ScalarEvolution.cpp revision 1cbae18cf60c023840aab605958eea635c837f16
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->getNoWrapFlags(FlagNUW))
161      OS << "nuw><";
162    if (AR->getNoWrapFlags(FlagNSW))
163      OS << "nsw><";
164    if (AR->getNoWrapFlags(FlagNW) &&
165        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
166      OS << "nw><";
167    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
168    OS << ">";
169    return;
170  }
171  case scAddExpr:
172  case scMulExpr:
173  case scUMaxExpr:
174  case scSMaxExpr: {
175    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
176    const char *OpStr = 0;
177    switch (NAry->getSCEVType()) {
178    case scAddExpr: OpStr = " + "; break;
179    case scMulExpr: OpStr = " * "; break;
180    case scUMaxExpr: OpStr = " umax "; break;
181    case scSMaxExpr: OpStr = " smax "; break;
182    }
183    OS << "(";
184    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
185         I != E; ++I) {
186      OS << **I;
187      if (llvm::next(I) != E)
188        OS << OpStr;
189    }
190    OS << ")";
191    return;
192  }
193  case scUDivExpr: {
194    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
195    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
196    return;
197  }
198  case scUnknown: {
199    const SCEVUnknown *U = cast<SCEVUnknown>(this);
200    Type *AllocTy;
201    if (U->isSizeOf(AllocTy)) {
202      OS << "sizeof(" << *AllocTy << ")";
203      return;
204    }
205    if (U->isAlignOf(AllocTy)) {
206      OS << "alignof(" << *AllocTy << ")";
207      return;
208    }
209
210    Type *CTy;
211    Constant *FieldNo;
212    if (U->isOffsetOf(CTy, FieldNo)) {
213      OS << "offsetof(" << *CTy << ", ";
214      WriteAsOperand(OS, FieldNo, false);
215      OS << ")";
216      return;
217    }
218
219    // Otherwise just print it normally.
220    WriteAsOperand(OS, U->getValue(), false);
221    return;
222  }
223  case scCouldNotCompute:
224    OS << "***COULDNOTCOMPUTE***";
225    return;
226  default: break;
227  }
228  llvm_unreachable("Unknown SCEV kind!");
229}
230
231Type *SCEV::getType() const {
232  switch (getSCEVType()) {
233  case scConstant:
234    return cast<SCEVConstant>(this)->getType();
235  case scTruncate:
236  case scZeroExtend:
237  case scSignExtend:
238    return cast<SCEVCastExpr>(this)->getType();
239  case scAddRecExpr:
240  case scMulExpr:
241  case scUMaxExpr:
242  case scSMaxExpr:
243    return cast<SCEVNAryExpr>(this)->getType();
244  case scAddExpr:
245    return cast<SCEVAddExpr>(this)->getType();
246  case scUDivExpr:
247    return cast<SCEVUDivExpr>(this)->getType();
248  case scUnknown:
249    return cast<SCEVUnknown>(this)->getType();
250  case scCouldNotCompute:
251    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
252    return 0;
253  default: break;
254  }
255  llvm_unreachable("Unknown SCEV kind!");
256  return 0;
257}
258
259bool SCEV::isZero() const {
260  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
261    return SC->getValue()->isZero();
262  return false;
263}
264
265bool SCEV::isOne() const {
266  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
267    return SC->getValue()->isOne();
268  return false;
269}
270
271bool SCEV::isAllOnesValue() const {
272  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
273    return SC->getValue()->isAllOnesValue();
274  return false;
275}
276
277SCEVCouldNotCompute::SCEVCouldNotCompute() :
278  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
279
280bool SCEVCouldNotCompute::classof(const SCEV *S) {
281  return S->getSCEVType() == scCouldNotCompute;
282}
283
284const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
285  FoldingSetNodeID ID;
286  ID.AddInteger(scConstant);
287  ID.AddPointer(V);
288  void *IP = 0;
289  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
290  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
291  UniqueSCEVs.InsertNode(S, IP);
292  return S;
293}
294
295const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
296  return getConstant(ConstantInt::get(getContext(), Val));
297}
298
299const SCEV *
300ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
301  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
302  return getConstant(ConstantInt::get(ITy, V, isSigned));
303}
304
305SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
306                           unsigned SCEVTy, const SCEV *op, Type *ty)
307  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
308
309SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
310                                   const SCEV *op, Type *ty)
311  : SCEVCastExpr(ID, scTruncate, op, ty) {
312  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
313         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
314         "Cannot truncate non-integer value!");
315}
316
317SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
318                                       const SCEV *op, Type *ty)
319  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
320  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
321         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
322         "Cannot zero extend non-integer value!");
323}
324
325SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
326                                       const SCEV *op, Type *ty)
327  : SCEVCastExpr(ID, scSignExtend, op, ty) {
328  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
329         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
330         "Cannot sign extend non-integer value!");
331}
332
333void SCEVUnknown::deleted() {
334  // Clear this SCEVUnknown from various maps.
335  SE->forgetMemoizedResults(this);
336
337  // Remove this SCEVUnknown from the uniquing map.
338  SE->UniqueSCEVs.RemoveNode(this);
339
340  // Release the value.
341  setValPtr(0);
342}
343
344void SCEVUnknown::allUsesReplacedWith(Value *New) {
345  // Clear this SCEVUnknown from various maps.
346  SE->forgetMemoizedResults(this);
347
348  // Remove this SCEVUnknown from the uniquing map.
349  SE->UniqueSCEVs.RemoveNode(this);
350
351  // Update this SCEVUnknown to point to the new value. This is needed
352  // because there may still be outstanding SCEVs which still point to
353  // this SCEVUnknown.
354  setValPtr(New);
355}
356
357bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
358  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
359    if (VCE->getOpcode() == Instruction::PtrToInt)
360      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
361        if (CE->getOpcode() == Instruction::GetElementPtr &&
362            CE->getOperand(0)->isNullValue() &&
363            CE->getNumOperands() == 2)
364          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
365            if (CI->isOne()) {
366              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
367                                 ->getElementType();
368              return true;
369            }
370
371  return false;
372}
373
374bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
375  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
376    if (VCE->getOpcode() == Instruction::PtrToInt)
377      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
378        if (CE->getOpcode() == Instruction::GetElementPtr &&
379            CE->getOperand(0)->isNullValue()) {
380          Type *Ty =
381            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
382          if (StructType *STy = dyn_cast<StructType>(Ty))
383            if (!STy->isPacked() &&
384                CE->getNumOperands() == 3 &&
385                CE->getOperand(1)->isNullValue()) {
386              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
387                if (CI->isOne() &&
388                    STy->getNumElements() == 2 &&
389                    STy->getElementType(0)->isIntegerTy(1)) {
390                  AllocTy = STy->getElementType(1);
391                  return true;
392                }
393            }
394        }
395
396  return false;
397}
398
399bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
400  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401    if (VCE->getOpcode() == Instruction::PtrToInt)
402      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403        if (CE->getOpcode() == Instruction::GetElementPtr &&
404            CE->getNumOperands() == 3 &&
405            CE->getOperand(0)->isNullValue() &&
406            CE->getOperand(1)->isNullValue()) {
407          Type *Ty =
408            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409          // Ignore vector types here so that ScalarEvolutionExpander doesn't
410          // emit getelementptrs that index into vectors.
411          if (Ty->isStructTy() || Ty->isArrayTy()) {
412            CTy = Ty;
413            FieldNo = CE->getOperand(2);
414            return true;
415          }
416        }
417
418  return false;
419}
420
421//===----------------------------------------------------------------------===//
422//                               SCEV Utilities
423//===----------------------------------------------------------------------===//
424
425namespace {
426  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
427  /// than the complexity of the RHS.  This comparator is used to canonicalize
428  /// expressions.
429  class SCEVComplexityCompare {
430    const LoopInfo *const LI;
431  public:
432    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
433
434    // Return true or false if LHS is less than, or at least RHS, respectively.
435    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
436      return compare(LHS, RHS) < 0;
437    }
438
439    // Return negative, zero, or positive, if LHS is less than, equal to, or
440    // greater than RHS, respectively. A three-way result allows recursive
441    // comparisons to be more efficient.
442    int compare(const SCEV *LHS, const SCEV *RHS) const {
443      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
444      if (LHS == RHS)
445        return 0;
446
447      // Primarily, sort the SCEVs by their getSCEVType().
448      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
449      if (LType != RType)
450        return (int)LType - (int)RType;
451
452      // Aside from the getSCEVType() ordering, the particular ordering
453      // isn't very important except that it's beneficial to be consistent,
454      // so that (a + b) and (b + a) don't end up as different expressions.
455      switch (LType) {
456      case scUnknown: {
457        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
458        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
459
460        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
461        // not as complete as it could be.
462        const Value *LV = LU->getValue(), *RV = RU->getValue();
463
464        // Order pointer values after integer values. This helps SCEVExpander
465        // form GEPs.
466        bool LIsPointer = LV->getType()->isPointerTy(),
467             RIsPointer = RV->getType()->isPointerTy();
468        if (LIsPointer != RIsPointer)
469          return (int)LIsPointer - (int)RIsPointer;
470
471        // Compare getValueID values.
472        unsigned LID = LV->getValueID(),
473                 RID = RV->getValueID();
474        if (LID != RID)
475          return (int)LID - (int)RID;
476
477        // Sort arguments by their position.
478        if (const Argument *LA = dyn_cast<Argument>(LV)) {
479          const Argument *RA = cast<Argument>(RV);
480          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
481          return (int)LArgNo - (int)RArgNo;
482        }
483
484        // For instructions, compare their loop depth, and their operand
485        // count.  This is pretty loose.
486        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
487          const Instruction *RInst = cast<Instruction>(RV);
488
489          // Compare loop depths.
490          const BasicBlock *LParent = LInst->getParent(),
491                           *RParent = RInst->getParent();
492          if (LParent != RParent) {
493            unsigned LDepth = LI->getLoopDepth(LParent),
494                     RDepth = LI->getLoopDepth(RParent);
495            if (LDepth != RDepth)
496              return (int)LDepth - (int)RDepth;
497          }
498
499          // Compare the number of operands.
500          unsigned LNumOps = LInst->getNumOperands(),
501                   RNumOps = RInst->getNumOperands();
502          return (int)LNumOps - (int)RNumOps;
503        }
504
505        return 0;
506      }
507
508      case scConstant: {
509        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
510        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
511
512        // Compare constant values.
513        const APInt &LA = LC->getValue()->getValue();
514        const APInt &RA = RC->getValue()->getValue();
515        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
516        if (LBitWidth != RBitWidth)
517          return (int)LBitWidth - (int)RBitWidth;
518        return LA.ult(RA) ? -1 : 1;
519      }
520
521      case scAddRecExpr: {
522        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
523        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
524
525        // Compare addrec loop depths.
526        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
527        if (LLoop != RLoop) {
528          unsigned LDepth = LLoop->getLoopDepth(),
529                   RDepth = RLoop->getLoopDepth();
530          if (LDepth != RDepth)
531            return (int)LDepth - (int)RDepth;
532        }
533
534        // Addrec complexity grows with operand count.
535        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
536        if (LNumOps != RNumOps)
537          return (int)LNumOps - (int)RNumOps;
538
539        // Lexicographically compare.
540        for (unsigned i = 0; i != LNumOps; ++i) {
541          long X = compare(LA->getOperand(i), RA->getOperand(i));
542          if (X != 0)
543            return X;
544        }
545
546        return 0;
547      }
548
549      case scAddExpr:
550      case scMulExpr:
551      case scSMaxExpr:
552      case scUMaxExpr: {
553        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
554        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
555
556        // Lexicographically compare n-ary expressions.
557        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
558        for (unsigned i = 0; i != LNumOps; ++i) {
559          if (i >= RNumOps)
560            return 1;
561          long X = compare(LC->getOperand(i), RC->getOperand(i));
562          if (X != 0)
563            return X;
564        }
565        return (int)LNumOps - (int)RNumOps;
566      }
567
568      case scUDivExpr: {
569        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
570        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
571
572        // Lexicographically compare udiv expressions.
573        long X = compare(LC->getLHS(), RC->getLHS());
574        if (X != 0)
575          return X;
576        return compare(LC->getRHS(), RC->getRHS());
577      }
578
579      case scTruncate:
580      case scZeroExtend:
581      case scSignExtend: {
582        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
583        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
584
585        // Compare cast expressions by operand.
586        return compare(LC->getOperand(), RC->getOperand());
587      }
588
589      default:
590        break;
591      }
592
593      llvm_unreachable("Unknown SCEV kind!");
594      return 0;
595    }
596  };
597}
598
599/// GroupByComplexity - Given a list of SCEV objects, order them by their
600/// complexity, and group objects of the same complexity together by value.
601/// When this routine is finished, we know that any duplicates in the vector are
602/// consecutive and that complexity is monotonically increasing.
603///
604/// Note that we go take special precautions to ensure that we get deterministic
605/// results from this routine.  In other words, we don't want the results of
606/// this to depend on where the addresses of various SCEV objects happened to
607/// land in memory.
608///
609static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
610                              LoopInfo *LI) {
611  if (Ops.size() < 2) return;  // Noop
612  if (Ops.size() == 2) {
613    // This is the common case, which also happens to be trivially simple.
614    // Special case it.
615    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
616    if (SCEVComplexityCompare(LI)(RHS, LHS))
617      std::swap(LHS, RHS);
618    return;
619  }
620
621  // Do the rough sort by complexity.
622  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
623
624  // Now that we are sorted by complexity, group elements of the same
625  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
626  // be extremely short in practice.  Note that we take this approach because we
627  // do not want to depend on the addresses of the objects we are grouping.
628  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
629    const SCEV *S = Ops[i];
630    unsigned Complexity = S->getSCEVType();
631
632    // If there are any objects of the same complexity and same value as this
633    // one, group them.
634    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
635      if (Ops[j] == S) { // Found a duplicate.
636        // Move it to immediately after i'th element.
637        std::swap(Ops[i+1], Ops[j]);
638        ++i;   // no need to rescan it.
639        if (i == e-2) return;  // Done!
640      }
641    }
642  }
643}
644
645
646
647//===----------------------------------------------------------------------===//
648//                      Simple SCEV method implementations
649//===----------------------------------------------------------------------===//
650
651/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
652/// Assume, K > 0.
653static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
654                                       ScalarEvolution &SE,
655                                       Type *ResultTy) {
656  // Handle the simplest case efficiently.
657  if (K == 1)
658    return SE.getTruncateOrZeroExtend(It, ResultTy);
659
660  // We are using the following formula for BC(It, K):
661  //
662  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
663  //
664  // Suppose, W is the bitwidth of the return value.  We must be prepared for
665  // overflow.  Hence, we must assure that the result of our computation is
666  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
667  // safe in modular arithmetic.
668  //
669  // However, this code doesn't use exactly that formula; the formula it uses
670  // is something like the following, where T is the number of factors of 2 in
671  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
672  // exponentiation:
673  //
674  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
675  //
676  // This formula is trivially equivalent to the previous formula.  However,
677  // this formula can be implemented much more efficiently.  The trick is that
678  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
679  // arithmetic.  To do exact division in modular arithmetic, all we have
680  // to do is multiply by the inverse.  Therefore, this step can be done at
681  // width W.
682  //
683  // The next issue is how to safely do the division by 2^T.  The way this
684  // is done is by doing the multiplication step at a width of at least W + T
685  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
686  // when we perform the division by 2^T (which is equivalent to a right shift
687  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
688  // truncated out after the division by 2^T.
689  //
690  // In comparison to just directly using the first formula, this technique
691  // is much more efficient; using the first formula requires W * K bits,
692  // but this formula less than W + K bits. Also, the first formula requires
693  // a division step, whereas this formula only requires multiplies and shifts.
694  //
695  // It doesn't matter whether the subtraction step is done in the calculation
696  // width or the input iteration count's width; if the subtraction overflows,
697  // the result must be zero anyway.  We prefer here to do it in the width of
698  // the induction variable because it helps a lot for certain cases; CodeGen
699  // isn't smart enough to ignore the overflow, which leads to much less
700  // efficient code if the width of the subtraction is wider than the native
701  // register width.
702  //
703  // (It's possible to not widen at all by pulling out factors of 2 before
704  // the multiplication; for example, K=2 can be calculated as
705  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
706  // extra arithmetic, so it's not an obvious win, and it gets
707  // much more complicated for K > 3.)
708
709  // Protection from insane SCEVs; this bound is conservative,
710  // but it probably doesn't matter.
711  if (K > 1000)
712    return SE.getCouldNotCompute();
713
714  unsigned W = SE.getTypeSizeInBits(ResultTy);
715
716  // Calculate K! / 2^T and T; we divide out the factors of two before
717  // multiplying for calculating K! / 2^T to avoid overflow.
718  // Other overflow doesn't matter because we only care about the bottom
719  // W bits of the result.
720  APInt OddFactorial(W, 1);
721  unsigned T = 1;
722  for (unsigned i = 3; i <= K; ++i) {
723    APInt Mult(W, i);
724    unsigned TwoFactors = Mult.countTrailingZeros();
725    T += TwoFactors;
726    Mult = Mult.lshr(TwoFactors);
727    OddFactorial *= Mult;
728  }
729
730  // We need at least W + T bits for the multiplication step
731  unsigned CalculationBits = W + T;
732
733  // Calculate 2^T, at width T+W.
734  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
735
736  // Calculate the multiplicative inverse of K! / 2^T;
737  // this multiplication factor will perform the exact division by
738  // K! / 2^T.
739  APInt Mod = APInt::getSignedMinValue(W+1);
740  APInt MultiplyFactor = OddFactorial.zext(W+1);
741  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
742  MultiplyFactor = MultiplyFactor.trunc(W);
743
744  // Calculate the product, at width T+W
745  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
746                                                      CalculationBits);
747  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
748  for (unsigned i = 1; i != K; ++i) {
749    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
750    Dividend = SE.getMulExpr(Dividend,
751                             SE.getTruncateOrZeroExtend(S, CalculationTy));
752  }
753
754  // Divide by 2^T
755  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
756
757  // Truncate the result, and divide by K! / 2^T.
758
759  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
760                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
761}
762
763/// evaluateAtIteration - Return the value of this chain of recurrences at
764/// the specified iteration number.  We can evaluate this recurrence by
765/// multiplying each element in the chain by the binomial coefficient
766/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
767///
768///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
769///
770/// where BC(It, k) stands for binomial coefficient.
771///
772const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
773                                                ScalarEvolution &SE) const {
774  const SCEV *Result = getStart();
775  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
776    // The computation is correct in the face of overflow provided that the
777    // multiplication is performed _after_ the evaluation of the binomial
778    // coefficient.
779    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
780    if (isa<SCEVCouldNotCompute>(Coeff))
781      return Coeff;
782
783    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
784  }
785  return Result;
786}
787
788//===----------------------------------------------------------------------===//
789//                    SCEV Expression folder implementations
790//===----------------------------------------------------------------------===//
791
792const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
793                                             Type *Ty) {
794  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
795         "This is not a truncating conversion!");
796  assert(isSCEVable(Ty) &&
797         "This is not a conversion to a SCEVable type!");
798  Ty = getEffectiveSCEVType(Ty);
799
800  FoldingSetNodeID ID;
801  ID.AddInteger(scTruncate);
802  ID.AddPointer(Op);
803  ID.AddPointer(Ty);
804  void *IP = 0;
805  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
806
807  // Fold if the operand is constant.
808  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
809    return getConstant(
810      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
811                                               getEffectiveSCEVType(Ty))));
812
813  // trunc(trunc(x)) --> trunc(x)
814  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
815    return getTruncateExpr(ST->getOperand(), Ty);
816
817  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
818  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
819    return getTruncateOrSignExtend(SS->getOperand(), Ty);
820
821  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
822  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
823    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
824
825  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
826  // eliminate all the truncates.
827  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
828    SmallVector<const SCEV *, 4> Operands;
829    bool hasTrunc = false;
830    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
831      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
832      hasTrunc = isa<SCEVTruncateExpr>(S);
833      Operands.push_back(S);
834    }
835    if (!hasTrunc)
836      return getAddExpr(Operands);
837    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
838  }
839
840  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
841  // eliminate all the truncates.
842  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
843    SmallVector<const SCEV *, 4> Operands;
844    bool hasTrunc = false;
845    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
846      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
847      hasTrunc = isa<SCEVTruncateExpr>(S);
848      Operands.push_back(S);
849    }
850    if (!hasTrunc)
851      return getMulExpr(Operands);
852    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
853  }
854
855  // If the input value is a chrec scev, truncate the chrec's operands.
856  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
857    SmallVector<const SCEV *, 4> Operands;
858    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
859      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
860    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
861  }
862
863  // As a special case, fold trunc(undef) to undef. We don't want to
864  // know too much about SCEVUnknowns, but this special case is handy
865  // and harmless.
866  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
867    if (isa<UndefValue>(U->getValue()))
868      return getSCEV(UndefValue::get(Ty));
869
870  // The cast wasn't folded; create an explicit cast node. We can reuse
871  // the existing insert position since if we get here, we won't have
872  // made any changes which would invalidate it.
873  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
874                                                 Op, Ty);
875  UniqueSCEVs.InsertNode(S, IP);
876  return S;
877}
878
879const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
880                                               Type *Ty) {
881  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
882         "This is not an extending conversion!");
883  assert(isSCEVable(Ty) &&
884         "This is not a conversion to a SCEVable type!");
885  Ty = getEffectiveSCEVType(Ty);
886
887  // Fold if the operand is constant.
888  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
889    return getConstant(
890      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
891                                              getEffectiveSCEVType(Ty))));
892
893  // zext(zext(x)) --> zext(x)
894  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
895    return getZeroExtendExpr(SZ->getOperand(), Ty);
896
897  // Before doing any expensive analysis, check to see if we've already
898  // computed a SCEV for this Op and Ty.
899  FoldingSetNodeID ID;
900  ID.AddInteger(scZeroExtend);
901  ID.AddPointer(Op);
902  ID.AddPointer(Ty);
903  void *IP = 0;
904  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
905
906  // zext(trunc(x)) --> zext(x) or x or trunc(x)
907  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
908    // It's possible the bits taken off by the truncate were all zero bits. If
909    // so, we should be able to simplify this further.
910    const SCEV *X = ST->getOperand();
911    ConstantRange CR = getUnsignedRange(X);
912    unsigned TruncBits = getTypeSizeInBits(ST->getType());
913    unsigned NewBits = getTypeSizeInBits(Ty);
914    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
915            CR.zextOrTrunc(NewBits)))
916      return getTruncateOrZeroExtend(X, Ty);
917  }
918
919  // If the input value is a chrec scev, and we can prove that the value
920  // did not overflow the old, smaller, value, we can zero extend all of the
921  // operands (often constants).  This allows analysis of something like
922  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
924    if (AR->isAffine()) {
925      const SCEV *Start = AR->getStart();
926      const SCEV *Step = AR->getStepRecurrence(*this);
927      unsigned BitWidth = getTypeSizeInBits(AR->getType());
928      const Loop *L = AR->getLoop();
929
930      // If we have special knowledge that this addrec won't overflow,
931      // we don't need to do any further analysis.
932      if (AR->getNoWrapFlags(SCEV::FlagNUW))
933        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                             getZeroExtendExpr(Step, Ty),
935                             L, AR->getNoWrapFlags());
936
937      // Check whether the backedge-taken count is SCEVCouldNotCompute.
938      // Note that this serves two purposes: It filters out loops that are
939      // simply not analyzable, and it covers the case where this code is
940      // being called from within backedge-taken count analysis, such that
941      // attempting to ask for the backedge-taken count would likely result
942      // in infinite recursion. In the later case, the analysis code will
943      // cope with a conservative value, and it will take care to purge
944      // that value once it has finished.
945      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
946      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
947        // Manually compute the final value for AR, checking for
948        // overflow.
949
950        // Check whether the backedge-taken count can be losslessly casted to
951        // the addrec's type. The count is always unsigned.
952        const SCEV *CastedMaxBECount =
953          getTruncateOrZeroExtend(MaxBECount, Start->getType());
954        const SCEV *RecastedMaxBECount =
955          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
956        if (MaxBECount == RecastedMaxBECount) {
957          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
958          // Check whether Start+Step*MaxBECount has no unsigned overflow.
959          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
960          const SCEV *Add = getAddExpr(Start, ZMul);
961          const SCEV *OperandExtendedAdd =
962            getAddExpr(getZeroExtendExpr(Start, WideTy),
963                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
964                                  getZeroExtendExpr(Step, WideTy)));
965          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
966            // Cache knowledge of AR NUW, which is propagated to this AddRec.
967            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
968            // Return the expression with the addrec on the outside.
969            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
970                                 getZeroExtendExpr(Step, Ty),
971                                 L, AR->getNoWrapFlags());
972          }
973          // Similar to above, only this time treat the step value as signed.
974          // This covers loops that count down.
975          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
976          Add = getAddExpr(Start, SMul);
977          OperandExtendedAdd =
978            getAddExpr(getZeroExtendExpr(Start, WideTy),
979                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
980                                  getSignExtendExpr(Step, WideTy)));
981          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
982            // Cache knowledge of AR NW, which is propagated to this AddRec.
983            // Negative step causes unsigned wrap, but it still can't self-wrap.
984            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
985            // Return the expression with the addrec on the outside.
986            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
987                                 getSignExtendExpr(Step, Ty),
988                                 L, AR->getNoWrapFlags());
989          }
990        }
991
992        // If the backedge is guarded by a comparison with the pre-inc value
993        // the addrec is safe. Also, if the entry is guarded by a comparison
994        // with the start value and the backedge is guarded by a comparison
995        // with the post-inc value, the addrec is safe.
