ScalarEvolution.cpp revision 4d3bba5be47ec159ad3489793248acc812d75575
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Target/TargetLibraryInfo.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/ConstantRange.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Support/GetElementPtrTypeIterator.h"
83#include "llvm/Support/InstIterator.h"
84#include "llvm/Support/MathExtras.h"
85#include "llvm/Support/raw_ostream.h"
86#include "llvm/ADT/Statistic.h"
87#include "llvm/ADT/STLExtras.h"
88#include "llvm/ADT/SmallPtrSet.h"
89#include <algorithm>
90using namespace llvm;
91
92STATISTIC(NumArrayLenItCounts,
93          "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95          "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97          "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99          "Number of loops with trip counts computed by force");
100
101static cl::opt<unsigned>
102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103                        cl::desc("Maximum number of iterations SCEV will "
104                                 "symbolically execute a constant "
105                                 "derived loop"),
106                        cl::init(100));
107
108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109                "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
114                "Scalar Evolution Analysis", false, true)
115char ScalarEvolution::ID = 0;
116
117//===----------------------------------------------------------------------===//
118//                           SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
124
125void SCEV::dump() const {
126  print(dbgs());
127  dbgs() << '\n';
128}
129
130void SCEV::print(raw_ostream &OS) const {
131  switch (getSCEVType()) {
132  case scConstant:
133    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134    return;
135  case scTruncate: {
136    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137    const SCEV *Op = Trunc->getOperand();
138    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139       << *Trunc->getType() << ")";
140    return;
141  }
142  case scZeroExtend: {
143    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144    const SCEV *Op = ZExt->getOperand();
145    OS << "(zext " << *Op->getType() << " " << *Op << " to "
146       << *ZExt->getType() << ")";
147    return;
148  }
149  case scSignExtend: {
150    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151    const SCEV *Op = SExt->getOperand();
152    OS << "(sext " << *Op->getType() << " " << *Op << " to "
153       << *SExt->getType() << ")";
154    return;
155  }
156  case scAddRecExpr: {
157    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158    OS << "{" << *AR->getOperand(0);
159    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160      OS << ",+," << *AR->getOperand(i);
161    OS << "}<";
162    if (AR->getNoWrapFlags(FlagNUW))
163      OS << "nuw><";
164    if (AR->getNoWrapFlags(FlagNSW))
165      OS << "nsw><";
166    if (AR->getNoWrapFlags(FlagNW) &&
167        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168      OS << "nw><";
169    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170    OS << ">";
171    return;
172  }
173  case scAddExpr:
174  case scMulExpr:
175  case scUMaxExpr:
176  case scSMaxExpr: {
177    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
178    const char *OpStr = 0;
179    switch (NAry->getSCEVType()) {
180    case scAddExpr: OpStr = " + "; break;
181    case scMulExpr: OpStr = " * "; break;
182    case scUMaxExpr: OpStr = " umax "; break;
183    case scSMaxExpr: OpStr = " smax "; break;
184    }
185    OS << "(";
186    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187         I != E; ++I) {
188      OS << **I;
189      if (llvm::next(I) != E)
190        OS << OpStr;
191    }
192    OS << ")";
193    switch (NAry->getSCEVType()) {
194    case scAddExpr:
195    case scMulExpr:
196      if (NAry->getNoWrapFlags(FlagNUW))
197        OS << "<nuw>";
198      if (NAry->getNoWrapFlags(FlagNSW))
199        OS << "<nsw>";
200    }
201    return;
202  }
203  case scUDivExpr: {
204    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206    return;
207  }
208  case scUnknown: {
209    const SCEVUnknown *U = cast<SCEVUnknown>(this);
210    Type *AllocTy;
211    if (U->isSizeOf(AllocTy)) {
212      OS << "sizeof(" << *AllocTy << ")";
213      return;
214    }
215    if (U->isAlignOf(AllocTy)) {
216      OS << "alignof(" << *AllocTy << ")";
217      return;
218    }
219
220    Type *CTy;
221    Constant *FieldNo;
222    if (U->isOffsetOf(CTy, FieldNo)) {
223      OS << "offsetof(" << *CTy << ", ";
224      WriteAsOperand(OS, FieldNo, false);
225      OS << ")";
226      return;
227    }
228
229    // Otherwise just print it normally.
230    WriteAsOperand(OS, U->getValue(), false);
231    return;
232  }
233  case scCouldNotCompute:
234    OS << "***COULDNOTCOMPUTE***";
235    return;
236  default: break;
237  }
238  llvm_unreachable("Unknown SCEV kind!");
239}
240
241Type *SCEV::getType() const {
242  switch (getSCEVType()) {
243  case scConstant:
244    return cast<SCEVConstant>(this)->getType();
245  case scTruncate:
246  case scZeroExtend:
247  case scSignExtend:
248    return cast<SCEVCastExpr>(this)->getType();
249  case scAddRecExpr:
250  case scMulExpr:
251  case scUMaxExpr:
252  case scSMaxExpr:
253    return cast<SCEVNAryExpr>(this)->getType();
254  case scAddExpr:
255    return cast<SCEVAddExpr>(this)->getType();
256  case scUDivExpr:
257    return cast<SCEVUDivExpr>(this)->getType();
258  case scUnknown:
259    return cast<SCEVUnknown>(this)->getType();
260  case scCouldNotCompute:
261    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
262  default:
263    llvm_unreachable("Unknown SCEV kind!");
264  }
265}
266
267bool SCEV::isZero() const {
268  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269    return SC->getValue()->isZero();
270  return false;
271}
272
273bool SCEV::isOne() const {
274  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275    return SC->getValue()->isOne();
276  return false;
277}
278
279bool SCEV::isAllOnesValue() const {
280  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281    return SC->getValue()->isAllOnesValue();
282  return false;
283}
284
285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289  if (!Mul) return false;
290
291  // If there is a constant factor, it will be first.
292  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293  if (!SC) return false;
294
295  // Return true if the value is negative, this matches things like (-42 * V).
296  return SC->getValue()->getValue().isNegative();
297}
298
299SCEVCouldNotCompute::SCEVCouldNotCompute() :
300  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
301
302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303  return S->getSCEVType() == scCouldNotCompute;
304}
305
306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
307  FoldingSetNodeID ID;
308  ID.AddInteger(scConstant);
309  ID.AddPointer(V);
310  void *IP = 0;
311  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
312  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
313  UniqueSCEVs.InsertNode(S, IP);
314  return S;
315}
316
317const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
318  return getConstant(ConstantInt::get(getContext(), Val));
319}
320
321const SCEV *
322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
324  return getConstant(ConstantInt::get(ITy, V, isSigned));
325}
326
327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
328                           unsigned SCEVTy, const SCEV *op, Type *ty)
329  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
330
331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
332                                   const SCEV *op, Type *ty)
333  : SCEVCastExpr(ID, scTruncate, op, ty) {
334  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
336         "Cannot truncate non-integer value!");
337}
338
339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
340                                       const SCEV *op, Type *ty)
341  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
342  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
344         "Cannot zero extend non-integer value!");
345}
346
347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
348                                       const SCEV *op, Type *ty)
349  : SCEVCastExpr(ID, scSignExtend, op, ty) {
350  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
352         "Cannot sign extend non-integer value!");
353}
354
355void SCEVUnknown::deleted() {
356  // Clear this SCEVUnknown from various maps.
357  SE->forgetMemoizedResults(this);
358
359  // Remove this SCEVUnknown from the uniquing map.
360  SE->UniqueSCEVs.RemoveNode(this);
361
362  // Release the value.
363  setValPtr(0);
364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
367  // Clear this SCEVUnknown from various maps.
368  SE->forgetMemoizedResults(this);
369
370  // Remove this SCEVUnknown from the uniquing map.
371  SE->UniqueSCEVs.RemoveNode(this);
372
373  // Update this SCEVUnknown to point to the new value. This is needed
374  // because there may still be outstanding SCEVs which still point to
375  // this SCEVUnknown.
376  setValPtr(New);
377}
378
379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
380  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
381    if (VCE->getOpcode() == Instruction::PtrToInt)
382      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
383        if (CE->getOpcode() == Instruction::GetElementPtr &&
384            CE->getOperand(0)->isNullValue() &&
385            CE->getNumOperands() == 2)
386          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387            if (CI->isOne()) {
388              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389                                 ->getElementType();
390              return true;
391            }
392
393  return false;
394}
395
396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
397  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
398    if (VCE->getOpcode() == Instruction::PtrToInt)
399      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400        if (CE->getOpcode() == Instruction::GetElementPtr &&
401            CE->getOperand(0)->isNullValue()) {
402          Type *Ty =
403            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
404          if (StructType *STy = dyn_cast<StructType>(Ty))
405            if (!STy->isPacked() &&
406                CE->getNumOperands() == 3 &&
407                CE->getOperand(1)->isNullValue()) {
408              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409                if (CI->isOne() &&
410                    STy->getNumElements() == 2 &&
411                    STy->getElementType(0)->isIntegerTy(1)) {
412                  AllocTy = STy->getElementType(1);
413                  return true;
414                }
415            }
416        }
417
418  return false;
419}
420
421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
422  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
423    if (VCE->getOpcode() == Instruction::PtrToInt)
424      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425        if (CE->getOpcode() == Instruction::GetElementPtr &&
426            CE->getNumOperands() == 3 &&
427            CE->getOperand(0)->isNullValue() &&
428            CE->getOperand(1)->isNullValue()) {
429          Type *Ty =
430            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431          // Ignore vector types here so that ScalarEvolutionExpander doesn't
432          // emit getelementptrs that index into vectors.
433          if (Ty->isStructTy() || Ty->isArrayTy()) {
434            CTy = Ty;
435            FieldNo = CE->getOperand(2);
436            return true;
437          }
438        }
439
440  return false;
441}
442
443//===----------------------------------------------------------------------===//
444//                               SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449  /// than the complexity of the RHS.  This comparator is used to canonicalize
450  /// expressions.
451  class SCEVComplexityCompare {
452    const LoopInfo *const LI;
453  public:
454    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
455
456    // Return true or false if LHS is less than, or at least RHS, respectively.
457    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
458      return compare(LHS, RHS) < 0;
459    }
460
461    // Return negative, zero, or positive, if LHS is less than, equal to, or
462    // greater than RHS, respectively. A three-way result allows recursive
463    // comparisons to be more efficient.
