUG(AssertSorted(Cache));
511
512  // Iterate while we still have blocks to update.
513  while (!DirtyBlocks.empty()) {
514    BasicBlock *DirtyBB = DirtyBlocks.back();
515    DirtyBlocks.pop_back();
516
517    // Already processed this block?
518    if (!Visited.insert(DirtyBB))
519      continue;
520
521    // Do a binary search to see if we already have an entry for this block in
522    // the cache set.  If so, find it.
523    DEBUG(AssertSorted(Cache, NumSortedEntries));
524    NonLocalDepInfo::iterator Entry =
525      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
526                       NonLocalDepEntry(DirtyBB));
527    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
528      --Entry;
529
530    NonLocalDepEntry *ExistingResult = 0;
531    if (Entry != Cache.begin()+NumSortedEntries &&
532        Entry->getBB() == DirtyBB) {
533      // If we already have an entry, and if it isn't already dirty, the block
534      // is done.
535      if (!Entry->getResult().isDirty())
536        continue;
537
538      // Otherwise, remember this slot so we can update the value.
539      ExistingResult = &*Entry;
540    }
541
542    // If the dirty entry has a pointer, start scanning from it so we don't have
543    // to rescan the entire block.
544    BasicBlock::iterator ScanPos = DirtyBB->end();
545    if (ExistingResult) {
546      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
547        ScanPos = Inst;
548        // We're removing QueryInst's use of Inst.
549        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
550                             QueryCS.getInstruction());
551      }
552    }
553
554    // Find out if this block has a local dependency for QueryInst.
555    MemDepResult Dep;
556
557    if (ScanPos != DirtyBB->begin()) {
558      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
559    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
560      // No dependence found.  If this is the entry block of the function, it is
561      // a clobber, otherwise it is non-local.
562      Dep = MemDepResult::getNonLocal();
563    } else {
564      Dep = MemDepResult::getClobber(ScanPos);
565    }
566
567    // If we had a dirty entry for the block, update it.  Otherwise, just add
568    // a new entry.
569    if (ExistingResult)
570      ExistingResult->setResult(Dep);
571    else
572      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
573
574    // If the block has a dependency (i.e. it isn't completely transparent to
575    // the value), remember the association!
576    if (!Dep.isNonLocal()) {
577      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
578      // update this when we remove instructions.
579      if (Instruction *Inst = Dep.getInst())
580        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
581    } else {
582
583      // If the block *is* completely transparent to the load, we need to check
584      // the predecessors of this block.  Add them to our worklist.
585      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
586        DirtyBlocks.push_back(*PI);
587    }
588  }
589
590  return Cache;
591}
592
593/// getNonLocalPointerDependency - Perform a full dependency query for an
594/// access to the specified (non-volatile) memory location, returning the
595/// set of instructions that either define or clobber the value.
596///
597/// This method assumes the pointer has a "NonLocal" dependency within its
598/// own block.
599///
600void MemoryDependenceAnalysis::
601getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
602                             BasicBlock *FromBB,
603                             SmallVectorImpl<NonLocalDepResult> &Result) {
604  assert(Loc.Ptr->getType()->isPointerTy() &&
605         "Can't get pointer deps of a non-pointer!");
606  Result.clear();
607
608  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
609
610  // This is the set of blocks we've inspected, and the pointer we consider in
611  // each block.  Because of critical edges, we currently bail out if querying
612  // a block with multiple different pointers.  This can happen during PHI
613  // translation.
614  DenseMap<BasicBlock*, Value*> Visited;
615  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
616                                   Result, Visited, true))
617    return;
618  Result.clear();
619  Result.push_back(NonLocalDepResult(FromBB,
620                                     MemDepResult::getClobber(FromBB->begin()),
621                                     const_cast<Value *>(Loc.Ptr)));
622}
623
624/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
625/// Pointer/PointeeSize using either cached information in Cache or by doing a
626/// lookup (which may use dirty cache info if available).  If we do a lookup,
627/// add the result to the cache.