996        if (isKnownPositive(Step)) {
997          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998                                      getUnsignedRange(Step).getUnsignedMax());
999          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1000              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1001               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1002                                           AR->getPostIncExpr(*this), N))) {
1003            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1004            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1005            // Return the expression with the addrec on the outside.
1006            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007                                 getZeroExtendExpr(Step, Ty),
1008                                 L, AR->getNoWrapFlags());
1009          }
1010        } else if (isKnownNegative(Step)) {
1011          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1012                                      getSignedRange(Step).getSignedMin());
1013          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1014              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1015               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1016                                           AR->getPostIncExpr(*this), N))) {
1017            // Cache knowledge of AR NW, which is propagated to this AddRec.
1018            // Negative step causes unsigned wrap, but it still can't self-wrap.
1019            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1020            // Return the expression with the addrec on the outside.
1021            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1022                                 getSignExtendExpr(Step, Ty),
1023                                 L, AR->getNoWrapFlags());
1024          }
1025        }
1026      }
1027    }
1028
1029  // The cast wasn't folded; create an explicit cast node.
1030  // Recompute the insert position, as it may have been invalidated.
1031  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1032  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1033                                                   Op, Ty);
1034  UniqueSCEVs.InsertNode(S, IP);
1035  return S;
1036}
1037
1038// Get the limit of a recurrence such that incrementing by Step cannot cause
1039// signed overflow as long as the value of the recurrence within the loop does
1040// not exceed this limit before incrementing.
1041static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1042                                           ICmpInst::Predicate *Pred,
1043                                           ScalarEvolution *SE) {
1044  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1045  if (SE->isKnownPositive(Step)) {
1046    *Pred = ICmpInst::ICMP_SLT;
1047    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1048                           SE->getSignedRange(Step).getSignedMax());
1049  }
1050  if (SE->isKnownNegative(Step)) {
1051    *Pred = ICmpInst::ICMP_SGT;
1052    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1053                       SE->getSignedRange(Step).getSignedMin());
1054  }
1055  return 0;
1056}
1057
1058// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1059// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1060// or postincrement sibling. This allows normalizing a sign extended AddRec as
1061// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1062// result, the expression "Step + sext(PreIncAR)" is congruent with
1063// "sext(PostIncAR)"
1064static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1065                                            Type *Ty,
1066                                            ScalarEvolution *SE) {
1067  const Loop *L = AR->getLoop();
1068  const SCEV *Start = AR->getStart();
1069  const SCEV *Step = AR->getStepRecurrence(*SE);
1070
1071  // Check for a simple looking step prior to loop entry.
1072  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1073  if (!SA)
1074    return 0;
1075
1076  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1077  // subtraction is expensive. For this purpose, perform a quick and dirty
1078  // difference, by checking for Step in the operand list.
1079  SmallVector<const SCEV *, 4> DiffOps;
1080  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1081       I != E; ++I) {
1082    if (*I != Step)
1083      DiffOps.push_back(*I);
1084  }
1085  if (DiffOps.size() == SA->getNumOperands())
1086    return 0;
1087
1088  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1089  // same three conditions that getSignExtendedExpr checks.
1090
1091  // 1. NSW flags on the step increment.
1092  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1093  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1094    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1095
1096  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1097    return PreStart;
1098
1099  // 2. Direct overflow check on the step operation's expression.
1100  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1101  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1102  const SCEV *OperandExtendedStart =
1103    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1104                   SE->getSignExtendExpr(Step, WideTy));
1105  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1106    // Cache knowledge of PreAR NSW.
1107    if (PreAR)
1108      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1109    // FIXME: this optimization needs a unit test
1110    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1111    return PreStart;
1112  }
1113
1114  // 3. Loop precondition.
1115  ICmpInst::Predicate Pred;
1116  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1117
1118  if (OverflowLimit &&
1119      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1120    return PreStart;
1121  }
1122  return 0;
1123}
1124
1125// Get the normalized sign-extended expression for this AddRec's Start.
1126static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1127                                            Type *Ty,
1128                                            ScalarEvolution *SE) {
1129  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1130  if (!PreStart)
1131    return SE->getSignExtendExpr(AR->getStart(), Ty);
1132
1133  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1134                        SE->getSignExtendExpr(PreStart, Ty));
1135}
1136
1137const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1138                                               Type *Ty) {
1139  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1140         "This is not an extending conversion!");
1141  assert(isSCEVable(Ty) &&
1142         "This is not a conversion to a SCEVable type!");
1143  Ty = getEffectiveSCEVType(Ty);
1144
1145  // Fold if the operand is constant.
1146  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1147    return getConstant(
1148      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1149                                              getEffectiveSCEVType(Ty))));
1150
1151  // sext(sext(x)) --> sext(x)
1152  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1153    return getSignExtendExpr(SS->getOperand(), Ty);
1154
1155  // sext(zext(x)) --> zext(x)
1156  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1157    return getZeroExtendExpr(SZ->getOperand(), Ty);
1158
1159  // Before doing any expensive analysis, check to see if we've already
1160  // computed a SCEV for this Op and Ty.
1161  FoldingSetNodeID ID;
1162  ID.AddInteger(scSignExtend);
1163  ID.AddPointer(Op);
1164  ID.AddPointer(Ty);
1165  void *IP = 0;
1166  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1167
1168  // If the input value is provably positive, build a zext instead.
1169  if (isKnownNonNegative(Op))
1170    return getZeroExtendExpr(Op, Ty);
1171
1172  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1173  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1174    // It's possible the bits taken off by the truncate were all sign bits. If
1175    // so, we should be able to simplify this further.
1176    const SCEV *X = ST->getOperand();
1177    ConstantRange CR = getSignedRange(X);
1178    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1179    unsigned NewBits = getTypeSizeInBits(Ty);
1180    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1181            CR.sextOrTrunc(NewBits)))
1182      return getTruncateOrSignExtend(X, Ty);
1183  }
1184
1185  // If the input value is a chrec scev, and we can prove that the value
1186  // did not overflow the old, smaller, value, we can sign extend all of the
1187  // operands (often constants).  This allows analysis of something like
1188  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1189  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1190    if (AR->isAffine()) {
1191      const SCEV *Start = AR->getStart();
1192      const SCEV *Step = AR->getStepRecurrence(*this);
1193      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1194      const Loop *L = AR->getLoop();
1195
1196      // If we have special knowledge that this addrec won't overflow,
1197      // we don't need to do any further analysis.
1198      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1199        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1200                             getSignExtendExpr(Step, Ty),
1201                             L, SCEV::FlagNSW);
1202
1203      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1204      // Note that this serves two purposes: It filters out loops that are
1205      // simply not analyzable, and it covers the case where this code is
1206      // being called from within backedge-taken count analysis, such that
1207      // attempting to ask for the backedge-taken count would likely result
1208      // in infinite recursion. In the later case, the analysis code will
1209      // cope with a conservative value, and it will take care to purge
1210      // that value once it has finished.
1211      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1212      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1213        // Manually compute the final value for AR, checking for
1214        // overflow.
1215
1216        // Check whether the backedge-taken count can be losslessly casted to
1217        // the addrec's type. The count is always unsigned.
1218        const SCEV *CastedMaxBECount =
1219          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1220        const SCEV *RecastedMaxBECount =
1221          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1222        if (MaxBECount == RecastedMaxBECount) {
1223          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1224          // Check whether Start+Step*MaxBECount has no signed overflow.
1225          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1226          const SCEV *Add = getAddExpr(Start, SMul);
1227          const SCEV *OperandExtendedAdd =
1228            getAddExpr(getSignExtendExpr(Start, WideTy),
1229                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1230                                  getSignExtendExpr(Step, WideTy)));
1231          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1232            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1233            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1234            // Return the expression with the addrec on the outside.
1235            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1236                                 getSignExtendExpr(Step, Ty),
1237                                 L, AR->getNoWrapFlags());
1238          }
1239          // Similar to above, only this time treat the step value as unsigned.
1240          // This covers loops that count up with an unsigned step.
1241          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1242          Add = getAddExpr(Start, UMul);
1243          OperandExtendedAdd =
1244            getAddExpr(getSignExtendExpr(Start, WideTy),
1245                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1246                                  getZeroExtendExpr(Step, WideTy)));
1247          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1248            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1249            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1250            // Return the expression with the addrec on the outside.
1251            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1252                                 getZeroExtendExpr(Step, Ty),
1253                                 L, AR->getNoWrapFlags());
1254          }
1255        }
1256
1257        // If the backedge is guarded by a comparison with the pre-inc value
1258        // the addrec is safe. Also, if the entry is guarded by a comparison
1259        // with the start value and the backedge is guarded by a comparison
1260        // with the post-inc value, the addrec is safe.
1261        ICmpInst::Predicate Pred;
1262        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1263        if (OverflowLimit &&
1264            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1265             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1266              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1267                                          OverflowLimit)))) {
1268          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1269          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1270          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1271                               getSignExtendExpr(Step, Ty),
1272                               L, AR->getNoWrapFlags());
1273        }
1274      }
1275    }
1276
1277  // The cast wasn't folded; create an explicit cast node.
1278  // Recompute the insert position, as it may have been invalidated.
1279  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1280  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1281                                                   Op, Ty);
1282  UniqueSCEVs.InsertNode(S, IP);
1283  return S;
1284}
1285
1286/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1287/// unspecified bits out to the given type.
1288///
1289const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1290                                              Type *Ty) {
1291  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1292         "This is not an extending conversion!");
1293  assert(isSCEVable(Ty) &&
1294         "This is not a conversion to a SCEVable type!");
1295  Ty = getEffectiveSCEVType(Ty);
1296
1297  // Sign-extend negative constants.
1298  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1299    if (SC->getValue()->getValue().isNegative())
1300      return getSignExtendExpr(Op, Ty);
1301
1302  // Peel off a truncate cast.
1303  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1304    const SCEV *NewOp = T->getOperand();
1305    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1306      return getAnyExtendExpr(NewOp, Ty);
1307    return getTruncateOrNoop(NewOp, Ty);
1308  }
1309
1310  // Next try a zext cast. If the cast is folded, use it.
1311  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1312  if (!isa<SCEVZeroExtendExpr>(ZExt))
1313    return ZExt;
1314
1315  // Next try a sext cast. If the cast is folded, use it.
1316  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1317  if (!isa<SCEVSignExtendExpr>(SExt))
1318    return SExt;
1319
1320  // Force the cast to be folded into the operands of an addrec.
1321  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1322    SmallVector<const SCEV *, 4> Ops;
1323    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1324         I != E; ++I)
1325      Ops.push_back(getAnyExtendExpr(*I, Ty));
1326    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1327  }
1328
1329  // As a special case, fold anyext(undef) to undef. We don't want to
1330  // know too much about SCEVUnknowns, but this special case is handy
1331  // and harmless.
1332  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1333    if (isa<UndefValue>(U->getValue()))
1334      return getSCEV(UndefValue::get(Ty));
1335
1336  // If the expression is obviously signed, use the sext cast value.
1337  if (isa<SCEVSMaxExpr>(Op))
1338    return SExt;
1339
1340  // Absent any other information, use the zext cast value.
1341  return ZExt;
1342}
1343
1344/// CollectAddOperandsWithScales - Process the given Ops list, which is
1345/// a list of operands to be added under the given scale, update the given
1346/// map. This is a helper function for getAddRecExpr. As an example of
1347/// what it does, given a sequence of operands that would form an add
1348/// expression like this:
1349///
1350///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1351///
1352/// where A and B are constants, update the map with these values:
1353///
1354///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1355///
1356/// and add 13 + A*B*29 to AccumulatedConstant.
1357/// This will allow getAddRecExpr to produce this:
1358///
1359///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1360///
1361/// This form often exposes folding opportunities that are hidden in
1362/// the original operand list.
1363///
1364/// Return true iff it appears that any interesting folding opportunities
1365/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1366/// the common case where no interesting opportunities are present, and
1367/// is also used as a check to avoid infinite recursion.
1368///
1369static bool
1370CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1371                             SmallVector<const SCEV *, 8> &NewOps,
1372                             APInt &AccumulatedConstant,
1373                             const SCEV *const *Ops, size_t NumOperands,
1374                             const APInt &Scale,
1375                             ScalarEvolution &SE) {
1376  bool Interesting = false;
1377
1378  // Iterate over the add operands. They are sorted, with constants first.
1379  unsigned i = 0;
1380  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1381    ++i;
1382    // Pull a buried constant out to the outside.
1383    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1384      Interesting = true;
1385    AccumulatedConstant += Scale * C->getValue()->getValue();
1386  }
1387
1388  // Next comes everything else. We're especially interested in multiplies
1389  // here, but they're in the middle, so just visit the rest with one loop.
1390  for (; i != NumOperands; ++i) {
1391    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1392    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1393      APInt NewScale =
1394        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1395      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1396        // A multiplication of a constant with another add; recurse.
1397        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1398        Interesting |=
1399          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1400                                       Add->op_begin(), Add->getNumOperands(),
1401                                       NewScale, SE);
1402      } else {
1403        // A multiplication of a constant with some other value. Update
1404        // the map.
1405        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1406        const SCEV *Key = SE.getMulExpr(MulOps);
1407        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1408          M.insert(std::make_pair(Key, NewScale));
1409        if (Pair.second) {
1410          NewOps.push_back(Pair.first->first);
1411        } else {
1412          Pair.first->second += NewScale;
1413          // The map already had an entry for this value, which may indicate
1414          // a folding opportunity.
1415          Interesting = true;
1416        }
1417      }
1418    } else {
1419      // An ordinary operand. Update the map.
1420      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1421        M.insert(std::make_pair(Ops[i], Scale));
1422      if (Pair.second) {
1423        NewOps.push_back(Pair.first->first);
1424      } else {
1425        Pair.first->second += Scale;
1426        // The map already had an entry for this value, which may indicate
1427        // a folding opportunity.
1428        Interesting = true;
1429      }
1430    }
1431  }
1432
1433  return Interesting;
1434}
1435
1436namespace {
1437  struct APIntCompare {
1438    bool operator()(const APInt &LHS, const APInt &RHS) const {
1439      return LHS.ult(RHS);
1440    }
1441  };
1442}
1443
1444/// getAddExpr - Get a canonical add expression, or something simpler if
1445/// possible.
1446const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1447                                        SCEV::NoWrapFlags Flags) {
1448  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1449         "only nuw or nsw allowed");
1450  assert(!Ops.empty() && "Cannot get empty add!");
1451  if (Ops.size() == 1) return Ops[0];
1452#ifndef NDEBUG
1453  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1454  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1455    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1456           "SCEVAddExpr operand types don't match!");
1457#endif
1458
1459  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1460  // And vice-versa.
1461  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1462  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1463  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1464    bool All = true;
1465    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1466         E = Ops.end(); I != E; ++I)
1467      if (!isKnownNonNegative(*I)) {
1468        All = false;
1469        break;
1470      }
1471    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1472  }
1473
1474  // Sort by complexity, this groups all similar expression types together.
1475  GroupByComplexity(Ops, LI);
1476
1477  // If there are any constants, fold them together.
1478  unsigned Idx = 0;
1479  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1480    ++Idx;
1481    assert(Idx < Ops.size());
1482    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1483      // We found two constants, fold them together!
1484      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1485                           RHSC->getValue()->getValue());
1486      if (Ops.size() == 2) return Ops[0];
1487      Ops.erase(Ops.begin()+1);  // Erase the folded element
1488      LHSC = cast<SCEVConstant>(Ops[0]);
1489    }
1490
1491    // If we are left with a constant zero being added, strip it off.
1492    if (LHSC->getValue()->isZero()) {
1493      Ops.erase(Ops.begin());
1494      --Idx;
1495    }
1496
1497    if (Ops.size() == 1) return Ops[0];
1498  }
1499
1500  // Okay, check to see if the same value occurs in the operand list more than
1501  // once.  If so, merge them together into an multiply expression.  Since we
1502  // sorted the list, these values are required to be adjacent.
1503  Type *Ty = Ops[0]->getType();
1504  bool FoundMatch = false;
1505  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1506    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1507      // Scan ahead to count how many equal operands there are.
1508      unsigned Count = 2;
1509      while (i+Count != e && Ops[i+Count] == Ops[i])
1510        ++Count;
1511      // Merge the values into a multiply.
1512      const SCEV *Scale = getConstant(Ty, Count);
1513      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1514      if (Ops.size() == Count)
1515        return Mul;
1516      Ops[i] = Mul;
1517      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1518      --i; e -= Count - 1;
1519      FoundMatch = true;
1520    }
1521  if (FoundMatch)
1522    return getAddExpr(Ops, Flags);
1523
1524  // Check for truncates. If all the operands are truncated from the same
1525  // type, see if factoring out the truncate would permit the result to be
1526  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1527  // if the contents of the resulting outer trunc fold to something simple.
1528  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1529    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1530    Type *DstType = Trunc->getType();
1531    Type *SrcType = Trunc->getOperand()->getType();
1532    SmallVector<const SCEV *, 8> LargeOps;
1533    bool Ok = true;
1534    // Check all the operands to see if they can be represented in the
1535    // source type of the truncate.
1536    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1537      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1538        if (T->getOperand()->getType() != SrcType) {
1539          Ok = false;
1540          break;
1541        }
1542        LargeOps.push_back(T->getOperand());
1543      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1544        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1545      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1546        SmallVector<const SCEV *, 8> LargeMulOps;
1547        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1548          if (const SCEVTruncateExpr *T =
1549                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1550            if (T->getOperand()->getType() != SrcType) {
1551              Ok = false;
1552              break;
1553            }
1554            LargeMulOps.push_back(T->getOperand());
1555          } else if (const SCEVConstant *C =
1556                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1557            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1558          } else {
1559            Ok = false;
1560            break;
1561          }
1562        }
1563        if (Ok)
1564          LargeOps.push_back(getMulExpr(LargeMulOps));
1565      } else {
1566        Ok = false;
1567        break;
1568      }
1569    }
1570    if (Ok) {
1571      // Evaluate the expression in the larger type.
1572      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1573      // If it folds to something simple, use it. Otherwise, don't.
1574      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1575        return getTruncateExpr(Fold, DstType);
1576    }
1577  }
1578
1579  // Skip past any other cast SCEVs.
1580  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1581    ++Idx;
1582
1583  // If there are add operands they would be next.
1584  if (Idx < Ops.size()) {
1585    bool DeletedAdd = false;
1586    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1587      // If we have an add, expand the add operands onto the end of the operands
1588      // list.
1589      Ops.erase(Ops.begin()+Idx);
1590      Ops.append(Add->op_begin(), Add->op_end());
1591      DeletedAdd = true;
1592    }
1593
1594    // If we deleted at least one add, we added operands to the end of the list,
1595    // and they are not necessarily sorted.  Recurse to resort and resimplify
1596    // any operands we just acquired.
1597    if (DeletedAdd)
1598      return getAddExpr(Ops);
1599  }
1600
1601  // Skip over the add expression until we get to a multiply.
1602  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1603    ++Idx;
1604
1605  // Check to see if there are any folding opportunities present with
1606  // operands multiplied by constant values.
1607  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1608    uint64_t BitWidth = getTypeSizeInBits(Ty);
1609    DenseMap<const SCEV *, APInt> M;
1610    SmallVector<const SCEV *, 8> NewOps;
1611    APInt AccumulatedConstant(BitWidth, 0);
1612    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1613                                     Ops.data(), Ops.size(),
1614                                     APInt(BitWidth, 1), *this)) {
1615      // Some interesting folding opportunity is present, so its worthwhile to
1616      // re-generate the operands list. Group the operands by constant scale,
1617      // to avoid multiplying by the same constant scale multiple times.
1618      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1619      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1620           E = NewOps.end(); I != E; ++I)
1621        MulOpLists[M.find(*I)->second].push_back(*I);
1622      // Re-generate the operands list.
1623      Ops.clear();
1624      if (AccumulatedConstant != 0)
1625        Ops.push_back(getConstant(AccumulatedConstant));
1626      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1627           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1628        if (I->first != 0)
1629          Ops.push_back(getMulExpr(getConstant(I->first),
1630                                   getAddExpr(I->second)));
1631      if (Ops.empty())
1632        return getConstant(Ty, 0);
1633      if (Ops.size() == 1)
1634        return Ops[0];
1635      return getAddExpr(Ops);
1636    }
1637  }
1638
1639  // If we are adding something to a multiply expression, make sure the
1640  // something is not already an operand of the multiply.  If so, merge it into
1641  // the multiply.
1642  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1643    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1644    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1645      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1646      if (isa<SCEVConstant>(MulOpSCEV))
1647        continue;
1648      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1649        if (MulOpSCEV == Ops[AddOp]) {
1650          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1651          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1652          if (Mul->getNumOperands() != 2) {
1653            // If the multiply has more than two operands, we must get the
1654            // Y*Z term.
1655            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1656                                                Mul->op_begin()+MulOp);
1657            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1658            InnerMul = getMulExpr(MulOps);
1659          }
1660          const SCEV *One = getConstant(Ty, 1);
1661          const SCEV *AddOne = getAddExpr(One, InnerMul);
1662          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1663          if (Ops.size() == 2) return OuterMul;
1664          if (AddOp < Idx) {
1665            Ops.erase(Ops.begin()+AddOp);
1666            Ops.erase(Ops.begin()+Idx-1);
1667          } else {
1668            Ops.erase(Ops.begin()+Idx);
1669            Ops.erase(Ops.begin()+AddOp-1);
1670          }
1671          Ops.push_back(OuterMul);
1672          return getAddExpr(Ops);
1673        }
1674
1675      // Check this multiply against other multiplies being added together.
1676      for (unsigned OtherMulIdx = Idx+1;
1677           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1678           ++OtherMulIdx) {
1679        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1680        // If MulOp occurs in OtherMul, we can fold the two multiplies
1681        // together.
1682        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1683             OMulOp != e; ++OMulOp)
1684          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1685            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1686            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1687            if (Mul->getNumOperands() != 2) {
1688              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1689                                                  Mul->op_begin()+MulOp);
1690              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1691              InnerMul1 = getMulExpr(MulOps);
1692            }
1693            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1694            if (OtherMul->getNumOperands() != 2) {
1695              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1696                                                  OtherMul->op_begin()+OMulOp);
1697              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1698              InnerMul2 = getMulExpr(MulOps);
1699            }
1700            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1701            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1702            if (Ops.size() == 2) return OuterMul;
1703            Ops.erase(Ops.begin()+Idx);
1704            Ops.erase(Ops.begin()+OtherMulIdx-1);
1705            Ops.push_back(OuterMul);
1706            return getAddExpr(Ops);
1707          }
1708      }
1709    }
1710  }
1711
1712  // If there are any add recurrences in the operands list, see if any other
1713  // added values are loop invariant.  If so, we can fold them into the
1714  // recurrence.
1715  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1716    ++Idx;
1717
1718  // Scan over all recurrences, trying to fold loop invariants into them.
1719  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1720    // Scan all of the other operands to this add and add them to the vector if
1721    // they are loop invariant w.r.t. the recurrence.
1722    SmallVector<const SCEV *, 8> LIOps;
1723    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1724    const Loop *AddRecLoop = AddRec->getLoop();
1725    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1726      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1727        LIOps.push_back(Ops[i]);
1728        Ops.erase(Ops.begin()+i);
1729        --i; --e;
1730      }
1731
1732    // If we found some loop invariants, fold them into the recurrence.
1733    if (!LIOps.empty()) {
1734      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1735      LIOps.push_back(AddRec->getStart());
1736
1737      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1738                                             AddRec->op_end());
1739      AddRecOps[0] = getAddExpr(LIOps);
1740
1741      // Build the new addrec. Propagate the NUW and NSW flags if both the
1742      // outer add and the inner addrec are guaranteed to have no overflow.
1743      // Always propagate NW.
1744      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1745      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1746
1747      // If all of the other operands were loop invariant, we are done.
1748      if (Ops.size() == 1) return NewRec;
1749
1750      // Otherwise, add the folded AddRec by the non-invariant parts.
1751      for (unsigned i = 0;; ++i)
1752        if (Ops[i] == AddRec) {
1753          Ops[i] = NewRec;
1754          break;
1755        }
1756      return getAddExpr(Ops);
1757    }
1758
1759    // Okay, if there weren't any loop invariants to be folded, check to see if
1760    // there are multiple AddRec's with the same loop induction variable being
1761    // added together.  If so, we can fold them.
1762    for (unsigned OtherIdx = Idx+1;
1763         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1764         ++OtherIdx)
1765      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1766        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1767        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1768                                               AddRec->op_end());
1769        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1770             ++OtherIdx)
1771          if (const SCEVAddRecExpr *OtherAddRec =
1772                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1773            if (OtherAddRec->getLoop() == AddRecLoop) {
1774              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1775                   i != e; ++i) {
1776                if (i >= AddRecOps.size()) {
1777                  AddRecOps.append(OtherAddRec->op_begin()+i,
1778                                   OtherAddRec->op_end());
1779                  break;
1780                }
1781                AddRecOps[i] = getAddExpr(AddRecOps[i],
1782                                          OtherAddRec->getOperand(i));
1783              }
1784              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1785            }
1786        // Step size has changed, so we cannot guarantee no self-wraparound.
1787        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1788        return getAddExpr(Ops);
1789      }
1790
1791    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1792    // next one.
1793  }
1794
1795  // Okay, it looks like we really DO need an add expr.  Check to see if we
1796  // already have one, otherwise create a new one.