464    int compare(const SCEV *LHS, const SCEV *RHS) const {
465      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466      if (LHS == RHS)
467        return 0;
468
469      // Primarily, sort the SCEVs by their getSCEVType().
470      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471      if (LType != RType)
472        return (int)LType - (int)RType;
473
474      // Aside from the getSCEVType() ordering, the particular ordering
475      // isn't very important except that it's beneficial to be consistent,
476      // so that (a + b) and (b + a) don't end up as different expressions.
477      switch (LType) {
478      case scUnknown: {
479        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
480        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
481
482        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483        // not as complete as it could be.
484        const Value *LV = LU->getValue(), *RV = RU->getValue();
485
486        // Order pointer values after integer values. This helps SCEVExpander
487        // form GEPs.
488        bool LIsPointer = LV->getType()->isPointerTy(),
489             RIsPointer = RV->getType()->isPointerTy();
490        if (LIsPointer != RIsPointer)
491          return (int)LIsPointer - (int)RIsPointer;
492
493        // Compare getValueID values.
494        unsigned LID = LV->getValueID(),
495                 RID = RV->getValueID();
496        if (LID != RID)
497          return (int)LID - (int)RID;
498
499        // Sort arguments by their position.
500        if (const Argument *LA = dyn_cast<Argument>(LV)) {
501          const Argument *RA = cast<Argument>(RV);
502          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503          return (int)LArgNo - (int)RArgNo;
504        }
505
506        // For instructions, compare their loop depth, and their operand
507        // count.  This is pretty loose.
508        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509          const Instruction *RInst = cast<Instruction>(RV);
510
511          // Compare loop depths.
512          const BasicBlock *LParent = LInst->getParent(),
513                           *RParent = RInst->getParent();
514          if (LParent != RParent) {
515            unsigned LDepth = LI->getLoopDepth(LParent),
516                     RDepth = LI->getLoopDepth(RParent);
517            if (LDepth != RDepth)
518              return (int)LDepth - (int)RDepth;
519          }
520
521          // Compare the number of operands.
522          unsigned LNumOps = LInst->getNumOperands(),
523                   RNumOps = RInst->getNumOperands();
524          return (int)LNumOps - (int)RNumOps;
525        }
526
527        return 0;
528      }
529
530      case scConstant: {
531        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
532        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
533
534        // Compare constant values.
535        const APInt &LA = LC->getValue()->getValue();
536        const APInt &RA = RC->getValue()->getValue();
537        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
538        if (LBitWidth != RBitWidth)
539          return (int)LBitWidth - (int)RBitWidth;
540        return LA.ult(RA) ? -1 : 1;
541      }
542
543      case scAddRecExpr: {
544        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
545        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
546
547        // Compare addrec loop depths.
548        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549        if (LLoop != RLoop) {
550          unsigned LDepth = LLoop->getLoopDepth(),
551                   RDepth = RLoop->getLoopDepth();
552          if (LDepth != RDepth)
553            return (int)LDepth - (int)RDepth;
554        }
555
556        // Addrec complexity grows with operand count.
557        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558        if (LNumOps != RNumOps)
559          return (int)LNumOps - (int)RNumOps;
560
561        // Lexicographically compare.
562        for (unsigned i = 0; i != LNumOps; ++i) {
563          long X = compare(LA->getOperand(i), RA->getOperand(i));
564          if (X != 0)
565            return X;
566        }
567
568        return 0;
569      }
570
571      case scAddExpr:
572      case scMulExpr:
573      case scSMaxExpr:
574      case scUMaxExpr: {
575        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
576        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
577
578        // Lexicographically compare n-ary expressions.
579        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
580        for (unsigned i = 0; i != LNumOps; ++i) {
581          if (i >= RNumOps)
582            return 1;
583          long X = compare(LC->getOperand(i), RC->getOperand(i));
584          if (X != 0)
585            return X;
586        }
587        return (int)LNumOps - (int)RNumOps;
588      }
589
590      case scUDivExpr: {
591        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
592        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
593
594        // Lexicographically compare udiv expressions.
595        long X = compare(LC->getLHS(), RC->getLHS());
596        if (X != 0)
597          return X;
598        return compare(LC->getRHS(), RC->getRHS());
599      }
600
601      case scTruncate:
602      case scZeroExtend:
603      case scSignExtend: {
604        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
605        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606
607        // Compare cast expressions by operand.
608        return compare(LC->getOperand(), RC->getOperand());
609      }
610
611      default:
612        llvm_unreachable("Unknown SCEV kind!");
613      }
614    }
615  };
616}
617
618/// GroupByComplexity - Given a list of SCEV objects, order them by their
619/// complexity, and group objects of the same complexity together by value.
620/// When this routine is finished, we know that any duplicates in the vector are
621/// consecutive and that complexity is monotonically increasing.
622///
623/// Note that we go take special precautions to ensure that we get deterministic
624/// results from this routine.  In other words, we don't want the results of
625/// this to depend on where the addresses of various SCEV objects happened to
626/// land in memory.
627///
628static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
629                              LoopInfo *LI) {
630  if (Ops.size() < 2) return;  // Noop
631  if (Ops.size() == 2) {
632    // This is the common case, which also happens to be trivially simple.
633    // Special case it.
634    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
635    if (SCEVComplexityCompare(LI)(RHS, LHS))
636      std::swap(LHS, RHS);
637    return;
638  }
639
640  // Do the rough sort by complexity.
641  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
642
643  // Now that we are sorted by complexity, group elements of the same
644  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
645  // be extremely short in practice.  Note that we take this approach because we
646  // do not want to depend on the addresses of the objects we are grouping.
647  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
648    const SCEV *S = Ops[i];
649    unsigned Complexity = S->getSCEVType();
650
651    // If there are any objects of the same complexity and same value as this
652    // one, group them.
653    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
654      if (Ops[j] == S) { // Found a duplicate.
655        // Move it to immediately after i'th element.
656        std::swap(Ops[i+1], Ops[j]);
657        ++i;   // no need to rescan it.
658        if (i == e-2) return;  // Done!
659      }
660    }
661  }
662}
663
664
665
666//===----------------------------------------------------------------------===//
667//                      Simple SCEV method implementations
668//===----------------------------------------------------------------------===//
669
670/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
671/// Assume, K > 0.
672static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
673                                       ScalarEvolution &SE,
674                                       Type *ResultTy) {
675  // Handle the simplest case efficiently.
676  if (K == 1)
677    return SE.getTruncateOrZeroExtend(It, ResultTy);
678
679  // We are using the following formula for BC(It, K):
680  //
681  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
682  //
683  // Suppose, W is the bitwidth of the return value.  We must be prepared for
684  // overflow.  Hence, we must assure that the result of our computation is
685  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
686  // safe in modular arithmetic.
687  //
688  // However, this code doesn't use exactly that formula; the formula it uses
689  // is something like the following, where T is the number of factors of 2 in
690  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
691  // exponentiation:
692  //
693  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
694  //
695  // This formula is trivially equivalent to the previous formula.  However,
696  // this formula can be implemented much more efficiently.  The trick is that
697  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
698  // arithmetic.  To do exact division in modular arithmetic, all we have
699  // to do is multiply by the inverse.  Therefore, this step can be done at
700  // width W.
701  //
702  // The next issue is how to safely do the division by 2^T.  The way this
703  // is done is by doing the multiplication step at a width of at least W + T
704  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
705  // when we perform the division by 2^T (which is equivalent to a right shift
706  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
707  // truncated out after the division by 2^T.
708  //
709  // In comparison to just directly using the first formula, this technique
710  // is much more efficient; using the first formula requires W * K bits,
711  // but this formula less than W + K bits. Also, the first formula requires
712  // a division step, whereas this formula only requires multiplies and shifts.
713  //
714  // It doesn't matter whether the subtraction step is done in the calculation
715  // width or the input iteration count's width; if the subtraction overflows,
716  // the result must be zero anyway.  We prefer here to do it in the width of
717  // the induction variable because it helps a lot for certain cases; CodeGen
718  // isn't smart enough to ignore the overflow, which leads to much less
719  // efficient code if the width of the subtraction is wider than the native
720  // register width.
721  //
722  // (It's possible to not widen at all by pulling out factors of 2 before
723  // the multiplication; for example, K=2 can be calculated as
724  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
725  // extra arithmetic, so it's not an obvious win, and it gets
726  // much more complicated for K > 3.)
727
728  // Protection from insane SCEVs; this bound is conservative,
729  // but it probably doesn't matter.
730  if (K > 1000)
731    return SE.getCouldNotCompute();
732
733  unsigned W = SE.getTypeSizeInBits(ResultTy);
734
735  // Calculate K! / 2^T and T; we divide out the factors of two before
736  // multiplying for calculating K! / 2^T to avoid overflow.
737  // Other overflow doesn't matter because we only care about the bottom
738  // W bits of the result.
739  APInt OddFactorial(W, 1);
740  unsigned T = 1;
741  for (unsigned i = 3; i <= K; ++i) {
742    APInt Mult(W, i);
743    unsigned TwoFactors = Mult.countTrailingZeros();
744    T += TwoFactors;
745    Mult = Mult.lshr(TwoFactors);
746    OddFactorial *= Mult;
747  }
748
749  // We need at least W + T bits for the multiplication step
750  unsigned CalculationBits = W + T;
751
752  // Calculate 2^T, at width T+W.
753  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
754
755  // Calculate the multiplicative inverse of K! / 2^T;
756  // this multiplication factor will perform the exact division by
757  // K! / 2^T.
758  APInt Mod = APInt::getSignedMinValue(W+1);
759  APInt MultiplyFactor = OddFactorial.zext(W+1);
760  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
761  MultiplyFactor = MultiplyFactor.trunc(W);
762
763  // Calculate the product, at width T+W
764  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
765                                                      CalculationBits);
766  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
767  for (unsigned i = 1; i != K; ++i) {
768    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
769    Dividend = SE.getMulExpr(Dividend,
770                             SE.getTruncateOrZeroExtend(S, CalculationTy));
771  }
772
773  // Divide by 2^T
774  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
775
776  // Truncate the result, and divide by K! / 2^T.
777
778  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
779                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
780}
781
782/// evaluateAtIteration - Return the value of this chain of recurrences at
783/// the specified iteration number.  We can evaluate this recurrence by
784/// multiplying each element in the chain by the binomial coefficient
785/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
786///
787///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
788///
789/// where BC(It, k) stands for binomial coefficient.
