ScalarEvolution.cpp revision 372b46cad9f745859f542f9d2216991585ae83f4
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the const SCEV*
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Analysis/ValueTracking.h"
72#include "llvm/Assembly/Writer.h"
73#include "llvm/Target/TargetData.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/Support/Compiler.h"
76#include "llvm/Support/ConstantRange.h"
77#include "llvm/Support/GetElementPtrTypeIterator.h"
78#include "llvm/Support/InstIterator.h"
79#include "llvm/Support/ManagedStatic.h"
80#include "llvm/Support/MathExtras.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/ADT/Statistic.h"
83#include "llvm/ADT/STLExtras.h"
84#include <algorithm>
85using namespace llvm;
86
87STATISTIC(NumArrayLenItCounts,
88          "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90          "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92          "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94          "Number of loops with trip counts computed by force");
95
96static cl::opt<unsigned>
97MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                        cl::desc("Maximum number of iterations SCEV will "
99                                 "symbolically execute a constant derived loop"),
100                        cl::init(100));
101
102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107//                           SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
115  print(errs());
116  errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120  raw_os_ostream OS(o);
121  print(OS);
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130bool SCEV::isOne() const {
131  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132    return SC->getValue()->isOne();
133  return false;
134}
135
136SCEVCouldNotCompute::SCEVCouldNotCompute(const ScalarEvolution* p) :
137  SCEV(scCouldNotCompute, p) {}
138SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
139
140bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
141  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142  return false;
143}
144
145const Type *SCEVCouldNotCompute::getType() const {
146  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147  return 0;
148}
149
150bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
151  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152  return false;
153}
154
155const SCEV* SCEVCouldNotCompute::
156replaceSymbolicValuesWithConcrete(const SCEV* Sym,
157                                  const SCEV* Conc,
158                                  ScalarEvolution &SE) const {
159  return this;
160}
161
162void SCEVCouldNotCompute::print(raw_ostream &OS) const {
163  OS << "***COULDNOTCOMPUTE***";
164}
165
166bool SCEVCouldNotCompute::classof(const SCEV *S) {
167  return S->getSCEVType() == scCouldNotCompute;
168}
169
170
171// SCEVConstants - Only allow the creation of one SCEVConstant for any
172// particular value.  Don't use a const SCEV* here, or else the object will
173// never be deleted!
174
175const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
176  SCEVConstant *&R = SCEVConstants[V];
177  if (R == 0) R = new SCEVConstant(V, this);
178  return R;
179}
180
181const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
182  return getConstant(ConstantInt::get(Val));
183}
184
185const SCEV*
186ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
187  return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
188}
189
190const Type *SCEVConstant::getType() const { return V->getType(); }
191
192void SCEVConstant::print(raw_ostream &OS) const {
193  WriteAsOperand(OS, V, false);
194}
195
196SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
197                           const SCEV* op, const Type *ty,
198                           const ScalarEvolution* p)
199  : SCEV(SCEVTy, p), Op(op), Ty(ty) {}
200
201SCEVCastExpr::~SCEVCastExpr() {}
202
203bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
204  return Op->dominates(BB, DT);
205}
206
207// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
208// particular input.  Don't use a const SCEV* here, or else the object will
209// never be deleted!
210
211SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty,
212                                   const ScalarEvolution* p)
213  : SCEVCastExpr(scTruncate, op, ty, p) {
214  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215         (Ty->isInteger() || isa<PointerType>(Ty)) &&
216         "Cannot truncate non-integer value!");
217}
218
219
220void SCEVTruncateExpr::print(raw_ostream &OS) const {
221  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
222}
223
224// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
225// particular input.  Don't use a const SCEV* here, or else the object will never
226// be deleted!
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty,
229                                       const ScalarEvolution* p)
230  : SCEVCastExpr(scZeroExtend, op, ty, p) {
231  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
232         (Ty->isInteger() || isa<PointerType>(Ty)) &&
233         "Cannot zero extend non-integer value!");
234}
235
236void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
237  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
238}
239
240// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
241// particular input.  Don't use a const SCEV* here, or else the object will never
242// be deleted!
243
244SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty,
245                                       const ScalarEvolution* p)
246  : SCEVCastExpr(scSignExtend, op, ty, p) {
247  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
248         (Ty->isInteger() || isa<PointerType>(Ty)) &&
249         "Cannot sign extend non-integer value!");
250}
251
252void SCEVSignExtendExpr::print(raw_ostream &OS) const {
253  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
254}
255
256// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
257// particular input.  Don't use a const SCEV* here, or else the object will never
258// be deleted!
259
260void SCEVCommutativeExpr::print(raw_ostream &OS) const {
261  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
262  const char *OpStr = getOperationStr();
263  OS << "(" << *Operands[0];
264  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
265    OS << OpStr << *Operands[i];
266  OS << ")";
267}
268
269const SCEV* SCEVCommutativeExpr::
270replaceSymbolicValuesWithConcrete(const SCEV* Sym,
271                                  const SCEV* Conc,
272                                  ScalarEvolution &SE) const {
273  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
274    const SCEV* H =
275      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
276    if (H != getOperand(i)) {
277      SmallVector<const SCEV*, 8> NewOps;
278      NewOps.reserve(getNumOperands());
279      for (unsigned j = 0; j != i; ++j)
280        NewOps.push_back(getOperand(j));
281      NewOps.push_back(H);
282      for (++i; i != e; ++i)
283        NewOps.push_back(getOperand(i)->
284                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
285
286      if (isa<SCEVAddExpr>(this))
287        return SE.getAddExpr(NewOps);
288      else if (isa<SCEVMulExpr>(this))
289        return SE.getMulExpr(NewOps);
290      else if (isa<SCEVSMaxExpr>(this))
291        return SE.getSMaxExpr(NewOps);
292      else if (isa<SCEVUMaxExpr>(this))
293        return SE.getUMaxExpr(NewOps);
294      else
295        assert(0 && "Unknown commutative expr!");
296    }
297  }
298  return this;
299}
300
301bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
302  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
303    if (!getOperand(i)->dominates(BB, DT))
304      return false;
305  }
306  return true;
307}
308
309
310// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
311// input.  Don't use a const SCEV* here, or else the object will never be
312// deleted!
313
314bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
315  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
316}
317
318void SCEVUDivExpr::print(raw_ostream &OS) const {
319  OS << "(" << *LHS << " /u " << *RHS << ")";
320}
321
322const Type *SCEVUDivExpr::getType() const {
323  // In most cases the types of LHS and RHS will be the same, but in some
324  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
325  // depend on the type for correctness, but handling types carefully can
326  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
327  // a pointer type than the RHS, so use the RHS' type here.
328  return RHS->getType();
329}
330
331// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
332// particular input.  Don't use a const SCEV* here, or else the object will never
333// be deleted!
334
335const SCEV* SCEVAddRecExpr::
336replaceSymbolicValuesWithConcrete(const SCEV* Sym,
337                                  const SCEV* Conc,
338                                  ScalarEvolution &SE) const {
339  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
340    const SCEV* H =
341      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
342    if (H != getOperand(i)) {
343      SmallVector<const SCEV*, 8> NewOps;
344      NewOps.reserve(getNumOperands());
345      for (unsigned j = 0; j != i; ++j)
346        NewOps.push_back(getOperand(j));
347      NewOps.push_back(H);
348      for (++i; i != e; ++i)
349        NewOps.push_back(getOperand(i)->
350                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
351
352      return SE.getAddRecExpr(NewOps, L);
353    }
354  }
355  return this;
356}
357
358
359bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
360  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
361  // contain L and if the start is invariant.
362  // Add recurrences are never invariant in the function-body (null loop).
363  return QueryLoop &&
364         !QueryLoop->contains(L->getHeader()) &&
365         getOperand(0)->isLoopInvariant(QueryLoop);
366}
367
368
369void SCEVAddRecExpr::print(raw_ostream &OS) const {
370  OS << "{" << *Operands[0];
371  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
372    OS << ",+," << *Operands[i];
373  OS << "}<" << L->getHeader()->getName() + ">";
374}
375
376// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
377// value.  Don't use a const SCEV* here, or else the object will never be
378// deleted!
379
380bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
381  // All non-instruction values are loop invariant.  All instructions are loop
382  // invariant if they are not contained in the specified loop.
383  // Instructions are never considered invariant in the function body
384  // (null loop) because they are defined within the "loop".
385  if (Instruction *I = dyn_cast<Instruction>(V))
386    return L && !L->contains(I->getParent());
387  return true;
388}
389
390bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
391  if (Instruction *I = dyn_cast<Instruction>(getValue()))
392    return DT->dominates(I->getParent(), BB);
393  return true;
394}
395
396const Type *SCEVUnknown::getType() const {
397  return V->getType();
398}
399
400void SCEVUnknown::print(raw_ostream &OS) const {
401  WriteAsOperand(OS, V, false);
402}
403
404//===----------------------------------------------------------------------===//
405//                               SCEV Utilities
406//===----------------------------------------------------------------------===//
407
408namespace {
409  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
410  /// than the complexity of the RHS.  This comparator is used to canonicalize
411  /// expressions.
412  class VISIBILITY_HIDDEN SCEVComplexityCompare {
413    LoopInfo *LI;
414  public:
415    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
416
417    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
418      // Primarily, sort the SCEVs by their getSCEVType().
419      if (LHS->getSCEVType() != RHS->getSCEVType())
420        return LHS->getSCEVType() < RHS->getSCEVType();
421
422      // Aside from the getSCEVType() ordering, the particular ordering
423      // isn't very important except that it's beneficial to be consistent,
424      // so that (a + b) and (b + a) don't end up as different expressions.
425
426      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
427      // not as complete as it could be.
428      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
429        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
430
431        // Order pointer values after integer values. This helps SCEVExpander
432        // form GEPs.
433        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
434          return false;
435        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
436          return true;
437
438        // Compare getValueID values.
439        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
440          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
441
442        // Sort arguments by their position.
443        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
444          const Argument *RA = cast<Argument>(RU->getValue());
445          return LA->getArgNo() < RA->getArgNo();
446        }
447
448        // For instructions, compare their loop depth, and their opcode.
449        // This is pretty loose.
450        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
451          Instruction *RV = cast<Instruction>(RU->getValue());
452
453          // Compare loop depths.
454          if (LI->getLoopDepth(LV->getParent()) !=
455              LI->getLoopDepth(RV->getParent()))
456            return LI->getLoopDepth(LV->getParent()) <
457                   LI->getLoopDepth(RV->getParent());
458
459          // Compare opcodes.
460          if (LV->getOpcode() != RV->getOpcode())
461            return LV->getOpcode() < RV->getOpcode();
462
463          // Compare the number of operands.
464          if (LV->getNumOperands() != RV->getNumOperands())
465            return LV->getNumOperands() < RV->getNumOperands();
466        }
467
468        return false;
469      }
470
471      // Compare constant values.
472      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
473        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
474        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
475      }
476
477      // Compare addrec loop depths.
478      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
479        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
480        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
481          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
482      }
483
484      // Lexicographically compare n-ary expressions.
485      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
486        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
487        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
488          if (i >= RC->getNumOperands())
489            return false;
490          if (operator()(LC->getOperand(i), RC->getOperand(i)))
491            return true;
492          if (operator()(RC->getOperand(i), LC->getOperand(i)))
493            return false;
494        }
495        return LC->getNumOperands() < RC->getNumOperands();
496      }
497
498      // Lexicographically compare udiv expressions.
499      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
500        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
501        if (operator()(LC->getLHS(), RC->getLHS()))
502          return true;
503        if (operator()(RC->getLHS(), LC->getLHS()))
504          return false;
505        if (operator()(LC->getRHS(), RC->getRHS()))
506          return true;
507        if (operator()(RC->getRHS(), LC->getRHS()))
508          return false;
509        return false;
510      }
511
512      // Compare cast expressions by operand.
513      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
514        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
515        return operator()(LC->getOperand(), RC->getOperand());
516      }
517
518      assert(0 && "Unknown SCEV kind!");
519      return false;
520    }
521  };
522}
523
524/// GroupByComplexity - Given a list of SCEV objects, order them by their
525/// complexity, and group objects of the same complexity together by value.
526/// When this routine is finished, we know that any duplicates in the vector are
527/// consecutive and that complexity is monotonically increasing.
528///
529/// Note that we go take special precautions to ensure that we get determinstic
530/// results from this routine.  In other words, we don't want the results of
531/// this to depend on where the addresses of various SCEV objects happened to
532/// land in memory.
533///
534static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
535                              LoopInfo *LI) {
536  if (Ops.size() < 2) return;  // Noop
537  if (Ops.size() == 2) {
538    // This is the common case, which also happens to be trivially simple.
539    // Special case it.
540    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
541      std::swap(Ops[0], Ops[1]);
542    return;
543  }
544
545  // Do the rough sort by complexity.
546  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
547
548  // Now that we are sorted by complexity, group elements of the same
549  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
550  // be extremely short in practice.  Note that we take this approach because we
551  // do not want to depend on the addresses of the objects we are grouping.
552  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
553    const SCEV *S = Ops[i];
554    unsigned Complexity = S->getSCEVType();
555
556    // If there are any objects of the same complexity and same value as this
557    // one, group them.
558    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
559      if (Ops[j] == S) { // Found a duplicate.
560        // Move it to immediately after i'th element.
561        std::swap(Ops[i+1], Ops[j]);
562        ++i;   // no need to rescan it.
563        if (i == e-2) return;  // Done!
564      }
565    }
566  }
567}
568
569
570
571//===----------------------------------------------------------------------===//
572//                      Simple SCEV method implementations
573//===----------------------------------------------------------------------===//
574
575/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
576/// Assume, K > 0.
577static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
578                                      ScalarEvolution &SE,
579                                      const Type* ResultTy) {
580  // Handle the simplest case efficiently.
581  if (K == 1)
582    return SE.getTruncateOrZeroExtend(It, ResultTy);
583
584  // We are using the following formula for BC(It, K):
585  //
586  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
587  //
588  // Suppose, W is the bitwidth of the return value.  We must be prepared for
589  // overflow.  Hence, we must assure that the result of our computation is
590  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
591  // safe in modular arithmetic.
592  //
593  // However, this code doesn't use exactly that formula; the formula it uses
594  // is something like the following, where T is the number of factors of 2 in
595  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
596  // exponentiation:
597  //
598  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
599  //
600  // This formula is trivially equivalent to the previous formula.  However,
601  // this formula can be implemented much more efficiently.  The trick is that
602  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
603  // arithmetic.  To do exact division in modular arithmetic, all we have
604  // to do is multiply by the inverse.  Therefore, this step can be done at
605  // width W.
606  //
607  // The next issue is how to safely do the division by 2^T.  The way this
608  // is done is by doing the multiplication step at a width of at least W + T
609  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
610  // when we perform the division by 2^T (which is equivalent to a right shift
611  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
612  // truncated out after the division by 2^T.
613  //
614  // In comparison to just directly using the first formula, this technique
615  // is much more efficient; using the first formula requires W * K bits,
616  // but this formula less than W + K bits. Also, the first formula requires
617  // a division step, whereas this formula only requires multiplies and shifts.
618  //
619  // It doesn't matter whether the subtraction step is done in the calculation
620  // width or the input iteration count's width; if the subtraction overflows,
621  // the result must be zero anyway.  We prefer here to do it in the width of
622  // the induction variable because it helps a lot for certain cases; CodeGen
623  // isn't smart enough to ignore the overflow, which leads to much less
624  // efficient code if the width of the subtraction is wider than the native
625  // register width.
626  //
627  // (It's possible to not widen at all by pulling out factors of 2 before
628  // the multiplication; for example, K=2 can be calculated as
629  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
630  // extra arithmetic, so it's not an obvious win, and it gets
631  // much more complicated for K > 3.)
632
633  // Protection from insane SCEVs; this bound is conservative,
634  // but it probably doesn't matter.
635  if (K > 1000)
636    return SE.getCouldNotCompute();
637
638  unsigned W = SE.getTypeSizeInBits(ResultTy);
639
640  // Calculate K! / 2^T and T; we divide out the factors of two before
641  // multiplying for calculating K! / 2^T to avoid overflow.
642  // Other overflow doesn't matter because we only care about the bottom
643  // W bits of the result.
644  APInt OddFactorial(W, 1);
645  unsigned T = 1;
646  for (unsigned i = 3; i <= K; ++i) {
647    APInt Mult(W, i);
648    unsigned TwoFactors = Mult.countTrailingZeros();
649    T += TwoFactors;
650    Mult = Mult.lshr(TwoFactors);
651    OddFactorial *= Mult;
652  }
653
654  // We need at least W + T bits for the multiplication step
655  unsigned CalculationBits = W + T;
656
657  // Calcuate 2^T, at width T+W.
658  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
659
660  // Calculate the multiplicative inverse of K! / 2^T;
661  // this multiplication factor will perform the exact division by
662  // K! / 2^T.
663  APInt Mod = APInt::getSignedMinValue(W+1);
664  APInt MultiplyFactor = OddFactorial.zext(W+1);
665  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
666  MultiplyFactor = MultiplyFactor.trunc(W);
667
668  // Calculate the product, at width T+W
669  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
670  const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
671  for (unsigned i = 1; i != K; ++i) {
672    const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
673    Dividend = SE.getMulExpr(Dividend,
674                             SE.getTruncateOrZeroExtend(S, CalculationTy));
675  }
676
677  // Divide by 2^T
678  const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
679
680  // Truncate the result, and divide by K! / 2^T.
