ScalarEvolution.cpp revision 3d739fe3756bf67be23c2ca54ec7b04bef89bfe0
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Transforms/Scalar.h"
74#include "llvm/Support/CFG.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/GetElementPtrTypeIterator.h"
79#include "llvm/Support/InstIterator.h"
80#include "llvm/Support/ManagedStatic.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/ADT/Statistic.h"
84#include "llvm/ADT/STLExtras.h"
85#include <ostream>
86#include <algorithm>
87#include <cmath>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant derived loop"),
103                        cl::init(100));
104
105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118  print(errs());
119  errs() << '\n';
120}
121
122void SCEV::print(std::ostream &o) const {
123  raw_os_ostream OS(o);
124  print(OS);
125}
126
127bool SCEV::isZero() const {
128  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
129    return SC->getValue()->isZero();
130  return false;
131}
132
133
134SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
135SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
136
137bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
138  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
139  return false;
140}
141
142const Type *SCEVCouldNotCompute::getType() const {
143  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144  return 0;
145}
146
147bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
148  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
149  return false;
150}
151
152SCEVHandle SCEVCouldNotCompute::
153replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
154                                  const SCEVHandle &Conc,
155                                  ScalarEvolution &SE) const {
156  return this;
157}
158
159void SCEVCouldNotCompute::print(raw_ostream &OS) const {
160  OS << "***COULDNOTCOMPUTE***";
161}
162
163bool SCEVCouldNotCompute::classof(const SCEV *S) {
164  return S->getSCEVType() == scCouldNotCompute;
165}
166
167
168// SCEVConstants - Only allow the creation of one SCEVConstant for any
169// particular value.  Don't use a SCEVHandle here, or else the object will
170// never be deleted!
171static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
172
173
174SCEVConstant::~SCEVConstant() {
175  SCEVConstants->erase(V);
176}
177
178SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
179  SCEVConstant *&R = (*SCEVConstants)[V];
180  if (R == 0) R = new SCEVConstant(V);
181  return R;
182}
183
184SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
185  return getConstant(ConstantInt::get(Val));
186}
187
188const Type *SCEVConstant::getType() const { return V->getType(); }
189
190void SCEVConstant::print(raw_ostream &OS) const {
191  WriteAsOperand(OS, V, false);
192}
193
194SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
195                           const SCEVHandle &op, const Type *ty)
196  : SCEV(SCEVTy), Op(op), Ty(ty) {}
197
198SCEVCastExpr::~SCEVCastExpr() {}
199
200bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
201  return Op->dominates(BB, DT);
202}
203
204// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
205// particular input.  Don't use a SCEVHandle here, or else the object will
206// never be deleted!
207static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
208                     SCEVTruncateExpr*> > SCEVTruncates;
209
210SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
211  : SCEVCastExpr(scTruncate, op, ty) {
212  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
213         (Ty->isInteger() || isa<PointerType>(Ty)) &&
214         "Cannot truncate non-integer value!");
215}
216
217SCEVTruncateExpr::~SCEVTruncateExpr() {
218  SCEVTruncates->erase(std::make_pair(Op, Ty));
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226// particular input.  Don't use a SCEVHandle here, or else the object will never
227// be deleted!
228static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
229                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
230
231SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
232  : SCEVCastExpr(scZeroExtend, op, ty) {
233  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234         (Ty->isInteger() || isa<PointerType>(Ty)) &&
235         "Cannot zero extend non-integer value!");
236}
237
238SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
239  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
240}
241
242void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
243  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
244}
245
246// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
247// particular input.  Don't use a SCEVHandle here, or else the object will never
248// be deleted!
249static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
250                     SCEVSignExtendExpr*> > SCEVSignExtends;
251
252SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
253  : SCEVCastExpr(scSignExtend, op, ty) {
254  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
255         (Ty->isInteger() || isa<PointerType>(Ty)) &&
256         "Cannot sign extend non-integer value!");
257}
258
259SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260  SCEVSignExtends->erase(std::make_pair(Op, Ty));
261}
262
263void SCEVSignExtendExpr::print(raw_ostream &OS) const {
264  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
265}
266
267// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
268// particular input.  Don't use a SCEVHandle here, or else the object will never
269// be deleted!
270static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
271                     SCEVCommutativeExpr*> > SCEVCommExprs;
272
273SCEVCommutativeExpr::~SCEVCommutativeExpr() {
274  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
275                                      std::vector<SCEV*>(Operands.begin(),
276                                                         Operands.end())));
277}
278
279void SCEVCommutativeExpr::print(raw_ostream &OS) const {
280  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281  const char *OpStr = getOperationStr();
282  OS << "(" << *Operands[0];
283  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284    OS << OpStr << *Operands[i];
285  OS << ")";
286}
287
288SCEVHandle SCEVCommutativeExpr::
289replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
290                                  const SCEVHandle &Conc,
291                                  ScalarEvolution &SE) const {
292  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
293    SCEVHandle H =
294      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
295    if (H != getOperand(i)) {
296      std::vector<SCEVHandle> NewOps;
297      NewOps.reserve(getNumOperands());
298      for (unsigned j = 0; j != i; ++j)
299        NewOps.push_back(getOperand(j));
300      NewOps.push_back(H);
301      for (++i; i != e; ++i)
302        NewOps.push_back(getOperand(i)->
303                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
304
305      if (isa<SCEVAddExpr>(this))
306        return SE.getAddExpr(NewOps);
307      else if (isa<SCEVMulExpr>(this))
308        return SE.getMulExpr(NewOps);
309      else if (isa<SCEVSMaxExpr>(this))
310        return SE.getSMaxExpr(NewOps);
311      else if (isa<SCEVUMaxExpr>(this))
312        return SE.getUMaxExpr(NewOps);
313      else
314        assert(0 && "Unknown commutative expr!");
315    }
316  }
317  return this;
318}
319
320bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
321  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322    if (!getOperand(i)->dominates(BB, DT))
323      return false;
324  }
325  return true;
326}
327
328
329// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
330// input.  Don't use a SCEVHandle here, or else the object will never be
331// deleted!
332static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
333                     SCEVUDivExpr*> > SCEVUDivs;
334
335SCEVUDivExpr::~SCEVUDivExpr() {
336  SCEVUDivs->erase(std::make_pair(LHS, RHS));
337}
338
339bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
341}
342
343void SCEVUDivExpr::print(raw_ostream &OS) const {
344  OS << "(" << *LHS << " /u " << *RHS << ")";
345}
346
347const Type *SCEVUDivExpr::getType() const {
348  return LHS->getType();
349}
350
351// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
352// particular input.  Don't use a SCEVHandle here, or else the object will never
353// be deleted!
354static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
355                     SCEVAddRecExpr*> > SCEVAddRecExprs;
356
357SCEVAddRecExpr::~SCEVAddRecExpr() {
358  SCEVAddRecExprs->erase(std::make_pair(L,
359                                        std::vector<SCEV*>(Operands.begin(),
360                                                           Operands.end())));
361}
362
363bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
364  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
365    if (!getOperand(i)->dominates(BB, DT))
366      return false;
367  }
368  return true;
369}
370
371
372SCEVHandle SCEVAddRecExpr::
373replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
374                                  const SCEVHandle &Conc,
375                                  ScalarEvolution &SE) const {
376  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
377    SCEVHandle H =
378      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
379    if (H != getOperand(i)) {
380      std::vector<SCEVHandle> NewOps;
381      NewOps.reserve(getNumOperands());
382      for (unsigned j = 0; j != i; ++j)
383        NewOps.push_back(getOperand(j));
384      NewOps.push_back(H);
385      for (++i; i != e; ++i)
386        NewOps.push_back(getOperand(i)->
387                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
388
389      return SE.getAddRecExpr(NewOps, L);
390    }
391  }
392  return this;
393}
394
395
396bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
397  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
398  // contain L and if the start is invariant.
399  return !QueryLoop->contains(L->getHeader()) &&
400         getOperand(0)->isLoopInvariant(QueryLoop);
401}
402
403
404void SCEVAddRecExpr::print(raw_ostream &OS) const {
405  OS << "{" << *Operands[0];
406  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
407    OS << ",+," << *Operands[i];
408  OS << "}<" << L->getHeader()->getName() + ">";
409}
410
411// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
412// value.  Don't use a SCEVHandle here, or else the object will never be
413// deleted!
414static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
415
416SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
417
418bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
419  // All non-instruction values are loop invariant.  All instructions are loop
420  // invariant if they are not contained in the specified loop.
421  if (Instruction *I = dyn_cast<Instruction>(V))
422    return !L->contains(I->getParent());
423  return true;
424}
425
426bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427  if (Instruction *I = dyn_cast<Instruction>(getValue()))
428    return DT->dominates(I->getParent(), BB);
429  return true;
430}
431
432const Type *SCEVUnknown::getType() const {
433  return V->getType();
434}
435
436void SCEVUnknown::print(raw_ostream &OS) const {
437  if (isa<PointerType>(V->getType()))
438    OS << "(ptrtoint " << *V->getType() << " ";
439  WriteAsOperand(OS, V, false);
440  if (isa<PointerType>(V->getType()))
441    OS << " to iPTR)";
442}
443
444//===----------------------------------------------------------------------===//
445//                               SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450  /// than the complexity of the RHS.  This comparator is used to canonicalize
451  /// expressions.
452  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
453    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
454      return LHS->getSCEVType() < RHS->getSCEVType();
455    }
456  };
457}
458
459/// GroupByComplexity - Given a list of SCEV objects, order them by their
460/// complexity, and group objects of the same complexity together by value.
461/// When this routine is finished, we know that any duplicates in the vector are
462/// consecutive and that complexity is monotonically increasing.
463///
464/// Note that we go take special precautions to ensure that we get determinstic
465/// results from this routine.  In other words, we don't want the results of
466/// this to depend on where the addresses of various SCEV objects happened to
467/// land in memory.
468///
469static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
470  if (Ops.size() < 2) return;  // Noop
471  if (Ops.size() == 2) {
472    // This is the common case, which also happens to be trivially simple.
473    // Special case it.
474    if (SCEVComplexityCompare()(Ops[1], Ops[0]))
475      std::swap(Ops[0], Ops[1]);
476    return;
477  }
478
479  // Do the rough sort by complexity.
480  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
481
482  // Now that we are sorted by complexity, group elements of the same
483  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
484  // be extremely short in practice.  Note that we take this approach because we
485  // do not want to depend on the addresses of the objects we are grouping.
486  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
487    SCEV *S = Ops[i];
488    unsigned Complexity = S->getSCEVType();
489
490    // If there are any objects of the same complexity and same value as this
491    // one, group them.
492    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
493      if (Ops[j] == S) { // Found a duplicate.
494        // Move it to immediately after i'th element.
495        std::swap(Ops[i+1], Ops[j]);
496        ++i;   // no need to rescan it.
497        if (i == e-2) return;  // Done!
498      }
499    }
500  }
501}
502
503
504
505//===----------------------------------------------------------------------===//
506//                      Simple SCEV method implementations
507//===----------------------------------------------------------------------===//
508
509/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
510// Assume, K > 0.
511static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
512                                      ScalarEvolution &SE,
513                                      const Type* ResultTy) {
514  // Handle the simplest case efficiently.
515  if (K == 1)
516    return SE.getTruncateOrZeroExtend(It, ResultTy);
517
518  // We are using the following formula for BC(It, K):
519  //
520  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
521  //
522  // Suppose, W is the bitwidth of the return value.  We must be prepared for
523  // overflow.  Hence, we must assure that the result of our computation is
524  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
525  // safe in modular arithmetic.
526  //
527  // However, this code doesn't use exactly that formula; the formula it uses
528  // is something like the following, where T is the number of factors of 2 in
529  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
530  // exponentiation:
531  //
532  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
533  //
534  // This formula is trivially equivalent to the previous formula.  However,
535  // this formula can be implemented much more efficiently.  The trick is that
536  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
537  // arithmetic.  To do exact division in modular arithmetic, all we have
538  // to do is multiply by the inverse.  Therefore, this step can be done at
539  // width W.
540  //
541  // The next issue is how to safely do the division by 2^T.  The way this
542  // is done is by doing the multiplication step at a width of at least W + T
543  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
544  // when we perform the division by 2^T (which is equivalent to a right shift
545  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
546  // truncated out after the division by 2^T.
547  //
548  // In comparison to just directly using the first formula, this technique
549  // is much more efficient; using the first formula requires W * K bits,
550  // but this formula less than W + K bits. Also, the first formula requires
551  // a division step, whereas this formula only requires multiplies and shifts.
552  //
553  // It doesn't matter whether the subtraction step is done in the calculation
554  // width or the input iteration count's width; if the subtraction overflows,
555  // the result must be zero anyway.  We prefer here to do it in the width of
556  // the induction variable because it helps a lot for certain cases; CodeGen
557  // isn't smart enough to ignore the overflow, which leads to much less
558  // efficient code if the width of the subtraction is wider than the native
559  // register width.