790///
791const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
792                                                ScalarEvolution &SE) const {
793  const SCEV *Result = getStart();
794  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
795    // The computation is correct in the face of overflow provided that the
796    // multiplication is performed _after_ the evaluation of the binomial
797    // coefficient.
798    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
799    if (isa<SCEVCouldNotCompute>(Coeff))
800      return Coeff;
801
802    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
803  }
804  return Result;
805}
806
807//===----------------------------------------------------------------------===//
808//                    SCEV Expression folder implementations
809//===----------------------------------------------------------------------===//
810
811const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
812                                             Type *Ty) {
813  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
814         "This is not a truncating conversion!");
815  assert(isSCEVable(Ty) &&
816         "This is not a conversion to a SCEVable type!");
817  Ty = getEffectiveSCEVType(Ty);
818
819  FoldingSetNodeID ID;
820  ID.AddInteger(scTruncate);
821  ID.AddPointer(Op);
822  ID.AddPointer(Ty);
823  void *IP = 0;
824  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
825
826  // Fold if the operand is constant.
827  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
828    return getConstant(
829      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
830
831  // trunc(trunc(x)) --> trunc(x)
832  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
833    return getTruncateExpr(ST->getOperand(), Ty);
834
835  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
836  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
837    return getTruncateOrSignExtend(SS->getOperand(), Ty);
838
839  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
840  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
841    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
842
843  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
844  // eliminate all the truncates.
845  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
846    SmallVector<const SCEV *, 4> Operands;
847    bool hasTrunc = false;
848    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
849      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
850      hasTrunc = isa<SCEVTruncateExpr>(S);
851      Operands.push_back(S);
852    }
853    if (!hasTrunc)
854      return getAddExpr(Operands);
855    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
856  }
857
858  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
859  // eliminate all the truncates.
860  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
861    SmallVector<const SCEV *, 4> Operands;
862    bool hasTrunc = false;
863    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
864      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
865      hasTrunc = isa<SCEVTruncateExpr>(S);
866      Operands.push_back(S);
867    }
868    if (!hasTrunc)
869      return getMulExpr(Operands);
870    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
871  }
872
873  // If the input value is a chrec scev, truncate the chrec's operands.
874  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
875    SmallVector<const SCEV *, 4> Operands;
876    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
877      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
878    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
879  }
880
881  // As a special case, fold trunc(undef) to undef. We don't want to
882  // know too much about SCEVUnknowns, but this special case is handy
883  // and harmless.
884  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
885    if (isa<UndefValue>(U->getValue()))
886      return getSCEV(UndefValue::get(Ty));
887
888  // The cast wasn't folded; create an explicit cast node. We can reuse
889  // the existing insert position since if we get here, we won't have
890  // made any changes which would invalidate it.
891  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
892                                                 Op, Ty);
893  UniqueSCEVs.InsertNode(S, IP);
894  return S;
895}
896
897const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
898                                               Type *Ty) {
899  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
900         "This is not an extending conversion!");
901  assert(isSCEVable(Ty) &&
902         "This is not a conversion to a SCEVable type!");
903  Ty = getEffectiveSCEVType(Ty);
904
905  // Fold if the operand is constant.
906  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
907    return getConstant(
908      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
909
910  // zext(zext(x)) --> zext(x)
911  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
912    return getZeroExtendExpr(SZ->getOperand(), Ty);
913
914  // Before doing any expensive analysis, check to see if we've already
915  // computed a SCEV for this Op and Ty.
916  FoldingSetNodeID ID;
917  ID.AddInteger(scZeroExtend);
918  ID.AddPointer(Op);
919  ID.AddPointer(Ty);
920  void *IP = 0;
921  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
922
923  // zext(trunc(x)) --> zext(x) or x or trunc(x)
924  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
925    // It's possible the bits taken off by the truncate were all zero bits. If
926    // so, we should be able to simplify this further.
927    const SCEV *X = ST->getOperand();
928    ConstantRange CR = getUnsignedRange(X);
929    unsigned TruncBits = getTypeSizeInBits(ST->getType());
930    unsigned NewBits = getTypeSizeInBits(Ty);
931    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
932            CR.zextOrTrunc(NewBits)))
933      return getTruncateOrZeroExtend(X, Ty);
934  }
935
936  // If the input value is a chrec scev, and we can prove that the value
937  // did not overflow the old, smaller, value, we can zero extend all of the
938  // operands (often constants).  This allows analysis of something like
939  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
940  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
941    if (AR->isAffine()) {
942      const SCEV *Start = AR->getStart();
943      const SCEV *Step = AR->getStepRecurrence(*this);
944      unsigned BitWidth = getTypeSizeInBits(AR->getType());
945      const Loop *L = AR->getLoop();
946
947      // If we have special knowledge that this addrec won't overflow,
948      // we don't need to do any further analysis.
949      if (AR->getNoWrapFlags(SCEV::FlagNUW))
950        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
951                             getZeroExtendExpr(Step, Ty),
952                             L, AR->getNoWrapFlags());
953
954      // Check whether the backedge-taken count is SCEVCouldNotCompute.
955      // Note that this serves two purposes: It filters out loops that are
956      // simply not analyzable, and it covers the case where this code is
957      // being called from within backedge-taken count analysis, such that
958      // attempting to ask for the backedge-taken count would likely result
959      // in infinite recursion. In the later case, the analysis code will
960      // cope with a conservative value, and it will take care to purge
961      // that value once it has finished.
962      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
963      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
964        // Manually compute the final value for AR, checking for
965        // overflow.
966
967        // Check whether the backedge-taken count can be losslessly casted to
968        // the addrec's type. The count is always unsigned.
969        const SCEV *CastedMaxBECount =
970          getTruncateOrZeroExtend(MaxBECount, Start->getType());
971        const SCEV *RecastedMaxBECount =
972          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
973        if (MaxBECount == RecastedMaxBECount) {
974          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
975          // Check whether Start+Step*MaxBECount has no unsigned overflow.
976          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
977          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
978          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
979          const SCEV *WideMaxBECount =
980            getZeroExtendExpr(CastedMaxBECount, WideTy);
981          const SCEV *OperandExtendedAdd =
982            getAddExpr(WideStart,
983                       getMulExpr(WideMaxBECount,
984                                  getZeroExtendExpr(Step, WideTy)));
985          if (ZAdd == OperandExtendedAdd) {
986            // Cache knowledge of AR NUW, which is propagated to this AddRec.
987            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
988            // Return the expression with the addrec on the outside.
989            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
990                                 getZeroExtendExpr(Step, Ty),
991                                 L, AR->getNoWrapFlags());
992          }
993          // Similar to above, only this time treat the step value as signed.
994          // This covers loops that count down.
995          OperandExtendedAdd =
996            getAddExpr(WideStart,
997                       getMulExpr(WideMaxBECount,
998                                  getSignExtendExpr(Step, WideTy)));
999          if (ZAdd == OperandExtendedAdd) {
1000            // Cache knowledge of AR NW, which is propagated to this AddRec.
1001            // Negative step causes unsigned wrap, but it still can't self-wrap.
1002            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1003            // Return the expression with the addrec on the outside.
1004            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1005                                 getSignExtendExpr(Step, Ty),
1006                                 L, AR->getNoWrapFlags());
1007          }
1008        }
1009
1010        // If the backedge is guarded by a comparison with the pre-inc value
1011        // the addrec is safe. Also, if the entry is guarded by a comparison
1012        // with the start value and the backedge is guarded by a comparison
1013        // with the post-inc value, the addrec is safe.
1014        if (isKnownPositive(Step)) {
1015          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1016                                      getUnsignedRange(Step).getUnsignedMax());
1017          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1018              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1019               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1020                                           AR->getPostIncExpr(*this), N))) {
1021            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1022            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1023            // Return the expression with the addrec on the outside.
1024            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1025                                 getZeroExtendExpr(Step, Ty),
1026                                 L, AR->getNoWrapFlags());
1027          }
1028        } else if (isKnownNegative(Step)) {
1029          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1030                                      getSignedRange(Step).getSignedMin());
1031          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1032              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1033               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1034                                           AR->getPostIncExpr(*this), N))) {
1035            // Cache knowledge of AR NW, which is propagated to this AddRec.
1036            // Negative step causes unsigned wrap, but it still can't self-wrap.
1037            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1038            // Return the expression with the addrec on the outside.
1039            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1040                                 getSignExtendExpr(Step, Ty),
1041                                 L, AR->getNoWrapFlags());
1042          }
1043        }
1044      }
1045    }
1046
1047  // The cast wasn't folded; create an explicit cast node.
1048  // Recompute the insert position, as it may have been invalidated.
1049  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1050  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1051                                                   Op, Ty);
1052  UniqueSCEVs.InsertNode(S, IP);
1053  return S;
1054}
1055
1056// Get the limit of a recurrence such that incrementing by Step cannot cause
1057// signed overflow as long as the value of the recurrence within the loop does
1058// not exceed this limit before incrementing.
1059static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1060                                           ICmpInst::Predicate *Pred,
1061                                           ScalarEvolution *SE) {
1062  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1063  if (SE->isKnownPositive(Step)) {
1064    *Pred = ICmpInst::ICMP_SLT;
1065    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1066                           SE->getSignedRange(Step).getSignedMax());
1067  }
1068  if (SE->isKnownNegative(Step)) {
1069    *Pred = ICmpInst::ICMP_SGT;
1070    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1071                       SE->getSignedRange(Step).getSignedMin());
1072  }
1073  return 0;
1074}
1075
1076// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1077// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1078// or postincrement sibling. This allows normalizing a sign extended AddRec as
1079// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1080// result, the expression "Step + sext(PreIncAR)" is congruent with
1081// "sext(PostIncAR)"
1082static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1083                                            Type *Ty,
1084                                            ScalarEvolution *SE) {
1085  const Loop *L = AR->getLoop();
1086  const SCEV *Start = AR->getStart();
1087  const SCEV *Step = AR->getStepRecurrence(*SE);
1088
1089  // Check for a simple looking step prior to loop entry.
1090  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1091  if (!SA)
1092    return 0;
1093
1094  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1095  // subtraction is expensive. For this purpose, perform a quick and dirty
1096  // difference, by checking for Step in the operand list.
1097  SmallVector<const SCEV *, 4> DiffOps;
1098  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1099       I != E; ++I) {
1100    if (*I != Step)
1101      DiffOps.push_back(*I);
1102  }
1103  if (DiffOps.size() == SA->getNumOperands())
1104    return 0;
1105
1106  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1107  // same three conditions that getSignExtendedExpr checks.