681
682  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
683                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
684}
685
686/// evaluateAtIteration - Return the value of this chain of recurrences at
687/// the specified iteration number.  We can evaluate this recurrence by
688/// multiplying each element in the chain by the binomial coefficient
689/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
690///
691///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
692///
693/// where BC(It, k) stands for binomial coefficient.
694///
695const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
696                                               ScalarEvolution &SE) const {
697  const SCEV* Result = getStart();
698  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
699    // The computation is correct in the face of overflow provided that the
700    // multiplication is performed _after_ the evaluation of the binomial
701    // coefficient.
702    const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType());
703    if (isa<SCEVCouldNotCompute>(Coeff))
704      return Coeff;
705
706    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
707  }
708  return Result;
709}
710
711//===----------------------------------------------------------------------===//
712//                    SCEV Expression folder implementations
713//===----------------------------------------------------------------------===//
714
715const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
716                                            const Type *Ty) {
717  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
718         "This is not a truncating conversion!");
719  assert(isSCEVable(Ty) &&
720         "This is not a conversion to a SCEVable type!");
721  Ty = getEffectiveSCEVType(Ty);
722
723  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
724    return getUnknown(
725        ConstantExpr::getTrunc(SC->getValue(), Ty));
726
727  // trunc(trunc(x)) --> trunc(x)
728  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
729    return getTruncateExpr(ST->getOperand(), Ty);
730
731  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
732  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
733    return getTruncateOrSignExtend(SS->getOperand(), Ty);
734
735  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
736  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
737    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
738
739  // If the input value is a chrec scev, truncate the chrec's operands.
740  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
741    SmallVector<const SCEV*, 4> Operands;
742    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
743      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
744    return getAddRecExpr(Operands, AddRec->getLoop());
745  }
746
747  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
748  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty, this);
749  return Result;
750}
751
752const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
753                                              const Type *Ty) {
754  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
755         "This is not an extending conversion!");
756  assert(isSCEVable(Ty) &&
757         "This is not a conversion to a SCEVable type!");
758  Ty = getEffectiveSCEVType(Ty);
759
760  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
761    const Type *IntTy = getEffectiveSCEVType(Ty);
762    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
763    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
764    return getUnknown(C);
765  }
766
767  // zext(zext(x)) --> zext(x)
768  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
769    return getZeroExtendExpr(SZ->getOperand(), Ty);
770
771  // If the input value is a chrec scev, and we can prove that the value
772  // did not overflow the old, smaller, value, we can zero extend all of the
773  // operands (often constants).  This allows analysis of something like
774  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
775  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
776    if (AR->isAffine()) {
777      // Check whether the backedge-taken count is SCEVCouldNotCompute.
778      // Note that this serves two purposes: It filters out loops that are
779      // simply not analyzable, and it covers the case where this code is
780      // being called from within backedge-taken count analysis, such that
781      // attempting to ask for the backedge-taken count would likely result
782      // in infinite recursion. In the later case, the analysis code will
783      // cope with a conservative value, and it will take care to purge
784      // that value once it has finished.
785      const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
786      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
787        // Manually compute the final value for AR, checking for
788        // overflow.
789        const SCEV* Start = AR->getStart();
790        const SCEV* Step = AR->getStepRecurrence(*this);
791
792        // Check whether the backedge-taken count can be losslessly casted to
793        // the addrec's type. The count is always unsigned.
794        const SCEV* CastedMaxBECount =
795          getTruncateOrZeroExtend(MaxBECount, Start->getType());
796        const SCEV* RecastedMaxBECount =
797          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
798        if (MaxBECount == RecastedMaxBECount) {
799          const Type *WideTy =
800            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
801          // Check whether Start+Step*MaxBECount has no unsigned overflow.
802          const SCEV* ZMul =
803            getMulExpr(CastedMaxBECount,
804                       getTruncateOrZeroExtend(Step, Start->getType()));
805          const SCEV* Add = getAddExpr(Start, ZMul);
806          const SCEV* OperandExtendedAdd =
807            getAddExpr(getZeroExtendExpr(Start, WideTy),
808                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
809                                  getZeroExtendExpr(Step, WideTy)));
810          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
811            // Return the expression with the addrec on the outside.
812            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
813                                 getZeroExtendExpr(Step, Ty),
814                                 AR->getLoop());
815
816          // Similar to above, only this time treat the step value as signed.
817          // This covers loops that count down.
818          const SCEV* SMul =
819            getMulExpr(CastedMaxBECount,
820                       getTruncateOrSignExtend(Step, Start->getType()));
821          Add = getAddExpr(Start, SMul);
822          OperandExtendedAdd =
823            getAddExpr(getZeroExtendExpr(Start, WideTy),
824                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
825                                  getSignExtendExpr(Step, WideTy)));
826          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
827            // Return the expression with the addrec on the outside.
828            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
829                                 getSignExtendExpr(Step, Ty),
830                                 AR->getLoop());
831        }
832      }
833    }
834
835  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
836  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty, this);
837  return Result;
838}
839
840const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
841                                              const Type *Ty) {
842  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
843         "This is not an extending conversion!");
844  assert(isSCEVable(Ty) &&
845         "This is not a conversion to a SCEVable type!");
846  Ty = getEffectiveSCEVType(Ty);
847
848  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
849    const Type *IntTy = getEffectiveSCEVType(Ty);
850    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
851    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
852    return getUnknown(C);
853  }
854
855  // sext(sext(x)) --> sext(x)
856  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
857    return getSignExtendExpr(SS->getOperand(), Ty);
858
859  // If the input value is a chrec scev, and we can prove that the value
860  // did not overflow the old, smaller, value, we can sign extend all of the
861  // operands (often constants).  This allows analysis of something like
862  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
863  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
864    if (AR->isAffine()) {
865      // Check whether the backedge-taken count is SCEVCouldNotCompute.
866      // Note that this serves two purposes: It filters out loops that are
867      // simply not analyzable, and it covers the case where this code is
868      // being called from within backedge-taken count analysis, such that
869      // attempting to ask for the backedge-taken count would likely result
870      // in infinite recursion. In the later case, the analysis code will
871      // cope with a conservative value, and it will take care to purge
872      // that value once it has finished.
873      const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
874      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
875        // Manually compute the final value for AR, checking for
876        // overflow.
877        const SCEV* Start = AR->getStart();
878        const SCEV* Step = AR->getStepRecurrence(*this);
879
880        // Check whether the backedge-taken count can be losslessly casted to
881        // the addrec's type. The count is always unsigned.
882        const SCEV* CastedMaxBECount =
883          getTruncateOrZeroExtend(MaxBECount, Start->getType());
884        const SCEV* RecastedMaxBECount =
885          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
886        if (MaxBECount == RecastedMaxBECount) {
887          const Type *WideTy =
888            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
889          // Check whether Start+Step*MaxBECount has no signed overflow.
890          const SCEV* SMul =
891            getMulExpr(CastedMaxBECount,
892                       getTruncateOrSignExtend(Step, Start->getType()));
893          const SCEV* Add = getAddExpr(Start, SMul);
894          const SCEV* OperandExtendedAdd =
895            getAddExpr(getSignExtendExpr(Start, WideTy),
896                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
897                                  getSignExtendExpr(Step, WideTy)));
898          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
899            // Return the expression with the addrec on the outside.
900            return getAddRecExpr(getSignExtendExpr(Start, Ty),
901                                 getSignExtendExpr(Step, Ty),
902                                 AR->getLoop());
903        }
904      }
905    }
906
907  SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)];
908  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty, this);
909  return Result;
910}
911
912/// getAnyExtendExpr - Return a SCEV for the given operand extended with
913/// unspecified bits out to the given type.
914///
915const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
916                                             const Type *Ty) {
917  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
918         "This is not an extending conversion!");
919  assert(isSCEVable(Ty) &&
920         "This is not a conversion to a SCEVable type!");
921  Ty = getEffectiveSCEVType(Ty);
922
923  // Sign-extend negative constants.
924  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
925    if (SC->getValue()->getValue().isNegative())
926      return getSignExtendExpr(Op, Ty);
927
928  // Peel off a truncate cast.
929  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
930    const SCEV* NewOp = T->getOperand();
931    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
932      return getAnyExtendExpr(NewOp, Ty);
933    return getTruncateOrNoop(NewOp, Ty);
934  }
935
936  // Next try a zext cast. If the cast is folded, use it.
937  const SCEV* ZExt = getZeroExtendExpr(Op, Ty);
938  if (!isa<SCEVZeroExtendExpr>(ZExt))
939    return ZExt;
940
941  // Next try a sext cast. If the cast is folded, use it.
942  const SCEV* SExt = getSignExtendExpr(Op, Ty);
943  if (!isa<SCEVSignExtendExpr>(SExt))
944    return SExt;
945
946  // If the expression is obviously signed, use the sext cast value.
947  if (isa<SCEVSMaxExpr>(Op))
948    return SExt;
949
950  // Absent any other information, use the zext cast value.
951  return ZExt;
952}
953
954/// CollectAddOperandsWithScales - Process the given Ops list, which is
955/// a list of operands to be added under the given scale, update the given
956/// map. This is a helper function for getAddRecExpr. As an example of
957/// what it does, given a sequence of operands that would form an add
958/// expression like this:
959///
960///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
961///
962/// where A and B are constants, update the map with these values:
963///
964///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
965///
966/// and add 13 + A*B*29 to AccumulatedConstant.
967/// This will allow getAddRecExpr to produce this:
968///
969///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
970///
971/// This form often exposes folding opportunities that are hidden in
972/// the original operand list.
973///
974/// Return true iff it appears that any interesting folding opportunities
975/// may be exposed. This helps getAddRecExpr short-circuit extra work in
976/// the common case where no interesting opportunities are present, and
977/// is also used as a check to avoid infinite recursion.
978///
979static bool
980CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
981                             SmallVector<const SCEV*, 8> &NewOps,
982                             APInt &AccumulatedConstant,
983                             const SmallVectorImpl<const SCEV*> &Ops,
984                             const APInt &Scale,
985                             ScalarEvolution &SE) {
986  bool Interesting = false;
987
988  // Iterate over the add operands.
989  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
990    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
991    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
992      APInt NewScale =
993        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
994      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
995        // A multiplication of a constant with another add; recurse.
996        Interesting |=
997          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
998                                       cast<SCEVAddExpr>(Mul->getOperand(1))
999                                         ->getOperands(),
1000                                       NewScale, SE);
1001      } else {
1002        // A multiplication of a constant with some other value. Update
1003        // the map.
1004        SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1005        const SCEV* Key = SE.getMulExpr(MulOps);
1006        std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1007          M.insert(std::make_pair(Key, APInt()));
1008        if (Pair.second) {
1009          Pair.first->second = NewScale;
1010          NewOps.push_back(Pair.first->first);
1011        } else {
1012          Pair.first->second += NewScale;
1013          // The map already had an entry for this value, which may indicate
1014          // a folding opportunity.
1015          Interesting = true;
1016        }
1017      }
1018    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1019      // Pull a buried constant out to the outside.
1020      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1021        Interesting = true;
1022      AccumulatedConstant += Scale * C->getValue()->getValue();
1023    } else {
1024      // An ordinary operand. Update the map.
1025      std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
1026        M.insert(std::make_pair(Ops[i], APInt()));
1027      if (Pair.second) {
1028        Pair.first->second = Scale;
1029        NewOps.push_back(Pair.first->first);
1030      } else {
1031        Pair.first->second += Scale;
1032        // The map already had an entry for this value, which may indicate
1033        // a folding opportunity.
1034        Interesting = true;
1035      }
1036    }
1037  }
1038
1039  return Interesting;
1040}
1041
1042namespace {
1043  struct APIntCompare {
1044    bool operator()(const APInt &LHS, const APInt &RHS) const {
1045      return LHS.ult(RHS);
1046    }
1047  };
1048}
1049
1050/// getAddExpr - Get a canonical add expression, or something simpler if
1051/// possible.
1052const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
1053  assert(!Ops.empty() && "Cannot get empty add!");
1054  if (Ops.size() == 1) return Ops[0];
1055#ifndef NDEBUG
1056  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1057    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1058           getEffectiveSCEVType(Ops[0]->getType()) &&
1059           "SCEVAddExpr operand types don't match!");
1060#endif
1061
1062  // Sort by complexity, this groups all similar expression types together.
1063  GroupByComplexity(Ops, LI);
1064
1065  // If there are any constants, fold them together.
1066  unsigned Idx = 0;
1067  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1068    ++Idx;
1069    assert(Idx < Ops.size());
1070    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1071      // We found two constants, fold them together!
1072      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1073                           RHSC->getValue()->getValue());
1074      if (Ops.size() == 2) return Ops[0];
1075      Ops.erase(Ops.begin()+1);  // Erase the folded element
1076      LHSC = cast<SCEVConstant>(Ops[0]);
1077    }
1078
1079    // If we are left with a constant zero being added, strip it off.
1080    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1081      Ops.erase(Ops.begin());
1082      --Idx;
1083    }
1084  }
1085
1086  if (Ops.size() == 1) return Ops[0];
1087
1088  // Okay, check to see if the same value occurs in the operand list twice.  If
1089  // so, merge them together into an multiply expression.  Since we sorted the
1090  // list, these values are required to be adjacent.
1091  const Type *Ty = Ops[0]->getType();
1092  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1093    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1094      // Found a match, merge the two values into a multiply, and add any
1095      // remaining values to the result.
1096      const SCEV* Two = getIntegerSCEV(2, Ty);
1097      const SCEV* Mul = getMulExpr(Ops[i], Two);
1098      if (Ops.size() == 2)
1099        return Mul;
1100      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1101      Ops.push_back(Mul);
1102      return getAddExpr(Ops);
1103    }
1104
1105  // Check for truncates. If all the operands are truncated from the same
1106  // type, see if factoring out the truncate would permit the result to be
1107  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1108  // if the contents of the resulting outer trunc fold to something simple.
1109  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1110    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1111    const Type *DstType = Trunc->getType();
1112    const Type *SrcType = Trunc->getOperand()->getType();
1113    SmallVector<const SCEV*, 8> LargeOps;
1114    bool Ok = true;
1115    // Check all the operands to see if they can be represented in the
1116    // source type of the truncate.
1117    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1118      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1119        if (T->getOperand()->getType() != SrcType) {
1120          Ok = false;
1121          break;
1122        }
1123        LargeOps.push_back(T->getOperand());
1124      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1125        // This could be either sign or zero extension, but sign extension
1126        // is much more likely to be foldable here.
1127        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1128      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1129        SmallVector<const SCEV*, 8> LargeMulOps;
1130        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1131          if (const SCEVTruncateExpr *T =
1132                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1133            if (T->getOperand()->getType() != SrcType) {
1134              Ok = false;
1135              break;
1136            }
1137            LargeMulOps.push_back(T->getOperand());
1138          } else if (const SCEVConstant *C =
1139                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1140            // This could be either sign or zero extension, but sign extension
1141            // is much more likely to be foldable here.
1142            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1143          } else {
1144            Ok = false;
1145            break;
1146          }
1147        }
1148        if (Ok)
1149          LargeOps.push_back(getMulExpr(LargeMulOps));
1150      } else {
1151        Ok = false;
1152        break;
1153      }
1154    }
1155    if (Ok) {
1156      // Evaluate the expression in the larger type.
1157      const SCEV* Fold = getAddExpr(LargeOps);
1158      // If it folds to something simple, use it. Otherwise, don't.
1159      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1160        return getTruncateExpr(Fold, DstType);
1161    }
1162  }
1163
1164  // Skip past any other cast SCEVs.
1165  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1166    ++Idx;
1167
1168  // If there are add operands they would be next.
1169  if (Idx < Ops.size()) {
1170    bool DeletedAdd = false;
1171    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1172      // If we have an add, expand the add operands onto the end of the operands
1173      // list.
1174      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1175      Ops.erase(Ops.begin()+Idx);
1176      DeletedAdd = true;
1177    }
1178
1179    // If we deleted at least one add, we added operands to the end of the list,
1180    // and they are not necessarily sorted.  Recurse to resort and resimplify
1181    // any operands we just aquired.
1182    if (DeletedAdd)
1183      return getAddExpr(Ops);
1184  }
1185
1186  // Skip over the add expression until we get to a multiply.
1187  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1188    ++Idx;
1189
1190  // Check to see if there are any folding opportunities present with
1191  // operands multiplied by constant values.
1192  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1193    uint64_t BitWidth = getTypeSizeInBits(Ty);
1194    DenseMap<const SCEV*, APInt> M;
1195    SmallVector<const SCEV*, 8> NewOps;
1196    APInt AccumulatedConstant(BitWidth, 0);
1197    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1198                                     Ops, APInt(BitWidth, 1), *this)) {
1199      // Some interesting folding opportunity is present, so its worthwhile to
1200      // re-generate the operands list. Group the operands by constant scale,
1201      // to avoid multiplying by the same constant scale multiple times.
1202      std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists;
1203      for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(),
1204           E = NewOps.end(); I != E; ++I)
1205        MulOpLists[M.find(*I)->second].push_back(*I);
1206      // Re-generate the operands list.