628MemDepResult MemoryDependenceAnalysis::
629GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
630                        bool isLoad, BasicBlock *BB,
631                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
632
633  // Do a binary search to see if we already have an entry for this block in
634  // the cache set.  If so, find it.
635  NonLocalDepInfo::iterator Entry =
636    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
637                     NonLocalDepEntry(BB));
638  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
639    --Entry;
640
641  NonLocalDepEntry *ExistingResult = 0;
642  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
643    ExistingResult = &*Entry;
644
645  // If we have a cached entry, and it is non-dirty, use it as the value for
646  // this dependency.
647  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
648    ++NumCacheNonLocalPtr;
649    return ExistingResult->getResult();
650  }
651
652  // Otherwise, we have to scan for the value.  If we have a dirty cache
653  // entry, start scanning from its position, otherwise we scan from the end
654  // of the block.
655  BasicBlock::iterator ScanPos = BB->end();
656  if (ExistingResult && ExistingResult->getResult().getInst()) {
657    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
658           "Instruction invalidated?");
659    ++NumCacheDirtyNonLocalPtr;
660    ScanPos = ExistingResult->getResult().getInst();
661
662    // Eliminating the dirty entry from 'Cache', so update the reverse info.
663    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
664    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
665  } else {
666    ++NumUncacheNonLocalPtr;
667  }
668
669  // Scan the block for the dependency.
670  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
671
672  // If we had a dirty entry for the block, update it.  Otherwise, just add
673  // a new entry.
674  if (ExistingResult)
675    ExistingResult->setResult(Dep);
676  else
677    Cache->push_back(NonLocalDepEntry(BB, Dep));
678
679  // If the block has a dependency (i.e. it isn't completely transparent to
680  // the value), remember the reverse association because we just added it
681  // to Cache!
682  if (Dep.isNonLocal())
683    return Dep;
684
685  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
686  // update MemDep when we remove instructions.
687  Instruction *Inst = Dep.getInst();
688  assert(Inst && "Didn't depend on anything?");
689  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
690  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
691  return Dep;
692}
693
694/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
695/// number of elements in the array that are already properly ordered.  This is
696/// optimized for the case when only a few entries are added.
697static void
698SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
699                         unsigned NumSortedEntries) {
700  switch (Cache.size() - NumSortedEntries) {
701  case 0:
702    // done, no new entries.
703    break;
704  case 2: {
705    // Two new entries, insert the last one into place.
706    NonLocalDepEntry Val = Cache.back();
707    Cache.pop_back();
708    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
709      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
710    Cache.insert(Entry, Val);
711    // FALL THROUGH.
712  }
713  case 1:
714    // One new entry, Just insert the new value at the appropriate position.
715    if (Cache.size() != 1) {
716      NonLocalDepEntry Val = Cache.back();
717      Cache.pop_back();
718      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
719        std::upper_bound(Cache.begin(), Cache.end(), Val);
720      Cache.insert(Entry, Val);
721    }
722    break;
723  default:
724    // Added many values, do a full scale sort.
725    std::sort(Cache.begin(), Cache.end());
726    break;
727  }
728}
729
730/// getNonLocalPointerDepFromBB - Perform a dependency query based on
731/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
732/// results to the results vector and keep track of which blocks are visited in
733/// 'Visited'.
734///
735/// This has special behavior for the first block queries (when SkipFirstBlock
736/// is true).  In this special case, it ignores the contents of the specified
737/// block and starts returning dependence info for its predecessors.
738///
739/// This function returns false on success, or true to indicate that it could
740/// not compute dependence information for some reason.  This should be treated
741/// as a clobber dependence on the first instruction in the predecessor block.
742bool MemoryDependenceAnalysis::
743getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
744                            const AliasAnalysis::Location &Loc,
745                            bool isLoad, BasicBlock *StartBB,
746                            SmallVectorImpl<NonLocalDepResult> &Result,
747                            DenseMap<BasicBlock*, Value*> &Visited,
748                            bool SkipFirstBlock) {
749
750  // Look up the cached info for Pointer.