1797  FoldingSetNodeID ID;
1798  ID.AddInteger(scAddExpr);
1799  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1800    ID.AddPointer(Ops[i]);
1801  void *IP = 0;
1802  SCEVAddExpr *S =
1803    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1804  if (!S) {
1805    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1806    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1807    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1808                                        O, Ops.size());
1809    UniqueSCEVs.InsertNode(S, IP);
1810  }
1811  S->setNoWrapFlags(Flags);
1812  return S;
1813}
1814
1815/// getMulExpr - Get a canonical multiply expression, or something simpler if
1816/// possible.
1817const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1818                                        SCEV::NoWrapFlags Flags) {
1819  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1820         "only nuw or nsw allowed");
1821  assert(!Ops.empty() && "Cannot get empty mul!");
1822  if (Ops.size() == 1) return Ops[0];
1823#ifndef NDEBUG
1824  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1825  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1826    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1827           "SCEVMulExpr operand types don't match!");
1828#endif
1829
1830  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1831  // And vice-versa.
1832  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1833  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1834  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1835    bool All = true;
1836    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1837         E = Ops.end(); I != E; ++I)
1838      if (!isKnownNonNegative(*I)) {
1839        All = false;
1840        break;
1841      }
1842    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1843  }
1844
1845  // Sort by complexity, this groups all similar expression types together.
1846  GroupByComplexity(Ops, LI);
1847
1848  // If there are any constants, fold them together.
1849  unsigned Idx = 0;
1850  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1851
1852    // C1*(C2+V) -> C1*C2 + C1*V
1853    if (Ops.size() == 2)
1854      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1855        if (Add->getNumOperands() == 2 &&
1856            isa<SCEVConstant>(Add->getOperand(0)))
1857          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1858                            getMulExpr(LHSC, Add->getOperand(1)));
1859
1860    ++Idx;
1861    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1862      // We found two constants, fold them together!
1863      ConstantInt *Fold = ConstantInt::get(getContext(),
1864                                           LHSC->getValue()->getValue() *
1865                                           RHSC->getValue()->getValue());
1866      Ops[0] = getConstant(Fold);
1867      Ops.erase(Ops.begin()+1);  // Erase the folded element
1868      if (Ops.size() == 1) return Ops[0];
1869      LHSC = cast<SCEVConstant>(Ops[0]);
1870    }
1871
1872    // If we are left with a constant one being multiplied, strip it off.
1873    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1874      Ops.erase(Ops.begin());
1875      --Idx;
1876    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1877      // If we have a multiply of zero, it will always be zero.
1878      return Ops[0];
1879    } else if (Ops[0]->isAllOnesValue()) {
1880      // If we have a mul by -1 of an add, try distributing the -1 among the
1881      // add operands.
1882      if (Ops.size() == 2) {
1883        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1884          SmallVector<const SCEV *, 4> NewOps;
1885          bool AnyFolded = false;
1886          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1887                 E = Add->op_end(); I != E; ++I) {
1888            const SCEV *Mul = getMulExpr(Ops[0], *I);
1889            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1890            NewOps.push_back(Mul);
1891          }
1892          if (AnyFolded)
1893            return getAddExpr(NewOps);
1894        }
1895        else if (const SCEVAddRecExpr *
1896                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1897          // Negation preserves a recurrence's no self-wrap property.
1898          SmallVector<const SCEV *, 4> Operands;
1899          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1900                 E = AddRec->op_end(); I != E; ++I) {
1901            Operands.push_back(getMulExpr(Ops[0], *I));
1902          }
1903          return getAddRecExpr(Operands, AddRec->getLoop(),
1904                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1905        }
1906      }
1907    }
1908
1909    if (Ops.size() == 1)
1910      return Ops[0];
1911  }
1912
1913  // Skip over the add expression until we get to a multiply.
1914  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1915    ++Idx;
1916
1917  // If there are mul operands inline them all into this expression.
1918  if (Idx < Ops.size()) {
1919    bool DeletedMul = false;
1920    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1921      // If we have an mul, expand the mul operands onto the end of the operands
1922      // list.
1923      Ops.erase(Ops.begin()+Idx);
1924      Ops.append(Mul->op_begin(), Mul->op_end());
1925      DeletedMul = true;
1926    }
1927
1928    // If we deleted at least one mul, we added operands to the end of the list,
1929    // and they are not necessarily sorted.  Recurse to resort and resimplify
1930    // any operands we just acquired.
1931    if (DeletedMul)
1932      return getMulExpr(Ops);
1933  }
1934
1935  // If there are any add recurrences in the operands list, see if any other
1936  // added values are loop invariant.  If so, we can fold them into the
1937  // recurrence.
1938  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1939    ++Idx;
1940
1941  // Scan over all recurrences, trying to fold loop invariants into them.
1942  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1943    // Scan all of the other operands to this mul and add them to the vector if
1944    // they are loop invariant w.r.t. the recurrence.
1945    SmallVector<const SCEV *, 8> LIOps;
1946    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1947    const Loop *AddRecLoop = AddRec->getLoop();
1948    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1949      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1950        LIOps.push_back(Ops[i]);
1951        Ops.erase(Ops.begin()+i);
1952        --i; --e;
1953      }
1954
1955    // If we found some loop invariants, fold them into the recurrence.
1956    if (!LIOps.empty()) {
1957      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1958      SmallVector<const SCEV *, 4> NewOps;
1959      NewOps.reserve(AddRec->getNumOperands());
1960      const SCEV *Scale = getMulExpr(LIOps);
1961      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1962        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1963
1964      // Build the new addrec. Propagate the NUW and NSW flags if both the
1965      // outer mul and the inner addrec are guaranteed to have no overflow.
1966      //
1967      // No self-wrap cannot be guaranteed after changing the step size, but
1968      // will be inferred if either NUW or NSW is true.
1969      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
1970      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
1971
1972      // If all of the other operands were loop invariant, we are done.
1973      if (Ops.size() == 1) return NewRec;
1974
1975      // Otherwise, multiply the folded AddRec by the non-invariant parts.
1976      for (unsigned i = 0;; ++i)
1977        if (Ops[i] == AddRec) {
1978          Ops[i] = NewRec;
1979          break;
1980        }
1981      return getMulExpr(Ops);
1982    }
1983
1984    // Okay, if there weren't any loop invariants to be folded, check to see if
1985    // there are multiple AddRec's with the same loop induction variable being
1986    // multiplied together.  If so, we can fold them.
1987    for (unsigned OtherIdx = Idx+1;
1988         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1989         ++OtherIdx) {
1990      bool Retry = false;
1991      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1992        // {A,+,B}<L> * {C,+,D}<L>  -->  {A*C,+,A*D + B*C + B*D,+,2*B*D}<L>
1993        //
1994        // {A,+,B} * {C,+,D} = A+It*B * C+It*D = A*C + (A*D + B*C)*It + B*D*It^2
1995        // Given an equation of the form x + y*It + z*It^2 (above), we want to
1996        // express it in terms of {X,+,Y,+,Z}.
1997        // {X,+,Y,+,Z} = X + Y*It + Z*(It^2 - It)/2.
1998        // Rearranging, X = x, Y = y+z, Z = 2z.
1999        //
2000        // x = A*C, y = (A*D + B*C), z = B*D.
2001        // Therefore X = A*C, Y = A*D + B*C + B*D and Z = 2*B*D.
2002        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2003             ++OtherIdx)
2004          if (const SCEVAddRecExpr *OtherAddRec =
2005                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2006            if (OtherAddRec->getLoop() == AddRecLoop) {
2007              const SCEV *A = AddRec->getStart();
2008              const SCEV *B = AddRec->getStepRecurrence(*this);
2009              const SCEV *C = OtherAddRec->getStart();
2010              const SCEV *D = OtherAddRec->getStepRecurrence(*this);
2011              const SCEV *NewStart = getMulExpr(A, C);
2012              const SCEV *BD = getMulExpr(B, D);
2013              const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
2014                                               getMulExpr(B, C), BD);
2015              const SCEV *NewSecondOrderStep =
2016                  getMulExpr(BD, getConstant(BD->getType(), 2));
2017
2018              // This can happen when AddRec or OtherAddRec have >3 operands.
2019              // TODO: support these add-recs.
2020              if (isLoopInvariant(NewStart, AddRecLoop) &&
2021                  isLoopInvariant(NewStep, AddRecLoop) &&
2022                  isLoopInvariant(NewSecondOrderStep, AddRecLoop)) {
2023                SmallVector<const SCEV *, 3> AddRecOps;
2024                AddRecOps.push_back(NewStart);
2025                AddRecOps.push_back(NewStep);
2026                AddRecOps.push_back(NewSecondOrderStep);
2027                const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2028                                                      AddRec->getLoop(),
2029                                                      SCEV::FlagAnyWrap);
2030                if (Ops.size() == 2) return NewAddRec;
2031                Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2032                Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2033                Retry = true;
2034              }
2035            }
2036        if (Retry)
2037          return getMulExpr(Ops);
2038      }
2039    }
2040
2041    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2042    // next one.
2043  }
2044
2045  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2046  // already have one, otherwise create a new one.
2047  FoldingSetNodeID ID;
2048  ID.AddInteger(scMulExpr);
2049  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2050    ID.AddPointer(Ops[i]);
2051  void *IP = 0;
2052  SCEVMulExpr *S =
2053    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2054  if (!S) {
2055    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2056    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2057    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2058                                        O, Ops.size());
2059    UniqueSCEVs.InsertNode(S, IP);
2060  }
2061  S->setNoWrapFlags(Flags);
2062  return S;
2063}
2064
2065/// getUDivExpr - Get a canonical unsigned division expression, or something
2066/// simpler if possible.
2067const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2068                                         const SCEV *RHS) {
2069  assert(getEffectiveSCEVType(LHS->getType()) ==
2070         getEffectiveSCEVType(RHS->getType()) &&
2071         "SCEVUDivExpr operand types don't match!");
2072
2073  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2074    if (RHSC->getValue()->equalsInt(1))
2075      return LHS;                               // X udiv 1 --> x
2076    // If the denominator is zero, the result of the udiv is undefined. Don't
2077    // try to analyze it, because the resolution chosen here may differ from
2078    // the resolution chosen in other parts of the compiler.
2079    if (!RHSC->getValue()->isZero()) {
2080      // Determine if the division can be folded into the operands of
2081      // its operands.
2082      // TODO: Generalize this to non-constants by using known-bits information.
2083      Type *Ty = LHS->getType();
2084      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2085      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2086      // For non-power-of-two values, effectively round the value up to the
2087      // nearest power of two.
2088      if (!RHSC->getValue()->getValue().isPowerOf2())
2089        ++MaxShiftAmt;
2090      IntegerType *ExtTy =
2091        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2092      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2093        if (const SCEVConstant *Step =
2094            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2095          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2096          const APInt &StepInt = Step->getValue()->getValue();
2097          const APInt &DivInt = RHSC->getValue()->getValue();
2098          if (!StepInt.urem(DivInt) &&
2099              getZeroExtendExpr(AR, ExtTy) ==
2100              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2101                            getZeroExtendExpr(Step, ExtTy),
2102                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2103            SmallVector<const SCEV *, 4> Operands;
2104            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2105              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2106            return getAddRecExpr(Operands, AR->getLoop(),
2107                                 SCEV::FlagNW);
2108          }
2109          /// Get a canonical UDivExpr for a recurrence.
2110          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2111          // We can currently only fold X%N if X is constant.
2112          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2113          if (StartC && !DivInt.urem(StepInt) &&
2114              getZeroExtendExpr(AR, ExtTy) ==
2115              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2116                            getZeroExtendExpr(Step, ExtTy),
2117                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2118            const APInt &StartInt = StartC->getValue()->getValue();
2119            const APInt &StartRem = StartInt.urem(StepInt);
2120            if (StartRem != 0)
2121              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2122                                  AR->getLoop(), SCEV::FlagNW);
2123          }
2124        }
2125      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2126      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2127        SmallVector<const SCEV *, 4> Operands;
2128        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2129          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2130        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2131          // Find an operand that's safely divisible.
2132          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2133            const SCEV *Op = M->getOperand(i);
2134            const SCEV *Div = getUDivExpr(Op, RHSC);
2135            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2136              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2137                                                      M->op_end());
2138              Operands[i] = Div;
2139              return getMulExpr(Operands);
2140            }
2141          }
2142      }
2143      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2144      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2145        SmallVector<const SCEV *, 4> Operands;
2146        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2147          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2148        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2149          Operands.clear();
2150          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2151            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2152            if (isa<SCEVUDivExpr>(Op) ||
2153                getMulExpr(Op, RHS) != A->getOperand(i))
2154              break;
2155            Operands.push_back(Op);
2156          }
2157          if (Operands.size() == A->getNumOperands())
2158            return getAddExpr(Operands);
2159        }
2160      }
2161
2162      // Fold if both operands are constant.
2163      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2164        Constant *LHSCV = LHSC->getValue();
2165        Constant *RHSCV = RHSC->getValue();
2166        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2167                                                                   RHSCV)));
2168      }
2169    }
2170  }
2171
2172  FoldingSetNodeID ID;
2173  ID.AddInteger(scUDivExpr);
2174  ID.AddPointer(LHS);
2175  ID.AddPointer(RHS);
2176  void *IP = 0;
2177  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2178  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2179                                             LHS, RHS);
2180  UniqueSCEVs.InsertNode(S, IP);
2181  return S;
2182}
2183
2184
2185/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2186/// Simplify the expression as much as possible.
2187const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2188                                           const Loop *L,
2189                                           SCEV::NoWrapFlags Flags) {
2190  SmallVector<const SCEV *, 4> Operands;
2191  Operands.push_back(Start);
2192  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2193    if (StepChrec->getLoop() == L) {
2194      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2195      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2196    }
2197
2198  Operands.push_back(Step);
2199  return getAddRecExpr(Operands, L, Flags);
2200}
2201
2202/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2203/// Simplify the expression as much as possible.
2204const SCEV *
2205ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2206                               const Loop *L, SCEV::NoWrapFlags Flags) {
2207  if (Operands.size() == 1) return Operands[0];
2208#ifndef NDEBUG
2209  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2210  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2211    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2212           "SCEVAddRecExpr operand types don't match!");
2213  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2214    assert(isLoopInvariant(Operands[i], L) &&
2215           "SCEVAddRecExpr operand is not loop-invariant!");
2216#endif
2217
2218  if (Operands.back()->isZero()) {
2219    Operands.pop_back();
2220    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2221  }
2222
2223  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2224  // use that information to infer NUW and NSW flags. However, computing a
2225  // BE count requires calling getAddRecExpr, so we may not yet have a
2226  // meaningful BE count at this point (and if we don't, we'd be stuck
2227  // with a SCEVCouldNotCompute as the cached BE count).
2228
2229  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2230  // And vice-versa.
2231  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2232  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2233  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2234    bool All = true;
2235    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2236         E = Operands.end(); I != E; ++I)
2237      if (!isKnownNonNegative(*I)) {
2238        All = false;
2239        break;
2240      }
2241    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2242  }
2243
2244  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2245  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2246    const Loop *NestedLoop = NestedAR->getLoop();
2247    if (L->contains(NestedLoop) ?
2248        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2249        (!NestedLoop->contains(L) &&
2250         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2251      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2252                                                  NestedAR->op_end());
2253      Operands[0] = NestedAR->getStart();
2254      // AddRecs require their operands be loop-invariant with respect to their
2255      // loops. Don't perform this transformation if it would break this
2256      // requirement.
2257      bool AllInvariant = true;
2258      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2259        if (!isLoopInvariant(Operands[i], L)) {
2260          AllInvariant = false;
2261          break;
2262        }
2263      if (AllInvariant) {
2264        // Create a recurrence for the outer loop with the same step size.
2265        //
2266        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2267        // inner recurrence has the same property.
2268        SCEV::NoWrapFlags OuterFlags =
2269          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2270
2271        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2272        AllInvariant = true;
2273        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2274          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2275            AllInvariant = false;
2276            break;
2277          }
2278        if (AllInvariant) {
2279          // Ok, both add recurrences are valid after the transformation.
2280          //
2281          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2282          // the outer recurrence has the same property.
2283          SCEV::NoWrapFlags InnerFlags =
2284            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2285          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2286        }
2287      }
2288      // Reset Operands to its original state.
2289      Operands[0] = NestedAR;
2290    }
2291  }
2292
2293  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2294  // already have one, otherwise create a new one.
2295  FoldingSetNodeID ID;
2296  ID.AddInteger(scAddRecExpr);
2297  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2298    ID.AddPointer(Operands[i]);
2299  ID.AddPointer(L);
2300  void *IP = 0;
2301  SCEVAddRecExpr *S =
2302    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2303  if (!S) {
2304    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2305    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2306    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2307                                           O, Operands.size(), L);
2308    UniqueSCEVs.InsertNode(S, IP);
2309  }
2310  S->setNoWrapFlags(Flags);
2311  return S;
2312}
2313
2314const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2315                                         const SCEV *RHS) {
2316  SmallVector<const SCEV *, 2> Ops;
2317  Ops.push_back(LHS);
2318  Ops.push_back(RHS);
2319  return getSMaxExpr(Ops);
2320}
2321
2322const SCEV *
2323ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2324  assert(!Ops.empty() && "Cannot get empty smax!");
2325  if (Ops.size() == 1) return Ops[0];
2326#ifndef NDEBUG
2327  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2328  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2329    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2330           "SCEVSMaxExpr operand types don't match!");
2331#endif
2332
2333  // Sort by complexity, this groups all similar expression types together.
2334  GroupByComplexity(Ops, LI);
2335
2336  // If there are any constants, fold them together.
2337  unsigned Idx = 0;
2338  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2339    ++Idx;
2340    assert(Idx < Ops.size());
2341    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2342      // We found two constants, fold them together!
2343      ConstantInt *Fold = ConstantInt::get(getContext(),
2344                              APIntOps::smax(LHSC->getValue()->getValue(),
2345                                             RHSC->getValue()->getValue()));
2346      Ops[0] = getConstant(Fold);
2347      Ops.erase(Ops.begin()+1);  // Erase the folded element
2348      if (Ops.size() == 1) return Ops[0];
2349      LHSC = cast<SCEVConstant>(Ops[0]);
2350    }
2351
2352    // If we are left with a constant minimum-int, strip it off.
2353    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2354      Ops.erase(Ops.begin());
2355      --Idx;
2356    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2357      // If we have an smax with a constant maximum-int, it will always be
2358      // maximum-int.
2359      return Ops[0];
2360    }
2361
2362    if (Ops.size() == 1) return Ops[0];
2363  }
2364
2365  // Find the first SMax
2366  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2367    ++Idx;
2368
2369  // Check to see if one of the operands is an SMax. If so, expand its operands
2370  // onto our operand list, and recurse to simplify.
2371  if (Idx < Ops.size()) {
2372    bool DeletedSMax = false;
2373    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2374      Ops.erase(Ops.begin()+Idx);
2375      Ops.append(SMax->op_begin(), SMax->op_end());
2376      DeletedSMax = true;
2377    }
2378
2379    if (DeletedSMax)
2380      return getSMaxExpr(Ops);
2381  }
2382
2383  // Okay, check to see if the same value occurs in the operand list twice.  If
2384  // so, delete one.  Since we sorted the list, these values are required to
2385  // be adjacent.
2386  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2387    //  X smax Y smax Y  -->  X smax Y
2388    //  X smax Y         -->  X, if X is always greater than Y
2389    if (Ops[i] == Ops[i+1] ||
2390        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2391      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2392      --i; --e;
2393    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2394      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2395      --i; --e;
2396    }
2397
2398  if (Ops.size() == 1) return Ops[0];
2399
2400  assert(!Ops.empty() && "Reduced smax down to nothing!");
2401
2402  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2403  // already have one, otherwise create a new one.
2404  FoldingSetNodeID ID;
2405  ID.AddInteger(scSMaxExpr);
2406  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2407    ID.AddPointer(Ops[i]);
2408  void *IP = 0;
2409  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2410  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2411  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2412  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2413                                             O, Ops.size());
2414  UniqueSCEVs.InsertNode(S, IP);
2415  return S;
2416}
2417
2418const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2419                                         const SCEV *RHS) {
2420  SmallVector<const SCEV *, 2> Ops;
2421  Ops.push_back(LHS);
2422  Ops.push_back(RHS);
2423  return getUMaxExpr(Ops);
2424}
2425
2426const SCEV *
2427ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2428  assert(!Ops.empty() && "Cannot get empty umax!");
2429  if (Ops.size() == 1) return Ops[0];
2430#ifndef NDEBUG
2431  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2432  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2433    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2434           "SCEVUMaxExpr operand types don't match!");
2435#endif
2436
2437  // Sort by complexity, this groups all similar expression types together.
2438  GroupByComplexity(Ops, LI);
2439
2440  // If there are any constants, fold them together.
2441  unsigned Idx = 0;
2442  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2443    ++Idx;
2444    assert(Idx < Ops.size());
2445    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2446      // We found two constants, fold them together!
2447      ConstantInt *Fold = ConstantInt::get(getContext(),
2448                              APIntOps::umax(LHSC->getValue()->getValue(),
2449                                             RHSC->getValue()->getValue()));
2450      Ops[0] = getConstant(Fold);
2451      Ops.erase(Ops.begin()+1);  // Erase the folded element
2452      if (Ops.size() == 1) return Ops[0];
2453      LHSC = cast<SCEVConstant>(Ops[0]);
2454    }
2455
2456    // If we are left with a constant minimum-int, strip it off.
2457    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2458      Ops.erase(Ops.begin());
2459      --Idx;
2460    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2461      // If we have an umax with a constant maximum-int, it will always be
2462      // maximum-int.
2463      return Ops[0];
2464    }
2465
2466    if (Ops.size() == 1) return Ops[0];
2467  }
2468
2469  // Find the first UMax
2470  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2471    ++Idx;
2472
2473  // Check to see if one of the operands is a UMax. If so, expand its operands
2474  // onto our operand list, and recurse to simplify.
2475  if (Idx < Ops.size()) {
2476    bool DeletedUMax = false;
2477    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2478      Ops.erase(Ops.begin()+Idx);
2479      Ops.append(UMax->op_begin(), UMax->op_end());
2480      DeletedUMax = true;
2481    }
2482
2483    if (DeletedUMax)
2484      return getUMaxExpr(Ops);
2485  }
2486
2487  // Okay, check to see if the same value occurs in the operand list twice.  If
2488  // so, delete one.  Since we sorted the list, these values are required to
2489  // be adjacent.
2490  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2491    //  X umax Y umax Y  -->  X umax Y
2492    //  X umax Y         -->  X, if X is always greater than Y
2493    if (Ops[i] == Ops[i+1] ||
2494        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2495      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2496      --i; --e;
2497    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2498      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2499      --i; --e;
2500    }
2501
2502  if (Ops.size() == 1) return Ops[0];
2503
2504  assert(!Ops.empty() && "Reduced umax down to nothing!");
2505
2506  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2507  // already have one, otherwise create a new one.
2508  FoldingSetNodeID ID;
2509  ID.AddInteger(scUMaxExpr);
2510  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2511    ID.AddPointer(Ops[i]);
2512  void *IP = 0;
2513  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2514  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2515  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2516  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2517                                             O, Ops.size());
2518  UniqueSCEVs.InsertNode(S, IP);
2519  return S;
2520}
2521
2522const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2523                                         const SCEV *RHS) {
2524  // ~smax(~x, ~y) == smin(x, y).
2525  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2526}
2527
2528const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2529                                         const SCEV *RHS) {
2530  // ~umax(~x, ~y) == umin(x, y)
2531  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2532}
2533
2534const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2535  // If we have TargetData, we can bypass creating a target-independent
2536  // constant expression and then folding it back into a ConstantInt.
2537  // This is just a compile-time optimization.
2538  if (TD)
2539    return getConstant(TD->getIntPtrType(getContext()),
2540                       TD->getTypeAllocSize(AllocTy));
2541
2542  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2543  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2544    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2545      C = Folded;
2546  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2547  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2548}
2549
2550const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2551  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2552  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2553    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2554      C = Folded;
2555  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2556  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2557}
2558
2559const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2560                                             unsigned FieldNo) {
2561  // If we have TargetData, we can bypass creating a target-independent
2562  // constant expression and then folding it back into a ConstantInt.
2563  // This is just a compile-time optimization.
2564  if (TD)
2565    return getConstant(TD->getIntPtrType(getContext()),
2566                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2567
2568  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2569  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2570    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2571      C = Folded;
2572  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2573  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2574}
2575
2576const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2577                                             Constant *FieldNo) {
2578  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2579  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2580    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2581      C = Folded;
2582  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2583  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2584}
2585
2586const SCEV *ScalarEvolution::getUnknown(Value *V) {
2587  // Don't attempt to do anything other than create a SCEVUnknown object
2588  // here.  createSCEV only calls getUnknown after checking for all other
2589  // interesting possibilities, and any other code that calls getUnknown
2590  // is doing so in order to hide a value from SCEV canonicalization.
2591
2592  FoldingSetNodeID ID;
2593  ID.AddInteger(scUnknown);
2594  ID.AddPointer(V);
2595  void *IP = 0;
2596  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2597    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2598           "Stale SCEVUnknown in uniquing map!");
2599    return S;
2600  }
2601  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2602                                            FirstUnknown);
2603  FirstUnknown = cast<SCEVUnknown>(S);
2604  UniqueSCEVs.InsertNode(S, IP);
2605  return S;
2606}
2607
2608//===----------------------------------------------------------------------===//
2609//            Basic SCEV Analysis and PHI Idiom Recognition Code
2610//
2611
2612/// isSCEVable - Test if values of the given type are analyzable within
2613/// the SCEV framework. This primarily includes integer types, and it
2614/// can optionally include pointer types if the ScalarEvolution class
2615/// has access to target-specific information.
2616bool ScalarEvolution::isSCEVable(Type *Ty) const {
2617  // Integers and pointers are always SCEVable.