1207      Ops.clear();
1208      if (AccumulatedConstant != 0)
1209        Ops.push_back(getConstant(AccumulatedConstant));
1210      for (std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare>::iterator I =
1211           MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1212        if (I->first != 0)
1213          Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second)));
1214      if (Ops.empty())
1215        return getIntegerSCEV(0, Ty);
1216      if (Ops.size() == 1)
1217        return Ops[0];
1218      return getAddExpr(Ops);
1219    }
1220  }
1221
1222  // If we are adding something to a multiply expression, make sure the
1223  // something is not already an operand of the multiply.  If so, merge it into
1224  // the multiply.
1225  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1226    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1227    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1228      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1229      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1230        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1231          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1232          const SCEV* InnerMul = Mul->getOperand(MulOp == 0);
1233          if (Mul->getNumOperands() != 2) {
1234            // If the multiply has more than two operands, we must get the
1235            // Y*Z term.
1236            SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
1237            MulOps.erase(MulOps.begin()+MulOp);
1238            InnerMul = getMulExpr(MulOps);
1239          }
1240          const SCEV* One = getIntegerSCEV(1, Ty);
1241          const SCEV* AddOne = getAddExpr(InnerMul, One);
1242          const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1243          if (Ops.size() == 2) return OuterMul;
1244          if (AddOp < Idx) {
1245            Ops.erase(Ops.begin()+AddOp);
1246            Ops.erase(Ops.begin()+Idx-1);
1247          } else {
1248            Ops.erase(Ops.begin()+Idx);
1249            Ops.erase(Ops.begin()+AddOp-1);
1250          }
1251          Ops.push_back(OuterMul);
1252          return getAddExpr(Ops);
1253        }
1254
1255      // Check this multiply against other multiplies being added together.
1256      for (unsigned OtherMulIdx = Idx+1;
1257           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1258           ++OtherMulIdx) {
1259        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1260        // If MulOp occurs in OtherMul, we can fold the two multiplies
1261        // together.
1262        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1263             OMulOp != e; ++OMulOp)
1264          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1265            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1266            const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0);
1267            if (Mul->getNumOperands() != 2) {
1268              SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
1269              MulOps.erase(MulOps.begin()+MulOp);
1270              InnerMul1 = getMulExpr(MulOps);
1271            }
1272            const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1273            if (OtherMul->getNumOperands() != 2) {
1274              SmallVector<const SCEV*, 4> MulOps(OtherMul->op_begin(),
1275                                             OtherMul->op_end());
1276              MulOps.erase(MulOps.begin()+OMulOp);
1277              InnerMul2 = getMulExpr(MulOps);
1278            }
1279            const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1280            const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1281            if (Ops.size() == 2) return OuterMul;
1282            Ops.erase(Ops.begin()+Idx);
1283            Ops.erase(Ops.begin()+OtherMulIdx-1);
1284            Ops.push_back(OuterMul);
1285            return getAddExpr(Ops);
1286          }
1287      }
1288    }
1289  }
1290
1291  // If there are any add recurrences in the operands list, see if any other
1292  // added values are loop invariant.  If so, we can fold them into the
1293  // recurrence.
1294  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1295    ++Idx;
1296
1297  // Scan over all recurrences, trying to fold loop invariants into them.
1298  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1299    // Scan all of the other operands to this add and add them to the vector if
1300    // they are loop invariant w.r.t. the recurrence.
1301    SmallVector<const SCEV*, 8> LIOps;
1302    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1303    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1304      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1305        LIOps.push_back(Ops[i]);
1306        Ops.erase(Ops.begin()+i);
1307        --i; --e;
1308      }
1309
1310    // If we found some loop invariants, fold them into the recurrence.
1311    if (!LIOps.empty()) {
1312      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1313      LIOps.push_back(AddRec->getStart());
1314
1315      SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(),
1316                                           AddRec->op_end());
1317      AddRecOps[0] = getAddExpr(LIOps);
1318
1319      const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1320      // If all of the other operands were loop invariant, we are done.
1321      if (Ops.size() == 1) return NewRec;
1322
1323      // Otherwise, add the folded AddRec by the non-liv parts.
1324      for (unsigned i = 0;; ++i)
1325        if (Ops[i] == AddRec) {
1326          Ops[i] = NewRec;
1327          break;
1328        }
1329      return getAddExpr(Ops);
1330    }
1331
1332    // Okay, if there weren't any loop invariants to be folded, check to see if
1333    // there are multiple AddRec's with the same loop induction variable being
1334    // added together.  If so, we can fold them.
1335    for (unsigned OtherIdx = Idx+1;
1336         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1337      if (OtherIdx != Idx) {
1338        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1339        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1340          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1341          SmallVector<const SCEV*, 4> NewOps(AddRec->op_begin(), AddRec->op_end());
1342          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1343            if (i >= NewOps.size()) {
1344              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1345                            OtherAddRec->op_end());
1346              break;
1347            }
1348            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1349          }
1350          const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1351
1352          if (Ops.size() == 2) return NewAddRec;
1353
1354          Ops.erase(Ops.begin()+Idx);
1355          Ops.erase(Ops.begin()+OtherIdx-1);
1356          Ops.push_back(NewAddRec);
1357          return getAddExpr(Ops);
1358        }
1359      }
1360
1361    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1362    // next one.
1363  }
1364
1365  // Okay, it looks like we really DO need an add expr.  Check to see if we
1366  // already have one, otherwise create a new one.
1367  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1368  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
1369                                                                 SCEVOps)];
1370  if (Result == 0) Result = new SCEVAddExpr(Ops, this);
1371  return Result;
1372}
1373
1374
1375/// getMulExpr - Get a canonical multiply expression, or something simpler if
1376/// possible.
1377const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
1378  assert(!Ops.empty() && "Cannot get empty mul!");
1379#ifndef NDEBUG
1380  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1381    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1382           getEffectiveSCEVType(Ops[0]->getType()) &&
1383           "SCEVMulExpr operand types don't match!");
1384#endif
1385
1386  // Sort by complexity, this groups all similar expression types together.
1387  GroupByComplexity(Ops, LI);
1388
1389  // If there are any constants, fold them together.
1390  unsigned Idx = 0;
1391  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1392
1393    // C1*(C2+V) -> C1*C2 + C1*V
1394    if (Ops.size() == 2)
1395      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1396        if (Add->getNumOperands() == 2 &&
1397            isa<SCEVConstant>(Add->getOperand(0)))
1398          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1399                            getMulExpr(LHSC, Add->getOperand(1)));
1400
1401
1402    ++Idx;
1403    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1404      // We found two constants, fold them together!
1405      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1406                                           RHSC->getValue()->getValue());
1407      Ops[0] = getConstant(Fold);
1408      Ops.erase(Ops.begin()+1);  // Erase the folded element
1409      if (Ops.size() == 1) return Ops[0];
1410      LHSC = cast<SCEVConstant>(Ops[0]);
1411    }
1412
1413    // If we are left with a constant one being multiplied, strip it off.
1414    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1415      Ops.erase(Ops.begin());
1416      --Idx;
1417    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1418      // If we have a multiply of zero, it will always be zero.
1419      return Ops[0];
1420    }
1421  }
1422
1423  // Skip over the add expression until we get to a multiply.
1424  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1425    ++Idx;
1426
1427  if (Ops.size() == 1)
1428    return Ops[0];
1429
1430  // If there are mul operands inline them all into this expression.
1431  if (Idx < Ops.size()) {
1432    bool DeletedMul = false;
1433    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1434      // If we have an mul, expand the mul operands onto the end of the operands
1435      // list.
1436      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1437      Ops.erase(Ops.begin()+Idx);
1438      DeletedMul = true;
1439    }
1440
1441    // If we deleted at least one mul, we added operands to the end of the list,
1442    // and they are not necessarily sorted.  Recurse to resort and resimplify
1443    // any operands we just aquired.
1444    if (DeletedMul)
1445      return getMulExpr(Ops);
1446  }
1447
1448  // If there are any add recurrences in the operands list, see if any other
1449  // added values are loop invariant.  If so, we can fold them into the
1450  // recurrence.
1451  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1452    ++Idx;
1453
1454  // Scan over all recurrences, trying to fold loop invariants into them.
1455  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1456    // Scan all of the other operands to this mul and add them to the vector if
1457    // they are loop invariant w.r.t. the recurrence.
1458    SmallVector<const SCEV*, 8> LIOps;
1459    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1460    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1461      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1462        LIOps.push_back(Ops[i]);
1463        Ops.erase(Ops.begin()+i);
1464        --i; --e;
1465      }
1466
1467    // If we found some loop invariants, fold them into the recurrence.
1468    if (!LIOps.empty()) {
1469      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1470      SmallVector<const SCEV*, 4> NewOps;
1471      NewOps.reserve(AddRec->getNumOperands());
1472      if (LIOps.size() == 1) {
1473        const SCEV *Scale = LIOps[0];
1474        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1475          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1476      } else {
1477        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1478          SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end());
1479          MulOps.push_back(AddRec->getOperand(i));
1480          NewOps.push_back(getMulExpr(MulOps));
1481        }
1482      }
1483
1484      const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1485
1486      // If all of the other operands were loop invariant, we are done.
1487      if (Ops.size() == 1) return NewRec;
1488
1489      // Otherwise, multiply the folded AddRec by the non-liv parts.
1490      for (unsigned i = 0;; ++i)
1491        if (Ops[i] == AddRec) {
1492          Ops[i] = NewRec;
1493          break;
1494        }
1495      return getMulExpr(Ops);
1496    }
1497
1498    // Okay, if there weren't any loop invariants to be folded, check to see if
1499    // there are multiple AddRec's with the same loop induction variable being
1500    // multiplied together.  If so, we can fold them.
1501    for (unsigned OtherIdx = Idx+1;
1502         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1503      if (OtherIdx != Idx) {
1504        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1505        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1506          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1507          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1508          const SCEV* NewStart = getMulExpr(F->getStart(),
1509                                                 G->getStart());
1510          const SCEV* B = F->getStepRecurrence(*this);
1511          const SCEV* D = G->getStepRecurrence(*this);
1512          const SCEV* NewStep = getAddExpr(getMulExpr(F, D),
1513                                          getMulExpr(G, B),
1514                                          getMulExpr(B, D));
1515          const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep,
1516                                               F->getLoop());
1517          if (Ops.size() == 2) return NewAddRec;
1518
1519          Ops.erase(Ops.begin()+Idx);
1520          Ops.erase(Ops.begin()+OtherIdx-1);
1521          Ops.push_back(NewAddRec);
1522          return getMulExpr(Ops);
1523        }
1524      }
1525
1526    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1527    // next one.
1528  }
1529
1530  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1531  // already have one, otherwise create a new one.
1532  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1533  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
1534                                                                 SCEVOps)];
1535  if (Result == 0)
1536    Result = new SCEVMulExpr(Ops, this);
1537  return Result;
1538}
1539
1540/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1541/// possible.
1542const SCEV* ScalarEvolution::getUDivExpr(const SCEV* LHS,
1543                                        const SCEV* RHS) {
1544  assert(getEffectiveSCEVType(LHS->getType()) ==
1545         getEffectiveSCEVType(RHS->getType()) &&
1546         "SCEVUDivExpr operand types don't match!");
1547
1548  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1549    if (RHSC->getValue()->equalsInt(1))
1550      return LHS;                            // X udiv 1 --> x
1551    if (RHSC->isZero())
1552      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1553
1554    // Determine if the division can be folded into the operands of
1555    // its operands.
1556    // TODO: Generalize this to non-constants by using known-bits information.
1557    const Type *Ty = LHS->getType();
1558    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1559    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1560    // For non-power-of-two values, effectively round the value up to the
1561    // nearest power of two.
1562    if (!RHSC->getValue()->getValue().isPowerOf2())
1563      ++MaxShiftAmt;
1564    const IntegerType *ExtTy =
1565      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1566    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1567    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1568      if (const SCEVConstant *Step =
1569            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1570        if (!Step->getValue()->getValue()
1571              .urem(RHSC->getValue()->getValue()) &&
1572            getZeroExtendExpr(AR, ExtTy) ==
1573            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1574                          getZeroExtendExpr(Step, ExtTy),
1575                          AR->getLoop())) {
1576          SmallVector<const SCEV*, 4> Operands;
1577          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1578            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1579          return getAddRecExpr(Operands, AR->getLoop());
1580        }
1581    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1582    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1583      SmallVector<const SCEV*, 4> Operands;
1584      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1585        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1586      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1587        // Find an operand that's safely divisible.
1588        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1589          const SCEV* Op = M->getOperand(i);
1590          const SCEV* Div = getUDivExpr(Op, RHSC);
1591          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1592            const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
1593            Operands = SmallVector<const SCEV*, 4>(MOperands.begin(),
1594                                                  MOperands.end());
1595            Operands[i] = Div;
1596            return getMulExpr(Operands);
1597          }
1598        }
1599    }
1600    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1601    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1602      SmallVector<const SCEV*, 4> Operands;
1603      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1604        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1605      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1606        Operands.clear();
1607        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1608          const SCEV* Op = getUDivExpr(A->getOperand(i), RHS);
1609          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1610            break;
1611          Operands.push_back(Op);
1612        }
1613        if (Operands.size() == A->getNumOperands())
1614          return getAddExpr(Operands);
1615      }
1616    }
1617
1618    // Fold if both operands are constant.
1619    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1620      Constant *LHSCV = LHSC->getValue();
1621      Constant *RHSCV = RHSC->getValue();
1622      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1623    }
1624  }
1625
1626  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1627  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS, this);
1628  return Result;
1629}
1630
1631
1632/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1633/// Simplify the expression as much as possible.
1634const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
1635                               const SCEV* Step, const Loop *L) {
1636  SmallVector<const SCEV*, 4> Operands;
1637  Operands.push_back(Start);
1638  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1639    if (StepChrec->getLoop() == L) {
1640      Operands.insert(Operands.end(), StepChrec->op_begin(),
1641                      StepChrec->op_end());
1642      return getAddRecExpr(Operands, L);
1643    }
1644
1645  Operands.push_back(Step);
1646  return getAddRecExpr(Operands, L);
1647}
1648
1649/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1650/// Simplify the expression as much as possible.
1651const SCEV* ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
1652                                          const Loop *L) {
1653  if (Operands.size() == 1) return Operands[0];
1654#ifndef NDEBUG
1655  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1656    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1657           getEffectiveSCEVType(Operands[0]->getType()) &&
1658           "SCEVAddRecExpr operand types don't match!");
1659#endif
1660
1661  if (Operands.back()->isZero()) {
1662    Operands.pop_back();
1663    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1664  }
1665
1666  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1667  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1668    const Loop* NestedLoop = NestedAR->getLoop();
1669    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1670      SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(),
1671                                                NestedAR->op_end());
1672      Operands[0] = NestedAR->getStart();
1673      NestedOperands[0] = getAddRecExpr(Operands, L);
1674      return getAddRecExpr(NestedOperands, NestedLoop);
1675    }
1676  }
1677
1678  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1679  SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)];
1680  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L, this);
1681  return Result;
1682}
1683
1684const SCEV* ScalarEvolution::getSMaxExpr(const SCEV* LHS,
1685                                        const SCEV* RHS) {
1686  SmallVector<const SCEV*, 2> Ops;
1687  Ops.push_back(LHS);
1688  Ops.push_back(RHS);
1689  return getSMaxExpr(Ops);
1690}
1691
1692const SCEV*
1693ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1694  assert(!Ops.empty() && "Cannot get empty smax!");
1695  if (Ops.size() == 1) return Ops[0];
1696#ifndef NDEBUG
1697  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1698    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1699           getEffectiveSCEVType(Ops[0]->getType()) &&
1700           "SCEVSMaxExpr operand types don't match!");
1701#endif
1702
1703  // Sort by complexity, this groups all similar expression types together.
1704  GroupByComplexity(Ops, LI);
1705
1706  // If there are any constants, fold them together.
1707  unsigned Idx = 0;
1708  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1709    ++Idx;
1710    assert(Idx < Ops.size());
1711    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1712      // We found two constants, fold them together!
1713      ConstantInt *Fold = ConstantInt::get(
1714                              APIntOps::smax(LHSC->getValue()->getValue(),
1715                                             RHSC->getValue()->getValue()));
1716      Ops[0] = getConstant(Fold);
1717      Ops.erase(Ops.begin()+1);  // Erase the folded element
1718      if (Ops.size() == 1) return Ops[0];
1719      LHSC = cast<SCEVConstant>(Ops[0]);
1720    }
1721
1722    // If we are left with a constant -inf, strip it off.
1723    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1724      Ops.erase(Ops.begin());
1725      --Idx;
1726    }
1727  }
1728
1729  if (Ops.size() == 1) return Ops[0];
1730
1731  // Find the first SMax
1732  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1733    ++Idx;
1734
1735  // Check to see if one of the operands is an SMax. If so, expand its operands
1736  // onto our operand list, and recurse to simplify.
1737  if (Idx < Ops.size()) {
1738    bool DeletedSMax = false;
1739    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1740      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1741      Ops.erase(Ops.begin()+Idx);
1742      DeletedSMax = true;
1743    }
1744
1745    if (DeletedSMax)
1746      return getSMaxExpr(Ops);
1747  }
1748
1749  // Okay, check to see if the same value occurs in the operand list twice.  If
1750  // so, delete one.  Since we sorted the list, these values are required to
1751  // be adjacent.