560  //
561  // (It's possible to not widen at all by pulling out factors of 2 before
562  // the multiplication; for example, K=2 can be calculated as
563  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
564  // extra arithmetic, so it's not an obvious win, and it gets
565  // much more complicated for K > 3.)
566
567  // Protection from insane SCEVs; this bound is conservative,
568  // but it probably doesn't matter.
569  if (K > 1000)
570    return SE.getCouldNotCompute();
571
572  unsigned W = SE.getTypeSizeInBits(ResultTy);
573
574  // Calculate K! / 2^T and T; we divide out the factors of two before
575  // multiplying for calculating K! / 2^T to avoid overflow.
576  // Other overflow doesn't matter because we only care about the bottom
577  // W bits of the result.
578  APInt OddFactorial(W, 1);
579  unsigned T = 1;
580  for (unsigned i = 3; i <= K; ++i) {
581    APInt Mult(W, i);
582    unsigned TwoFactors = Mult.countTrailingZeros();
583    T += TwoFactors;
584    Mult = Mult.lshr(TwoFactors);
585    OddFactorial *= Mult;
586  }
587
588  // We need at least W + T bits for the multiplication step
589  unsigned CalculationBits = W + T;
590
591  // Calcuate 2^T, at width T+W.
592  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
593
594  // Calculate the multiplicative inverse of K! / 2^T;
595  // this multiplication factor will perform the exact division by
596  // K! / 2^T.
597  APInt Mod = APInt::getSignedMinValue(W+1);
598  APInt MultiplyFactor = OddFactorial.zext(W+1);
599  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
600  MultiplyFactor = MultiplyFactor.trunc(W);
601
602  // Calculate the product, at width T+W
603  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
604  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
605  for (unsigned i = 1; i != K; ++i) {
606    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
607    Dividend = SE.getMulExpr(Dividend,
608                             SE.getTruncateOrZeroExtend(S, CalculationTy));
609  }
610
611  // Divide by 2^T
612  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
613
614  // Truncate the result, and divide by K! / 2^T.
615
616  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
617                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
618}
619
620/// evaluateAtIteration - Return the value of this chain of recurrences at
621/// the specified iteration number.  We can evaluate this recurrence by
622/// multiplying each element in the chain by the binomial coefficient
623/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
624///
625///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
626///
627/// where BC(It, k) stands for binomial coefficient.
628///
629SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
630                                               ScalarEvolution &SE) const {
631  SCEVHandle Result = getStart();
632  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
633    // The computation is correct in the face of overflow provided that the
634    // multiplication is performed _after_ the evaluation of the binomial
635    // coefficient.
636    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
637    if (isa<SCEVCouldNotCompute>(Coeff))
638      return Coeff;
639
640    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
641  }
642  return Result;
643}
644
645//===----------------------------------------------------------------------===//
646//                    SCEV Expression folder implementations
647//===----------------------------------------------------------------------===//
648
649SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
650  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
651         "This is not a truncating conversion!");
652
653  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
654    return getUnknown(
655        ConstantExpr::getTrunc(SC->getValue(), Ty));
656
657  // trunc(trunc(x)) --> trunc(x)
658  if (SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
659    return getTruncateExpr(ST->getOperand(), Ty);
660
661  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
662  if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
663    return getTruncateOrSignExtend(SS->getOperand(), Ty);
664
665  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
666  if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
667    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
668
669  // If the input value is a chrec scev made out of constants, truncate
670  // all of the constants.
671  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
672    std::vector<SCEVHandle> Operands;
673    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
674      // FIXME: This should allow truncation of other expression types!
675      if (isa<SCEVConstant>(AddRec->getOperand(i)))
676        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
677      else
678        break;
679    if (Operands.size() == AddRec->getNumOperands())
680      return getAddRecExpr(Operands, AddRec->getLoop());
681  }
682
683  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
684  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
685  return Result;
686}
687
688SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
689                                              const Type *Ty) {
690  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
691         "This is not an extending conversion!");
692
693  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
694    const Type *IntTy = getEffectiveSCEVType(Ty);
695    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
696    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
697    return getUnknown(C);
698  }
699
700  // zext(zext(x)) --> zext(x)
701  if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
702    return getZeroExtendExpr(SZ->getOperand(), Ty);
703
704  // If the input value is a chrec scev, and we can prove that the value
705  // did not overflow the old, smaller, value, we can zero extend all of the
706  // operands (often constants).  This allows analysis of something like
707  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
708  if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
709    if (AR->isAffine()) {
710      // Check whether the backedge-taken count is SCEVCouldNotCompute.
711      // Note that this serves two purposes: It filters out loops that are
712      // simply not analyzable, and it covers the case where this code is
713      // being called from within backedge-taken count analysis, such that
714      // attempting to ask for the backedge-taken count would likely result
715      // in infinite recursion. In the later case, the analysis code will
716      // cope with a conservative value, and it will take care to purge
717      // that value once it has finished.
718      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
719      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
720        // Manually compute the final value for AR, checking for
721        // overflow.
722        SCEVHandle Start = AR->getStart();
723        SCEVHandle Step = AR->getStepRecurrence(*this);
724
725        // Check whether the backedge-taken count can be losslessly casted to
726        // the addrec's type. The count is always unsigned.
727        SCEVHandle CastedMaxBECount =
728          getTruncateOrZeroExtend(MaxBECount, Start->getType());
729        if (MaxBECount ==
730            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
731          const Type *WideTy =
732            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
733          // Check whether Start+Step*MaxBECount has no unsigned overflow.
734          SCEVHandle ZMul =
735            getMulExpr(CastedMaxBECount,
736                       getTruncateOrZeroExtend(Step, Start->getType()));
737          SCEVHandle Add = getAddExpr(Start, ZMul);
738          if (getZeroExtendExpr(Add, WideTy) ==
739              getAddExpr(getZeroExtendExpr(Start, WideTy),
740                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
741                                    getZeroExtendExpr(Step, WideTy))))
742            // Return the expression with the addrec on the outside.
743            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
744                                 getZeroExtendExpr(Step, Ty),
745                                 AR->getLoop());
746
747          // Similar to above, only this time treat the step value as signed.
748          // This covers loops that count down.
749          SCEVHandle SMul =
750            getMulExpr(CastedMaxBECount,
751                       getTruncateOrSignExtend(Step, Start->getType()));
752          Add = getAddExpr(Start, SMul);
753          if (getZeroExtendExpr(Add, WideTy) ==
754              getAddExpr(getZeroExtendExpr(Start, WideTy),
755                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
756                                    getSignExtendExpr(Step, WideTy))))
757            // Return the expression with the addrec on the outside.
758            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
759                                 getSignExtendExpr(Step, Ty),
760                                 AR->getLoop());
761        }
762      }
763    }
764
765  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
766  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
767  return Result;
768}
769
770SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
771                                              const Type *Ty) {
772  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
773         "This is not an extending conversion!");
774
775  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
776    const Type *IntTy = getEffectiveSCEVType(Ty);
777    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
778    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
779    return getUnknown(C);
780  }
781
782  // sext(sext(x)) --> sext(x)
783  if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
784    return getSignExtendExpr(SS->getOperand(), Ty);
785
786  // If the input value is a chrec scev, and we can prove that the value
787  // did not overflow the old, smaller, value, we can sign extend all of the
788  // operands (often constants).  This allows analysis of something like
789  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
790  if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
791    if (AR->isAffine()) {
792      // Check whether the backedge-taken count is SCEVCouldNotCompute.
793      // Note that this serves two purposes: It filters out loops that are
794      // simply not analyzable, and it covers the case where this code is
795      // being called from within backedge-taken count analysis, such that
796      // attempting to ask for the backedge-taken count would likely result
797      // in infinite recursion. In the later case, the analysis code will
798      // cope with a conservative value, and it will take care to purge
799      // that value once it has finished.
800      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
801      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
802        // Manually compute the final value for AR, checking for
803        // overflow.
804        SCEVHandle Start = AR->getStart();
805        SCEVHandle Step = AR->getStepRecurrence(*this);
806
807        // Check whether the backedge-taken count can be losslessly casted to
808        // the addrec's type. The count is always unsigned.
809        SCEVHandle CastedMaxBECount =
810          getTruncateOrZeroExtend(MaxBECount, Start->getType());
811        if (MaxBECount ==
812            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
813          const Type *WideTy =
814            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
815          // Check whether Start+Step*MaxBECount has no signed overflow.
816          SCEVHandle SMul =
817            getMulExpr(CastedMaxBECount,
818                       getTruncateOrSignExtend(Step, Start->getType()));
819          SCEVHandle Add = getAddExpr(Start, SMul);
820          if (getSignExtendExpr(Add, WideTy) ==
821              getAddExpr(getSignExtendExpr(Start, WideTy),
822                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823                                    getSignExtendExpr(Step, WideTy))))
824            // Return the expression with the addrec on the outside.
825            return getAddRecExpr(getSignExtendExpr(Start, Ty),
826                                 getSignExtendExpr(Step, Ty),
827                                 AR->getLoop());
828        }
829      }
830    }
831
832  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
833  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
834  return Result;
835}
836
837// get - Get a canonical add expression, or something simpler if possible.
838SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
839  assert(!Ops.empty() && "Cannot get empty add!");
840  if (Ops.size() == 1) return Ops[0];
841
842  // Sort by complexity, this groups all similar expression types together.
843  GroupByComplexity(Ops);
844
845  // If there are any constants, fold them together.
846  unsigned Idx = 0;
847  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
848    ++Idx;
849    assert(Idx < Ops.size());
850    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
851      // We found two constants, fold them together!
852      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
853                                           RHSC->getValue()->getValue());
854      Ops[0] = getConstant(Fold);
855      Ops.erase(Ops.begin()+1);  // Erase the folded element
856      if (Ops.size() == 1) return Ops[0];
857      LHSC = cast<SCEVConstant>(Ops[0]);
858    }
859
860    // If we are left with a constant zero being added, strip it off.
861    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
862      Ops.erase(Ops.begin());
863      --Idx;
864    }
865  }
866
867  if (Ops.size() == 1) return Ops[0];
868
869  // Okay, check to see if the same value occurs in the operand list twice.  If
870  // so, merge them together into an multiply expression.  Since we sorted the
871  // list, these values are required to be adjacent.
872  const Type *Ty = Ops[0]->getType();
873  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
874    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
875      // Found a match, merge the two values into a multiply, and add any
876      // remaining values to the result.
877      SCEVHandle Two = getIntegerSCEV(2, Ty);
878      SCEVHandle Mul = getMulExpr(Ops[i], Two);
879      if (Ops.size() == 2)
880        return Mul;
881      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
882      Ops.push_back(Mul);
883      return getAddExpr(Ops);
884    }
885
886  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
887  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
888    ++Idx;
889
890  // If there are add operands they would be next.
891  if (Idx < Ops.size()) {
892    bool DeletedAdd = false;
893    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
894      // If we have an add, expand the add operands onto the end of the operands
895      // list.
896      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
897      Ops.erase(Ops.begin()+Idx);
898      DeletedAdd = true;
899    }
900
901    // If we deleted at least one add, we added operands to the end of the list,
902    // and they are not necessarily sorted.  Recurse to resort and resimplify
903    // any operands we just aquired.
904    if (DeletedAdd)
905      return getAddExpr(Ops);
906  }
907
908  // Skip over the add expression until we get to a multiply.
909  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
910    ++Idx;
911
912  // If we are adding something to a multiply expression, make sure the
913  // something is not already an operand of the multiply.  If so, merge it into
914  // the multiply.
915  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
916    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
917    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
918      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
919      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
920        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
921          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
922          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
923          if (Mul->getNumOperands() != 2) {
924            // If the multiply has more than two operands, we must get the
925            // Y*Z term.
926            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
927            MulOps.erase(MulOps.begin()+MulOp);
928            InnerMul = getMulExpr(MulOps);
929          }
930          SCEVHandle One = getIntegerSCEV(1, Ty);
931          SCEVHandle AddOne = getAddExpr(InnerMul, One);
932          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
933          if (Ops.size() == 2) return OuterMul;
934          if (AddOp < Idx) {
935            Ops.erase(Ops.begin()+AddOp);
936            Ops.erase(Ops.begin()+Idx-1);
937          } else {
938            Ops.erase(Ops.begin()+Idx);
939            Ops.erase(Ops.begin()+AddOp-1);
940          }
941          Ops.push_back(OuterMul);
942          return getAddExpr(Ops);
943        }
944
945      // Check this multiply against other multiplies being added together.
946      for (unsigned OtherMulIdx = Idx+1;
947           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
948           ++OtherMulIdx) {
949        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
950        // If MulOp occurs in OtherMul, we can fold the two multiplies
951        // together.