2618  return Ty->isIntegerTy() || Ty->isPointerTy();
2619}
2620
2621/// getTypeSizeInBits - Return the size in bits of the specified type,
2622/// for which isSCEVable must return true.
2623uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2624  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2625
2626  // If we have a TargetData, use it!
2627  if (TD)
2628    return TD->getTypeSizeInBits(Ty);
2629
2630  // Integer types have fixed sizes.
2631  if (Ty->isIntegerTy())
2632    return Ty->getPrimitiveSizeInBits();
2633
2634  // The only other support type is pointer. Without TargetData, conservatively
2635  // assume pointers are 64-bit.
2636  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2637  return 64;
2638}
2639
2640/// getEffectiveSCEVType - Return a type with the same bitwidth as
2641/// the given type and which represents how SCEV will treat the given
2642/// type, for which isSCEVable must return true. For pointer types,
2643/// this is the pointer-sized integer type.
2644Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2645  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2646
2647  if (Ty->isIntegerTy())
2648    return Ty;
2649
2650  // The only other support type is pointer.
2651  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2652  if (TD) return TD->getIntPtrType(getContext());
2653
2654  // Without TargetData, conservatively assume pointers are 64-bit.
2655  return Type::getInt64Ty(getContext());
2656}
2657
2658const SCEV *ScalarEvolution::getCouldNotCompute() {
2659  return &CouldNotCompute;
2660}
2661
2662/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2663/// expression and create a new one.
2664const SCEV *ScalarEvolution::getSCEV(Value *V) {
2665  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2666
2667  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2668  if (I != ValueExprMap.end()) return I->second;
2669  const SCEV *S = createSCEV(V);
2670
2671  // The process of creating a SCEV for V may have caused other SCEVs
2672  // to have been created, so it's necessary to insert the new entry
2673  // from scratch, rather than trying to remember the insert position
2674  // above.
2675  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2676  return S;
2677}
2678
2679/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2680///
2681const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2682  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2683    return getConstant(
2684               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2685
2686  Type *Ty = V->getType();
2687  Ty = getEffectiveSCEVType(Ty);
2688  return getMulExpr(V,
2689                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2690}
2691
2692/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2693const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2694  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2695    return getConstant(
2696                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2697
2698  Type *Ty = V->getType();
2699  Ty = getEffectiveSCEVType(Ty);
2700  const SCEV *AllOnes =
2701                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2702  return getMinusSCEV(AllOnes, V);
2703}
2704
2705/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2706const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2707                                          SCEV::NoWrapFlags Flags) {
2708  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2709
2710  // Fast path: X - X --> 0.
2711  if (LHS == RHS)
2712    return getConstant(LHS->getType(), 0);
2713
2714  // X - Y --> X + -Y
2715  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2716}
2717
2718/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2719/// input value to the specified type.  If the type must be extended, it is zero
2720/// extended.
2721const SCEV *
2722ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2723  Type *SrcTy = V->getType();
2724  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2725         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2726         "Cannot truncate or zero extend with non-integer arguments!");
2727  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2728    return V;  // No conversion
2729  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2730    return getTruncateExpr(V, Ty);
2731  return getZeroExtendExpr(V, Ty);
2732}
2733
2734/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2735/// input value to the specified type.  If the type must be extended, it is sign
2736/// extended.
2737const SCEV *
2738ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2739                                         Type *Ty) {
2740  Type *SrcTy = V->getType();
2741  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2742         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2743         "Cannot truncate or zero extend with non-integer arguments!");
2744  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2745    return V;  // No conversion
2746  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2747    return getTruncateExpr(V, Ty);
2748  return getSignExtendExpr(V, Ty);
2749}
2750
2751/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2752/// input value to the specified type.  If the type must be extended, it is zero
2753/// extended.  The conversion must not be narrowing.
2754const SCEV *
2755ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2756  Type *SrcTy = V->getType();
2757  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2758         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2759         "Cannot noop or zero extend with non-integer arguments!");
2760  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2761         "getNoopOrZeroExtend cannot truncate!");
2762  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2763    return V;  // No conversion
2764  return getZeroExtendExpr(V, Ty);
2765}
2766
2767/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2768/// input value to the specified type.  If the type must be extended, it is sign
2769/// extended.  The conversion must not be narrowing.
2770const SCEV *
2771ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2772  Type *SrcTy = V->getType();
2773  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2774         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2775         "Cannot noop or sign extend with non-integer arguments!");
2776  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2777         "getNoopOrSignExtend cannot truncate!");
2778  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2779    return V;  // No conversion
2780  return getSignExtendExpr(V, Ty);
2781}
2782
2783/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2784/// the input value to the specified type. If the type must be extended,
2785/// it is extended with unspecified bits. The conversion must not be
2786/// narrowing.
2787const SCEV *
2788ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2789  Type *SrcTy = V->getType();
2790  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2791         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2792         "Cannot noop or any extend with non-integer arguments!");
2793  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2794         "getNoopOrAnyExtend cannot truncate!");
2795  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2796    return V;  // No conversion
2797  return getAnyExtendExpr(V, Ty);
2798}
2799
2800/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2801/// input value to the specified type.  The conversion must not be widening.
2802const SCEV *
2803ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2804  Type *SrcTy = V->getType();
2805  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2806         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2807         "Cannot truncate or noop with non-integer arguments!");
2808  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2809         "getTruncateOrNoop cannot extend!");
2810  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2811    return V;  // No conversion
2812  return getTruncateExpr(V, Ty);
2813}
2814
2815/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2816/// the types using zero-extension, and then perform a umax operation
2817/// with them.
2818const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2819                                                        const SCEV *RHS) {
2820  const SCEV *PromotedLHS = LHS;
2821  const SCEV *PromotedRHS = RHS;
2822
2823  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2824    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2825  else
2826    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2827
2828  return getUMaxExpr(PromotedLHS, PromotedRHS);
2829}
2830
2831/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2832/// the types using zero-extension, and then perform a umin operation
2833/// with them.
2834const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2835                                                        const SCEV *RHS) {
2836  const SCEV *PromotedLHS = LHS;
2837  const SCEV *PromotedRHS = RHS;
2838
2839  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2840    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2841  else
2842    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2843
2844  return getUMinExpr(PromotedLHS, PromotedRHS);
2845}
2846
2847/// getPointerBase - Transitively follow the chain of pointer-type operands
2848/// until reaching a SCEV that does not have a single pointer operand. This
2849/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2850/// but corner cases do exist.
2851const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2852  // A pointer operand may evaluate to a nonpointer expression, such as null.
2853  if (!V->getType()->isPointerTy())
2854    return V;
2855
2856  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2857    return getPointerBase(Cast->getOperand());
2858  }
2859  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2860    const SCEV *PtrOp = 0;
2861    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2862         I != E; ++I) {
2863      if ((*I)->getType()->isPointerTy()) {
2864        // Cannot find the base of an expression with multiple pointer operands.
2865        if (PtrOp)
2866          return V;
2867        PtrOp = *I;
2868      }
2869    }
2870    if (!PtrOp)
2871      return V;
2872    return getPointerBase(PtrOp);
2873  }
2874  return V;
2875}
2876
2877/// PushDefUseChildren - Push users of the given Instruction
2878/// onto the given Worklist.
2879static void
2880PushDefUseChildren(Instruction *I,
2881                   SmallVectorImpl<Instruction *> &Worklist) {
2882  // Push the def-use children onto the Worklist stack.
2883  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2884       UI != UE; ++UI)
2885    Worklist.push_back(cast<Instruction>(*UI));
2886}
2887
2888/// ForgetSymbolicValue - This looks up computed SCEV values for all
2889/// instructions that depend on the given instruction and removes them from
2890/// the ValueExprMapType map if they reference SymName. This is used during PHI
2891/// resolution.
2892void
2893ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2894  SmallVector<Instruction *, 16> Worklist;
2895  PushDefUseChildren(PN, Worklist);
2896
2897  SmallPtrSet<Instruction *, 8> Visited;
2898  Visited.insert(PN);
2899  while (!Worklist.empty()) {
2900    Instruction *I = Worklist.pop_back_val();
2901    if (!Visited.insert(I)) continue;
2902
2903    ValueExprMapType::iterator It =
2904      ValueExprMap.find(static_cast<Value *>(I));
2905    if (It != ValueExprMap.end()) {
2906      const SCEV *Old = It->second;
2907
2908      // Short-circuit the def-use traversal if the symbolic name
2909      // ceases to appear in expressions.
2910      if (Old != SymName && !hasOperand(Old, SymName))
2911        continue;
2912
2913      // SCEVUnknown for a PHI either means that it has an unrecognized
2914      // structure, it's a PHI that's in the progress of being computed
2915      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2916      // additional loop trip count information isn't going to change anything.
2917      // In the second case, createNodeForPHI will perform the necessary
2918      // updates on its own when it gets to that point. In the third, we do
2919      // want to forget the SCEVUnknown.
2920      if (!isa<PHINode>(I) ||
2921          !isa<SCEVUnknown>(Old) ||
2922          (I != PN && Old == SymName)) {
2923        forgetMemoizedResults(Old);
2924        ValueExprMap.erase(It);
2925      }
2926    }
2927
2928    PushDefUseChildren(I, Worklist);
2929  }
2930}
2931
2932/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2933/// a loop header, making it a potential recurrence, or it doesn't.
2934///
2935const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2936  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2937    if (L->getHeader() == PN->getParent()) {
2938      // The loop may have multiple entrances or multiple exits; we can analyze
2939      // this phi as an addrec if it has a unique entry value and a unique
2940      // backedge value.
2941      Value *BEValueV = 0, *StartValueV = 0;
2942      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2943        Value *V = PN->getIncomingValue(i);
2944        if (L->contains(PN->getIncomingBlock(i))) {
2945          if (!BEValueV) {
2946            BEValueV = V;
2947          } else if (BEValueV != V) {
2948            BEValueV = 0;
2949            break;
2950          }
2951        } else if (!StartValueV) {
2952          StartValueV = V;
2953        } else if (StartValueV != V) {
2954          StartValueV = 0;
2955          break;
2956        }
2957      }
2958      if (BEValueV && StartValueV) {
2959        // While we are analyzing this PHI node, handle its value symbolically.
2960        const SCEV *SymbolicName = getUnknown(PN);
2961        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2962               "PHI node already processed?");
2963        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2964
2965        // Using this symbolic name for the PHI, analyze the value coming around
2966        // the back-edge.
2967        const SCEV *BEValue = getSCEV(BEValueV);
2968
2969        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2970        // has a special value for the first iteration of the loop.
2971
2972        // If the value coming around the backedge is an add with the symbolic
2973        // value we just inserted, then we found a simple induction variable!
2974        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2975          // If there is a single occurrence of the symbolic value, replace it
2976          // with a recurrence.
2977          unsigned FoundIndex = Add->getNumOperands();
2978          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2979            if (Add->getOperand(i) == SymbolicName)
2980              if (FoundIndex == e) {
2981                FoundIndex = i;
2982                break;
2983              }
2984
2985          if (FoundIndex != Add->getNumOperands()) {
2986            // Create an add with everything but the specified operand.
2987            SmallVector<const SCEV *, 8> Ops;
2988            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2989              if (i != FoundIndex)
2990                Ops.push_back(Add->getOperand(i));
2991            const SCEV *Accum = getAddExpr(Ops);
2992
2993            // This is not a valid addrec if the step amount is varying each
2994            // loop iteration, but is not itself an addrec in this loop.
2995            if (isLoopInvariant(Accum, L) ||
2996                (isa<SCEVAddRecExpr>(Accum) &&
2997                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2998              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
2999
3000              // If the increment doesn't overflow, then neither the addrec nor
3001              // the post-increment will overflow.
3002              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3003                if (OBO->hasNoUnsignedWrap())
3004                  Flags = setFlags(Flags, SCEV::FlagNUW);
3005                if (OBO->hasNoSignedWrap())
3006                  Flags = setFlags(Flags, SCEV::FlagNSW);
3007              } else if (const GEPOperator *GEP =
3008                         dyn_cast<GEPOperator>(BEValueV)) {
3009                // If the increment is an inbounds GEP, then we know the address
3010                // space cannot be wrapped around. We cannot make any guarantee
3011                // about signed or unsigned overflow because pointers are
3012                // unsigned but we may have a negative index from the base
3013                // pointer.
3014                if (GEP->isInBounds())
3015                  Flags = setFlags(Flags, SCEV::FlagNW);
3016              }
3017
3018              const SCEV *StartVal = getSCEV(StartValueV);
3019              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3020
3021              // Since the no-wrap flags are on the increment, they apply to the
3022              // post-incremented value as well.
3023              if (isLoopInvariant(Accum, L))
3024                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3025                                    Accum, L, Flags);
3026
3027              // Okay, for the entire analysis of this edge we assumed the PHI
3028              // to be symbolic.  We now need to go back and purge all of the
3029              // entries for the scalars that use the symbolic expression.
3030              ForgetSymbolicName(PN, SymbolicName);
3031              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3032              return PHISCEV;
3033            }
3034          }
3035        } else if (const SCEVAddRecExpr *AddRec =
3036                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3037          // Otherwise, this could be a loop like this:
3038          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3039          // In this case, j = {1,+,1}  and BEValue is j.
3040          // Because the other in-value of i (0) fits the evolution of BEValue
3041          // i really is an addrec evolution.
3042          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3043            const SCEV *StartVal = getSCEV(StartValueV);
3044
3045            // If StartVal = j.start - j.stride, we can use StartVal as the
3046            // initial step of the addrec evolution.
3047            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3048                                         AddRec->getOperand(1))) {
3049              // FIXME: For constant StartVal, we should be able to infer
3050              // no-wrap flags.
3051              const SCEV *PHISCEV =
3052                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3053                              SCEV::FlagAnyWrap);
3054
3055              // Okay, for the entire analysis of this edge we assumed the PHI
3056              // to be symbolic.  We now need to go back and purge all of the
3057              // entries for the scalars that use the symbolic expression.
3058              ForgetSymbolicName(PN, SymbolicName);
3059              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3060              return PHISCEV;
3061            }
3062          }
3063        }
3064      }
3065    }
3066
3067  // If the PHI has a single incoming value, follow that value, unless the
3068  // PHI's incoming blocks are in a different loop, in which case doing so
3069  // risks breaking LCSSA form. Instcombine would normally zap these, but
3070  // it doesn't have DominatorTree information, so it may miss cases.
3071  if (Value *V = SimplifyInstruction(PN, TD, DT))
3072    if (LI->replacementPreservesLCSSAForm(PN, V))
3073      return getSCEV(V);
3074
3075  // If it's not a loop phi, we can't handle it yet.
3076  return getUnknown(PN);
3077}
3078
3079/// createNodeForGEP - Expand GEP instructions into add and multiply
3080/// operations. This allows them to be analyzed by regular SCEV code.
3081///
3082const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3083
3084  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3085  // Add expression, because the Instruction may be guarded by control flow
3086  // and the no-overflow bits may not be valid for the expression in any
3087  // context.
3088  bool isInBounds = GEP->isInBounds();
3089
3090  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3091  Value *Base = GEP->getOperand(0);
3092  // Don't attempt to analyze GEPs over unsized objects.
3093  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3094    return getUnknown(GEP);
3095  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3096  gep_type_iterator GTI = gep_type_begin(GEP);
3097  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3098                                      E = GEP->op_end();
3099       I != E; ++I) {
3100    Value *Index = *I;
3101    // Compute the (potentially symbolic) offset in bytes for this index.
3102    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3103      // For a struct, add the member offset.
3104      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3105      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3106
3107      // Add the field offset to the running total offset.
3108      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3109    } else {
3110      // For an array, add the element offset, explicitly scaled.
3111      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3112      const SCEV *IndexS = getSCEV(Index);
3113      // Getelementptr indices are signed.
3114      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3115
3116      // Multiply the index by the element size to compute the element offset.
3117      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3118                                           isInBounds ? SCEV::FlagNSW :
3119                                           SCEV::FlagAnyWrap);
3120
3121      // Add the element offset to the running total offset.
3122      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3123    }
3124  }
3125
3126  // Get the SCEV for the GEP base.
3127  const SCEV *BaseS = getSCEV(Base);
3128
3129  // Add the total offset from all the GEP indices to the base.
3130  return getAddExpr(BaseS, TotalOffset,
3131                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3132}
3133
3134/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3135/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3136/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3137/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3138uint32_t
3139ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3140  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3141    return C->getValue()->getValue().countTrailingZeros();
3142
3143  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3144    return std::min(GetMinTrailingZeros(T->getOperand()),
3145                    (uint32_t)getTypeSizeInBits(T->getType()));
3146
3147  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3148    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3149    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3150             getTypeSizeInBits(E->getType()) : OpRes;
3151  }
3152
3153  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3154    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3155    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3156             getTypeSizeInBits(E->getType()) : OpRes;
3157  }
3158
3159  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3160    // The result is the min of all operands results.
3161    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3162    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3163      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3164    return MinOpRes;
3165  }
3166
3167  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3168    // The result is the sum of all operands results.
3169    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3170    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3171    for (unsigned i = 1, e = M->getNumOperands();
3172         SumOpRes != BitWidth && i != e; ++i)
3173      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3174                          BitWidth);
3175    return SumOpRes;
3176  }
3177
3178  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3179    // The result is the min of all operands results.
3180    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3181    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3182      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3183    return MinOpRes;
3184  }
3185
3186  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3187    // The result is the min of all operands results.
3188    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3189    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3190      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3191    return MinOpRes;
3192  }
3193
3194  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3195    // The result is the min of all operands results.
3196    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3197    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3198      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3199    return MinOpRes;
3200  }
3201
3202  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3203    // For a SCEVUnknown, ask ValueTracking.
3204    unsigned BitWidth = getTypeSizeInBits(U->getType());
3205    APInt Mask = APInt::getAllOnesValue(BitWidth);
3206    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3207    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3208    return Zeros.countTrailingOnes();
3209  }
3210
3211  // SCEVUDivExpr
3212  return 0;
3213}
3214
3215/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3216///
3217ConstantRange
3218ScalarEvolution::getUnsignedRange(const SCEV *S) {
3219  // See if we've computed this range already.
3220  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3221  if (I != UnsignedRanges.end())
3222    return I->second;
3223
3224  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3225    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3226
3227  unsigned BitWidth = getTypeSizeInBits(S->getType());
3228  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3229
3230  // If the value has known zeros, the maximum unsigned value will have those
3231  // known zeros as well.
3232  uint32_t TZ = GetMinTrailingZeros(S);
3233  if (TZ != 0)
3234    ConservativeResult =
3235      ConstantRange(APInt::getMinValue(BitWidth),
3236                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3237
3238  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3239    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3240    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3241      X = X.add(getUnsignedRange(Add->getOperand(i)));
3242    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3243  }
3244
3245  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3246    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3247    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3248      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3249    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3250  }
3251
3252  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3253    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3254    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3255      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3256    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3257  }
3258
3259  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3260    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3261    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3262      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3263    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3264  }
3265
3266  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3267    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3268    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3269    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3270  }
3271
3272  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3273    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3274    return setUnsignedRange(ZExt,
3275      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3276  }
3277
3278  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3279    ConstantRange X = getUnsignedRange(SExt->getOperand());
3280    return setUnsignedRange(SExt,
3281      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3282  }
3283
3284  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3285    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3286    return setUnsignedRange(Trunc,
3287      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3288  }
3289
3290  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3291    // If there's no unsigned wrap, the value will never be less than its
3292    // initial value.
3293    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3294      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3295        if (!C->getValue()->isZero())
3296          ConservativeResult =
3297            ConservativeResult.intersectWith(
3298              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3299
3300    // TODO: non-affine addrec
3301    if (AddRec->isAffine()) {
3302      Type *Ty = AddRec->getType();
3303      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3304      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3305          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3306        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3307
3308        const SCEV *Start = AddRec->getStart();
3309        const SCEV *Step = AddRec->getStepRecurrence(*this);
3310
3311        ConstantRange StartRange = getUnsignedRange(Start);
3312        ConstantRange StepRange = getSignedRange(Step);
3313        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3314        ConstantRange EndRange =
3315          StartRange.add(MaxBECountRange.multiply(StepRange));
3316
3317        // Check for overflow. This must be done with ConstantRange arithmetic
3318        // because we could be called from within the ScalarEvolution overflow
3319        // checking code.
3320        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3321        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3322        ConstantRange ExtMaxBECountRange =
3323          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3324        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3325        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3326            ExtEndRange)
3327          return setUnsignedRange(AddRec, ConservativeResult);
3328
3329        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3330                                   EndRange.getUnsignedMin());
3331        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3332                                   EndRange.getUnsignedMax());
3333        if (Min.isMinValue() && Max.isMaxValue())
3334          return setUnsignedRange(AddRec, ConservativeResult);
3335        return setUnsignedRange(AddRec,
3336          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3337      }
3338    }
3339
3340    return setUnsignedRange(AddRec, ConservativeResult);
3341  }
3342
3343  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3344    // For a SCEVUnknown, ask ValueTracking.
3345    APInt Mask = APInt::getAllOnesValue(BitWidth);
3346    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3347    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3348    if (Ones == ~Zeros + 1)
3349      return setUnsignedRange(U, ConservativeResult);
3350    return setUnsignedRange(U,
3351      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3352  }
3353
3354  return setUnsignedRange(S, ConservativeResult);
3355}
3356
3357/// getSignedRange - Determine the signed range for a particular SCEV.
3358///
3359ConstantRange
3360ScalarEvolution::getSignedRange(const SCEV *S) {
3361  // See if we've computed this range already.
3362  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3363  if (I != SignedRanges.end())
3364    return I->second;
3365
3366  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3367    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3368
3369  unsigned BitWidth = getTypeSizeInBits(S->getType());
3370  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3371
3372  // If the value has known zeros, the maximum signed value will have those
3373  // known zeros as well.
3374  uint32_t TZ = GetMinTrailingZeros(S);
3375  if (TZ != 0)
3376    ConservativeResult =
3377      ConstantRange(APInt::getSignedMinValue(BitWidth),
3378                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3379
3380  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3381    ConstantRange X = getSignedRange(Add->getOperand(0));
3382    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3383      X = X.add(getSignedRange(Add->getOperand(i)));
3384    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3385  }
3386
3387  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3388    ConstantRange X = getSignedRange(Mul->getOperand(0));
3389    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3390      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3391    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3392  }
3393
3394  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3395    ConstantRange X = getSignedRange(SMax->getOperand(0));
3396    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3397      X = X.smax(getSignedRange(SMax->getOperand(i)));
3398    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3399  }
3400
3401  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3402    ConstantRange X = getSignedRange(UMax->getOperand(0));
3403    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3404      X = X.umax(getSignedRange(UMax->getOperand(i)));
3405    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3406  }
3407
3408  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3409    ConstantRange X = getSignedRange(UDiv->getLHS());
3410    ConstantRange Y = getSignedRange(UDiv->getRHS());
3411    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3412  }
3413
3414  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3415    ConstantRange X = getSignedRange(ZExt->getOperand());
3416    return setSignedRange(ZExt,
3417      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3418  }
3419
3420  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3421    ConstantRange X = getSignedRange(SExt->getOperand());
3422    return setSignedRange(SExt,
3423      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3424  }
3425
3426  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3427    ConstantRange X = getSignedRange(Trunc->getOperand());
3428    return setSignedRange(Trunc,
3429      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3430  }
3431
3432  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3433    // If there's no signed wrap, and all the operands have the same sign or
3434    // zero, the value won't ever change sign.
3435    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3436      bool AllNonNeg = true;
3437      bool AllNonPos = true;
3438      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3439        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3440        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3441      }
3442      if (AllNonNeg)
3443        ConservativeResult = ConservativeResult.intersectWith(
3444          ConstantRange(APInt(BitWidth, 0),
3445                        APInt::getSignedMinValue(BitWidth)));
3446      else if (AllNonPos)
3447        ConservativeResult = ConservativeResult.intersectWith(
3448          ConstantRange(APInt::getSignedMinValue(BitWidth),
3449                        APInt(BitWidth, 1)));
3450    }
3451
3452    // TODO: non-affine addrec
3453    if (AddRec->isAffine()) {
3454      Type *Ty = AddRec->getType();
3455      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3456      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3457          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3458        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3459
3460        const SCEV *Start = AddRec->getStart();
3461        const SCEV *Step = AddRec->getStepRecurrence(*this);
3462
3463        ConstantRange StartRange = getSignedRange(Start);
3464        ConstantRange StepRange = getSignedRange(Step);
3465        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3466        ConstantRange EndRange =
3467          StartRange.add(MaxBECountRange.multiply(StepRange));
3468
3469        // Check for overflow. This must be done with ConstantRange arithmetic
3470        // because we could be called from within the ScalarEvolution overflow
3471        // checking code.
3472        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3473        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3474        ConstantRange ExtMaxBECountRange =
3475          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3476        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3477        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3478            ExtEndRange)
3479          return setSignedRange(AddRec, ConservativeResult);
3480
3481        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3482                                   EndRange.getSignedMin());
3483        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3484                                   EndRange.getSignedMax());
3485        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3486          return setSignedRange(AddRec, ConservativeResult);
3487        return setSignedRange(AddRec,
3488          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3489      }
3490    }
3491
3492    return setSignedRange(AddRec, ConservativeResult);
3493  }
3494
3495  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3496    // For a SCEVUnknown, ask ValueTracking.
3497    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3498      return setSignedRange(U, ConservativeResult);
3499    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3500    if (NS == 1)
3501      return setSignedRange(U, ConservativeResult);
3502    return setSignedRange(U, ConservativeResult.intersectWith(
3503      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3504                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3505  }
3506
3507  return setSignedRange(S, ConservativeResult);
3508}
3509
3510/// createSCEV - We know that there is no SCEV for the specified value.