1752  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1753    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1754      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1755      --i; --e;
1756    }
1757
1758  if (Ops.size() == 1) return Ops[0];
1759
1760  assert(!Ops.empty() && "Reduced smax down to nothing!");
1761
1762  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1763  // already have one, otherwise create a new one.
1764  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1765  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr,
1766                                                                 SCEVOps)];
1767  if (Result == 0) Result = new SCEVSMaxExpr(Ops, this);
1768  return Result;
1769}
1770
1771const SCEV* ScalarEvolution::getUMaxExpr(const SCEV* LHS,
1772                                        const SCEV* RHS) {
1773  SmallVector<const SCEV*, 2> Ops;
1774  Ops.push_back(LHS);
1775  Ops.push_back(RHS);
1776  return getUMaxExpr(Ops);
1777}
1778
1779const SCEV*
1780ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
1781  assert(!Ops.empty() && "Cannot get empty umax!");
1782  if (Ops.size() == 1) return Ops[0];
1783#ifndef NDEBUG
1784  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1785    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1786           getEffectiveSCEVType(Ops[0]->getType()) &&
1787           "SCEVUMaxExpr operand types don't match!");
1788#endif
1789
1790  // Sort by complexity, this groups all similar expression types together.
1791  GroupByComplexity(Ops, LI);
1792
1793  // If there are any constants, fold them together.
1794  unsigned Idx = 0;
1795  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1796    ++Idx;
1797    assert(Idx < Ops.size());
1798    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1799      // We found two constants, fold them together!
1800      ConstantInt *Fold = ConstantInt::get(
1801                              APIntOps::umax(LHSC->getValue()->getValue(),
1802                                             RHSC->getValue()->getValue()));
1803      Ops[0] = getConstant(Fold);
1804      Ops.erase(Ops.begin()+1);  // Erase the folded element
1805      if (Ops.size() == 1) return Ops[0];
1806      LHSC = cast<SCEVConstant>(Ops[0]);
1807    }
1808
1809    // If we are left with a constant zero, strip it off.
1810    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1811      Ops.erase(Ops.begin());
1812      --Idx;
1813    }
1814  }
1815
1816  if (Ops.size() == 1) return Ops[0];
1817
1818  // Find the first UMax
1819  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1820    ++Idx;
1821
1822  // Check to see if one of the operands is a UMax. If so, expand its operands
1823  // onto our operand list, and recurse to simplify.
1824  if (Idx < Ops.size()) {
1825    bool DeletedUMax = false;
1826    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1827      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1828      Ops.erase(Ops.begin()+Idx);
1829      DeletedUMax = true;
1830    }
1831
1832    if (DeletedUMax)
1833      return getUMaxExpr(Ops);
1834  }
1835
1836  // Okay, check to see if the same value occurs in the operand list twice.  If
1837  // so, delete one.  Since we sorted the list, these values are required to
1838  // be adjacent.
1839  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1840    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1841      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1842      --i; --e;
1843    }
1844
1845  if (Ops.size() == 1) return Ops[0];
1846
1847  assert(!Ops.empty() && "Reduced umax down to nothing!");
1848
1849  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1850  // already have one, otherwise create a new one.
1851  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1852  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr,
1853                                                                 SCEVOps)];
1854  if (Result == 0) Result = new SCEVUMaxExpr(Ops, this);
1855  return Result;
1856}
1857
1858const SCEV* ScalarEvolution::getSMinExpr(const SCEV* LHS,
1859                                        const SCEV* RHS) {
1860  // ~smax(~x, ~y) == smin(x, y).
1861  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1862}
1863
1864const SCEV* ScalarEvolution::getUMinExpr(const SCEV* LHS,
1865                                        const SCEV* RHS) {
1866  // ~umax(~x, ~y) == umin(x, y)
1867  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1868}
1869
1870const SCEV* ScalarEvolution::getUnknown(Value *V) {
1871  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1872    return getConstant(CI);
1873  if (isa<ConstantPointerNull>(V))
1874    return getIntegerSCEV(0, V->getType());
1875  SCEVUnknown *&Result = SCEVUnknowns[V];
1876  if (Result == 0) Result = new SCEVUnknown(V, this);
1877  return Result;
1878}
1879
1880//===----------------------------------------------------------------------===//
1881//            Basic SCEV Analysis and PHI Idiom Recognition Code
1882//
1883
1884/// isSCEVable - Test if values of the given type are analyzable within
1885/// the SCEV framework. This primarily includes integer types, and it
1886/// can optionally include pointer types if the ScalarEvolution class
1887/// has access to target-specific information.
1888bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1889  // Integers are always SCEVable.
1890  if (Ty->isInteger())
1891    return true;
1892
1893  // Pointers are SCEVable if TargetData information is available
1894  // to provide pointer size information.
1895  if (isa<PointerType>(Ty))
1896    return TD != NULL;
1897
1898  // Otherwise it's not SCEVable.
1899  return false;
1900}
1901
1902/// getTypeSizeInBits - Return the size in bits of the specified type,
1903/// for which isSCEVable must return true.
1904uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1905  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1906
1907  // If we have a TargetData, use it!
1908  if (TD)
1909    return TD->getTypeSizeInBits(Ty);
1910
1911  // Otherwise, we support only integer types.
1912  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1913  return Ty->getPrimitiveSizeInBits();
1914}
1915
1916/// getEffectiveSCEVType - Return a type with the same bitwidth as
1917/// the given type and which represents how SCEV will treat the given
1918/// type, for which isSCEVable must return true. For pointer types,
1919/// this is the pointer-sized integer type.
1920const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1921  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1922
1923  if (Ty->isInteger())
1924    return Ty;
1925
1926  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1927  return TD->getIntPtrType();
1928}
1929
1930const SCEV* ScalarEvolution::getCouldNotCompute() {
1931  return CouldNotCompute;
1932}
1933
1934/// hasSCEV - Return true if the SCEV for this value has already been
1935/// computed.
1936bool ScalarEvolution::hasSCEV(Value *V) const {
1937  return Scalars.count(V);
1938}
1939
1940/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1941/// expression and create a new one.
1942const SCEV* ScalarEvolution::getSCEV(Value *V) {
1943  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1944
1945  std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V);
1946  if (I != Scalars.end()) return I->second;
1947  const SCEV* S = createSCEV(V);
1948  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1949  return S;
1950}
1951
1952/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1953/// specified signed integer value and return a SCEV for the constant.
1954const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1955  Ty = getEffectiveSCEVType(Ty);
1956  Constant *C;
1957  if (Val == 0)
1958    C = Constant::getNullValue(Ty);
1959  else if (Ty->isFloatingPoint())
1960    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1961                                APFloat::IEEEdouble, Val));
1962  else
1963    C = ConstantInt::get(Ty, Val);
1964  return getUnknown(C);
1965}
1966
1967/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1968///
1969const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) {
1970  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1971    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1972
1973  const Type *Ty = V->getType();
1974  Ty = getEffectiveSCEVType(Ty);
1975  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1976}
1977
1978/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1979const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) {
1980  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1981    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1982
1983  const Type *Ty = V->getType();
1984  Ty = getEffectiveSCEVType(Ty);
1985  const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1986  return getMinusSCEV(AllOnes, V);
1987}
1988
1989/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1990///
1991const SCEV* ScalarEvolution::getMinusSCEV(const SCEV* LHS,
1992                                         const SCEV* RHS) {
1993  // X - Y --> X + -Y
1994  return getAddExpr(LHS, getNegativeSCEV(RHS));
1995}
1996
1997/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1998/// input value to the specified type.  If the type must be extended, it is zero
1999/// extended.
2000const SCEV*
2001ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
2002                                         const Type *Ty) {
2003  const Type *SrcTy = V->getType();
2004  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2005         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2006         "Cannot truncate or zero extend with non-integer arguments!");
2007  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2008    return V;  // No conversion
2009  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2010    return getTruncateExpr(V, Ty);
2011  return getZeroExtendExpr(V, Ty);
2012}
2013
2014/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2015/// input value to the specified type.  If the type must be extended, it is sign
2016/// extended.
2017const SCEV*
2018ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
2019                                         const Type *Ty) {
2020  const Type *SrcTy = V->getType();
2021  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2022         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2023         "Cannot truncate or zero extend with non-integer arguments!");
2024  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2025    return V;  // No conversion
2026  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2027    return getTruncateExpr(V, Ty);
2028  return getSignExtendExpr(V, Ty);
2029}
2030
2031/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2032/// input value to the specified type.  If the type must be extended, it is zero
2033/// extended.  The conversion must not be narrowing.
2034const SCEV*
2035ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
2036  const Type *SrcTy = V->getType();
2037  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2038         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2039         "Cannot noop or zero extend with non-integer arguments!");
2040  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2041         "getNoopOrZeroExtend cannot truncate!");
2042  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2043    return V;  // No conversion
2044  return getZeroExtendExpr(V, Ty);
2045}
2046
2047/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2048/// input value to the specified type.  If the type must be extended, it is sign
2049/// extended.  The conversion must not be narrowing.
2050const SCEV*
2051ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
2052  const Type *SrcTy = V->getType();
2053  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2054         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2055         "Cannot noop or sign extend with non-integer arguments!");
2056  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2057         "getNoopOrSignExtend cannot truncate!");
2058  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2059    return V;  // No conversion
2060  return getSignExtendExpr(V, Ty);
2061}
2062
2063/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2064/// the input value to the specified type. If the type must be extended,
2065/// it is extended with unspecified bits. The conversion must not be
2066/// narrowing.
2067const SCEV*
2068ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
2069  const Type *SrcTy = V->getType();
2070  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2071         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2072         "Cannot noop or any extend with non-integer arguments!");
2073  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2074         "getNoopOrAnyExtend cannot truncate!");
2075  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2076    return V;  // No conversion
2077  return getAnyExtendExpr(V, Ty);
2078}
2079
2080/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2081/// input value to the specified type.  The conversion must not be widening.
2082const SCEV*
2083ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
2084  const Type *SrcTy = V->getType();
2085  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2086         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2087         "Cannot truncate or noop with non-integer arguments!");
2088  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2089         "getTruncateOrNoop cannot extend!");
2090  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2091    return V;  // No conversion
2092  return getTruncateExpr(V, Ty);
2093}
2094
2095/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2096/// the types using zero-extension, and then perform a umax operation
2097/// with them.
2098const SCEV* ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV* LHS,
2099                                                       const SCEV* RHS) {
2100  const SCEV* PromotedLHS = LHS;
2101  const SCEV* PromotedRHS = RHS;
2102
2103  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2104    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2105  else
2106    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2107
2108  return getUMaxExpr(PromotedLHS, PromotedRHS);
2109}
2110
2111/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2112/// the types using zero-extension, and then perform a umin operation
2113/// with them.
2114const SCEV* ScalarEvolution::getUMinFromMismatchedTypes(const SCEV* LHS,
2115                                                       const SCEV* RHS) {
2116  const SCEV* PromotedLHS = LHS;
2117  const SCEV* PromotedRHS = RHS;
2118
2119  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2120    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2121  else
2122    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2123
2124  return getUMinExpr(PromotedLHS, PromotedRHS);
2125}
2126
2127/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2128/// the specified instruction and replaces any references to the symbolic value
2129/// SymName with the specified value.  This is used during PHI resolution.
2130void ScalarEvolution::
2131ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEV* SymName,
2132                                 const SCEV* NewVal) {
2133  std::map<SCEVCallbackVH, const SCEV*>::iterator SI =
2134    Scalars.find(SCEVCallbackVH(I, this));
2135  if (SI == Scalars.end()) return;
2136
2137  const SCEV* NV =
2138    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
2139  if (NV == SI->second) return;  // No change.
2140
2141  SI->second = NV;       // Update the scalars map!
2142
2143  // Any instruction values that use this instruction might also need to be
2144  // updated!
2145  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2146       UI != E; ++UI)
2147    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2148}
2149
2150/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2151/// a loop header, making it a potential recurrence, or it doesn't.
2152///
2153const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
2154  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2155    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2156      if (L->getHeader() == PN->getParent()) {
2157        // If it lives in the loop header, it has two incoming values, one
2158        // from outside the loop, and one from inside.
2159        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2160        unsigned BackEdge     = IncomingEdge^1;
2161
2162        // While we are analyzing this PHI node, handle its value symbolically.
2163        const SCEV* SymbolicName = getUnknown(PN);
2164        assert(Scalars.find(PN) == Scalars.end() &&
2165               "PHI node already processed?");
2166        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2167
2168        // Using this symbolic name for the PHI, analyze the value coming around
2169        // the back-edge.
2170        const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2171
2172        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2173        // has a special value for the first iteration of the loop.
2174
2175        // If the value coming around the backedge is an add with the symbolic
2176        // value we just inserted, then we found a simple induction variable!
2177        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2178          // If there is a single occurrence of the symbolic value, replace it
2179          // with a recurrence.
2180          unsigned FoundIndex = Add->getNumOperands();
2181          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2182            if (Add->getOperand(i) == SymbolicName)
2183              if (FoundIndex == e) {
2184                FoundIndex = i;
2185                break;
2186              }
2187
2188          if (FoundIndex != Add->getNumOperands()) {
2189            // Create an add with everything but the specified operand.
2190            SmallVector<const SCEV*, 8> Ops;
2191            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2192              if (i != FoundIndex)
2193                Ops.push_back(Add->getOperand(i));
2194            const SCEV* Accum = getAddExpr(Ops);
2195
2196            // This is not a valid addrec if the step amount is varying each
2197            // loop iteration, but is not itself an addrec in this loop.
2198            if (Accum->isLoopInvariant(L) ||
2199                (isa<SCEVAddRecExpr>(Accum) &&
2200                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2201              const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2202              const SCEV* PHISCEV  = getAddRecExpr(StartVal, Accum, L);
2203
2204              // Okay, for the entire analysis of this edge we assumed the PHI
2205              // to be symbolic.  We now need to go back and update all of the
2206              // entries for the scalars that use the PHI (except for the PHI
2207              // itself) to use the new analyzed value instead of the "symbolic"
2208              // value.
2209              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2210              return PHISCEV;
2211            }
2212          }
2213        } else if (const SCEVAddRecExpr *AddRec =
2214                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2215          // Otherwise, this could be a loop like this:
2216          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2217          // In this case, j = {1,+,1}  and BEValue is j.
2218          // Because the other in-value of i (0) fits the evolution of BEValue
2219          // i really is an addrec evolution.
2220          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2221            const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2222
2223            // If StartVal = j.start - j.stride, we can use StartVal as the
2224            // initial step of the addrec evolution.
2225            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2226                                            AddRec->getOperand(1))) {
2227              const SCEV* PHISCEV =
2228                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2229
2230              // Okay, for the entire analysis of this edge we assumed the PHI
2231              // to be symbolic.  We now need to go back and update all of the
2232              // entries for the scalars that use the PHI (except for the PHI
2233              // itself) to use the new analyzed value instead of the "symbolic"
2234              // value.
2235              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2236              return PHISCEV;
2237            }
2238          }
2239        }
2240
2241        return SymbolicName;
2242      }
2243
2244  // If it's not a loop phi, we can't handle it yet.
2245  return getUnknown(PN);
2246}
2247
2248/// createNodeForGEP - Expand GEP instructions into add and multiply
2249/// operations. This allows them to be analyzed by regular SCEV code.
2250///
2251const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
2252
2253  const Type *IntPtrTy = TD->getIntPtrType();
2254  Value *Base = GEP->getOperand(0);
2255  // Don't attempt to analyze GEPs over unsized objects.
2256  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2257    return getUnknown(GEP);
2258  const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy);
2259  gep_type_iterator GTI = gep_type_begin(GEP);
2260  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2261                                      E = GEP->op_end();
2262       I != E; ++I) {
2263    Value *Index = *I;
2264    // Compute the (potentially symbolic) offset in bytes for this index.
2265    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2266      // For a struct, add the member offset.
2267      const StructLayout &SL = *TD->getStructLayout(STy);
2268      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2269      uint64_t Offset = SL.getElementOffset(FieldNo);
2270      TotalOffset = getAddExpr(TotalOffset,
2271                                  getIntegerSCEV(Offset, IntPtrTy));
2272    } else {
2273      // For an array, add the element offset, explicitly scaled.
2274      const SCEV* LocalOffset = getSCEV(Index);
2275      if (!isa<PointerType>(LocalOffset->getType()))
2276        // Getelementptr indicies are signed.
2277        LocalOffset = getTruncateOrSignExtend(LocalOffset,
2278                                              IntPtrTy);
2279      LocalOffset =
2280        getMulExpr(LocalOffset,
2281                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2282                                  IntPtrTy));
2283      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2284    }
2285  }
2286  return getAddExpr(getSCEV(Base), TotalOffset);
2287}
2288
2289/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2290/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2291/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2292/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2293uint32_t
2294ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
2295  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2296    return C->getValue()->getValue().countTrailingZeros();
2297
2298  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2299    return std::min(GetMinTrailingZeros(T->getOperand()),
2300                    (uint32_t)getTypeSizeInBits(T->getType()));
2301
2302  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2303    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2304    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2305             getTypeSizeInBits(E->getType()) : OpRes;
2306  }
2307
2308  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2309    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2310    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2311             getTypeSizeInBits(E->getType()) : OpRes;
2312  }
2313
2314  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2315    // The result is the min of all operands results.
