ScalarEvolution.cpp revision 28680d33eeafba7bf0e935200e20360c7dc27bde
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/ErrorHandling.h"
79#include "llvm/Support/GetElementPtrTypeIterator.h"
80#include "llvm/Support/InstIterator.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/ADT/Statistic.h"
84#include "llvm/ADT/STLExtras.h"
85#include "llvm/ADT/SmallPtrSet.h"
86#include <algorithm>
87using namespace llvm;
88
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98static cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant "
102                                 "derived loop"),
103                        cl::init(100));
104
105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116
117SCEV::~SCEV() {}
118
119void SCEV::dump() const {
120  print(errs());
121  errs() << '\n';
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130bool SCEV::isOne() const {
131  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132    return SC->getValue()->isOne();
133  return false;
134}
135
136bool SCEV::isAllOnesValue() const {
137  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138    return SC->getValue()->isAllOnesValue();
139  return false;
140}
141
142SCEVCouldNotCompute::SCEVCouldNotCompute() :
143  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
144
145bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
146  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
147  return false;
148}
149
150const Type *SCEVCouldNotCompute::getType() const {
151  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
152  return 0;
153}
154
155bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
156  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
157  return false;
158}
159
160bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
161  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
162  return false;
163}
164
165void SCEVCouldNotCompute::print(raw_ostream &OS) const {
166  OS << "***COULDNOTCOMPUTE***";
167}
168
169bool SCEVCouldNotCompute::classof(const SCEV *S) {
170  return S->getSCEVType() == scCouldNotCompute;
171}
172
173const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
174  FoldingSetNodeID ID;
175  ID.AddInteger(scConstant);
176  ID.AddPointer(V);
177  void *IP = 0;
178  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
179  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
180  new (S) SCEVConstant(ID, V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  return getConstant(
192    ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
217         (Ty->isInteger() || isa<PointerType>(Ty)) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
229         (Ty->isInteger() || isa<PointerType>(Ty)) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
241         (Ty->isInteger() || isa<PointerType>(Ty)) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
251  const char *OpStr = getOperationStr();
252  OS << "(" << *Operands[0];
253  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
254    OS << OpStr << *Operands[i];
255  OS << ")";
256}
257
258bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
259  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
260    if (!getOperand(i)->dominates(BB, DT))
261      return false;
262  }
263  return true;
264}
265
266bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
267  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
268    if (!getOperand(i)->properlyDominates(BB, DT))
269      return false;
270  }
271  return true;
272}
273
274bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
275  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
276}
277
278bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
279  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
280}
281
282void SCEVUDivExpr::print(raw_ostream &OS) const {
283  OS << "(" << *LHS << " /u " << *RHS << ")";
284}
285
286const Type *SCEVUDivExpr::getType() const {
287  // In most cases the types of LHS and RHS will be the same, but in some
288  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
289  // depend on the type for correctness, but handling types carefully can
290  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
291  // a pointer type than the RHS, so use the RHS' type here.
292  return RHS->getType();
293}
294
295bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
296  // Add recurrences are never invariant in the function-body (null loop).
297  if (!QueryLoop)
298    return false;
299
300  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
301  if (QueryLoop->contains(L))
302    return false;
303
304  // This recurrence is variant w.r.t. QueryLoop if any of its operands
305  // are variant.
306  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
307    if (!getOperand(i)->isLoopInvariant(QueryLoop))
308      return false;
309
310  // Otherwise it's loop-invariant.
311  return true;
312}
313
314void SCEVAddRecExpr::print(raw_ostream &OS) const {
315  OS << "{" << *Operands[0];
316  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
317    OS << ",+," << *Operands[i];
318  OS << "}<" << L->getHeader()->getName() + ">";
319}
320
321void SCEVFieldOffsetExpr::print(raw_ostream &OS) const {
322  // LLVM struct fields don't have names, so just print the field number.
323  OS << "offsetof(" << *STy << ", " << FieldNo << ")";
324}
325
326void SCEVAllocSizeExpr::print(raw_ostream &OS) const {
327  OS << "sizeof(" << *AllocTy << ")";
328}
329
330bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
331  // All non-instruction values are loop invariant.  All instructions are loop
332  // invariant if they are not contained in the specified loop.
333  // Instructions are never considered invariant in the function body
334  // (null loop) because they are defined within the "loop".
335  if (Instruction *I = dyn_cast<Instruction>(V))
336    return L && !L->contains(I);
337  return true;
338}
339
340bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
341  if (Instruction *I = dyn_cast<Instruction>(getValue()))
342    return DT->dominates(I->getParent(), BB);
343  return true;
344}
345
346bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
347  if (Instruction *I = dyn_cast<Instruction>(getValue()))
348    return DT->properlyDominates(I->getParent(), BB);
349  return true;
350}
351
352const Type *SCEVUnknown::getType() const {
353  return V->getType();
354}
355
356void SCEVUnknown::print(raw_ostream &OS) const {
357  WriteAsOperand(OS, V, false);
358}
359
360//===----------------------------------------------------------------------===//
361//                               SCEV Utilities
362//===----------------------------------------------------------------------===//
363
364static bool CompareTypes(const Type *A, const Type *B) {
365  if (A->getTypeID() != B->getTypeID())
366    return A->getTypeID() < B->getTypeID();
367  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
368    const IntegerType *BI = cast<IntegerType>(B);
369    return AI->getBitWidth() < BI->getBitWidth();
370  }
371  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
372    const PointerType *BI = cast<PointerType>(B);
373    return CompareTypes(AI->getElementType(), BI->getElementType());
374  }
375  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
376    const ArrayType *BI = cast<ArrayType>(B);
377    if (AI->getNumElements() != BI->getNumElements())
378      return AI->getNumElements() < BI->getNumElements();
379    return CompareTypes(AI->getElementType(), BI->getElementType());
380  }
381  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
382    const VectorType *BI = cast<VectorType>(B);
383    if (AI->getNumElements() != BI->getNumElements())
384      return AI->getNumElements() < BI->getNumElements();
385    return CompareTypes(AI->getElementType(), BI->getElementType());
386  }
387  if (const StructType *AI = dyn_cast<StructType>(A)) {
388    const StructType *BI = cast<StructType>(B);
389    if (AI->getNumElements() != BI->getNumElements())
390      return AI->getNumElements() < BI->getNumElements();
391    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
392      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
393          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
394        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
395  }
396  return false;
397}
398
399namespace {
400  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
401  /// than the complexity of the RHS.  This comparator is used to canonicalize
402  /// expressions.
403  class SCEVComplexityCompare {
404    LoopInfo *LI;
405  public:
406    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
407
408    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
409      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
410      if (LHS == RHS)
411        return false;
412
413      // Primarily, sort the SCEVs by their getSCEVType().
414      if (LHS->getSCEVType() != RHS->getSCEVType())
415        return LHS->getSCEVType() < RHS->getSCEVType();
416
417      // Aside from the getSCEVType() ordering, the particular ordering
418      // isn't very important except that it's beneficial to be consistent,
419      // so that (a + b) and (b + a) don't end up as different expressions.
420
421      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
422      // not as complete as it could be.
423      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
424        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
425
426        // Order pointer values after integer values. This helps SCEVExpander
427        // form GEPs.
428        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
429          return false;
430        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
431          return true;
432
433        // Compare getValueID values.
434        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
435          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
436
437        // Sort arguments by their position.
438        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
439          const Argument *RA = cast<Argument>(RU->getValue());
440          return LA->getArgNo() < RA->getArgNo();
441        }
442
443        // For instructions, compare their loop depth, and their opcode.
444        // This is pretty loose.
445        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
446          Instruction *RV = cast<Instruction>(RU->getValue());
447
448          // Compare loop depths.
449          if (LI->getLoopDepth(LV->getParent()) !=
450              LI->getLoopDepth(RV->getParent()))
451            return LI->getLoopDepth(LV->getParent()) <
452                   LI->getLoopDepth(RV->getParent());
453
454          // Compare opcodes.
455          if (LV->getOpcode() != RV->getOpcode())
456            return LV->getOpcode() < RV->getOpcode();
457
458          // Compare the number of operands.
459          if (LV->getNumOperands() != RV->getNumOperands())
460            return LV->getNumOperands() < RV->getNumOperands();
461        }
462
463        return false;
464      }
465
466      // Compare constant values.
467      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
468        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
469        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
470          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
471        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
472      }
473
474      // Compare addrec loop depths.
475      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
476        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
477        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
478          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
479      }
480
481      // Lexicographically compare n-ary expressions.
482      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
483        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
484        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
485          if (i >= RC->getNumOperands())
486            return false;
487          if (operator()(LC->getOperand(i), RC->getOperand(i)))
488            return true;
489          if (operator()(RC->getOperand(i), LC->getOperand(i)))
490            return false;
491        }
492        return LC->getNumOperands() < RC->getNumOperands();
493      }
494
495      // Lexicographically compare udiv expressions.
496      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
497        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
498        if (operator()(LC->getLHS(), RC->getLHS()))
499          return true;
500        if (operator()(RC->getLHS(), LC->getLHS()))
501          return false;
502        if (operator()(LC->getRHS(), RC->getRHS()))
503          return true;
504        if (operator()(RC->getRHS(), LC->getRHS()))
505          return false;
506        return false;
507      }
508
509      // Compare cast expressions by operand.
510      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
511        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
512        return operator()(LC->getOperand(), RC->getOperand());
513      }
514
515      // Compare offsetof expressions.
516      if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) {
517        const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS);
518        if (CompareTypes(LA->getStructType(), RA->getStructType()) ||
519            CompareTypes(RA->getStructType(), LA->getStructType()))
520          return CompareTypes(LA->getStructType(), RA->getStructType());
521        return LA->getFieldNo() < RA->getFieldNo();
522      }
523
524      // Compare sizeof expressions by the allocation type.
525      if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) {
526        const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS);
527        return CompareTypes(LA->getAllocType(), RA->getAllocType());
528      }
529
530      llvm_unreachable("Unknown SCEV kind!");
531      return false;
532    }
533  };
534}
535
536/// GroupByComplexity - Given a list of SCEV objects, order them by their
537/// complexity, and group objects of the same complexity together by value.
538/// When this routine is finished, we know that any duplicates in the vector are
539/// consecutive and that complexity is monotonically increasing.
540///
541/// Note that we go take special precautions to ensure that we get determinstic
542/// results from this routine.  In other words, we don't want the results of
543/// this to depend on where the addresses of various SCEV objects happened to
544/// land in memory.
545///
546static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
547                              LoopInfo *LI) {
548  if (Ops.size() < 2) return;  // Noop
549  if (Ops.size() == 2) {
550    // This is the common case, which also happens to be trivially simple.
551    // Special case it.
552    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
553      std::swap(Ops[0], Ops[1]);
554    return;
555  }
556
557  // Do the rough sort by complexity.
558  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
559
560  // Now that we are sorted by complexity, group elements of the same
561  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
562  // be extremely short in practice.  Note that we take this approach because we
563  // do not want to depend on the addresses of the objects we are grouping.
564  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
565    const SCEV *S = Ops[i];
566    unsigned Complexity = S->getSCEVType();
567
568    // If there are any objects of the same complexity and same value as this
569    // one, group them.
570    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
571      if (Ops[j] == S) { // Found a duplicate.
572        // Move it to immediately after i'th element.
573        std::swap(Ops[i+1], Ops[j]);
574        ++i;   // no need to rescan it.
575        if (i == e-2) return;  // Done!
576      }
577    }
578  }
579}
580
581
582
583//===----------------------------------------------------------------------===//
584//                      Simple SCEV method implementations
585//===----------------------------------------------------------------------===//
586
587/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
588/// Assume, K > 0.
589static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
590                                       ScalarEvolution &SE,
591                                       const Type* ResultTy) {
592  // Handle the simplest case efficiently.
593  if (K == 1)
594    return SE.getTruncateOrZeroExtend(It, ResultTy);
595
596  // We are using the following formula for BC(It, K):
597  //
598  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
599  //
600  // Suppose, W is the bitwidth of the return value.  We must be prepared for
601  // overflow.  Hence, we must assure that the result of our computation is
602  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
603  // safe in modular arithmetic.
604  //
605  // However, this code doesn't use exactly that formula; the formula it uses
606  // is something like the following, where T is the number of factors of 2 in
607  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
608  // exponentiation:
609  //
610  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
611  //
612  // This formula is trivially equivalent to the previous formula.  However,
613  // this formula can be implemented much more efficiently.  The trick is that
614  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
615  // arithmetic.  To do exact division in modular arithmetic, all we have
616  // to do is multiply by the inverse.  Therefore, this step can be done at
617  // width W.
618  //
619  // The next issue is how to safely do the division by 2^T.  The way this
620  // is done is by doing the multiplication step at a width of at least W + T
621  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
622  // when we perform the division by 2^T (which is equivalent to a right shift
623  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
624  // truncated out after the division by 2^T.
625  //
626  // In comparison to just directly using the first formula, this technique
627  // is much more efficient; using the first formula requires W * K bits,
628  // but this formula less than W + K bits. Also, the first formula requires
629  // a division step, whereas this formula only requires multiplies and shifts.
630  //
631  // It doesn't matter whether the subtraction step is done in the calculation
632  // width or the input iteration count's width; if the subtraction overflows,
633  // the result must be zero anyway.  We prefer here to do it in the width of
634  // the induction variable because it helps a lot for certain cases; CodeGen
635  // isn't smart enough to ignore the overflow, which leads to much less
636  // efficient code if the width of the subtraction is wider than the native
637  // register width.
638  //
639  // (It's possible to not widen at all by pulling out factors of 2 before
640  // the multiplication; for example, K=2 can be calculated as
641  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
642  // extra arithmetic, so it's not an obvious win, and it gets
643  // much more complicated for K > 3.)
644
645  // Protection from insane SCEVs; this bound is conservative,
646  // but it probably doesn't matter.
647  if (K > 1000)
648    return SE.getCouldNotCompute();
649
650  unsigned W = SE.getTypeSizeInBits(ResultTy);
651
652  // Calculate K! / 2^T and T; we divide out the factors of two before
653  // multiplying for calculating K! / 2^T to avoid overflow.
654  // Other overflow doesn't matter because we only care about the bottom
655  // W bits of the result.
656  APInt OddFactorial(W, 1);
657  unsigned T = 1;
658  for (unsigned i = 3; i <= K; ++i) {
659    APInt Mult(W, i);
660    unsigned TwoFactors = Mult.countTrailingZeros();
661    T += TwoFactors;
662    Mult = Mult.lshr(TwoFactors);
663    OddFactorial *= Mult;
664  }
665
666  // We need at least W + T bits for the multiplication step
667  unsigned CalculationBits = W + T;
668
669  // Calcuate 2^T, at width T+W.
670  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
671
672  // Calculate the multiplicative inverse of K! / 2^T;
673  // this multiplication factor will perform the exact division by
674  // K! / 2^T.
675  APInt Mod = APInt::getSignedMinValue(W+1);
676  APInt MultiplyFactor = OddFactorial.zext(W+1);
677  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
678  MultiplyFactor = MultiplyFactor.trunc(W);
679
680  // Calculate the product, at width T+W
681  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
682                                                      CalculationBits);
683  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
684  for (unsigned i = 1; i != K; ++i) {
685    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
686    Dividend = SE.getMulExpr(Dividend,
687                             SE.getTruncateOrZeroExtend(S, CalculationTy));
688  }
689
690  // Divide by 2^T
691  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
692
693  // Truncate the result, and divide by K! / 2^T.
694
695  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
696                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
697}
698
699/// evaluateAtIteration - Return the value of this chain of recurrences at
700/// the specified iteration number.  We can evaluate this recurrence by
701/// multiplying each element in the chain by the binomial coefficient
702/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
703///
704///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
705///
706/// where BC(It, k) stands for binomial coefficient.
707///
708const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
709                                                ScalarEvolution &SE) const {
710  const SCEV *Result = getStart();
711  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
712    // The computation is correct in the face of overflow provided that the
713    // multiplication is performed _after_ the evaluation of the binomial
714    // coefficient.
715    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
716    if (isa<SCEVCouldNotCompute>(Coeff))
717      return Coeff;
718
719    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
720  }
721  return Result;
722}
723
724//===----------------------------------------------------------------------===//
725//                    SCEV Expression folder implementations
726//===----------------------------------------------------------------------===//
727
728const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
729                                             const Type *Ty) {
730  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
731         "This is not a truncating conversion!");
732  assert(isSCEVable(Ty) &&
733         "This is not a conversion to a SCEVable type!");
734  Ty = getEffectiveSCEVType(Ty);
735
736  FoldingSetNodeID ID;
737  ID.AddInteger(scTruncate);
738  ID.AddPointer(Op);
739  ID.AddPointer(Ty);
740  void *IP = 0;
741  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
742
743  // Fold if the operand is constant.
744  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
745    return getConstant(
746      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
747
748  // trunc(trunc(x)) --> trunc(x)
749  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
750    return getTruncateExpr(ST->getOperand(), Ty);
751
752  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
753  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
754    return getTruncateOrSignExtend(SS->getOperand(), Ty);
755
756  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
757  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
758    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
759
760  // If the input value is a chrec scev, truncate the chrec's operands.
761  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
762    SmallVector<const SCEV *, 4> Operands;
763    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
764      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
765    return getAddRecExpr(Operands, AddRec->getLoop());
766  }
767
768  // The cast wasn't folded; create an explicit cast node.
769  // Recompute the insert position, as it may have been invalidated.
770  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
771  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
772  new (S) SCEVTruncateExpr(ID, Op, Ty);
773  UniqueSCEVs.InsertNode(S, IP);
774  return S;
775}
776
777const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
778                                               const Type *Ty) {
779  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
780         "This is not an extending conversion!");
781  assert(isSCEVable(Ty) &&
782         "This is not a conversion to a SCEVable type!");
783  Ty = getEffectiveSCEVType(Ty);
784
785  // Fold if the operand is constant.
786  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
787    const Type *IntTy = getEffectiveSCEVType(Ty);
788    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
789    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
790    return getConstant(cast<ConstantInt>(C));
791  }
792
793  // zext(zext(x)) --> zext(x)
794  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
795    return getZeroExtendExpr(SZ->getOperand(), Ty);
796
797  // Before doing any expensive analysis, check to see if we've already
798  // computed a SCEV for this Op and Ty.
799  FoldingSetNodeID ID;
800  ID.AddInteger(scZeroExtend);
801  ID.AddPointer(Op);
802  ID.AddPointer(Ty);
803  void *IP = 0;
804  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
805
806  // If the input value is a chrec scev, and we can prove that the value
807  // did not overflow the old, smaller, value, we can zero extend all of the
808  // operands (often constants).  This allows analysis of something like
809  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
810  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
811    if (AR->isAffine()) {
812      const SCEV *Start = AR->getStart();
813      const SCEV *Step = AR->getStepRecurrence(*this);
814      unsigned BitWidth = getTypeSizeInBits(AR->getType());
815      const Loop *L = AR->getLoop();
816
817      // If we have special knowledge that this addrec won't overflow,
818      // we don't need to do any further analysis.
819      if (AR->hasNoUnsignedWrap())
820        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
821                             getZeroExtendExpr(Step, Ty),
822                             L);
823
824      // Check whether the backedge-taken count is SCEVCouldNotCompute.
825      // Note that this serves two purposes: It filters out loops that are
826      // simply not analyzable, and it covers the case where this code is
827      // being called from within backedge-taken count analysis, such that
828      // attempting to ask for the backedge-taken count would likely result
829      // in infinite recursion. In the later case, the analysis code will
830      // cope with a conservative value, and it will take care to purge
831      // that value once it has finished.
832      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
833      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
834        // Manually compute the final value for AR, checking for
835        // overflow.
836
837        // Check whether the backedge-taken count can be losslessly casted to
838        // the addrec's type. The count is always unsigned.
839        const SCEV *CastedMaxBECount =
840          getTruncateOrZeroExtend(MaxBECount, Start->getType());
841        const SCEV *RecastedMaxBECount =
842          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
843        if (MaxBECount == RecastedMaxBECount) {
844          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
845          // Check whether Start+Step*MaxBECount has no unsigned overflow.