1108
1109  // 1. NSW flags on the step increment.
1110  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1111  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1112    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1113
1114  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1115    return PreStart;
1116
1117  // 2. Direct overflow check on the step operation's expression.
1118  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1119  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1120  const SCEV *OperandExtendedStart =
1121    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1122                   SE->getSignExtendExpr(Step, WideTy));
1123  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1124    // Cache knowledge of PreAR NSW.
1125    if (PreAR)
1126      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1127    // FIXME: this optimization needs a unit test
1128    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1129    return PreStart;
1130  }
1131
1132  // 3. Loop precondition.
1133  ICmpInst::Predicate Pred;
1134  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1135
1136  if (OverflowLimit &&
1137      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1138    return PreStart;
1139  }
1140  return 0;
1141}
1142
1143// Get the normalized sign-extended expression for this AddRec's Start.
1144static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1145                                            Type *Ty,
1146                                            ScalarEvolution *SE) {
1147  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1148  if (!PreStart)
1149    return SE->getSignExtendExpr(AR->getStart(), Ty);
1150
1151  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1152                        SE->getSignExtendExpr(PreStart, Ty));
1153}
1154
1155const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1156                                               Type *Ty) {
1157  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1158         "This is not an extending conversion!");
1159  assert(isSCEVable(Ty) &&
1160         "This is not a conversion to a SCEVable type!");
1161  Ty = getEffectiveSCEVType(Ty);
1162
1163  // Fold if the operand is constant.
1164  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1165    return getConstant(
1166      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1167
1168  // sext(sext(x)) --> sext(x)
1169  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1170    return getSignExtendExpr(SS->getOperand(), Ty);
1171
1172  // sext(zext(x)) --> zext(x)
1173  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1174    return getZeroExtendExpr(SZ->getOperand(), Ty);
1175
1176  // Before doing any expensive analysis, check to see if we've already
1177  // computed a SCEV for this Op and Ty.
1178  FoldingSetNodeID ID;
1179  ID.AddInteger(scSignExtend);
1180  ID.AddPointer(Op);
1181  ID.AddPointer(Ty);
1182  void *IP = 0;
1183  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1184
1185  // If the input value is provably positive, build a zext instead.
1186  if (isKnownNonNegative(Op))
1187    return getZeroExtendExpr(Op, Ty);
1188
1189  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1190  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1191    // It's possible the bits taken off by the truncate were all sign bits. If
1192    // so, we should be able to simplify this further.
1193    const SCEV *X = ST->getOperand();
1194    ConstantRange CR = getSignedRange(X);
1195    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1196    unsigned NewBits = getTypeSizeInBits(Ty);
1197    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1198            CR.sextOrTrunc(NewBits)))
1199      return getTruncateOrSignExtend(X, Ty);
1200  }
1201
1202  // If the input value is a chrec scev, and we can prove that the value
1203  // did not overflow the old, smaller, value, we can sign extend all of the
1204  // operands (often constants).  This allows analysis of something like
1205  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1206  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1207    if (AR->isAffine()) {
1208      const SCEV *Start = AR->getStart();
1209      const SCEV *Step = AR->getStepRecurrence(*this);
1210      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1211      const Loop *L = AR->getLoop();
1212
1213      // If we have special knowledge that this addrec won't overflow,
1214      // we don't need to do any further analysis.
1215      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1216        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1217                             getSignExtendExpr(Step, Ty),
1218                             L, SCEV::FlagNSW);
1219
1220      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1221      // Note that this serves two purposes: It filters out loops that are
1222      // simply not analyzable, and it covers the case where this code is
1223      // being called from within backedge-taken count analysis, such that
1224      // attempting to ask for the backedge-taken count would likely result
1225      // in infinite recursion. In the later case, the analysis code will
1226      // cope with a conservative value, and it will take care to purge
1227      // that value once it has finished.
1228      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1229      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1230        // Manually compute the final value for AR, checking for
1231        // overflow.
1232
1233        // Check whether the backedge-taken count can be losslessly casted to
1234        // the addrec's type. The count is always unsigned.
1235        const SCEV *CastedMaxBECount =
1236          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1237        const SCEV *RecastedMaxBECount =
1238          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1239        if (MaxBECount == RecastedMaxBECount) {
1240          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1241          // Check whether Start+Step*MaxBECount has no signed overflow.
1242          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1243          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1244          const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1245          const SCEV *WideMaxBECount =
1246            getZeroExtendExpr(CastedMaxBECount, WideTy);
1247          const SCEV *OperandExtendedAdd =
1248            getAddExpr(WideStart,
1249                       getMulExpr(WideMaxBECount,
1250                                  getSignExtendExpr(Step, WideTy)));
1251          if (SAdd == OperandExtendedAdd) {
1252            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1253            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1254            // Return the expression with the addrec on the outside.
1255            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1256                                 getSignExtendExpr(Step, Ty),
1257                                 L, AR->getNoWrapFlags());
1258          }
1259          // Similar to above, only this time treat the step value as unsigned.
1260          // This covers loops that count up with an unsigned step.
1261          OperandExtendedAdd =
1262            getAddExpr(WideStart,
1263                       getMulExpr(WideMaxBECount,
1264                                  getZeroExtendExpr(Step, WideTy)));
1265          if (SAdd == OperandExtendedAdd) {
1266            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1267            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1268            // Return the expression with the addrec on the outside.
1269            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1270                                 getZeroExtendExpr(Step, Ty),
1271                                 L, AR->getNoWrapFlags());
1272          }
1273        }
1274
1275        // If the backedge is guarded by a comparison with the pre-inc value
1276        // the addrec is safe. Also, if the entry is guarded by a comparison
1277        // with the start value and the backedge is guarded by a comparison
1278        // with the post-inc value, the addrec is safe.
1279        ICmpInst::Predicate Pred;
1280        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1281        if (OverflowLimit &&
1282            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1283             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1284              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1285                                          OverflowLimit)))) {
1286          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1287          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1288          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1289                               getSignExtendExpr(Step, Ty),
1290                               L, AR->getNoWrapFlags());
1291        }
1292      }
1293    }
1294
1295  // The cast wasn't folded; create an explicit cast node.
1296  // Recompute the insert position, as it may have been invalidated.
1297  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1298  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1299                                                   Op, Ty);
1300  UniqueSCEVs.InsertNode(S, IP);
1301  return S;
1302}
1303
1304/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1305/// unspecified bits out to the given type.
1306///
1307const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1308                                              Type *Ty) {
1309  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1310         "This is not an extending conversion!");
1311  assert(isSCEVable(Ty) &&
1312         "This is not a conversion to a SCEVable type!");
1313  Ty = getEffectiveSCEVType(Ty);
1314
1315  // Sign-extend negative constants.
1316  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1317    if (SC->getValue()->getValue().isNegative())
1318      return getSignExtendExpr(Op, Ty);
1319
1320  // Peel off a truncate cast.
1321  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1322    const SCEV *NewOp = T->getOperand();
1323    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1324      return getAnyExtendExpr(NewOp, Ty);
1325    return getTruncateOrNoop(NewOp, Ty);
1326  }
1327
1328  // Next try a zext cast. If the cast is folded, use it.
1329  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1330  if (!isa<SCEVZeroExtendExpr>(ZExt))
1331    return ZExt;
1332
1333  // Next try a sext cast. If the cast is folded, use it.
1334  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1335  if (!isa<SCEVSignExtendExpr>(SExt))
1336    return SExt;
1337
1338  // Force the cast to be folded into the operands of an addrec.
1339  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1340    SmallVector<const SCEV *, 4> Ops;
1341    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1342         I != E; ++I)
1343      Ops.push_back(getAnyExtendExpr(*I, Ty));
1344    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1345  }
1346
1347  // As a special case, fold anyext(undef) to undef. We don't want to
1348  // know too much about SCEVUnknowns, but this special case is handy
1349  // and harmless.
1350  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1351    if (isa<UndefValue>(U->getValue()))
1352      return getSCEV(UndefValue::get(Ty));
1353
1354  // If the expression is obviously signed, use the sext cast value.
1355  if (isa<SCEVSMaxExpr>(Op))
1356    return SExt;
1357
1358  // Absent any other information, use the zext cast value.
1359  return ZExt;
1360}
1361
1362/// CollectAddOperandsWithScales - Process the given Ops list, which is
1363/// a list of operands to be added under the given scale, update the given
1364/// map. This is a helper function for getAddRecExpr. As an example of
1365/// what it does, given a sequence of operands that would form an add
1366/// expression like this:
1367///
1368///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1369///
1370/// where A and B are constants, update the map with these values:
1371///
1372///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1373///
1374/// and add 13 + A*B*29 to AccumulatedConstant.
1375/// This will allow getAddRecExpr to produce this:
1376///
1377///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1378///
1379/// This form often exposes folding opportunities that are hidden in
1380/// the original operand list.
1381///
1382/// Return true iff it appears that any interesting folding opportunities
1383/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1384/// the common case where no interesting opportunities are present, and
1385/// is also used as a check to avoid infinite recursion.
1386///
1387static bool
1388CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1389                             SmallVector<const SCEV *, 8> &NewOps,
1390                             APInt &AccumulatedConstant,
1391                             const SCEV *const *Ops, size_t NumOperands,
1392                             const APInt &Scale,
1393                             ScalarEvolution &SE) {
1394  bool Interesting = false;
1395
1396  // Iterate over the add operands. They are sorted, with constants first.
1397  unsigned i = 0;
1398  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1399    ++i;
1400    // Pull a buried constant out to the outside.
1401    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1402      Interesting = true;
1403    AccumulatedConstant += Scale * C->getValue()->getValue();
1404  }
1405
1406  // Next comes everything else. We're especially interested in multiplies
1407  // here, but they're in the middle, so just visit the rest with one loop.
1408  for (; i != NumOperands; ++i) {
1409    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1410    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1411      APInt NewScale =
1412        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1413      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1414        // A multiplication of a constant with another add; recurse.
1415        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1416        Interesting |=
1417          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1418                                       Add->op_begin(), Add->getNumOperands(),
1419                                       NewScale, SE);
1420      } else {
1421        // A multiplication of a constant with some other value. Update
1422        // the map.
