PHITransAddr.cpp revision 9fc5cdf77c812aaa80419036de27576d45894d0d
1//===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PHITransAddr class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/PHITransAddr.h"
15#include "llvm/Instructions.h"
16#include "llvm/Analysis/Dominators.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/raw_ostream.h"
21using namespace llvm;
22
23static bool CanPHITrans(Instruction *Inst) {
24  if (isa<PHINode>(Inst) ||
25      isa<GetElementPtrInst>(Inst))
26    return true;
27
28  if (isa<CastInst>(Inst) &&
29      Inst->isSafeToSpeculativelyExecute())
30    return true;
31
32  if (Inst->getOpcode() == Instruction::Add &&
33      isa<ConstantInt>(Inst->getOperand(1)))
34    return true;
35
36  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
37  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
38  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
39  return false;
40}
41
42void PHITransAddr::dump() const {
43  if (Addr == 0) {
44    dbgs() << "PHITransAddr: null\n";
45    return;
46  }
47  dbgs() << "PHITransAddr: " << *Addr << "\n";
48  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
49    dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
50}
51
52
53static bool VerifySubExpr(Value *Expr,
54                          SmallVectorImpl<Instruction*> &InstInputs) {
55  // If this is a non-instruction value, there is nothing to do.
56  Instruction *I = dyn_cast<Instruction>(Expr);
57  if (I == 0) return true;
58
59  // If it's an instruction, it is either in Tmp or its operands recursively
60  // are.
61  SmallVectorImpl<Instruction*>::iterator Entry =
62    std::find(InstInputs.begin(), InstInputs.end(), I);
63  if (Entry != InstInputs.end()) {
64    InstInputs.erase(Entry);
65    return true;
66  }
67
68  // If it isn't in the InstInputs list it is a subexpr incorporated into the
69  // address.  Sanity check that it is phi translatable.
70  if (!CanPHITrans(I)) {
71    errs() << "Non phi translatable instruction found in PHITransAddr:\n";
72    errs() << *I << '\n';
73    llvm_unreachable("Either something is missing from InstInputs or "
74                     "CanPHITrans is wrong.");
75    return false;
76  }
77
78  // Validate the operands of the instruction.
79  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
80    if (!VerifySubExpr(I->getOperand(i), InstInputs))
81      return false;
82
83  return true;
84}
85
86/// Verify - Check internal consistency of this data structure.  If the
87/// structure is valid, it returns true.  If invalid, it prints errors and
88/// returns false.
89bool PHITransAddr::Verify() const {
90  if (Addr == 0) return true;
91
92  SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
93
94  if (!VerifySubExpr(Addr, Tmp))
95    return false;
96
97  if (!Tmp.empty()) {
98    errs() << "PHITransAddr contains extra instructions:\n";
99    for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
100      errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
101    llvm_unreachable("This is unexpected.");
102    return false;
103  }
104
105  // a-ok.
106  return true;
107}
108
109
110/// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
111/// if we have some hope of doing it.  This should be used as a filter to
112/// avoid calling PHITranslateValue in hopeless situations.
113bool PHITransAddr::IsPotentiallyPHITranslatable() const {
114  // If the input value is not an instruction, or if it is not defined in CurBB,
115  // then we don't need to phi translate it.
116  Instruction *Inst = dyn_cast<Instruction>(Addr);
117  return Inst == 0 || CanPHITrans(Inst);
118}
119
120
121static void RemoveInstInputs(Value *V,
122                             SmallVectorImpl<Instruction*> &InstInputs) {
123  Instruction *I = dyn_cast<Instruction>(V);
124  if (I == 0) return;
125
126  // If the instruction is in the InstInputs list, remove it.
127  SmallVectorImpl<Instruction*>::iterator Entry =
128    std::find(InstInputs.begin(), InstInputs.end(), I);
129  if (Entry != InstInputs.end()) {
130    InstInputs.erase(Entry);
131    return;
132  }
133
134  assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
135
136  // Otherwise, it must have instruction inputs itself.  Zap them recursively.
137  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
138    if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
139      RemoveInstInputs(Op, InstInputs);
140  }
141}
142
143Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
144                                         BasicBlock *PredBB,
145                                         const DominatorTree *DT) {
146  // If this is a non-instruction value, it can't require PHI translation.
147  Instruction *Inst = dyn_cast<Instruction>(V);
148  if (Inst == 0) return V;
149
150  // Determine whether 'Inst' is an input to our PHI translatable expression.
151  bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);
152
153  // Handle inputs instructions if needed.