2316    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2317    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2318      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2319    return MinOpRes;
2320  }
2321
2322  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2323    // The result is the sum of all operands results.
2324    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2325    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2326    for (unsigned i = 1, e = M->getNumOperands();
2327         SumOpRes != BitWidth && i != e; ++i)
2328      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2329                          BitWidth);
2330    return SumOpRes;
2331  }
2332
2333  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2334    // The result is the min of all operands results.
2335    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2336    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2337      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2338    return MinOpRes;
2339  }
2340
2341  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2342    // The result is the min of all operands results.
2343    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2344    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2345      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2346    return MinOpRes;
2347  }
2348
2349  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2350    // The result is the min of all operands results.
2351    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2352    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2353      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2354    return MinOpRes;
2355  }
2356
2357  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2358    // For a SCEVUnknown, ask ValueTracking.
2359    unsigned BitWidth = getTypeSizeInBits(U->getType());
2360    APInt Mask = APInt::getAllOnesValue(BitWidth);
2361    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2362    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2363    return Zeros.countTrailingOnes();
2364  }
2365
2366  // SCEVUDivExpr
2367  return 0;
2368}
2369
2370uint32_t
2371ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
2372  // TODO: Handle other SCEV expression types here.
2373
2374  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2375    return C->getValue()->getValue().countLeadingZeros();
2376
2377  if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
2378    // A zero-extension cast adds zero bits.
2379    return GetMinLeadingZeros(C->getOperand()) +
2380           (getTypeSizeInBits(C->getType()) -
2381            getTypeSizeInBits(C->getOperand()->getType()));
2382  }
2383
2384  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2385    // For a SCEVUnknown, ask ValueTracking.
2386    unsigned BitWidth = getTypeSizeInBits(U->getType());
2387    APInt Mask = APInt::getAllOnesValue(BitWidth);
2388    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2389    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2390    return Zeros.countLeadingOnes();
2391  }
2392
2393  return 1;
2394}
2395
2396uint32_t
2397ScalarEvolution::GetMinSignBits(const SCEV* S) {
2398  // TODO: Handle other SCEV expression types here.
2399
2400  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
2401    const APInt &A = C->getValue()->getValue();
2402    return A.isNegative() ? A.countLeadingOnes() :
2403                            A.countLeadingZeros();
2404  }
2405
2406  if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
2407    // A sign-extension cast adds sign bits.
2408    return GetMinSignBits(C->getOperand()) +
2409           (getTypeSizeInBits(C->getType()) -
2410            getTypeSizeInBits(C->getOperand()->getType()));
2411  }
2412
2413  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2414    // For a SCEVUnknown, ask ValueTracking.
2415    return ComputeNumSignBits(U->getValue(), TD);
2416  }
2417
2418  return 1;
2419}
2420
2421/// createSCEV - We know that there is no SCEV for the specified value.
2422/// Analyze the expression.
2423///
2424const SCEV* ScalarEvolution::createSCEV(Value *V) {
2425  if (!isSCEVable(V->getType()))
2426    return getUnknown(V);
2427
2428  unsigned Opcode = Instruction::UserOp1;
2429  if (Instruction *I = dyn_cast<Instruction>(V))
2430    Opcode = I->getOpcode();
2431  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2432    Opcode = CE->getOpcode();
2433  else
2434    return getUnknown(V);
2435
2436  User *U = cast<User>(V);
2437  switch (Opcode) {
2438  case Instruction::Add:
2439    return getAddExpr(getSCEV(U->getOperand(0)),
2440                      getSCEV(U->getOperand(1)));
2441  case Instruction::Mul:
2442    return getMulExpr(getSCEV(U->getOperand(0)),
2443                      getSCEV(U->getOperand(1)));
2444  case Instruction::UDiv:
2445    return getUDivExpr(getSCEV(U->getOperand(0)),
2446                       getSCEV(U->getOperand(1)));
2447  case Instruction::Sub:
2448    return getMinusSCEV(getSCEV(U->getOperand(0)),
2449                        getSCEV(U->getOperand(1)));
2450  case Instruction::And:
2451    // For an expression like x&255 that merely masks off the high bits,
2452    // use zext(trunc(x)) as the SCEV expression.
2453    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2454      if (CI->isNullValue())
2455        return getSCEV(U->getOperand(1));
2456      if (CI->isAllOnesValue())
2457        return getSCEV(U->getOperand(0));
2458      const APInt &A = CI->getValue();
2459
2460      // Instcombine's ShrinkDemandedConstant may strip bits out of
2461      // constants, obscuring what would otherwise be a low-bits mask.
2462      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2463      // knew about to reconstruct a low-bits mask value.
2464      unsigned LZ = A.countLeadingZeros();
2465      unsigned BitWidth = A.getBitWidth();
2466      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2467      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2468      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2469
2470      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2471
2472      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2473        return
2474          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2475                                            IntegerType::get(BitWidth - LZ)),
2476                            U->getType());
2477    }
2478    break;
2479
2480  case Instruction::Or:
2481    // If the RHS of the Or is a constant, we may have something like:
2482    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2483    // optimizations will transparently handle this case.
2484    //
2485    // In order for this transformation to be safe, the LHS must be of the
2486    // form X*(2^n) and the Or constant must be less than 2^n.
2487    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2488      const SCEV* LHS = getSCEV(U->getOperand(0));
2489      const APInt &CIVal = CI->getValue();
2490      if (GetMinTrailingZeros(LHS) >=
2491          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2492        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2493    }
2494    break;
2495  case Instruction::Xor:
2496    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2497      // If the RHS of the xor is a signbit, then this is just an add.
2498      // Instcombine turns add of signbit into xor as a strength reduction step.
2499      if (CI->getValue().isSignBit())
2500        return getAddExpr(getSCEV(U->getOperand(0)),
2501                          getSCEV(U->getOperand(1)));
2502
2503      // If the RHS of xor is -1, then this is a not operation.
2504      if (CI->isAllOnesValue())
2505        return getNotSCEV(getSCEV(U->getOperand(0)));
2506
2507      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2508      // This is a variant of the check for xor with -1, and it handles
2509      // the case where instcombine has trimmed non-demanded bits out
2510      // of an xor with -1.
2511      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2512        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2513          if (BO->getOpcode() == Instruction::And &&
2514              LCI->getValue() == CI->getValue())
2515            if (const SCEVZeroExtendExpr *Z =
2516                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2517              const Type *UTy = U->getType();
2518              const SCEV* Z0 = Z->getOperand();
2519              const Type *Z0Ty = Z0->getType();
2520              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2521
2522              // If C is a low-bits mask, the zero extend is zerving to
2523              // mask off the high bits. Complement the operand and
2524              // re-apply the zext.
2525              if (APIntOps::isMask(Z0TySize, CI->getValue()))
2526                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2527
2528              // If C is a single bit, it may be in the sign-bit position
2529              // before the zero-extend. In this case, represent the xor
2530              // using an add, which is equivalent, and re-apply the zext.
2531              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2532              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2533                  Trunc.isSignBit())
2534                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2535                                         UTy);
2536            }
2537    }
2538    break;
2539
2540  case Instruction::Shl:
2541    // Turn shift left of a constant amount into a multiply.
2542    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2543      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2544      Constant *X = ConstantInt::get(
2545        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2546      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2547    }
2548    break;
2549
2550  case Instruction::LShr:
2551    // Turn logical shift right of a constant into a unsigned divide.
2552    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2553      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2554      Constant *X = ConstantInt::get(
2555        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2556      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2557    }
2558    break;
2559
2560  case Instruction::AShr:
2561    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2562    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2563      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2564        if (L->getOpcode() == Instruction::Shl &&
2565            L->getOperand(1) == U->getOperand(1)) {
2566          unsigned BitWidth = getTypeSizeInBits(U->getType());
2567          uint64_t Amt = BitWidth - CI->getZExtValue();
2568          if (Amt == BitWidth)
2569            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2570          if (Amt > BitWidth)
2571            return getIntegerSCEV(0, U->getType()); // value is undefined
2572          return
2573            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2574                                                      IntegerType::get(Amt)),
2575                                 U->getType());
2576        }
2577    break;
2578
2579  case Instruction::Trunc:
2580    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2581
2582  case Instruction::ZExt:
2583    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2584
2585  case Instruction::SExt:
2586    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2587
2588  case Instruction::BitCast:
2589    // BitCasts are no-op casts so we just eliminate the cast.
2590    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2591      return getSCEV(U->getOperand(0));
2592    break;
2593
2594  case Instruction::IntToPtr:
2595    if (!TD) break; // Without TD we can't analyze pointers.
2596    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2597                                   TD->getIntPtrType());
2598
2599  case Instruction::PtrToInt:
2600    if (!TD) break; // Without TD we can't analyze pointers.
2601    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2602                                   U->getType());
2603
2604  case Instruction::GetElementPtr:
2605    if (!TD) break; // Without TD we can't analyze pointers.
2606    return createNodeForGEP(U);
2607
2608  case Instruction::PHI:
2609    return createNodeForPHI(cast<PHINode>(U));
2610
2611  case Instruction::Select:
2612    // This could be a smax or umax that was lowered earlier.
2613    // Try to recover it.
2614    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2615      Value *LHS = ICI->getOperand(0);
2616      Value *RHS = ICI->getOperand(1);
2617      switch (ICI->getPredicate()) {
2618      case ICmpInst::ICMP_SLT:
2619      case ICmpInst::ICMP_SLE:
2620        std::swap(LHS, RHS);
2621        // fall through
2622      case ICmpInst::ICMP_SGT:
2623      case ICmpInst::ICMP_SGE:
2624        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2625          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2626        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2627          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2628        break;
2629      case ICmpInst::ICMP_ULT:
2630      case ICmpInst::ICMP_ULE:
2631        std::swap(LHS, RHS);
2632        // fall through
2633      case ICmpInst::ICMP_UGT:
2634      case ICmpInst::ICMP_UGE:
2635        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2636          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2637        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2638          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2639        break;
2640      case ICmpInst::ICMP_NE:
2641        // n != 0 ? n : 1  ->  umax(n, 1)
2642        if (LHS == U->getOperand(1) &&
2643            isa<ConstantInt>(U->getOperand(2)) &&
2644            cast<ConstantInt>(U->getOperand(2))->isOne() &&
2645            isa<ConstantInt>(RHS) &&
2646            cast<ConstantInt>(RHS)->isZero())
2647          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2648        break;
2649      case ICmpInst::ICMP_EQ:
2650        // n == 0 ? 1 : n  ->  umax(n, 1)
2651        if (LHS == U->getOperand(2) &&
2652            isa<ConstantInt>(U->getOperand(1)) &&
2653            cast<ConstantInt>(U->getOperand(1))->isOne() &&
2654            isa<ConstantInt>(RHS) &&
2655            cast<ConstantInt>(RHS)->isZero())
2656          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2657        break;
2658      default:
2659        break;
2660      }
2661    }
2662
2663  default: // We cannot analyze this expression.
2664    break;
2665  }
2666
2667  return getUnknown(V);
2668}
2669
2670
2671
2672//===----------------------------------------------------------------------===//
2673//                   Iteration Count Computation Code
2674//
2675
2676/// getBackedgeTakenCount - If the specified loop has a predictable
2677/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2678/// object. The backedge-taken count is the number of times the loop header
2679/// will be branched to from within the loop. This is one less than the
2680/// trip count of the loop, since it doesn't count the first iteration,
2681/// when the header is branched to from outside the loop.
2682///
2683/// Note that it is not valid to call this method on a loop without a
2684/// loop-invariant backedge-taken count (see
2685/// hasLoopInvariantBackedgeTakenCount).
2686///
2687const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2688  return getBackedgeTakenInfo(L).Exact;
2689}
2690
2691/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2692/// return the least SCEV value that is known never to be less than the
2693/// actual backedge taken count.
2694const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2695  return getBackedgeTakenInfo(L).Max;
2696}
2697
2698const ScalarEvolution::BackedgeTakenInfo &
2699ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2700  // Initially insert a CouldNotCompute for this loop. If the insertion
2701  // succeeds, procede to actually compute a backedge-taken count and
2702  // update the value. The temporary CouldNotCompute value tells SCEV
2703  // code elsewhere that it shouldn't attempt to request a new
2704  // backedge-taken count, which could result in infinite recursion.
2705  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2706    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2707  if (Pair.second) {
2708    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2709    if (ItCount.Exact != CouldNotCompute) {
2710      assert(ItCount.Exact->isLoopInvariant(L) &&
2711             ItCount.Max->isLoopInvariant(L) &&
2712             "Computed trip count isn't loop invariant for loop!");
2713      ++NumTripCountsComputed;
2714
2715      // Update the value in the map.
2716      Pair.first->second = ItCount;
2717    } else {
2718      if (ItCount.Max != CouldNotCompute)
2719        // Update the value in the map.
2720        Pair.first->second = ItCount;
2721      if (isa<PHINode>(L->getHeader()->begin()))
2722        // Only count loops that have phi nodes as not being computable.
2723        ++NumTripCountsNotComputed;
2724    }
2725
2726    // Now that we know more about the trip count for this loop, forget any
2727    // existing SCEV values for PHI nodes in this loop since they are only
2728    // conservative estimates made without the benefit
2729    // of trip count information.
2730    if (ItCount.hasAnyInfo())
2731      forgetLoopPHIs(L);
2732  }
2733  return Pair.first->second;
2734}
2735
2736/// forgetLoopBackedgeTakenCount - This method should be called by the
2737/// client when it has changed a loop in a way that may effect
2738/// ScalarEvolution's ability to compute a trip count, or if the loop
2739/// is deleted.
2740void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2741  BackedgeTakenCounts.erase(L);
2742  forgetLoopPHIs(L);
2743}
2744
2745/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2746/// PHI nodes in the given loop. This is used when the trip count of
2747/// the loop may have changed.
2748void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2749  BasicBlock *Header = L->getHeader();
2750
2751  // Push all Loop-header PHIs onto the Worklist stack, except those
2752  // that are presently represented via a SCEVUnknown. SCEVUnknown for
2753  // a PHI either means that it has an unrecognized structure, or it's
2754  // a PHI that's in the progress of being computed by createNodeForPHI.
2755  // In the former case, additional loop trip count information isn't
2756  // going to change anything. In the later case, createNodeForPHI will
2757  // perform the necessary updates on its own when it gets to that point.
2758  SmallVector<Instruction *, 16> Worklist;
2759  for (BasicBlock::iterator I = Header->begin();
2760       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2761    std::map<SCEVCallbackVH, const SCEV*>::iterator It = Scalars.find((Value*)I);
2762    if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2763      Worklist.push_back(PN);
2764  }
2765
2766  while (!Worklist.empty()) {
2767    Instruction *I = Worklist.pop_back_val();
2768    if (Scalars.erase(I))
2769      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2770           UI != UE; ++UI)
2771        Worklist.push_back(cast<Instruction>(UI));
2772  }
2773}
2774
2775/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2776/// of the specified loop will execute.
2777ScalarEvolution::BackedgeTakenInfo
2778ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2779  SmallVector<BasicBlock*, 8> ExitingBlocks;
2780  L->getExitingBlocks(ExitingBlocks);
2781
2782  // Examine all exits and pick the most conservative values.
2783  const SCEV* BECount = CouldNotCompute;
2784  const SCEV* MaxBECount = CouldNotCompute;
2785  bool CouldNotComputeBECount = false;
2786  bool CouldNotComputeMaxBECount = false;
2787  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2788    BackedgeTakenInfo NewBTI =
2789      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
2790
2791    if (NewBTI.Exact == CouldNotCompute) {
2792      // We couldn't compute an exact value for this exit, so
2793      // we won't be able to compute an exact value for the loop.
2794      CouldNotComputeBECount = true;
2795      BECount = CouldNotCompute;
2796    } else if (!CouldNotComputeBECount) {
2797      if (BECount == CouldNotCompute)
2798        BECount = NewBTI.Exact;
2799      else {
2800        // TODO: More analysis could be done here. For example, a
2801        // loop with a short-circuiting && operator has an exact count
2802        // of the min of both sides.
2803        CouldNotComputeBECount = true;
2804        BECount = CouldNotCompute;
2805      }
2806    }
2807    if (NewBTI.Max == CouldNotCompute) {
2808      // We couldn't compute an maximum value for this exit, so
2809      // we won't be able to compute an maximum value for the loop.
2810      CouldNotComputeMaxBECount = true;
2811      MaxBECount = CouldNotCompute;
2812    } else if (!CouldNotComputeMaxBECount) {
2813      if (MaxBECount == CouldNotCompute)
2814        MaxBECount = NewBTI.Max;
2815      else
2816        MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, NewBTI.Max);
2817    }
2818  }
2819
2820  return BackedgeTakenInfo(BECount, MaxBECount);
2821}
2822
2823/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
2824/// of the specified loop will execute if it exits via the specified block.
2825ScalarEvolution::BackedgeTakenInfo
2826ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
2827                                                   BasicBlock *ExitingBlock) {
2828
2829  // Okay, we've chosen an exiting block.  See what condition causes us to
2830  // exit at this block.
2831  //
2832  // FIXME: we should be able to handle switch instructions (with a single exit)
2833  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2834  if (ExitBr == 0) return CouldNotCompute;
2835  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2836
2837  // At this point, we know we have a conditional branch that determines whether
2838  // the loop is exited.  However, we don't know if the branch is executed each
2839  // time through the loop.  If not, then the execution count of the branch will
2840  // not be equal to the trip count of the loop.