3511/// Analyze the expression.
3512///
3513const SCEV *ScalarEvolution::createSCEV(Value *V) {
3514  if (!isSCEVable(V->getType()))
3515    return getUnknown(V);
3516
3517  unsigned Opcode = Instruction::UserOp1;
3518  if (Instruction *I = dyn_cast<Instruction>(V)) {
3519    Opcode = I->getOpcode();
3520
3521    // Don't attempt to analyze instructions in blocks that aren't
3522    // reachable. Such instructions don't matter, and they aren't required
3523    // to obey basic rules for definitions dominating uses which this
3524    // analysis depends on.
3525    if (!DT->isReachableFromEntry(I->getParent()))
3526      return getUnknown(V);
3527  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3528    Opcode = CE->getOpcode();
3529  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3530    return getConstant(CI);
3531  else if (isa<ConstantPointerNull>(V))
3532    return getConstant(V->getType(), 0);
3533  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3534    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3535  else
3536    return getUnknown(V);
3537
3538  Operator *U = cast<Operator>(V);
3539  switch (Opcode) {
3540  case Instruction::Add: {
3541    // The simple thing to do would be to just call getSCEV on both operands
3542    // and call getAddExpr with the result. However if we're looking at a
3543    // bunch of things all added together, this can be quite inefficient,
3544    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3545    // Instead, gather up all the operands and make a single getAddExpr call.
3546    // LLVM IR canonical form means we need only traverse the left operands.
3547    SmallVector<const SCEV *, 4> AddOps;
3548    AddOps.push_back(getSCEV(U->getOperand(1)));
3549    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3550      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3551      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3552        break;
3553      U = cast<Operator>(Op);
3554      const SCEV *Op1 = getSCEV(U->getOperand(1));
3555      if (Opcode == Instruction::Sub)
3556        AddOps.push_back(getNegativeSCEV(Op1));
3557      else
3558        AddOps.push_back(Op1);
3559    }
3560    AddOps.push_back(getSCEV(U->getOperand(0)));
3561    SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3562    OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(V);
3563    if (OBO->hasNoSignedWrap())
3564      setFlags(Flags, SCEV::FlagNSW);
3565    if (OBO->hasNoUnsignedWrap())
3566      setFlags(Flags, SCEV::FlagNUW);
3567    return getAddExpr(AddOps, Flags);
3568  }
3569  case Instruction::Mul: {
3570    // See the Add code above.
3571    SmallVector<const SCEV *, 4> MulOps;
3572    MulOps.push_back(getSCEV(U->getOperand(1)));
3573    for (Value *Op = U->getOperand(0);
3574         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3575         Op = U->getOperand(0)) {
3576      U = cast<Operator>(Op);
3577      MulOps.push_back(getSCEV(U->getOperand(1)));
3578    }
3579    MulOps.push_back(getSCEV(U->getOperand(0)));
3580    return getMulExpr(MulOps);
3581  }
3582  case Instruction::UDiv:
3583    return getUDivExpr(getSCEV(U->getOperand(0)),
3584                       getSCEV(U->getOperand(1)));
3585  case Instruction::Sub:
3586    return getMinusSCEV(getSCEV(U->getOperand(0)),
3587                        getSCEV(U->getOperand(1)));
3588  case Instruction::And:
3589    // For an expression like x&255 that merely masks off the high bits,
3590    // use zext(trunc(x)) as the SCEV expression.
3591    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3592      if (CI->isNullValue())
3593        return getSCEV(U->getOperand(1));
3594      if (CI->isAllOnesValue())
3595        return getSCEV(U->getOperand(0));
3596      const APInt &A = CI->getValue();
3597
3598      // Instcombine's ShrinkDemandedConstant may strip bits out of
3599      // constants, obscuring what would otherwise be a low-bits mask.
3600      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3601      // knew about to reconstruct a low-bits mask value.
3602      unsigned LZ = A.countLeadingZeros();
3603      unsigned BitWidth = A.getBitWidth();
3604      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3605      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3606      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3607
3608      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3609
3610      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3611        return
3612          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3613                                IntegerType::get(getContext(), BitWidth - LZ)),
3614                            U->getType());
3615    }
3616    break;
3617
3618  case Instruction::Or:
3619    // If the RHS of the Or is a constant, we may have something like:
3620    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3621    // optimizations will transparently handle this case.
3622    //
3623    // In order for this transformation to be safe, the LHS must be of the
3624    // form X*(2^n) and the Or constant must be less than 2^n.
3625    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3626      const SCEV *LHS = getSCEV(U->getOperand(0));
3627      const APInt &CIVal = CI->getValue();
3628      if (GetMinTrailingZeros(LHS) >=
3629          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3630        // Build a plain add SCEV.
3631        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3632        // If the LHS of the add was an addrec and it has no-wrap flags,
3633        // transfer the no-wrap flags, since an or won't introduce a wrap.
3634        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3635          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3636          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3637            OldAR->getNoWrapFlags());
3638        }
3639        return S;
3640      }
3641    }
3642    break;
3643  case Instruction::Xor:
3644    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3645      // If the RHS of the xor is a signbit, then this is just an add.
3646      // Instcombine turns add of signbit into xor as a strength reduction step.
3647      if (CI->getValue().isSignBit())
3648        return getAddExpr(getSCEV(U->getOperand(0)),
3649                          getSCEV(U->getOperand(1)));
3650
3651      // If the RHS of xor is -1, then this is a not operation.
3652      if (CI->isAllOnesValue())
3653        return getNotSCEV(getSCEV(U->getOperand(0)));
3654
3655      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3656      // This is a variant of the check for xor with -1, and it handles
3657      // the case where instcombine has trimmed non-demanded bits out
3658      // of an xor with -1.
3659      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3660        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3661          if (BO->getOpcode() == Instruction::And &&
3662              LCI->getValue() == CI->getValue())
3663            if (const SCEVZeroExtendExpr *Z =
3664                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3665              Type *UTy = U->getType();
3666              const SCEV *Z0 = Z->getOperand();
3667              Type *Z0Ty = Z0->getType();
3668              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3669
3670              // If C is a low-bits mask, the zero extend is serving to
3671              // mask off the high bits. Complement the operand and
3672              // re-apply the zext.
3673              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3674                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3675
3676              // If C is a single bit, it may be in the sign-bit position
3677              // before the zero-extend. In this case, represent the xor
3678              // using an add, which is equivalent, and re-apply the zext.
3679              APInt Trunc = CI->getValue().trunc(Z0TySize);
3680              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3681                  Trunc.isSignBit())
3682                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3683                                         UTy);
3684            }
3685    }
3686    break;
3687
3688  case Instruction::Shl:
3689    // Turn shift left of a constant amount into a multiply.
3690    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3691      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3692
3693      // If the shift count is not less than the bitwidth, the result of
3694      // the shift is undefined. Don't try to analyze it, because the
3695      // resolution chosen here may differ from the resolution chosen in
3696      // other parts of the compiler.
3697      if (SA->getValue().uge(BitWidth))
3698        break;
3699
3700      Constant *X = ConstantInt::get(getContext(),
3701        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3702      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3703    }
3704    break;
3705
3706  case Instruction::LShr:
3707    // Turn logical shift right of a constant into a unsigned divide.
3708    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3709      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3710
3711      // If the shift count is not less than the bitwidth, the result of
3712      // the shift is undefined. Don't try to analyze it, because the
3713      // resolution chosen here may differ from the resolution chosen in
3714      // other parts of the compiler.
3715      if (SA->getValue().uge(BitWidth))
3716        break;
3717
3718      Constant *X = ConstantInt::get(getContext(),
3719        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3720      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3721    }
3722    break;
3723
3724  case Instruction::AShr:
3725    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3726    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3727      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3728        if (L->getOpcode() == Instruction::Shl &&
3729            L->getOperand(1) == U->getOperand(1)) {
3730          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3731
3732          // If the shift count is not less than the bitwidth, the result of
3733          // the shift is undefined. Don't try to analyze it, because the
3734          // resolution chosen here may differ from the resolution chosen in
3735          // other parts of the compiler.
3736          if (CI->getValue().uge(BitWidth))
3737            break;
3738
3739          uint64_t Amt = BitWidth - CI->getZExtValue();
3740          if (Amt == BitWidth)
3741            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3742          return
3743            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3744                                              IntegerType::get(getContext(),
3745                                                               Amt)),
3746                              U->getType());
3747        }
3748    break;
3749
3750  case Instruction::Trunc:
3751    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3752
3753  case Instruction::ZExt:
3754    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3755
3756  case Instruction::SExt:
3757    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3758
3759  case Instruction::BitCast:
3760    // BitCasts are no-op casts so we just eliminate the cast.
3761    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3762      return getSCEV(U->getOperand(0));
3763    break;
3764
3765  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3766  // lead to pointer expressions which cannot safely be expanded to GEPs,
3767  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3768  // simplifying integer expressions.
3769
3770  case Instruction::GetElementPtr:
3771    return createNodeForGEP(cast<GEPOperator>(U));
3772
3773  case Instruction::PHI:
3774    return createNodeForPHI(cast<PHINode>(U));
3775
3776  case Instruction::Select:
3777    // This could be a smax or umax that was lowered earlier.
3778    // Try to recover it.
3779    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3780      Value *LHS = ICI->getOperand(0);
3781      Value *RHS = ICI->getOperand(1);
3782      switch (ICI->getPredicate()) {
3783      case ICmpInst::ICMP_SLT:
3784      case ICmpInst::ICMP_SLE:
3785        std::swap(LHS, RHS);
3786        // fall through
3787      case ICmpInst::ICMP_SGT:
3788      case ICmpInst::ICMP_SGE:
3789        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3790        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3791        if (LHS->getType() == U->getType()) {
3792          const SCEV *LS = getSCEV(LHS);
3793          const SCEV *RS = getSCEV(RHS);
3794          const SCEV *LA = getSCEV(U->getOperand(1));
3795          const SCEV *RA = getSCEV(U->getOperand(2));
3796          const SCEV *LDiff = getMinusSCEV(LA, LS);
3797          const SCEV *RDiff = getMinusSCEV(RA, RS);
3798          if (LDiff == RDiff)
3799            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3800          LDiff = getMinusSCEV(LA, RS);
3801          RDiff = getMinusSCEV(RA, LS);
3802          if (LDiff == RDiff)
3803            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3804        }
3805        break;
3806      case ICmpInst::ICMP_ULT:
3807      case ICmpInst::ICMP_ULE:
3808        std::swap(LHS, RHS);
3809        // fall through
3810      case ICmpInst::ICMP_UGT:
3811      case ICmpInst::ICMP_UGE:
3812        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3813        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3814        if (LHS->getType() == U->getType()) {
3815          const SCEV *LS = getSCEV(LHS);
3816          const SCEV *RS = getSCEV(RHS);
3817          const SCEV *LA = getSCEV(U->getOperand(1));
3818          const SCEV *RA = getSCEV(U->getOperand(2));
3819          const SCEV *LDiff = getMinusSCEV(LA, LS);
3820          const SCEV *RDiff = getMinusSCEV(RA, RS);
3821          if (LDiff == RDiff)
3822            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3823          LDiff = getMinusSCEV(LA, RS);
3824          RDiff = getMinusSCEV(RA, LS);
3825          if (LDiff == RDiff)
3826            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3827        }
3828        break;
3829      case ICmpInst::ICMP_NE:
3830        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3831        if (LHS->getType() == U->getType() &&
3832            isa<ConstantInt>(RHS) &&
3833            cast<ConstantInt>(RHS)->isZero()) {
3834          const SCEV *One = getConstant(LHS->getType(), 1);
3835          const SCEV *LS = getSCEV(LHS);
3836          const SCEV *LA = getSCEV(U->getOperand(1));
3837          const SCEV *RA = getSCEV(U->getOperand(2));
3838          const SCEV *LDiff = getMinusSCEV(LA, LS);
3839          const SCEV *RDiff = getMinusSCEV(RA, One);
3840          if (LDiff == RDiff)
3841            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3842        }
3843        break;
3844      case ICmpInst::ICMP_EQ:
3845        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3846        if (LHS->getType() == U->getType() &&
3847            isa<ConstantInt>(RHS) &&
3848            cast<ConstantInt>(RHS)->isZero()) {
3849          const SCEV *One = getConstant(LHS->getType(), 1);
3850          const SCEV *LS = getSCEV(LHS);
3851          const SCEV *LA = getSCEV(U->getOperand(1));
3852          const SCEV *RA = getSCEV(U->getOperand(2));
3853          const SCEV *LDiff = getMinusSCEV(LA, One);
3854          const SCEV *RDiff = getMinusSCEV(RA, LS);
3855          if (LDiff == RDiff)
3856            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3857        }
3858        break;
3859      default:
3860        break;
3861      }
3862    }
3863
3864  default: // We cannot analyze this expression.
3865    break;
3866  }
3867
3868  return getUnknown(V);
3869}
3870
3871
3872
3873//===----------------------------------------------------------------------===//
3874//                   Iteration Count Computation Code
3875//
3876
3877/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3878/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3879/// or not constant. Will also return 0 if the maximum trip count is very large
3880/// (>= 2^32)
3881unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3882                                                    BasicBlock *ExitBlock) {
3883  const SCEVConstant *ExitCount =
3884    dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3885  if (!ExitCount)
3886    return 0;
3887
3888  ConstantInt *ExitConst = ExitCount->getValue();
3889
3890  // Guard against huge trip counts.
3891  if (ExitConst->getValue().getActiveBits() > 32)
3892    return 0;
3893
3894  // In case of integer overflow, this returns 0, which is correct.
3895  return ((unsigned)ExitConst->getZExtValue()) + 1;
3896}
3897
3898/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3899/// trip count of this loop as a normal unsigned value, if possible. This
3900/// means that the actual trip count is always a multiple of the returned
3901/// value (don't forget the trip count could very well be zero as well!).
3902///
3903/// Returns 1 if the trip count is unknown or not guaranteed to be the
3904/// multiple of a constant (which is also the case if the trip count is simply
3905/// constant, use getSmallConstantTripCount for that case), Will also return 1
3906/// if the trip count is very large (>= 2^32).
3907unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3908                                                       BasicBlock *ExitBlock) {
3909  const SCEV *ExitCount = getExitCount(L, ExitBlock);
3910  if (ExitCount == getCouldNotCompute())
3911    return 1;
3912
3913  // Get the trip count from the BE count by adding 1.
3914  const SCEV *TCMul = getAddExpr(ExitCount,
3915                                 getConstant(ExitCount->getType(), 1));
3916  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3917  // to factor simple cases.
3918  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3919    TCMul = Mul->getOperand(0);
3920
3921  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3922  if (!MulC)
3923    return 1;
3924
3925  ConstantInt *Result = MulC->getValue();
3926
3927  // Guard against huge trip counts.
3928  if (!Result || Result->getValue().getActiveBits() > 32)
3929    return 1;
3930
3931  return (unsigned)Result->getZExtValue();
3932}
3933
3934// getExitCount - Get the expression for the number of loop iterations for which
3935// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
3936// SCEVCouldNotCompute.
3937const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3938  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
3939}
3940
3941/// getBackedgeTakenCount - If the specified loop has a predictable
3942/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3943/// object. The backedge-taken count is the number of times the loop header
3944/// will be branched to from within the loop. This is one less than the
3945/// trip count of the loop, since it doesn't count the first iteration,
3946/// when the header is branched to from outside the loop.
3947///
3948/// Note that it is not valid to call this method on a loop without a
3949/// loop-invariant backedge-taken count (see
3950/// hasLoopInvariantBackedgeTakenCount).
3951///
3952const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3953  return getBackedgeTakenInfo(L).getExact(this);
3954}
3955
3956/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3957/// return the least SCEV value that is known never to be less than the
3958/// actual backedge taken count.
3959const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3960  return getBackedgeTakenInfo(L).getMax(this);
3961}
3962
3963/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3964/// onto the given Worklist.
3965static void
3966PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3967  BasicBlock *Header = L->getHeader();
3968
3969  // Push all Loop-header PHIs onto the Worklist stack.
3970  for (BasicBlock::iterator I = Header->begin();
3971       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3972    Worklist.push_back(PN);
3973}
3974
3975const ScalarEvolution::BackedgeTakenInfo &
3976ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3977  // Initially insert an invalid entry for this loop. If the insertion
3978  // succeeds, proceed to actually compute a backedge-taken count and
3979  // update the value. The temporary CouldNotCompute value tells SCEV
3980  // code elsewhere that it shouldn't attempt to request a new
3981  // backedge-taken count, which could result in infinite recursion.
3982  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3983    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
3984  if (!Pair.second)
3985    return Pair.first->second;
3986
3987  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
3988  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
3989  // must be cleared in this scope.
3990  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
3991
3992  if (Result.getExact(this) != getCouldNotCompute()) {
3993    assert(isLoopInvariant(Result.getExact(this), L) &&
3994           isLoopInvariant(Result.getMax(this), L) &&
3995           "Computed backedge-taken count isn't loop invariant for loop!");
3996    ++NumTripCountsComputed;
3997  }
3998  else if (Result.getMax(this) == getCouldNotCompute() &&
3999           isa<PHINode>(L->getHeader()->begin())) {
4000    // Only count loops that have phi nodes as not being computable.
4001    ++NumTripCountsNotComputed;
4002  }
4003
4004  // Now that we know more about the trip count for this loop, forget any
4005  // existing SCEV values for PHI nodes in this loop since they are only
4006  // conservative estimates made without the benefit of trip count
4007  // information. This is similar to the code in forgetLoop, except that
4008  // it handles SCEVUnknown PHI nodes specially.
4009  if (Result.hasAnyInfo()) {
4010    SmallVector<Instruction *, 16> Worklist;
4011    PushLoopPHIs(L, Worklist);
4012
4013    SmallPtrSet<Instruction *, 8> Visited;
4014    while (!Worklist.empty()) {
4015      Instruction *I = Worklist.pop_back_val();
4016      if (!Visited.insert(I)) continue;
4017
4018      ValueExprMapType::iterator It =
4019        ValueExprMap.find(static_cast<Value *>(I));
4020      if (It != ValueExprMap.end()) {
4021        const SCEV *Old = It->second;
4022
4023        // SCEVUnknown for a PHI either means that it has an unrecognized
4024        // structure, or it's a PHI that's in the progress of being computed
4025        // by createNodeForPHI.  In the former case, additional loop trip
4026        // count information isn't going to change anything. In the later
4027        // case, createNodeForPHI will perform the necessary updates on its
4028        // own when it gets to that point.
4029        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4030          forgetMemoizedResults(Old);
4031          ValueExprMap.erase(It);
4032        }
4033        if (PHINode *PN = dyn_cast<PHINode>(I))
4034          ConstantEvolutionLoopExitValue.erase(PN);
4035      }
4036
4037      PushDefUseChildren(I, Worklist);
4038    }
4039  }
4040
4041  // Re-lookup the insert position, since the call to
4042  // ComputeBackedgeTakenCount above could result in a
4043  // recusive call to getBackedgeTakenInfo (on a different
4044  // loop), which would invalidate the iterator computed
4045  // earlier.
4046  return BackedgeTakenCounts.find(L)->second = Result;
4047}
4048
4049/// forgetLoop - This method should be called by the client when it has
4050/// changed a loop in a way that may effect ScalarEvolution's ability to
4051/// compute a trip count, or if the loop is deleted.
4052void ScalarEvolution::forgetLoop(const Loop *L) {
4053  // Drop any stored trip count value.
4054  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4055    BackedgeTakenCounts.find(L);
4056  if (BTCPos != BackedgeTakenCounts.end()) {
4057    BTCPos->second.clear();
4058    BackedgeTakenCounts.erase(BTCPos);
4059  }
4060
4061  // Drop information about expressions based on loop-header PHIs.
4062  SmallVector<Instruction *, 16> Worklist;
4063  PushLoopPHIs(L, Worklist);
4064
4065  SmallPtrSet<Instruction *, 8> Visited;
4066  while (!Worklist.empty()) {
4067    Instruction *I = Worklist.pop_back_val();
4068    if (!Visited.insert(I)) continue;
4069
4070    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4071    if (It != ValueExprMap.end()) {
4072      forgetMemoizedResults(It->second);
4073      ValueExprMap.erase(It);
4074      if (PHINode *PN = dyn_cast<PHINode>(I))
4075        ConstantEvolutionLoopExitValue.erase(PN);
4076    }
4077
4078    PushDefUseChildren(I, Worklist);
4079  }
4080
4081  // Forget all contained loops too, to avoid dangling entries in the
4082  // ValuesAtScopes map.
4083  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4084    forgetLoop(*I);
4085}
4086
4087/// forgetValue - This method should be called by the client when it has
4088/// changed a value in a way that may effect its value, or which may
4089/// disconnect it from a def-use chain linking it to a loop.
4090void ScalarEvolution::forgetValue(Value *V) {
4091  Instruction *I = dyn_cast<Instruction>(V);
4092  if (!I) return;
4093
4094  // Drop information about expressions based on loop-header PHIs.
4095  SmallVector<Instruction *, 16> Worklist;
4096  Worklist.push_back(I);
4097
4098  SmallPtrSet<Instruction *, 8> Visited;
4099  while (!Worklist.empty()) {
4100    I = Worklist.pop_back_val();
4101    if (!Visited.insert(I)) continue;
4102
4103    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4104    if (It != ValueExprMap.end()) {
4105      forgetMemoizedResults(It->second);
4106      ValueExprMap.erase(It);
4107      if (PHINode *PN = dyn_cast<PHINode>(I))
4108        ConstantEvolutionLoopExitValue.erase(PN);
4109    }
4110
4111    PushDefUseChildren(I, Worklist);
4112  }
4113}
4114
4115/// getExact - Get the exact loop backedge taken count considering all loop
4116/// exits. If all exits are computable, this is the minimum computed count.
4117const SCEV *
4118ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4119  // If any exits were not computable, the loop is not computable.
4120  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4121
4122  // We need at least one computable exit.
4123  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4124  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4125
4126  const SCEV *BECount = 0;
4127  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4128       ENT != 0; ENT = ENT->getNextExit()) {
4129
4130    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4131
4132    if (!BECount)
4133      BECount = ENT->ExactNotTaken;
4134    else
4135      BECount = SE->getUMinFromMismatchedTypes(BECount, ENT->ExactNotTaken);
4136  }
4137  assert(BECount && "Invalid not taken count for loop exit");
4138  return BECount;
4139}
4140
4141/// getExact - Get the exact not taken count for this loop exit.
4142const SCEV *
4143ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4144                                             ScalarEvolution *SE) const {
4145  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4146       ENT != 0; ENT = ENT->getNextExit()) {
4147
4148    if (ENT->ExitingBlock == ExitingBlock)
4149      return ENT->ExactNotTaken;
4150  }
4151  return SE->getCouldNotCompute();
4152}
4153
4154/// getMax - Get the max backedge taken count for the loop.
4155const SCEV *
4156ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4157  return Max ? Max : SE->getCouldNotCompute();
4158}
4159
4160/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4161/// computable exit into a persistent ExitNotTakenInfo array.
4162ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4163  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4164  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4165
4166  if (!Complete)
4167    ExitNotTaken.setIncomplete();
4168
4169  unsigned NumExits = ExitCounts.size();
4170  if (NumExits == 0) return;
4171
4172  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4173  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4174  if (NumExits == 1) return;
4175
4176  // Handle the rare case of multiple computable exits.
4177  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4178
4179  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4180  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4181    PrevENT->setNextExit(ENT);
4182    ENT->ExitingBlock = ExitCounts[i].first;
4183    ENT->ExactNotTaken = ExitCounts[i].second;
4184  }
4185}
4186
4187/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4188void ScalarEvolution::BackedgeTakenInfo::clear() {
4189  ExitNotTaken.ExitingBlock = 0;
4190  ExitNotTaken.ExactNotTaken = 0;
4191  delete[] ExitNotTaken.getNextExit();
4192}
4193
4194/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4195/// of the specified loop will execute.
4196ScalarEvolution::BackedgeTakenInfo
4197ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4198  SmallVector<BasicBlock *, 8> ExitingBlocks;
4199  L->getExitingBlocks(ExitingBlocks);
4200
4201  // Examine all exits and pick the most conservative values.
4202  const SCEV *MaxBECount = getCouldNotCompute();
4203  bool CouldComputeBECount = true;
4204  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4205  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4206    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4207    if (EL.Exact == getCouldNotCompute())
4208      // We couldn't compute an exact value for this exit, so
4209      // we won't be able to compute an exact value for the loop.
4210      CouldComputeBECount = false;
4211    else
4212      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4213
4214    if (MaxBECount == getCouldNotCompute())
4215      MaxBECount = EL.Max;
4216    else if (EL.Max != getCouldNotCompute())
4217      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, EL.Max);
4218  }
4219
4220  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4221}
4222
4223/// ComputeExitLimit - Compute the number of times the backedge of the specified
4224/// loop will execute if it exits via the specified block.
4225ScalarEvolution::ExitLimit
4226ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4227
4228  // Okay, we've chosen an exiting block.  See what condition causes us to
4229  // exit at this block.
4230  //
4231  // FIXME: we should be able to handle switch instructions (with a single exit)
4232  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4233  if (ExitBr == 0) return getCouldNotCompute();
4234  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4235
4236  // At this point, we know we have a conditional branch that determines whether
4237  // the loop is exited.  However, we don't know if the branch is executed each
4238  // time through the loop.  If not, then the execution count of the branch will
4239  // not be equal to the trip count of the loop.
4240  //
4241  // Currently we check for this by checking to see if the Exit branch goes to
4242  // the loop header.  If so, we know it will always execute the same number of
4243  // times as the loop.  We also handle the case where the exit block *is* the
4244  // loop header.  This is common for un-rotated loops.