846          const SCEV *ZMul =
847            getMulExpr(CastedMaxBECount,
848                       getTruncateOrZeroExtend(Step, Start->getType()));
849          const SCEV *Add = getAddExpr(Start, ZMul);
850          const SCEV *OperandExtendedAdd =
851            getAddExpr(getZeroExtendExpr(Start, WideTy),
852                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
853                                  getZeroExtendExpr(Step, WideTy)));
854          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
855            // Return the expression with the addrec on the outside.
856            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
857                                 getZeroExtendExpr(Step, Ty),
858                                 L);
859
860          // Similar to above, only this time treat the step value as signed.
861          // This covers loops that count down.
862          const SCEV *SMul =
863            getMulExpr(CastedMaxBECount,
864                       getTruncateOrSignExtend(Step, Start->getType()));
865          Add = getAddExpr(Start, SMul);
866          OperandExtendedAdd =
867            getAddExpr(getZeroExtendExpr(Start, WideTy),
868                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
869                                  getSignExtendExpr(Step, WideTy)));
870          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
871            // Return the expression with the addrec on the outside.
872            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
873                                 getSignExtendExpr(Step, Ty),
874                                 L);
875        }
876
877        // If the backedge is guarded by a comparison with the pre-inc value
878        // the addrec is safe. Also, if the entry is guarded by a comparison
879        // with the start value and the backedge is guarded by a comparison
880        // with the post-inc value, the addrec is safe.
881        if (isKnownPositive(Step)) {
882          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
883                                      getUnsignedRange(Step).getUnsignedMax());
884          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
885              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
886               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
887                                           AR->getPostIncExpr(*this), N)))
888            // Return the expression with the addrec on the outside.
889            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
890                                 getZeroExtendExpr(Step, Ty),
891                                 L);
892        } else if (isKnownNegative(Step)) {
893          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
894                                      getSignedRange(Step).getSignedMin());
895          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
896              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
897               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
898                                           AR->getPostIncExpr(*this), N)))
899            // Return the expression with the addrec on the outside.
900            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
901                                 getSignExtendExpr(Step, Ty),
902                                 L);
903        }
904      }
905    }
906
907  // The cast wasn't folded; create an explicit cast node.
908  // Recompute the insert position, as it may have been invalidated.
909  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
910  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
911  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
912  UniqueSCEVs.InsertNode(S, IP);
913  return S;
914}
915
916const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
917                                               const Type *Ty) {
918  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
919         "This is not an extending conversion!");
920  assert(isSCEVable(Ty) &&
921         "This is not a conversion to a SCEVable type!");
922  Ty = getEffectiveSCEVType(Ty);
923
924  // Fold if the operand is constant.
925  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
926    const Type *IntTy = getEffectiveSCEVType(Ty);
927    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
928    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
929    return getConstant(cast<ConstantInt>(C));
930  }
931
932  // sext(sext(x)) --> sext(x)
933  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
934    return getSignExtendExpr(SS->getOperand(), Ty);
935
936  // Before doing any expensive analysis, check to see if we've already
937  // computed a SCEV for this Op and Ty.
938  FoldingSetNodeID ID;
939  ID.AddInteger(scSignExtend);
940  ID.AddPointer(Op);
941  ID.AddPointer(Ty);
942  void *IP = 0;
943  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
944
945  // If the input value is a chrec scev, and we can prove that the value
946  // did not overflow the old, smaller, value, we can sign extend all of the
947  // operands (often constants).  This allows analysis of something like
948  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
949  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
950    if (AR->isAffine()) {
951      const SCEV *Start = AR->getStart();
952      const SCEV *Step = AR->getStepRecurrence(*this);
953      unsigned BitWidth = getTypeSizeInBits(AR->getType());
954      const Loop *L = AR->getLoop();
955
956      // If we have special knowledge that this addrec won't overflow,
957      // we don't need to do any further analysis.
958      if (AR->hasNoSignedWrap())
959        return getAddRecExpr(getSignExtendExpr(Start, Ty),
960                             getSignExtendExpr(Step, Ty),
961                             L);
962
963      // Check whether the backedge-taken count is SCEVCouldNotCompute.
964      // Note that this serves two purposes: It filters out loops that are
965      // simply not analyzable, and it covers the case where this code is
966      // being called from within backedge-taken count analysis, such that
967      // attempting to ask for the backedge-taken count would likely result
968      // in infinite recursion. In the later case, the analysis code will
969      // cope with a conservative value, and it will take care to purge
970      // that value once it has finished.
971      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
972      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
973        // Manually compute the final value for AR, checking for
974        // overflow.
975
976        // Check whether the backedge-taken count can be losslessly casted to
977        // the addrec's type. The count is always unsigned.
978        const SCEV *CastedMaxBECount =
979          getTruncateOrZeroExtend(MaxBECount, Start->getType());
980        const SCEV *RecastedMaxBECount =
981          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
982        if (MaxBECount == RecastedMaxBECount) {
983          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
984          // Check whether Start+Step*MaxBECount has no signed overflow.
985          const SCEV *SMul =
986            getMulExpr(CastedMaxBECount,
987                       getTruncateOrSignExtend(Step, Start->getType()));
988          const SCEV *Add = getAddExpr(Start, SMul);
989          const SCEV *OperandExtendedAdd =
990            getAddExpr(getSignExtendExpr(Start, WideTy),
991                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
992                                  getSignExtendExpr(Step, WideTy)));
993          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
994            // Return the expression with the addrec on the outside.
995            return getAddRecExpr(getSignExtendExpr(Start, Ty),
996                                 getSignExtendExpr(Step, Ty),
997                                 L);
998
999          // Similar to above, only this time treat the step value as unsigned.
1000          // This covers loops that count up with an unsigned step.
1001          const SCEV *UMul =
1002            getMulExpr(CastedMaxBECount,
1003                       getTruncateOrZeroExtend(Step, Start->getType()));
1004          Add = getAddExpr(Start, UMul);
1005          OperandExtendedAdd =
1006            getAddExpr(getSignExtendExpr(Start, WideTy),
1007                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1008                                  getZeroExtendExpr(Step, WideTy)));
1009          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1010            // Return the expression with the addrec on the outside.
1011            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1012                                 getZeroExtendExpr(Step, Ty),
1013                                 L);
1014        }
1015
1016        // If the backedge is guarded by a comparison with the pre-inc value
1017        // the addrec is safe. Also, if the entry is guarded by a comparison
1018        // with the start value and the backedge is guarded by a comparison
1019        // with the post-inc value, the addrec is safe.
1020        if (isKnownPositive(Step)) {
1021          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1022                                      getSignedRange(Step).getSignedMax());
1023          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1024              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1025               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1026                                           AR->getPostIncExpr(*this), N)))
1027            // Return the expression with the addrec on the outside.
1028            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1029                                 getSignExtendExpr(Step, Ty),
1030                                 L);
1031        } else if (isKnownNegative(Step)) {
1032          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1033                                      getSignedRange(Step).getSignedMin());
1034          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1035              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1036               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1037                                           AR->getPostIncExpr(*this), N)))
1038            // Return the expression with the addrec on the outside.
1039            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1040                                 getSignExtendExpr(Step, Ty),
1041                                 L);
1042        }
1043      }
1044    }
1045
1046  // The cast wasn't folded; create an explicit cast node.
1047  // Recompute the insert position, as it may have been invalidated.
1048  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1049  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1050  new (S) SCEVSignExtendExpr(ID, Op, Ty);
1051  UniqueSCEVs.InsertNode(S, IP);
1052  return S;
1053}
1054
1055/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1056/// unspecified bits out to the given type.
1057///
1058const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1059                                              const Type *Ty) {
1060  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1061         "This is not an extending conversion!");
1062  assert(isSCEVable(Ty) &&
1063         "This is not a conversion to a SCEVable type!");
1064  Ty = getEffectiveSCEVType(Ty);
1065
1066  // Sign-extend negative constants.
1067  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1068    if (SC->getValue()->getValue().isNegative())
1069      return getSignExtendExpr(Op, Ty);
1070
1071  // Peel off a truncate cast.
1072  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1073    const SCEV *NewOp = T->getOperand();
1074    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1075      return getAnyExtendExpr(NewOp, Ty);
1076    return getTruncateOrNoop(NewOp, Ty);
1077  }
1078
1079  // Next try a zext cast. If the cast is folded, use it.
1080  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1081  if (!isa<SCEVZeroExtendExpr>(ZExt))
1082    return ZExt;
1083
1084  // Next try a sext cast. If the cast is folded, use it.
1085  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1086  if (!isa<SCEVSignExtendExpr>(SExt))
1087    return SExt;
1088
1089  // If the expression is obviously signed, use the sext cast value.
1090  if (isa<SCEVSMaxExpr>(Op))
1091    return SExt;
1092
1093  // Absent any other information, use the zext cast value.
1094  return ZExt;
1095}
1096
1097/// CollectAddOperandsWithScales - Process the given Ops list, which is
1098/// a list of operands to be added under the given scale, update the given
1099/// map. This is a helper function for getAddRecExpr. As an example of
1100/// what it does, given a sequence of operands that would form an add
1101/// expression like this:
1102///
1103///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1104///
1105/// where A and B are constants, update the map with these values:
1106///
1107///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1108///
1109/// and add 13 + A*B*29 to AccumulatedConstant.
1110/// This will allow getAddRecExpr to produce this:
1111///
1112///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1113///
1114/// This form often exposes folding opportunities that are hidden in
1115/// the original operand list.
1116///
1117/// Return true iff it appears that any interesting folding opportunities
1118/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1119/// the common case where no interesting opportunities are present, and
1120/// is also used as a check to avoid infinite recursion.
1121///
1122static bool
1123CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1124                             SmallVector<const SCEV *, 8> &NewOps,
1125                             APInt &AccumulatedConstant,
1126                             const SmallVectorImpl<const SCEV *> &Ops,
1127                             const APInt &Scale,
1128                             ScalarEvolution &SE) {
1129  bool Interesting = false;
1130
1131  // Iterate over the add operands.
1132  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1133    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1134    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1135      APInt NewScale =
1136        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1137      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1138        // A multiplication of a constant with another add; recurse.
1139        Interesting |=
1140          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1141                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1142                                         ->getOperands(),
1143                                       NewScale, SE);
1144      } else {
1145        // A multiplication of a constant with some other value. Update
1146        // the map.
1147        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1148        const SCEV *Key = SE.getMulExpr(MulOps);
1149        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1150          M.insert(std::make_pair(Key, NewScale));
1151        if (Pair.second) {
1152          NewOps.push_back(Pair.first->first);
1153        } else {
1154          Pair.first->second += NewScale;
1155          // The map already had an entry for this value, which may indicate
1156          // a folding opportunity.
1157          Interesting = true;
1158        }
1159      }
1160    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1161      // Pull a buried constant out to the outside.
1162      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1163        Interesting = true;
1164      AccumulatedConstant += Scale * C->getValue()->getValue();
1165    } else {
1166      // An ordinary operand. Update the map.
1167      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1168        M.insert(std::make_pair(Ops[i], Scale));
1169      if (Pair.second) {
1170        NewOps.push_back(Pair.first->first);
1171      } else {
1172        Pair.first->second += Scale;
1173        // The map already had an entry for this value, which may indicate
1174        // a folding opportunity.
1175        Interesting = true;
1176      }
1177    }
1178  }
1179
1180  return Interesting;
1181}
1182
1183namespace {
1184  struct APIntCompare {
1185    bool operator()(const APInt &LHS, const APInt &RHS) const {
1186      return LHS.ult(RHS);
1187    }
1188  };
1189}
1190
1191/// getAddExpr - Get a canonical add expression, or something simpler if
1192/// possible.
1193const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1194                                        bool HasNUW, bool HasNSW) {
1195  assert(!Ops.empty() && "Cannot get empty add!");
1196  if (Ops.size() == 1) return Ops[0];
1197#ifndef NDEBUG
1198  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1199    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1200           getEffectiveSCEVType(Ops[0]->getType()) &&
1201           "SCEVAddExpr operand types don't match!");
1202#endif
1203
1204  // Sort by complexity, this groups all similar expression types together.
1205  GroupByComplexity(Ops, LI);
1206
1207  // If there are any constants, fold them together.
1208  unsigned Idx = 0;
1209  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1210    ++Idx;
1211    assert(Idx < Ops.size());
1212    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1213      // We found two constants, fold them together!
1214      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1215                           RHSC->getValue()->getValue());
1216      if (Ops.size() == 2) return Ops[0];
1217      Ops.erase(Ops.begin()+1);  // Erase the folded element
1218      LHSC = cast<SCEVConstant>(Ops[0]);
1219    }
1220
1221    // If we are left with a constant zero being added, strip it off.
1222    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1223      Ops.erase(Ops.begin());
1224      --Idx;
1225    }
1226  }
1227
1228  if (Ops.size() == 1) return Ops[0];
1229
1230  // Okay, check to see if the same value occurs in the operand list twice.  If
1231  // so, merge them together into an multiply expression.  Since we sorted the
1232  // list, these values are required to be adjacent.
1233  const Type *Ty = Ops[0]->getType();
1234  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1235    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1236      // Found a match, merge the two values into a multiply, and add any
1237      // remaining values to the result.
1238      const SCEV *Two = getIntegerSCEV(2, Ty);
1239      const SCEV *Mul = getMulExpr(Ops[i], Two);
1240      if (Ops.size() == 2)
1241        return Mul;
1242      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1243      Ops.push_back(Mul);
1244      return getAddExpr(Ops, HasNUW, HasNSW);
1245    }
1246
1247  // Check for truncates. If all the operands are truncated from the same
1248  // type, see if factoring out the truncate would permit the result to be
1249  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1250  // if the contents of the resulting outer trunc fold to something simple.
1251  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1252    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1253    const Type *DstType = Trunc->getType();
1254    const Type *SrcType = Trunc->getOperand()->getType();
1255    SmallVector<const SCEV *, 8> LargeOps;
1256    bool Ok = true;
1257    // Check all the operands to see if they can be represented in the
1258    // source type of the truncate.
1259    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1260      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1261        if (T->getOperand()->getType() != SrcType) {
1262          Ok = false;
1263          break;
1264        }
1265        LargeOps.push_back(T->getOperand());
1266      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1267        // This could be either sign or zero extension, but sign extension
1268        // is much more likely to be foldable here.
1269        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1270      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1271        SmallVector<const SCEV *, 8> LargeMulOps;
1272        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1273          if (const SCEVTruncateExpr *T =
1274                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1275            if (T->getOperand()->getType() != SrcType) {
1276              Ok = false;
1277              break;
1278            }
1279            LargeMulOps.push_back(T->getOperand());
1280          } else if (const SCEVConstant *C =
1281                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1282            // This could be either sign or zero extension, but sign extension
1283            // is much more likely to be foldable here.
1284            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1285          } else {
1286            Ok = false;
1287            break;
1288          }
1289        }
1290        if (Ok)
1291          LargeOps.push_back(getMulExpr(LargeMulOps));
1292      } else {
1293        Ok = false;
1294        break;
1295      }
1296    }
1297    if (Ok) {
1298      // Evaluate the expression in the larger type.
1299      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1300      // If it folds to something simple, use it. Otherwise, don't.
1301      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1302        return getTruncateExpr(Fold, DstType);
1303    }
1304  }
1305
1306  // Skip past any other cast SCEVs.
1307  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1308    ++Idx;
1309
1310  // If there are add operands they would be next.
1311  if (Idx < Ops.size()) {
1312    bool DeletedAdd = false;
1313    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1314      // If we have an add, expand the add operands onto the end of the operands
1315      // list.
1316      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1317      Ops.erase(Ops.begin()+Idx);
1318      DeletedAdd = true;
1319    }
1320
1321    // If we deleted at least one add, we added operands to the end of the list,
1322    // and they are not necessarily sorted.  Recurse to resort and resimplify
1323    // any operands we just aquired.
1324    if (DeletedAdd)
1325      return getAddExpr(Ops);
1326  }
1327
1328  // Skip over the add expression until we get to a multiply.
1329  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1330    ++Idx;
1331
1332  // Check to see if there are any folding opportunities present with
1333  // operands multiplied by constant values.
1334  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1335    uint64_t BitWidth = getTypeSizeInBits(Ty);
1336    DenseMap<const SCEV *, APInt> M;
1337    SmallVector<const SCEV *, 8> NewOps;
1338    APInt AccumulatedConstant(BitWidth, 0);
1339    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1340                                     Ops, APInt(BitWidth, 1), *this)) {
1341      // Some interesting folding opportunity is present, so its worthwhile to
1342      // re-generate the operands list. Group the operands by constant scale,
1343      // to avoid multiplying by the same constant scale multiple times.
1344      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1345      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1346           E = NewOps.end(); I != E; ++I)
1347        MulOpLists[M.find(*I)->second].push_back(*I);
1348      // Re-generate the operands list.
1349      Ops.clear();
1350      if (AccumulatedConstant != 0)
1351        Ops.push_back(getConstant(AccumulatedConstant));
1352      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1353           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1354        if (I->first != 0)
1355          Ops.push_back(getMulExpr(getConstant(I->first),
1356                                   getAddExpr(I->second)));
1357      if (Ops.empty())
1358        return getIntegerSCEV(0, Ty);
1359      if (Ops.size() == 1)
1360        return Ops[0];
1361      return getAddExpr(Ops);
1362    }
1363  }
1364
1365  // If we are adding something to a multiply expression, make sure the
1366  // something is not already an operand of the multiply.  If so, merge it into
1367  // the multiply.
1368  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1369    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1370    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1371      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1372      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1373        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1374          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1375          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1376          if (Mul->getNumOperands() != 2) {
1377            // If the multiply has more than two operands, we must get the
1378            // Y*Z term.
1379            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1380            MulOps.erase(MulOps.begin()+MulOp);
1381            InnerMul = getMulExpr(MulOps);
1382          }
1383          const SCEV *One = getIntegerSCEV(1, Ty);
1384          const SCEV *AddOne = getAddExpr(InnerMul, One);
1385          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1386          if (Ops.size() == 2) return OuterMul;
1387          if (AddOp < Idx) {
1388            Ops.erase(Ops.begin()+AddOp);
1389            Ops.erase(Ops.begin()+Idx-1);
1390          } else {
1391            Ops.erase(Ops.begin()+Idx);
1392            Ops.erase(Ops.begin()+AddOp-1);
1393          }
1394          Ops.push_back(OuterMul);
1395          return getAddExpr(Ops);
1396        }
1397
1398      // Check this multiply against other multiplies being added together.
1399      for (unsigned OtherMulIdx = Idx+1;
1400           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1401           ++OtherMulIdx) {
1402        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1403        // If MulOp occurs in OtherMul, we can fold the two multiplies
1404        // together.
1405        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1406             OMulOp != e; ++OMulOp)
1407          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1408            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1409            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1410            if (Mul->getNumOperands() != 2) {
1411              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1412                                                  Mul->op_end());
1413              MulOps.erase(MulOps.begin()+MulOp);
1414              InnerMul1 = getMulExpr(MulOps);
1415            }
1416            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1417            if (OtherMul->getNumOperands() != 2) {
1418              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1419                                                  OtherMul->op_end());
1420              MulOps.erase(MulOps.begin()+OMulOp);
1421              InnerMul2 = getMulExpr(MulOps);
1422            }
1423            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1424            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1425            if (Ops.size() == 2) return OuterMul;
1426            Ops.erase(Ops.begin()+Idx);
1427            Ops.erase(Ops.begin()+OtherMulIdx-1);
1428            Ops.push_back(OuterMul);
1429            return getAddExpr(Ops);
1430          }
1431      }
1432    }
1433  }
1434
1435  // If there are any add recurrences in the operands list, see if any other
1436  // added values are loop invariant.  If so, we can fold them into the
1437  // recurrence.
1438  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1439    ++Idx;
1440
1441  // Scan over all recurrences, trying to fold loop invariants into them.
1442  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1443    // Scan all of the other operands to this add and add them to the vector if
1444    // they are loop invariant w.r.t. the recurrence.