952        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
953             OMulOp != e; ++OMulOp)
954          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
955            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
956            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
957            if (Mul->getNumOperands() != 2) {
958              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
959              MulOps.erase(MulOps.begin()+MulOp);
960              InnerMul1 = getMulExpr(MulOps);
961            }
962            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
963            if (OtherMul->getNumOperands() != 2) {
964              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
965                                             OtherMul->op_end());
966              MulOps.erase(MulOps.begin()+OMulOp);
967              InnerMul2 = getMulExpr(MulOps);
968            }
969            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
970            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
971            if (Ops.size() == 2) return OuterMul;
972            Ops.erase(Ops.begin()+Idx);
973            Ops.erase(Ops.begin()+OtherMulIdx-1);
974            Ops.push_back(OuterMul);
975            return getAddExpr(Ops);
976          }
977      }
978    }
979  }
980
981  // If there are any add recurrences in the operands list, see if any other
982  // added values are loop invariant.  If so, we can fold them into the
983  // recurrence.
984  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
985    ++Idx;
986
987  // Scan over all recurrences, trying to fold loop invariants into them.
988  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
989    // Scan all of the other operands to this add and add them to the vector if
990    // they are loop invariant w.r.t. the recurrence.
991    std::vector<SCEVHandle> LIOps;
992    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
993    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
994      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
995        LIOps.push_back(Ops[i]);
996        Ops.erase(Ops.begin()+i);
997        --i; --e;
998      }
999
1000    // If we found some loop invariants, fold them into the recurrence.
1001    if (!LIOps.empty()) {
1002      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1003      LIOps.push_back(AddRec->getStart());
1004
1005      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1006      AddRecOps[0] = getAddExpr(LIOps);
1007
1008      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1009      // If all of the other operands were loop invariant, we are done.
1010      if (Ops.size() == 1) return NewRec;
1011
1012      // Otherwise, add the folded AddRec by the non-liv parts.
1013      for (unsigned i = 0;; ++i)
1014        if (Ops[i] == AddRec) {
1015          Ops[i] = NewRec;
1016          break;
1017        }
1018      return getAddExpr(Ops);
1019    }
1020
1021    // Okay, if there weren't any loop invariants to be folded, check to see if
1022    // there are multiple AddRec's with the same loop induction variable being
1023    // added together.  If so, we can fold them.
1024    for (unsigned OtherIdx = Idx+1;
1025         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1026      if (OtherIdx != Idx) {
1027        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1028        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1029          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1030          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1031          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1032            if (i >= NewOps.size()) {
1033              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1034                            OtherAddRec->op_end());
1035              break;
1036            }
1037            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1038          }
1039          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1040
1041          if (Ops.size() == 2) return NewAddRec;
1042
1043          Ops.erase(Ops.begin()+Idx);
1044          Ops.erase(Ops.begin()+OtherIdx-1);
1045          Ops.push_back(NewAddRec);
1046          return getAddExpr(Ops);
1047        }
1048      }
1049
1050    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1051    // next one.
1052  }
1053
1054  // Okay, it looks like we really DO need an add expr.  Check to see if we
1055  // already have one, otherwise create a new one.
1056  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1057  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1058                                                                 SCEVOps)];
1059  if (Result == 0) Result = new SCEVAddExpr(Ops);
1060  return Result;
1061}
1062
1063
1064SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1065  assert(!Ops.empty() && "Cannot get empty mul!");
1066
1067  // Sort by complexity, this groups all similar expression types together.
1068  GroupByComplexity(Ops);
1069
1070  // If there are any constants, fold them together.
1071  unsigned Idx = 0;
1072  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1073
1074    // C1*(C2+V) -> C1*C2 + C1*V
1075    if (Ops.size() == 2)
1076      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1077        if (Add->getNumOperands() == 2 &&
1078            isa<SCEVConstant>(Add->getOperand(0)))
1079          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1080                            getMulExpr(LHSC, Add->getOperand(1)));
1081
1082
1083    ++Idx;
1084    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1085      // We found two constants, fold them together!
1086      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1087                                           RHSC->getValue()->getValue());
1088      Ops[0] = getConstant(Fold);
1089      Ops.erase(Ops.begin()+1);  // Erase the folded element
1090      if (Ops.size() == 1) return Ops[0];
1091      LHSC = cast<SCEVConstant>(Ops[0]);
1092    }
1093
1094    // If we are left with a constant one being multiplied, strip it off.
1095    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1096      Ops.erase(Ops.begin());
1097      --Idx;
1098    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1099      // If we have a multiply of zero, it will always be zero.
1100      return Ops[0];
1101    }
1102  }
1103
1104  // Skip over the add expression until we get to a multiply.
1105  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1106    ++Idx;
1107
1108  if (Ops.size() == 1)
1109    return Ops[0];
1110
1111  // If there are mul operands inline them all into this expression.
1112  if (Idx < Ops.size()) {
1113    bool DeletedMul = false;
1114    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1115      // If we have an mul, expand the mul operands onto the end of the operands
1116      // list.
1117      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1118      Ops.erase(Ops.begin()+Idx);
1119      DeletedMul = true;
1120    }
1121
1122    // If we deleted at least one mul, we added operands to the end of the list,
1123    // and they are not necessarily sorted.  Recurse to resort and resimplify
1124    // any operands we just aquired.
1125    if (DeletedMul)
1126      return getMulExpr(Ops);
1127  }
1128
1129  // If there are any add recurrences in the operands list, see if any other
1130  // added values are loop invariant.  If so, we can fold them into the
1131  // recurrence.
1132  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1133    ++Idx;
1134
1135  // Scan over all recurrences, trying to fold loop invariants into them.
1136  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1137    // Scan all of the other operands to this mul and add them to the vector if
1138    // they are loop invariant w.r.t. the recurrence.
1139    std::vector<SCEVHandle> LIOps;
1140    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1141    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1142      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1143        LIOps.push_back(Ops[i]);
1144        Ops.erase(Ops.begin()+i);
1145        --i; --e;
1146      }
1147
1148    // If we found some loop invariants, fold them into the recurrence.
1149    if (!LIOps.empty()) {
1150      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1151      std::vector<SCEVHandle> NewOps;
1152      NewOps.reserve(AddRec->getNumOperands());
1153      if (LIOps.size() == 1) {
1154        SCEV *Scale = LIOps[0];
1155        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1156          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1157      } else {
1158        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1159          std::vector<SCEVHandle> MulOps(LIOps);
1160          MulOps.push_back(AddRec->getOperand(i));
1161          NewOps.push_back(getMulExpr(MulOps));
1162        }
1163      }
1164
1165      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1166
1167      // If all of the other operands were loop invariant, we are done.
1168      if (Ops.size() == 1) return NewRec;
1169
1170      // Otherwise, multiply the folded AddRec by the non-liv parts.
1171      for (unsigned i = 0;; ++i)
1172        if (Ops[i] == AddRec) {
1173          Ops[i] = NewRec;
1174          break;
1175        }
1176      return getMulExpr(Ops);
1177    }
1178
1179    // Okay, if there weren't any loop invariants to be folded, check to see if
1180    // there are multiple AddRec's with the same loop induction variable being
1181    // multiplied together.  If so, we can fold them.
1182    for (unsigned OtherIdx = Idx+1;
1183         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1184      if (OtherIdx != Idx) {
1185        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1186        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1187          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1188          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1189          SCEVHandle NewStart = getMulExpr(F->getStart(),
1190                                                 G->getStart());
1191          SCEVHandle B = F->getStepRecurrence(*this);
1192          SCEVHandle D = G->getStepRecurrence(*this);
1193          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1194                                          getMulExpr(G, B),
1195                                          getMulExpr(B, D));
1196          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1197                                               F->getLoop());
1198          if (Ops.size() == 2) return NewAddRec;
1199
1200          Ops.erase(Ops.begin()+Idx);
1201          Ops.erase(Ops.begin()+OtherIdx-1);
1202          Ops.push_back(NewAddRec);
1203          return getMulExpr(Ops);
1204        }
1205      }
1206
1207    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1208    // next one.
1209  }
1210
1211  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1212  // already have one, otherwise create a new one.
1213  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1214  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1215                                                                 SCEVOps)];
1216  if (Result == 0)
1217    Result = new SCEVMulExpr(Ops);
1218  return Result;
1219}
1220
1221SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1222  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1223    if (RHSC->getValue()->equalsInt(1))
1224      return LHS;                            // X udiv 1 --> x
1225
1226    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1227      Constant *LHSCV = LHSC->getValue();
1228      Constant *RHSCV = RHSC->getValue();
1229      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1230    }
1231  }
1232
1233  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1234
1235  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1236  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1237  return Result;
1238}
1239
1240
1241/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1242/// specified loop.  Simplify the expression as much as possible.
1243SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1244                               const SCEVHandle &Step, const Loop *L) {
1245  std::vector<SCEVHandle> Operands;
1246  Operands.push_back(Start);
1247  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1248    if (StepChrec->getLoop() == L) {
1249      Operands.insert(Operands.end(), StepChrec->op_begin(),
1250                      StepChrec->op_end());
1251      return getAddRecExpr(Operands, L);
1252    }
1253
1254  Operands.push_back(Step);
1255  return getAddRecExpr(Operands, L);
1256}
1257
1258/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1259/// specified loop.  Simplify the expression as much as possible.
1260SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1261                                          const Loop *L) {
1262  if (Operands.size() == 1) return Operands[0];
1263
1264  if (Operands.back()->isZero()) {
1265    Operands.pop_back();
1266    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1267  }
1268
1269  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1270  if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1271    const Loop* NestedLoop = NestedAR->getLoop();
1272    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1273      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1274                                             NestedAR->op_end());
1275      SCEVHandle NestedARHandle(NestedAR);
1276      Operands[0] = NestedAR->getStart();
1277      NestedOperands[0] = getAddRecExpr(Operands, L);
1278      return getAddRecExpr(NestedOperands, NestedLoop);
1279    }
1280  }
1281
1282  SCEVAddRecExpr *&Result =
1283    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1284                                                            Operands.end()))];
1285  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1286  return Result;
1287}
1288
1289SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1290                                        const SCEVHandle &RHS) {
1291  std::vector<SCEVHandle> Ops;
1292  Ops.push_back(LHS);
1293  Ops.push_back(RHS);
1294  return getSMaxExpr(Ops);
1295}
1296
1297SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1298  assert(!Ops.empty() && "Cannot get empty smax!");
1299  if (Ops.size() == 1) return Ops[0];
1300
1301  // Sort by complexity, this groups all similar expression types together.
1302  GroupByComplexity(Ops);
1303
1304  // If there are any constants, fold them together.
1305  unsigned Idx = 0;
1306  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1307    ++Idx;
1308    assert(Idx < Ops.size());
1309    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1310      // We found two constants, fold them together!
1311      ConstantInt *Fold = ConstantInt::get(
1312                              APIntOps::smax(LHSC->getValue()->getValue(),
1313                                             RHSC->getValue()->getValue()));
1314      Ops[0] = getConstant(Fold);
1315      Ops.erase(Ops.begin()+1);  // Erase the folded element
1316      if (Ops.size() == 1) return Ops[0];
1317      LHSC = cast<SCEVConstant>(Ops[0]);
1318    }
1319
1320    // If we are left with a constant -inf, strip it off.
1321    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1322      Ops.erase(Ops.begin());
1323      --Idx;
1324    }
1325  }
1326
1327  if (Ops.size() == 1) return Ops[0];
1328
1329  // Find the first SMax
1330  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1331    ++Idx;
1332
1333  // Check to see if one of the operands is an SMax. If so, expand its operands
1334  // onto our operand list, and recurse to simplify.
1335  if (Idx < Ops.size()) {
1336    bool DeletedSMax = false;
1337    while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1338      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1339      Ops.erase(Ops.begin()+Idx);
1340      DeletedSMax = true;
1341    }
1342
1343    if (DeletedSMax)
1344      return getSMaxExpr(Ops);
1345  }
1346
1347  // Okay, check to see if the same value occurs in the operand list twice.  If
1348  // so, delete one.  Since we sorted the list, these values are required to
1349  // be adjacent.
1350  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1351    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1352      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1353      --i; --e;
1354    }
1355
1356  if (Ops.size() == 1) return Ops[0];
1357
1358  assert(!Ops.empty() && "Reduced smax down to nothing!");
1359
1360  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1361  // already have one, otherwise create a new one.
1362  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1363  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1364                                                                 SCEVOps)];
1365  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1366  return Result;
1367}
1368
1369SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1370                                        const SCEVHandle &RHS) {
1371  std::vector<SCEVHandle> Ops;
1372  Ops.push_back(LHS);
1373  Ops.push_back(RHS);
1374  return getUMaxExpr(Ops);
1375}
1376
1377SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1378  assert(!Ops.empty() && "Cannot get empty umax!");
1379  if (Ops.size() == 1) return Ops[0];
1380
1381  // Sort by complexity, this groups all similar expression types together.