1423        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1424        const SCEV *Key = SE.getMulExpr(MulOps);
1425        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1426          M.insert(std::make_pair(Key, NewScale));
1427        if (Pair.second) {
1428          NewOps.push_back(Pair.first->first);
1429        } else {
1430          Pair.first->second += NewScale;
1431          // The map already had an entry for this value, which may indicate
1432          // a folding opportunity.
1433          Interesting = true;
1434        }
1435      }
1436    } else {
1437      // An ordinary operand. Update the map.
1438      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1439        M.insert(std::make_pair(Ops[i], Scale));
1440      if (Pair.second) {
1441        NewOps.push_back(Pair.first->first);
1442      } else {
1443        Pair.first->second += Scale;
1444        // The map already had an entry for this value, which may indicate
1445        // a folding opportunity.
1446        Interesting = true;
1447      }
1448    }
1449  }
1450
1451  return Interesting;
1452}
1453
1454namespace {
1455  struct APIntCompare {
1456    bool operator()(const APInt &LHS, const APInt &RHS) const {
1457      return LHS.ult(RHS);
1458    }
1459  };
1460}
1461
1462/// getAddExpr - Get a canonical add expression, or something simpler if
1463/// possible.
1464const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1465                                        SCEV::NoWrapFlags Flags) {
1466  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1467         "only nuw or nsw allowed");
1468  assert(!Ops.empty() && "Cannot get empty add!");
1469  if (Ops.size() == 1) return Ops[0];
1470#ifndef NDEBUG
1471  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1472  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1473    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1474           "SCEVAddExpr operand types don't match!");
1475#endif
1476
1477  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1478  // And vice-versa.
1479  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1480  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1481  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1482    bool All = true;
1483    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1484         E = Ops.end(); I != E; ++I)
1485      if (!isKnownNonNegative(*I)) {
1486        All = false;
1487        break;
1488      }
1489    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1490  }
1491
1492  // Sort by complexity, this groups all similar expression types together.
1493  GroupByComplexity(Ops, LI);
1494
1495  // If there are any constants, fold them together.
1496  unsigned Idx = 0;
1497  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1498    ++Idx;
1499    assert(Idx < Ops.size());
1500    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1501      // We found two constants, fold them together!
1502      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1503                           RHSC->getValue()->getValue());
1504      if (Ops.size() == 2) return Ops[0];
1505      Ops.erase(Ops.begin()+1);  // Erase the folded element
1506      LHSC = cast<SCEVConstant>(Ops[0]);
1507    }
1508
1509    // If we are left with a constant zero being added, strip it off.
1510    if (LHSC->getValue()->isZero()) {
1511      Ops.erase(Ops.begin());
1512      --Idx;
1513    }
1514
1515    if (Ops.size() == 1) return Ops[0];
1516  }
1517
1518  // Okay, check to see if the same value occurs in the operand list more than
1519  // once.  If so, merge them together into an multiply expression.  Since we
1520  // sorted the list, these values are required to be adjacent.
1521  Type *Ty = Ops[0]->getType();
1522  bool FoundMatch = false;
1523  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1524    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1525      // Scan ahead to count how many equal operands there are.
1526      unsigned Count = 2;
1527      while (i+Count != e && Ops[i+Count] == Ops[i])
1528        ++Count;
1529      // Merge the values into a multiply.
1530      const SCEV *Scale = getConstant(Ty, Count);
1531      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1532      if (Ops.size() == Count)
1533        return Mul;
1534      Ops[i] = Mul;
1535      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1536      --i; e -= Count - 1;
1537      FoundMatch = true;
1538    }
1539  if (FoundMatch)
1540    return getAddExpr(Ops, Flags);
1541
1542  // Check for truncates. If all the operands are truncated from the same
1543  // type, see if factoring out the truncate would permit the result to be
1544  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1545  // if the contents of the resulting outer trunc fold to something simple.
1546  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1547    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1548    Type *DstType = Trunc->getType();
1549    Type *SrcType = Trunc->getOperand()->getType();
1550    SmallVector<const SCEV *, 8> LargeOps;
1551    bool Ok = true;
1552    // Check all the operands to see if they can be represented in the
1553    // source type of the truncate.
1554    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1555      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1556        if (T->getOperand()->getType() != SrcType) {
1557          Ok = false;
1558          break;
1559        }
1560        LargeOps.push_back(T->getOperand());
1561      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1562        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1563      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1564        SmallVector<const SCEV *, 8> LargeMulOps;
1565        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1566          if (const SCEVTruncateExpr *T =
1567                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1568            if (T->getOperand()->getType() != SrcType) {
1569              Ok = false;
1570              break;
1571            }
1572            LargeMulOps.push_back(T->getOperand());
1573          } else if (const SCEVConstant *C =
1574                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1575            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1576          } else {
1577            Ok = false;
1578            break;
1579          }
1580        }
1581        if (Ok)
1582          LargeOps.push_back(getMulExpr(LargeMulOps));
1583      } else {
1584        Ok = false;
1585        break;
1586      }
1587    }
1588    if (Ok) {
1589      // Evaluate the expression in the larger type.
1590      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1591      // If it folds to something simple, use it. Otherwise, don't.
1592      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1593        return getTruncateExpr(Fold, DstType);
1594    }
1595  }
1596
1597  // Skip past any other cast SCEVs.
1598  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1599    ++Idx;
1600
1601  // If there are add operands they would be next.
1602  if (Idx < Ops.size()) {
1603    bool DeletedAdd = false;
1604    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1605      // If we have an add, expand the add operands onto the end of the operands
1606      // list.
1607      Ops.erase(Ops.begin()+Idx);
1608      Ops.append(Add->op_begin(), Add->op_end());
1609      DeletedAdd = true;
1610    }
1611
1612    // If we deleted at least one add, we added operands to the end of the list,
1613    // and they are not necessarily sorted.  Recurse to resort and resimplify
1614    // any operands we just acquired.
1615    if (DeletedAdd)
1616      return getAddExpr(Ops);
1617  }
1618
1619  // Skip over the add expression until we get to a multiply.
1620  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1621    ++Idx;
1622
1623  // Check to see if there are any folding opportunities present with
1624  // operands multiplied by constant values.
1625  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1626    uint64_t BitWidth = getTypeSizeInBits(Ty);
1627    DenseMap<const SCEV *, APInt> M;
1628    SmallVector<const SCEV *, 8> NewOps;
1629    APInt AccumulatedConstant(BitWidth, 0);
1630    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1631                                     Ops.data(), Ops.size(),
1632                                     APInt(BitWidth, 1), *this)) {
1633      // Some interesting folding opportunity is present, so its worthwhile to
1634      // re-generate the operands list. Group the operands by constant scale,
1635      // to avoid multiplying by the same constant scale multiple times.
1636      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1637      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1638           E = NewOps.end(); I != E; ++I)
1639        MulOpLists[M.find(*I)->second].push_back(*I);
1640      // Re-generate the operands list.
1641      Ops.clear();
1642      if (AccumulatedConstant != 0)
1643        Ops.push_back(getConstant(AccumulatedConstant));
1644      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1645           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1646        if (I->first != 0)
1647          Ops.push_back(getMulExpr(getConstant(I->first),
1648                                   getAddExpr(I->second)));
1649      if (Ops.empty())
1650        return getConstant(Ty, 0);
1651      if (Ops.size() == 1)
1652        return Ops[0];
1653      return getAddExpr(Ops);
1654    }
1655  }
1656
1657  // If we are adding something to a multiply expression, make sure the
1658  // something is not already an operand of the multiply.  If so, merge it into
1659  // the multiply.
1660  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1661    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1662    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1663      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1664      if (isa<SCEVConstant>(MulOpSCEV))
1665        continue;
1666      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1667        if (MulOpSCEV == Ops[AddOp]) {
1668          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1669          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1670          if (Mul->getNumOperands() != 2) {
1671            // If the multiply has more than two operands, we must get the
1672            // Y*Z term.
1673            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1674                                                Mul->op_begin()+MulOp);
1675            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1676            InnerMul = getMulExpr(MulOps);
1677          }
1678          const SCEV *One = getConstant(Ty, 1);
1679          const SCEV *AddOne = getAddExpr(One, InnerMul);
1680          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1681          if (Ops.size() == 2) return OuterMul;
1682          if (AddOp < Idx) {
1683            Ops.erase(Ops.begin()+AddOp);
1684            Ops.erase(Ops.begin()+Idx-1);
1685          } else {
1686            Ops.erase(Ops.begin()+Idx);
1687            Ops.erase(Ops.begin()+AddOp-1);
1688          }
1689          Ops.push_back(OuterMul);
1690          return getAddExpr(Ops);
1691        }
1692
1693      // Check this multiply against other multiplies being added together.
1694      for (unsigned OtherMulIdx = Idx+1;
1695           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1696           ++OtherMulIdx) {
1697        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1698        // If MulOp occurs in OtherMul, we can fold the two multiplies
1699        // together.
1700        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1701             OMulOp != e; ++OMulOp)
1702          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1703            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1704            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1705            if (Mul->getNumOperands() != 2) {
1706              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1707                                                  Mul->op_begin()+MulOp);
1708              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1709              InnerMul1 = getMulExpr(MulOps);
1710            }
1711            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1712            if (OtherMul->getNumOperands() != 2) {
1713              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1714                                                  OtherMul->op_begin()+OMulOp);
1715              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1716              InnerMul2 = getMulExpr(MulOps);
1717            }
1718            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1719            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1720            if (Ops.size() == 2) return OuterMul;
1721            Ops.erase(Ops.begin()+Idx);
1722            Ops.erase(Ops.begin()+OtherMulIdx-1);
1723            Ops.push_back(OuterMul);
1724            return getAddExpr(Ops);
1725          }
1726      }
1727    }
1728  }
1729
1730  // If there are any add recurrences in the operands list, see if any other
1731  // added values are loop invariant.  If so, we can fold them into the
1732  // recurrence.
1733  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1734    ++Idx;
1735
1736  // Scan over all recurrences, trying to fold loop invariants into them.
1737  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1738    // Scan all of the other operands to this add and add them to the vector if
1739    // they are loop invariant w.r.t. the recurrence.
1740    SmallVector<const SCEV *, 8> LIOps;
1741    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1742    const Loop *AddRecLoop = AddRec->getLoop();
1743    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1744      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1745        LIOps.push_back(Ops[i]);
1746        Ops.erase(Ops.begin()+i);
1747        --i; --e;
1748      }
1749
1750    // If we found some loop invariants, fold them into the recurrence.