2841  //
2842  // Currently we check for this by checking to see if the Exit branch goes to
2843  // the loop header.  If so, we know it will always execute the same number of
2844  // times as the loop.  We also handle the case where the exit block *is* the
2845  // loop header.  This is common for un-rotated loops.
2846  //
2847  // If both of those tests fail, walk up the unique predecessor chain to the
2848  // header, stopping if there is an edge that doesn't exit the loop. If the
2849  // header is reached, the execution count of the branch will be equal to the
2850  // trip count of the loop.
2851  //
2852  //  More extensive analysis could be done to handle more cases here.
2853  //
2854  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2855      ExitBr->getSuccessor(1) != L->getHeader() &&
2856      ExitBr->getParent() != L->getHeader()) {
2857    // The simple checks failed, try climbing the unique predecessor chain
2858    // up to the header.
2859    bool Ok = false;
2860    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
2861      BasicBlock *Pred = BB->getUniquePredecessor();
2862      if (!Pred)
2863        return CouldNotCompute;
2864      TerminatorInst *PredTerm = Pred->getTerminator();
2865      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
2866        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
2867        if (PredSucc == BB)
2868          continue;
2869        // If the predecessor has a successor that isn't BB and isn't
2870        // outside the loop, assume the worst.
2871        if (L->contains(PredSucc))
2872          return CouldNotCompute;
2873      }
2874      if (Pred == L->getHeader()) {
2875        Ok = true;
2876        break;
2877      }
2878      BB = Pred;
2879    }
2880    if (!Ok)
2881      return CouldNotCompute;
2882  }
2883
2884  // Procede to the next level to examine the exit condition expression.
2885  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
2886                                               ExitBr->getSuccessor(0),
2887                                               ExitBr->getSuccessor(1));
2888}
2889
2890/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
2891/// backedge of the specified loop will execute if its exit condition
2892/// were a conditional branch of ExitCond, TBB, and FBB.
2893ScalarEvolution::BackedgeTakenInfo
2894ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
2895                                                       Value *ExitCond,
2896                                                       BasicBlock *TBB,
2897                                                       BasicBlock *FBB) {
2898  // Check if the controlling expression for this loop is an and or or. In
2899  // such cases, an exact backedge-taken count may be infeasible, but a
2900  // maximum count may still be feasible.
2901  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
2902    if (BO->getOpcode() == Instruction::And) {
2903      // Recurse on the operands of the and.
2904      BackedgeTakenInfo BTI0 =
2905        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2906      BackedgeTakenInfo BTI1 =
2907        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2908      const SCEV* BECount = CouldNotCompute;
2909      const SCEV* MaxBECount = CouldNotCompute;
2910      if (L->contains(TBB)) {
2911        // Both conditions must be true for the loop to continue executing.
2912        // Choose the less conservative count.
2913        if (BTI0.Exact == CouldNotCompute)
2914          BECount = BTI1.Exact;
2915        else if (BTI1.Exact == CouldNotCompute)
2916          BECount = BTI0.Exact;
2917        else
2918          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2919        if (BTI0.Max == CouldNotCompute)
2920          MaxBECount = BTI1.Max;
2921        else if (BTI1.Max == CouldNotCompute)
2922          MaxBECount = BTI0.Max;
2923        else
2924          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
2925      } else {
2926        // Both conditions must be true for the loop to exit.
2927        assert(L->contains(FBB) && "Loop block has no successor in loop!");
2928        if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2929          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2930        if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2931          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2932      }
2933
2934      return BackedgeTakenInfo(BECount, MaxBECount);
2935    }
2936    if (BO->getOpcode() == Instruction::Or) {
2937      // Recurse on the operands of the or.
2938      BackedgeTakenInfo BTI0 =
2939        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2940      BackedgeTakenInfo BTI1 =
2941        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
2942      const SCEV* BECount = CouldNotCompute;
2943      const SCEV* MaxBECount = CouldNotCompute;
2944      if (L->contains(FBB)) {
2945        // Both conditions must be false for the loop to continue executing.
2946        // Choose the less conservative count.
2947        if (BTI0.Exact == CouldNotCompute)
2948          BECount = BTI1.Exact;
2949        else if (BTI1.Exact == CouldNotCompute)
2950          BECount = BTI0.Exact;
2951        else
2952          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2953        if (BTI0.Max == CouldNotCompute)
2954          MaxBECount = BTI1.Max;
2955        else if (BTI1.Max == CouldNotCompute)
2956          MaxBECount = BTI0.Max;
2957        else
2958          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
2959      } else {
2960        // Both conditions must be false for the loop to exit.
2961        assert(L->contains(TBB) && "Loop block has no successor in loop!");
2962        if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2963          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2964        if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2965          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2966      }
2967
2968      return BackedgeTakenInfo(BECount, MaxBECount);
2969    }
2970  }
2971
2972  // With an icmp, it may be feasible to compute an exact backedge-taken count.
2973  // Procede to the next level to examine the icmp.
2974  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
2975    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
2976
2977  // If it's not an integer or pointer comparison then compute it the hard way.
2978  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
2979}
2980
2981/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
2982/// backedge of the specified loop will execute if its exit condition
2983/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
2984ScalarEvolution::BackedgeTakenInfo
2985ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
2986                                                           ICmpInst *ExitCond,
2987                                                           BasicBlock *TBB,
2988                                                           BasicBlock *FBB) {
2989
2990  // If the condition was exit on true, convert the condition to exit on false
2991  ICmpInst::Predicate Cond;
2992  if (!L->contains(FBB))
2993    Cond = ExitCond->getPredicate();
2994  else
2995    Cond = ExitCond->getInversePredicate();
2996
2997  // Handle common loops like: for (X = "string"; *X; ++X)
2998  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2999    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3000      const SCEV* ItCnt =
3001        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3002      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3003        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3004        return BackedgeTakenInfo(ItCnt,
3005                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3006                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3007      }
3008    }
3009
3010  const SCEV* LHS = getSCEV(ExitCond->getOperand(0));
3011  const SCEV* RHS = getSCEV(ExitCond->getOperand(1));
3012
3013  // Try to evaluate any dependencies out of the loop.
3014  LHS = getSCEVAtScope(LHS, L);
3015  RHS = getSCEVAtScope(RHS, L);
3016
3017  // At this point, we would like to compute how many iterations of the
3018  // loop the predicate will return true for these inputs.
3019  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3020    // If there is a loop-invariant, force it into the RHS.
3021    std::swap(LHS, RHS);
3022    Cond = ICmpInst::getSwappedPredicate(Cond);
3023  }
3024
3025  // If we have a comparison of a chrec against a constant, try to use value
3026  // ranges to answer this query.
3027  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3028    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3029      if (AddRec->getLoop() == L) {
3030        // Form the constant range.
3031        ConstantRange CompRange(
3032            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3033
3034        const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3035        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3036      }
3037
3038  switch (Cond) {
3039  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3040    // Convert to: while (X-Y != 0)
3041    const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3042    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3043    break;
3044  }
3045  case ICmpInst::ICMP_EQ: {
3046    // Convert to: while (X-Y == 0)           // while (X == Y)
3047    const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3048    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3049    break;
3050  }
3051  case ICmpInst::ICMP_SLT: {
3052    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3053    if (BTI.hasAnyInfo()) return BTI;
3054    break;
3055  }
3056  case ICmpInst::ICMP_SGT: {
3057    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3058                                             getNotSCEV(RHS), L, true);
3059    if (BTI.hasAnyInfo()) return BTI;
3060    break;
3061  }
3062  case ICmpInst::ICMP_ULT: {
3063    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3064    if (BTI.hasAnyInfo()) return BTI;
3065    break;
3066  }
3067  case ICmpInst::ICMP_UGT: {
3068    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3069                                             getNotSCEV(RHS), L, false);
3070    if (BTI.hasAnyInfo()) return BTI;
3071    break;
3072  }
3073  default:
3074#if 0
3075    errs() << "ComputeBackedgeTakenCount ";
3076    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3077      errs() << "[unsigned] ";
3078    errs() << *LHS << "   "
3079         << Instruction::getOpcodeName(Instruction::ICmp)
3080         << "   " << *RHS << "\n";
3081#endif
3082    break;
3083  }
3084  return
3085    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3086}
3087
3088static ConstantInt *
3089EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3090                                ScalarEvolution &SE) {
3091  const SCEV* InVal = SE.getConstant(C);
3092  const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE);
3093  assert(isa<SCEVConstant>(Val) &&
3094         "Evaluation of SCEV at constant didn't fold correctly?");
3095  return cast<SCEVConstant>(Val)->getValue();
3096}
3097
3098/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3099/// and a GEP expression (missing the pointer index) indexing into it, return
3100/// the addressed element of the initializer or null if the index expression is
3101/// invalid.
3102static Constant *
3103GetAddressedElementFromGlobal(GlobalVariable *GV,
3104                              const std::vector<ConstantInt*> &Indices) {
3105  Constant *Init = GV->getInitializer();
3106  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3107    uint64_t Idx = Indices[i]->getZExtValue();
3108    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3109      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3110      Init = cast<Constant>(CS->getOperand(Idx));
3111    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3112      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3113      Init = cast<Constant>(CA->getOperand(Idx));
3114    } else if (isa<ConstantAggregateZero>(Init)) {
3115      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3116        assert(Idx < STy->getNumElements() && "Bad struct index!");
3117        Init = Constant::getNullValue(STy->getElementType(Idx));
3118      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3119        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3120        Init = Constant::getNullValue(ATy->getElementType());
3121      } else {
3122        assert(0 && "Unknown constant aggregate type!");
3123      }
3124      return 0;
3125    } else {
3126      return 0; // Unknown initializer type
3127    }
3128  }
3129  return Init;
3130}
3131
3132/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3133/// 'icmp op load X, cst', try to see if we can compute the backedge
3134/// execution count.
3135const SCEV* ScalarEvolution::
3136ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
3137                                             const Loop *L,
3138                                             ICmpInst::Predicate predicate) {
3139  if (LI->isVolatile()) return CouldNotCompute;
3140
3141  // Check to see if the loaded pointer is a getelementptr of a global.
3142  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3143  if (!GEP) return CouldNotCompute;
3144
3145  // Make sure that it is really a constant global we are gepping, with an
3146  // initializer, and make sure the first IDX is really 0.
3147  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3148  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3149      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3150      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3151    return CouldNotCompute;
3152
3153  // Okay, we allow one non-constant index into the GEP instruction.
3154  Value *VarIdx = 0;
3155  std::vector<ConstantInt*> Indexes;
3156  unsigned VarIdxNum = 0;
3157  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3158    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3159      Indexes.push_back(CI);
3160    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3161      if (VarIdx) return CouldNotCompute;  // Multiple non-constant idx's.
3162      VarIdx = GEP->getOperand(i);
3163      VarIdxNum = i-2;
3164      Indexes.push_back(0);
3165    }
3166
3167  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3168  // Check to see if X is a loop variant variable value now.
3169  const SCEV* Idx = getSCEV(VarIdx);
3170  Idx = getSCEVAtScope(Idx, L);
3171
3172  // We can only recognize very limited forms of loop index expressions, in
3173  // particular, only affine AddRec's like {C1,+,C2}.
3174  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3175  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3176      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3177      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3178    return CouldNotCompute;
3179
3180  unsigned MaxSteps = MaxBruteForceIterations;
3181  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3182    ConstantInt *ItCst =
3183      ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
3184    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3185
3186    // Form the GEP offset.
3187    Indexes[VarIdxNum] = Val;
3188
3189    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3190    if (Result == 0) break;  // Cannot compute!
3191
3192    // Evaluate the condition for this iteration.
3193    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3194    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3195    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3196#if 0
3197      errs() << "\n***\n*** Computed loop count " << *ItCst
3198             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3199             << "***\n";
3200#endif
3201      ++NumArrayLenItCounts;
3202      return getConstant(ItCst);   // Found terminating iteration!
3203    }
3204  }
3205  return CouldNotCompute;
3206}
3207
3208
3209/// CanConstantFold - Return true if we can constant fold an instruction of the
3210/// specified type, assuming that all operands were constants.
3211static bool CanConstantFold(const Instruction *I) {
3212  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3213      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3214    return true;
3215
3216  if (const CallInst *CI = dyn_cast<CallInst>(I))
3217    if (const Function *F = CI->getCalledFunction())
3218      return canConstantFoldCallTo(F);
3219  return false;
3220}
3221
3222/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3223/// in the loop that V is derived from.  We allow arbitrary operations along the
3224/// way, but the operands of an operation must either be constants or a value
3225/// derived from a constant PHI.  If this expression does not fit with these
3226/// constraints, return null.
3227static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3228  // If this is not an instruction, or if this is an instruction outside of the
3229  // loop, it can't be derived from a loop PHI.
3230  Instruction *I = dyn_cast<Instruction>(V);
3231  if (I == 0 || !L->contains(I->getParent())) return 0;
3232
3233  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3234    if (L->getHeader() == I->getParent())
3235      return PN;
3236    else
3237      // We don't currently keep track of the control flow needed to evaluate
3238      // PHIs, so we cannot handle PHIs inside of loops.
3239      return 0;
3240  }
3241
3242  // If we won't be able to constant fold this expression even if the operands
3243  // are constants, return early.
3244  if (!CanConstantFold(I)) return 0;
3245
3246  // Otherwise, we can evaluate this instruction if all of its operands are
3247  // constant or derived from a PHI node themselves.
3248  PHINode *PHI = 0;
3249  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3250    if (!(isa<Constant>(I->getOperand(Op)) ||
3251          isa<GlobalValue>(I->getOperand(Op)))) {
3252      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3253      if (P == 0) return 0;  // Not evolving from PHI
3254      if (PHI == 0)
3255        PHI = P;
3256      else if (PHI != P)
3257        return 0;  // Evolving from multiple different PHIs.
3258    }
3259
3260  // This is a expression evolving from a constant PHI!
3261  return PHI;
3262}
3263
3264/// EvaluateExpression - Given an expression that passes the
3265/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3266/// in the loop has the value PHIVal.  If we can't fold this expression for some
3267/// reason, return null.
3268static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3269  if (isa<PHINode>(V)) return PHIVal;
3270  if (Constant *C = dyn_cast<Constant>(V)) return C;
3271  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3272  Instruction *I = cast<Instruction>(V);
3273
3274  std::vector<Constant*> Operands;
3275  Operands.resize(I->getNumOperands());
3276
3277  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3278    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3279    if (Operands[i] == 0) return 0;
3280  }
3281
3282  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3283    return ConstantFoldCompareInstOperands(CI->getPredicate(),
3284                                           &Operands[0], Operands.size());
3285  else
3286    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3287                                    &Operands[0], Operands.size());
3288}
3289
3290/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3291/// in the header of its containing loop, we know the loop executes a
3292/// constant number of times, and the PHI node is just a recurrence
3293/// involving constants, fold it.
3294Constant *ScalarEvolution::
3295getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
3296  std::map<PHINode*, Constant*>::iterator I =
3297    ConstantEvolutionLoopExitValue.find(PN);
3298  if (I != ConstantEvolutionLoopExitValue.end())
3299    return I->second;
3300
3301  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3302    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3303
3304  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3305
3306  // Since the loop is canonicalized, the PHI node must have two entries.  One
3307  // entry must be a constant (coming in from outside of the loop), and the
3308  // second must be derived from the same PHI.
3309  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3310  Constant *StartCST =
3311    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3312  if (StartCST == 0)
3313    return RetVal = 0;  // Must be a constant.
3314
3315  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3316  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3317  if (PN2 != PN)
3318    return RetVal = 0;  // Not derived from same PHI.
3319
3320  // Execute the loop symbolically to determine the exit value.
3321  if (BEs.getActiveBits() >= 32)
3322    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3323
3324  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3325  unsigned IterationNum = 0;
3326  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3327    if (IterationNum == NumIterations)
3328      return RetVal = PHIVal;  // Got exit value!
3329
3330    // Compute the value of the PHI node for the next iteration.
3331    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3332    if (NextPHI == PHIVal)
3333      return RetVal = NextPHI;  // Stopped evolving!
3334    if (NextPHI == 0)
3335      return 0;        // Couldn't evaluate!
3336    PHIVal = NextPHI;
3337  }
3338}
3339
3340/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3341/// constant number of times (the condition evolves only from constants),
3342/// try to evaluate a few iterations of the loop until we get the exit
3343/// condition gets a value of ExitWhen (true or false).  If we cannot
3344/// evaluate the trip count of the loop, return CouldNotCompute.
3345const SCEV* ScalarEvolution::
3346ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
3347  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3348  if (PN == 0) return CouldNotCompute;
3349
3350  // Since the loop is canonicalized, the PHI node must have two entries.  One
3351  // entry must be a constant (coming in from outside of the loop), and the
3352  // second must be derived from the same PHI.
3353  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3354  Constant *StartCST =
3355    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3356  if (StartCST == 0) return CouldNotCompute;  // Must be a constant.
3357
3358  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3359  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3360  if (PN2 != PN) return CouldNotCompute;  // Not derived from same PHI.
3361
3362  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3363  // the loop symbolically to determine when the condition gets a value of
3364  // "ExitWhen".