1445    SmallVector<const SCEV *, 8> LIOps;
1446    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1447    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1448      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1449        LIOps.push_back(Ops[i]);
1450        Ops.erase(Ops.begin()+i);
1451        --i; --e;
1452      }
1453
1454    // If we found some loop invariants, fold them into the recurrence.
1455    if (!LIOps.empty()) {
1456      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1457      LIOps.push_back(AddRec->getStart());
1458
1459      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1460                                             AddRec->op_end());
1461      AddRecOps[0] = getAddExpr(LIOps);
1462
1463      // It's tempting to propogate NUW/NSW flags here, but nuw/nsw addition
1464      // is not associative so this isn't necessarily safe.
1465      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1466
1467      // If all of the other operands were loop invariant, we are done.
1468      if (Ops.size() == 1) return NewRec;
1469
1470      // Otherwise, add the folded AddRec by the non-liv parts.
1471      for (unsigned i = 0;; ++i)
1472        if (Ops[i] == AddRec) {
1473          Ops[i] = NewRec;
1474          break;
1475        }
1476      return getAddExpr(Ops);
1477    }
1478
1479    // Okay, if there weren't any loop invariants to be folded, check to see if
1480    // there are multiple AddRec's with the same loop induction variable being
1481    // added together.  If so, we can fold them.
1482    for (unsigned OtherIdx = Idx+1;
1483         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1484      if (OtherIdx != Idx) {
1485        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1486        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1487          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1488          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1489                                              AddRec->op_end());
1490          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1491            if (i >= NewOps.size()) {
1492              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1493                            OtherAddRec->op_end());
1494              break;
1495            }
1496            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1497          }
1498          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1499
1500          if (Ops.size() == 2) return NewAddRec;
1501
1502          Ops.erase(Ops.begin()+Idx);
1503          Ops.erase(Ops.begin()+OtherIdx-1);
1504          Ops.push_back(NewAddRec);
1505          return getAddExpr(Ops);
1506        }
1507      }
1508
1509    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1510    // next one.
1511  }
1512
1513  // Okay, it looks like we really DO need an add expr.  Check to see if we
1514  // already have one, otherwise create a new one.
1515  FoldingSetNodeID ID;
1516  ID.AddInteger(scAddExpr);
1517  ID.AddInteger(Ops.size());
1518  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1519    ID.AddPointer(Ops[i]);
1520  void *IP = 0;
1521  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1522  SCEVAddExpr *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1523  new (S) SCEVAddExpr(ID, Ops);
1524  UniqueSCEVs.InsertNode(S, IP);
1525  if (HasNUW) S->setHasNoUnsignedWrap(true);
1526  if (HasNSW) S->setHasNoSignedWrap(true);
1527  return S;
1528}
1529
1530
1531/// getMulExpr - Get a canonical multiply expression, or something simpler if
1532/// possible.
1533const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1534                                        bool HasNUW, bool HasNSW) {
1535  assert(!Ops.empty() && "Cannot get empty mul!");
1536#ifndef NDEBUG
1537  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1538    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1539           getEffectiveSCEVType(Ops[0]->getType()) &&
1540           "SCEVMulExpr operand types don't match!");
1541#endif
1542
1543  // Sort by complexity, this groups all similar expression types together.
1544  GroupByComplexity(Ops, LI);
1545
1546  // If there are any constants, fold them together.
1547  unsigned Idx = 0;
1548  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1549
1550    // C1*(C2+V) -> C1*C2 + C1*V
1551    if (Ops.size() == 2)
1552      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1553        if (Add->getNumOperands() == 2 &&
1554            isa<SCEVConstant>(Add->getOperand(0)))
1555          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1556                            getMulExpr(LHSC, Add->getOperand(1)));
1557
1558
1559    ++Idx;
1560    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1561      // We found two constants, fold them together!
1562      ConstantInt *Fold = ConstantInt::get(getContext(),
1563                                           LHSC->getValue()->getValue() *
1564                                           RHSC->getValue()->getValue());
1565      Ops[0] = getConstant(Fold);
1566      Ops.erase(Ops.begin()+1);  // Erase the folded element
1567      if (Ops.size() == 1) return Ops[0];
1568      LHSC = cast<SCEVConstant>(Ops[0]);
1569    }
1570
1571    // If we are left with a constant one being multiplied, strip it off.
1572    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1573      Ops.erase(Ops.begin());
1574      --Idx;
1575    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1576      // If we have a multiply of zero, it will always be zero.
1577      return Ops[0];
1578    }
1579  }
1580
1581  // Skip over the add expression until we get to a multiply.
1582  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1583    ++Idx;
1584
1585  if (Ops.size() == 1)
1586    return Ops[0];
1587
1588  // If there are mul operands inline them all into this expression.
1589  if (Idx < Ops.size()) {
1590    bool DeletedMul = false;
1591    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1592      // If we have an mul, expand the mul operands onto the end of the operands
1593      // list.
1594      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1595      Ops.erase(Ops.begin()+Idx);
1596      DeletedMul = true;
1597    }
1598
1599    // If we deleted at least one mul, we added operands to the end of the list,
1600    // and they are not necessarily sorted.  Recurse to resort and resimplify
1601    // any operands we just aquired.
1602    if (DeletedMul)
1603      return getMulExpr(Ops);
1604  }
1605
1606  // If there are any add recurrences in the operands list, see if any other
1607  // added values are loop invariant.  If so, we can fold them into the
1608  // recurrence.
1609  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1610    ++Idx;
1611
1612  // Scan over all recurrences, trying to fold loop invariants into them.
1613  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1614    // Scan all of the other operands to this mul and add them to the vector if
1615    // they are loop invariant w.r.t. the recurrence.
1616    SmallVector<const SCEV *, 8> LIOps;
1617    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1618    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1619      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1620        LIOps.push_back(Ops[i]);
1621        Ops.erase(Ops.begin()+i);
1622        --i; --e;
1623      }
1624
1625    // If we found some loop invariants, fold them into the recurrence.
1626    if (!LIOps.empty()) {
1627      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1628      SmallVector<const SCEV *, 4> NewOps;
1629      NewOps.reserve(AddRec->getNumOperands());
1630      if (LIOps.size() == 1) {
1631        const SCEV *Scale = LIOps[0];
1632        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1633          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1634      } else {
1635        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1636          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1637          MulOps.push_back(AddRec->getOperand(i));
1638          NewOps.push_back(getMulExpr(MulOps));
1639        }
1640      }
1641
1642      // It's tempting to propogate the NSW flag here, but nsw multiplication
1643      // is not associative so this isn't necessarily safe.
1644      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1645
1646      // If all of the other operands were loop invariant, we are done.
1647      if (Ops.size() == 1) return NewRec;
1648
1649      // Otherwise, multiply the folded AddRec by the non-liv parts.
1650      for (unsigned i = 0;; ++i)
1651        if (Ops[i] == AddRec) {
1652          Ops[i] = NewRec;
1653          break;
1654        }
1655      return getMulExpr(Ops);
1656    }
1657
1658    // Okay, if there weren't any loop invariants to be folded, check to see if
1659    // there are multiple AddRec's with the same loop induction variable being
1660    // multiplied together.  If so, we can fold them.
1661    for (unsigned OtherIdx = Idx+1;
1662         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1663      if (OtherIdx != Idx) {
1664        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1665        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1666          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1667          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1668          const SCEV *NewStart = getMulExpr(F->getStart(),
1669                                                 G->getStart());
1670          const SCEV *B = F->getStepRecurrence(*this);
1671          const SCEV *D = G->getStepRecurrence(*this);
1672          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1673                                          getMulExpr(G, B),
1674                                          getMulExpr(B, D));
1675          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1676                                               F->getLoop());
1677          if (Ops.size() == 2) return NewAddRec;
1678
1679          Ops.erase(Ops.begin()+Idx);
1680          Ops.erase(Ops.begin()+OtherIdx-1);
1681          Ops.push_back(NewAddRec);
1682          return getMulExpr(Ops);
1683        }
1684      }
1685
1686    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1687    // next one.
1688  }
1689
1690  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1691  // already have one, otherwise create a new one.
1692  FoldingSetNodeID ID;
1693  ID.AddInteger(scMulExpr);
1694  ID.AddInteger(Ops.size());
1695  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1696    ID.AddPointer(Ops[i]);
1697  void *IP = 0;
1698  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1699  SCEVMulExpr *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1700  new (S) SCEVMulExpr(ID, Ops);
1701  UniqueSCEVs.InsertNode(S, IP);
1702  if (HasNUW) S->setHasNoUnsignedWrap(true);
1703  if (HasNSW) S->setHasNoSignedWrap(true);
1704  return S;
1705}
1706
1707/// getUDivExpr - Get a canonical unsigned division expression, or something
1708/// simpler if possible.
1709const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1710                                         const SCEV *RHS) {
1711  assert(getEffectiveSCEVType(LHS->getType()) ==
1712         getEffectiveSCEVType(RHS->getType()) &&
1713         "SCEVUDivExpr operand types don't match!");
1714
1715  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1716    if (RHSC->getValue()->equalsInt(1))
1717      return LHS;                               // X udiv 1 --> x
1718    if (RHSC->isZero())
1719      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1720
1721    // Determine if the division can be folded into the operands of
1722    // its operands.
1723    // TODO: Generalize this to non-constants by using known-bits information.
1724    const Type *Ty = LHS->getType();
1725    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1726    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1727    // For non-power-of-two values, effectively round the value up to the
1728    // nearest power of two.
1729    if (!RHSC->getValue()->getValue().isPowerOf2())
1730      ++MaxShiftAmt;
1731    const IntegerType *ExtTy =
1732      IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1733    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1734    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1735      if (const SCEVConstant *Step =
1736            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1737        if (!Step->getValue()->getValue()
1738              .urem(RHSC->getValue()->getValue()) &&
1739            getZeroExtendExpr(AR, ExtTy) ==
1740            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1741                          getZeroExtendExpr(Step, ExtTy),
1742                          AR->getLoop())) {
1743          SmallVector<const SCEV *, 4> Operands;
1744          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1745            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1746          return getAddRecExpr(Operands, AR->getLoop());
1747        }
1748    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1749    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1750      SmallVector<const SCEV *, 4> Operands;
1751      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1752        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1753      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1754        // Find an operand that's safely divisible.
1755        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1756          const SCEV *Op = M->getOperand(i);
1757          const SCEV *Div = getUDivExpr(Op, RHSC);
1758          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1759            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1760            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1761                                                  MOperands.end());
1762            Operands[i] = Div;
1763            return getMulExpr(Operands);
1764          }
1765        }
1766    }
1767    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1768    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1769      SmallVector<const SCEV *, 4> Operands;
1770      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1771        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1772      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1773        Operands.clear();
1774        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1775          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1776          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1777            break;
1778          Operands.push_back(Op);
1779        }
1780        if (Operands.size() == A->getNumOperands())
1781          return getAddExpr(Operands);
1782      }
1783    }
1784
1785    // Fold if both operands are constant.
1786    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1787      Constant *LHSCV = LHSC->getValue();
1788      Constant *RHSCV = RHSC->getValue();
1789      return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1790                                                                 RHSCV)));
1791    }
1792  }
1793
1794  FoldingSetNodeID ID;
1795  ID.AddInteger(scUDivExpr);
1796  ID.AddPointer(LHS);
1797  ID.AddPointer(RHS);
1798  void *IP = 0;
1799  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1800  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1801  new (S) SCEVUDivExpr(ID, LHS, RHS);
1802  UniqueSCEVs.InsertNode(S, IP);
1803  return S;
1804}
1805
1806
1807/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1808/// Simplify the expression as much as possible.
1809const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1810                                           const SCEV *Step, const Loop *L,
1811                                           bool HasNUW, bool HasNSW) {
1812  SmallVector<const SCEV *, 4> Operands;
1813  Operands.push_back(Start);
1814  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1815    if (StepChrec->getLoop() == L) {
1816      Operands.insert(Operands.end(), StepChrec->op_begin(),
1817                      StepChrec->op_end());
1818      return getAddRecExpr(Operands, L);
1819    }
1820
1821  Operands.push_back(Step);
1822  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1823}
1824
1825/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1826/// Simplify the expression as much as possible.
1827const SCEV *
1828ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1829                               const Loop *L,
1830                               bool HasNUW, bool HasNSW) {
1831  if (Operands.size() == 1) return Operands[0];
1832#ifndef NDEBUG
1833  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1834    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1835           getEffectiveSCEVType(Operands[0]->getType()) &&
1836           "SCEVAddRecExpr operand types don't match!");
1837#endif
1838
1839  if (Operands.back()->isZero()) {
1840    Operands.pop_back();
1841    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1842  }
1843
1844  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1845  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1846    const Loop *NestedLoop = NestedAR->getLoop();
1847    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1848      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1849                                                  NestedAR->op_end());
1850      Operands[0] = NestedAR->getStart();
1851      // AddRecs require their operands be loop-invariant with respect to their
1852      // loops. Don't perform this transformation if it would break this
1853      // requirement.
1854      bool AllInvariant = true;
1855      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1856        if (!Operands[i]->isLoopInvariant(L)) {
1857          AllInvariant = false;
1858          break;
1859        }
1860      if (AllInvariant) {
1861        NestedOperands[0] = getAddRecExpr(Operands, L);
1862        AllInvariant = true;
1863        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1864          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1865            AllInvariant = false;
1866            break;
1867          }
1868        if (AllInvariant)
1869          // Ok, both add recurrences are valid after the transformation.
1870          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
1871      }
1872      // Reset Operands to its original state.
1873      Operands[0] = NestedAR;
1874    }
1875  }
1876
1877  FoldingSetNodeID ID;
1878  ID.AddInteger(scAddRecExpr);
1879  ID.AddInteger(Operands.size());
1880  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1881    ID.AddPointer(Operands[i]);
1882  ID.AddPointer(L);
1883  void *IP = 0;
1884  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1885  SCEVAddRecExpr *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1886  new (S) SCEVAddRecExpr(ID, Operands, L);
1887  UniqueSCEVs.InsertNode(S, IP);
1888  if (HasNUW) S->setHasNoUnsignedWrap(true);
1889  if (HasNSW) S->setHasNoSignedWrap(true);
1890  return S;
1891}
1892
1893const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1894                                         const SCEV *RHS) {
1895  SmallVector<const SCEV *, 2> Ops;
1896  Ops.push_back(LHS);
1897  Ops.push_back(RHS);
1898  return getSMaxExpr(Ops);
1899}
1900
1901const SCEV *
1902ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1903  assert(!Ops.empty() && "Cannot get empty smax!");
1904  if (Ops.size() == 1) return Ops[0];
1905#ifndef NDEBUG
1906  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1907    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1908           getEffectiveSCEVType(Ops[0]->getType()) &&
1909           "SCEVSMaxExpr operand types don't match!");
1910#endif
1911
1912  // Sort by complexity, this groups all similar expression types together.
1913  GroupByComplexity(Ops, LI);
1914
1915  // If there are any constants, fold them together.
1916  unsigned Idx = 0;
1917  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1918    ++Idx;
1919    assert(Idx < Ops.size());
1920    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1921      // We found two constants, fold them together!
1922      ConstantInt *Fold = ConstantInt::get(getContext(),
1923                              APIntOps::smax(LHSC->getValue()->getValue(),
1924                                             RHSC->getValue()->getValue()));
1925      Ops[0] = getConstant(Fold);
1926      Ops.erase(Ops.begin()+1);  // Erase the folded element
1927      if (Ops.size() == 1) return Ops[0];
1928      LHSC = cast<SCEVConstant>(Ops[0]);
1929    }
1930
1931    // If we are left with a constant minimum-int, strip it off.
1932    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1933      Ops.erase(Ops.begin());
1934      --Idx;
1935    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1936      // If we have an smax with a constant maximum-int, it will always be
1937      // maximum-int.
1938      return Ops[0];
1939    }
1940  }
1941
1942  if (Ops.size() == 1) return Ops[0];
1943
1944  // Find the first SMax
1945  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1946    ++Idx;
1947
1948  // Check to see if one of the operands is an SMax. If so, expand its operands
1949  // onto our operand list, and recurse to simplify.
1950  if (Idx < Ops.size()) {
1951    bool DeletedSMax = false;
1952    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1953      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1954      Ops.erase(Ops.begin()+Idx);
1955      DeletedSMax = true;
1956    }
1957
1958    if (DeletedSMax)
1959      return getSMaxExpr(Ops);
1960  }
1961
1962  // Okay, check to see if the same value occurs in the operand list twice.  If
1963  // so, delete one.  Since we sorted the list, these values are required to
1964  // be adjacent.
1965  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1966    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1967      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1968      --i; --e;
1969    }
1970
1971  if (Ops.size() == 1) return Ops[0];
1972
1973  assert(!Ops.empty() && "Reduced smax down to nothing!");
1974
1975  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1976  // already have one, otherwise create a new one.
1977  FoldingSetNodeID ID;
1978  ID.AddInteger(scSMaxExpr);
1979  ID.AddInteger(Ops.size());
1980  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1981    ID.AddPointer(Ops[i]);
1982  void *IP = 0;
1983  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1984  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1985  new (S) SCEVSMaxExpr(ID, Ops);
1986  UniqueSCEVs.InsertNode(S, IP);
1987  return S;
1988}
1989
1990const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1991                                         const SCEV *RHS) {
1992  SmallVector<const SCEV *, 2> Ops;
1993  Ops.push_back(LHS);
1994  Ops.push_back(RHS);
1995  return getUMaxExpr(Ops);
1996}
1997
1998const SCEV *
1999ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2000  assert(!Ops.empty() && "Cannot get empty umax!");
2001  if (Ops.size() == 1) return Ops[0];
2002#ifndef NDEBUG
2003  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2004    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2005           getEffectiveSCEVType(Ops[0]->getType()) &&
2006           "SCEVUMaxExpr operand types don't match!");
2007#endif
2008
2009  // Sort by complexity, this groups all similar expression types together.
2010  GroupByComplexity(Ops, LI);
2011
2012  // If there are any constants, fold them together.
2013  unsigned Idx = 0;
2014  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2015    ++Idx;
2016    assert(Idx < Ops.size());
2017    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2018      // We found two constants, fold them together!
2019      ConstantInt *Fold = ConstantInt::get(getContext(),
2020                              APIntOps::umax(LHSC->getValue()->getValue(),
2021                                             RHSC->getValue()->getValue()));
2022      Ops[0] = getConstant(Fold);
2023      Ops.erase(Ops.begin()+1);  // Erase the folded element
2024      if (Ops.size() == 1) return Ops[0];
2025      LHSC = cast<SCEVConstant>(Ops[0]);
2026    }
2027
2028    // If we are left with a constant minimum-int, strip it off.
2029    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2030      Ops.erase(Ops.begin());
2031      --Idx;
2032    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2033      // If we have an umax with a constant maximum-int, it will always be
2034      // maximum-int.
2035      return Ops[0];
2036    }
2037  }
2038
2039  if (Ops.size() == 1) return Ops[0];
2040
2041  // Find the first UMax
2042  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2043    ++Idx;
2044
2045  // Check to see if one of the operands is a UMax. If so, expand its operands
2046  // onto our operand list, and recurse to simplify.
2047  if (Idx < Ops.size()) {
2048    bool DeletedUMax = false;
2049    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2050      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2051      Ops.erase(Ops.begin()+Idx);
2052      DeletedUMax = true;
2053    }
2054
2055    if (DeletedUMax)
2056      return getUMaxExpr(Ops);
2057  }
2058
2059  // Okay, check to see if the same value occurs in the operand list twice.  If
2060  // so, delete one.  Since we sorted the list, these values are required to
2061  // be adjacent.
2062  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2063    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
2064      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2065      --i; --e;
2066    }
2067
2068  if (Ops.size() == 1) return Ops[0];
2069
2070  assert(!Ops.empty() && "Reduced umax down to nothing!");
2071
2072  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2073  // already have one, otherwise create a new one.