751  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
752
753  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
754  // CacheKey, this value will be inserted as the associated value. Otherwise,
755  // it'll be ignored, and we'll have to check to see if the cached size and
756  // tbaa tag are consistent with the current query.
757  NonLocalPointerInfo InitialNLPI;
758  InitialNLPI.Size = Loc.Size;
759  InitialNLPI.TBAATag = Loc.TBAATag;
760
761  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
762  // already have one.
763  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
764    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
765  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
766
767  // If we already have a cache entry for this CacheKey, we may need to do some
768  // work to reconcile the cache entry and the current query.
769  if (!Pair.second) {
770    if (CacheInfo->Size < Loc.Size) {
771      // The query's Size is greater than the cached one. Throw out the
772      // cached data and procede with the query at the greater size.
773      CacheInfo->Pair = BBSkipFirstBlockPair();
774      CacheInfo->Size = Loc.Size;
775      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
776           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
777        if (Instruction *Inst = DI->getResult().getInst())
778          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
779      CacheInfo->NonLocalDeps.clear();
780    } else if (CacheInfo->Size > Loc.Size) {
781      // This query's Size is less than the cached one. Conservatively restart
782      // the query using the greater size.
783      return getNonLocalPointerDepFromBB(Pointer,
784                                         Loc.getWithNewSize(CacheInfo->Size),
785                                         isLoad, StartBB, Result, Visited,
786                                         SkipFirstBlock);
787    }
788
789    // If the query's TBAATag is inconsistent with the cached one,
790    // conservatively throw out the cached data and restart the query with
791    // no tag if needed.
792    if (CacheInfo->TBAATag != Loc.TBAATag) {
793      if (CacheInfo->TBAATag) {
794        CacheInfo->Pair = BBSkipFirstBlockPair();
795        CacheInfo->TBAATag = 0;
796        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
797             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
798          if (Instruction *Inst = DI->getResult().getInst())
799            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
800        CacheInfo->NonLocalDeps.clear();
801      }
802      if (Loc.TBAATag)
803        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
804                                           isLoad, StartBB, Result, Visited,
805                                           SkipFirstBlock);
806    }
807  }
808
809  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
810
811  // If we have valid cached information for exactly the block we are
812  // investigating, just return it with no recomputation.
813  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
814    // We have a fully cached result for this query then we can just return the
815    // cached results and populate the visited set.  However, we have to verify
816    // that we don't already have conflicting results for these blocks.  Check
817    // to ensure that if a block in the results set is in the visited set that
818    // it was for the same pointer query.
819    if (!Visited.empty()) {
820      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
821           I != E; ++I) {
822        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
823        if (VI == Visited.end() || VI->second == Pointer.getAddr())
824          continue;
825
826        // We have a pointer mismatch in a block.  Just return clobber, saying
827        // that something was clobbered in this result.  We could also do a
828        // non-fully cached query, but there is little point in doing this.
829        return true;
830      }
831    }
832
833    Value *Addr = Pointer.getAddr();
834    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
835         I != E; ++I) {
836      Visited.insert(std::make_pair(I->getBB(), Addr));
837      if (!I->getResult().isNonLocal())
838        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
839    }
840    ++NumCacheCompleteNonLocalPtr;
841    return false;
842  }
843
844  // Otherwise, either this is a new block, a block with an invalid cache
845  // pointer or one that we're about to invalidate by putting more info into it
846  // than its valid cache info.  If empty, the result will be valid cache info,
847  // otherwise it isn't.
848  if (Cache->empty())
849    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
850  else
851    CacheInfo->Pair = BBSkipFirstBlockPair();
852
853  SmallVector<BasicBlock*, 32> Worklist;
854  Worklist.push_back(StartBB);
855
856  // Keep track of the entries that we know are sorted.  Previously cached
857  // entries will all be sorted.  The entries we add we only sort on demand (we
858  // don't insert every element into its sorted position).  We know that we
859  // won't get any reuse from currently inserted values, because we don't
860  // revisit blocks after we insert info for them.