3365  unsigned IterationNum = 0;
3366  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3367  for (Constant *PHIVal = StartCST;
3368       IterationNum != MaxIterations; ++IterationNum) {
3369    ConstantInt *CondVal =
3370      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3371
3372    // Couldn't symbolically evaluate.
3373    if (!CondVal) return CouldNotCompute;
3374
3375    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3376      ConstantEvolutionLoopExitValue[PN] = PHIVal;
3377      ++NumBruteForceTripCountsComputed;
3378      return getConstant(Type::Int32Ty, IterationNum);
3379    }
3380
3381    // Compute the value of the PHI node for the next iteration.
3382    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3383    if (NextPHI == 0 || NextPHI == PHIVal)
3384      return CouldNotCompute;   // Couldn't evaluate or not making progress...
3385    PHIVal = NextPHI;
3386  }
3387
3388  // Too many iterations were needed to evaluate.
3389  return CouldNotCompute;
3390}
3391
3392/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3393/// at the specified scope in the program.  The L value specifies a loop
3394/// nest to evaluate the expression at, where null is the top-level or a
3395/// specified loop is immediately inside of the loop.
3396///
3397/// This method can be used to compute the exit value for a variable defined
3398/// in a loop by querying what the value will hold in the parent loop.
3399///
3400/// In the case that a relevant loop exit value cannot be computed, the
3401/// original value V is returned.
3402const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3403  // FIXME: this should be turned into a virtual method on SCEV!
3404
3405  if (isa<SCEVConstant>(V)) return V;
3406
3407  // If this instruction is evolved from a constant-evolving PHI, compute the
3408  // exit value from the loop without using SCEVs.
3409  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3410    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3411      const Loop *LI = (*this->LI)[I->getParent()];
3412      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3413        if (PHINode *PN = dyn_cast<PHINode>(I))
3414          if (PN->getParent() == LI->getHeader()) {
3415            // Okay, there is no closed form solution for the PHI node.  Check
3416            // to see if the loop that contains it has a known backedge-taken
3417            // count.  If so, we may be able to force computation of the exit
3418            // value.
3419            const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI);
3420            if (const SCEVConstant *BTCC =
3421                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3422              // Okay, we know how many times the containing loop executes.  If
3423              // this is a constant evolving PHI node, get the final value at
3424              // the specified iteration number.
3425              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3426                                                   BTCC->getValue()->getValue(),
3427                                                               LI);
3428              if (RV) return getUnknown(RV);
3429            }
3430          }
3431
3432      // Okay, this is an expression that we cannot symbolically evaluate
3433      // into a SCEV.  Check to see if it's possible to symbolically evaluate
3434      // the arguments into constants, and if so, try to constant propagate the
3435      // result.  This is particularly useful for computing loop exit values.
3436      if (CanConstantFold(I)) {
3437        // Check to see if we've folded this instruction at this loop before.
3438        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3439        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3440          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3441        if (!Pair.second)
3442          return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
3443
3444        std::vector<Constant*> Operands;
3445        Operands.reserve(I->getNumOperands());
3446        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3447          Value *Op = I->getOperand(i);
3448          if (Constant *C = dyn_cast<Constant>(Op)) {
3449            Operands.push_back(C);
3450          } else {
3451            // If any of the operands is non-constant and if they are
3452            // non-integer and non-pointer, don't even try to analyze them
3453            // with scev techniques.
3454            if (!isSCEVable(Op->getType()))
3455              return V;
3456
3457            const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L);
3458            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3459              Constant *C = SC->getValue();
3460              if (C->getType() != Op->getType())
3461                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3462                                                                  Op->getType(),
3463                                                                  false),
3464                                          C, Op->getType());
3465              Operands.push_back(C);
3466            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3467              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3468                if (C->getType() != Op->getType())
3469                  C =
3470                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3471                                                                  Op->getType(),
3472                                                                  false),
3473                                          C, Op->getType());
3474                Operands.push_back(C);
3475              } else
3476                return V;
3477            } else {
3478              return V;
3479            }
3480          }
3481        }
3482
3483        Constant *C;
3484        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3485          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3486                                              &Operands[0], Operands.size());
3487        else
3488          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3489                                       &Operands[0], Operands.size());
3490        Pair.first->second = C;
3491        return getUnknown(C);
3492      }
3493    }
3494
3495    // This is some other type of SCEVUnknown, just return it.
3496    return V;
3497  }
3498
3499  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3500    // Avoid performing the look-up in the common case where the specified
3501    // expression has no loop-variant portions.
3502    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3503      const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3504      if (OpAtScope != Comm->getOperand(i)) {
3505        // Okay, at least one of these operands is loop variant but might be
3506        // foldable.  Build a new instance of the folded commutative expression.
3507        SmallVector<const SCEV*, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i);
3508        NewOps.push_back(OpAtScope);
3509
3510        for (++i; i != e; ++i) {
3511          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3512          NewOps.push_back(OpAtScope);
3513        }
3514        if (isa<SCEVAddExpr>(Comm))
3515          return getAddExpr(NewOps);
3516        if (isa<SCEVMulExpr>(Comm))
3517          return getMulExpr(NewOps);
3518        if (isa<SCEVSMaxExpr>(Comm))
3519          return getSMaxExpr(NewOps);
3520        if (isa<SCEVUMaxExpr>(Comm))
3521          return getUMaxExpr(NewOps);
3522        assert(0 && "Unknown commutative SCEV type!");
3523      }
3524    }
3525    // If we got here, all operands are loop invariant.
3526    return Comm;
3527  }
3528
3529  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3530    const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L);
3531    const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L);
3532    if (LHS == Div->getLHS() && RHS == Div->getRHS())
3533      return Div;   // must be loop invariant
3534    return getUDivExpr(LHS, RHS);
3535  }
3536
3537  // If this is a loop recurrence for a loop that does not contain L, then we
3538  // are dealing with the final value computed by the loop.
3539  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3540    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3541      // To evaluate this recurrence, we need to know how many times the AddRec
3542      // loop iterates.  Compute this now.
3543      const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3544      if (BackedgeTakenCount == CouldNotCompute) return AddRec;
3545
3546      // Then, evaluate the AddRec.
3547      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3548    }
3549    return AddRec;
3550  }
3551
3552  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3553    const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3554    if (Op == Cast->getOperand())
3555      return Cast;  // must be loop invariant
3556    return getZeroExtendExpr(Op, Cast->getType());
3557  }
3558
3559  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3560    const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3561    if (Op == Cast->getOperand())
3562      return Cast;  // must be loop invariant
3563    return getSignExtendExpr(Op, Cast->getType());
3564  }
3565
3566  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3567    const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
3568    if (Op == Cast->getOperand())
3569      return Cast;  // must be loop invariant
3570    return getTruncateExpr(Op, Cast->getType());
3571  }
3572
3573  assert(0 && "Unknown SCEV type!");
3574  return 0;
3575}
3576
3577/// getSCEVAtScope - This is a convenience function which does
3578/// getSCEVAtScope(getSCEV(V), L).
3579const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3580  return getSCEVAtScope(getSCEV(V), L);
3581}
3582
3583/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3584/// following equation:
3585///
3586///     A * X = B (mod N)
3587///
3588/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3589/// A and B isn't important.
3590///
3591/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3592static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3593                                               ScalarEvolution &SE) {
3594  uint32_t BW = A.getBitWidth();
3595  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3596  assert(A != 0 && "A must be non-zero.");
3597
3598  // 1. D = gcd(A, N)
3599  //
3600  // The gcd of A and N may have only one prime factor: 2. The number of
3601  // trailing zeros in A is its multiplicity
3602  uint32_t Mult2 = A.countTrailingZeros();
3603  // D = 2^Mult2
3604
3605  // 2. Check if B is divisible by D.
3606  //
3607  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3608  // is not less than multiplicity of this prime factor for D.
3609  if (B.countTrailingZeros() < Mult2)
3610    return SE.getCouldNotCompute();
3611
3612  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3613  // modulo (N / D).
3614  //
3615  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3616  // bit width during computations.
3617  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3618  APInt Mod(BW + 1, 0);
3619  Mod.set(BW - Mult2);  // Mod = N / D
3620  APInt I = AD.multiplicativeInverse(Mod);
3621
3622  // 4. Compute the minimum unsigned root of the equation:
3623  // I * (B / D) mod (N / D)
3624  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3625
3626  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3627  // bits.
3628  return SE.getConstant(Result.trunc(BW));
3629}
3630
3631/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3632/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3633/// might be the same) or two SCEVCouldNotCompute objects.
3634///
3635static std::pair<const SCEV*,const SCEV*>
3636SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
3637  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
3638  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3639  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3640  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
3641
3642  // We currently can only solve this if the coefficients are constants.
3643  if (!LC || !MC || !NC) {
3644    const SCEV *CNC = SE.getCouldNotCompute();
3645    return std::make_pair(CNC, CNC);
3646  }
3647
3648  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3649  const APInt &L = LC->getValue()->getValue();
3650  const APInt &M = MC->getValue()->getValue();
3651  const APInt &N = NC->getValue()->getValue();
3652  APInt Two(BitWidth, 2);
3653  APInt Four(BitWidth, 4);
3654
3655  {
3656    using namespace APIntOps;
3657    const APInt& C = L;
3658    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3659    // The B coefficient is M-N/2
3660    APInt B(M);
3661    B -= sdiv(N,Two);
3662
3663    // The A coefficient is N/2
3664    APInt A(N.sdiv(Two));
3665
3666    // Compute the B^2-4ac term.
3667    APInt SqrtTerm(B);
3668    SqrtTerm *= B;
3669    SqrtTerm -= Four * (A * C);
3670
3671    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3672    // integer value or else APInt::sqrt() will assert.
3673    APInt SqrtVal(SqrtTerm.sqrt());
3674
3675    // Compute the two solutions for the quadratic formula.
3676    // The divisions must be performed as signed divisions.
3677    APInt NegB(-B);
3678    APInt TwoA( A << 1 );
3679    if (TwoA.isMinValue()) {
3680      const SCEV *CNC = SE.getCouldNotCompute();
3681      return std::make_pair(CNC, CNC);
3682    }
3683
3684    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3685    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3686
3687    return std::make_pair(SE.getConstant(Solution1),
3688                          SE.getConstant(Solution2));
3689    } // end APIntOps namespace
3690}
3691
3692/// HowFarToZero - Return the number of times a backedge comparing the specified
3693/// value to zero will execute.  If not computable, return CouldNotCompute.
3694const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3695  // If the value is a constant
3696  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3697    // If the value is already zero, the branch will execute zero times.
3698    if (C->getValue()->isZero()) return C;
3699    return CouldNotCompute;  // Otherwise it will loop infinitely.
3700  }
3701
3702  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3703  if (!AddRec || AddRec->getLoop() != L)
3704    return CouldNotCompute;
3705
3706  if (AddRec->isAffine()) {
3707    // If this is an affine expression, the execution count of this branch is
3708    // the minimum unsigned root of the following equation:
3709    //
3710    //     Start + Step*N = 0 (mod 2^BW)
3711    //
3712    // equivalent to:
3713    //
3714    //             Step*N = -Start (mod 2^BW)
3715    //
3716    // where BW is the common bit width of Start and Step.
3717
3718    // Get the initial value for the loop.
3719    const SCEV* Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3720    const SCEV* Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3721
3722    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3723      // For now we handle only constant steps.
3724
3725      // First, handle unitary steps.
3726      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3727        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3728      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3729        return Start;                           //    N = Start (as unsigned)
3730
3731      // Then, try to solve the above equation provided that Start is constant.
3732      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3733        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3734                                            -StartC->getValue()->getValue(),
3735                                            *this);
3736    }
3737  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3738    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3739    // the quadratic equation to solve it.
3740    std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec,
3741                                                                    *this);
3742    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3743    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3744    if (R1) {
3745#if 0
3746      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3747             << "  sol#2: " << *R2 << "\n";
3748#endif
3749      // Pick the smallest positive root value.
3750      if (ConstantInt *CB =
3751          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3752                                   R1->getValue(), R2->getValue()))) {
3753        if (CB->getZExtValue() == false)
3754          std::swap(R1, R2);   // R1 is the minimum root now.
3755
3756        // We can only use this value if the chrec ends up with an exact zero
3757        // value at this index.  When solving for "X*X != 5", for example, we
3758        // should not accept a root of 2.
3759        const SCEV* Val = AddRec->evaluateAtIteration(R1, *this);
3760        if (Val->isZero())
3761          return R1;  // We found a quadratic root!
3762      }
3763    }
3764  }
3765
3766  return CouldNotCompute;
3767}
3768
3769/// HowFarToNonZero - Return the number of times a backedge checking the
3770/// specified value for nonzero will execute.  If not computable, return
3771/// CouldNotCompute
3772const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3773  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3774  // handle them yet except for the trivial case.  This could be expanded in the
3775  // future as needed.
3776
3777  // If the value is a constant, check to see if it is known to be non-zero
3778  // already.  If so, the backedge will execute zero times.
3779  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3780    if (!C->getValue()->isNullValue())
3781      return getIntegerSCEV(0, C->getType());
3782    return CouldNotCompute;  // Otherwise it will loop infinitely.
3783  }
3784
3785  // We could implement others, but I really doubt anyone writes loops like
3786  // this, and if they did, they would already be constant folded.
3787  return CouldNotCompute;
3788}
3789
3790/// getLoopPredecessor - If the given loop's header has exactly one unique
3791/// predecessor outside the loop, return it. Otherwise return null.
3792///
3793BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3794  BasicBlock *Header = L->getHeader();
3795  BasicBlock *Pred = 0;
3796  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3797       PI != E; ++PI)
3798    if (!L->contains(*PI)) {
3799      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3800      Pred = *PI;
3801    }
3802  return Pred;
3803}
3804
3805/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3806/// (which may not be an immediate predecessor) which has exactly one
3807/// successor from which BB is reachable, or null if no such block is
3808/// found.
3809///
3810BasicBlock *
3811ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3812  // If the block has a unique predecessor, then there is no path from the
3813  // predecessor to the block that does not go through the direct edge
3814  // from the predecessor to the block.
3815  if (BasicBlock *Pred = BB->getSinglePredecessor())
3816    return Pred;
3817
3818  // A loop's header is defined to be a block that dominates the loop.
3819  // If the header has a unique predecessor outside the loop, it must be
3820  // a block that has exactly one successor that can reach the loop.
3821  if (Loop *L = LI->getLoopFor(BB))
3822    return getLoopPredecessor(L);
3823
3824  return 0;
3825}
3826
3827/// HasSameValue - SCEV structural equivalence is usually sufficient for
3828/// testing whether two expressions are equal, however for the purposes of
3829/// looking for a condition guarding a loop, it can be useful to be a little
3830/// more general, since a front-end may have replicated the controlling
3831/// expression.
3832///
3833static bool HasSameValue(const SCEV* A, const SCEV* B) {
3834  // Quick check to see if they are the same SCEV.
3835  if (A == B) return true;
3836
3837  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
3838  // two different instructions with the same value. Check for this case.
3839  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
3840    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
3841      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
3842        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
3843          if (AI->isIdenticalTo(BI))
3844            return true;
3845
3846  // Otherwise assume they may have a different value.
3847  return false;
3848}
3849
3850/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3851/// a conditional between LHS and RHS.  This is used to help avoid max
3852/// expressions in loop trip counts.
3853bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3854                                          ICmpInst::Predicate Pred,
3855                                          const SCEV *LHS, const SCEV *RHS) {
3856  // Interpret a null as meaning no loop, where there is obviously no guard
3857  // (interprocedural conditions notwithstanding).
3858  if (!L) return false;
3859
3860  BasicBlock *Predecessor = getLoopPredecessor(L);
3861  BasicBlock *PredecessorDest = L->getHeader();
3862
3863  // Starting at the loop predecessor, climb up the predecessor chain, as long
3864  // as there are predecessors that can be found that have unique successors
3865  // leading to the original header.
3866  for (; Predecessor;
3867       PredecessorDest = Predecessor,
3868       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
3869
3870    BranchInst *LoopEntryPredicate =
3871      dyn_cast<BranchInst>(Predecessor->getTerminator());
3872    if (!LoopEntryPredicate ||
3873        LoopEntryPredicate->isUnconditional())
3874      continue;
3875
3876    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3877    if (!ICI) continue;
3878
3879    // Now that we found a conditional branch that dominates the loop, check to
3880    // see if it is the comparison we are looking for.
3881    Value *PreCondLHS = ICI->getOperand(0);
3882    Value *PreCondRHS = ICI->getOperand(1);
3883    ICmpInst::Predicate Cond;
3884    if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
3885      Cond = ICI->getPredicate();
3886    else
3887      Cond = ICI->getInversePredicate();
3888
3889    if (Cond == Pred)
3890      ; // An exact match.
3891    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3892      ; // The actual condition is beyond sufficient.
3893    else
3894      // Check a few special cases.
3895      switch (Cond) {
3896      case ICmpInst::ICMP_UGT:
3897        if (Pred == ICmpInst::ICMP_ULT) {
3898          std::swap(PreCondLHS, PreCondRHS);
3899          Cond = ICmpInst::ICMP_ULT;
3900          break;
3901        }
3902        continue;
3903      case ICmpInst::ICMP_SGT:
3904        if (Pred == ICmpInst::ICMP_SLT) {
3905          std::swap(PreCondLHS, PreCondRHS);
3906          Cond = ICmpInst::ICMP_SLT;
3907          break;
3908        }
3909        continue;
3910      case ICmpInst::ICMP_NE:
3911        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3912        // so check for this case by checking if the NE is comparing against
3913        // a minimum or maximum constant.