2074  FoldingSetNodeID ID;
2075  ID.AddInteger(scUMaxExpr);
2076  ID.AddInteger(Ops.size());
2077  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2078    ID.AddPointer(Ops[i]);
2079  void *IP = 0;
2080  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2081  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2082  new (S) SCEVUMaxExpr(ID, Ops);
2083  UniqueSCEVs.InsertNode(S, IP);
2084  return S;
2085}
2086
2087const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2088                                         const SCEV *RHS) {
2089  // ~smax(~x, ~y) == smin(x, y).
2090  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2091}
2092
2093const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2094                                         const SCEV *RHS) {
2095  // ~umax(~x, ~y) == umin(x, y)
2096  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2097}
2098
2099const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy,
2100                                                unsigned FieldNo) {
2101  // If we have TargetData we can determine the constant offset.
2102  if (TD) {
2103    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2104    const StructLayout &SL = *TD->getStructLayout(STy);
2105    uint64_t Offset = SL.getElementOffset(FieldNo);
2106    return getIntegerSCEV(Offset, IntPtrTy);
2107  }
2108
2109  // Field 0 is always at offset 0.
2110  if (FieldNo == 0) {
2111    const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2112    return getIntegerSCEV(0, Ty);
2113  }
2114
2115  // Okay, it looks like we really DO need an offsetof expr.  Check to see if we
2116  // already have one, otherwise create a new one.
2117  FoldingSetNodeID ID;
2118  ID.AddInteger(scFieldOffset);
2119  ID.AddPointer(STy);
2120  ID.AddInteger(FieldNo);
2121  void *IP = 0;
2122  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2123  SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>();
2124  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2125  new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo);
2126  UniqueSCEVs.InsertNode(S, IP);
2127  return S;
2128}
2129
2130const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) {
2131  // If we have TargetData we can determine the constant size.
2132  if (TD && AllocTy->isSized()) {
2133    const Type *IntPtrTy = TD->getIntPtrType(getContext());
2134    return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy);
2135  }
2136
2137  // Expand an array size into the element size times the number
2138  // of elements.
2139  if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) {
2140    const SCEV *E = getAllocSizeExpr(ATy->getElementType());
2141    return getMulExpr(
2142      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2143                                      ATy->getNumElements())));
2144  }
2145
2146  // Expand a vector size into the element size times the number
2147  // of elements.
2148  if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) {
2149    const SCEV *E = getAllocSizeExpr(VTy->getElementType());
2150    return getMulExpr(
2151      E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()),
2152                                      VTy->getNumElements())));
2153  }
2154
2155  // Okay, it looks like we really DO need a sizeof expr.  Check to see if we
2156  // already have one, otherwise create a new one.
2157  FoldingSetNodeID ID;
2158  ID.AddInteger(scAllocSize);
2159  ID.AddPointer(AllocTy);
2160  void *IP = 0;
2161  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2162  SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>();
2163  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2164  new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy);
2165  UniqueSCEVs.InsertNode(S, IP);
2166  return S;
2167}
2168
2169const SCEV *ScalarEvolution::getUnknown(Value *V) {
2170  // Don't attempt to do anything other than create a SCEVUnknown object
2171  // here.  createSCEV only calls getUnknown after checking for all other
2172  // interesting possibilities, and any other code that calls getUnknown
2173  // is doing so in order to hide a value from SCEV canonicalization.
2174
2175  FoldingSetNodeID ID;
2176  ID.AddInteger(scUnknown);
2177  ID.AddPointer(V);
2178  void *IP = 0;
2179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2180  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2181  new (S) SCEVUnknown(ID, V);
2182  UniqueSCEVs.InsertNode(S, IP);
2183  return S;
2184}
2185
2186//===----------------------------------------------------------------------===//
2187//            Basic SCEV Analysis and PHI Idiom Recognition Code
2188//
2189
2190/// isSCEVable - Test if values of the given type are analyzable within
2191/// the SCEV framework. This primarily includes integer types, and it
2192/// can optionally include pointer types if the ScalarEvolution class
2193/// has access to target-specific information.
2194bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2195  // Integers and pointers are always SCEVable.
2196  return Ty->isInteger() || isa<PointerType>(Ty);
2197}
2198
2199/// getTypeSizeInBits - Return the size in bits of the specified type,
2200/// for which isSCEVable must return true.
2201uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2202  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2203
2204  // If we have a TargetData, use it!
2205  if (TD)
2206    return TD->getTypeSizeInBits(Ty);
2207
2208  // Integer types have fixed sizes.
2209  if (Ty->isInteger())
2210    return Ty->getPrimitiveSizeInBits();
2211
2212  // The only other support type is pointer. Without TargetData, conservatively
2213  // assume pointers are 64-bit.
2214  assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!");
2215  return 64;
2216}
2217
2218/// getEffectiveSCEVType - Return a type with the same bitwidth as
2219/// the given type and which represents how SCEV will treat the given
2220/// type, for which isSCEVable must return true. For pointer types,
2221/// this is the pointer-sized integer type.
2222const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2223  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2224
2225  if (Ty->isInteger())
2226    return Ty;
2227
2228  // The only other support type is pointer.
2229  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2230  if (TD) return TD->getIntPtrType(getContext());
2231
2232  // Without TargetData, conservatively assume pointers are 64-bit.
2233  return Type::getInt64Ty(getContext());
2234}
2235
2236const SCEV *ScalarEvolution::getCouldNotCompute() {
2237  return &CouldNotCompute;
2238}
2239
2240/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2241/// expression and create a new one.
2242const SCEV *ScalarEvolution::getSCEV(Value *V) {
2243  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2244
2245  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2246  if (I != Scalars.end()) return I->second;
2247  const SCEV *S = createSCEV(V);
2248  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2249  return S;
2250}
2251
2252/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2253/// specified signed integer value and return a SCEV for the constant.
2254const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2255  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2256  return getConstant(ConstantInt::get(ITy, Val));
2257}
2258
2259/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2260///
2261const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2262  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2263    return getConstant(
2264               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2265
2266  const Type *Ty = V->getType();
2267  Ty = getEffectiveSCEVType(Ty);
2268  return getMulExpr(V,
2269                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2270}
2271
2272/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2273const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2274  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2275    return getConstant(
2276                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2277
2278  const Type *Ty = V->getType();
2279  Ty = getEffectiveSCEVType(Ty);
2280  const SCEV *AllOnes =
2281                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2282  return getMinusSCEV(AllOnes, V);
2283}
2284
2285/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2286///
2287const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2288                                          const SCEV *RHS) {
2289  // X - Y --> X + -Y
2290  return getAddExpr(LHS, getNegativeSCEV(RHS));
2291}
2292
2293/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2294/// input value to the specified type.  If the type must be extended, it is zero
2295/// extended.
2296const SCEV *
2297ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2298                                         const Type *Ty) {
2299  const Type *SrcTy = V->getType();
2300  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2301         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2302         "Cannot truncate or zero extend with non-integer arguments!");
2303  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2304    return V;  // No conversion
2305  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2306    return getTruncateExpr(V, Ty);
2307  return getZeroExtendExpr(V, Ty);
2308}
2309
2310/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2311/// input value to the specified type.  If the type must be extended, it is sign
2312/// extended.
2313const SCEV *
2314ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2315                                         const Type *Ty) {
2316  const Type *SrcTy = V->getType();
2317  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2318         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2319         "Cannot truncate or zero extend with non-integer arguments!");
2320  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2321    return V;  // No conversion
2322  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2323    return getTruncateExpr(V, Ty);
2324  return getSignExtendExpr(V, Ty);
2325}
2326
2327/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2328/// input value to the specified type.  If the type must be extended, it is zero
2329/// extended.  The conversion must not be narrowing.
2330const SCEV *
2331ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2332  const Type *SrcTy = V->getType();
2333  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2334         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2335         "Cannot noop or zero extend with non-integer arguments!");
2336  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2337         "getNoopOrZeroExtend cannot truncate!");
2338  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2339    return V;  // No conversion
2340  return getZeroExtendExpr(V, Ty);
2341}
2342
2343/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2344/// input value to the specified type.  If the type must be extended, it is sign
2345/// extended.  The conversion must not be narrowing.
2346const SCEV *
2347ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2348  const Type *SrcTy = V->getType();
2349  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2350         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2351         "Cannot noop or sign extend with non-integer arguments!");
2352  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2353         "getNoopOrSignExtend cannot truncate!");
2354  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2355    return V;  // No conversion
2356  return getSignExtendExpr(V, Ty);
2357}
2358
2359/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2360/// the input value to the specified type. If the type must be extended,
2361/// it is extended with unspecified bits. The conversion must not be
2362/// narrowing.
2363const SCEV *
2364ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2365  const Type *SrcTy = V->getType();
2366  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2367         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2368         "Cannot noop or any extend with non-integer arguments!");
2369  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2370         "getNoopOrAnyExtend cannot truncate!");
2371  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2372    return V;  // No conversion
2373  return getAnyExtendExpr(V, Ty);
2374}
2375
2376/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2377/// input value to the specified type.  The conversion must not be widening.
2378const SCEV *
2379ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2380  const Type *SrcTy = V->getType();
2381  assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
2382         (Ty->isInteger() || isa<PointerType>(Ty)) &&
2383         "Cannot truncate or noop with non-integer arguments!");
2384  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2385         "getTruncateOrNoop cannot extend!");
2386  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2387    return V;  // No conversion
2388  return getTruncateExpr(V, Ty);
2389}
2390
2391/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2392/// the types using zero-extension, and then perform a umax operation
2393/// with them.
2394const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2395                                                        const SCEV *RHS) {
2396  const SCEV *PromotedLHS = LHS;
2397  const SCEV *PromotedRHS = RHS;
2398
2399  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2400    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2401  else
2402    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2403
2404  return getUMaxExpr(PromotedLHS, PromotedRHS);
2405}
2406
2407/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2408/// the types using zero-extension, and then perform a umin operation
2409/// with them.
2410const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2411                                                        const SCEV *RHS) {
2412  const SCEV *PromotedLHS = LHS;
2413  const SCEV *PromotedRHS = RHS;
2414
2415  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2416    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2417  else
2418    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2419
2420  return getUMinExpr(PromotedLHS, PromotedRHS);
2421}
2422
2423/// PushDefUseChildren - Push users of the given Instruction
2424/// onto the given Worklist.
2425static void
2426PushDefUseChildren(Instruction *I,
2427                   SmallVectorImpl<Instruction *> &Worklist) {
2428  // Push the def-use children onto the Worklist stack.
2429  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2430       UI != UE; ++UI)
2431    Worklist.push_back(cast<Instruction>(UI));
2432}
2433
2434/// ForgetSymbolicValue - This looks up computed SCEV values for all
2435/// instructions that depend on the given instruction and removes them from
2436/// the Scalars map if they reference SymName. This is used during PHI
2437/// resolution.
2438void
2439ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) {
2440  SmallVector<Instruction *, 16> Worklist;
2441  PushDefUseChildren(I, Worklist);
2442
2443  SmallPtrSet<Instruction *, 8> Visited;
2444  Visited.insert(I);
2445  while (!Worklist.empty()) {
2446    Instruction *I = Worklist.pop_back_val();
2447    if (!Visited.insert(I)) continue;
2448
2449    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2450      Scalars.find(static_cast<Value *>(I));
2451    if (It != Scalars.end()) {
2452      // Short-circuit the def-use traversal if the symbolic name
2453      // ceases to appear in expressions.
2454      if (!It->second->hasOperand(SymName))
2455        continue;
2456
2457      // SCEVUnknown for a PHI either means that it has an unrecognized
2458      // structure, or it's a PHI that's in the progress of being computed
2459      // by createNodeForPHI.  In the former case, additional loop trip
2460      // count information isn't going to change anything. In the later
2461      // case, createNodeForPHI will perform the necessary updates on its
2462      // own when it gets to that point.
2463      if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
2464        ValuesAtScopes.erase(It->second);
2465        Scalars.erase(It);
2466      }
2467    }
2468
2469    PushDefUseChildren(I, Worklist);
2470  }
2471}
2472
2473/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2474/// a loop header, making it a potential recurrence, or it doesn't.
2475///
2476const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2477  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2478    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2479      if (L->getHeader() == PN->getParent()) {
2480        // If it lives in the loop header, it has two incoming values, one
2481        // from outside the loop, and one from inside.
2482        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2483        unsigned BackEdge     = IncomingEdge^1;
2484
2485        // While we are analyzing this PHI node, handle its value symbolically.
2486        const SCEV *SymbolicName = getUnknown(PN);
2487        assert(Scalars.find(PN) == Scalars.end() &&
2488               "PHI node already processed?");
2489        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2490
2491        // Using this symbolic name for the PHI, analyze the value coming around
2492        // the back-edge.
2493        Value *BEValueV = PN->getIncomingValue(BackEdge);
2494        const SCEV *BEValue = getSCEV(BEValueV);
2495
2496        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2497        // has a special value for the first iteration of the loop.
2498
2499        // If the value coming around the backedge is an add with the symbolic
2500        // value we just inserted, then we found a simple induction variable!
2501        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2502          // If there is a single occurrence of the symbolic value, replace it
2503          // with a recurrence.
2504          unsigned FoundIndex = Add->getNumOperands();
2505          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2506            if (Add->getOperand(i) == SymbolicName)
2507              if (FoundIndex == e) {
2508                FoundIndex = i;
2509                break;
2510              }
2511
2512          if (FoundIndex != Add->getNumOperands()) {
2513            // Create an add with everything but the specified operand.
2514            SmallVector<const SCEV *, 8> Ops;
2515            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2516              if (i != FoundIndex)
2517                Ops.push_back(Add->getOperand(i));
2518            const SCEV *Accum = getAddExpr(Ops);
2519
2520            // This is not a valid addrec if the step amount is varying each
2521            // loop iteration, but is not itself an addrec in this loop.
2522            if (Accum->isLoopInvariant(L) ||
2523                (isa<SCEVAddRecExpr>(Accum) &&
2524                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2525              const SCEV *StartVal =
2526                getSCEV(PN->getIncomingValue(IncomingEdge));
2527              const SCEVAddRecExpr *PHISCEV =
2528                cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L));
2529
2530              // If the increment doesn't overflow, then neither the addrec nor the
2531              // post-increment will overflow.
2532              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV))
2533                if (OBO->getOperand(0) == PN &&
2534                    getSCEV(OBO->getOperand(1)) ==
2535                      PHISCEV->getStepRecurrence(*this)) {
2536                  const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this);
2537                  if (OBO->hasNoUnsignedWrap()) {
2538                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2539                      ->setHasNoUnsignedWrap(true);
2540                    const_cast<SCEVAddRecExpr *>(PostInc)
2541                      ->setHasNoUnsignedWrap(true);
2542                  }
2543                  if (OBO->hasNoSignedWrap()) {
2544                    const_cast<SCEVAddRecExpr *>(PHISCEV)
2545                      ->setHasNoSignedWrap(true);
2546                    const_cast<SCEVAddRecExpr *>(PostInc)
2547                      ->setHasNoSignedWrap(true);
2548                  }
2549                }
2550
2551              // Okay, for the entire analysis of this edge we assumed the PHI
2552              // to be symbolic.  We now need to go back and purge all of the
2553              // entries for the scalars that use the symbolic expression.
2554              ForgetSymbolicName(PN, SymbolicName);
2555              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2556              return PHISCEV;
2557            }
2558          }
2559        } else if (const SCEVAddRecExpr *AddRec =
2560                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2561          // Otherwise, this could be a loop like this:
2562          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2563          // In this case, j = {1,+,1}  and BEValue is j.
2564          // Because the other in-value of i (0) fits the evolution of BEValue
2565          // i really is an addrec evolution.
2566          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2567            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2568
2569            // If StartVal = j.start - j.stride, we can use StartVal as the
2570            // initial step of the addrec evolution.
2571            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2572                                            AddRec->getOperand(1))) {
2573              const SCEV *PHISCEV =
2574                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2575
2576              // Okay, for the entire analysis of this edge we assumed the PHI
2577              // to be symbolic.  We now need to go back and purge all of the
2578              // entries for the scalars that use the symbolic expression.
2579              ForgetSymbolicName(PN, SymbolicName);
2580              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2581              return PHISCEV;
2582            }
2583          }
2584        }
2585
2586        return SymbolicName;
2587      }
2588
2589  // It's tempting to recognize PHIs with a unique incoming value, however
2590  // this leads passes like indvars to break LCSSA form. Fortunately, such
2591  // PHIs are rare, as instcombine zaps them.
2592
2593  // If it's not a loop phi, we can't handle it yet.
2594  return getUnknown(PN);
2595}
2596
2597/// createNodeForGEP - Expand GEP instructions into add and multiply
2598/// operations. This allows them to be analyzed by regular SCEV code.
2599///
2600const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2601
2602  bool InBounds = GEP->isInBounds();
2603  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2604  Value *Base = GEP->getOperand(0);
2605  // Don't attempt to analyze GEPs over unsized objects.
2606  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2607    return getUnknown(GEP);
2608  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2609  gep_type_iterator GTI = gep_type_begin(GEP);
2610  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2611                                      E = GEP->op_end();
2612       I != E; ++I) {
2613    Value *Index = *I;
2614    // Compute the (potentially symbolic) offset in bytes for this index.
2615    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2616      // For a struct, add the member offset.
2617      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2618      TotalOffset = getAddExpr(TotalOffset,
2619                               getFieldOffsetExpr(STy, FieldNo),
2620                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2621    } else {
2622      // For an array, add the element offset, explicitly scaled.
2623      const SCEV *LocalOffset = getSCEV(Index);
2624      if (!isa<PointerType>(LocalOffset->getType()))
2625        // Getelementptr indicies are signed.
2626        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2627      // Lower "inbounds" GEPs to NSW arithmetic.
2628      LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI),
2629                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2630      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2631                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2632    }
2633  }
2634  return getAddExpr(getSCEV(Base), TotalOffset,
2635                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
2636}
2637
2638/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2639/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2640/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2641/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2642uint32_t
2643ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2644  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2645    return C->getValue()->getValue().countTrailingZeros();
2646
2647  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2648    return std::min(GetMinTrailingZeros(T->getOperand()),
2649                    (uint32_t)getTypeSizeInBits(T->getType()));
2650
2651  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2652    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2653    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2654             getTypeSizeInBits(E->getType()) : OpRes;
2655  }
2656
2657  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2658    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2659    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2660             getTypeSizeInBits(E->getType()) : OpRes;
2661  }
2662
2663  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2664    // The result is the min of all operands results.
2665    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2666    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2667      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2668    return MinOpRes;
2669  }
2670
2671  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2672    // The result is the sum of all operands results.
2673    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2674    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2675    for (unsigned i = 1, e = M->getNumOperands();
2676         SumOpRes != BitWidth && i != e; ++i)
2677      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2678                          BitWidth);
2679    return SumOpRes;
2680  }
2681
2682  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2683    // The result is the min of all operands results.
2684    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2685    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2686      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2687    return MinOpRes;
2688  }
2689
2690  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2691    // The result is the min of all operands results.
2692    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2693    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2694      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2695    return MinOpRes;
2696  }
2697
2698  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2699    // The result is the min of all operands results.
2700    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2701    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2702      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2703    return MinOpRes;
2704  }
2705
2706  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2707    // For a SCEVUnknown, ask ValueTracking.
2708    unsigned BitWidth = getTypeSizeInBits(U->getType());
2709    APInt Mask = APInt::getAllOnesValue(BitWidth);
2710    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2711    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2712    return Zeros.countTrailingOnes();
2713  }
2714
2715  // SCEVUDivExpr
2716  return 0;
2717}
2718
2719/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2720///
2721ConstantRange
2722ScalarEvolution::getUnsignedRange(const SCEV *S) {
2723
2724  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2725    return ConstantRange(C->getValue()->getValue());
2726
2727  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2728    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2729    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2730      X = X.add(getUnsignedRange(Add->getOperand(i)));
2731    return X;
2732  }
2733
2734  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2735    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2736    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2737      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2738    return X;
2739  }
2740
2741  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2742    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2743    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2744      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2745    return X;
2746  }
2747
2748  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2749    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2750    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2751      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2752    return X;
2753  }
2754
2755  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2756    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2757    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2758    return X.udiv(Y);
2759  }
2760
2761  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2762    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2763    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2764  }
2765
2766  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2767    ConstantRange X = getUnsignedRange(SExt->getOperand());
2768    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2769  }
2770
2771  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2772    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2773    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2774  }
2775
2776  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2777
2778  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2779    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2780    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2781    if (!Trip) return FullSet;
2782
2783    // TODO: non-affine addrec
2784    if (AddRec->isAffine()) {
2785      const Type *Ty = AddRec->getType();
2786      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2787      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2788        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2789
2790        const SCEV *Start = AddRec->getStart();
2791        const SCEV *Step = AddRec->getStepRecurrence(*this);
2792        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2793
2794        // Check for overflow.