1382  GroupByComplexity(Ops);
1383
1384  // If there are any constants, fold them together.
1385  unsigned Idx = 0;
1386  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1387    ++Idx;
1388    assert(Idx < Ops.size());
1389    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1390      // We found two constants, fold them together!
1391      ConstantInt *Fold = ConstantInt::get(
1392                              APIntOps::umax(LHSC->getValue()->getValue(),
1393                                             RHSC->getValue()->getValue()));
1394      Ops[0] = getConstant(Fold);
1395      Ops.erase(Ops.begin()+1);  // Erase the folded element
1396      if (Ops.size() == 1) return Ops[0];
1397      LHSC = cast<SCEVConstant>(Ops[0]);
1398    }
1399
1400    // If we are left with a constant zero, strip it off.
1401    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1402      Ops.erase(Ops.begin());
1403      --Idx;
1404    }
1405  }
1406
1407  if (Ops.size() == 1) return Ops[0];
1408
1409  // Find the first UMax
1410  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1411    ++Idx;
1412
1413  // Check to see if one of the operands is a UMax. If so, expand its operands
1414  // onto our operand list, and recurse to simplify.
1415  if (Idx < Ops.size()) {
1416    bool DeletedUMax = false;
1417    while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1418      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1419      Ops.erase(Ops.begin()+Idx);
1420      DeletedUMax = true;
1421    }
1422
1423    if (DeletedUMax)
1424      return getUMaxExpr(Ops);
1425  }
1426
1427  // Okay, check to see if the same value occurs in the operand list twice.  If
1428  // so, delete one.  Since we sorted the list, these values are required to
1429  // be adjacent.
1430  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1431    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1432      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1433      --i; --e;
1434    }
1435
1436  if (Ops.size() == 1) return Ops[0];
1437
1438  assert(!Ops.empty() && "Reduced umax down to nothing!");
1439
1440  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1441  // already have one, otherwise create a new one.
1442  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1443  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1444                                                                 SCEVOps)];
1445  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1446  return Result;
1447}
1448
1449SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1450  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1451    return getConstant(CI);
1452  if (isa<ConstantPointerNull>(V))
1453    return getIntegerSCEV(0, V->getType());
1454  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1455  if (Result == 0) Result = new SCEVUnknown(V);
1456  return Result;
1457}
1458
1459//===----------------------------------------------------------------------===//
1460//            Basic SCEV Analysis and PHI Idiom Recognition Code
1461//
1462
1463/// deleteValueFromRecords - This method should be called by the
1464/// client before it removes an instruction from the program, to make sure
1465/// that no dangling references are left around.
1466void ScalarEvolution::deleteValueFromRecords(Value *V) {
1467  SmallVector<Value *, 16> Worklist;
1468
1469  if (Scalars.erase(V)) {
1470    if (PHINode *PN = dyn_cast<PHINode>(V))
1471      ConstantEvolutionLoopExitValue.erase(PN);
1472    Worklist.push_back(V);
1473  }
1474
1475  while (!Worklist.empty()) {
1476    Value *VV = Worklist.back();
1477    Worklist.pop_back();
1478
1479    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1480         UI != UE; ++UI) {
1481      Instruction *Inst = cast<Instruction>(*UI);
1482      if (Scalars.erase(Inst)) {
1483        if (PHINode *PN = dyn_cast<PHINode>(VV))
1484          ConstantEvolutionLoopExitValue.erase(PN);
1485        Worklist.push_back(Inst);
1486      }
1487    }
1488  }
1489}
1490
1491/// isSCEVable - Test if values of the given type are analyzable within
1492/// the SCEV framework. This primarily includes integer types, and it
1493/// can optionally include pointer types if the ScalarEvolution class
1494/// has access to target-specific information.
1495bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1496  // Integers are always SCEVable.
1497  if (Ty->isInteger())
1498    return true;
1499
1500  // Pointers are SCEVable if TargetData information is available
1501  // to provide pointer size information.
1502  if (isa<PointerType>(Ty))
1503    return TD != NULL;
1504
1505  // Otherwise it's not SCEVable.
1506  return false;
1507}
1508
1509/// getTypeSizeInBits - Return the size in bits of the specified type,
1510/// for which isSCEVable must return true.
1511uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1512  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1513
1514  // If we have a TargetData, use it!
1515  if (TD)
1516    return TD->getTypeSizeInBits(Ty);
1517
1518  // Otherwise, we support only integer types.
1519  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1520  return Ty->getPrimitiveSizeInBits();
1521}
1522
1523/// getEffectiveSCEVType - Return a type with the same bitwidth as
1524/// the given type and which represents how SCEV will treat the given
1525/// type, for which isSCEVable must return true. For pointer types,
1526/// this is the pointer-sized integer type.
1527const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1528  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1529
1530  if (Ty->isInteger())
1531    return Ty;
1532
1533  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1534  return TD->getIntPtrType();
1535}
1536
1537SCEVHandle ScalarEvolution::getCouldNotCompute() {
1538  return UnknownValue;
1539}
1540
1541/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1542/// expression and create a new one.
1543SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1544  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1545
1546  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1547  if (I != Scalars.end()) return I->second;
1548  SCEVHandle S = createSCEV(V);
1549  Scalars.insert(std::make_pair(V, S));
1550  return S;
1551}
1552
1553/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1554/// specified signed integer value and return a SCEV for the constant.
1555SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1556  Ty = getEffectiveSCEVType(Ty);
1557  Constant *C;
1558  if (Val == 0)
1559    C = Constant::getNullValue(Ty);
1560  else if (Ty->isFloatingPoint())
1561    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1562                                APFloat::IEEEdouble, Val));
1563  else
1564    C = ConstantInt::get(Ty, Val);
1565  return getUnknown(C);
1566}
1567
1568/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1569///
1570SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1571  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1572    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1573
1574  const Type *Ty = V->getType();
1575  Ty = getEffectiveSCEVType(Ty);
1576  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1577}
1578
1579/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1580SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1581  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1582    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1583
1584  const Type *Ty = V->getType();
1585  Ty = getEffectiveSCEVType(Ty);
1586  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1587  return getMinusSCEV(AllOnes, V);
1588}
1589
1590/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1591///
1592SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1593                                         const SCEVHandle &RHS) {
1594  // X - Y --> X + -Y
1595  return getAddExpr(LHS, getNegativeSCEV(RHS));
1596}
1597
1598/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1599/// input value to the specified type.  If the type must be extended, it is zero
1600/// extended.
1601SCEVHandle
1602ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1603                                         const Type *Ty) {
1604  const Type *SrcTy = V->getType();
1605  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1606         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1607         "Cannot truncate or zero extend with non-integer arguments!");
1608  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1609    return V;  // No conversion
1610  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1611    return getTruncateExpr(V, Ty);
1612  return getZeroExtendExpr(V, Ty);
1613}
1614
1615/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1616/// input value to the specified type.  If the type must be extended, it is sign
1617/// extended.
1618SCEVHandle
1619ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1620                                         const Type *Ty) {
1621  const Type *SrcTy = V->getType();
1622  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1623         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1624         "Cannot truncate or zero extend with non-integer arguments!");
1625  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1626    return V;  // No conversion
1627  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1628    return getTruncateExpr(V, Ty);
1629  return getSignExtendExpr(V, Ty);
1630}
1631
1632/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1633/// the specified instruction and replaces any references to the symbolic value
1634/// SymName with the specified value.  This is used during PHI resolution.
1635void ScalarEvolution::
1636ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1637                                 const SCEVHandle &NewVal) {
1638  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1639  if (SI == Scalars.end()) return;
1640
1641  SCEVHandle NV =
1642    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1643  if (NV == SI->second) return;  // No change.
1644
1645  SI->second = NV;       // Update the scalars map!
1646
1647  // Any instruction values that use this instruction might also need to be
1648  // updated!
1649  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1650       UI != E; ++UI)
1651    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1652}
1653
1654/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1655/// a loop header, making it a potential recurrence, or it doesn't.
1656///
1657SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1658  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1659    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1660      if (L->getHeader() == PN->getParent()) {
1661        // If it lives in the loop header, it has two incoming values, one
1662        // from outside the loop, and one from inside.
1663        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1664        unsigned BackEdge     = IncomingEdge^1;
1665
1666        // While we are analyzing this PHI node, handle its value symbolically.
1667        SCEVHandle SymbolicName = getUnknown(PN);
1668        assert(Scalars.find(PN) == Scalars.end() &&
1669               "PHI node already processed?");
1670        Scalars.insert(std::make_pair(PN, SymbolicName));
1671
1672        // Using this symbolic name for the PHI, analyze the value coming around
1673        // the back-edge.
1674        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1675
1676        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1677        // has a special value for the first iteration of the loop.
1678
1679        // If the value coming around the backedge is an add with the symbolic
1680        // value we just inserted, then we found a simple induction variable!
1681        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1682          // If there is a single occurrence of the symbolic value, replace it
1683          // with a recurrence.
1684          unsigned FoundIndex = Add->getNumOperands();
1685          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1686            if (Add->getOperand(i) == SymbolicName)
1687              if (FoundIndex == e) {
1688                FoundIndex = i;
1689                break;
1690              }
1691
1692          if (FoundIndex != Add->getNumOperands()) {
1693            // Create an add with everything but the specified operand.
1694            std::vector<SCEVHandle> Ops;
1695            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1696              if (i != FoundIndex)
1697                Ops.push_back(Add->getOperand(i));
1698            SCEVHandle Accum = getAddExpr(Ops);
1699
1700            // This is not a valid addrec if the step amount is varying each
1701            // loop iteration, but is not itself an addrec in this loop.
1702            if (Accum->isLoopInvariant(L) ||
1703                (isa<SCEVAddRecExpr>(Accum) &&
1704                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1705              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1706              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1707
1708              // Okay, for the entire analysis of this edge we assumed the PHI
1709              // to be symbolic.  We now need to go back and update all of the
1710              // entries for the scalars that use the PHI (except for the PHI
1711              // itself) to use the new analyzed value instead of the "symbolic"
1712              // value.
1713              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1714              return PHISCEV;
1715            }
1716          }
1717        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1718          // Otherwise, this could be a loop like this:
1719          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1720          // In this case, j = {1,+,1}  and BEValue is j.
1721          // Because the other in-value of i (0) fits the evolution of BEValue
1722          // i really is an addrec evolution.
1723          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1724            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1725
1726            // If StartVal = j.start - j.stride, we can use StartVal as the
1727            // initial step of the addrec evolution.
1728            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1729                                            AddRec->getOperand(1))) {
1730              SCEVHandle PHISCEV =
1731                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1732
1733              // Okay, for the entire analysis of this edge we assumed the PHI
1734              // to be symbolic.  We now need to go back and update all of the
1735              // entries for the scalars that use the PHI (except for the PHI
1736              // itself) to use the new analyzed value instead of the "symbolic"
1737              // value.
1738              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1739              return PHISCEV;
1740            }
1741          }
1742        }
1743
1744        return SymbolicName;
1745      }
1746
1747  // If it's not a loop phi, we can't handle it yet.
1748  return getUnknown(PN);
1749}
1750
1751/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1752/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1753/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1754/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1755static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1756  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1757    return C->getValue()->getValue().countTrailingZeros();
1758
1759  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1760    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1761                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
1762
1763  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1764    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1765    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1766             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1767  }
1768
1769  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1770    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1771    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1772             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1773  }
1774
1775  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1776    // The result is the min of all operands results.
1777    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1778    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1779      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1780    return MinOpRes;
1781  }
1782
1783  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1784    // The result is the sum of all operands results.
1785    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1786    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
1787    for (unsigned i = 1, e = M->getNumOperands();
1788         SumOpRes != BitWidth && i != e; ++i)
1789      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
1790                          BitWidth);
1791    return SumOpRes;
1792  }
1793
1794  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1795    // The result is the min of all operands results.
1796    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1797    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1798      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1799    return MinOpRes;
1800  }
1801
1802  if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1803    // The result is the min of all operands results.
1804    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1805    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1806      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1807    return MinOpRes;
1808  }
1809
1810  if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1811    // The result is the min of all operands results.
1812    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1813    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1814      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1815    return MinOpRes;
1816  }
1817
1818  // SCEVUDivExpr, SCEVUnknown
1819  return 0;
1820}
1821
1822/// createSCEV - We know that there is no SCEV for the specified value.
1823/// Analyze the expression.