1751    if (!LIOps.empty()) {
1752      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1753      LIOps.push_back(AddRec->getStart());
1754
1755      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1756                                             AddRec->op_end());
1757      AddRecOps[0] = getAddExpr(LIOps);
1758
1759      // Build the new addrec. Propagate the NUW and NSW flags if both the
1760      // outer add and the inner addrec are guaranteed to have no overflow.
1761      // Always propagate NW.
1762      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1763      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1764
1765      // If all of the other operands were loop invariant, we are done.
1766      if (Ops.size() == 1) return NewRec;
1767
1768      // Otherwise, add the folded AddRec by the non-invariant parts.
1769      for (unsigned i = 0;; ++i)
1770        if (Ops[i] == AddRec) {
1771          Ops[i] = NewRec;
1772          break;
1773        }
1774      return getAddExpr(Ops);
1775    }
1776
1777    // Okay, if there weren't any loop invariants to be folded, check to see if
1778    // there are multiple AddRec's with the same loop induction variable being
1779    // added together.  If so, we can fold them.
1780    for (unsigned OtherIdx = Idx+1;
1781         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1782         ++OtherIdx)
1783      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1784        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1785        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1786                                               AddRec->op_end());
1787        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1788             ++OtherIdx)
1789          if (const SCEVAddRecExpr *OtherAddRec =
1790                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1791            if (OtherAddRec->getLoop() == AddRecLoop) {
1792              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1793                   i != e; ++i) {
1794                if (i >= AddRecOps.size()) {
1795                  AddRecOps.append(OtherAddRec->op_begin()+i,
1796                                   OtherAddRec->op_end());
1797                  break;
1798                }
1799                AddRecOps[i] = getAddExpr(AddRecOps[i],
1800                                          OtherAddRec->getOperand(i));
1801              }
1802              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1803            }
1804        // Step size has changed, so we cannot guarantee no self-wraparound.
1805        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1806        return getAddExpr(Ops);
1807      }
1808
1809    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1810    // next one.
1811  }
1812
1813  // Okay, it looks like we really DO need an add expr.  Check to see if we
1814  // already have one, otherwise create a new one.
1815  FoldingSetNodeID ID;
1816  ID.AddInteger(scAddExpr);
1817  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1818    ID.AddPointer(Ops[i]);
1819  void *IP = 0;
1820  SCEVAddExpr *S =
1821    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1822  if (!S) {
1823    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1824    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1825    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1826                                        O, Ops.size());
1827    UniqueSCEVs.InsertNode(S, IP);
1828  }
1829  S->setNoWrapFlags(Flags);
1830  return S;
1831}
1832
1833static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1834  uint64_t k = i*j;
1835  if (j > 1 && k / j != i) Overflow = true;
1836  return k;
1837}
1838
1839/// Compute the result of "n choose k", the binomial coefficient.  If an
1840/// intermediate computation overflows, Overflow will be set and the return will
1841/// be garbage. Overflow is not cleared on absence of overflow.
1842static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1843  // We use the multiplicative formula:
1844  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1845  // At each iteration, we take the n-th term of the numeral and divide by the
1846  // (k-n)th term of the denominator.  This division will always produce an
1847  // integral result, and helps reduce the chance of overflow in the
1848  // intermediate computations. However, we can still overflow even when the
1849  // final result would fit.
1850
1851  if (n == 0 || n == k) return 1;
1852  if (k > n) return 0;
1853
1854  if (k > n/2)
1855    k = n-k;
1856
1857  uint64_t r = 1;
1858  for (uint64_t i = 1; i <= k; ++i) {
1859    r = umul_ov(r, n-(i-1), Overflow);
1860    r /= i;
1861  }
1862  return r;
1863}
1864
1865/// getMulExpr - Get a canonical multiply expression, or something simpler if
1866/// possible.
1867const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1868                                        SCEV::NoWrapFlags Flags) {
1869  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1870         "only nuw or nsw allowed");
1871  assert(!Ops.empty() && "Cannot get empty mul!");
1872  if (Ops.size() == 1) return Ops[0];
1873#ifndef NDEBUG
1874  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1875  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1876    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1877           "SCEVMulExpr operand types don't match!");
1878#endif
1879
1880  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1881  // And vice-versa.
1882  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1883  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1884  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1885    bool All = true;
1886    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1887         E = Ops.end(); I != E; ++I)
1888      if (!isKnownNonNegative(*I)) {
1889        All = false;
1890        break;
1891      }
1892    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1893  }
1894
1895  // Sort by complexity, this groups all similar expression types together.
1896  GroupByComplexity(Ops, LI);
1897
1898  // If there are any constants, fold them together.
1899  unsigned Idx = 0;
1900  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1901
1902    // C1*(C2+V) -> C1*C2 + C1*V
1903    if (Ops.size() == 2)
1904      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1905        if (Add->getNumOperands() == 2 &&
1906            isa<SCEVConstant>(Add->getOperand(0)))
1907          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1908                            getMulExpr(LHSC, Add->getOperand(1)));
1909
1910    ++Idx;
1911    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1912      // We found two constants, fold them together!
1913      ConstantInt *Fold = ConstantInt::get(getContext(),
1914                                           LHSC->getValue()->getValue() *
1915                                           RHSC->getValue()->getValue());
1916      Ops[0] = getConstant(Fold);
1917      Ops.erase(Ops.begin()+1);  // Erase the folded element
1918      if (Ops.size() == 1) return Ops[0];
1919      LHSC = cast<SCEVConstant>(Ops[0]);
1920    }
1921
1922    // If we are left with a constant one being multiplied, strip it off.
1923    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1924      Ops.erase(Ops.begin());
1925      --Idx;
1926    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1927      // If we have a multiply of zero, it will always be zero.
1928      return Ops[0];
1929    } else if (Ops[0]->isAllOnesValue()) {
1930      // If we have a mul by -1 of an add, try distributing the -1 among the
1931      // add operands.
1932      if (Ops.size() == 2) {
1933        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1934          SmallVector<const SCEV *, 4> NewOps;
1935          bool AnyFolded = false;
1936          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1937                 E = Add->op_end(); I != E; ++I) {
1938            const SCEV *Mul = getMulExpr(Ops[0], *I);
1939            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1940            NewOps.push_back(Mul);
1941          }
1942          if (AnyFolded)
1943            return getAddExpr(NewOps);
1944        }
1945        else if (const SCEVAddRecExpr *
1946                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1947          // Negation preserves a recurrence's no self-wrap property.
1948          SmallVector<const SCEV *, 4> Operands;
1949          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1950                 E = AddRec->op_end(); I != E; ++I) {
1951            Operands.push_back(getMulExpr(Ops[0], *I));
1952          }
1953          return getAddRecExpr(Operands, AddRec->getLoop(),
1954                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1955        }
1956      }
1957    }
1958
1959    if (Ops.size() == 1)
1960      return Ops[0];
1961  }
1962
1963  // Skip over the add expression until we get to a multiply.
1964  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1965    ++Idx;
1966
1967  // If there are mul operands inline them all into this expression.
1968  if (Idx < Ops.size()) {
1969    bool DeletedMul = false;
1970    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1971      // If we have an mul, expand the mul operands onto the end of the operands
1972      // list.
1973      Ops.erase(Ops.begin()+Idx);
1974      Ops.append(Mul->op_begin(), Mul->op_end());
1975      DeletedMul = true;
1976    }
1977
1978    // If we deleted at least one mul, we added operands to the end of the list,
1979    // and they are not necessarily sorted.  Recurse to resort and resimplify
1980    // any operands we just acquired.
1981    if (DeletedMul)
1982      return getMulExpr(Ops);
1983  }
1984
1985  // If there are any add recurrences in the operands list, see if any other
1986  // added values are loop invariant.  If so, we can fold them into the
1987  // recurrence.
1988  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1989    ++Idx;
1990
1991  // Scan over all recurrences, trying to fold loop invariants into them.
1992  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1993    // Scan all of the other operands to this mul and add them to the vector if
1994    // they are loop invariant w.r.t. the recurrence.
1995    SmallVector<const SCEV *, 8> LIOps;
1996    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1997    const Loop *AddRecLoop = AddRec->getLoop();
1998    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1999      if (isLoopInvariant(Ops[i], AddRecLoop)) {
2000        LIOps.push_back(Ops[i]);
2001        Ops.erase(Ops.begin()+i);
2002        --i; --e;
2003      }
2004
2005    // If we found some loop invariants, fold them into the recurrence.
2006    if (!LIOps.empty()) {
2007      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2008      SmallVector<const SCEV *, 4> NewOps;
2009      NewOps.reserve(AddRec->getNumOperands());
2010      const SCEV *Scale = getMulExpr(LIOps);
2011      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2012        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2013
2014      // Build the new addrec. Propagate the NUW and NSW flags if both the
2015      // outer mul and the inner addrec are guaranteed to have no overflow.
2016      //
2017      // No self-wrap cannot be guaranteed after changing the step size, but
2018      // will be inferred if either NUW or NSW is true.
2019      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2020      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2021
2022      // If all of the other operands were loop invariant, we are done.
2023      if (Ops.size() == 1) return NewRec;
2024
2025      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2026      for (unsigned i = 0;; ++i)
2027        if (Ops[i] == AddRec) {
2028          Ops[i] = NewRec;
2029          break;
2030        }
2031      return getMulExpr(Ops);
2032    }
2033
2034    // Okay, if there weren't any loop invariants to be folded, check to see if
2035    // there are multiple AddRec's with the same loop induction variable being
2036    // multiplied together.  If so, we can fold them.
2037    for (unsigned OtherIdx = Idx+1;
2038         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2039         ++OtherIdx) {
2040      if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2041        continue;
2042
2043      // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2044      // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2045      //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2046      //   ]]],+,...up to x=2n}.
2047      // Note that the arguments to choose() are always integers with values
2048      // known at compile time, never SCEV objects.
2049      //
2050      // The implementation avoids pointless extra computations when the two
2051      // addrec's are of different length (mathematically, it's equivalent to
2052      // an infinite stream of zeros on the right).