3914        if (!ICmpInst::isTrueWhenEqual(Pred))
3915          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3916            const APInt &A = CI->getValue();
3917            switch (Pred) {
3918            case ICmpInst::ICMP_SLT:
3919              if (A.isMaxSignedValue()) break;
3920              continue;
3921            case ICmpInst::ICMP_SGT:
3922              if (A.isMinSignedValue()) break;
3923              continue;
3924            case ICmpInst::ICMP_ULT:
3925              if (A.isMaxValue()) break;
3926              continue;
3927            case ICmpInst::ICMP_UGT:
3928              if (A.isMinValue()) break;
3929              continue;
3930            default:
3931              continue;
3932            }
3933            Cond = ICmpInst::ICMP_NE;
3934            // NE is symmetric but the original comparison may not be. Swap
3935            // the operands if necessary so that they match below.
3936            if (isa<SCEVConstant>(LHS))
3937              std::swap(PreCondLHS, PreCondRHS);
3938            break;
3939          }
3940        continue;
3941      default:
3942        // We weren't able to reconcile the condition.
3943        continue;
3944      }
3945
3946    if (!PreCondLHS->getType()->isInteger()) continue;
3947
3948    const SCEV* PreCondLHSSCEV = getSCEV(PreCondLHS);
3949    const SCEV* PreCondRHSSCEV = getSCEV(PreCondRHS);
3950    if ((HasSameValue(LHS, PreCondLHSSCEV) &&
3951         HasSameValue(RHS, PreCondRHSSCEV)) ||
3952        (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
3953         HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV))))
3954      return true;
3955  }
3956
3957  return false;
3958}
3959
3960/// getBECount - Subtract the end and start values and divide by the step,
3961/// rounding up, to get the number of times the backedge is executed. Return
3962/// CouldNotCompute if an intermediate computation overflows.
3963const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
3964                                       const SCEV* End,
3965                                       const SCEV* Step) {
3966  const Type *Ty = Start->getType();
3967  const SCEV* NegOne = getIntegerSCEV(-1, Ty);
3968  const SCEV* Diff = getMinusSCEV(End, Start);
3969  const SCEV* RoundUp = getAddExpr(Step, NegOne);
3970
3971  // Add an adjustment to the difference between End and Start so that
3972  // the division will effectively round up.
3973  const SCEV* Add = getAddExpr(Diff, RoundUp);
3974
3975  // Check Add for unsigned overflow.
3976  // TODO: More sophisticated things could be done here.
3977  const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
3978  const SCEV* OperandExtendedAdd =
3979    getAddExpr(getZeroExtendExpr(Diff, WideTy),
3980               getZeroExtendExpr(RoundUp, WideTy));
3981  if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
3982    return CouldNotCompute;
3983
3984  return getUDivExpr(Add, Step);
3985}
3986
3987/// HowManyLessThans - Return the number of times a backedge containing the
3988/// specified less-than comparison will execute.  If not computable, return
3989/// CouldNotCompute.
3990ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3991HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3992                 const Loop *L, bool isSigned) {
3993  // Only handle:  "ADDREC < LoopInvariant".
3994  if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
3995
3996  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3997  if (!AddRec || AddRec->getLoop() != L)
3998    return CouldNotCompute;
3999
4000  if (AddRec->isAffine()) {
4001    // FORNOW: We only support unit strides.
4002    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4003    const SCEV* Step = AddRec->getStepRecurrence(*this);
4004
4005    // TODO: handle non-constant strides.
4006    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4007    if (!CStep || CStep->isZero())
4008      return CouldNotCompute;
4009    if (CStep->isOne()) {
4010      // With unit stride, the iteration never steps past the limit value.
4011    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4012      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4013        // Test whether a positive iteration iteration can step past the limit
4014        // value and past the maximum value for its type in a single step.
4015        if (isSigned) {
4016          APInt Max = APInt::getSignedMaxValue(BitWidth);
4017          if ((Max - CStep->getValue()->getValue())
4018                .slt(CLimit->getValue()->getValue()))
4019            return CouldNotCompute;
4020        } else {
4021          APInt Max = APInt::getMaxValue(BitWidth);
4022          if ((Max - CStep->getValue()->getValue())
4023                .ult(CLimit->getValue()->getValue()))
4024            return CouldNotCompute;
4025        }
4026      } else
4027        // TODO: handle non-constant limit values below.
4028        return CouldNotCompute;
4029    } else
4030      // TODO: handle negative strides below.
4031      return CouldNotCompute;
4032
4033    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4034    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4035    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4036    // treat m-n as signed nor unsigned due to overflow possibility.
4037
4038    // First, we get the value of the LHS in the first iteration: n
4039    const SCEV* Start = AddRec->getOperand(0);
4040
4041    // Determine the minimum constant start value.
4042    const SCEV* MinStart = isa<SCEVConstant>(Start) ? Start :
4043      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
4044                             APInt::getMinValue(BitWidth));
4045
4046    // If we know that the condition is true in order to enter the loop,
4047    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4048    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4049    // the division must round up.
4050    const SCEV* End = RHS;
4051    if (!isLoopGuardedByCond(L,
4052                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
4053                             getMinusSCEV(Start, Step), RHS))
4054      End = isSigned ? getSMaxExpr(RHS, Start)
4055                     : getUMaxExpr(RHS, Start);
4056
4057    // Determine the maximum constant end value.
4058    const SCEV* MaxEnd =
4059      isa<SCEVConstant>(End) ? End :
4060      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
4061                               .ashr(GetMinSignBits(End) - 1) :
4062                             APInt::getMaxValue(BitWidth)
4063                               .lshr(GetMinLeadingZeros(End)));
4064
4065    // Finally, we subtract these two values and divide, rounding up, to get
4066    // the number of times the backedge is executed.
4067    const SCEV* BECount = getBECount(Start, End, Step);
4068
4069    // The maximum backedge count is similar, except using the minimum start
4070    // value and the maximum end value.
4071    const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);;
4072
4073    return BackedgeTakenInfo(BECount, MaxBECount);
4074  }
4075
4076  return CouldNotCompute;
4077}
4078
4079/// getNumIterationsInRange - Return the number of iterations of this loop that
4080/// produce values in the specified constant range.  Another way of looking at
4081/// this is that it returns the first iteration number where the value is not in
4082/// the condition, thus computing the exit count. If the iteration count can't
4083/// be computed, an instance of SCEVCouldNotCompute is returned.
4084const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4085                                                   ScalarEvolution &SE) const {
4086  if (Range.isFullSet())  // Infinite loop.
4087    return SE.getCouldNotCompute();
4088
4089  // If the start is a non-zero constant, shift the range to simplify things.
4090  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4091    if (!SC->getValue()->isZero()) {
4092      SmallVector<const SCEV*, 4> Operands(op_begin(), op_end());
4093      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4094      const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop());
4095      if (const SCEVAddRecExpr *ShiftedAddRec =
4096            dyn_cast<SCEVAddRecExpr>(Shifted))
4097        return ShiftedAddRec->getNumIterationsInRange(
4098                           Range.subtract(SC->getValue()->getValue()), SE);
4099      // This is strange and shouldn't happen.
4100      return SE.getCouldNotCompute();
4101    }
4102
4103  // The only time we can solve this is when we have all constant indices.
4104  // Otherwise, we cannot determine the overflow conditions.
4105  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4106    if (!isa<SCEVConstant>(getOperand(i)))
4107      return SE.getCouldNotCompute();
4108
4109
4110  // Okay at this point we know that all elements of the chrec are constants and
4111  // that the start element is zero.
4112
4113  // First check to see if the range contains zero.  If not, the first
4114  // iteration exits.
4115  unsigned BitWidth = SE.getTypeSizeInBits(getType());
4116  if (!Range.contains(APInt(BitWidth, 0)))
4117    return SE.getIntegerSCEV(0, getType());
4118
4119  if (isAffine()) {
4120    // If this is an affine expression then we have this situation:
4121    //   Solve {0,+,A} in Range  ===  Ax in Range
4122
4123    // We know that zero is in the range.  If A is positive then we know that
4124    // the upper value of the range must be the first possible exit value.
4125    // If A is negative then the lower of the range is the last possible loop
4126    // value.  Also note that we already checked for a full range.
4127    APInt One(BitWidth,1);
4128    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4129    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4130
4131    // The exit value should be (End+A)/A.
4132    APInt ExitVal = (End + A).udiv(A);
4133    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
4134
4135    // Evaluate at the exit value.  If we really did fall out of the valid
4136    // range, then we computed our trip count, otherwise wrap around or other
4137    // things must have happened.
4138    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4139    if (Range.contains(Val->getValue()))
4140      return SE.getCouldNotCompute();  // Something strange happened
4141
4142    // Ensure that the previous value is in the range.  This is a sanity check.
4143    assert(Range.contains(
4144           EvaluateConstantChrecAtConstant(this,
4145           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
4146           "Linear scev computation is off in a bad way!");
4147    return SE.getConstant(ExitValue);
4148  } else if (isQuadratic()) {
4149    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4150    // quadratic equation to solve it.  To do this, we must frame our problem in
4151    // terms of figuring out when zero is crossed, instead of when
4152    // Range.getUpper() is crossed.
4153    SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end());
4154    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4155    const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4156
4157    // Next, solve the constructed addrec
4158    std::pair<const SCEV*,const SCEV*> Roots =
4159      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4160    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4161    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4162    if (R1) {
4163      // Pick the smallest positive root value.
4164      if (ConstantInt *CB =
4165          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4166                                   R1->getValue(), R2->getValue()))) {
4167        if (CB->getZExtValue() == false)
4168          std::swap(R1, R2);   // R1 is the minimum root now.
4169
4170        // Make sure the root is not off by one.  The returned iteration should
4171        // not be in the range, but the previous one should be.  When solving
4172        // for "X*X < 5", for example, we should not return a root of 2.
4173        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4174                                                             R1->getValue(),
4175                                                             SE);
4176        if (Range.contains(R1Val->getValue())) {
4177          // The next iteration must be out of the range...
4178          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
4179
4180          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4181          if (!Range.contains(R1Val->getValue()))
4182            return SE.getConstant(NextVal);
4183          return SE.getCouldNotCompute();  // Something strange happened
4184        }
4185
4186        // If R1 was not in the range, then it is a good return value.  Make
4187        // sure that R1-1 WAS in the range though, just in case.
4188        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
4189        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4190        if (Range.contains(R1Val->getValue()))
4191          return R1;
4192        return SE.getCouldNotCompute();  // Something strange happened
4193      }
4194    }
4195  }
4196
4197  return SE.getCouldNotCompute();
4198}
4199
4200
4201
4202//===----------------------------------------------------------------------===//
4203//                   SCEVCallbackVH Class Implementation
4204//===----------------------------------------------------------------------===//
4205
4206void ScalarEvolution::SCEVCallbackVH::deleted() {
4207  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4208  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4209    SE->ConstantEvolutionLoopExitValue.erase(PN);
4210  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4211    SE->ValuesAtScopes.erase(I);
4212  SE->Scalars.erase(getValPtr());
4213  // this now dangles!
4214}
4215
4216void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4217  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4218
4219  // Forget all the expressions associated with users of the old value,
4220  // so that future queries will recompute the expressions using the new
4221  // value.
4222  SmallVector<User *, 16> Worklist;
4223  Value *Old = getValPtr();
4224  bool DeleteOld = false;
4225  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4226       UI != UE; ++UI)
4227    Worklist.push_back(*UI);
4228  while (!Worklist.empty()) {
4229    User *U = Worklist.pop_back_val();
4230    // Deleting the Old value will cause this to dangle. Postpone
4231    // that until everything else is done.
4232    if (U == Old) {
4233      DeleteOld = true;
4234      continue;
4235    }
4236    if (PHINode *PN = dyn_cast<PHINode>(U))
4237      SE->ConstantEvolutionLoopExitValue.erase(PN);
4238    if (Instruction *I = dyn_cast<Instruction>(U))
4239      SE->ValuesAtScopes.erase(I);
4240    if (SE->Scalars.erase(U))
4241      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4242           UI != UE; ++UI)
4243        Worklist.push_back(*UI);
4244  }
4245  if (DeleteOld) {
4246    if (PHINode *PN = dyn_cast<PHINode>(Old))
4247      SE->ConstantEvolutionLoopExitValue.erase(PN);
4248    if (Instruction *I = dyn_cast<Instruction>(Old))
4249      SE->ValuesAtScopes.erase(I);
4250    SE->Scalars.erase(Old);
4251    // this now dangles!
4252  }
4253  // this may dangle!
4254}
4255
4256ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4257  : CallbackVH(V), SE(se) {}
4258
4259//===----------------------------------------------------------------------===//
4260//                   ScalarEvolution Class Implementation
4261//===----------------------------------------------------------------------===//
4262
4263ScalarEvolution::ScalarEvolution()
4264  : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute(0)) {
4265}
4266
4267bool ScalarEvolution::runOnFunction(Function &F) {
4268  this->F = &F;
4269  LI = &getAnalysis<LoopInfo>();
4270  TD = getAnalysisIfAvailable<TargetData>();
4271  return false;
4272}
4273
4274void ScalarEvolution::releaseMemory() {
4275  Scalars.clear();
4276  BackedgeTakenCounts.clear();
4277  ConstantEvolutionLoopExitValue.clear();
4278  ValuesAtScopes.clear();
4279
4280  for (std::map<ConstantInt*, SCEVConstant*>::iterator
4281       I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I)
4282    delete I->second;
4283  for (std::map<std::pair<const SCEV*, const Type*>,
4284       SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(),
4285       E = SCEVTruncates.end(); I != E; ++I)
4286    delete I->second;
4287  for (std::map<std::pair<const SCEV*, const Type*>,
4288       SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(),
4289       E = SCEVZeroExtends.end(); I != E; ++I)
4290    delete I->second;
4291  for (std::map<std::pair<unsigned, std::vector<const SCEV*> >,
4292       SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(),
4293       E = SCEVCommExprs.end(); I != E; ++I)
4294    delete I->second;
4295  for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator
4296       I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I)
4297    delete I->second;
4298  for (std::map<std::pair<const SCEV*, const Type*>,
4299       SCEVSignExtendExpr*>::iterator I =  SCEVSignExtends.begin(),
4300       E = SCEVSignExtends.end(); I != E; ++I)
4301    delete I->second;
4302  for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
4303       SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(),
4304       E = SCEVAddRecExprs.end(); I != E; ++I)
4305    delete I->second;
4306  for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(),
4307       E = SCEVUnknowns.end(); I != E; ++I)
4308    delete I->second;
4309
4310  SCEVConstants.clear();
4311  SCEVTruncates.clear();
4312  SCEVZeroExtends.clear();
4313  SCEVCommExprs.clear();
4314  SCEVUDivs.clear();
4315  SCEVSignExtends.clear();
4316  SCEVAddRecExprs.clear();
4317  SCEVUnknowns.clear();
4318}
4319
4320void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4321  AU.setPreservesAll();
4322  AU.addRequiredTransitive<LoopInfo>();
4323}
4324
4325bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4326  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4327}
4328
4329static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4330                          const Loop *L) {
4331  // Print all inner loops first
4332  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4333    PrintLoopInfo(OS, SE, *I);
4334
4335  OS << "Loop " << L->getHeader()->getName() << ": ";
4336
4337  SmallVector<BasicBlock*, 8> ExitBlocks;
4338  L->getExitBlocks(ExitBlocks);
4339  if (ExitBlocks.size() != 1)
4340    OS << "<multiple exits> ";
4341
4342  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4343    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
4344  } else {
4345    OS << "Unpredictable backedge-taken count. ";
4346  }
4347
4348  OS << "\n";
4349}
4350
4351void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
4352  // ScalarEvolution's implementaiton of the print method is to print
4353  // out SCEV values of all instructions that are interesting. Doing
4354  // this potentially causes it to create new SCEV objects though,
4355  // which technically conflicts with the const qualifier. This isn't
4356  // observable from outside the class though (the hasSCEV function
4357  // notwithstanding), so casting away the const isn't dangerous.
4358  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
4359
4360  OS << "Classifying expressions for: " << F->getName() << "\n";
4361  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
4362    if (isSCEVable(I->getType())) {
4363      OS << *I;
4364      OS << "  -->  ";
4365      const SCEV* SV = SE.getSCEV(&*I);
4366      SV->print(OS);
4367
4368      const Loop *L = LI->getLoopFor((*I).getParent());
4369
4370      const SCEV* AtUse = SE.getSCEVAtScope(SV, L);
4371      if (AtUse != SV) {
4372        OS << "  -->  ";
4373        AtUse->print(OS);
4374      }
4375
4376      if (L) {
4377        OS << "\t\t" "Exits: ";
4378        const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
4379        if (!ExitValue->isLoopInvariant(L)) {
4380          OS << "<<Unknown>>";
4381        } else {
4382          OS << *ExitValue;
4383        }
4384      }
4385
4386      OS << "\n";
4387    }
4388
4389  OS << "Determining loop execution counts for: " << F->getName() << "\n";
4390  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4391    PrintLoopInfo(OS, &SE, *I);
4392}
4393
4394void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4395  raw_os_ostream OS(o);
4396  print(OS, M);
4397}
4398