1824///
1825SCEVHandle ScalarEvolution::createSCEV(Value *V) {
1826  if (!isSCEVable(V->getType()))
1827    return getUnknown(V);
1828
1829  unsigned Opcode = Instruction::UserOp1;
1830  if (Instruction *I = dyn_cast<Instruction>(V))
1831    Opcode = I->getOpcode();
1832  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1833    Opcode = CE->getOpcode();
1834  else
1835    return getUnknown(V);
1836
1837  User *U = cast<User>(V);
1838  switch (Opcode) {
1839  case Instruction::Add:
1840    return getAddExpr(getSCEV(U->getOperand(0)),
1841                      getSCEV(U->getOperand(1)));
1842  case Instruction::Mul:
1843    return getMulExpr(getSCEV(U->getOperand(0)),
1844                      getSCEV(U->getOperand(1)));
1845  case Instruction::UDiv:
1846    return getUDivExpr(getSCEV(U->getOperand(0)),
1847                       getSCEV(U->getOperand(1)));
1848  case Instruction::Sub:
1849    return getMinusSCEV(getSCEV(U->getOperand(0)),
1850                        getSCEV(U->getOperand(1)));
1851  case Instruction::And:
1852    // For an expression like x&255 that merely masks off the high bits,
1853    // use zext(trunc(x)) as the SCEV expression.
1854    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1855      if (CI->isNullValue())
1856        return getSCEV(U->getOperand(1));
1857      if (CI->isAllOnesValue())
1858        return getSCEV(U->getOperand(0));
1859      const APInt &A = CI->getValue();
1860      unsigned Ones = A.countTrailingOnes();
1861      if (APIntOps::isMask(Ones, A))
1862        return
1863          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
1864                                            IntegerType::get(Ones)),
1865                            U->getType());
1866    }
1867    break;
1868  case Instruction::Or:
1869    // If the RHS of the Or is a constant, we may have something like:
1870    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1871    // optimizations will transparently handle this case.
1872    //
1873    // In order for this transformation to be safe, the LHS must be of the
1874    // form X*(2^n) and the Or constant must be less than 2^n.
1875    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1876      SCEVHandle LHS = getSCEV(U->getOperand(0));
1877      const APInt &CIVal = CI->getValue();
1878      if (GetMinTrailingZeros(LHS, *this) >=
1879          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1880        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
1881    }
1882    break;
1883  case Instruction::Xor:
1884    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1885      // If the RHS of the xor is a signbit, then this is just an add.
1886      // Instcombine turns add of signbit into xor as a strength reduction step.
1887      if (CI->getValue().isSignBit())
1888        return getAddExpr(getSCEV(U->getOperand(0)),
1889                          getSCEV(U->getOperand(1)));
1890
1891      // If the RHS of xor is -1, then this is a not operation.
1892      else if (CI->isAllOnesValue())
1893        return getNotSCEV(getSCEV(U->getOperand(0)));
1894    }
1895    break;
1896
1897  case Instruction::Shl:
1898    // Turn shift left of a constant amount into a multiply.
1899    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1900      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1901      Constant *X = ConstantInt::get(
1902        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1903      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1904    }
1905    break;
1906
1907  case Instruction::LShr:
1908    // Turn logical shift right of a constant into a unsigned divide.
1909    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1910      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1911      Constant *X = ConstantInt::get(
1912        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1913      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1914    }
1915    break;
1916
1917  case Instruction::AShr:
1918    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1919    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
1920      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
1921        if (L->getOpcode() == Instruction::Shl &&
1922            L->getOperand(1) == U->getOperand(1)) {
1923          unsigned BitWidth = getTypeSizeInBits(U->getType());
1924          uint64_t Amt = BitWidth - CI->getZExtValue();
1925          if (Amt == BitWidth)
1926            return getSCEV(L->getOperand(0));       // shift by zero --> noop
1927          if (Amt > BitWidth)
1928            return getIntegerSCEV(0, U->getType()); // value is undefined
1929          return
1930            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
1931                                                      IntegerType::get(Amt)),
1932                                 U->getType());
1933        }
1934    break;
1935
1936  case Instruction::Trunc:
1937    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1938
1939  case Instruction::ZExt:
1940    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1941
1942  case Instruction::SExt:
1943    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1944
1945  case Instruction::BitCast:
1946    // BitCasts are no-op casts so we just eliminate the cast.
1947    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
1948      return getSCEV(U->getOperand(0));
1949    break;
1950
1951  case Instruction::IntToPtr:
1952    if (!TD) break; // Without TD we can't analyze pointers.
1953    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1954                                   TD->getIntPtrType());
1955
1956  case Instruction::PtrToInt:
1957    if (!TD) break; // Without TD we can't analyze pointers.
1958    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1959                                   U->getType());
1960
1961  case Instruction::GetElementPtr: {
1962    if (!TD) break; // Without TD we can't analyze pointers.
1963    const Type *IntPtrTy = TD->getIntPtrType();
1964    Value *Base = U->getOperand(0);
1965    SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1966    gep_type_iterator GTI = gep_type_begin(U);
1967    for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1968                                        E = U->op_end();
1969         I != E; ++I) {
1970      Value *Index = *I;
1971      // Compute the (potentially symbolic) offset in bytes for this index.
1972      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1973        // For a struct, add the member offset.
1974        const StructLayout &SL = *TD->getStructLayout(STy);
1975        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1976        uint64_t Offset = SL.getElementOffset(FieldNo);
1977        TotalOffset = getAddExpr(TotalOffset,
1978                                    getIntegerSCEV(Offset, IntPtrTy));
1979      } else {
1980        // For an array, add the element offset, explicitly scaled.
1981        SCEVHandle LocalOffset = getSCEV(Index);
1982        if (!isa<PointerType>(LocalOffset->getType()))
1983          // Getelementptr indicies are signed.
1984          LocalOffset = getTruncateOrSignExtend(LocalOffset,
1985                                                IntPtrTy);
1986        LocalOffset =
1987          getMulExpr(LocalOffset,
1988                     getIntegerSCEV(TD->getTypePaddedSize(*GTI),
1989                                    IntPtrTy));
1990        TotalOffset = getAddExpr(TotalOffset, LocalOffset);
1991      }
1992    }
1993    return getAddExpr(getSCEV(Base), TotalOffset);
1994  }
1995
1996  case Instruction::PHI:
1997    return createNodeForPHI(cast<PHINode>(U));
1998
1999  case Instruction::Select:
2000    // This could be a smax or umax that was lowered earlier.
2001    // Try to recover it.
2002    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2003      Value *LHS = ICI->getOperand(0);
2004      Value *RHS = ICI->getOperand(1);
2005      switch (ICI->getPredicate()) {
2006      case ICmpInst::ICMP_SLT:
2007      case ICmpInst::ICMP_SLE:
2008        std::swap(LHS, RHS);
2009        // fall through
2010      case ICmpInst::ICMP_SGT:
2011      case ICmpInst::ICMP_SGE:
2012        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2013          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2014        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2015          // ~smax(~x, ~y) == smin(x, y).
2016          return getNotSCEV(getSMaxExpr(
2017                                   getNotSCEV(getSCEV(LHS)),
2018                                   getNotSCEV(getSCEV(RHS))));
2019        break;
2020      case ICmpInst::ICMP_ULT:
2021      case ICmpInst::ICMP_ULE:
2022        std::swap(LHS, RHS);
2023        // fall through
2024      case ICmpInst::ICMP_UGT:
2025      case ICmpInst::ICMP_UGE:
2026        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2027          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2028        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2029          // ~umax(~x, ~y) == umin(x, y)
2030          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2031                                        getNotSCEV(getSCEV(RHS))));
2032        break;
2033      default:
2034        break;
2035      }
2036    }
2037
2038  default: // We cannot analyze this expression.
2039    break;
2040  }
2041
2042  return getUnknown(V);
2043}
2044
2045
2046
2047//===----------------------------------------------------------------------===//
2048//                   Iteration Count Computation Code
2049//
2050
2051/// getBackedgeTakenCount - If the specified loop has a predictable
2052/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2053/// object. The backedge-taken count is the number of times the loop header
2054/// will be branched to from within the loop. This is one less than the
2055/// trip count of the loop, since it doesn't count the first iteration,
2056/// when the header is branched to from outside the loop.
2057///
2058/// Note that it is not valid to call this method on a loop without a
2059/// loop-invariant backedge-taken count (see
2060/// hasLoopInvariantBackedgeTakenCount).
2061///
2062SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2063  return getBackedgeTakenInfo(L).Exact;
2064}
2065
2066/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2067/// return the least SCEV value that is known never to be less than the
2068/// actual backedge taken count.
2069SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2070  return getBackedgeTakenInfo(L).Max;
2071}
2072
2073const ScalarEvolution::BackedgeTakenInfo &
2074ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2075  // Initially insert a CouldNotCompute for this loop. If the insertion
2076  // succeeds, procede to actually compute a backedge-taken count and
2077  // update the value. The temporary CouldNotCompute value tells SCEV
2078  // code elsewhere that it shouldn't attempt to request a new
2079  // backedge-taken count, which could result in infinite recursion.
2080  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2081    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2082  if (Pair.second) {
2083    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2084    if (ItCount.Exact != UnknownValue) {
2085      assert(ItCount.Exact->isLoopInvariant(L) &&
2086             ItCount.Max->isLoopInvariant(L) &&
2087             "Computed trip count isn't loop invariant for loop!");
2088      ++NumTripCountsComputed;
2089
2090      // Update the value in the map.
2091      Pair.first->second = ItCount;
2092    } else if (isa<PHINode>(L->getHeader()->begin())) {
2093      // Only count loops that have phi nodes as not being computable.
2094      ++NumTripCountsNotComputed;
2095    }
2096
2097    // Now that we know more about the trip count for this loop, forget any
2098    // existing SCEV values for PHI nodes in this loop since they are only
2099    // conservative estimates made without the benefit
2100    // of trip count information.
2101    if (ItCount.hasAnyInfo())
2102      for (BasicBlock::iterator I = L->getHeader()->begin();
2103           PHINode *PN = dyn_cast<PHINode>(I); ++I)
2104        deleteValueFromRecords(PN);
2105  }
2106  return Pair.first->second;
2107}
2108
2109/// forgetLoopBackedgeTakenCount - This method should be called by the
2110/// client when it has changed a loop in a way that may effect
2111/// ScalarEvolution's ability to compute a trip count, or if the loop
2112/// is deleted.
2113void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2114  BackedgeTakenCounts.erase(L);
2115}
2116
2117/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2118/// of the specified loop will execute.
2119ScalarEvolution::BackedgeTakenInfo
2120ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2121  // If the loop has a non-one exit block count, we can't analyze it.
2122  SmallVector<BasicBlock*, 8> ExitBlocks;
2123  L->getExitBlocks(ExitBlocks);
2124  if (ExitBlocks.size() != 1) return UnknownValue;
2125
2126  // Okay, there is one exit block.  Try to find the condition that causes the
2127  // loop to be exited.
2128  BasicBlock *ExitBlock = ExitBlocks[0];
2129
2130  BasicBlock *ExitingBlock = 0;
2131  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2132       PI != E; ++PI)
2133    if (L->contains(*PI)) {
2134      if (ExitingBlock == 0)
2135        ExitingBlock = *PI;
2136      else
2137        return UnknownValue;   // More than one block exiting!
2138    }
2139  assert(ExitingBlock && "No exits from loop, something is broken!");
2140
2141  // Okay, we've computed the exiting block.  See what condition causes us to
2142  // exit.
2143  //
2144  // FIXME: we should be able to handle switch instructions (with a single exit)
2145  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2146  if (ExitBr == 0) return UnknownValue;
2147  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2148
2149  // At this point, we know we have a conditional branch that determines whether
2150  // the loop is exited.  However, we don't know if the branch is executed each
2151  // time through the loop.  If not, then the execution count of the branch will
2152  // not be equal to the trip count of the loop.
2153  //
2154  // Currently we check for this by checking to see if the Exit branch goes to
2155  // the loop header.  If so, we know it will always execute the same number of
2156  // times as the loop.  We also handle the case where the exit block *is* the
2157  // loop header.  This is common for un-rotated loops.  More extensive analysis
2158  // could be done to handle more cases here.
2159  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2160      ExitBr->getSuccessor(1) != L->getHeader() &&
2161      ExitBr->getParent() != L->getHeader())
2162    return UnknownValue;
2163
2164  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2165
2166  // If it's not an integer comparison then compute it the hard way.
2167  // Note that ICmpInst deals with pointer comparisons too so we must check
2168  // the type of the operand.
2169  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2170    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2171                                          ExitBr->getSuccessor(0) == ExitBlock);
2172
2173  // If the condition was exit on true, convert the condition to exit on false
2174  ICmpInst::Predicate Cond;
2175  if (ExitBr->getSuccessor(1) == ExitBlock)
2176    Cond = ExitCond->getPredicate();
2177  else
2178    Cond = ExitCond->getInversePredicate();
2179
2180  // Handle common loops like: for (X = "string"; *X; ++X)
2181  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2182    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2183      SCEVHandle ItCnt =
2184        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2185      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2186    }
2187
2188  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2189  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2190
2191  // Try to evaluate any dependencies out of the loop.
2192  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2193  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2194  Tmp = getSCEVAtScope(RHS, L);
2195  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2196
2197  // At this point, we would like to compute how many iterations of the
2198  // loop the predicate will return true for these inputs.