861  unsigned NumSortedEntries = Cache->size();
862  DEBUG(AssertSorted(*Cache));
863
864  while (!Worklist.empty()) {
865    BasicBlock *BB = Worklist.pop_back_val();
866
867    // Skip the first block if we have it.
868    if (!SkipFirstBlock) {
869      // Analyze the dependency of *Pointer in FromBB.  See if we already have
870      // been here.
871      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
872
873      // Get the dependency info for Pointer in BB.  If we have cached
874      // information, we will use it, otherwise we compute it.
875      DEBUG(AssertSorted(*Cache, NumSortedEntries));
876      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
877                                                 NumSortedEntries);
878
879      // If we got a Def or Clobber, add this to the list of results.
880      if (!Dep.isNonLocal()) {
881        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
882        continue;
883      }
884    }
885
886    // If 'Pointer' is an instruction defined in this block, then we need to do
887    // phi translation to change it into a value live in the predecessor block.
888    // If not, we just add the predecessors to the worklist and scan them with
889    // the same Pointer.
890    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
891      SkipFirstBlock = false;
892      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
893        // Verify that we haven't looked at this block yet.
894        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
895          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
896        if (InsertRes.second) {
897          // First time we've looked at *PI.
898          Worklist.push_back(*PI);
899          continue;
900        }
901
902        // If we have seen this block before, but it was with a different
903        // pointer then we have a phi translation failure and we have to treat
904        // this as a clobber.
905        if (InsertRes.first->second != Pointer.getAddr())
906          goto PredTranslationFailure;
907      }
908      continue;
909    }
910
911    // We do need to do phi translation, if we know ahead of time we can't phi
912    // translate this value, don't even try.
913    if (!Pointer.IsPotentiallyPHITranslatable())
914      goto PredTranslationFailure;
915
916    // We may have added values to the cache list before this PHI translation.
917    // If so, we haven't done anything to ensure that the cache remains sorted.
918    // Sort it now (if needed) so that recursive invocations of
919    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
920    // value will only see properly sorted cache arrays.
921    if (Cache && NumSortedEntries != Cache->size()) {
922      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
923      NumSortedEntries = Cache->size();
924    }
925    Cache = 0;
926
927    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
928      BasicBlock *Pred = *PI;
929
930      // Get the PHI translated pointer in this predecessor.  This can fail if
931      // not translatable, in which case the getAddr() returns null.
932      PHITransAddr PredPointer(Pointer);
933      PredPointer.PHITranslateValue(BB, Pred, 0);
934
935      Value *PredPtrVal = PredPointer.getAddr();
936
937      // Check to see if we have already visited this pred block with another
938      // pointer.  If so, we can't do this lookup.  This failure can occur
939      // with PHI translation when a critical edge exists and the PHI node in
940      // the successor translates to a pointer value different than the
941      // pointer the block was first analyzed with.
942      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
943        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
944
945      if (!InsertRes.second) {
946        // If the predecessor was visited with PredPtr, then we already did
947        // the analysis and can ignore it.
948        if (InsertRes.first->second == PredPtrVal)
949          continue;
950
951        // Otherwise, the block was previously analyzed with a different
952        // pointer.  We can't represent the result of this case, so we just
953        // treat this as a phi translation failure.
954        goto PredTranslationFailure;
955      }
956
957      // If PHI translation was unable to find an available pointer in this
958      // predecessor, then we have to assume that the pointer is clobbered in
959      // that predecessor.  We can still do PRE of the load, which would insert
960      // a computation of the pointer in this predecessor.
961      if (PredPtrVal == 0) {
962        // Add the entry to the Result list.
963        NonLocalDepResult Entry(Pred,
964                                MemDepResult::getClobber(Pred->getTerminator()),
965                                PredPtrVal);
966        Result.push_back(Entry);
967
968        // Since we had a phi translation failure, the cache for CacheKey won't
969        // include all of the entries that we need to immediately satisfy future
970        // queries.  Mark this in NonLocalPointerDeps by setting the
971        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
972        // cached value to do more work but not miss the phi trans failure.