2795        // TODO: This is very conservative.
2796        if (!(Step->isOne() &&
2797              isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2798            !(Step->isAllOnesValue() &&
2799              isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
2800          return FullSet;
2801
2802        ConstantRange StartRange = getUnsignedRange(Start);
2803        ConstantRange EndRange = getUnsignedRange(End);
2804        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2805                                   EndRange.getUnsignedMin());
2806        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2807                                   EndRange.getUnsignedMax());
2808        if (Min.isMinValue() && Max.isMaxValue())
2809          return FullSet;
2810        return ConstantRange(Min, Max+1);
2811      }
2812    }
2813  }
2814
2815  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2816    // For a SCEVUnknown, ask ValueTracking.
2817    unsigned BitWidth = getTypeSizeInBits(U->getType());
2818    APInt Mask = APInt::getAllOnesValue(BitWidth);
2819    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2820    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2821    if (Ones == ~Zeros + 1)
2822      return FullSet;
2823    return ConstantRange(Ones, ~Zeros + 1);
2824  }
2825
2826  return FullSet;
2827}
2828
2829/// getSignedRange - Determine the signed range for a particular SCEV.
2830///
2831ConstantRange
2832ScalarEvolution::getSignedRange(const SCEV *S) {
2833
2834  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2835    return ConstantRange(C->getValue()->getValue());
2836
2837  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2838    ConstantRange X = getSignedRange(Add->getOperand(0));
2839    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2840      X = X.add(getSignedRange(Add->getOperand(i)));
2841    return X;
2842  }
2843
2844  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2845    ConstantRange X = getSignedRange(Mul->getOperand(0));
2846    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2847      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2848    return X;
2849  }
2850
2851  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2852    ConstantRange X = getSignedRange(SMax->getOperand(0));
2853    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2854      X = X.smax(getSignedRange(SMax->getOperand(i)));
2855    return X;
2856  }
2857
2858  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2859    ConstantRange X = getSignedRange(UMax->getOperand(0));
2860    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2861      X = X.umax(getSignedRange(UMax->getOperand(i)));
2862    return X;
2863  }
2864
2865  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2866    ConstantRange X = getSignedRange(UDiv->getLHS());
2867    ConstantRange Y = getSignedRange(UDiv->getRHS());
2868    return X.udiv(Y);
2869  }
2870
2871  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2872    ConstantRange X = getSignedRange(ZExt->getOperand());
2873    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2874  }
2875
2876  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2877    ConstantRange X = getSignedRange(SExt->getOperand());
2878    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2879  }
2880
2881  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2882    ConstantRange X = getSignedRange(Trunc->getOperand());
2883    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2884  }
2885
2886  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2887
2888  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2889    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2890    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2891    if (!Trip) return FullSet;
2892
2893    // TODO: non-affine addrec
2894    if (AddRec->isAffine()) {
2895      const Type *Ty = AddRec->getType();
2896      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2897      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2898        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2899
2900        const SCEV *Start = AddRec->getStart();
2901        const SCEV *Step = AddRec->getStepRecurrence(*this);
2902        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2903
2904        // Check for overflow.
2905        // TODO: This is very conservative.
2906        if (!(Step->isOne() &&
2907              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2908            !(Step->isAllOnesValue() &&
2909              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2910          return FullSet;
2911
2912        ConstantRange StartRange = getSignedRange(Start);
2913        ConstantRange EndRange = getSignedRange(End);
2914        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2915                                   EndRange.getSignedMin());
2916        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2917                                   EndRange.getSignedMax());
2918        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2919          return FullSet;
2920        return ConstantRange(Min, Max+1);
2921      }
2922    }
2923  }
2924
2925  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2926    // For a SCEVUnknown, ask ValueTracking.
2927    unsigned BitWidth = getTypeSizeInBits(U->getType());
2928    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2929    if (NS == 1)
2930      return FullSet;
2931    return
2932      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2933                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2934  }
2935
2936  return FullSet;
2937}
2938
2939/// createSCEV - We know that there is no SCEV for the specified value.
2940/// Analyze the expression.
2941///
2942const SCEV *ScalarEvolution::createSCEV(Value *V) {
2943  if (!isSCEVable(V->getType()))
2944    return getUnknown(V);
2945
2946  unsigned Opcode = Instruction::UserOp1;
2947  if (Instruction *I = dyn_cast<Instruction>(V))
2948    Opcode = I->getOpcode();
2949  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2950    Opcode = CE->getOpcode();
2951  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2952    return getConstant(CI);
2953  else if (isa<ConstantPointerNull>(V))
2954    return getIntegerSCEV(0, V->getType());
2955  else if (isa<UndefValue>(V))
2956    return getIntegerSCEV(0, V->getType());
2957  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
2958    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
2959  else
2960    return getUnknown(V);
2961
2962  Operator *U = cast<Operator>(V);
2963  switch (Opcode) {
2964  case Instruction::Add:
2965    // Don't transfer the NSW and NUW bits from the Add instruction to the
2966    // Add expression, because the Instruction may be guarded by control
2967    // flow and the no-overflow bits may not be valid for the expression in
2968    // any context.
2969    return getAddExpr(getSCEV(U->getOperand(0)),
2970                      getSCEV(U->getOperand(1)));
2971  case Instruction::Mul:
2972    // Don't transfer the NSW and NUW bits from the Mul instruction to the
2973    // Mul expression, as with Add.
2974    return getMulExpr(getSCEV(U->getOperand(0)),
2975                      getSCEV(U->getOperand(1)));
2976  case Instruction::UDiv:
2977    return getUDivExpr(getSCEV(U->getOperand(0)),
2978                       getSCEV(U->getOperand(1)));
2979  case Instruction::Sub:
2980    return getMinusSCEV(getSCEV(U->getOperand(0)),
2981                        getSCEV(U->getOperand(1)));
2982  case Instruction::And:
2983    // For an expression like x&255 that merely masks off the high bits,
2984    // use zext(trunc(x)) as the SCEV expression.
2985    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2986      if (CI->isNullValue())
2987        return getSCEV(U->getOperand(1));
2988      if (CI->isAllOnesValue())
2989        return getSCEV(U->getOperand(0));
2990      const APInt &A = CI->getValue();
2991
2992      // Instcombine's ShrinkDemandedConstant may strip bits out of
2993      // constants, obscuring what would otherwise be a low-bits mask.
2994      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2995      // knew about to reconstruct a low-bits mask value.
2996      unsigned LZ = A.countLeadingZeros();
2997      unsigned BitWidth = A.getBitWidth();
2998      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2999      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3000      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3001
3002      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3003
3004      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3005        return
3006          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3007                                IntegerType::get(getContext(), BitWidth - LZ)),
3008                            U->getType());
3009    }
3010    break;
3011
3012  case Instruction::Or:
3013    // If the RHS of the Or is a constant, we may have something like:
3014    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3015    // optimizations will transparently handle this case.
3016    //
3017    // In order for this transformation to be safe, the LHS must be of the
3018    // form X*(2^n) and the Or constant must be less than 2^n.
3019    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3020      const SCEV *LHS = getSCEV(U->getOperand(0));
3021      const APInt &CIVal = CI->getValue();
3022      if (GetMinTrailingZeros(LHS) >=
3023          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3024        // Build a plain add SCEV.
3025        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3026        // If the LHS of the add was an addrec and it has no-wrap flags,
3027        // transfer the no-wrap flags, since an or won't introduce a wrap.
3028        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3029          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3030          if (OldAR->hasNoUnsignedWrap())
3031            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3032          if (OldAR->hasNoSignedWrap())
3033            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3034        }
3035        return S;
3036      }
3037    }
3038    break;
3039  case Instruction::Xor:
3040    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3041      // If the RHS of the xor is a signbit, then this is just an add.
3042      // Instcombine turns add of signbit into xor as a strength reduction step.
3043      if (CI->getValue().isSignBit())
3044        return getAddExpr(getSCEV(U->getOperand(0)),
3045                          getSCEV(U->getOperand(1)));
3046
3047      // If the RHS of xor is -1, then this is a not operation.
3048      if (CI->isAllOnesValue())
3049        return getNotSCEV(getSCEV(U->getOperand(0)));
3050
3051      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3052      // This is a variant of the check for xor with -1, and it handles
3053      // the case where instcombine has trimmed non-demanded bits out
3054      // of an xor with -1.
3055      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3056        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3057          if (BO->getOpcode() == Instruction::And &&
3058              LCI->getValue() == CI->getValue())
3059            if (const SCEVZeroExtendExpr *Z =
3060                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3061              const Type *UTy = U->getType();
3062              const SCEV *Z0 = Z->getOperand();
3063              const Type *Z0Ty = Z0->getType();
3064              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3065
3066              // If C is a low-bits mask, the zero extend is zerving to
3067              // mask off the high bits. Complement the operand and
3068              // re-apply the zext.
3069              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3070                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3071
3072              // If C is a single bit, it may be in the sign-bit position
3073              // before the zero-extend. In this case, represent the xor
3074              // using an add, which is equivalent, and re-apply the zext.
3075              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3076              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3077                  Trunc.isSignBit())
3078                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3079                                         UTy);
3080            }
3081    }
3082    break;
3083
3084  case Instruction::Shl:
3085    // Turn shift left of a constant amount into a multiply.
3086    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3087      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3088      Constant *X = ConstantInt::get(getContext(),
3089        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3090      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3091    }
3092    break;
3093
3094  case Instruction::LShr:
3095    // Turn logical shift right of a constant into a unsigned divide.
3096    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3097      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
3098      Constant *X = ConstantInt::get(getContext(),
3099        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
3100      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3101    }
3102    break;
3103
3104  case Instruction::AShr:
3105    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3106    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3107      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
3108        if (L->getOpcode() == Instruction::Shl &&
3109            L->getOperand(1) == U->getOperand(1)) {
3110          unsigned BitWidth = getTypeSizeInBits(U->getType());
3111          uint64_t Amt = BitWidth - CI->getZExtValue();
3112          if (Amt == BitWidth)
3113            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3114          if (Amt > BitWidth)
3115            return getIntegerSCEV(0, U->getType()); // value is undefined
3116          return
3117            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3118                                           IntegerType::get(getContext(), Amt)),
3119                                 U->getType());
3120        }
3121    break;
3122
3123  case Instruction::Trunc:
3124    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3125
3126  case Instruction::ZExt:
3127    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3128
3129  case Instruction::SExt:
3130    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3131
3132  case Instruction::BitCast:
3133    // BitCasts are no-op casts so we just eliminate the cast.
3134    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3135      return getSCEV(U->getOperand(0));
3136    break;
3137
3138    // It's tempting to handle inttoptr and ptrtoint, however this can
3139    // lead to pointer expressions which cannot be expanded to GEPs
3140    // (because they may overflow). For now, the only pointer-typed
3141    // expressions we handle are GEPs and address literals.
3142
3143  case Instruction::GetElementPtr:
3144    return createNodeForGEP(cast<GEPOperator>(U));
3145
3146  case Instruction::PHI:
3147    return createNodeForPHI(cast<PHINode>(U));
3148
3149  case Instruction::Select:
3150    // This could be a smax or umax that was lowered earlier.
3151    // Try to recover it.
3152    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3153      Value *LHS = ICI->getOperand(0);
3154      Value *RHS = ICI->getOperand(1);
3155      switch (ICI->getPredicate()) {
3156      case ICmpInst::ICMP_SLT:
3157      case ICmpInst::ICMP_SLE:
3158        std::swap(LHS, RHS);
3159        // fall through
3160      case ICmpInst::ICMP_SGT:
3161      case ICmpInst::ICMP_SGE:
3162        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3163          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
3164        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3165          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
3166        break;
3167      case ICmpInst::ICMP_ULT:
3168      case ICmpInst::ICMP_ULE:
3169        std::swap(LHS, RHS);
3170        // fall through
3171      case ICmpInst::ICMP_UGT:
3172      case ICmpInst::ICMP_UGE:
3173        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
3174          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
3175        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
3176          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
3177        break;
3178      case ICmpInst::ICMP_NE:
3179        // n != 0 ? n : 1  ->  umax(n, 1)
3180        if (LHS == U->getOperand(1) &&
3181            isa<ConstantInt>(U->getOperand(2)) &&
3182            cast<ConstantInt>(U->getOperand(2))->isOne() &&
3183            isa<ConstantInt>(RHS) &&
3184            cast<ConstantInt>(RHS)->isZero())
3185          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
3186        break;
3187      case ICmpInst::ICMP_EQ:
3188        // n == 0 ? 1 : n  ->  umax(n, 1)
3189        if (LHS == U->getOperand(2) &&
3190            isa<ConstantInt>(U->getOperand(1)) &&
3191            cast<ConstantInt>(U->getOperand(1))->isOne() &&
3192            isa<ConstantInt>(RHS) &&
3193            cast<ConstantInt>(RHS)->isZero())
3194          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3195        break;
3196      default:
3197        break;
3198      }
3199    }
3200
3201  default: // We cannot analyze this expression.
3202    break;
3203  }
3204
3205  return getUnknown(V);
3206}
3207
3208
3209
3210//===----------------------------------------------------------------------===//
3211//                   Iteration Count Computation Code
3212//
3213
3214/// getBackedgeTakenCount - If the specified loop has a predictable
3215/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3216/// object. The backedge-taken count is the number of times the loop header
3217/// will be branched to from within the loop. This is one less than the
3218/// trip count of the loop, since it doesn't count the first iteration,
3219/// when the header is branched to from outside the loop.
3220///
3221/// Note that it is not valid to call this method on a loop without a
3222/// loop-invariant backedge-taken count (see
3223/// hasLoopInvariantBackedgeTakenCount).
3224///
3225const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3226  return getBackedgeTakenInfo(L).Exact;
3227}
3228
3229/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3230/// return the least SCEV value that is known never to be less than the
3231/// actual backedge taken count.
3232const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3233  return getBackedgeTakenInfo(L).Max;
3234}
3235
3236/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3237/// onto the given Worklist.
3238static void
3239PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3240  BasicBlock *Header = L->getHeader();
3241
3242  // Push all Loop-header PHIs onto the Worklist stack.
3243  for (BasicBlock::iterator I = Header->begin();
3244       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3245    Worklist.push_back(PN);
3246}
3247
3248const ScalarEvolution::BackedgeTakenInfo &
3249ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3250  // Initially insert a CouldNotCompute for this loop. If the insertion
3251  // succeeds, procede to actually compute a backedge-taken count and
3252  // update the value. The temporary CouldNotCompute value tells SCEV
3253  // code elsewhere that it shouldn't attempt to request a new
3254  // backedge-taken count, which could result in infinite recursion.
3255  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3256    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3257  if (Pair.second) {
3258    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3259    if (ItCount.Exact != getCouldNotCompute()) {
3260      assert(ItCount.Exact->isLoopInvariant(L) &&
3261             ItCount.Max->isLoopInvariant(L) &&
3262             "Computed trip count isn't loop invariant for loop!");
3263      ++NumTripCountsComputed;
3264
3265      // Update the value in the map.
3266      Pair.first->second = ItCount;
3267    } else {
3268      if (ItCount.Max != getCouldNotCompute())
3269        // Update the value in the map.
3270        Pair.first->second = ItCount;
3271      if (isa<PHINode>(L->getHeader()->begin()))
3272        // Only count loops that have phi nodes as not being computable.
3273        ++NumTripCountsNotComputed;
3274    }
3275
3276    // Now that we know more about the trip count for this loop, forget any
3277    // existing SCEV values for PHI nodes in this loop since they are only
3278    // conservative estimates made without the benefit of trip count
3279    // information. This is similar to the code in forgetLoop, except that
3280    // it handles SCEVUnknown PHI nodes specially.
3281    if (ItCount.hasAnyInfo()) {
3282      SmallVector<Instruction *, 16> Worklist;
3283      PushLoopPHIs(L, Worklist);
3284
3285      SmallPtrSet<Instruction *, 8> Visited;
3286      while (!Worklist.empty()) {
3287        Instruction *I = Worklist.pop_back_val();
3288        if (!Visited.insert(I)) continue;
3289
3290        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3291          Scalars.find(static_cast<Value *>(I));
3292        if (It != Scalars.end()) {
3293          // SCEVUnknown for a PHI either means that it has an unrecognized
3294          // structure, or it's a PHI that's in the progress of being computed
3295          // by createNodeForPHI.  In the former case, additional loop trip
3296          // count information isn't going to change anything. In the later
3297          // case, createNodeForPHI will perform the necessary updates on its
3298          // own when it gets to that point.
3299          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3300            ValuesAtScopes.erase(It->second);
3301            Scalars.erase(It);
3302          }
3303          if (PHINode *PN = dyn_cast<PHINode>(I))
3304            ConstantEvolutionLoopExitValue.erase(PN);
3305        }
3306
3307        PushDefUseChildren(I, Worklist);
3308      }
3309    }
3310  }
3311  return Pair.first->second;
3312}
3313
3314/// forgetLoop - This method should be called by the client when it has
3315/// changed a loop in a way that may effect ScalarEvolution's ability to
3316/// compute a trip count, or if the loop is deleted.
3317void ScalarEvolution::forgetLoop(const Loop *L) {
3318  // Drop any stored trip count value.
3319  BackedgeTakenCounts.erase(L);
3320
3321  // Drop information about expressions based on loop-header PHIs.
3322  SmallVector<Instruction *, 16> Worklist;
3323  PushLoopPHIs(L, Worklist);
3324
3325  SmallPtrSet<Instruction *, 8> Visited;
3326  while (!Worklist.empty()) {
3327    Instruction *I = Worklist.pop_back_val();
3328    if (!Visited.insert(I)) continue;
3329
3330    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3331      Scalars.find(static_cast<Value *>(I));
3332    if (It != Scalars.end()) {
3333      ValuesAtScopes.erase(It->second);
3334      Scalars.erase(It);
3335      if (PHINode *PN = dyn_cast<PHINode>(I))
3336        ConstantEvolutionLoopExitValue.erase(PN);
3337    }
3338
3339    PushDefUseChildren(I, Worklist);
3340  }
3341}
3342
3343/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3344/// of the specified loop will execute.
3345ScalarEvolution::BackedgeTakenInfo
3346ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3347  SmallVector<BasicBlock *, 8> ExitingBlocks;
3348  L->getExitingBlocks(ExitingBlocks);
3349
3350  // Examine all exits and pick the most conservative values.
3351  const SCEV *BECount = getCouldNotCompute();
3352  const SCEV *MaxBECount = getCouldNotCompute();
3353  bool CouldNotComputeBECount = false;
3354  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3355    BackedgeTakenInfo NewBTI =
3356      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3357
3358    if (NewBTI.Exact == getCouldNotCompute()) {
3359      // We couldn't compute an exact value for this exit, so
3360      // we won't be able to compute an exact value for the loop.
3361      CouldNotComputeBECount = true;
3362      BECount = getCouldNotCompute();
3363    } else if (!CouldNotComputeBECount) {
3364      if (BECount == getCouldNotCompute())
3365        BECount = NewBTI.Exact;
3366      else
3367        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3368    }
3369    if (MaxBECount == getCouldNotCompute())
3370      MaxBECount = NewBTI.Max;
3371    else if (NewBTI.Max != getCouldNotCompute())
3372      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3373  }
3374
3375  return BackedgeTakenInfo(BECount, MaxBECount);
3376}
3377
3378/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3379/// of the specified loop will execute if it exits via the specified block.