2199  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2200    // If there is a loop-invariant, force it into the RHS.
2201    std::swap(LHS, RHS);
2202    Cond = ICmpInst::getSwappedPredicate(Cond);
2203  }
2204
2205  // If we have a comparison of a chrec against a constant, try to use value
2206  // ranges to answer this query.
2207  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2208    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2209      if (AddRec->getLoop() == L) {
2210        // Form the comparison range using the constant of the correct type so
2211        // that the ConstantRange class knows to do a signed or unsigned
2212        // comparison.
2213        ConstantInt *CompVal = RHSC->getValue();
2214        const Type *RealTy = ExitCond->getOperand(0)->getType();
2215        CompVal = dyn_cast<ConstantInt>(
2216          ConstantExpr::getBitCast(CompVal, RealTy));
2217        if (CompVal) {
2218          // Form the constant range.
2219          ConstantRange CompRange(
2220              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2221
2222          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2223          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2224        }
2225      }
2226
2227  switch (Cond) {
2228  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2229    // Convert to: while (X-Y != 0)
2230    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2231    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2232    break;
2233  }
2234  case ICmpInst::ICMP_EQ: {
2235    // Convert to: while (X-Y == 0)           // while (X == Y)
2236    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2237    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2238    break;
2239  }
2240  case ICmpInst::ICMP_SLT: {
2241    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2242    if (BTI.hasAnyInfo()) return BTI;
2243    break;
2244  }
2245  case ICmpInst::ICMP_SGT: {
2246    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2247                                             getNotSCEV(RHS), L, true);
2248    if (BTI.hasAnyInfo()) return BTI;
2249    break;
2250  }
2251  case ICmpInst::ICMP_ULT: {
2252    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2253    if (BTI.hasAnyInfo()) return BTI;
2254    break;
2255  }
2256  case ICmpInst::ICMP_UGT: {
2257    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2258                                             getNotSCEV(RHS), L, false);
2259    if (BTI.hasAnyInfo()) return BTI;
2260    break;
2261  }
2262  default:
2263#if 0
2264    errs() << "ComputeBackedgeTakenCount ";
2265    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2266      errs() << "[unsigned] ";
2267    errs() << *LHS << "   "
2268         << Instruction::getOpcodeName(Instruction::ICmp)
2269         << "   " << *RHS << "\n";
2270#endif
2271    break;
2272  }
2273  return
2274    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2275                                          ExitBr->getSuccessor(0) == ExitBlock);
2276}
2277
2278static ConstantInt *
2279EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2280                                ScalarEvolution &SE) {
2281  SCEVHandle InVal = SE.getConstant(C);
2282  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2283  assert(isa<SCEVConstant>(Val) &&
2284         "Evaluation of SCEV at constant didn't fold correctly?");
2285  return cast<SCEVConstant>(Val)->getValue();
2286}
2287
2288/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2289/// and a GEP expression (missing the pointer index) indexing into it, return
2290/// the addressed element of the initializer or null if the index expression is
2291/// invalid.
2292static Constant *
2293GetAddressedElementFromGlobal(GlobalVariable *GV,
2294                              const std::vector<ConstantInt*> &Indices) {
2295  Constant *Init = GV->getInitializer();
2296  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2297    uint64_t Idx = Indices[i]->getZExtValue();
2298    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2299      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2300      Init = cast<Constant>(CS->getOperand(Idx));
2301    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2302      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2303      Init = cast<Constant>(CA->getOperand(Idx));
2304    } else if (isa<ConstantAggregateZero>(Init)) {
2305      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2306        assert(Idx < STy->getNumElements() && "Bad struct index!");
2307        Init = Constant::getNullValue(STy->getElementType(Idx));
2308      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2309        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2310        Init = Constant::getNullValue(ATy->getElementType());
2311      } else {
2312        assert(0 && "Unknown constant aggregate type!");
2313      }
2314      return 0;
2315    } else {
2316      return 0; // Unknown initializer type
2317    }
2318  }
2319  return Init;
2320}
2321
2322/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2323/// 'icmp op load X, cst', try to see if we can compute the backedge
2324/// execution count.
2325SCEVHandle ScalarEvolution::
2326ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2327                                             const Loop *L,
2328                                             ICmpInst::Predicate predicate) {
2329  if (LI->isVolatile()) return UnknownValue;
2330
2331  // Check to see if the loaded pointer is a getelementptr of a global.
2332  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2333  if (!GEP) return UnknownValue;
2334
2335  // Make sure that it is really a constant global we are gepping, with an
2336  // initializer, and make sure the first IDX is really 0.
2337  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2338  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2339      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2340      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2341    return UnknownValue;
2342
2343  // Okay, we allow one non-constant index into the GEP instruction.
2344  Value *VarIdx = 0;
2345  std::vector<ConstantInt*> Indexes;
2346  unsigned VarIdxNum = 0;
2347  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2348    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2349      Indexes.push_back(CI);
2350    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2351      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2352      VarIdx = GEP->getOperand(i);
2353      VarIdxNum = i-2;
2354      Indexes.push_back(0);
2355    }
2356
2357  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2358  // Check to see if X is a loop variant variable value now.
2359  SCEVHandle Idx = getSCEV(VarIdx);
2360  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2361  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2362
2363  // We can only recognize very limited forms of loop index expressions, in
2364  // particular, only affine AddRec's like {C1,+,C2}.
2365  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2366  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2367      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2368      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2369    return UnknownValue;
2370
2371  unsigned MaxSteps = MaxBruteForceIterations;
2372  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2373    ConstantInt *ItCst =
2374      ConstantInt::get(IdxExpr->getType(), IterationNum);
2375    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2376
2377    // Form the GEP offset.
2378    Indexes[VarIdxNum] = Val;
2379
2380    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2381    if (Result == 0) break;  // Cannot compute!
2382
2383    // Evaluate the condition for this iteration.
2384    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2385    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2386    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2387#if 0
2388      errs() << "\n***\n*** Computed loop count " << *ItCst
2389             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2390             << "***\n";
2391#endif
2392      ++NumArrayLenItCounts;
2393      return getConstant(ItCst);   // Found terminating iteration!
2394    }
2395  }
2396  return UnknownValue;
2397}
2398
2399
2400/// CanConstantFold - Return true if we can constant fold an instruction of the
2401/// specified type, assuming that all operands were constants.
2402static bool CanConstantFold(const Instruction *I) {
2403  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2404      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2405    return true;
2406
2407  if (const CallInst *CI = dyn_cast<CallInst>(I))
2408    if (const Function *F = CI->getCalledFunction())
2409      return canConstantFoldCallTo(F);
2410  return false;
2411}
2412
2413/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2414/// in the loop that V is derived from.  We allow arbitrary operations along the
2415/// way, but the operands of an operation must either be constants or a value
2416/// derived from a constant PHI.  If this expression does not fit with these
2417/// constraints, return null.
2418static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2419  // If this is not an instruction, or if this is an instruction outside of the
2420  // loop, it can't be derived from a loop PHI.
2421  Instruction *I = dyn_cast<Instruction>(V);
2422  if (I == 0 || !L->contains(I->getParent())) return 0;
2423
2424  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2425    if (L->getHeader() == I->getParent())
2426      return PN;
2427    else
2428      // We don't currently keep track of the control flow needed to evaluate
2429      // PHIs, so we cannot handle PHIs inside of loops.
2430      return 0;
2431  }
2432
2433  // If we won't be able to constant fold this expression even if the operands
2434  // are constants, return early.
2435  if (!CanConstantFold(I)) return 0;
2436
2437  // Otherwise, we can evaluate this instruction if all of its operands are
2438  // constant or derived from a PHI node themselves.
2439  PHINode *PHI = 0;
2440  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2441    if (!(isa<Constant>(I->getOperand(Op)) ||
2442          isa<GlobalValue>(I->getOperand(Op)))) {
2443      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2444      if (P == 0) return 0;  // Not evolving from PHI
2445      if (PHI == 0)
2446        PHI = P;
2447      else if (PHI != P)
2448        return 0;  // Evolving from multiple different PHIs.
2449    }
2450
2451  // This is a expression evolving from a constant PHI!
2452  return PHI;
2453}
2454
2455/// EvaluateExpression - Given an expression that passes the
2456/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2457/// in the loop has the value PHIVal.  If we can't fold this expression for some
2458/// reason, return null.
2459static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2460  if (isa<PHINode>(V)) return PHIVal;
2461  if (Constant *C = dyn_cast<Constant>(V)) return C;
2462  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2463  Instruction *I = cast<Instruction>(V);
2464
2465  std::vector<Constant*> Operands;
2466  Operands.resize(I->getNumOperands());
2467
2468  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2469    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2470    if (Operands[i] == 0) return 0;
2471  }
2472
2473  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2474    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2475                                           &Operands[0], Operands.size());
2476  else
2477    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2478                                    &Operands[0], Operands.size());
2479}
2480
2481/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2482/// in the header of its containing loop, we know the loop executes a
2483/// constant number of times, and the PHI node is just a recurrence
2484/// involving constants, fold it.
2485Constant *ScalarEvolution::
2486getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2487  std::map<PHINode*, Constant*>::iterator I =
2488    ConstantEvolutionLoopExitValue.find(PN);
2489  if (I != ConstantEvolutionLoopExitValue.end())
2490    return I->second;
2491
2492  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2493    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2494
2495  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2496
2497  // Since the loop is canonicalized, the PHI node must have two entries.  One
2498  // entry must be a constant (coming in from outside of the loop), and the
2499  // second must be derived from the same PHI.
2500  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2501  Constant *StartCST =
2502    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2503  if (StartCST == 0)
2504    return RetVal = 0;  // Must be a constant.
2505
2506  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2507  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2508  if (PN2 != PN)
2509    return RetVal = 0;  // Not derived from same PHI.
2510
2511  // Execute the loop symbolically to determine the exit value.
2512  if (BEs.getActiveBits() >= 32)
2513    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2514
2515  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2516  unsigned IterationNum = 0;
2517  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2518    if (IterationNum == NumIterations)
2519      return RetVal = PHIVal;  // Got exit value!
2520
2521    // Compute the value of the PHI node for the next iteration.
2522    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2523    if (NextPHI == PHIVal)
2524      return RetVal = NextPHI;  // Stopped evolving!
2525    if (NextPHI == 0)
2526      return 0;        // Couldn't evaluate!
2527    PHIVal = NextPHI;
2528  }
2529}
2530
2531/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2532/// constant number of times (the condition evolves only from constants),
2533/// try to evaluate a few iterations of the loop until we get the exit
2534/// condition gets a value of ExitWhen (true or false).  If we cannot
2535/// evaluate the trip count of the loop, return UnknownValue.
2536SCEVHandle ScalarEvolution::
2537ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2538  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2539  if (PN == 0) return UnknownValue;
2540
2541  // Since the loop is canonicalized, the PHI node must have two entries.  One
2542  // entry must be a constant (coming in from outside of the loop), and the
2543  // second must be derived from the same PHI.
2544  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2545  Constant *StartCST =
2546    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2547  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2548
2549  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2550  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2551  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2552
2553  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2554  // the loop symbolically to determine when the condition gets a value of
2555  // "ExitWhen".
2556  unsigned IterationNum = 0;
2557  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2558  for (Constant *PHIVal = StartCST;
2559       IterationNum != MaxIterations; ++IterationNum) {
2560    ConstantInt *CondVal =
2561      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2562
2563    // Couldn't symbolically evaluate.
2564    if (!CondVal) return UnknownValue;
2565
2566    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2567      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2568      ++NumBruteForceTripCountsComputed;
2569      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2570    }
2571
2572    // Compute the value of the PHI node for the next iteration.
2573    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2574    if (NextPHI == 0 || NextPHI == PHIVal)
2575      return UnknownValue;  // Couldn't evaluate or not making progress...
2576    PHIVal = NextPHI;
2577  }
2578
2579  // Too many iterations were needed to evaluate.
2580  return UnknownValue;
2581}
2582
2583/// getSCEVAtScope - Compute the value of the specified expression within the
2584/// indicated loop (which may be null to indicate in no loop).  If the
2585/// expression cannot be evaluated, return UnknownValue.
2586SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) {
2587  // FIXME: this should be turned into a virtual method on SCEV!
2588
2589  if (isa<SCEVConstant>(V)) return V;
2590
2591  // If this instruction is evolved from a constant-evolving PHI, compute the
2592  // exit value from the loop without using SCEVs.
2593  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2594    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2595      const Loop *LI = (*this->LI)[I->getParent()];
2596      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2597        if (PHINode *PN = dyn_cast<PHINode>(I))
2598          if (PN->getParent() == LI->getHeader()) {
2599            // Okay, there is no closed form solution for the PHI node.  Check
2600            // to see if the loop that contains it has a known backedge-taken
2601            // count.  If so, we may be able to force computation of the exit
2602            // value.