4245  //
4246  // If both of those tests fail, walk up the unique predecessor chain to the
4247  // header, stopping if there is an edge that doesn't exit the loop. If the
4248  // header is reached, the execution count of the branch will be equal to the
4249  // trip count of the loop.
4250  //
4251  //  More extensive analysis could be done to handle more cases here.
4252  //
4253  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4254      ExitBr->getSuccessor(1) != L->getHeader() &&
4255      ExitBr->getParent() != L->getHeader()) {
4256    // The simple checks failed, try climbing the unique predecessor chain
4257    // up to the header.
4258    bool Ok = false;
4259    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4260      BasicBlock *Pred = BB->getUniquePredecessor();
4261      if (!Pred)
4262        return getCouldNotCompute();
4263      TerminatorInst *PredTerm = Pred->getTerminator();
4264      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4265        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4266        if (PredSucc == BB)
4267          continue;
4268        // If the predecessor has a successor that isn't BB and isn't
4269        // outside the loop, assume the worst.
4270        if (L->contains(PredSucc))
4271          return getCouldNotCompute();
4272      }
4273      if (Pred == L->getHeader()) {
4274        Ok = true;
4275        break;
4276      }
4277      BB = Pred;
4278    }
4279    if (!Ok)
4280      return getCouldNotCompute();
4281  }
4282
4283  // Proceed to the next level to examine the exit condition expression.
4284  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4285                                  ExitBr->getSuccessor(0),
4286                                  ExitBr->getSuccessor(1));
4287}
4288
4289/// ComputeExitLimitFromCond - Compute the number of times the
4290/// backedge of the specified loop will execute if its exit condition
4291/// were a conditional branch of ExitCond, TBB, and FBB.
4292ScalarEvolution::ExitLimit
4293ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4294                                          Value *ExitCond,
4295                                          BasicBlock *TBB,
4296                                          BasicBlock *FBB) {
4297  // Check if the controlling expression for this loop is an And or Or.
4298  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4299    if (BO->getOpcode() == Instruction::And) {
4300      // Recurse on the operands of the and.
4301      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4302      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4303      const SCEV *BECount = getCouldNotCompute();
4304      const SCEV *MaxBECount = getCouldNotCompute();
4305      if (L->contains(TBB)) {
4306        // Both conditions must be true for the loop to continue executing.
4307        // Choose the less conservative count.
4308        if (EL0.Exact == getCouldNotCompute() ||
4309            EL1.Exact == getCouldNotCompute())
4310          BECount = getCouldNotCompute();
4311        else
4312          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4313        if (EL0.Max == getCouldNotCompute())
4314          MaxBECount = EL1.Max;
4315        else if (EL1.Max == getCouldNotCompute())
4316          MaxBECount = EL0.Max;
4317        else
4318          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4319      } else {
4320        // Both conditions must be true at the same time for the loop to exit.
4321        // For now, be conservative.
4322        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4323        if (EL0.Max == EL1.Max)
4324          MaxBECount = EL0.Max;
4325        if (EL0.Exact == EL1.Exact)
4326          BECount = EL0.Exact;
4327      }
4328
4329      return ExitLimit(BECount, MaxBECount);
4330    }
4331    if (BO->getOpcode() == Instruction::Or) {
4332      // Recurse on the operands of the or.
4333      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4334      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4335      const SCEV *BECount = getCouldNotCompute();
4336      const SCEV *MaxBECount = getCouldNotCompute();
4337      if (L->contains(FBB)) {
4338        // Both conditions must be false for the loop to continue executing.
4339        // Choose the less conservative count.
4340        if (EL0.Exact == getCouldNotCompute() ||
4341            EL1.Exact == getCouldNotCompute())
4342          BECount = getCouldNotCompute();
4343        else
4344          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4345        if (EL0.Max == getCouldNotCompute())
4346          MaxBECount = EL1.Max;
4347        else if (EL1.Max == getCouldNotCompute())
4348          MaxBECount = EL0.Max;
4349        else
4350          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4351      } else {
4352        // Both conditions must be false at the same time for the loop to exit.
4353        // For now, be conservative.
4354        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4355        if (EL0.Max == EL1.Max)
4356          MaxBECount = EL0.Max;
4357        if (EL0.Exact == EL1.Exact)
4358          BECount = EL0.Exact;
4359      }
4360
4361      return ExitLimit(BECount, MaxBECount);
4362    }
4363  }
4364
4365  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4366  // Proceed to the next level to examine the icmp.
4367  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4368    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4369
4370  // Check for a constant condition. These are normally stripped out by
4371  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4372  // preserve the CFG and is temporarily leaving constant conditions
4373  // in place.
4374  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4375    if (L->contains(FBB) == !CI->getZExtValue())
4376      // The backedge is always taken.
4377      return getCouldNotCompute();
4378    else
4379      // The backedge is never taken.
4380      return getConstant(CI->getType(), 0);
4381  }
4382
4383  // If it's not an integer or pointer comparison then compute it the hard way.
4384  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4385}
4386
4387/// ComputeExitLimitFromICmp - Compute the number of times the
4388/// backedge of the specified loop will execute if its exit condition
4389/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4390ScalarEvolution::ExitLimit
4391ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4392                                          ICmpInst *ExitCond,
4393                                          BasicBlock *TBB,
4394                                          BasicBlock *FBB) {
4395
4396  // If the condition was exit on true, convert the condition to exit on false
4397  ICmpInst::Predicate Cond;
4398  if (!L->contains(FBB))
4399    Cond = ExitCond->getPredicate();
4400  else
4401    Cond = ExitCond->getInversePredicate();
4402
4403  // Handle common loops like: for (X = "string"; *X; ++X)
4404  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4405    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4406      ExitLimit ItCnt =
4407        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4408      if (ItCnt.hasAnyInfo())
4409        return ItCnt;
4410    }
4411
4412  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4413  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4414
4415  // Try to evaluate any dependencies out of the loop.
4416  LHS = getSCEVAtScope(LHS, L);
4417  RHS = getSCEVAtScope(RHS, L);
4418
4419  // At this point, we would like to compute how many iterations of the
4420  // loop the predicate will return true for these inputs.
4421  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4422    // If there is a loop-invariant, force it into the RHS.
4423    std::swap(LHS, RHS);
4424    Cond = ICmpInst::getSwappedPredicate(Cond);
4425  }
4426
4427  // Simplify the operands before analyzing them.
4428  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4429
4430  // If we have a comparison of a chrec against a constant, try to use value
4431  // ranges to answer this query.
4432  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4433    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4434      if (AddRec->getLoop() == L) {
4435        // Form the constant range.
4436        ConstantRange CompRange(
4437            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4438
4439        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4440        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4441      }
4442
4443  switch (Cond) {
4444  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4445    // Convert to: while (X-Y != 0)
4446    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4447    if (EL.hasAnyInfo()) return EL;
4448    break;
4449  }
4450  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4451    // Convert to: while (X-Y == 0)
4452    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4453    if (EL.hasAnyInfo()) return EL;
4454    break;
4455  }
4456  case ICmpInst::ICMP_SLT: {
4457    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4458    if (EL.hasAnyInfo()) return EL;
4459    break;
4460  }
4461  case ICmpInst::ICMP_SGT: {
4462    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4463                                             getNotSCEV(RHS), L, true);
4464    if (EL.hasAnyInfo()) return EL;
4465    break;
4466  }
4467  case ICmpInst::ICMP_ULT: {
4468    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4469    if (EL.hasAnyInfo()) return EL;
4470    break;
4471  }
4472  case ICmpInst::ICMP_UGT: {
4473    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4474                                             getNotSCEV(RHS), L, false);
4475    if (EL.hasAnyInfo()) return EL;
4476    break;
4477  }
4478  default:
4479#if 0
4480    dbgs() << "ComputeBackedgeTakenCount ";
4481    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4482      dbgs() << "[unsigned] ";
4483    dbgs() << *LHS << "   "
4484         << Instruction::getOpcodeName(Instruction::ICmp)
4485         << "   " << *RHS << "\n";
4486#endif
4487    break;
4488  }
4489  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4490}
4491
4492static ConstantInt *
4493EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4494                                ScalarEvolution &SE) {
4495  const SCEV *InVal = SE.getConstant(C);
4496  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4497  assert(isa<SCEVConstant>(Val) &&
4498         "Evaluation of SCEV at constant didn't fold correctly?");
4499  return cast<SCEVConstant>(Val)->getValue();
4500}
4501
4502/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4503/// and a GEP expression (missing the pointer index) indexing into it, return
4504/// the addressed element of the initializer or null if the index expression is
4505/// invalid.
4506static Constant *
4507GetAddressedElementFromGlobal(GlobalVariable *GV,
4508                              const std::vector<ConstantInt*> &Indices) {
4509  Constant *Init = GV->getInitializer();
4510  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4511    uint64_t Idx = Indices[i]->getZExtValue();
4512    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4513      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4514      Init = cast<Constant>(CS->getOperand(Idx));
4515    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4516      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4517      Init = cast<Constant>(CA->getOperand(Idx));
4518    } else if (isa<ConstantAggregateZero>(Init)) {
4519      if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
4520        assert(Idx < STy->getNumElements() && "Bad struct index!");
4521        Init = Constant::getNullValue(STy->getElementType(Idx));
4522      } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4523        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4524        Init = Constant::getNullValue(ATy->getElementType());
4525      } else {
4526        llvm_unreachable("Unknown constant aggregate type!");
4527      }
4528      return 0;
4529    } else {
4530      return 0; // Unknown initializer type
4531    }
4532  }
4533  return Init;
4534}
4535
4536/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4537/// 'icmp op load X, cst', try to see if we can compute the backedge
4538/// execution count.
4539ScalarEvolution::ExitLimit
4540ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4541  LoadInst *LI,
4542  Constant *RHS,
4543  const Loop *L,
4544  ICmpInst::Predicate predicate) {
4545
4546  if (LI->isVolatile()) return getCouldNotCompute();
4547
4548  // Check to see if the loaded pointer is a getelementptr of a global.
4549  // TODO: Use SCEV instead of manually grubbing with GEPs.
4550  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4551  if (!GEP) return getCouldNotCompute();
4552
4553  // Make sure that it is really a constant global we are gepping, with an
4554  // initializer, and make sure the first IDX is really 0.
4555  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4556  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4557      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4558      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4559    return getCouldNotCompute();
4560
4561  // Okay, we allow one non-constant index into the GEP instruction.
4562  Value *VarIdx = 0;
4563  std::vector<ConstantInt*> Indexes;
4564  unsigned VarIdxNum = 0;
4565  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4566    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4567      Indexes.push_back(CI);
4568    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4569      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4570      VarIdx = GEP->getOperand(i);
4571      VarIdxNum = i-2;
4572      Indexes.push_back(0);
4573    }
4574
4575  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4576  // Check to see if X is a loop variant variable value now.
4577  const SCEV *Idx = getSCEV(VarIdx);
4578  Idx = getSCEVAtScope(Idx, L);
4579
4580  // We can only recognize very limited forms of loop index expressions, in
4581  // particular, only affine AddRec's like {C1,+,C2}.
4582  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4583  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4584      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4585      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4586    return getCouldNotCompute();
4587
4588  unsigned MaxSteps = MaxBruteForceIterations;
4589  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4590    ConstantInt *ItCst = ConstantInt::get(
4591                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4592    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4593
4594    // Form the GEP offset.
4595    Indexes[VarIdxNum] = Val;
4596
4597    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4598    if (Result == 0) break;  // Cannot compute!
4599
4600    // Evaluate the condition for this iteration.
4601    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4602    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4603    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4604#if 0
4605      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4606             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4607             << "***\n";
4608#endif
4609      ++NumArrayLenItCounts;
4610      return getConstant(ItCst);   // Found terminating iteration!
4611    }
4612  }
4613  return getCouldNotCompute();
4614}
4615
4616
4617/// CanConstantFold - Return true if we can constant fold an instruction of the
4618/// specified type, assuming that all operands were constants.
4619static bool CanConstantFold(const Instruction *I) {
4620  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4621      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4622    return true;
4623
4624  if (const CallInst *CI = dyn_cast<CallInst>(I))
4625    if (const Function *F = CI->getCalledFunction())
4626      return canConstantFoldCallTo(F);
4627  return false;
4628}
4629
4630/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4631/// in the loop that V is derived from.  We allow arbitrary operations along the
4632/// way, but the operands of an operation must either be constants or a value
4633/// derived from a constant PHI.  If this expression does not fit with these
4634/// constraints, return null.
4635static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4636  // If this is not an instruction, or if this is an instruction outside of the
4637  // loop, it can't be derived from a loop PHI.
4638  Instruction *I = dyn_cast<Instruction>(V);
4639  if (I == 0 || !L->contains(I)) return 0;
4640
4641  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4642    if (L->getHeader() == I->getParent())
4643      return PN;
4644    else
4645      // We don't currently keep track of the control flow needed to evaluate
4646      // PHIs, so we cannot handle PHIs inside of loops.
4647      return 0;
4648  }
4649
4650  // If we won't be able to constant fold this expression even if the operands
4651  // are constants, return early.
4652  if (!CanConstantFold(I)) return 0;
4653
4654  // Otherwise, we can evaluate this instruction if all of its operands are
4655  // constant or derived from a PHI node themselves.
4656  PHINode *PHI = 0;
4657  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4658    if (!isa<Constant>(I->getOperand(Op))) {
4659      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4660      if (P == 0) return 0;  // Not evolving from PHI
4661      if (PHI == 0)
4662        PHI = P;
4663      else if (PHI != P)
4664        return 0;  // Evolving from multiple different PHIs.
4665    }
4666
4667  // This is a expression evolving from a constant PHI!
4668  return PHI;
4669}
4670
4671/// EvaluateExpression - Given an expression that passes the
4672/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4673/// in the loop has the value PHIVal.  If we can't fold this expression for some
4674/// reason, return null.
4675static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4676                                    const TargetData *TD) {
4677  if (isa<PHINode>(V)) return PHIVal;
4678  if (Constant *C = dyn_cast<Constant>(V)) return C;
4679  Instruction *I = cast<Instruction>(V);
4680
4681  std::vector<Constant*> Operands(I->getNumOperands());
4682
4683  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4684    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4685    if (Operands[i] == 0) return 0;
4686  }
4687
4688  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4689    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4690                                           Operands[1], TD);
4691  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD);
4692}
4693
4694/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4695/// in the header of its containing loop, we know the loop executes a
4696/// constant number of times, and the PHI node is just a recurrence
4697/// involving constants, fold it.
4698Constant *
4699ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4700                                                   const APInt &BEs,
4701                                                   const Loop *L) {
4702  DenseMap<PHINode*, Constant*>::const_iterator I =
4703    ConstantEvolutionLoopExitValue.find(PN);
4704  if (I != ConstantEvolutionLoopExitValue.end())
4705    return I->second;
4706
4707  if (BEs.ugt(MaxBruteForceIterations))
4708    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4709
4710  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4711
4712  // Since the loop is canonicalized, the PHI node must have two entries.  One
4713  // entry must be a constant (coming in from outside of the loop), and the
4714  // second must be derived from the same PHI.
4715  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4716  Constant *StartCST =
4717    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4718  if (StartCST == 0)
4719    return RetVal = 0;  // Must be a constant.
4720
4721  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4722  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4723      !isa<Constant>(BEValue))
4724    return RetVal = 0;  // Not derived from same PHI.
4725
4726  // Execute the loop symbolically to determine the exit value.
4727  if (BEs.getActiveBits() >= 32)
4728    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4729
4730  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4731  unsigned IterationNum = 0;
4732  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4733    if (IterationNum == NumIterations)
4734      return RetVal = PHIVal;  // Got exit value!
4735
4736    // Compute the value of the PHI node for the next iteration.
4737    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4738    if (NextPHI == PHIVal)
4739      return RetVal = NextPHI;  // Stopped evolving!
4740    if (NextPHI == 0)
4741      return 0;        // Couldn't evaluate!
4742    PHIVal = NextPHI;
4743  }
4744}
4745
4746/// ComputeExitCountExhaustively - If the loop is known to execute a
4747/// constant number of times (the condition evolves only from constants),
4748/// try to evaluate a few iterations of the loop until we get the exit
4749/// condition gets a value of ExitWhen (true or false).  If we cannot
4750/// evaluate the trip count of the loop, return getCouldNotCompute().
4751const SCEV * ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4752                                                           Value *Cond,
4753                                                           bool ExitWhen) {
4754  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4755  if (PN == 0) return getCouldNotCompute();
4756
4757  // If the loop is canonicalized, the PHI will have exactly two entries.
4758  // That's the only form we support here.
4759  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4760
4761  // One entry must be a constant (coming in from outside of the loop), and the
4762  // second must be derived from the same PHI.
4763  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4764  Constant *StartCST =
4765    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4766  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4767
4768  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4769  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4770      !isa<Constant>(BEValue))
4771    return getCouldNotCompute();  // Not derived from same PHI.
4772
4773  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4774  // the loop symbolically to determine when the condition gets a value of
4775  // "ExitWhen".
4776  unsigned IterationNum = 0;
4777  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4778  for (Constant *PHIVal = StartCST;
4779       IterationNum != MaxIterations; ++IterationNum) {
4780    ConstantInt *CondVal =
4781      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4782
4783    // Couldn't symbolically evaluate.
4784    if (!CondVal) return getCouldNotCompute();
4785
4786    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4787      ++NumBruteForceTripCountsComputed;
4788      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4789    }
4790
4791    // Compute the value of the PHI node for the next iteration.
4792    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4793    if (NextPHI == 0 || NextPHI == PHIVal)
4794      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4795    PHIVal = NextPHI;
4796  }
4797
4798  // Too many iterations were needed to evaluate.
4799  return getCouldNotCompute();
4800}
4801
4802/// getSCEVAtScope - Return a SCEV expression for the specified value
4803/// at the specified scope in the program.  The L value specifies a loop
4804/// nest to evaluate the expression at, where null is the top-level or a
4805/// specified loop is immediately inside of the loop.
4806///
4807/// This method can be used to compute the exit value for a variable defined
4808/// in a loop by querying what the value will hold in the parent loop.
4809///
4810/// In the case that a relevant loop exit value cannot be computed, the
4811/// original value V is returned.
4812const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4813  // Check to see if we've folded this expression at this loop before.
4814  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4815  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4816    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4817  if (!Pair.second)
4818    return Pair.first->second ? Pair.first->second : V;
4819
4820  // Otherwise compute it.
4821  const SCEV *C = computeSCEVAtScope(V, L);
4822  ValuesAtScopes[V][L] = C;
4823  return C;
4824}
4825
4826const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4827  if (isa<SCEVConstant>(V)) return V;
4828
4829  // If this instruction is evolved from a constant-evolving PHI, compute the
4830  // exit value from the loop without using SCEVs.
4831  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4832    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4833      const Loop *LI = (*this->LI)[I->getParent()];
4834      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4835        if (PHINode *PN = dyn_cast<PHINode>(I))
4836          if (PN->getParent() == LI->getHeader()) {
4837            // Okay, there is no closed form solution for the PHI node.  Check
4838            // to see if the loop that contains it has a known backedge-taken
4839            // count.  If so, we may be able to force computation of the exit
4840            // value.
4841            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4842            if (const SCEVConstant *BTCC =
4843                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4844              // Okay, we know how many times the containing loop executes.  If
4845              // this is a constant evolving PHI node, get the final value at
4846              // the specified iteration number.
4847              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4848                                                   BTCC->getValue()->getValue(),
4849                                                               LI);
4850              if (RV) return getSCEV(RV);
4851            }
4852          }
4853
4854      // Okay, this is an expression that we cannot symbolically evaluate
4855      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4856      // the arguments into constants, and if so, try to constant propagate the
4857      // result.  This is particularly useful for computing loop exit values.
4858      if (CanConstantFold(I)) {
4859        SmallVector<Constant *, 4> Operands;
4860        bool MadeImprovement = false;
4861        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4862          Value *Op = I->getOperand(i);
4863          if (Constant *C = dyn_cast<Constant>(Op)) {
4864            Operands.push_back(C);
4865            continue;
4866          }
4867
4868          // If any of the operands is non-constant and if they are
4869          // non-integer and non-pointer, don't even try to analyze them
4870          // with scev techniques.
4871          if (!isSCEVable(Op->getType()))
4872            return V;
4873
4874          const SCEV *OrigV = getSCEV(Op);
4875          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4876          MadeImprovement |= OrigV != OpV;
4877
4878          Constant *C = 0;
4879          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4880            C = SC->getValue();
4881          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4882            C = dyn_cast<Constant>(SU->getValue());
4883          if (!C) return V;
4884          if (C->getType() != Op->getType())
4885            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4886                                                              Op->getType(),
4887                                                              false),
4888                                      C, Op->getType());
4889          Operands.push_back(C);
4890        }
4891
4892        // Check to see if getSCEVAtScope actually made an improvement.
4893        if (MadeImprovement) {
4894          Constant *C = 0;
4895          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4896            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4897                                                Operands[0], Operands[1], TD);
4898          else
4899            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4900                                         Operands, TD);
4901          if (!C) return V;
4902          return getSCEV(C);
4903        }
4904      }
4905    }
4906
4907    // This is some other type of SCEVUnknown, just return it.
4908    return V;
4909  }
4910
4911  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4912    // Avoid performing the look-up in the common case where the specified
4913    // expression has no loop-variant portions.
4914    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4915      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4916      if (OpAtScope != Comm->getOperand(i)) {
4917        // Okay, at least one of these operands is loop variant but might be
4918        // foldable.  Build a new instance of the folded commutative expression.
4919        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4920                                            Comm->op_begin()+i);
4921        NewOps.push_back(OpAtScope);
4922
4923        for (++i; i != e; ++i) {
4924          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4925          NewOps.push_back(OpAtScope);
4926        }
4927        if (isa<SCEVAddExpr>(Comm))
4928          return getAddExpr(NewOps);
4929        if (isa<SCEVMulExpr>(Comm))
4930          return getMulExpr(NewOps);
4931        if (isa<SCEVSMaxExpr>(Comm))
4932          return getSMaxExpr(NewOps);
4933        if (isa<SCEVUMaxExpr>(Comm))
4934          return getUMaxExpr(NewOps);
4935        llvm_unreachable("Unknown commutative SCEV type!");
4936      }
4937    }
4938    // If we got here, all operands are loop invariant.
4939    return Comm;
4940  }
4941
4942  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4943    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4944    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4945    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4946      return Div;   // must be loop invariant
4947    return getUDivExpr(LHS, RHS);
4948  }
4949
4950  // If this is a loop recurrence for a loop that does not contain L, then we
4951  // are dealing with the final value computed by the loop.
4952  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4953    // First, attempt to evaluate each operand.
4954    // Avoid performing the look-up in the common case where the specified
4955    // expression has no loop-variant portions.
4956    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4957      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4958      if (OpAtScope == AddRec->getOperand(i))
4959        continue;
4960
4961      // Okay, at least one of these operands is loop variant but might be
4962      // foldable.  Build a new instance of the folded commutative expression.
4963      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4964                                          AddRec->op_begin()+i);
4965      NewOps.push_back(OpAtScope);
4966      for (++i; i != e; ++i)
4967        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4968
4969      const SCEV *FoldedRec =
4970        getAddRecExpr(NewOps, AddRec->getLoop(),
4971                      AddRec->getNoWrapFlags(SCEV::FlagNW));
4972      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
4973      // The addrec may be folded to a nonrecurrence, for example, if the
4974      // induction variable is multiplied by zero after constant folding. Go
4975      // ahead and return the folded value.
4976      if (!AddRec)
4977        return FoldedRec;
4978      break;
4979    }
4980
4981    // If the scope is outside the addrec's loop, evaluate it by using the
4982    // loop exit value of the addrec.
4983    if (!AddRec->getLoop()->contains(L)) {
4984      // To evaluate this recurrence, we need to know how many times the AddRec
4985      // loop iterates.  Compute this now.
4986      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4987      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4988
4989      // Then, evaluate the AddRec.
4990      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4991    }
4992
4993    return AddRec;
4994  }
4995
4996  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4997    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4998    if (Op == Cast->getOperand())
4999      return Cast;  // must be loop invariant
5000    return getZeroExtendExpr(Op, Cast->getType());
5001  }
5002
5003  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5004    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5005    if (Op == Cast->getOperand())
5006      return Cast;  // must be loop invariant
5007    return getSignExtendExpr(Op, Cast->getType());
5008  }
5009
5010  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5011    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5012    if (Op == Cast->getOperand())
5013      return Cast;  // must be loop invariant
5014    return getTruncateExpr(Op, Cast->getType());
5015  }
5016
5017  llvm_unreachable("Unknown SCEV type!");
5018  return 0;
5019}
5020
5021/// getSCEVAtScope - This is a convenience function which does
5022/// getSCEVAtScope(getSCEV(V), L).
5023const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5024  return getSCEVAtScope(getSCEV(V), L);
5025}
5026
5027/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5028/// following equation:
5029///
5030///     A * X = B (mod N)
5031///
5032/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5033/// A and B isn't important.
5034///
5035/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5036static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5037                                               ScalarEvolution &SE) {
5038  uint32_t BW = A.getBitWidth();
5039  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5040  assert(A != 0 && "A must be non-zero.");
5041
5042  // 1. D = gcd(A, N)
5043  //
5044  // The gcd of A and N may have only one prime factor: 2. The number of
5045  // trailing zeros in A is its multiplicity
5046  uint32_t Mult2 = A.countTrailingZeros();
5047  // D = 2^Mult2
5048
5049  // 2. Check if B is divisible by D.