154  if (isInput) {
155    if (Inst->getParent() != CurBB) {
156      // If it is an input defined in a different block, then it remains an
157      // input.
158      return Inst;
159    }
160
161    // If 'Inst' is defined in this block and is an input that needs to be phi
162    // translated, we need to incorporate the value into the expression or fail.
163
164    // In either case, the instruction itself isn't an input any longer.
165    InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));
166
167    // If this is a PHI, go ahead and translate it.
168    if (PHINode *PN = dyn_cast<PHINode>(Inst))
169      return AddAsInput(PN->getIncomingValueForBlock(PredBB));
170
171    // If this is a non-phi value, and it is analyzable, we can incorporate it
172    // into the expression by making all instruction operands be inputs.
173    if (!CanPHITrans(Inst))
174      return 0;
175
176    // All instruction operands are now inputs (and of course, they may also be
177    // defined in this block, so they may need to be phi translated themselves.
178    for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
179      if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
180        InstInputs.push_back(Op);
181  }
182
183  // Ok, it must be an intermediate result (either because it started that way
184  // or because we just incorporated it into the expression).  See if its
185  // operands need to be phi translated, and if so, reconstruct it.
186
187  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
188    if (!Cast->isSafeToSpeculativelyExecute()) return 0;
189    Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
190    if (PHIIn == 0) return 0;
191    if (PHIIn == Cast->getOperand(0))
192      return Cast;
193
194    // Find an available version of this cast.
195
196    // Constants are trivial to find.
197    if (Constant *C = dyn_cast<Constant>(PHIIn))
198      return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
199                                              C, Cast->getType()));
200
201    // Otherwise we have to see if a casted version of the incoming pointer
202    // is available.  If so, we can use it, otherwise we have to fail.
203    for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
204         UI != E; ++UI) {
205      if (CastInst *CastI = dyn_cast<CastInst>(*UI))
206        if (CastI->getOpcode() == Cast->getOpcode() &&
207            CastI->getType() == Cast->getType() &&
208            (!DT || DT->dominates(CastI->getParent(), PredBB)))
209          return CastI;
210    }
211    return 0;
212  }
213
214  // Handle getelementptr with at least one PHI translatable operand.
215  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
216    SmallVector<Value*, 8> GEPOps;
217    bool AnyChanged = false;
218    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
219      Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
220      if (GEPOp == 0) return 0;
221
222      AnyChanged |= GEPOp != GEP->getOperand(i);
223      GEPOps.push_back(GEPOp);
224    }
225
226    if (!AnyChanged)
227      return GEP;
228
229    // Simplify the GEP to handle 'gep x, 0' -> x etc.
230    if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD, DT)) {
231      for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
232        RemoveInstInputs(GEPOps[i], InstInputs);
233
234      return AddAsInput(V);
235    }
236
237    // Scan to see if we have this GEP available.
238    Value *APHIOp = GEPOps[0];
239    for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
240         UI != E; ++UI) {
241      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
242        if (GEPI->getType() == GEP->getType() &&
243            GEPI->getNumOperands() == GEPOps.size() &&
244            GEPI->getParent()->getParent() == CurBB->getParent() &&
245            (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
246          bool Mismatch = false;
247          for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
248            if (GEPI->getOperand(i) != GEPOps[i]) {
249              Mismatch = true;
250              break;
251            }
252          if (!Mismatch)
253            return GEPI;
254        }
255    }
256    return 0;
257  }
258
259  // Handle add with a constant RHS.
260  if (Inst->getOpcode() == Instruction::Add &&
261      isa<ConstantInt>(Inst->getOperand(1))) {
262    // PHI translate the LHS.
263    Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
264    bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
265    bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
266
267    Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
268    if (LHS == 0) return 0;
269
270    // If the PHI translated LHS is an add of a constant, fold the immediates.
271    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
272      if (BOp->getOpcode() == Instruction::Add)
273        if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
274          LHS = BOp->getOperand(0);
275          RHS = ConstantExpr::getAdd(RHS, CI);
276          isNSW = isNUW = false;
277
278          // If the old 'LHS' was an input, add the new 'LHS' as an input.
279          if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) {
280            RemoveInstInputs(BOp, InstInputs);
281            AddAsInput(LHS);
282          }
283        }
284
285    // See if the add simplifies away.
286    if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, DT)) {
287      // If we simplified the operands, the LHS is no longer an input, but Res
288      // is.
289      RemoveInstInputs(LHS, InstInputs);
290      return AddAsInput(Res);
291    }
292
293    // If we didn't modify the add, just return it.
294    if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
295      return Inst;
296
297    // Otherwise, see if we have this add available somewhere.