3380ScalarEvolution::BackedgeTakenInfo
3381ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3382                                                   BasicBlock *ExitingBlock) {
3383
3384  // Okay, we've chosen an exiting block.  See what condition causes us to
3385  // exit at this block.
3386  //
3387  // FIXME: we should be able to handle switch instructions (with a single exit)
3388  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3389  if (ExitBr == 0) return getCouldNotCompute();
3390  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3391
3392  // At this point, we know we have a conditional branch that determines whether
3393  // the loop is exited.  However, we don't know if the branch is executed each
3394  // time through the loop.  If not, then the execution count of the branch will
3395  // not be equal to the trip count of the loop.
3396  //
3397  // Currently we check for this by checking to see if the Exit branch goes to
3398  // the loop header.  If so, we know it will always execute the same number of
3399  // times as the loop.  We also handle the case where the exit block *is* the
3400  // loop header.  This is common for un-rotated loops.
3401  //
3402  // If both of those tests fail, walk up the unique predecessor chain to the
3403  // header, stopping if there is an edge that doesn't exit the loop. If the
3404  // header is reached, the execution count of the branch will be equal to the
3405  // trip count of the loop.
3406  //
3407  //  More extensive analysis could be done to handle more cases here.
3408  //
3409  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3410      ExitBr->getSuccessor(1) != L->getHeader() &&
3411      ExitBr->getParent() != L->getHeader()) {
3412    // The simple checks failed, try climbing the unique predecessor chain
3413    // up to the header.
3414    bool Ok = false;
3415    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3416      BasicBlock *Pred = BB->getUniquePredecessor();
3417      if (!Pred)
3418        return getCouldNotCompute();
3419      TerminatorInst *PredTerm = Pred->getTerminator();
3420      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3421        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3422        if (PredSucc == BB)
3423          continue;
3424        // If the predecessor has a successor that isn't BB and isn't
3425        // outside the loop, assume the worst.
3426        if (L->contains(PredSucc))
3427          return getCouldNotCompute();
3428      }
3429      if (Pred == L->getHeader()) {
3430        Ok = true;
3431        break;
3432      }
3433      BB = Pred;
3434    }
3435    if (!Ok)
3436      return getCouldNotCompute();
3437  }
3438
3439  // Procede to the next level to examine the exit condition expression.
3440  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3441                                               ExitBr->getSuccessor(0),
3442                                               ExitBr->getSuccessor(1));
3443}
3444
3445/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3446/// backedge of the specified loop will execute if its exit condition
3447/// were a conditional branch of ExitCond, TBB, and FBB.
3448ScalarEvolution::BackedgeTakenInfo
3449ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3450                                                       Value *ExitCond,
3451                                                       BasicBlock *TBB,
3452                                                       BasicBlock *FBB) {
3453  // Check if the controlling expression for this loop is an And or Or.
3454  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3455    if (BO->getOpcode() == Instruction::And) {
3456      // Recurse on the operands of the and.
3457      BackedgeTakenInfo BTI0 =
3458        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3459      BackedgeTakenInfo BTI1 =
3460        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3461      const SCEV *BECount = getCouldNotCompute();
3462      const SCEV *MaxBECount = getCouldNotCompute();
3463      if (L->contains(TBB)) {
3464        // Both conditions must be true for the loop to continue executing.
3465        // Choose the less conservative count.
3466        if (BTI0.Exact == getCouldNotCompute() ||
3467            BTI1.Exact == getCouldNotCompute())
3468          BECount = getCouldNotCompute();
3469        else
3470          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3471        if (BTI0.Max == getCouldNotCompute())
3472          MaxBECount = BTI1.Max;
3473        else if (BTI1.Max == getCouldNotCompute())
3474          MaxBECount = BTI0.Max;
3475        else
3476          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3477      } else {
3478        // Both conditions must be true for the loop to exit.
3479        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3480        if (BTI0.Exact != getCouldNotCompute() &&
3481            BTI1.Exact != getCouldNotCompute())
3482          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3483        if (BTI0.Max != getCouldNotCompute() &&
3484            BTI1.Max != getCouldNotCompute())
3485          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3486      }
3487
3488      return BackedgeTakenInfo(BECount, MaxBECount);
3489    }
3490    if (BO->getOpcode() == Instruction::Or) {
3491      // Recurse on the operands of the or.
3492      BackedgeTakenInfo BTI0 =
3493        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3494      BackedgeTakenInfo BTI1 =
3495        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3496      const SCEV *BECount = getCouldNotCompute();
3497      const SCEV *MaxBECount = getCouldNotCompute();
3498      if (L->contains(FBB)) {
3499        // Both conditions must be false for the loop to continue executing.
3500        // Choose the less conservative count.
3501        if (BTI0.Exact == getCouldNotCompute() ||
3502            BTI1.Exact == getCouldNotCompute())
3503          BECount = getCouldNotCompute();
3504        else
3505          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3506        if (BTI0.Max == getCouldNotCompute())
3507          MaxBECount = BTI1.Max;
3508        else if (BTI1.Max == getCouldNotCompute())
3509          MaxBECount = BTI0.Max;
3510        else
3511          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3512      } else {
3513        // Both conditions must be false for the loop to exit.
3514        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3515        if (BTI0.Exact != getCouldNotCompute() &&
3516            BTI1.Exact != getCouldNotCompute())
3517          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3518        if (BTI0.Max != getCouldNotCompute() &&
3519            BTI1.Max != getCouldNotCompute())
3520          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3521      }
3522
3523      return BackedgeTakenInfo(BECount, MaxBECount);
3524    }
3525  }
3526
3527  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3528  // Procede to the next level to examine the icmp.
3529  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3530    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3531
3532  // If it's not an integer or pointer comparison then compute it the hard way.
3533  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3534}
3535
3536/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3537/// backedge of the specified loop will execute if its exit condition
3538/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3539ScalarEvolution::BackedgeTakenInfo
3540ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3541                                                           ICmpInst *ExitCond,
3542                                                           BasicBlock *TBB,
3543                                                           BasicBlock *FBB) {
3544
3545  // If the condition was exit on true, convert the condition to exit on false
3546  ICmpInst::Predicate Cond;
3547  if (!L->contains(FBB))
3548    Cond = ExitCond->getPredicate();
3549  else
3550    Cond = ExitCond->getInversePredicate();
3551
3552  // Handle common loops like: for (X = "string"; *X; ++X)
3553  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3554    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3555      const SCEV *ItCnt =
3556        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3557      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3558        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3559        return BackedgeTakenInfo(ItCnt,
3560                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3561                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3562      }
3563    }
3564
3565  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3566  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3567
3568  // Try to evaluate any dependencies out of the loop.
3569  LHS = getSCEVAtScope(LHS, L);
3570  RHS = getSCEVAtScope(RHS, L);
3571
3572  // At this point, we would like to compute how many iterations of the
3573  // loop the predicate will return true for these inputs.
3574  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3575    // If there is a loop-invariant, force it into the RHS.
3576    std::swap(LHS, RHS);
3577    Cond = ICmpInst::getSwappedPredicate(Cond);
3578  }
3579
3580  // If we have a comparison of a chrec against a constant, try to use value
3581  // ranges to answer this query.
3582  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3583    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3584      if (AddRec->getLoop() == L) {
3585        // Form the constant range.
3586        ConstantRange CompRange(
3587            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3588
3589        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3590        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3591      }
3592
3593  switch (Cond) {
3594  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3595    // Convert to: while (X-Y != 0)
3596    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3597    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3598    break;
3599  }
3600  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3601    // Convert to: while (X-Y == 0)
3602    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3603    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3604    break;
3605  }
3606  case ICmpInst::ICMP_SLT: {
3607    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3608    if (BTI.hasAnyInfo()) return BTI;
3609    break;
3610  }
3611  case ICmpInst::ICMP_SGT: {
3612    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3613                                             getNotSCEV(RHS), L, true);
3614    if (BTI.hasAnyInfo()) return BTI;
3615    break;
3616  }
3617  case ICmpInst::ICMP_ULT: {
3618    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3619    if (BTI.hasAnyInfo()) return BTI;
3620    break;
3621  }
3622  case ICmpInst::ICMP_UGT: {
3623    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3624                                             getNotSCEV(RHS), L, false);
3625    if (BTI.hasAnyInfo()) return BTI;
3626    break;
3627  }
3628  default:
3629#if 0
3630    errs() << "ComputeBackedgeTakenCount ";
3631    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3632      errs() << "[unsigned] ";
3633    errs() << *LHS << "   "
3634         << Instruction::getOpcodeName(Instruction::ICmp)
3635         << "   " << *RHS << "\n";
3636#endif
3637    break;
3638  }
3639  return
3640    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3641}
3642
3643static ConstantInt *
3644EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3645                                ScalarEvolution &SE) {
3646  const SCEV *InVal = SE.getConstant(C);
3647  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3648  assert(isa<SCEVConstant>(Val) &&
3649         "Evaluation of SCEV at constant didn't fold correctly?");
3650  return cast<SCEVConstant>(Val)->getValue();
3651}
3652
3653/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3654/// and a GEP expression (missing the pointer index) indexing into it, return
3655/// the addressed element of the initializer or null if the index expression is
3656/// invalid.
3657static Constant *
3658GetAddressedElementFromGlobal(GlobalVariable *GV,
3659                              const std::vector<ConstantInt*> &Indices) {
3660  Constant *Init = GV->getInitializer();
3661  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3662    uint64_t Idx = Indices[i]->getZExtValue();
3663    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3664      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3665      Init = cast<Constant>(CS->getOperand(Idx));
3666    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3667      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3668      Init = cast<Constant>(CA->getOperand(Idx));
3669    } else if (isa<ConstantAggregateZero>(Init)) {
3670      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3671        assert(Idx < STy->getNumElements() && "Bad struct index!");
3672        Init = Constant::getNullValue(STy->getElementType(Idx));
3673      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3674        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3675        Init = Constant::getNullValue(ATy->getElementType());
3676      } else {
3677        llvm_unreachable("Unknown constant aggregate type!");
3678      }
3679      return 0;
3680    } else {
3681      return 0; // Unknown initializer type
3682    }
3683  }
3684  return Init;
3685}
3686
3687/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3688/// 'icmp op load X, cst', try to see if we can compute the backedge
3689/// execution count.
3690const SCEV *
3691ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3692                                                LoadInst *LI,
3693                                                Constant *RHS,
3694                                                const Loop *L,
3695                                                ICmpInst::Predicate predicate) {
3696  if (LI->isVolatile()) return getCouldNotCompute();
3697
3698  // Check to see if the loaded pointer is a getelementptr of a global.
3699  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3700  if (!GEP) return getCouldNotCompute();
3701
3702  // Make sure that it is really a constant global we are gepping, with an
3703  // initializer, and make sure the first IDX is really 0.
3704  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3705  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
3706      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3707      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3708    return getCouldNotCompute();
3709
3710  // Okay, we allow one non-constant index into the GEP instruction.
3711  Value *VarIdx = 0;
3712  std::vector<ConstantInt*> Indexes;
3713  unsigned VarIdxNum = 0;
3714  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3715    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3716      Indexes.push_back(CI);
3717    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3718      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3719      VarIdx = GEP->getOperand(i);
3720      VarIdxNum = i-2;
3721      Indexes.push_back(0);
3722    }
3723
3724  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3725  // Check to see if X is a loop variant variable value now.
3726  const SCEV *Idx = getSCEV(VarIdx);
3727  Idx = getSCEVAtScope(Idx, L);
3728
3729  // We can only recognize very limited forms of loop index expressions, in
3730  // particular, only affine AddRec's like {C1,+,C2}.
3731  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3732  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3733      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3734      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3735    return getCouldNotCompute();
3736
3737  unsigned MaxSteps = MaxBruteForceIterations;
3738  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3739    ConstantInt *ItCst = ConstantInt::get(
3740                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
3741    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3742
3743    // Form the GEP offset.
3744    Indexes[VarIdxNum] = Val;
3745
3746    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3747    if (Result == 0) break;  // Cannot compute!
3748
3749    // Evaluate the condition for this iteration.
3750    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3751    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3752    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3753#if 0
3754      errs() << "\n***\n*** Computed loop count " << *ItCst
3755             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3756             << "***\n";
3757#endif
3758      ++NumArrayLenItCounts;
3759      return getConstant(ItCst);   // Found terminating iteration!
3760    }
3761  }
3762  return getCouldNotCompute();
3763}
3764
3765
3766/// CanConstantFold - Return true if we can constant fold an instruction of the
3767/// specified type, assuming that all operands were constants.
3768static bool CanConstantFold(const Instruction *I) {
3769  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3770      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3771    return true;
3772
3773  if (const CallInst *CI = dyn_cast<CallInst>(I))
3774    if (const Function *F = CI->getCalledFunction())
3775      return canConstantFoldCallTo(F);
3776  return false;
3777}
3778
3779/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3780/// in the loop that V is derived from.  We allow arbitrary operations along the
3781/// way, but the operands of an operation must either be constants or a value
3782/// derived from a constant PHI.  If this expression does not fit with these
3783/// constraints, return null.
3784static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3785  // If this is not an instruction, or if this is an instruction outside of the
3786  // loop, it can't be derived from a loop PHI.
3787  Instruction *I = dyn_cast<Instruction>(V);
3788  if (I == 0 || !L->contains(I)) return 0;
3789
3790  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3791    if (L->getHeader() == I->getParent())
3792      return PN;
3793    else
3794      // We don't currently keep track of the control flow needed to evaluate
3795      // PHIs, so we cannot handle PHIs inside of loops.
3796      return 0;
3797  }
3798
3799  // If we won't be able to constant fold this expression even if the operands
3800  // are constants, return early.
3801  if (!CanConstantFold(I)) return 0;
3802
3803  // Otherwise, we can evaluate this instruction if all of its operands are
3804  // constant or derived from a PHI node themselves.
3805  PHINode *PHI = 0;
3806  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3807    if (!(isa<Constant>(I->getOperand(Op)) ||
3808          isa<GlobalValue>(I->getOperand(Op)))) {
3809      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3810      if (P == 0) return 0;  // Not evolving from PHI
3811      if (PHI == 0)
3812        PHI = P;
3813      else if (PHI != P)
3814        return 0;  // Evolving from multiple different PHIs.
3815    }
3816
3817  // This is a expression evolving from a constant PHI!
3818  return PHI;
3819}
3820
3821/// EvaluateExpression - Given an expression that passes the
3822/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3823/// in the loop has the value PHIVal.  If we can't fold this expression for some
3824/// reason, return null.
3825static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
3826                                    const TargetData *TD) {
3827  if (isa<PHINode>(V)) return PHIVal;
3828  if (Constant *C = dyn_cast<Constant>(V)) return C;
3829  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3830  Instruction *I = cast<Instruction>(V);
3831
3832  std::vector<Constant*> Operands;
3833  Operands.resize(I->getNumOperands());
3834
3835  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3836    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
3837    if (Operands[i] == 0) return 0;
3838  }
3839
3840  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3841    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
3842                                           Operands[1], TD);
3843  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3844                                  &Operands[0], Operands.size(), TD);
3845}
3846
3847/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3848/// in the header of its containing loop, we know the loop executes a
3849/// constant number of times, and the PHI node is just a recurrence
3850/// involving constants, fold it.
3851Constant *
3852ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3853                                                   const APInt &BEs,
3854                                                   const Loop *L) {
3855  std::map<PHINode*, Constant*>::iterator I =
3856    ConstantEvolutionLoopExitValue.find(PN);
3857  if (I != ConstantEvolutionLoopExitValue.end())
3858    return I->second;
3859
3860  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3861    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3862
3863  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3864
3865  // Since the loop is canonicalized, the PHI node must have two entries.  One
3866  // entry must be a constant (coming in from outside of the loop), and the
3867  // second must be derived from the same PHI.
3868  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3869  Constant *StartCST =
3870    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3871  if (StartCST == 0)
3872    return RetVal = 0;  // Must be a constant.
3873
3874  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3875  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3876  if (PN2 != PN)
3877    return RetVal = 0;  // Not derived from same PHI.
3878
3879  // Execute the loop symbolically to determine the exit value.
3880  if (BEs.getActiveBits() >= 32)
3881    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3882
3883  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3884  unsigned IterationNum = 0;
3885  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3886    if (IterationNum == NumIterations)
3887      return RetVal = PHIVal;  // Got exit value!
3888
3889    // Compute the value of the PHI node for the next iteration.
3890    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
3891    if (NextPHI == PHIVal)
3892      return RetVal = NextPHI;  // Stopped evolving!
3893    if (NextPHI == 0)
3894      return 0;        // Couldn't evaluate!
3895    PHIVal = NextPHI;
3896  }
3897}
3898
3899/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
3900/// constant number of times (the condition evolves only from constants),
3901/// try to evaluate a few iterations of the loop until we get the exit
3902/// condition gets a value of ExitWhen (true or false).  If we cannot
3903/// evaluate the trip count of the loop, return getCouldNotCompute().
3904const SCEV *
3905ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3906                                                       Value *Cond,
3907                                                       bool ExitWhen) {
3908  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3909  if (PN == 0) return getCouldNotCompute();
3910
3911  // Since the loop is canonicalized, the PHI node must have two entries.  One
3912  // entry must be a constant (coming in from outside of the loop), and the
3913  // second must be derived from the same PHI.
3914  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3915  Constant *StartCST =
3916    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3917  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3918
3919  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3920  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3921  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3922
3923  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3924  // the loop symbolically to determine when the condition gets a value of
3925  // "ExitWhen".
3926  unsigned IterationNum = 0;
3927  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3928  for (Constant *PHIVal = StartCST;
3929       IterationNum != MaxIterations; ++IterationNum) {
3930    ConstantInt *CondVal =
3931      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
3932
3933    // Couldn't symbolically evaluate.
3934    if (!CondVal) return getCouldNotCompute();
3935
3936    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3937      ++NumBruteForceTripCountsComputed;
3938      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
3939    }
3940
3941    // Compute the value of the PHI node for the next iteration.
3942    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
3943    if (NextPHI == 0 || NextPHI == PHIVal)
3944      return getCouldNotCompute();// Couldn't evaluate or not making progress...
3945    PHIVal = NextPHI;
3946  }
3947
3948  // Too many iterations were needed to evaluate.
3949  return getCouldNotCompute();
3950}
3951
3952/// getSCEVAtScope - Return a SCEV expression for the specified value
3953/// at the specified scope in the program.  The L value specifies a loop
3954/// nest to evaluate the expression at, where null is the top-level or a
3955/// specified loop is immediately inside of the loop.
3956///
3957/// This method can be used to compute the exit value for a variable defined
3958/// in a loop by querying what the value will hold in the parent loop.
3959///
3960/// In the case that a relevant loop exit value cannot be computed, the
3961/// original value V is returned.
3962const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3963  // Check to see if we've folded this expression at this loop before.
3964  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
3965  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
3966    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
3967  if (!Pair.second)
3968    return Pair.first->second ? Pair.first->second : V;
3969
3970  // Otherwise compute it.
3971  const SCEV *C = computeSCEVAtScope(V, L);
3972  ValuesAtScopes[V][L] = C;
3973  return C;
3974}
3975
3976const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
3977  if (isa<SCEVConstant>(V)) return V;
3978
3979  // If this instruction is evolved from a constant-evolving PHI, compute the
3980  // exit value from the loop without using SCEVs.
3981  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3982    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3983      const Loop *LI = (*this->LI)[I->getParent()];
3984      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3985        if (PHINode *PN = dyn_cast<PHINode>(I))
3986          if (PN->getParent() == LI->getHeader()) {
3987            // Okay, there is no closed form solution for the PHI node.  Check
3988            // to see if the loop that contains it has a known backedge-taken
3989            // count.  If so, we may be able to force computation of the exit
3990            // value.
3991            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3992            if (const SCEVConstant *BTCC =
3993                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3994              // Okay, we know how many times the containing loop executes.  If
3995              // this is a constant evolving PHI node, get the final value at
3996              // the specified iteration number.
3997              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3998                                                   BTCC->getValue()->getValue(),
3999                                                               LI);
4000              if (RV) return getSCEV(RV);
4001            }
4002          }
4003
4004      // Okay, this is an expression that we cannot symbolically evaluate
4005      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4006      // the arguments into constants, and if so, try to constant propagate the
4007      // result.  This is particularly useful for computing loop exit values.