2053      bool OpsModified = false;
2054      for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2055           ++OtherIdx) {
2056        const SCEVAddRecExpr *OtherAddRec =
2057          dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2058        if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2059          continue;
2060
2061        bool Overflow = false;
2062        Type *Ty = AddRec->getType();
2063        bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2064        SmallVector<const SCEV*, 7> AddRecOps;
2065        for (int x = 0, xe = AddRec->getNumOperands() +
2066               OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2067          const SCEV *Term = getConstant(Ty, 0);
2068          for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2069            uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2070            for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2071                   ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2072                 z < ze && !Overflow; ++z) {
2073              uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2074              uint64_t Coeff;
2075              if (LargerThan64Bits)
2076                Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2077              else
2078                Coeff = Coeff1*Coeff2;
2079              const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2080              const SCEV *Term1 = AddRec->getOperand(y-z);
2081              const SCEV *Term2 = OtherAddRec->getOperand(z);
2082              Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2083            }
2084          }
2085          AddRecOps.push_back(Term);
2086        }
2087        if (!Overflow) {
2088          const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2089                                                SCEV::FlagAnyWrap);
2090          if (Ops.size() == 2) return NewAddRec;
2091          Ops[Idx] = NewAddRec;
2092          Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2093          OpsModified = true;
2094          AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2095          if (!AddRec)
2096            break;
2097        }
2098      }
2099      if (OpsModified)
2100        return getMulExpr(Ops);
2101    }
2102
2103    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2104    // next one.
2105  }
2106
2107  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2108  // already have one, otherwise create a new one.
2109  FoldingSetNodeID ID;
2110  ID.AddInteger(scMulExpr);
2111  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2112    ID.AddPointer(Ops[i]);
2113  void *IP = 0;
2114  SCEVMulExpr *S =
2115    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2116  if (!S) {
2117    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2118    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2119    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2120                                        O, Ops.size());
2121    UniqueSCEVs.InsertNode(S, IP);
2122  }
2123  S->setNoWrapFlags(Flags);
2124  return S;
2125}
2126
2127/// getUDivExpr - Get a canonical unsigned division expression, or something
2128/// simpler if possible.
2129const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2130                                         const SCEV *RHS) {
2131  assert(getEffectiveSCEVType(LHS->getType()) ==
2132         getEffectiveSCEVType(RHS->getType()) &&
2133         "SCEVUDivExpr operand types don't match!");
2134
2135  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2136    if (RHSC->getValue()->equalsInt(1))
2137      return LHS;                               // X udiv 1 --> x
2138    // If the denominator is zero, the result of the udiv is undefined. Don't
2139    // try to analyze it, because the resolution chosen here may differ from
2140    // the resolution chosen in other parts of the compiler.
2141    if (!RHSC->getValue()->isZero()) {
2142      // Determine if the division can be folded into the operands of
2143      // its operands.
2144      // TODO: Generalize this to non-constants by using known-bits information.
2145      Type *Ty = LHS->getType();
2146      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2147      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2148      // For non-power-of-two values, effectively round the value up to the
2149      // nearest power of two.
2150      if (!RHSC->getValue()->getValue().isPowerOf2())
2151        ++MaxShiftAmt;
2152      IntegerType *ExtTy =
2153        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2154      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2155        if (const SCEVConstant *Step =
2156            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2157          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2158          const APInt &StepInt = Step->getValue()->getValue();
2159          const APInt &DivInt = RHSC->getValue()->getValue();
2160          if (!StepInt.urem(DivInt) &&
2161              getZeroExtendExpr(AR, ExtTy) ==
2162              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2163                            getZeroExtendExpr(Step, ExtTy),
2164                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2165            SmallVector<const SCEV *, 4> Operands;
2166            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2167              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2168            return getAddRecExpr(Operands, AR->getLoop(),
2169                                 SCEV::FlagNW);
2170          }
2171          /// Get a canonical UDivExpr for a recurrence.
2172          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2173          // We can currently only fold X%N if X is constant.
2174          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2175          if (StartC && !DivInt.urem(StepInt) &&
2176              getZeroExtendExpr(AR, ExtTy) ==
2177              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2178                            getZeroExtendExpr(Step, ExtTy),
2179                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2180            const APInt &StartInt = StartC->getValue()->getValue();
2181            const APInt &StartRem = StartInt.urem(StepInt);
2182            if (StartRem != 0)
2183              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2184                                  AR->getLoop(), SCEV::FlagNW);
2185          }
2186        }
2187      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2188      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2189        SmallVector<const SCEV *, 4> Operands;
2190        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2191          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2192        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2193          // Find an operand that's safely divisible.
2194          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2195            const SCEV *Op = M->getOperand(i);
2196            const SCEV *Div = getUDivExpr(Op, RHSC);
2197            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2198              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2199                                                      M->op_end());
2200              Operands[i] = Div;
2201              return getMulExpr(Operands);
2202            }
2203          }
2204      }
2205      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2206      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2207        SmallVector<const SCEV *, 4> Operands;
2208        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2209          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2210        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2211          Operands.clear();
2212          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2213            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2214            if (isa<SCEVUDivExpr>(Op) ||
2215                getMulExpr(Op, RHS) != A->getOperand(i))
2216              break;
2217            Operands.push_back(Op);
2218          }
2219          if (Operands.size() == A->getNumOperands())
2220            return getAddExpr(Operands);
2221        }
2222      }
2223
2224      // Fold if both operands are constant.
2225      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2226        Constant *LHSCV = LHSC->getValue();
2227        Constant *RHSCV = RHSC->getValue();
2228        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2229                                                                   RHSCV)));
2230      }
2231    }
2232  }
2233
2234  FoldingSetNodeID ID;
2235  ID.AddInteger(scUDivExpr);
2236  ID.AddPointer(LHS);
2237  ID.AddPointer(RHS);
2238  void *IP = 0;
2239  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2240  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2241                                             LHS, RHS);
2242  UniqueSCEVs.InsertNode(S, IP);
2243  return S;
2244}
2245
2246
2247/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2248/// Simplify the expression as much as possible.
2249const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2250                                           const Loop *L,
2251                                           SCEV::NoWrapFlags Flags) {
2252  SmallVector<const SCEV *, 4> Operands;
2253  Operands.push_back(Start);
2254  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2255    if (StepChrec->getLoop() == L) {
2256      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2257      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2258    }
2259
2260  Operands.push_back(Step);
2261  return getAddRecExpr(Operands, L, Flags);
2262}
2263
2264/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2265/// Simplify the expression as much as possible.
2266const SCEV *
2267ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2268                               const Loop *L, SCEV::NoWrapFlags Flags) {
2269  if (Operands.size() == 1) return Operands[0];
2270#ifndef NDEBUG
2271  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2272  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2273    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2274           "SCEVAddRecExpr operand types don't match!");
2275  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2276    assert(isLoopInvariant(Operands[i], L) &&
2277           "SCEVAddRecExpr operand is not loop-invariant!");
2278#endif
2279
2280  if (Operands.back()->isZero()) {
2281    Operands.pop_back();
2282    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2283  }
2284
2285  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2286  // use that information to infer NUW and NSW flags. However, computing a
2287  // BE count requires calling getAddRecExpr, so we may not yet have a
2288  // meaningful BE count at this point (and if we don't, we'd be stuck
2289  // with a SCEVCouldNotCompute as the cached BE count).
2290
2291  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2292  // And vice-versa.
2293  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2294  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2295  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2296    bool All = true;
2297    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2298         E = Operands.end(); I != E; ++I)
2299      if (!isKnownNonNegative(*I)) {
2300        All = false;
2301        break;
2302      }
2303    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2304  }
2305
2306  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2307  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2308    const Loop *NestedLoop = NestedAR->getLoop();
2309    if (L->contains(NestedLoop) ?
2310        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2311        (!NestedLoop->contains(L) &&
2312         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2313      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2314                                                  NestedAR->op_end());
2315      Operands[0] = NestedAR->getStart();
2316      // AddRecs require their operands be loop-invariant with respect to their
2317      // loops. Don't perform this transformation if it would break this
2318      // requirement.
2319      bool AllInvariant = true;
2320      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2321        if (!isLoopInvariant(Operands[i], L)) {
2322          AllInvariant = false;
2323          break;
2324        }
2325      if (AllInvariant) {
2326        // Create a recurrence for the outer loop with the same step size.
2327        //
2328        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2329        // inner recurrence has the same property.
2330        SCEV::NoWrapFlags OuterFlags =
2331          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2332
2333        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2334        AllInvariant = true;
2335        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2336          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2337            AllInvariant = false;
2338            break;
2339          }
2340        if (AllInvariant) {
2341          // Ok, both add recurrences are valid after the transformation.
2342          //
2343          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2344          // the outer recurrence has the same property.
2345          SCEV::NoWrapFlags InnerFlags =
2346            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2347          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2348        }
2349      }
2350      // Reset Operands to its original state.
2351      Operands[0] = NestedAR;
2352    }
2353  }
2354
2355  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2356  // already have one, otherwise create a new one.
2357  FoldingSetNodeID ID;
2358  ID.AddInteger(scAddRecExpr);
2359  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2360    ID.AddPointer(Operands[i]);
2361  ID.AddPointer(L);
2362  void *IP = 0;
2363  SCEVAddRecExpr *S =
2364    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2365  if (!S) {
2366    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2367    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2368    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2369                                           O, Operands.size(), L);
2370    UniqueSCEVs.InsertNode(S, IP);
2371  }
2372  S->setNoWrapFlags(Flags);
2373  return S;
2374}
2375
2376const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2377                                         const SCEV *RHS) {
2378  SmallVector<const SCEV *, 2> Ops;
2379  Ops.push_back(LHS);
2380  Ops.push_back(RHS);
2381  return getSMaxExpr(Ops);
2382}
2383
2384const SCEV *
2385ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2386  assert(!Ops.empty() && "Cannot get empty smax!");
2387  if (Ops.size() == 1) return Ops[0];
2388#ifndef NDEBUG
2389  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2390  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2391    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2392           "SCEVSMaxExpr operand types don't match!");
2393#endif
2394
2395  // Sort by complexity, this groups all similar expression types together.
2396  GroupByComplexity(Ops, LI);
2397
2398  // If there are any constants, fold them together.
2399  unsigned Idx = 0;
2400  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2401    ++Idx;
2402    assert(Idx < Ops.size());
2403    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2404      // We found two constants, fold them together!
2405      ConstantInt *Fold = ConstantInt::get(getContext(),
2406                              APIntOps::smax(LHSC->getValue()->getValue(),
2407                                             RHSC->getValue()->getValue()));
2408      Ops[0] = getConstant(Fold);
2409      Ops.erase(Ops.begin()+1);  // Erase the folded element
2410      if (Ops.size() == 1) return Ops[0];
2411      LHSC = cast<SCEVConstant>(Ops[0]);
2412    }
2413
2414    // If we are left with a constant minimum-int, strip it off.