298    for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
299         UI != E; ++UI) {
300      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
301        if (BO->getOpcode() == Instruction::Add &&
302            BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
303            BO->getParent()->getParent() == CurBB->getParent() &&
304            (!DT || DT->dominates(BO->getParent(), PredBB)))
305          return BO;
306    }
307
308    return 0;
309  }
310
311  // Otherwise, we failed.
312  return 0;
313}
314
315
316/// PHITranslateValue - PHI translate the current address up the CFG from
317/// CurBB to Pred, updating our state to reflect any needed changes.  If the
318/// dominator tree DT is non-null, the translated value must dominate
319/// PredBB.  This returns true on failure and sets Addr to null.
320bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
321                                     const DominatorTree *DT) {
322  assert(Verify() && "Invalid PHITransAddr!");
323  Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
324  assert(Verify() && "Invalid PHITransAddr!");
325
326  if (DT) {
327    // Make sure the value is live in the predecessor.
328    if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
329      if (!DT->dominates(Inst->getParent(), PredBB))
330        Addr = 0;
331  }
332
333  return Addr == 0;
334}
335
336/// PHITranslateWithInsertion - PHI translate this value into the specified
337/// predecessor block, inserting a computation of the value if it is
338/// unavailable.
339///
340/// All newly created instructions are added to the NewInsts list.  This
341/// returns null on failure.
342///
343Value *PHITransAddr::
344PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
345                          const DominatorTree &DT,
346                          SmallVectorImpl<Instruction*> &NewInsts) {
347  unsigned NISize = NewInsts.size();
348
349  // Attempt to PHI translate with insertion.
350  Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
351
352  // If successful, return the new value.
353  if (Addr) return Addr;
354
355  // If not, destroy any intermediate instructions inserted.
356  while (NewInsts.size() != NISize)
357    NewInsts.pop_back_val()->eraseFromParent();
358  return 0;
359}
360
361
362/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
363/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
364/// block.  All newly created instructions are added to the NewInsts list.
365/// This returns null on failure.
366///
367Value *PHITransAddr::
368InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
369                           BasicBlock *PredBB, const DominatorTree &DT,
370                           SmallVectorImpl<Instruction*> &NewInsts) {
371  // See if we have a version of this value already available and dominating
372  // PredBB.  If so, there is no need to insert a new instance of it.
373  PHITransAddr Tmp(InVal, TD);
374  if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
375    return Tmp.getAddr();
376
377  // If we don't have an available version of this value, it must be an
378  // instruction.
379  Instruction *Inst = cast<Instruction>(InVal);
380
381  // Handle cast of PHI translatable value.
382  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
383    if (!Cast->isSafeToSpeculativelyExecute()) return 0;
384    Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
385                                              CurBB, PredBB, DT, NewInsts);
386    if (OpVal == 0) return 0;
387
388    // Otherwise insert a cast at the end of PredBB.
389    CastInst *New = CastInst::Create(Cast->getOpcode(),
390                                     OpVal, InVal->getType(),
391                                     InVal->getName()+".phi.trans.insert",
392                                     PredBB->getTerminator());
393    NewInsts.push_back(New);
394    return New;
395  }
396
397  // Handle getelementptr with at least one PHI operand.
398  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
399    SmallVector<Value*, 8> GEPOps;
400    BasicBlock *CurBB = GEP->getParent();
401    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
402      Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
403                                                CurBB, PredBB, DT, NewInsts);
404      if (OpVal == 0) return 0;
405      GEPOps.push_back(OpVal);
406    }
407
408    GetElementPtrInst *Result =
409    GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
410                              InVal->getName()+".phi.trans.insert",
411                              PredBB->getTerminator());
412    Result->setIsInBounds(GEP->isInBounds());
413    NewInsts.push_back(Result);
414    return Result;
415  }
416
417#if 0
418  // FIXME: This code works, but it is unclear that we actually want to insert
419  // a big chain of computation in order to make a value available in a block.
420  // This needs to be evaluated carefully to consider its cost trade offs.
421
422  // Handle add with a constant RHS.
423  if (Inst->getOpcode() == Instruction::Add &&
424      isa<ConstantInt>(Inst->getOperand(1))) {
425    // PHI translate the LHS.
426    Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
427                                              CurBB, PredBB, DT, NewInsts);
428    if (OpVal == 0) return 0;
429
430    BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
431                                           InVal->getName()+".phi.trans.insert",
432                                                    PredBB->getTerminator());
433    Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
434    Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
435    NewInsts.push_back(Res);
436    return Res;
437  }
438#endif
439
440  return 0;
441}
442