2603            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2604            if (SCEVConstant *BTCC =
2605                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2606              // Okay, we know how many times the containing loop executes.  If
2607              // this is a constant evolving PHI node, get the final value at
2608              // the specified iteration number.
2609              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2610                                                   BTCC->getValue()->getValue(),
2611                                                               LI);
2612              if (RV) return getUnknown(RV);
2613            }
2614          }
2615
2616      // Okay, this is an expression that we cannot symbolically evaluate
2617      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2618      // the arguments into constants, and if so, try to constant propagate the
2619      // result.  This is particularly useful for computing loop exit values.
2620      if (CanConstantFold(I)) {
2621        std::vector<Constant*> Operands;
2622        Operands.reserve(I->getNumOperands());
2623        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2624          Value *Op = I->getOperand(i);
2625          if (Constant *C = dyn_cast<Constant>(Op)) {
2626            Operands.push_back(C);
2627          } else {
2628            // If any of the operands is non-constant and if they are
2629            // non-integer and non-pointer, don't even try to analyze them
2630            // with scev techniques.
2631            if (!isSCEVable(Op->getType()))
2632              return V;
2633
2634            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2635            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2636              Constant *C = SC->getValue();
2637              if (C->getType() != Op->getType())
2638                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2639                                                                  Op->getType(),
2640                                                                  false),
2641                                          C, Op->getType());
2642              Operands.push_back(C);
2643            } else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2644              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2645                if (C->getType() != Op->getType())
2646                  C =
2647                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2648                                                                  Op->getType(),
2649                                                                  false),
2650                                          C, Op->getType());
2651                Operands.push_back(C);
2652              } else
2653                return V;
2654            } else {
2655              return V;
2656            }
2657          }
2658        }
2659
2660        Constant *C;
2661        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2662          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2663                                              &Operands[0], Operands.size());
2664        else
2665          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2666                                       &Operands[0], Operands.size());
2667        return getUnknown(C);
2668      }
2669    }
2670
2671    // This is some other type of SCEVUnknown, just return it.
2672    return V;
2673  }
2674
2675  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2676    // Avoid performing the look-up in the common case where the specified
2677    // expression has no loop-variant portions.
2678    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2679      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2680      if (OpAtScope != Comm->getOperand(i)) {
2681        if (OpAtScope == UnknownValue) return UnknownValue;
2682        // Okay, at least one of these operands is loop variant but might be
2683        // foldable.  Build a new instance of the folded commutative expression.
2684        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2685        NewOps.push_back(OpAtScope);
2686
2687        for (++i; i != e; ++i) {
2688          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2689          if (OpAtScope == UnknownValue) return UnknownValue;
2690          NewOps.push_back(OpAtScope);
2691        }
2692        if (isa<SCEVAddExpr>(Comm))
2693          return getAddExpr(NewOps);
2694        if (isa<SCEVMulExpr>(Comm))
2695          return getMulExpr(NewOps);
2696        if (isa<SCEVSMaxExpr>(Comm))
2697          return getSMaxExpr(NewOps);
2698        if (isa<SCEVUMaxExpr>(Comm))
2699          return getUMaxExpr(NewOps);
2700        assert(0 && "Unknown commutative SCEV type!");
2701      }
2702    }
2703    // If we got here, all operands are loop invariant.
2704    return Comm;
2705  }
2706
2707  if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2708    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2709    if (LHS == UnknownValue) return LHS;
2710    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2711    if (RHS == UnknownValue) return RHS;
2712    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2713      return Div;   // must be loop invariant
2714    return getUDivExpr(LHS, RHS);
2715  }
2716
2717  // If this is a loop recurrence for a loop that does not contain L, then we
2718  // are dealing with the final value computed by the loop.
2719  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2720    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2721      // To evaluate this recurrence, we need to know how many times the AddRec
2722      // loop iterates.  Compute this now.
2723      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2724      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2725
2726      // Then, evaluate the AddRec.
2727      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2728    }
2729    return UnknownValue;
2730  }
2731
2732  if (SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2733    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2734    if (Op == UnknownValue) return Op;
2735    if (Op == Cast->getOperand())
2736      return Cast;  // must be loop invariant
2737    return getZeroExtendExpr(Op, Cast->getType());
2738  }
2739
2740  if (SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2741    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2742    if (Op == UnknownValue) return Op;
2743    if (Op == Cast->getOperand())
2744      return Cast;  // must be loop invariant
2745    return getSignExtendExpr(Op, Cast->getType());
2746  }
2747
2748  if (SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2749    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2750    if (Op == UnknownValue) return Op;
2751    if (Op == Cast->getOperand())
2752      return Cast;  // must be loop invariant
2753    return getTruncateExpr(Op, Cast->getType());
2754  }
2755
2756  assert(0 && "Unknown SCEV type!");
2757}
2758
2759/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2760/// at the specified scope in the program.  The L value specifies a loop
2761/// nest to evaluate the expression at, where null is the top-level or a
2762/// specified loop is immediately inside of the loop.
2763///
2764/// This method can be used to compute the exit value for a variable defined
2765/// in a loop by querying what the value will hold in the parent loop.
2766///
2767/// If this value is not computable at this scope, a SCEVCouldNotCompute
2768/// object is returned.
2769SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2770  return getSCEVAtScope(getSCEV(V), L);
2771}
2772
2773/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2774/// following equation:
2775///
2776///     A * X = B (mod N)
2777///
2778/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2779/// A and B isn't important.
2780///
2781/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2782static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2783                                               ScalarEvolution &SE) {
2784  uint32_t BW = A.getBitWidth();
2785  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2786  assert(A != 0 && "A must be non-zero.");
2787
2788  // 1. D = gcd(A, N)
2789  //
2790  // The gcd of A and N may have only one prime factor: 2. The number of
2791  // trailing zeros in A is its multiplicity
2792  uint32_t Mult2 = A.countTrailingZeros();
2793  // D = 2^Mult2
2794
2795  // 2. Check if B is divisible by D.
2796  //
2797  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2798  // is not less than multiplicity of this prime factor for D.
2799  if (B.countTrailingZeros() < Mult2)
2800    return SE.getCouldNotCompute();
2801
2802  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2803  // modulo (N / D).
2804  //
2805  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2806  // bit width during computations.
2807  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2808  APInt Mod(BW + 1, 0);
2809  Mod.set(BW - Mult2);  // Mod = N / D
2810  APInt I = AD.multiplicativeInverse(Mod);
2811
2812  // 4. Compute the minimum unsigned root of the equation:
2813  // I * (B / D) mod (N / D)
2814  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2815
2816  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2817  // bits.
2818  return SE.getConstant(Result.trunc(BW));
2819}
2820
2821/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2822/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2823/// might be the same) or two SCEVCouldNotCompute objects.
2824///
2825static std::pair<SCEVHandle,SCEVHandle>
2826SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2827  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2828  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2829  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2830  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2831
2832  // We currently can only solve this if the coefficients are constants.
2833  if (!LC || !MC || !NC) {
2834    SCEV *CNC = SE.getCouldNotCompute();
2835    return std::make_pair(CNC, CNC);
2836  }
2837
2838  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2839  const APInt &L = LC->getValue()->getValue();
2840  const APInt &M = MC->getValue()->getValue();
2841  const APInt &N = NC->getValue()->getValue();
2842  APInt Two(BitWidth, 2);
2843  APInt Four(BitWidth, 4);
2844
2845  {
2846    using namespace APIntOps;
2847    const APInt& C = L;
2848    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2849    // The B coefficient is M-N/2
2850    APInt B(M);
2851    B -= sdiv(N,Two);
2852
2853    // The A coefficient is N/2
2854    APInt A(N.sdiv(Two));
2855
2856    // Compute the B^2-4ac term.
2857    APInt SqrtTerm(B);
2858    SqrtTerm *= B;
2859    SqrtTerm -= Four * (A * C);
2860
2861    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2862    // integer value or else APInt::sqrt() will assert.
2863    APInt SqrtVal(SqrtTerm.sqrt());
2864
2865    // Compute the two solutions for the quadratic formula.
2866    // The divisions must be performed as signed divisions.
2867    APInt NegB(-B);
2868    APInt TwoA( A << 1 );
2869    if (TwoA.isMinValue()) {
2870      SCEV *CNC = SE.getCouldNotCompute();
2871      return std::make_pair(CNC, CNC);
2872    }
2873
2874    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2875    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2876
2877    return std::make_pair(SE.getConstant(Solution1),
2878                          SE.getConstant(Solution2));
2879    } // end APIntOps namespace
2880}
2881
2882/// HowFarToZero - Return the number of times a backedge comparing the specified
2883/// value to zero will execute.  If not computable, return UnknownValue
2884SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
2885  // If the value is a constant
2886  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2887    // If the value is already zero, the branch will execute zero times.
2888    if (C->getValue()->isZero()) return C;
2889    return UnknownValue;  // Otherwise it will loop infinitely.
2890  }
2891
2892  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2893  if (!AddRec || AddRec->getLoop() != L)
2894    return UnknownValue;
2895
2896  if (AddRec->isAffine()) {
2897    // If this is an affine expression, the execution count of this branch is
2898    // the minimum unsigned root of the following equation:
2899    //
2900    //     Start + Step*N = 0 (mod 2^BW)
2901    //
2902    // equivalent to:
2903    //
2904    //             Step*N = -Start (mod 2^BW)
2905    //
2906    // where BW is the common bit width of Start and Step.
2907
2908    // Get the initial value for the loop.
2909    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2910    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2911
2912    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
2913
2914    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2915      // For now we handle only constant steps.
2916
2917      // First, handle unitary steps.
2918      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
2919        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
2920      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
2921        return Start;                           //    N = Start (as unsigned)
2922
2923      // Then, try to solve the above equation provided that Start is constant.
2924      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2925        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2926                                            -StartC->getValue()->getValue(),
2927                                            *this);
2928    }
2929  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2930    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2931    // the quadratic equation to solve it.
2932    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
2933                                                                    *this);
2934    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2935    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2936    if (R1) {
2937#if 0
2938      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
2939             << "  sol#2: " << *R2 << "\n";
2940#endif
2941      // Pick the smallest positive root value.
2942      if (ConstantInt *CB =
2943          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2944                                   R1->getValue(), R2->getValue()))) {
2945        if (CB->getZExtValue() == false)
2946          std::swap(R1, R2);   // R1 is the minimum root now.
2947
2948        // We can only use this value if the chrec ends up with an exact zero
2949        // value at this index.  When solving for "X*X != 5", for example, we
2950        // should not accept a root of 2.
2951        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
2952        if (Val->isZero())
2953          return R1;  // We found a quadratic root!
2954      }
2955    }
2956  }
2957
2958  return UnknownValue;
2959}
2960
2961/// HowFarToNonZero - Return the number of times a backedge checking the
2962/// specified value for nonzero will execute.  If not computable, return
2963/// UnknownValue
2964SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) {
2965  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2966  // handle them yet except for the trivial case.  This could be expanded in the
2967  // future as needed.
2968
2969  // If the value is a constant, check to see if it is known to be non-zero
2970  // already.  If so, the backedge will execute zero times.
2971  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2972    if (!C->getValue()->isNullValue())
2973      return getIntegerSCEV(0, C->getType());
2974    return UnknownValue;  // Otherwise it will loop infinitely.
2975  }
2976
2977  // We could implement others, but I really doubt anyone writes loops like
2978  // this, and if they did, they would already be constant folded.
2979  return UnknownValue;
2980}
2981
2982/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2983/// (which may not be an immediate predecessor) which has exactly one
2984/// successor from which BB is reachable, or null if no such block is
2985/// found.
2986///
2987BasicBlock *
2988ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
2989  // If the block has a unique predecessor, then there is no path from the
2990  // predecessor to the block that does not go through the direct edge
2991  // from the predecessor to the block.
2992  if (BasicBlock *Pred = BB->getSinglePredecessor())
2993    return Pred;
2994
2995  // A loop's header is defined to be a block that dominates the loop.
2996  // If the loop has a preheader, it must be a block that has exactly
2997  // one successor that can reach BB. This is slightly more strict
2998  // than necessary, but works if critical edges are split.
2999  if (Loop *L = LI->getLoopFor(BB))
3000    return L->getLoopPreheader();
3001
3002  return 0;
3003}
3004
3005/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3006/// a conditional between LHS and RHS.  This is used to help avoid max
3007/// expressions in loop trip counts.
3008bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3009                                          ICmpInst::Predicate Pred,
3010                                          SCEV *LHS, SCEV *RHS) {
3011  BasicBlock *Preheader = L->getLoopPreheader();
3012  BasicBlock *PreheaderDest = L->getHeader();
3013
3014  // Starting at the preheader, climb up the predecessor chain, as long as
3015  // there are predecessors that can be found that have unique successors
3016  // leading to the original header.