4008      if (CanConstantFold(I)) {
4009        std::vector<Constant*> Operands;
4010        Operands.reserve(I->getNumOperands());
4011        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4012          Value *Op = I->getOperand(i);
4013          if (Constant *C = dyn_cast<Constant>(Op)) {
4014            Operands.push_back(C);
4015          } else {
4016            // If any of the operands is non-constant and if they are
4017            // non-integer and non-pointer, don't even try to analyze them
4018            // with scev techniques.
4019            if (!isSCEVable(Op->getType()))
4020              return V;
4021
4022            const SCEV *OpV = getSCEVAtScope(Op, L);
4023            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4024              Constant *C = SC->getValue();
4025              if (C->getType() != Op->getType())
4026                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4027                                                                  Op->getType(),
4028                                                                  false),
4029                                          C, Op->getType());
4030              Operands.push_back(C);
4031            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4032              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4033                if (C->getType() != Op->getType())
4034                  C =
4035                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4036                                                                  Op->getType(),
4037                                                                  false),
4038                                          C, Op->getType());
4039                Operands.push_back(C);
4040              } else
4041                return V;
4042            } else {
4043              return V;
4044            }
4045          }
4046        }
4047
4048        Constant *C;
4049        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4050          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4051                                              Operands[0], Operands[1], TD);
4052        else
4053          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4054                                       &Operands[0], Operands.size(), TD);
4055        return getSCEV(C);
4056      }
4057    }
4058
4059    // This is some other type of SCEVUnknown, just return it.
4060    return V;
4061  }
4062
4063  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4064    // Avoid performing the look-up in the common case where the specified
4065    // expression has no loop-variant portions.
4066    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4067      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4068      if (OpAtScope != Comm->getOperand(i)) {
4069        // Okay, at least one of these operands is loop variant but might be
4070        // foldable.  Build a new instance of the folded commutative expression.
4071        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4072                                            Comm->op_begin()+i);
4073        NewOps.push_back(OpAtScope);
4074
4075        for (++i; i != e; ++i) {
4076          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4077          NewOps.push_back(OpAtScope);
4078        }
4079        if (isa<SCEVAddExpr>(Comm))
4080          return getAddExpr(NewOps);
4081        if (isa<SCEVMulExpr>(Comm))
4082          return getMulExpr(NewOps);
4083        if (isa<SCEVSMaxExpr>(Comm))
4084          return getSMaxExpr(NewOps);
4085        if (isa<SCEVUMaxExpr>(Comm))
4086          return getUMaxExpr(NewOps);
4087        llvm_unreachable("Unknown commutative SCEV type!");
4088      }
4089    }
4090    // If we got here, all operands are loop invariant.
4091    return Comm;
4092  }
4093
4094  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4095    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4096    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4097    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4098      return Div;   // must be loop invariant
4099    return getUDivExpr(LHS, RHS);
4100  }
4101
4102  // If this is a loop recurrence for a loop that does not contain L, then we
4103  // are dealing with the final value computed by the loop.
4104  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4105    if (!L || !AddRec->getLoop()->contains(L)) {
4106      // To evaluate this recurrence, we need to know how many times the AddRec
4107      // loop iterates.  Compute this now.
4108      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4109      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4110
4111      // Then, evaluate the AddRec.
4112      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4113    }
4114    return AddRec;
4115  }
4116
4117  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4118    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4119    if (Op == Cast->getOperand())
4120      return Cast;  // must be loop invariant
4121    return getZeroExtendExpr(Op, Cast->getType());
4122  }
4123
4124  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4125    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4126    if (Op == Cast->getOperand())
4127      return Cast;  // must be loop invariant
4128    return getSignExtendExpr(Op, Cast->getType());
4129  }
4130
4131  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4132    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4133    if (Op == Cast->getOperand())
4134      return Cast;  // must be loop invariant
4135    return getTruncateExpr(Op, Cast->getType());
4136  }
4137
4138  if (isa<SCEVTargetDataConstant>(V))
4139    return V;
4140
4141  llvm_unreachable("Unknown SCEV type!");
4142  return 0;
4143}
4144
4145/// getSCEVAtScope - This is a convenience function which does
4146/// getSCEVAtScope(getSCEV(V), L).
4147const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4148  return getSCEVAtScope(getSCEV(V), L);
4149}
4150
4151/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4152/// following equation:
4153///
4154///     A * X = B (mod N)
4155///
4156/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4157/// A and B isn't important.
4158///
4159/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4160static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4161                                               ScalarEvolution &SE) {
4162  uint32_t BW = A.getBitWidth();
4163  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4164  assert(A != 0 && "A must be non-zero.");
4165
4166  // 1. D = gcd(A, N)
4167  //
4168  // The gcd of A and N may have only one prime factor: 2. The number of
4169  // trailing zeros in A is its multiplicity
4170  uint32_t Mult2 = A.countTrailingZeros();
4171  // D = 2^Mult2
4172
4173  // 2. Check if B is divisible by D.
4174  //
4175  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4176  // is not less than multiplicity of this prime factor for D.
4177  if (B.countTrailingZeros() < Mult2)
4178    return SE.getCouldNotCompute();
4179
4180  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4181  // modulo (N / D).
4182  //
4183  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4184  // bit width during computations.
4185  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4186  APInt Mod(BW + 1, 0);
4187  Mod.set(BW - Mult2);  // Mod = N / D
4188  APInt I = AD.multiplicativeInverse(Mod);
4189
4190  // 4. Compute the minimum unsigned root of the equation:
4191  // I * (B / D) mod (N / D)
4192  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4193
4194  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4195  // bits.
4196  return SE.getConstant(Result.trunc(BW));
4197}
4198
4199/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4200/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4201/// might be the same) or two SCEVCouldNotCompute objects.
4202///
4203static std::pair<const SCEV *,const SCEV *>
4204SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4205  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4206  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4207  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4208  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4209
4210  // We currently can only solve this if the coefficients are constants.
4211  if (!LC || !MC || !NC) {
4212    const SCEV *CNC = SE.getCouldNotCompute();
4213    return std::make_pair(CNC, CNC);
4214  }
4215
4216  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4217  const APInt &L = LC->getValue()->getValue();
4218  const APInt &M = MC->getValue()->getValue();
4219  const APInt &N = NC->getValue()->getValue();
4220  APInt Two(BitWidth, 2);
4221  APInt Four(BitWidth, 4);
4222
4223  {
4224    using namespace APIntOps;
4225    const APInt& C = L;
4226    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4227    // The B coefficient is M-N/2
4228    APInt B(M);
4229    B -= sdiv(N,Two);
4230
4231    // The A coefficient is N/2
4232    APInt A(N.sdiv(Two));
4233
4234    // Compute the B^2-4ac term.
4235    APInt SqrtTerm(B);
4236    SqrtTerm *= B;
4237    SqrtTerm -= Four * (A * C);
4238
4239    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4240    // integer value or else APInt::sqrt() will assert.
4241    APInt SqrtVal(SqrtTerm.sqrt());
4242
4243    // Compute the two solutions for the quadratic formula.
4244    // The divisions must be performed as signed divisions.
4245    APInt NegB(-B);
4246    APInt TwoA( A << 1 );
4247    if (TwoA.isMinValue()) {
4248      const SCEV *CNC = SE.getCouldNotCompute();
4249      return std::make_pair(CNC, CNC);
4250    }
4251
4252    LLVMContext &Context = SE.getContext();
4253
4254    ConstantInt *Solution1 =
4255      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4256    ConstantInt *Solution2 =
4257      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4258
4259    return std::make_pair(SE.getConstant(Solution1),
4260                          SE.getConstant(Solution2));
4261    } // end APIntOps namespace
4262}
4263
4264/// HowFarToZero - Return the number of times a backedge comparing the specified
4265/// value to zero will execute.  If not computable, return CouldNotCompute.
4266const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4267  // If the value is a constant
4268  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4269    // If the value is already zero, the branch will execute zero times.
4270    if (C->getValue()->isZero()) return C;
4271    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4272  }
4273
4274  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4275  if (!AddRec || AddRec->getLoop() != L)
4276    return getCouldNotCompute();
4277
4278  if (AddRec->isAffine()) {
4279    // If this is an affine expression, the execution count of this branch is
4280    // the minimum unsigned root of the following equation:
4281    //
4282    //     Start + Step*N = 0 (mod 2^BW)
4283    //
4284    // equivalent to:
4285    //
4286    //             Step*N = -Start (mod 2^BW)
4287    //
4288    // where BW is the common bit width of Start and Step.
4289
4290    // Get the initial value for the loop.
4291    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4292                                       L->getParentLoop());
4293    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4294                                      L->getParentLoop());
4295
4296    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4297      // For now we handle only constant steps.
4298
4299      // First, handle unitary steps.
4300      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4301        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4302      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4303        return Start;                           //    N = Start (as unsigned)
4304
4305      // Then, try to solve the above equation provided that Start is constant.
4306      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4307        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4308                                            -StartC->getValue()->getValue(),
4309                                            *this);
4310    }
4311  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4312    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4313    // the quadratic equation to solve it.
4314    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4315                                                                    *this);
4316    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4317    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4318    if (R1) {
4319#if 0
4320      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4321             << "  sol#2: " << *R2 << "\n";
4322#endif
4323      // Pick the smallest positive root value.
4324      if (ConstantInt *CB =
4325          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4326                                   R1->getValue(), R2->getValue()))) {
4327        if (CB->getZExtValue() == false)
4328          std::swap(R1, R2);   // R1 is the minimum root now.
4329
4330        // We can only use this value if the chrec ends up with an exact zero
4331        // value at this index.  When solving for "X*X != 5", for example, we
4332        // should not accept a root of 2.
4333        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4334        if (Val->isZero())
4335          return R1;  // We found a quadratic root!
4336      }
4337    }
4338  }
4339
4340  return getCouldNotCompute();
4341}
4342
4343/// HowFarToNonZero - Return the number of times a backedge checking the
4344/// specified value for nonzero will execute.  If not computable, return
4345/// CouldNotCompute
4346const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4347  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4348  // handle them yet except for the trivial case.  This could be expanded in the
4349  // future as needed.
4350
4351  // If the value is a constant, check to see if it is known to be non-zero
4352  // already.  If so, the backedge will execute zero times.
4353  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4354    if (!C->getValue()->isNullValue())
4355      return getIntegerSCEV(0, C->getType());
4356    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4357  }
4358
4359  // We could implement others, but I really doubt anyone writes loops like
4360  // this, and if they did, they would already be constant folded.
4361  return getCouldNotCompute();
4362}
4363
4364/// getLoopPredecessor - If the given loop's header has exactly one unique
4365/// predecessor outside the loop, return it. Otherwise return null.
4366///
4367BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4368  BasicBlock *Header = L->getHeader();
4369  BasicBlock *Pred = 0;
4370  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4371       PI != E; ++PI)
4372    if (!L->contains(*PI)) {
4373      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4374      Pred = *PI;
4375    }
4376  return Pred;
4377}
4378
4379/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4380/// (which may not be an immediate predecessor) which has exactly one
4381/// successor from which BB is reachable, or null if no such block is
4382/// found.
4383///
4384BasicBlock *
4385ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4386  // If the block has a unique predecessor, then there is no path from the
4387  // predecessor to the block that does not go through the direct edge
4388  // from the predecessor to the block.
4389  if (BasicBlock *Pred = BB->getSinglePredecessor())
4390    return Pred;
4391
4392  // A loop's header is defined to be a block that dominates the loop.
4393  // If the header has a unique predecessor outside the loop, it must be
4394  // a block that has exactly one successor that can reach the loop.
4395  if (Loop *L = LI->getLoopFor(BB))
4396    return getLoopPredecessor(L);
4397
4398  return 0;
4399}
4400
4401/// HasSameValue - SCEV structural equivalence is usually sufficient for
4402/// testing whether two expressions are equal, however for the purposes of
4403/// looking for a condition guarding a loop, it can be useful to be a little
4404/// more general, since a front-end may have replicated the controlling
4405/// expression.
4406///
4407static bool HasSameValue(const SCEV *A, const SCEV *B) {
4408  // Quick check to see if they are the same SCEV.
4409  if (A == B) return true;
4410
4411  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4412  // two different instructions with the same value. Check for this case.
4413  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4414    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4415      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4416        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4417          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4418            return true;
4419
4420  // Otherwise assume they may have a different value.
4421  return false;
4422}
4423
4424bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4425  return getSignedRange(S).getSignedMax().isNegative();
4426}
4427
4428bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4429  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4430}
4431
4432bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4433  return !getSignedRange(S).getSignedMin().isNegative();
4434}
4435
4436bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4437  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4438}
4439
4440bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4441  return isKnownNegative(S) || isKnownPositive(S);
4442}
4443
4444bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4445                                       const SCEV *LHS, const SCEV *RHS) {
4446
4447  if (HasSameValue(LHS, RHS))
4448    return ICmpInst::isTrueWhenEqual(Pred);
4449
4450  switch (Pred) {
4451  default:
4452    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4453    break;
4454  case ICmpInst::ICMP_SGT:
4455    Pred = ICmpInst::ICMP_SLT;
4456    std::swap(LHS, RHS);
4457  case ICmpInst::ICMP_SLT: {
4458    ConstantRange LHSRange = getSignedRange(LHS);
4459    ConstantRange RHSRange = getSignedRange(RHS);
4460    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4461      return true;
4462    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4463      return false;
4464    break;
4465  }
4466  case ICmpInst::ICMP_SGE:
4467    Pred = ICmpInst::ICMP_SLE;
4468    std::swap(LHS, RHS);
4469  case ICmpInst::ICMP_SLE: {
4470    ConstantRange LHSRange = getSignedRange(LHS);
4471    ConstantRange RHSRange = getSignedRange(RHS);
4472    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4473      return true;
4474    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4475      return false;
4476    break;
4477  }
4478  case ICmpInst::ICMP_UGT:
4479    Pred = ICmpInst::ICMP_ULT;
4480    std::swap(LHS, RHS);
4481  case ICmpInst::ICMP_ULT: {
4482    ConstantRange LHSRange = getUnsignedRange(LHS);
4483    ConstantRange RHSRange = getUnsignedRange(RHS);
4484    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4485      return true;
4486    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4487      return false;
4488    break;
4489  }
4490  case ICmpInst::ICMP_UGE:
4491    Pred = ICmpInst::ICMP_ULE;
4492    std::swap(LHS, RHS);
4493  case ICmpInst::ICMP_ULE: {
4494    ConstantRange LHSRange = getUnsignedRange(LHS);
4495    ConstantRange RHSRange = getUnsignedRange(RHS);
4496    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4497      return true;
4498    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4499      return false;
4500    break;
4501  }
4502  case ICmpInst::ICMP_NE: {
4503    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4504      return true;
4505    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4506      return true;
4507
4508    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4509    if (isKnownNonZero(Diff))
4510      return true;
4511    break;
4512  }
4513  case ICmpInst::ICMP_EQ:
4514    // The check at the top of the function catches the case where
4515    // the values are known to be equal.
4516    break;
4517  }
4518  return false;
4519}
4520
4521/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4522/// protected by a conditional between LHS and RHS.  This is used to
4523/// to eliminate casts.
4524bool
4525ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4526                                             ICmpInst::Predicate Pred,
4527                                             const SCEV *LHS, const SCEV *RHS) {
4528  // Interpret a null as meaning no loop, where there is obviously no guard
4529  // (interprocedural conditions notwithstanding).
4530  if (!L) return true;
4531
4532  BasicBlock *Latch = L->getLoopLatch();
4533  if (!Latch)
4534    return false;
4535
4536  BranchInst *LoopContinuePredicate =
4537    dyn_cast<BranchInst>(Latch->getTerminator());
4538  if (!LoopContinuePredicate ||
4539      LoopContinuePredicate->isUnconditional())
4540    return false;
4541
4542  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4543                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4544}
4545
4546/// isLoopGuardedByCond - Test whether entry to the loop is protected
4547/// by a conditional between LHS and RHS.  This is used to help avoid max
4548/// expressions in loop trip counts, and to eliminate casts.
4549bool
4550ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4551                                     ICmpInst::Predicate Pred,
4552                                     const SCEV *LHS, const SCEV *RHS) {
4553  // Interpret a null as meaning no loop, where there is obviously no guard
4554  // (interprocedural conditions notwithstanding).
4555  if (!L) return false;
4556
4557  BasicBlock *Predecessor = getLoopPredecessor(L);
4558  BasicBlock *PredecessorDest = L->getHeader();
4559
4560  // Starting at the loop predecessor, climb up the predecessor chain, as long
4561  // as there are predecessors that can be found that have unique successors
4562  // leading to the original header.
4563  for (; Predecessor;
4564       PredecessorDest = Predecessor,
4565       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4566
4567    BranchInst *LoopEntryPredicate =
4568      dyn_cast<BranchInst>(Predecessor->getTerminator());
4569    if (!LoopEntryPredicate ||
4570        LoopEntryPredicate->isUnconditional())
4571      continue;
4572
4573    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4574                      LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4575      return true;
4576  }
4577
4578  return false;
4579}
4580
4581/// isImpliedCond - Test whether the condition described by Pred, LHS,
4582/// and RHS is true whenever the given Cond value evaluates to true.
4583bool ScalarEvolution::isImpliedCond(Value *CondValue,
4584                                    ICmpInst::Predicate Pred,
4585                                    const SCEV *LHS, const SCEV *RHS,
4586                                    bool Inverse) {
4587  // Recursivly handle And and Or conditions.
4588  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4589    if (BO->getOpcode() == Instruction::And) {
4590      if (!Inverse)
4591        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4592               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4593    } else if (BO->getOpcode() == Instruction::Or) {
4594      if (Inverse)
4595        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4596               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4597    }
4598  }
4599
4600  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4601  if (!ICI) return false;
4602
4603  // Bail if the ICmp's operands' types are wider than the needed type
4604  // before attempting to call getSCEV on them. This avoids infinite
4605  // recursion, since the analysis of widening casts can require loop
4606  // exit condition information for overflow checking, which would
4607  // lead back here.
4608  if (getTypeSizeInBits(LHS->getType()) <
4609      getTypeSizeInBits(ICI->getOperand(0)->getType()))
4610    return false;
4611
4612  // Now that we found a conditional branch that dominates the loop, check to
4613  // see if it is the comparison we are looking for.
4614  ICmpInst::Predicate FoundPred;
4615  if (Inverse)
4616    FoundPred = ICI->getInversePredicate();
4617  else
4618    FoundPred = ICI->getPredicate();
4619
4620  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4621  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4622
4623  // Balance the types. The case where FoundLHS' type is wider than
4624  // LHS' type is checked for above.
4625  if (getTypeSizeInBits(LHS->getType()) >
4626      getTypeSizeInBits(FoundLHS->getType())) {
4627    if (CmpInst::isSigned(Pred)) {
4628      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4629      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4630    } else {
4631      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4632      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4633    }
4634  }
4635
4636  // Canonicalize the query to match the way instcombine will have
4637  // canonicalized the comparison.
4638  // First, put a constant operand on the right.
4639  if (isa<SCEVConstant>(LHS)) {
4640    std::swap(LHS, RHS);
4641    Pred = ICmpInst::getSwappedPredicate(Pred);
4642  }
4643  // Then, canonicalize comparisons with boundary cases.