973        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
974        NLPI.Pair = BBSkipFirstBlockPair();
975        continue;
976      }
977
978      // FIXME: it is entirely possible that PHI translating will end up with
979      // the same value.  Consider PHI translating something like:
980      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
981      // to recurse here, pedantically speaking.
982
983      // If we have a problem phi translating, fall through to the code below
984      // to handle the failure condition.
985      if (getNonLocalPointerDepFromBB(PredPointer,
986                                      Loc.getWithNewPtr(PredPointer.getAddr()),
987                                      isLoad, Pred,
988                                      Result, Visited))
989        goto PredTranslationFailure;
990    }
991
992    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
993    CacheInfo = &NonLocalPointerDeps[CacheKey];
994    Cache = &CacheInfo->NonLocalDeps;
995    NumSortedEntries = Cache->size();
996
997    // Since we did phi translation, the "Cache" set won't contain all of the
998    // results for the query.  This is ok (we can still use it to accelerate
999    // specific block queries) but we can't do the fastpath "return all
1000    // results from the set"  Clear out the indicator for this.
1001    CacheInfo->Pair = BBSkipFirstBlockPair();
1002    SkipFirstBlock = false;
1003    continue;
1004
1005  PredTranslationFailure:
1006
1007    if (Cache == 0) {
1008      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1009      CacheInfo = &NonLocalPointerDeps[CacheKey];
1010      Cache = &CacheInfo->NonLocalDeps;
1011      NumSortedEntries = Cache->size();
1012    }
1013
1014    // Since we failed phi translation, the "Cache" set won't contain all of the
1015    // results for the query.  This is ok (we can still use it to accelerate
1016    // specific block queries) but we can't do the fastpath "return all
1017    // results from the set".  Clear out the indicator for this.
1018    CacheInfo->Pair = BBSkipFirstBlockPair();
1019
1020    // If *nothing* works, mark the pointer as being clobbered by the first
1021    // instruction in this block.
1022    //
1023    // If this is the magic first block, return this as a clobber of the whole
1024    // incoming value.  Since we can't phi translate to one of the predecessors,
1025    // we have to bail out.
1026    if (SkipFirstBlock)
1027      return true;
1028
1029    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1030      assert(I != Cache->rend() && "Didn't find current block??");
1031      if (I->getBB() != BB)
1032        continue;
1033
1034      assert(I->getResult().isNonLocal() &&
1035             "Should only be here with transparent block");
1036      I->setResult(MemDepResult::getClobber(BB->begin()));
1037      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
1038      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1039                                         Pointer.getAddr()));
1040      break;
1041    }
1042  }
1043
1044  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1045  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1046  DEBUG(AssertSorted(*Cache));
1047  return false;
1048}
1049
1050/// RemoveCachedNonLocalPointerDependencies - If P exists in
1051/// CachedNonLocalPointerInfo, remove it.
1052void MemoryDependenceAnalysis::
1053RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1054  CachedNonLocalPointerInfo::iterator It =
1055    NonLocalPointerDeps.find(P);
1056  if (It == NonLocalPointerDeps.end()) return;
1057
1058  // Remove all of the entries in the BB->val map.  This involves removing
1059  // instructions from the reverse map.
1060  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1061
1062  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1063    Instruction *Target = PInfo[i].getResult().getInst();
1064    if (Target == 0) continue;  // Ignore non-local dep results.
1065    assert(Target->getParent() == PInfo[i].getBB());
1066
1067    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1068    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1069  }
1070
1071  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1072  NonLocalPointerDeps.erase(It);
1073}
1074
1075
1076/// invalidateCachedPointerInfo - This method is used to invalidate cached
1077/// information about the specified pointer, because it may be too
1078/// conservative in memdep.  This is an optional call that can be used when
1079/// the client detects an equivalence between the pointer and some other
1080/// value and replaces the other value with ptr. This can make Ptr available
1081/// in more places that cached info does not necessarily keep.