3017  for (; Preheader;
3018       PreheaderDest = Preheader,
3019       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3020
3021    BranchInst *LoopEntryPredicate =
3022      dyn_cast<BranchInst>(Preheader->getTerminator());
3023    if (!LoopEntryPredicate ||
3024        LoopEntryPredicate->isUnconditional())
3025      continue;
3026
3027    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3028    if (!ICI) continue;
3029
3030    // Now that we found a conditional branch that dominates the loop, check to
3031    // see if it is the comparison we are looking for.
3032    Value *PreCondLHS = ICI->getOperand(0);
3033    Value *PreCondRHS = ICI->getOperand(1);
3034    ICmpInst::Predicate Cond;
3035    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3036      Cond = ICI->getPredicate();
3037    else
3038      Cond = ICI->getInversePredicate();
3039
3040    if (Cond == Pred)
3041      ; // An exact match.
3042    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3043      ; // The actual condition is beyond sufficient.
3044    else
3045      // Check a few special cases.
3046      switch (Cond) {
3047      case ICmpInst::ICMP_UGT:
3048        if (Pred == ICmpInst::ICMP_ULT) {
3049          std::swap(PreCondLHS, PreCondRHS);
3050          Cond = ICmpInst::ICMP_ULT;
3051          break;
3052        }
3053        continue;
3054      case ICmpInst::ICMP_SGT:
3055        if (Pred == ICmpInst::ICMP_SLT) {
3056          std::swap(PreCondLHS, PreCondRHS);
3057          Cond = ICmpInst::ICMP_SLT;
3058          break;
3059        }
3060        continue;
3061      case ICmpInst::ICMP_NE:
3062        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3063        // so check for this case by checking if the NE is comparing against
3064        // a minimum or maximum constant.
3065        if (!ICmpInst::isTrueWhenEqual(Pred))
3066          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3067            const APInt &A = CI->getValue();
3068            switch (Pred) {
3069            case ICmpInst::ICMP_SLT:
3070              if (A.isMaxSignedValue()) break;
3071              continue;
3072            case ICmpInst::ICMP_SGT:
3073              if (A.isMinSignedValue()) break;
3074              continue;
3075            case ICmpInst::ICMP_ULT:
3076              if (A.isMaxValue()) break;
3077              continue;
3078            case ICmpInst::ICMP_UGT:
3079              if (A.isMinValue()) break;
3080              continue;
3081            default:
3082              continue;
3083            }
3084            Cond = ICmpInst::ICMP_NE;
3085            // NE is symmetric but the original comparison may not be. Swap
3086            // the operands if necessary so that they match below.
3087            if (isa<SCEVConstant>(LHS))
3088              std::swap(PreCondLHS, PreCondRHS);
3089            break;
3090          }
3091        continue;
3092      default:
3093        // We weren't able to reconcile the condition.
3094        continue;
3095      }
3096
3097    if (!PreCondLHS->getType()->isInteger()) continue;
3098
3099    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3100    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3101    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3102        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3103         RHS == getNotSCEV(PreCondLHSSCEV)))
3104      return true;
3105  }
3106
3107  return false;
3108}
3109
3110/// HowManyLessThans - Return the number of times a backedge containing the
3111/// specified less-than comparison will execute.  If not computable, return
3112/// UnknownValue.
3113ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3114HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
3115  // Only handle:  "ADDREC < LoopInvariant".
3116  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3117
3118  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3119  if (!AddRec || AddRec->getLoop() != L)
3120    return UnknownValue;
3121
3122  if (AddRec->isAffine()) {
3123    // FORNOW: We only support unit strides.
3124    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3125    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3126    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3127
3128    // TODO: handle non-constant strides.
3129    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3130    if (!CStep || CStep->isZero())
3131      return UnknownValue;
3132    if (CStep->getValue()->getValue() == 1) {
3133      // With unit stride, the iteration never steps past the limit value.
3134    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3135      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3136        // Test whether a positive iteration iteration can step past the limit
3137        // value and past the maximum value for its type in a single step.
3138        if (isSigned) {
3139          APInt Max = APInt::getSignedMaxValue(BitWidth);
3140          if ((Max - CStep->getValue()->getValue())
3141                .slt(CLimit->getValue()->getValue()))
3142            return UnknownValue;
3143        } else {
3144          APInt Max = APInt::getMaxValue(BitWidth);
3145          if ((Max - CStep->getValue()->getValue())
3146                .ult(CLimit->getValue()->getValue()))
3147            return UnknownValue;
3148        }
3149      } else
3150        // TODO: handle non-constant limit values below.
3151        return UnknownValue;
3152    } else
3153      // TODO: handle negative strides below.
3154      return UnknownValue;
3155
3156    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3157    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3158    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3159    // treat m-n as signed nor unsigned due to overflow possibility.
3160
3161    // First, we get the value of the LHS in the first iteration: n
3162    SCEVHandle Start = AddRec->getOperand(0);
3163
3164    // Determine the minimum constant start value.
3165    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3166      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3167                             APInt::getMinValue(BitWidth));
3168
3169    // If we know that the condition is true in order to enter the loop,
3170    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3171    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3172    // division must round up.
3173    SCEVHandle End = RHS;
3174    if (!isLoopGuardedByCond(L,
3175                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3176                             getMinusSCEV(Start, Step), RHS))
3177      End = isSigned ? getSMaxExpr(RHS, Start)
3178                     : getUMaxExpr(RHS, Start);
3179
3180    // Determine the maximum constant end value.
3181    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3182      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3183                             APInt::getMaxValue(BitWidth));
3184
3185    // Finally, we subtract these two values and divide, rounding up, to get
3186    // the number of times the backedge is executed.
3187    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3188                                                getAddExpr(Step, NegOne)),
3189                                     Step);
3190
3191    // The maximum backedge count is similar, except using the minimum start
3192    // value and the maximum end value.
3193    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3194                                                                MinStart),
3195                                                   getAddExpr(Step, NegOne)),
3196                                        Step);
3197
3198    return BackedgeTakenInfo(BECount, MaxBECount);
3199  }
3200
3201  return UnknownValue;
3202}
3203
3204/// getNumIterationsInRange - Return the number of iterations of this loop that
3205/// produce values in the specified constant range.  Another way of looking at
3206/// this is that it returns the first iteration number where the value is not in
3207/// the condition, thus computing the exit count. If the iteration count can't
3208/// be computed, an instance of SCEVCouldNotCompute is returned.
3209SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3210                                                   ScalarEvolution &SE) const {
3211  if (Range.isFullSet())  // Infinite loop.
3212    return SE.getCouldNotCompute();
3213
3214  // If the start is a non-zero constant, shift the range to simplify things.
3215  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3216    if (!SC->getValue()->isZero()) {
3217      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3218      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3219      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3220      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
3221        return ShiftedAddRec->getNumIterationsInRange(
3222                           Range.subtract(SC->getValue()->getValue()), SE);
3223      // This is strange and shouldn't happen.
3224      return SE.getCouldNotCompute();
3225    }
3226
3227  // The only time we can solve this is when we have all constant indices.
3228  // Otherwise, we cannot determine the overflow conditions.
3229  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3230    if (!isa<SCEVConstant>(getOperand(i)))
3231      return SE.getCouldNotCompute();
3232
3233
3234  // Okay at this point we know that all elements of the chrec are constants and
3235  // that the start element is zero.
3236
3237  // First check to see if the range contains zero.  If not, the first
3238  // iteration exits.
3239  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3240  if (!Range.contains(APInt(BitWidth, 0)))
3241    return SE.getConstant(ConstantInt::get(getType(),0));
3242
3243  if (isAffine()) {
3244    // If this is an affine expression then we have this situation:
3245    //   Solve {0,+,A} in Range  ===  Ax in Range
3246
3247    // We know that zero is in the range.  If A is positive then we know that
3248    // the upper value of the range must be the first possible exit value.
3249    // If A is negative then the lower of the range is the last possible loop
3250    // value.  Also note that we already checked for a full range.
3251    APInt One(BitWidth,1);
3252    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3253    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3254
3255    // The exit value should be (End+A)/A.
3256    APInt ExitVal = (End + A).udiv(A);
3257    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3258
3259    // Evaluate at the exit value.  If we really did fall out of the valid
3260    // range, then we computed our trip count, otherwise wrap around or other
3261    // things must have happened.
3262    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3263    if (Range.contains(Val->getValue()))
3264      return SE.getCouldNotCompute();  // Something strange happened
3265
3266    // Ensure that the previous value is in the range.  This is a sanity check.
3267    assert(Range.contains(
3268           EvaluateConstantChrecAtConstant(this,
3269           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3270           "Linear scev computation is off in a bad way!");
3271    return SE.getConstant(ExitValue);
3272  } else if (isQuadratic()) {
3273    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3274    // quadratic equation to solve it.  To do this, we must frame our problem in
3275    // terms of figuring out when zero is crossed, instead of when
3276    // Range.getUpper() is crossed.
3277    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3278    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3279    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3280
3281    // Next, solve the constructed addrec
3282    std::pair<SCEVHandle,SCEVHandle> Roots =
3283      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3284    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3285    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3286    if (R1) {
3287      // Pick the smallest positive root value.
3288      if (ConstantInt *CB =
3289          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3290                                   R1->getValue(), R2->getValue()))) {
3291        if (CB->getZExtValue() == false)
3292          std::swap(R1, R2);   // R1 is the minimum root now.
3293
3294        // Make sure the root is not off by one.  The returned iteration should
3295        // not be in the range, but the previous one should be.  When solving
3296        // for "X*X < 5", for example, we should not return a root of 2.
3297        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3298                                                             R1->getValue(),
3299                                                             SE);
3300        if (Range.contains(R1Val->getValue())) {
3301          // The next iteration must be out of the range...
3302          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3303
3304          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3305          if (!Range.contains(R1Val->getValue()))
3306            return SE.getConstant(NextVal);
3307          return SE.getCouldNotCompute();  // Something strange happened
3308        }
3309
3310        // If R1 was not in the range, then it is a good return value.  Make
3311        // sure that R1-1 WAS in the range though, just in case.
3312        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3313        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3314        if (Range.contains(R1Val->getValue()))
3315          return R1;
3316        return SE.getCouldNotCompute();  // Something strange happened
3317      }
3318    }
3319  }
3320
3321  return SE.getCouldNotCompute();
3322}
3323
3324
3325
3326//===----------------------------------------------------------------------===//
3327//                   ScalarEvolution Class Implementation
3328//===----------------------------------------------------------------------===//
3329
3330ScalarEvolution::ScalarEvolution()
3331  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3332}
3333
3334bool ScalarEvolution::runOnFunction(Function &F) {
3335  this->F = &F;
3336  LI = &getAnalysis<LoopInfo>();
3337  TD = getAnalysisIfAvailable<TargetData>();
3338  return false;
3339}
3340
3341void ScalarEvolution::releaseMemory() {
3342  Scalars.clear();
3343  BackedgeTakenCounts.clear();
3344  ConstantEvolutionLoopExitValue.clear();
3345}
3346
3347void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3348  AU.setPreservesAll();
3349  AU.addRequiredTransitive<LoopInfo>();
3350}
3351
3352bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3353  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3354}
3355
3356static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3357                          const Loop *L) {
3358  // Print all inner loops first
3359  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3360    PrintLoopInfo(OS, SE, *I);
3361
3362  OS << "Loop " << L->getHeader()->getName() << ": ";
3363
3364  SmallVector<BasicBlock*, 8> ExitBlocks;
3365  L->getExitBlocks(ExitBlocks);
3366  if (ExitBlocks.size() != 1)
3367    OS << "<multiple exits> ";
3368
3369  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3370    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3371  } else {
3372    OS << "Unpredictable backedge-taken count. ";
3373  }
3374
3375  OS << "\n";
3376}
3377
3378void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3379  // ScalarEvolution's implementaiton of the print method is to print
3380  // out SCEV values of all instructions that are interesting. Doing
3381  // this potentially causes it to create new SCEV objects though,
3382  // which technically conflicts with the const qualifier. This isn't
3383  // observable from outside the class though (the hasSCEV function
3384  // notwithstanding), so casting away the const isn't dangerous.
3385  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3386
3387  OS << "Classifying expressions for: " << F->getName() << "\n";
3388  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3389    if (isSCEVable(I->getType())) {
3390      OS << *I;
3391      OS << "  -->  ";
3392      SCEVHandle SV = SE.getSCEV(&*I);
3393      SV->print(OS);
3394      OS << "\t\t";
3395
3396      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3397        OS << "Exits: ";
3398        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3399        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3400          OS << "<<Unknown>>";
3401        } else {
3402          OS << *ExitValue;
3403        }
3404      }
3405
3406
3407      OS << "\n";
3408    }
3409
3410  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3411  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3412    PrintLoopInfo(OS, &SE, *I);
3413}
3414
3415void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3416  raw_os_ostream OS(o);
3417  print(OS, M);
3418}
3419