4644  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4645    const APInt &RA = RC->getValue()->getValue();
4646    switch (Pred) {
4647    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4648    case ICmpInst::ICMP_EQ:
4649    case ICmpInst::ICMP_NE:
4650      break;
4651    case ICmpInst::ICMP_UGE:
4652      if ((RA - 1).isMinValue()) {
4653        Pred = ICmpInst::ICMP_NE;
4654        RHS = getConstant(RA - 1);
4655        break;
4656      }
4657      if (RA.isMaxValue()) {
4658        Pred = ICmpInst::ICMP_EQ;
4659        break;
4660      }
4661      if (RA.isMinValue()) return true;
4662      break;
4663    case ICmpInst::ICMP_ULE:
4664      if ((RA + 1).isMaxValue()) {
4665        Pred = ICmpInst::ICMP_NE;
4666        RHS = getConstant(RA + 1);
4667        break;
4668      }
4669      if (RA.isMinValue()) {
4670        Pred = ICmpInst::ICMP_EQ;
4671        break;
4672      }
4673      if (RA.isMaxValue()) return true;
4674      break;
4675    case ICmpInst::ICMP_SGE:
4676      if ((RA - 1).isMinSignedValue()) {
4677        Pred = ICmpInst::ICMP_NE;
4678        RHS = getConstant(RA - 1);
4679        break;
4680      }
4681      if (RA.isMaxSignedValue()) {
4682        Pred = ICmpInst::ICMP_EQ;
4683        break;
4684      }
4685      if (RA.isMinSignedValue()) return true;
4686      break;
4687    case ICmpInst::ICMP_SLE:
4688      if ((RA + 1).isMaxSignedValue()) {
4689        Pred = ICmpInst::ICMP_NE;
4690        RHS = getConstant(RA + 1);
4691        break;
4692      }
4693      if (RA.isMinSignedValue()) {
4694        Pred = ICmpInst::ICMP_EQ;
4695        break;
4696      }
4697      if (RA.isMaxSignedValue()) return true;
4698      break;
4699    case ICmpInst::ICMP_UGT:
4700      if (RA.isMinValue()) {
4701        Pred = ICmpInst::ICMP_NE;
4702        break;
4703      }
4704      if ((RA + 1).isMaxValue()) {
4705        Pred = ICmpInst::ICMP_EQ;
4706        RHS = getConstant(RA + 1);
4707        break;
4708      }
4709      if (RA.isMaxValue()) return false;
4710      break;
4711    case ICmpInst::ICMP_ULT:
4712      if (RA.isMaxValue()) {
4713        Pred = ICmpInst::ICMP_NE;
4714        break;
4715      }
4716      if ((RA - 1).isMinValue()) {
4717        Pred = ICmpInst::ICMP_EQ;
4718        RHS = getConstant(RA - 1);
4719        break;
4720      }
4721      if (RA.isMinValue()) return false;
4722      break;
4723    case ICmpInst::ICMP_SGT:
4724      if (RA.isMinSignedValue()) {
4725        Pred = ICmpInst::ICMP_NE;
4726        break;
4727      }
4728      if ((RA + 1).isMaxSignedValue()) {
4729        Pred = ICmpInst::ICMP_EQ;
4730        RHS = getConstant(RA + 1);
4731        break;
4732      }
4733      if (RA.isMaxSignedValue()) return false;
4734      break;
4735    case ICmpInst::ICMP_SLT:
4736      if (RA.isMaxSignedValue()) {
4737        Pred = ICmpInst::ICMP_NE;
4738        break;
4739      }
4740      if ((RA - 1).isMinSignedValue()) {
4741       Pred = ICmpInst::ICMP_EQ;
4742       RHS = getConstant(RA - 1);
4743       break;
4744      }
4745      if (RA.isMinSignedValue()) return false;
4746      break;
4747    }
4748  }
4749
4750  // Check to see if we can make the LHS or RHS match.
4751  if (LHS == FoundRHS || RHS == FoundLHS) {
4752    if (isa<SCEVConstant>(RHS)) {
4753      std::swap(FoundLHS, FoundRHS);
4754      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4755    } else {
4756      std::swap(LHS, RHS);
4757      Pred = ICmpInst::getSwappedPredicate(Pred);
4758    }
4759  }
4760
4761  // Check whether the found predicate is the same as the desired predicate.
4762  if (FoundPred == Pred)
4763    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4764
4765  // Check whether swapping the found predicate makes it the same as the
4766  // desired predicate.
4767  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4768    if (isa<SCEVConstant>(RHS))
4769      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4770    else
4771      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4772                                   RHS, LHS, FoundLHS, FoundRHS);
4773  }
4774
4775  // Check whether the actual condition is beyond sufficient.
4776  if (FoundPred == ICmpInst::ICMP_EQ)
4777    if (ICmpInst::isTrueWhenEqual(Pred))
4778      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4779        return true;
4780  if (Pred == ICmpInst::ICMP_NE)
4781    if (!ICmpInst::isTrueWhenEqual(FoundPred))
4782      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4783        return true;
4784
4785  // Otherwise assume the worst.
4786  return false;
4787}
4788
4789/// isImpliedCondOperands - Test whether the condition described by Pred,
4790/// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4791/// and FoundRHS is true.
4792bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4793                                            const SCEV *LHS, const SCEV *RHS,
4794                                            const SCEV *FoundLHS,
4795                                            const SCEV *FoundRHS) {
4796  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4797                                     FoundLHS, FoundRHS) ||
4798         // ~x < ~y --> x > y
4799         isImpliedCondOperandsHelper(Pred, LHS, RHS,
4800                                     getNotSCEV(FoundRHS),
4801                                     getNotSCEV(FoundLHS));
4802}
4803
4804/// isImpliedCondOperandsHelper - Test whether the condition described by
4805/// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4806/// FoundLHS, and FoundRHS is true.
4807bool
4808ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4809                                             const SCEV *LHS, const SCEV *RHS,
4810                                             const SCEV *FoundLHS,
4811                                             const SCEV *FoundRHS) {
4812  switch (Pred) {
4813  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4814  case ICmpInst::ICMP_EQ:
4815  case ICmpInst::ICMP_NE:
4816    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4817      return true;
4818    break;
4819  case ICmpInst::ICMP_SLT:
4820  case ICmpInst::ICMP_SLE:
4821    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4822        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4823      return true;
4824    break;
4825  case ICmpInst::ICMP_SGT:
4826  case ICmpInst::ICMP_SGE:
4827    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4828        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4829      return true;
4830    break;
4831  case ICmpInst::ICMP_ULT:
4832  case ICmpInst::ICMP_ULE:
4833    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4834        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4835      return true;
4836    break;
4837  case ICmpInst::ICMP_UGT:
4838  case ICmpInst::ICMP_UGE:
4839    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4840        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4841      return true;
4842    break;
4843  }
4844
4845  return false;
4846}
4847
4848/// getBECount - Subtract the end and start values and divide by the step,
4849/// rounding up, to get the number of times the backedge is executed. Return
4850/// CouldNotCompute if an intermediate computation overflows.
4851const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4852                                        const SCEV *End,
4853                                        const SCEV *Step,
4854                                        bool NoWrap) {
4855  const Type *Ty = Start->getType();
4856  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4857  const SCEV *Diff = getMinusSCEV(End, Start);
4858  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4859
4860  // Add an adjustment to the difference between End and Start so that
4861  // the division will effectively round up.
4862  const SCEV *Add = getAddExpr(Diff, RoundUp);
4863
4864  if (!NoWrap) {
4865    // Check Add for unsigned overflow.
4866    // TODO: More sophisticated things could be done here.
4867    const Type *WideTy = IntegerType::get(getContext(),
4868                                          getTypeSizeInBits(Ty) + 1);
4869    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4870    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4871    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4872    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4873      return getCouldNotCompute();
4874  }
4875
4876  return getUDivExpr(Add, Step);
4877}
4878
4879/// HowManyLessThans - Return the number of times a backedge containing the
4880/// specified less-than comparison will execute.  If not computable, return
4881/// CouldNotCompute.
4882ScalarEvolution::BackedgeTakenInfo
4883ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4884                                  const Loop *L, bool isSigned) {
4885  // Only handle:  "ADDREC < LoopInvariant".
4886  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4887
4888  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4889  if (!AddRec || AddRec->getLoop() != L)
4890    return getCouldNotCompute();
4891
4892  // Check to see if we have a flag which makes analysis easy.
4893  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
4894                           AddRec->hasNoUnsignedWrap();
4895
4896  if (AddRec->isAffine()) {
4897    // FORNOW: We only support unit strides.
4898    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4899    const SCEV *Step = AddRec->getStepRecurrence(*this);
4900
4901    // TODO: handle non-constant strides.
4902    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4903    if (!CStep || CStep->isZero())
4904      return getCouldNotCompute();
4905    if (CStep->isOne()) {
4906      // With unit stride, the iteration never steps past the limit value.
4907    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4908      if (NoWrap) {
4909        // We know the iteration won't step past the maximum value for its type.
4910        ;
4911      } else if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4912        // Test whether a positive iteration iteration can step past the limit
4913        // value and past the maximum value for its type in a single step.
4914        if (isSigned) {
4915          APInt Max = APInt::getSignedMaxValue(BitWidth);
4916          if ((Max - CStep->getValue()->getValue())
4917                .slt(CLimit->getValue()->getValue()))
4918            return getCouldNotCompute();
4919        } else {
4920          APInt Max = APInt::getMaxValue(BitWidth);
4921          if ((Max - CStep->getValue()->getValue())
4922                .ult(CLimit->getValue()->getValue()))
4923            return getCouldNotCompute();
4924        }
4925      } else
4926        // TODO: handle non-constant limit values below.
4927        return getCouldNotCompute();
4928    } else
4929      // TODO: handle negative strides below.
4930      return getCouldNotCompute();
4931
4932    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4933    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4934    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4935    // treat m-n as signed nor unsigned due to overflow possibility.
4936
4937    // First, we get the value of the LHS in the first iteration: n
4938    const SCEV *Start = AddRec->getOperand(0);
4939
4940    // Determine the minimum constant start value.
4941    const SCEV *MinStart = getConstant(isSigned ?
4942      getSignedRange(Start).getSignedMin() :
4943      getUnsignedRange(Start).getUnsignedMin());
4944
4945    // If we know that the condition is true in order to enter the loop,
4946    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4947    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4948    // the division must round up.
4949    const SCEV *End = RHS;
4950    if (!isLoopGuardedByCond(L,
4951                             isSigned ? ICmpInst::ICMP_SLT :
4952                                        ICmpInst::ICMP_ULT,
4953                             getMinusSCEV(Start, Step), RHS))
4954      End = isSigned ? getSMaxExpr(RHS, Start)
4955                     : getUMaxExpr(RHS, Start);
4956
4957    // Determine the maximum constant end value.
4958    const SCEV *MaxEnd = getConstant(isSigned ?
4959      getSignedRange(End).getSignedMax() :
4960      getUnsignedRange(End).getUnsignedMax());
4961
4962    // Finally, we subtract these two values and divide, rounding up, to get
4963    // the number of times the backedge is executed.
4964    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
4965
4966    // The maximum backedge count is similar, except using the minimum start
4967    // value and the maximum end value.
4968    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
4969
4970    return BackedgeTakenInfo(BECount, MaxBECount);
4971  }
4972
4973  return getCouldNotCompute();
4974}
4975
4976/// getNumIterationsInRange - Return the number of iterations of this loop that
4977/// produce values in the specified constant range.  Another way of looking at
4978/// this is that it returns the first iteration number where the value is not in
4979/// the condition, thus computing the exit count. If the iteration count can't
4980/// be computed, an instance of SCEVCouldNotCompute is returned.
4981const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4982                                                    ScalarEvolution &SE) const {
4983  if (Range.isFullSet())  // Infinite loop.
4984    return SE.getCouldNotCompute();
4985
4986  // If the start is a non-zero constant, shift the range to simplify things.
4987  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4988    if (!SC->getValue()->isZero()) {
4989      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4990      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4991      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4992      if (const SCEVAddRecExpr *ShiftedAddRec =
4993            dyn_cast<SCEVAddRecExpr>(Shifted))
4994        return ShiftedAddRec->getNumIterationsInRange(
4995                           Range.subtract(SC->getValue()->getValue()), SE);
4996      // This is strange and shouldn't happen.
4997      return SE.getCouldNotCompute();
4998    }
4999
5000  // The only time we can solve this is when we have all constant indices.
5001  // Otherwise, we cannot determine the overflow conditions.
5002  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5003    if (!isa<SCEVConstant>(getOperand(i)))
5004      return SE.getCouldNotCompute();
5005
5006
5007  // Okay at this point we know that all elements of the chrec are constants and
5008  // that the start element is zero.
5009
5010  // First check to see if the range contains zero.  If not, the first
5011  // iteration exits.
5012  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5013  if (!Range.contains(APInt(BitWidth, 0)))
5014    return SE.getIntegerSCEV(0, getType());
5015
5016  if (isAffine()) {
5017    // If this is an affine expression then we have this situation:
5018    //   Solve {0,+,A} in Range  ===  Ax in Range
5019
5020    // We know that zero is in the range.  If A is positive then we know that
5021    // the upper value of the range must be the first possible exit value.
5022    // If A is negative then the lower of the range is the last possible loop
5023    // value.  Also note that we already checked for a full range.
5024    APInt One(BitWidth,1);
5025    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5026    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5027
5028    // The exit value should be (End+A)/A.
5029    APInt ExitVal = (End + A).udiv(A);
5030    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5031
5032    // Evaluate at the exit value.  If we really did fall out of the valid
5033    // range, then we computed our trip count, otherwise wrap around or other
5034    // things must have happened.
5035    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5036    if (Range.contains(Val->getValue()))
5037      return SE.getCouldNotCompute();  // Something strange happened
5038
5039    // Ensure that the previous value is in the range.  This is a sanity check.
5040    assert(Range.contains(
5041           EvaluateConstantChrecAtConstant(this,
5042           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5043           "Linear scev computation is off in a bad way!");
5044    return SE.getConstant(ExitValue);
5045  } else if (isQuadratic()) {
5046    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5047    // quadratic equation to solve it.  To do this, we must frame our problem in
5048    // terms of figuring out when zero is crossed, instead of when
5049    // Range.getUpper() is crossed.
5050    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5051    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5052    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5053
5054    // Next, solve the constructed addrec
5055    std::pair<const SCEV *,const SCEV *> Roots =
5056      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5057    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5058    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5059    if (R1) {
5060      // Pick the smallest positive root value.
5061      if (ConstantInt *CB =
5062          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5063                         R1->getValue(), R2->getValue()))) {
5064        if (CB->getZExtValue() == false)
5065          std::swap(R1, R2);   // R1 is the minimum root now.
5066
5067        // Make sure the root is not off by one.  The returned iteration should
5068        // not be in the range, but the previous one should be.  When solving
5069        // for "X*X < 5", for example, we should not return a root of 2.
5070        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5071                                                             R1->getValue(),
5072                                                             SE);
5073        if (Range.contains(R1Val->getValue())) {
5074          // The next iteration must be out of the range...
5075          ConstantInt *NextVal =
5076                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5077
5078          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5079          if (!Range.contains(R1Val->getValue()))
5080            return SE.getConstant(NextVal);
5081          return SE.getCouldNotCompute();  // Something strange happened
5082        }
5083
5084        // If R1 was not in the range, then it is a good return value.  Make
5085        // sure that R1-1 WAS in the range though, just in case.
5086        ConstantInt *NextVal =
5087               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5088        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5089        if (Range.contains(R1Val->getValue()))
5090          return R1;
5091        return SE.getCouldNotCompute();  // Something strange happened
5092      }
5093    }
5094  }
5095
5096  return SE.getCouldNotCompute();
5097}
5098
5099
5100
5101//===----------------------------------------------------------------------===//
5102//                   SCEVCallbackVH Class Implementation
5103//===----------------------------------------------------------------------===//
5104
5105void ScalarEvolution::SCEVCallbackVH::deleted() {
5106  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5107  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5108    SE->ConstantEvolutionLoopExitValue.erase(PN);
5109  SE->Scalars.erase(getValPtr());
5110  // this now dangles!
5111}
5112
5113void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5114  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5115
5116  // Forget all the expressions associated with users of the old value,
5117  // so that future queries will recompute the expressions using the new
5118  // value.
5119  SmallVector<User *, 16> Worklist;
5120  SmallPtrSet<User *, 8> Visited;
5121  Value *Old = getValPtr();
5122  bool DeleteOld = false;
5123  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5124       UI != UE; ++UI)
5125    Worklist.push_back(*UI);
5126  while (!Worklist.empty()) {
5127    User *U = Worklist.pop_back_val();
5128    // Deleting the Old value will cause this to dangle. Postpone
5129    // that until everything else is done.
5130    if (U == Old) {
5131      DeleteOld = true;
5132      continue;
5133    }
5134    if (!Visited.insert(U))
5135      continue;
5136    if (PHINode *PN = dyn_cast<PHINode>(U))
5137      SE->ConstantEvolutionLoopExitValue.erase(PN);
5138    SE->Scalars.erase(U);
5139    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5140         UI != UE; ++UI)
5141      Worklist.push_back(*UI);
5142  }
5143  // Delete the Old value if it (indirectly) references itself.
5144  if (DeleteOld) {
5145    if (PHINode *PN = dyn_cast<PHINode>(Old))
5146      SE->ConstantEvolutionLoopExitValue.erase(PN);
5147    SE->Scalars.erase(Old);
5148    // this now dangles!
5149  }
5150  // this may dangle!
5151}
5152
5153ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5154  : CallbackVH(V), SE(se) {}
5155
5156//===----------------------------------------------------------------------===//
5157//                   ScalarEvolution Class Implementation
5158//===----------------------------------------------------------------------===//
5159
5160ScalarEvolution::ScalarEvolution()
5161  : FunctionPass(&ID) {
5162}
5163
5164bool ScalarEvolution::runOnFunction(Function &F) {
5165  this->F = &F;
5166  LI = &getAnalysis<LoopInfo>();
5167  TD = getAnalysisIfAvailable<TargetData>();
5168  return false;
5169}
5170
5171void ScalarEvolution::releaseMemory() {
5172  Scalars.clear();
5173  BackedgeTakenCounts.clear();
5174  ConstantEvolutionLoopExitValue.clear();
5175  ValuesAtScopes.clear();
5176  UniqueSCEVs.clear();
5177  SCEVAllocator.Reset();
5178}
5179
5180void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5181  AU.setPreservesAll();
5182  AU.addRequiredTransitive<LoopInfo>();
5183}
5184
5185bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5186  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5187}
5188
5189static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5190                          const Loop *L) {
5191  // Print all inner loops first
5192  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5193    PrintLoopInfo(OS, SE, *I);
5194
5195  OS << "Loop " << L->getHeader()->getName() << ": ";
5196
5197  SmallVector<BasicBlock *, 8> ExitBlocks;
5198  L->getExitBlocks(ExitBlocks);
5199  if (ExitBlocks.size() != 1)
5200    OS << "<multiple exits> ";
5201
5202  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5203    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5204  } else {
5205    OS << "Unpredictable backedge-taken count. ";
5206  }
5207
5208  OS << "\n";
5209  OS << "Loop " << L->getHeader()->getName() << ": ";
5210
5211  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5212    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5213  } else {
5214    OS << "Unpredictable max backedge-taken count. ";
5215  }
5216
5217  OS << "\n";
5218}
5219
5220void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5221  // ScalarEvolution's implementaiton of the print method is to print
5222  // out SCEV values of all instructions that are interesting. Doing
5223  // this potentially causes it to create new SCEV objects though,
5224  // which technically conflicts with the const qualifier. This isn't
5225  // observable from outside the class though, so casting away the
5226  // const isn't dangerous.
5227  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5228
5229  OS << "Classifying expressions for: " << F->getName() << "\n";
5230  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5231    if (isSCEVable(I->getType())) {
5232      OS << *I << '\n';
5233      OS << "  -->  ";
5234      const SCEV *SV = SE.getSCEV(&*I);
5235      SV->print(OS);
5236
5237      const Loop *L = LI->getLoopFor((*I).getParent());
5238
5239      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5240      if (AtUse != SV) {
5241        OS << "  -->  ";
5242        AtUse->print(OS);
5243      }
5244
5245      if (L) {
5246        OS << "\t\t" "Exits: ";
5247        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5248        if (!ExitValue->isLoopInvariant(L)) {
5249          OS << "<<Unknown>>";
5250        } else {
5251          OS << *ExitValue;
5252        }
5253      }
5254
5255      OS << "\n";
5256    }
5257
5258  OS << "Determining loop execution counts for: " << F->getName() << "\n";
5259  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5260    PrintLoopInfo(OS, &SE, *I);
5261}
5262
5263