1082void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1083  // If Ptr isn't really a pointer, just ignore it.
1084  if (!Ptr->getType()->isPointerTy()) return;
1085  // Flush store info for the pointer.
1086  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1087  // Flush load info for the pointer.
1088  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1089}
1090
1091/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1092/// This needs to be done when the CFG changes, e.g., due to splitting
1093/// critical edges.
1094void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1095  PredCache->clear();
1096}
1097
1098/// removeInstruction - Remove an instruction from the dependence analysis,
1099/// updating the dependence of instructions that previously depended on it.
1100/// This method attempts to keep the cache coherent using the reverse map.
1101void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1102  // Walk through the Non-local dependencies, removing this one as the value
1103  // for any cached queries.
1104  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1105  if (NLDI != NonLocalDeps.end()) {
1106    NonLocalDepInfo &BlockMap = NLDI->second.first;
1107    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1108         DI != DE; ++DI)
1109      if (Instruction *Inst = DI->getResult().getInst())
1110        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1111    NonLocalDeps.erase(NLDI);
1112  }
1113
1114  // If we have a cached local dependence query for this instruction, remove it.
1115  //
1116  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1117  if (LocalDepEntry != LocalDeps.end()) {
1118    // Remove us from DepInst's reverse set now that the local dep info is gone.
1119    if (Instruction *Inst = LocalDepEntry->second.getInst())
1120      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1121
1122    // Remove this local dependency info.
1123    LocalDeps.erase(LocalDepEntry);
1124  }
1125
1126  // If we have any cached pointer dependencies on this instruction, remove
1127  // them.  If the instruction has non-pointer type, then it can't be a pointer
1128  // base.
1129
1130  // Remove it from both the load info and the store info.  The instruction
1131  // can't be in either of these maps if it is non-pointer.
1132  if (RemInst->getType()->isPointerTy()) {
1133    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1134    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1135  }
1136
1137  // Loop over all of the things that depend on the instruction we're removing.
1138  //
1139  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1140
1141  // If we find RemInst as a clobber or Def in any of the maps for other values,
1142  // we need to replace its entry with a dirty version of the instruction after
1143  // it.  If RemInst is a terminator, we use a null dirty value.
1144  //
1145  // Using a dirty version of the instruction after RemInst saves having to scan
1146  // the entire block to get to this point.
1147  MemDepResult NewDirtyVal;
1148  if (!RemInst->isTerminator())
1149    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1150
1151  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1152  if (ReverseDepIt != ReverseLocalDeps.end()) {
1153    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1154    // RemInst can't be the terminator if it has local stuff depending on it.
1155    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1156           "Nothing can locally depend on a terminator");
1157
1158    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1159         E = ReverseDeps.end(); I != E; ++I) {
1160      Instruction *InstDependingOnRemInst = *I;
1161      assert(InstDependingOnRemInst != RemInst &&
1162             "Already removed our local dep info");
1163
1164      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1165
1166      // Make sure to remember that new things depend on NewDepInst.
1167      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1168             "a local dep on this if it is a terminator!");
1169      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1170                                                InstDependingOnRemInst));
1171    }
1172
1173    ReverseLocalDeps.erase(ReverseDepIt);
1174
1175    // Add new reverse deps after scanning the set, to avoid invalidating the
1176    // 'ReverseDeps' reference.
1177    while (!ReverseDepsToAdd.empty()) {
1178      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1179        .insert(ReverseDepsToAdd.back().second);
1180      ReverseDepsToAdd.pop_back();
1181    }
1182  }
1183
1184  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1185  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1186    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1187    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1188         I != E; ++I) {
1189      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1190
1191      PerInstNLInfo &INLD = NonLocalDeps[*I];
1192      // The information is now dirty!