5050  //
5051  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5052  // is not less than multiplicity of this prime factor for D.
5053  if (B.countTrailingZeros() < Mult2)
5054    return SE.getCouldNotCompute();
5055
5056  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5057  // modulo (N / D).
5058  //
5059  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5060  // bit width during computations.
5061  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5062  APInt Mod(BW + 1, 0);
5063  Mod.setBit(BW - Mult2);  // Mod = N / D
5064  APInt I = AD.multiplicativeInverse(Mod);
5065
5066  // 4. Compute the minimum unsigned root of the equation:
5067  // I * (B / D) mod (N / D)
5068  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5069
5070  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5071  // bits.
5072  return SE.getConstant(Result.trunc(BW));
5073}
5074
5075/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5076/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5077/// might be the same) or two SCEVCouldNotCompute objects.
5078///
5079static std::pair<const SCEV *,const SCEV *>
5080SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5081  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5082  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5083  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5084  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5085
5086  // We currently can only solve this if the coefficients are constants.
5087  if (!LC || !MC || !NC) {
5088    const SCEV *CNC = SE.getCouldNotCompute();
5089    return std::make_pair(CNC, CNC);
5090  }
5091
5092  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5093  const APInt &L = LC->getValue()->getValue();
5094  const APInt &M = MC->getValue()->getValue();
5095  const APInt &N = NC->getValue()->getValue();
5096  APInt Two(BitWidth, 2);
5097  APInt Four(BitWidth, 4);
5098
5099  {
5100    using namespace APIntOps;
5101    const APInt& C = L;
5102    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5103    // The B coefficient is M-N/2
5104    APInt B(M);
5105    B -= sdiv(N,Two);
5106
5107    // The A coefficient is N/2
5108    APInt A(N.sdiv(Two));
5109
5110    // Compute the B^2-4ac term.
5111    APInt SqrtTerm(B);
5112    SqrtTerm *= B;
5113    SqrtTerm -= Four * (A * C);
5114
5115    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5116    // integer value or else APInt::sqrt() will assert.
5117    APInt SqrtVal(SqrtTerm.sqrt());
5118
5119    // Compute the two solutions for the quadratic formula.
5120    // The divisions must be performed as signed divisions.
5121    APInt NegB(-B);
5122    APInt TwoA(A << 1);
5123    if (TwoA.isMinValue()) {
5124      const SCEV *CNC = SE.getCouldNotCompute();
5125      return std::make_pair(CNC, CNC);
5126    }
5127
5128    LLVMContext &Context = SE.getContext();
5129
5130    ConstantInt *Solution1 =
5131      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5132    ConstantInt *Solution2 =
5133      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5134
5135    return std::make_pair(SE.getConstant(Solution1),
5136                          SE.getConstant(Solution2));
5137  } // end APIntOps namespace
5138}
5139
5140/// HowFarToZero - Return the number of times a backedge comparing the specified
5141/// value to zero will execute.  If not computable, return CouldNotCompute.
5142///
5143/// This is only used for loops with a "x != y" exit test. The exit condition is
5144/// now expressed as a single expression, V = x-y. So the exit test is
5145/// effectively V != 0.  We know and take advantage of the fact that this
5146/// expression only being used in a comparison by zero context.
5147ScalarEvolution::ExitLimit
5148ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5149  // If the value is a constant
5150  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5151    // If the value is already zero, the branch will execute zero times.
5152    if (C->getValue()->isZero()) return C;
5153    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5154  }
5155
5156  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5157  if (!AddRec || AddRec->getLoop() != L)
5158    return getCouldNotCompute();
5159
5160  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5161  // the quadratic equation to solve it.
5162  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5163    std::pair<const SCEV *,const SCEV *> Roots =
5164      SolveQuadraticEquation(AddRec, *this);
5165    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5166    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5167    if (R1 && R2) {
5168#if 0
5169      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5170             << "  sol#2: " << *R2 << "\n";
5171#endif
5172      // Pick the smallest positive root value.
5173      if (ConstantInt *CB =
5174          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5175                                                      R1->getValue(),
5176                                                      R2->getValue()))) {
5177        if (CB->getZExtValue() == false)
5178          std::swap(R1, R2);   // R1 is the minimum root now.
5179
5180        // We can only use this value if the chrec ends up with an exact zero
5181        // value at this index.  When solving for "X*X != 5", for example, we
5182        // should not accept a root of 2.
5183        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5184        if (Val->isZero())
5185          return R1;  // We found a quadratic root!
5186      }
5187    }
5188    return getCouldNotCompute();
5189  }
5190
5191  // Otherwise we can only handle this if it is affine.
5192  if (!AddRec->isAffine())
5193    return getCouldNotCompute();
5194
5195  // If this is an affine expression, the execution count of this branch is
5196  // the minimum unsigned root of the following equation:
5197  //
5198  //     Start + Step*N = 0 (mod 2^BW)
5199  //
5200  // equivalent to:
5201  //
5202  //             Step*N = -Start (mod 2^BW)
5203  //
5204  // where BW is the common bit width of Start and Step.
5205
5206  // Get the initial value for the loop.
5207  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5208  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5209
5210  // For now we handle only constant steps.
5211  //
5212  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5213  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5214  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5215  // We have not yet seen any such cases.
5216  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5217  if (StepC == 0)
5218    return getCouldNotCompute();
5219
5220  // For positive steps (counting up until unsigned overflow):
5221  //   N = -Start/Step (as unsigned)
5222  // For negative steps (counting down to zero):
5223  //   N = Start/-Step
5224  // First compute the unsigned distance from zero in the direction of Step.
5225  bool CountDown = StepC->getValue()->getValue().isNegative();
5226  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5227
5228  // Handle unitary steps, which cannot wraparound.
5229  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5230  //   N = Distance (as unsigned)
5231  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5232    ConstantRange CR = getUnsignedRange(Start);
5233    const SCEV *MaxBECount;
5234    if (!CountDown && CR.getUnsignedMin().isMinValue())
5235      // When counting up, the worst starting value is 1, not 0.
5236      MaxBECount = CR.getUnsignedMax().isMinValue()
5237        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5238        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5239    else
5240      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5241                                         : -CR.getUnsignedMin());
5242    return ExitLimit(Distance, MaxBECount);
5243  }
5244
5245  // If the recurrence is known not to wraparound, unsigned divide computes the
5246  // back edge count. We know that the value will either become zero (and thus
5247  // the loop terminates), that the loop will terminate through some other exit
5248  // condition first, or that the loop has undefined behavior.  This means
5249  // we can't "miss" the exit value, even with nonunit stride.
5250  //
5251  // FIXME: Prove that loops always exhibits *acceptable* undefined
5252  // behavior. Loops must exhibit defined behavior until a wrapped value is
5253  // actually used. So the trip count computed by udiv could be smaller than the
5254  // number of well-defined iterations.
5255  if (AddRec->getNoWrapFlags(SCEV::FlagNW))
5256    // FIXME: We really want an "isexact" bit for udiv.
5257    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5258
5259  // Then, try to solve the above equation provided that Start is constant.
5260  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5261    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5262                                        -StartC->getValue()->getValue(),
5263                                        *this);
5264  return getCouldNotCompute();
5265}
5266
5267/// HowFarToNonZero - Return the number of times a backedge checking the
5268/// specified value for nonzero will execute.  If not computable, return
5269/// CouldNotCompute
5270ScalarEvolution::ExitLimit
5271ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5272  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5273  // handle them yet except for the trivial case.  This could be expanded in the
5274  // future as needed.
5275
5276  // If the value is a constant, check to see if it is known to be non-zero
5277  // already.  If so, the backedge will execute zero times.
5278  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5279    if (!C->getValue()->isNullValue())
5280      return getConstant(C->getType(), 0);
5281    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5282  }
5283
5284  // We could implement others, but I really doubt anyone writes loops like
5285  // this, and if they did, they would already be constant folded.
5286  return getCouldNotCompute();
5287}
5288
5289/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5290/// (which may not be an immediate predecessor) which has exactly one
5291/// successor from which BB is reachable, or null if no such block is
5292/// found.
5293///
5294std::pair<BasicBlock *, BasicBlock *>
5295ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5296  // If the block has a unique predecessor, then there is no path from the
5297  // predecessor to the block that does not go through the direct edge
5298  // from the predecessor to the block.
5299  if (BasicBlock *Pred = BB->getSinglePredecessor())
5300    return std::make_pair(Pred, BB);
5301
5302  // A loop's header is defined to be a block that dominates the loop.
5303  // If the header has a unique predecessor outside the loop, it must be
5304  // a block that has exactly one successor that can reach the loop.
5305  if (Loop *L = LI->getLoopFor(BB))
5306    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5307
5308  return std::pair<BasicBlock *, BasicBlock *>();
5309}
5310
5311/// HasSameValue - SCEV structural equivalence is usually sufficient for
5312/// testing whether two expressions are equal, however for the purposes of
5313/// looking for a condition guarding a loop, it can be useful to be a little
5314/// more general, since a front-end may have replicated the controlling
5315/// expression.
5316///
5317static bool HasSameValue(const SCEV *A, const SCEV *B) {
5318  // Quick check to see if they are the same SCEV.
5319  if (A == B) return true;
5320
5321  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5322  // two different instructions with the same value. Check for this case.
5323  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5324    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5325      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5326        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5327          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5328            return true;
5329
5330  // Otherwise assume they may have a different value.
5331  return false;
5332}
5333
5334/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5335/// predicate Pred. Return true iff any changes were made.
5336///
5337bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5338                                           const SCEV *&LHS, const SCEV *&RHS) {
5339  bool Changed = false;
5340
5341  // Canonicalize a constant to the right side.
5342  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5343    // Check for both operands constant.
5344    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5345      if (ConstantExpr::getICmp(Pred,
5346                                LHSC->getValue(),
5347                                RHSC->getValue())->isNullValue())
5348        goto trivially_false;
5349      else
5350        goto trivially_true;
5351    }
5352    // Otherwise swap the operands to put the constant on the right.
5353    std::swap(LHS, RHS);
5354    Pred = ICmpInst::getSwappedPredicate(Pred);
5355    Changed = true;
5356  }
5357
5358  // If we're comparing an addrec with a value which is loop-invariant in the
5359  // addrec's loop, put the addrec on the left. Also make a dominance check,
5360  // as both operands could be addrecs loop-invariant in each other's loop.
5361  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5362    const Loop *L = AR->getLoop();
5363    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5364      std::swap(LHS, RHS);
5365      Pred = ICmpInst::getSwappedPredicate(Pred);
5366      Changed = true;
5367    }
5368  }
5369
5370  // If there's a constant operand, canonicalize comparisons with boundary
5371  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5372  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5373    const APInt &RA = RC->getValue()->getValue();
5374    switch (Pred) {
5375    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5376    case ICmpInst::ICMP_EQ:
5377    case ICmpInst::ICMP_NE:
5378      break;
5379    case ICmpInst::ICMP_UGE:
5380      if ((RA - 1).isMinValue()) {
5381        Pred = ICmpInst::ICMP_NE;
5382        RHS = getConstant(RA - 1);
5383        Changed = true;
5384        break;
5385      }
5386      if (RA.isMaxValue()) {
5387        Pred = ICmpInst::ICMP_EQ;
5388        Changed = true;
5389        break;
5390      }
5391      if (RA.isMinValue()) goto trivially_true;
5392
5393      Pred = ICmpInst::ICMP_UGT;
5394      RHS = getConstant(RA - 1);
5395      Changed = true;
5396      break;
5397    case ICmpInst::ICMP_ULE:
5398      if ((RA + 1).isMaxValue()) {
5399        Pred = ICmpInst::ICMP_NE;
5400        RHS = getConstant(RA + 1);
5401        Changed = true;
5402        break;
5403      }
5404      if (RA.isMinValue()) {
5405        Pred = ICmpInst::ICMP_EQ;
5406        Changed = true;
5407        break;
5408      }
5409      if (RA.isMaxValue()) goto trivially_true;
5410
5411      Pred = ICmpInst::ICMP_ULT;
5412      RHS = getConstant(RA + 1);
5413      Changed = true;
5414      break;
5415    case ICmpInst::ICMP_SGE:
5416      if ((RA - 1).isMinSignedValue()) {
5417        Pred = ICmpInst::ICMP_NE;
5418        RHS = getConstant(RA - 1);
5419        Changed = true;
5420        break;
5421      }
5422      if (RA.isMaxSignedValue()) {
5423        Pred = ICmpInst::ICMP_EQ;
5424        Changed = true;
5425        break;
5426      }
5427      if (RA.isMinSignedValue()) goto trivially_true;
5428
5429      Pred = ICmpInst::ICMP_SGT;
5430      RHS = getConstant(RA - 1);
5431      Changed = true;
5432      break;
5433    case ICmpInst::ICMP_SLE:
5434      if ((RA + 1).isMaxSignedValue()) {
5435        Pred = ICmpInst::ICMP_NE;
5436        RHS = getConstant(RA + 1);
5437        Changed = true;
5438        break;
5439      }
5440      if (RA.isMinSignedValue()) {
5441        Pred = ICmpInst::ICMP_EQ;
5442        Changed = true;
5443        break;
5444      }
5445      if (RA.isMaxSignedValue()) goto trivially_true;
5446
5447      Pred = ICmpInst::ICMP_SLT;
5448      RHS = getConstant(RA + 1);
5449      Changed = true;
5450      break;
5451    case ICmpInst::ICMP_UGT:
5452      if (RA.isMinValue()) {
5453        Pred = ICmpInst::ICMP_NE;
5454        Changed = true;
5455        break;
5456      }
5457      if ((RA + 1).isMaxValue()) {
5458        Pred = ICmpInst::ICMP_EQ;
5459        RHS = getConstant(RA + 1);
5460        Changed = true;
5461        break;
5462      }
5463      if (RA.isMaxValue()) goto trivially_false;
5464      break;
5465    case ICmpInst::ICMP_ULT:
5466      if (RA.isMaxValue()) {
5467        Pred = ICmpInst::ICMP_NE;
5468        Changed = true;
5469        break;
5470      }
5471      if ((RA - 1).isMinValue()) {
5472        Pred = ICmpInst::ICMP_EQ;
5473        RHS = getConstant(RA - 1);
5474        Changed = true;
5475        break;
5476      }
5477      if (RA.isMinValue()) goto trivially_false;
5478      break;
5479    case ICmpInst::ICMP_SGT:
5480      if (RA.isMinSignedValue()) {
5481        Pred = ICmpInst::ICMP_NE;
5482        Changed = true;
5483        break;
5484      }
5485      if ((RA + 1).isMaxSignedValue()) {
5486        Pred = ICmpInst::ICMP_EQ;
5487        RHS = getConstant(RA + 1);
5488        Changed = true;
5489        break;
5490      }
5491      if (RA.isMaxSignedValue()) goto trivially_false;
5492      break;
5493    case ICmpInst::ICMP_SLT:
5494      if (RA.isMaxSignedValue()) {
5495        Pred = ICmpInst::ICMP_NE;
5496        Changed = true;
5497        break;
5498      }
5499      if ((RA - 1).isMinSignedValue()) {
5500       Pred = ICmpInst::ICMP_EQ;
5501       RHS = getConstant(RA - 1);
5502        Changed = true;
5503       break;
5504      }
5505      if (RA.isMinSignedValue()) goto trivially_false;
5506      break;
5507    }
5508  }
5509
5510  // Check for obvious equality.
5511  if (HasSameValue(LHS, RHS)) {
5512    if (ICmpInst::isTrueWhenEqual(Pred))
5513      goto trivially_true;
5514    if (ICmpInst::isFalseWhenEqual(Pred))
5515      goto trivially_false;
5516  }
5517
5518  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5519  // adding or subtracting 1 from one of the operands.
5520  switch (Pred) {
5521  case ICmpInst::ICMP_SLE:
5522    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5523      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5524                       SCEV::FlagNSW);
5525      Pred = ICmpInst::ICMP_SLT;
5526      Changed = true;
5527    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5528      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5529                       SCEV::FlagNSW);
5530      Pred = ICmpInst::ICMP_SLT;
5531      Changed = true;
5532    }
5533    break;
5534  case ICmpInst::ICMP_SGE:
5535    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5536      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5537                       SCEV::FlagNSW);
5538      Pred = ICmpInst::ICMP_SGT;
5539      Changed = true;
5540    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5541      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5542                       SCEV::FlagNSW);
5543      Pred = ICmpInst::ICMP_SGT;
5544      Changed = true;
5545    }
5546    break;
5547  case ICmpInst::ICMP_ULE:
5548    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5549      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5550                       SCEV::FlagNUW);
5551      Pred = ICmpInst::ICMP_ULT;
5552      Changed = true;
5553    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5554      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5555                       SCEV::FlagNUW);
5556      Pred = ICmpInst::ICMP_ULT;
5557      Changed = true;
5558    }
5559    break;
5560  case ICmpInst::ICMP_UGE:
5561    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5562      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5563                       SCEV::FlagNUW);
5564      Pred = ICmpInst::ICMP_UGT;
5565      Changed = true;
5566    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5567      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5568                       SCEV::FlagNUW);
5569      Pred = ICmpInst::ICMP_UGT;
5570      Changed = true;
5571    }
5572    break;
5573  default:
5574    break;
5575  }
5576
5577  // TODO: More simplifications are possible here.
5578
5579  return Changed;
5580
5581trivially_true:
5582  // Return 0 == 0.
5583  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5584  Pred = ICmpInst::ICMP_EQ;
5585  return true;
5586
5587trivially_false:
5588  // Return 0 != 0.
5589  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5590  Pred = ICmpInst::ICMP_NE;
5591  return true;
5592}
5593
5594bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5595  return getSignedRange(S).getSignedMax().isNegative();
5596}
5597
5598bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5599  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5600}
5601
5602bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5603  return !getSignedRange(S).getSignedMin().isNegative();
5604}
5605
5606bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5607  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5608}
5609
5610bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5611  return isKnownNegative(S) || isKnownPositive(S);
5612}
5613
5614bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5615                                       const SCEV *LHS, const SCEV *RHS) {
5616  // Canonicalize the inputs first.
5617  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5618
5619  // If LHS or RHS is an addrec, check to see if the condition is true in
5620  // every iteration of the loop.
5621  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5622    if (isLoopEntryGuardedByCond(
5623          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5624        isLoopBackedgeGuardedByCond(
5625          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5626      return true;
5627  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5628    if (isLoopEntryGuardedByCond(
5629          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5630        isLoopBackedgeGuardedByCond(
5631          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5632      return true;
5633
5634  // Otherwise see what can be done with known constant ranges.
5635  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5636}
5637
5638bool
5639ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5640                                            const SCEV *LHS, const SCEV *RHS) {
5641  if (HasSameValue(LHS, RHS))
5642    return ICmpInst::isTrueWhenEqual(Pred);
5643
5644  // This code is split out from isKnownPredicate because it is called from
5645  // within isLoopEntryGuardedByCond.
5646  switch (Pred) {
5647  default:
5648    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5649    break;
5650  case ICmpInst::ICMP_SGT:
5651    Pred = ICmpInst::ICMP_SLT;
5652    std::swap(LHS, RHS);
5653  case ICmpInst::ICMP_SLT: {
5654    ConstantRange LHSRange = getSignedRange(LHS);
5655    ConstantRange RHSRange = getSignedRange(RHS);
5656    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5657      return true;
5658    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5659      return false;
5660    break;
5661  }
5662  case ICmpInst::ICMP_SGE:
5663    Pred = ICmpInst::ICMP_SLE;
5664    std::swap(LHS, RHS);
5665  case ICmpInst::ICMP_SLE: {
5666    ConstantRange LHSRange = getSignedRange(LHS);
5667    ConstantRange RHSRange = getSignedRange(RHS);
5668    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5669      return true;
5670    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5671      return false;
5672    break;
5673  }
5674  case ICmpInst::ICMP_UGT:
5675    Pred = ICmpInst::ICMP_ULT;
5676    std::swap(LHS, RHS);
5677  case ICmpInst::ICMP_ULT: {
5678    ConstantRange LHSRange = getUnsignedRange(LHS);
5679    ConstantRange RHSRange = getUnsignedRange(RHS);
5680    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5681      return true;
5682    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5683      return false;
5684    break;
5685  }
5686  case ICmpInst::ICMP_UGE:
5687    Pred = ICmpInst::ICMP_ULE;
5688    std::swap(LHS, RHS);
5689  case ICmpInst::ICMP_ULE: {
5690    ConstantRange LHSRange = getUnsignedRange(LHS);
5691    ConstantRange RHSRange = getUnsignedRange(RHS);
5692    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5693      return true;
5694    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5695      return false;
5696    break;
5697  }
5698  case ICmpInst::ICMP_NE: {
5699    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5700      return true;
5701    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5702      return true;
5703
5704    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5705    if (isKnownNonZero(Diff))
5706      return true;
5707    break;
5708  }
5709  case ICmpInst::ICMP_EQ:
5710    // The check at the top of the function catches the case where
5711    // the values are known to be equal.
5712    break;
5713  }
5714  return false;
5715}
5716
5717/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5718/// protected by a conditional between LHS and RHS.  This is used to
5719/// to eliminate casts.
5720bool
5721ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5722                                             ICmpInst::Predicate Pred,
5723                                             const SCEV *LHS, const SCEV *RHS) {
5724  // Interpret a null as meaning no loop, where there is obviously no guard
5725  // (interprocedural conditions notwithstanding).
5726  if (!L) return true;
5727
5728  BasicBlock *Latch = L->getLoopLatch();
5729  if (!Latch)
5730    return false;
5731
5732  BranchInst *LoopContinuePredicate =
5733    dyn_cast<BranchInst>(Latch->getTerminator());
5734  if (!LoopContinuePredicate ||
5735      LoopContinuePredicate->isUnconditional())
5736    return false;
5737
5738  return isImpliedCond(Pred, LHS, RHS,
5739                       LoopContinuePredicate->getCondition(),
5740                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5741}
5742
5743/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5744/// by a conditional between LHS and RHS.  This is used to help avoid max
5745/// expressions in loop trip counts, and to eliminate casts.
5746bool
5747ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5748                                          ICmpInst::Predicate Pred,
5749                                          const SCEV *LHS, const SCEV *RHS) {
5750  // Interpret a null as meaning no loop, where there is obviously no guard
5751  // (interprocedural conditions notwithstanding).
5752  if (!L) return false;
5753
5754  // Starting at the loop predecessor, climb up the predecessor chain, as long
5755  // as there are predecessors that can be found that have unique successors
5756  // leading to the original header.
5757  for (std::pair<BasicBlock *, BasicBlock *>
5758         Pair(L->getLoopPredecessor(), L->getHeader());
5759       Pair.first;
5760       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5761
5762    BranchInst *LoopEntryPredicate =
5763      dyn_cast<BranchInst>(Pair.first->getTerminator());
5764    if (!LoopEntryPredicate ||
5765        LoopEntryPredicate->isUnconditional())
5766      continue;
5767
5768    if (isImpliedCond(Pred, LHS, RHS,
5769                      LoopEntryPredicate->getCondition(),
5770                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5771      return true;
5772  }
5773
5774  return false;
5775}
5776
5777/// isImpliedCond - Test whether the condition described by Pred, LHS,
5778/// and RHS is true whenever the given Cond value evaluates to true.
5779bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5780                                    const SCEV *LHS, const SCEV *RHS,
5781                                    Value *FoundCondValue,
5782                                    bool Inverse) {
5783  // Recursively handle And and Or conditions.
5784  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5785    if (BO->getOpcode() == Instruction::And) {
5786      if (!Inverse)
5787        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5788               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5789    } else if (BO->getOpcode() == Instruction::Or) {
5790      if (Inverse)
5791        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5792               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5793    }
5794  }
5795
5796  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5797  if (!ICI) return false;
5798
5799  // Bail if the ICmp's operands' types are wider than the needed type
5800  // before attempting to call getSCEV on them. This avoids infinite
5801  // recursion, since the analysis of widening casts can require loop
5802  // exit condition information for overflow checking, which would
5803  // lead back here.
5804  if (getTypeSizeInBits(LHS->getType()) <
5805      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5806    return false;
5807
5808  // Now that we found a conditional branch that dominates the loop, check to
5809  // see if it is the comparison we are looking for.
5810  ICmpInst::Predicate FoundPred;
5811  if (Inverse)
5812    FoundPred = ICI->getInversePredicate();
5813  else
5814    FoundPred = ICI->getPredicate();
5815
5816  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5817  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5818
5819  // Balance the types. The case where FoundLHS' type is wider than
5820  // LHS' type is checked for above.
5821  if (getTypeSizeInBits(LHS->getType()) >
5822      getTypeSizeInBits(FoundLHS->getType())) {
5823    if (CmpInst::isSigned(Pred)) {
5824      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5825      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5826    } else {
5827      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5828      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5829    }
5830  }
5831
5832  // Canonicalize the query to match the way instcombine will have
5833  // canonicalized the comparison.
5834  if (SimplifyICmpOperands(Pred, LHS, RHS))
5835    if (LHS == RHS)
5836      return CmpInst::isTrueWhenEqual(Pred);
5837  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5838    if (FoundLHS == FoundRHS)
5839      return CmpInst::isFalseWhenEqual(Pred);
5840
5841  // Check to see if we can make the LHS or RHS match.
5842  if (LHS == FoundRHS || RHS == FoundLHS) {
5843    if (isa<SCEVConstant>(RHS)) {
5844      std::swap(FoundLHS, FoundRHS);
5845      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5846    } else {
5847      std::swap(LHS, RHS);
5848      Pred = ICmpInst::getSwappedPredicate(Pred);
5849    }
5850  }
5851
5852  // Check whether the found predicate is the same as the desired predicate.
5853  if (FoundPred == Pred)
5854    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5855
5856  // Check whether swapping the found predicate makes it the same as the
5857  // desired predicate.
5858  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5859    if (isa<SCEVConstant>(RHS))
5860      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5861    else
5862      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5863                                   RHS, LHS, FoundLHS, FoundRHS);
5864  }
5865
5866  // Check whether the actual condition is beyond sufficient.
5867  if (FoundPred == ICmpInst::ICMP_EQ)
5868    if (ICmpInst::isTrueWhenEqual(Pred))
5869      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5870        return true;
5871  if (Pred == ICmpInst::ICMP_NE)
5872    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5873      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5874        return true;
5875
5876  // Otherwise assume the worst.
5877  return false;
5878}
5879
5880/// isImpliedCondOperands - Test whether the condition described by Pred,
5881/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5882/// and FoundRHS is true.
5883bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5884                                            const SCEV *LHS, const SCEV *RHS,
5885                                            const SCEV *FoundLHS,
5886                                            const SCEV *FoundRHS) {
5887  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5888                                     FoundLHS, FoundRHS) ||
5889         // ~x < ~y --> x > y
5890         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5891                                     getNotSCEV(FoundRHS),
5892                                     getNotSCEV(FoundLHS));
5893}
5894
5895/// isImpliedCondOperandsHelper - Test whether the condition described by
5896/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5897/// FoundLHS, and FoundRHS is true.
5898bool
5899ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5900                                             const SCEV *LHS, const SCEV *RHS,
5901                                             const SCEV *FoundLHS,
5902                                             const SCEV *FoundRHS) {
5903  switch (Pred) {
5904  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5905  case ICmpInst::ICMP_EQ:
5906  case ICmpInst::ICMP_NE:
5907    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5908      return true;
5909    break;
5910  case ICmpInst::ICMP_SLT:
5911  case ICmpInst::ICMP_SLE:
5912    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5913        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5914      return true;
5915    break;
5916  case ICmpInst::ICMP_SGT:
5917  case ICmpInst::ICMP_SGE:
5918    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5919        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5920      return true;
5921    break;
5922  case ICmpInst::ICMP_ULT:
5923  case ICmpInst::ICMP_ULE:
5924    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5925        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5926      return true;
5927    break;
5928  case ICmpInst::ICMP_UGT:
5929  case ICmpInst::ICMP_UGE:
5930    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5931        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5932      return true;
5933    break;
5934  }
5935
5936  return false;
5937}
5938
5939/// getBECount - Subtract the end and start values and divide by the step,
5940/// rounding up, to get the number of times the backedge is executed. Return
5941/// CouldNotCompute if an intermediate computation overflows.
5942const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5943                                        const SCEV *End,
5944                                        const SCEV *Step,
5945                                        bool NoWrap) {
5946  assert(!isKnownNegative(Step) &&
5947         "This code doesn't handle negative strides yet!");
5948
5949  Type *Ty = Start->getType();
5950
5951  // When Start == End, we have an exact BECount == 0. Short-circuit this case
5952  // here because SCEV may not be able to determine that the unsigned division
5953  // after rounding is zero.
5954  if (Start == End)
5955    return getConstant(Ty, 0);
5956
5957  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5958  const SCEV *Diff = getMinusSCEV(End, Start);
5959  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5960
5961  // Add an adjustment to the difference between End and Start so that
5962  // the division will effectively round up.
5963  const SCEV *Add = getAddExpr(Diff, RoundUp);
5964
5965  if (!NoWrap) {
5966    // Check Add for unsigned overflow.
5967    // TODO: More sophisticated things could be done here.
5968    Type *WideTy = IntegerType::get(getContext(),
5969                                          getTypeSizeInBits(Ty) + 1);
5970    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5971    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5972    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5973    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5974      return getCouldNotCompute();
5975  }
5976
5977  return getUDivExpr(Add, Step);
5978}
5979
5980/// HowManyLessThans - Return the number of times a backedge containing the
5981/// specified less-than comparison will execute.  If not computable, return
5982/// CouldNotCompute.
5983ScalarEvolution::ExitLimit
5984ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5985                                  const Loop *L, bool isSigned) {
5986  // Only handle:  "ADDREC < LoopInvariant".
5987  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5988
5989  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5990  if (!AddRec || AddRec->getLoop() != L)
5991    return getCouldNotCompute();
5992
5993  // Check to see if we have a flag which makes analysis easy.
5994  bool NoWrap = isSigned ? AddRec->getNoWrapFlags(SCEV::FlagNSW) :
5995                           AddRec->getNoWrapFlags(SCEV::FlagNUW);
5996
5997  if (AddRec->isAffine()) {
5998    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5999    const SCEV *Step = AddRec->getStepRecurrence(*this);
6000
6001    if (Step->isZero())
6002      return getCouldNotCompute();
6003    if (Step->isOne()) {
6004      // With unit stride, the iteration never steps past the limit value.
6005    } else if (isKnownPositive(Step)) {
6006      // Test whether a positive iteration can step past the limit
6007      // value and past the maximum value for its type in a single step.
6008      // Note that it's not sufficient to check NoWrap here, because even
6009      // though the value after a wrap is undefined, it's not undefined
6010      // behavior, so if wrap does occur, the loop could either terminate or
6011      // loop infinitely, but in either case, the loop is guaranteed to
6012      // iterate at least until the iteration where the wrapping occurs.
6013      const SCEV *One = getConstant(Step->getType(), 1);
6014      if (isSigned) {
6015        APInt Max = APInt::getSignedMaxValue(BitWidth);
6016        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6017              .slt(getSignedRange(RHS).getSignedMax()))
6018          return getCouldNotCompute();
6019      } else {
6020        APInt Max = APInt::getMaxValue(BitWidth);
6021        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6022              .ult(getUnsignedRange(RHS).getUnsignedMax()))
6023          return getCouldNotCompute();
6024      }
6025    } else
6026      // TODO: Handle negative strides here and below.
6027      return getCouldNotCompute();
6028
6029    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6030    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
6031    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
6032    // treat m-n as signed nor unsigned due to overflow possibility.
6033
6034    // First, we get the value of the LHS in the first iteration: n
6035    const SCEV *Start = AddRec->getOperand(0);
6036
6037    // Determine the minimum constant start value.
6038    const SCEV *MinStart = getConstant(isSigned ?
6039      getSignedRange(Start).getSignedMin() :
6040      getUnsignedRange(Start).getUnsignedMin());
6041
6042    // If we know that the condition is true in order to enter the loop,
6043    // then we know that it will run exactly (m-n)/s times. Otherwise, we
6044    // only know that it will execute (max(m,n)-n)/s times. In both cases,
6045    // the division must round up.
6046    const SCEV *End = RHS;
6047    if (!isLoopEntryGuardedByCond(L,
6048                                  isSigned ? ICmpInst::ICMP_SLT :
6049                                             ICmpInst::ICMP_ULT,
6050                                  getMinusSCEV(Start, Step), RHS))
6051      End = isSigned ? getSMaxExpr(RHS, Start)
6052                     : getUMaxExpr(RHS, Start);
6053
6054    // Determine the maximum constant end value.
6055    const SCEV *MaxEnd = getConstant(isSigned ?
6056      getSignedRange(End).getSignedMax() :
6057      getUnsignedRange(End).getUnsignedMax());
6058
6059    // If MaxEnd is within a step of the maximum integer value in its type,
6060    // adjust it down to the minimum value which would produce the same effect.
6061    // This allows the subsequent ceiling division of (N+(step-1))/step to
6062    // compute the correct value.
6063    const SCEV *StepMinusOne = getMinusSCEV(Step,
6064                                            getConstant(Step->getType(), 1));
6065    MaxEnd = isSigned ?
6066      getSMinExpr(MaxEnd,
6067                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6068                               StepMinusOne)) :
6069      getUMinExpr(MaxEnd,
6070                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6071                               StepMinusOne));
6072
6073    // Finally, we subtract these two values and divide, rounding up, to get
6074    // the number of times the backedge is executed.
6075    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6076
6077    // The maximum backedge count is similar, except using the minimum start
6078    // value and the maximum end value.
6079    // If we already have an exact constant BECount, use it instead.
6080    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6081      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6082
6083    // If the stride is nonconstant, and NoWrap == true, then
6084    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6085    // exact BECount and invalid MaxBECount, which should be avoided to catch
6086    // more optimization opportunities.
6087    if (isa<SCEVCouldNotCompute>(MaxBECount))
6088      MaxBECount = BECount;
6089
6090    return ExitLimit(BECount, MaxBECount);
6091  }
6092
6093  return getCouldNotCompute();
6094}
6095
6096/// getNumIterationsInRange - Return the number of iterations of this loop that
6097/// produce values in the specified constant range.  Another way of looking at
6098/// this is that it returns the first iteration number where the value is not in
6099/// the condition, thus computing the exit count. If the iteration count can't
6100/// be computed, an instance of SCEVCouldNotCompute is returned.
6101const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6102                                                    ScalarEvolution &SE) const {
6103  if (Range.isFullSet())  // Infinite loop.
6104    return SE.getCouldNotCompute();
6105
6106  // If the start is a non-zero constant, shift the range to simplify things.
6107  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6108    if (!SC->getValue()->isZero()) {
6109      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6110      Operands[0] = SE.getConstant(SC->getType(), 0);
6111      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6112                                             getNoWrapFlags(FlagNW));
6113      if (const SCEVAddRecExpr *ShiftedAddRec =
6114            dyn_cast<SCEVAddRecExpr>(Shifted))
6115        return ShiftedAddRec->getNumIterationsInRange(
6116                           Range.subtract(SC->getValue()->getValue()), SE);
6117      // This is strange and shouldn't happen.
6118      return SE.getCouldNotCompute();
6119    }
6120
6121  // The only time we can solve this is when we have all constant indices.
6122  // Otherwise, we cannot determine the overflow conditions.
6123  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6124    if (!isa<SCEVConstant>(getOperand(i)))
6125      return SE.getCouldNotCompute();
6126
6127
6128  // Okay at this point we know that all elements of the chrec are constants and
6129  // that the start element is zero.
6130
6131  // First check to see if the range contains zero.  If not, the first
6132  // iteration exits.
6133  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6134  if (!Range.contains(APInt(BitWidth, 0)))
6135    return SE.getConstant(getType(), 0);
6136
6137  if (isAffine()) {
6138    // If this is an affine expression then we have this situation:
6139    //   Solve {0,+,A} in Range  ===  Ax in Range
6140
6141    // We know that zero is in the range.  If A is positive then we know that
6142    // the upper value of the range must be the first possible exit value.
6143    // If A is negative then the lower of the range is the last possible loop
6144    // value.  Also note that we already checked for a full range.
6145    APInt One(BitWidth,1);
6146    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6147    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6148
6149    // The exit value should be (End+A)/A.
6150    APInt ExitVal = (End + A).udiv(A);
6151    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6152
6153    // Evaluate at the exit value.  If we really did fall out of the valid
6154    // range, then we computed our trip count, otherwise wrap around or other
6155    // things must have happened.
6156    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6157    if (Range.contains(Val->getValue()))
6158      return SE.getCouldNotCompute();  // Something strange happened
6159
6160    // Ensure that the previous value is in the range.  This is a sanity check.
6161    assert(Range.contains(
6162           EvaluateConstantChrecAtConstant(this,
6163           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6164           "Linear scev computation is off in a bad way!");
6165    return SE.getConstant(ExitValue);
6166  } else if (isQuadratic()) {
6167    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6168    // quadratic equation to solve it.  To do this, we must frame our problem in
6169    // terms of figuring out when zero is crossed, instead of when
6170    // Range.getUpper() is crossed.
6171    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6172    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6173    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6174                                             // getNoWrapFlags(FlagNW)
6175                                             FlagAnyWrap);
6176
6177    // Next, solve the constructed addrec
6178    std::pair<const SCEV *,const SCEV *> Roots =
6179      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6180    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6181    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6182    if (R1) {
6183      // Pick the smallest positive root value.
6184      if (ConstantInt *CB =
6185          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6186                         R1->getValue(), R2->getValue()))) {
6187        if (CB->getZExtValue() == false)
6188          std::swap(R1, R2);   // R1 is the minimum root now.
6189
6190        // Make sure the root is not off by one.  The returned iteration should
6191        // not be in the range, but the previous one should be.  When solving
6192        // for "X*X < 5", for example, we should not return a root of 2.
6193        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6194                                                             R1->getValue(),
6195                                                             SE);
6196        if (Range.contains(R1Val->getValue())) {
6197          // The next iteration must be out of the range...
6198          ConstantInt *NextVal =
6199                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6200
6201          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6202          if (!Range.contains(R1Val->getValue()))
6203            return SE.getConstant(NextVal);
6204          return SE.getCouldNotCompute();  // Something strange happened
6205        }
6206
6207        // If R1 was not in the range, then it is a good return value.  Make
6208        // sure that R1-1 WAS in the range though, just in case.
6209        ConstantInt *NextVal =
6210               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6211        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6212        if (Range.contains(R1Val->getValue()))
6213          return R1;
6214        return SE.getCouldNotCompute();  // Something strange happened
6215      }
6216    }
6217  }
6218
6219  return SE.getCouldNotCompute();
6220}
6221
6222
6223
6224//===----------------------------------------------------------------------===//
6225//                   SCEVCallbackVH Class Implementation
6226//===----------------------------------------------------------------------===//
6227
6228void ScalarEvolution::SCEVCallbackVH::deleted() {
6229  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6230  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6231    SE->ConstantEvolutionLoopExitValue.erase(PN);
6232  SE->ValueExprMap.erase(getValPtr());
6233  // this now dangles!
6234}
6235
6236void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6237  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6238
6239  // Forget all the expressions associated with users of the old value,
6240  // so that future queries will recompute the expressions using the new
6241  // value.
6242  Value *Old = getValPtr();
6243  SmallVector<User *, 16> Worklist;
6244  SmallPtrSet<User *, 8> Visited;
6245  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6246       UI != UE; ++UI)
6247    Worklist.push_back(*UI);
6248  while (!Worklist.empty()) {
6249    User *U = Worklist.pop_back_val();
6250    // Deleting the Old value will cause this to dangle. Postpone
6251    // that until everything else is done.
6252    if (U == Old)
6253      continue;
6254    if (!Visited.insert(U))
6255      continue;
6256    if (PHINode *PN = dyn_cast<PHINode>(U))
6257      SE->ConstantEvolutionLoopExitValue.erase(PN);
6258    SE->ValueExprMap.erase(U);
6259    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6260         UI != UE; ++UI)
6261      Worklist.push_back(*UI);
6262  }
6263  // Delete the Old value.
6264  if (PHINode *PN = dyn_cast<PHINode>(Old))
6265    SE->ConstantEvolutionLoopExitValue.erase(PN);
6266  SE->ValueExprMap.erase(Old);
6267  // this now dangles!
6268}
6269
6270ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6271  : CallbackVH(V), SE(se) {}
6272
6273//===----------------------------------------------------------------------===//
6274//                   ScalarEvolution Class Implementation
6275//===----------------------------------------------------------------------===//
6276
6277ScalarEvolution::ScalarEvolution()
6278  : FunctionPass(ID), FirstUnknown(0) {
6279  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6280}
6281
6282bool ScalarEvolution::runOnFunction(Function &F) {
6283  this->F = &F;
6284  LI = &getAnalysis<LoopInfo>();
6285  TD = getAnalysisIfAvailable<TargetData>();
6286  DT = &getAnalysis<DominatorTree>();
6287  return false;
6288}
6289
6290void ScalarEvolution::releaseMemory() {
6291  // Iterate through all the SCEVUnknown instances and call their
6292  // destructors, so that they release their references to their values.
6293  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6294    U->~SCEVUnknown();
6295  FirstUnknown = 0;
6296
6297  ValueExprMap.clear();
6298
6299  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6300  // that a loop had multiple computable exits.
6301  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6302         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6303       I != E; ++I) {
6304    I->second.clear();
6305  }
6306
6307  BackedgeTakenCounts.clear();
6308  ConstantEvolutionLoopExitValue.clear();
6309  ValuesAtScopes.clear();
6310  LoopDispositions.clear();
6311  BlockDispositions.clear();
6312  UnsignedRanges.clear();
6313  SignedRanges.clear();
6314  UniqueSCEVs.clear();
6315  SCEVAllocator.Reset();
6316}
6317
6318void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6319  AU.setPreservesAll();
6320  AU.addRequiredTransitive<LoopInfo>();
6321  AU.addRequiredTransitive<DominatorTree>();
6322}
6323
6324bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6325  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6326}
6327
6328static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6329                          const Loop *L) {
6330  // Print all inner loops first
6331  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6332    PrintLoopInfo(OS, SE, *I);
6333
6334  OS << "Loop ";
6335  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6336  OS << ": ";
6337
6338  SmallVector<BasicBlock *, 8> ExitBlocks;
6339  L->getExitBlocks(ExitBlocks);
6340  if (ExitBlocks.size() != 1)
6341    OS << "<multiple exits> ";
6342
6343  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6344    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6345  } else {
6346    OS << "Unpredictable backedge-taken count. ";
6347  }
6348
6349  OS << "\n"
6350        "Loop ";
6351  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6352  OS << ": ";
6353
6354  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6355    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6356  } else {
6357    OS << "Unpredictable max backedge-taken count. ";
6358  }
6359
6360  OS << "\n";
6361}
6362
6363void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6364  // ScalarEvolution's implementation of the print method is to print
6365  // out SCEV values of all instructions that are interesting. Doing
6366  // this potentially causes it to create new SCEV objects though,
6367  // which technically conflicts with the const qualifier. This isn't
6368  // observable from outside the class though, so casting away the
6369  // const isn't dangerous.
6370  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6371
6372  OS << "Classifying expressions for: ";
6373  WriteAsOperand(OS, F, /*PrintType=*/false);
6374  OS << "\n";
6375  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6376    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6377      OS << *I << '\n';
6378      OS << "  -->  ";
6379      const SCEV *SV = SE.getSCEV(&*I);
6380      SV->print(OS);
6381
6382      const Loop *L = LI->getLoopFor((*I).getParent());
6383
6384      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6385      if (AtUse != SV) {
6386        OS << "  -->  ";
6387        AtUse->print(OS);
6388      }
6389
6390      if (L) {
6391        OS << "\t\t" "Exits: ";
6392        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6393        if (!SE.isLoopInvariant(ExitValue, L)) {
6394          OS << "<<Unknown>>";
6395        } else {
6396          OS << *ExitValue;
6397        }
6398      }
6399
6400      OS << "\n";
6401    }
6402
6403  OS << "Determining loop execution counts for: ";
6404  WriteAsOperand(OS, F, /*PrintType=*/false);
6405  OS << "\n";
6406  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6407    PrintLoopInfo(OS, &SE, *I);
6408}
6409
6410ScalarEvolution::LoopDisposition
6411ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6412  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6413  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6414    Values.insert(std::make_pair(L, LoopVariant));
6415  if (!Pair.second)
6416    return Pair.first->second;
6417
6418  LoopDisposition D = computeLoopDisposition(S, L);
6419  return LoopDispositions[S][L] = D;
6420}
6421
6422ScalarEvolution::LoopDisposition
6423ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6424  switch (S->getSCEVType()) {
6425  case scConstant:
6426    return LoopInvariant;
6427  case scTruncate:
6428  case scZeroExtend:
6429  case scSignExtend:
6430    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6431  case scAddRecExpr: {
6432    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6433
6434    // If L is the addrec's loop, it's computable.
6435    if (AR->getLoop() == L)
6436      return LoopComputable;
6437
6438    // Add recurrences are never invariant in the function-body (null loop).
6439    if (!L)
6440      return LoopVariant;
6441
6442    // This recurrence is variant w.r.t. L if L contains AR's loop.
6443    if (L->contains(AR->getLoop()))
6444      return LoopVariant;
6445
6446    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6447    if (AR->getLoop()->contains(L))
6448      return LoopInvariant;
6449
6450    // This recurrence is variant w.r.t. L if any of its operands
6451    // are variant.
6452    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6453         I != E; ++I)
6454      if (!isLoopInvariant(*I, L))
6455        return LoopVariant;
6456
6457    // Otherwise it's loop-invariant.
6458    return LoopInvariant;
6459  }
6460  case scAddExpr:
6461  case scMulExpr:
6462  case scUMaxExpr:
6463  case scSMaxExpr: {
6464    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6465    bool HasVarying = false;
6466    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6467         I != E; ++I) {
6468      LoopDisposition D = getLoopDisposition(*I, L);
6469      if (D == LoopVariant)
6470        return LoopVariant;
6471      if (D == LoopComputable)
6472        HasVarying = true;
6473    }
6474    return HasVarying ? LoopComputable : LoopInvariant;
6475  }
6476  case scUDivExpr: {
6477    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6478    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6479    if (LD == LoopVariant)
6480      return LoopVariant;
6481    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6482    if (RD == LoopVariant)
6483      return LoopVariant;
6484    return (LD == LoopInvariant && RD == LoopInvariant) ?
6485           LoopInvariant : LoopComputable;
6486  }
6487  case scUnknown:
6488    // All non-instruction values are loop invariant.  All instructions are loop
6489    // invariant if they are not contained in the specified loop.
6490    // Instructions are never considered invariant in the function body
6491    // (null loop) because they are defined within the "loop".
6492    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6493      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6494    return LoopInvariant;
6495  case scCouldNotCompute:
6496    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6497    return LoopVariant;
6498  default: break;
6499  }
6500  llvm_unreachable("Unknown SCEV kind!");
6501  return LoopVariant;
6502}
6503
6504bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6505  return getLoopDisposition(S, L) == LoopInvariant;
6506}
6507
6508bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6509  return getLoopDisposition(S, L) == LoopComputable;
6510}
6511
6512ScalarEvolution::BlockDisposition
6513ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6514  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6515  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6516    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6517  if (!Pair.second)
6518    return Pair.first->second;
6519
6520  BlockDisposition D = computeBlockDisposition(S, BB);
6521  return BlockDispositions[S][BB] = D;
6522}
6523
6524ScalarEvolution::BlockDisposition
6525ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6526  switch (S->getSCEVType()) {
6527  case scConstant:
6528    return ProperlyDominatesBlock;
6529  case scTruncate:
6530  case scZeroExtend:
6531  case scSignExtend:
6532    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6533  case scAddRecExpr: {
6534    // This uses a "dominates" query instead of "properly dominates" query
6535    // to test for proper dominance too, because the instruction which
6536    // produces the addrec's value is a PHI, and a PHI effectively properly
6537    // dominates its entire containing block.
6538    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6539    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6540      return DoesNotDominateBlock;
6541  }
6542  // FALL THROUGH into SCEVNAryExpr handling.
6543  case scAddExpr:
6544  case scMulExpr:
6545  case scUMaxExpr:
6546  case scSMaxExpr: {
6547    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6548    bool Proper = true;
6549    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6550         I != E; ++I) {
6551      BlockDisposition D = getBlockDisposition(*I, BB);
6552      if (D == DoesNotDominateBlock)
6553        return DoesNotDominateBlock;
6554      if (D == DominatesBlock)
6555        Proper = false;
6556    }
6557    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6558  }
6559  case scUDivExpr: {
6560    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6561    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6562    BlockDisposition LD = getBlockDisposition(LHS, BB);
6563    if (LD == DoesNotDominateBlock)
6564      return DoesNotDominateBlock;
6565    BlockDisposition RD = getBlockDisposition(RHS, BB);
6566    if (RD == DoesNotDominateBlock)
6567      return DoesNotDominateBlock;
6568    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6569      ProperlyDominatesBlock : DominatesBlock;
6570  }
6571  case scUnknown:
6572    if (Instruction *I =
6573          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6574      if (I->getParent() == BB)
6575        return DominatesBlock;
6576      if (DT->properlyDominates(I->getParent(), BB))
6577        return ProperlyDominatesBlock;
6578      return DoesNotDominateBlock;
6579    }
6580    return ProperlyDominatesBlock;
6581  case scCouldNotCompute:
6582    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6583    return DoesNotDominateBlock;
6584  default: break;
6585  }
6586  llvm_unreachable("Unknown SCEV kind!");
6587  return DoesNotDominateBlock;
6588}
6589
6590bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6591  return getBlockDisposition(S, BB) >= DominatesBlock;
6592}
6593
6594bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6595  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6596}
6597
6598bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6599  switch (S->getSCEVType()) {
6600  case scConstant:
6601    return false;
6602  case scTruncate:
6603  case scZeroExtend:
6604  case scSignExtend: {
6605    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6606    const SCEV *CastOp = Cast->getOperand();
6607    return Op == CastOp || hasOperand(CastOp, Op);
6608  }
6609  case scAddRecExpr:
6610  case scAddExpr:
6611  case scMulExpr:
6612  case scUMaxExpr:
6613  case scSMaxExpr: {
6614    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6615    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6616         I != E; ++I) {
6617      const SCEV *NAryOp = *I;
6618      if (NAryOp == Op || hasOperand(NAryOp, Op))
6619        return true;
6620    }
6621    return false;
6622  }
6623  case scUDivExpr: {
6624    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6625    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6626    return LHS == Op || hasOperand(LHS, Op) ||
6627           RHS == Op || hasOperand(RHS, Op);
6628  }
6629  case scUnknown:
6630    return false;
6631  case scCouldNotCompute:
6632    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6633    return false;
6634  default: break;
6635  }
6636  llvm_unreachable("Unknown SCEV kind!");
6637  return false;
6638}
6639
6640void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6641  ValuesAtScopes.erase(S);
6642  LoopDispositions.erase(S);
6643  BlockDispositions.erase(S);
6644  UnsignedRanges.erase(S);
6645  SignedRanges.erase(S);
6646}
6647