1193      INLD.second = true;
1194
1195      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1196           DE = INLD.first.end(); DI != DE; ++DI) {
1197        if (DI->getResult().getInst() != RemInst) continue;
1198
1199        // Convert to a dirty entry for the subsequent instruction.
1200        DI->setResult(NewDirtyVal);
1201
1202        if (Instruction *NextI = NewDirtyVal.getInst())
1203          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1204      }
1205    }
1206
1207    ReverseNonLocalDeps.erase(ReverseDepIt);
1208
1209    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1210    while (!ReverseDepsToAdd.empty()) {
1211      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1212        .insert(ReverseDepsToAdd.back().second);
1213      ReverseDepsToAdd.pop_back();
1214    }
1215  }
1216
1217  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1218  // value in the NonLocalPointerDeps info.
1219  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1220    ReverseNonLocalPtrDeps.find(RemInst);
1221  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1222    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1223    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1224
1225    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1226         E = Set.end(); I != E; ++I) {
1227      ValueIsLoadPair P = *I;
1228      assert(P.getPointer() != RemInst &&
1229             "Already removed NonLocalPointerDeps info for RemInst");
1230
1231      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1232
1233      // The cache is not valid for any specific block anymore.
1234      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1235
1236      // Update any entries for RemInst to use the instruction after it.
1237      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1238           DI != DE; ++DI) {
1239        if (DI->getResult().getInst() != RemInst) continue;
1240
1241        // Convert to a dirty entry for the subsequent instruction.
1242        DI->setResult(NewDirtyVal);
1243
1244        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1245          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1246      }
1247
1248      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1249      // subsequent value may invalidate the sortedness.
1250      std::sort(NLPDI.begin(), NLPDI.end());
1251    }
1252
1253    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1254
1255    while (!ReversePtrDepsToAdd.empty()) {
1256      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1257        .insert(ReversePtrDepsToAdd.back().second);
1258      ReversePtrDepsToAdd.pop_back();
1259    }
1260  }
1261
1262
1263  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1264  AA->deleteValue(RemInst);
1265  DEBUG(verifyRemoved(RemInst));
1266}
1267/// verifyRemoved - Verify that the specified instruction does not occur
1268/// in our internal data structures.
1269void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1270  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1271       E = LocalDeps.end(); I != E; ++I) {
1272    assert(I->first != D && "Inst occurs in data structures");
1273    assert(I->second.getInst() != D &&
1274           "Inst occurs in data structures");
1275  }
1276
1277  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1278       E = NonLocalPointerDeps.end(); I != E; ++I) {
1279    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1280    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1281    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1282         II != E; ++II)
1283      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1284  }
1285
1286  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1287       E = NonLocalDeps.end(); I != E; ++I) {
1288    assert(I->first != D && "Inst occurs in data structures");
1289    const PerInstNLInfo &INLD = I->second;
1290    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1291         EE = INLD.first.end(); II  != EE; ++II)
1292      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1293  }
1294
1295  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1296       E = ReverseLocalDeps.end(); I != E; ++I) {
1297    assert(I->first != D && "Inst occurs in data structures");
1298    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1299         EE = I->second.end(); II != EE; ++II)
1300      assert(*II != D && "Inst occurs in data structures");
1301  }
1302
1303  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1304       E = ReverseNonLocalDeps.end();
1305       I != E; ++I) {
1306    assert(I->first != D && "Inst occurs in data structures");
1307    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1308         EE = I->second.end(); II != EE; ++II)
1309      assert(*II != D && "Inst occurs in data structures");
1310  }
1311
1312  for (ReverseNonLocalPtrDepTy::const_iterator
1313       I = ReverseNonLocalPtrDeps.begin(),
1314       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1315    assert(I->first != D && "Inst occurs in rev NLPD map");
1316
1317    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1318         E = I->second.end(); II != E; ++II)
1319      assert(*II != ValueIsLoadPair(D, false) &&
1320             *II != ValueIsLoadPair(D, true) &&
1321             "Inst occurs in ReverseNonLocalPtrDeps map");
1322  }
1323
1324}
1325