2415    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2416      Ops.erase(Ops.begin());
2417      --Idx;
2418    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2419      // If we have an smax with a constant maximum-int, it will always be
2420      // maximum-int.
2421      return Ops[0];
2422    }
2423
2424    if (Ops.size() == 1) return Ops[0];
2425  }
2426
2427  // Find the first SMax
2428  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2429    ++Idx;
2430
2431  // Check to see if one of the operands is an SMax. If so, expand its operands
2432  // onto our operand list, and recurse to simplify.
2433  if (Idx < Ops.size()) {
2434    bool DeletedSMax = false;
2435    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2436      Ops.erase(Ops.begin()+Idx);
2437      Ops.append(SMax->op_begin(), SMax->op_end());
2438      DeletedSMax = true;
2439    }
2440
2441    if (DeletedSMax)
2442      return getSMaxExpr(Ops);
2443  }
2444
2445  // Okay, check to see if the same value occurs in the operand list twice.  If
2446  // so, delete one.  Since we sorted the list, these values are required to
2447  // be adjacent.
2448  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2449    //  X smax Y smax Y  -->  X smax Y
2450    //  X smax Y         -->  X, if X is always greater than Y
2451    if (Ops[i] == Ops[i+1] ||
2452        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2453      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2454      --i; --e;
2455    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2456      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2457      --i; --e;
2458    }
2459
2460  if (Ops.size() == 1) return Ops[0];
2461
2462  assert(!Ops.empty() && "Reduced smax down to nothing!");
2463
2464  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2465  // already have one, otherwise create a new one.
2466  FoldingSetNodeID ID;
2467  ID.AddInteger(scSMaxExpr);
2468  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2469    ID.AddPointer(Ops[i]);
2470  void *IP = 0;
2471  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2472  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2473  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2474  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2475                                             O, Ops.size());
2476  UniqueSCEVs.InsertNode(S, IP);
2477  return S;
2478}
2479
2480const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2481                                         const SCEV *RHS) {
2482  SmallVector<const SCEV *, 2> Ops;
2483  Ops.push_back(LHS);
2484  Ops.push_back(RHS);
2485  return getUMaxExpr(Ops);
2486}
2487
2488const SCEV *
2489ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2490  assert(!Ops.empty() && "Cannot get empty umax!");
2491  if (Ops.size() == 1) return Ops[0];
2492#ifndef NDEBUG
2493  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2494  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2495    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2496           "SCEVUMaxExpr operand types don't match!");
2497#endif
2498
2499  // Sort by complexity, this groups all similar expression types together.
2500  GroupByComplexity(Ops, LI);
2501
2502  // If there are any constants, fold them together.
2503  unsigned Idx = 0;
2504  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2505    ++Idx;
2506    assert(Idx < Ops.size());
2507    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2508      // We found two constants, fold them together!
2509      ConstantInt *Fold = ConstantInt::get(getContext(),
2510                              APIntOps::umax(LHSC->getValue()->getValue(),
2511                                             RHSC->getValue()->getValue()));
2512      Ops[0] = getConstant(Fold);
2513      Ops.erase(Ops.begin()+1);  // Erase the folded element
2514      if (Ops.size() == 1) return Ops[0];
2515      LHSC = cast<SCEVConstant>(Ops[0]);
2516    }
2517
2518    // If we are left with a constant minimum-int, strip it off.
2519    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2520      Ops.erase(Ops.begin());
2521      --Idx;
2522    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2523      // If we have an umax with a constant maximum-int, it will always be
2524      // maximum-int.
2525      return Ops[0];
2526    }
2527
2528    if (Ops.size() == 1) return Ops[0];
2529  }
2530
2531  // Find the first UMax
2532  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2533    ++Idx;
2534
2535  // Check to see if one of the operands is a UMax. If so, expand its operands
2536  // onto our operand list, and recurse to simplify.
2537  if (Idx < Ops.size()) {
2538    bool DeletedUMax = false;
2539    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2540      Ops.erase(Ops.begin()+Idx);
2541      Ops.append(UMax->op_begin(), UMax->op_end());
2542      DeletedUMax = true;
2543    }
2544
2545    if (DeletedUMax)
2546      return getUMaxExpr(Ops);
2547  }
2548
2549  // Okay, check to see if the same value occurs in the operand list twice.  If
2550  // so, delete one.  Since we sorted the list, these values are required to
2551  // be adjacent.
2552  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2553    //  X umax Y umax Y  -->  X umax Y
2554    //  X umax Y         -->  X, if X is always greater than Y
2555    if (Ops[i] == Ops[i+1] ||
2556        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2557      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2558      --i; --e;
2559    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2560      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2561      --i; --e;
2562    }
2563
2564  if (Ops.size() == 1) return Ops[0];
2565
2566  assert(!Ops.empty() && "Reduced umax down to nothing!");
2567
2568  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2569  // already have one, otherwise create a new one.
2570  FoldingSetNodeID ID;
2571  ID.AddInteger(scUMaxExpr);
2572  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2573    ID.AddPointer(Ops[i]);
2574  void *IP = 0;
2575  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2576  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2577  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2578  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2579                                             O, Ops.size());
2580  UniqueSCEVs.InsertNode(S, IP);
2581  return S;
2582}
2583
2584const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2585                                         const SCEV *RHS) {
2586  // ~smax(~x, ~y) == smin(x, y).
2587  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2588}
2589
2590const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2591                                         const SCEV *RHS) {
2592  // ~umax(~x, ~y) == umin(x, y)
2593  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2594}
2595
2596const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2597  // If we have TargetData, we can bypass creating a target-independent
2598  // constant expression and then folding it back into a ConstantInt.
2599  // This is just a compile-time optimization.
2600  if (TD)
2601    return getConstant(TD->getIntPtrType(getContext()),
2602                       TD->getTypeAllocSize(AllocTy));
2603
2604  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2605  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2606    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2607      C = Folded;
2608  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2609  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2610}
2611
2612const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2613  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2614  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2615    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2616      C = Folded;
2617  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2618  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2619}
2620
2621const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2622                                             unsigned FieldNo) {
2623  // If we have TargetData, we can bypass creating a target-independent
2624  // constant expression and then folding it back into a ConstantInt.
2625  // This is just a compile-time optimization.
2626  if (TD)
2627    return getConstant(TD->getIntPtrType(getContext()),
2628                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2629
2630  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2631  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2632    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2633      C = Folded;
2634  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2635  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2636}
2637
2638const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2639                                             Constant *FieldNo) {
2640  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2641  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2642    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2643      C = Folded;
2644  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2645  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2646}
2647
2648const SCEV *ScalarEvolution::getUnknown(Value *V) {
2649  // Don't attempt to do anything other than create a SCEVUnknown object
2650  // here.  createSCEV only calls getUnknown after checking for all other
2651  // interesting possibilities, and any other code that calls getUnknown
2652  // is doing so in order to hide a value from SCEV canonicalization.
2653
2654  FoldingSetNodeID ID;
2655  ID.AddInteger(scUnknown);
2656  ID.AddPointer(V);
2657  void *IP = 0;
2658  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2659    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2660           "Stale SCEVUnknown in uniquing map!");
2661    return S;
2662  }
2663  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2664                                            FirstUnknown);
2665  FirstUnknown = cast<SCEVUnknown>(S);
2666  UniqueSCEVs.InsertNode(S, IP);
2667  return S;
2668}
2669
2670//===----------------------------------------------------------------------===//
2671//            Basic SCEV Analysis and PHI Idiom Recognition Code
2672//
2673
2674/// isSCEVable - Test if values of the given type are analyzable within
2675/// the SCEV framework. This primarily includes integer types, and it
2676/// can optionally include pointer types if the ScalarEvolution class
2677/// has access to target-specific information.
2678bool ScalarEvolution::isSCEVable(Type *Ty) const {
2679  // Integers and pointers are always SCEVable.
2680  return Ty->isIntegerTy() || Ty->isPointerTy();
2681}
2682
2683/// getTypeSizeInBits - Return the size in bits of the specified type,
2684/// for which isSCEVable must return true.
2685uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2686  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2687
2688  // If we have a TargetData, use it!
2689  if (TD)
2690    return TD->getTypeSizeInBits(Ty);
2691
2692  // Integer types have fixed sizes.
2693  if (Ty->isIntegerTy())
2694    return Ty->getPrimitiveSizeInBits();
2695
2696  // The only other support type is pointer. Without TargetData, conservatively
2697  // assume pointers are 64-bit.
2698  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2699  return 64;
2700}
2701
2702/// getEffectiveSCEVType - Return a type with the same bitwidth as
2703/// the given type and which represents how SCEV will treat the given
2704/// type, for which isSCEVable must return true. For pointer types,
2705/// this is the pointer-sized integer type.
2706Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2707  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2708
2709  if (Ty->isIntegerTy())
2710    return Ty;
2711
2712  // The only other support type is pointer.
2713  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2714  if (TD) return TD->getIntPtrType(getContext());
2715
2716  // Without TargetData, conservatively assume pointers are 64-bit.
2717  return Type::getInt64Ty(getContext());
2718}
2719
2720const SCEV *ScalarEvolution::getCouldNotCompute() {
2721  return &CouldNotCompute;
2722}
2723
2724/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2725/// expression and create a new one.
2726const SCEV *ScalarEvolution::getSCEV(Value *V) {
2727  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2728
2729  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2730  if (I != ValueExprMap.end()) return I->second;
2731  const SCEV *S = createSCEV(V);
2732
2733  // The process of creating a SCEV for V may have caused other SCEVs
2734  // to have been created, so it's necessary to insert the new entry
2735  // from scratch, rather than trying to remember the insert position
2736  // above.
2737  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2738  return S;
2739}
2740
2741/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2742///
2743const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2744  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2745    return getConstant(
2746               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2747
2748  Type *Ty = V->getType();
2749  Ty = getEffectiveSCEVType(Ty);
2750  return getMulExpr(V,
2751                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2752}
2753
2754/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2755const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2756  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2757    return getConstant(
2758                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2759
2760  Type *Ty = V->getType();
2761  Ty = getEffectiveSCEVType(Ty);
2762  const SCEV *AllOnes =
2763                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2764  return getMinusSCEV(AllOnes, V);
2765}
2766
2767/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2768const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2769                                          SCEV::NoWrapFlags Flags) {
2770  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2771
2772  // Fast path: X - X --> 0.
2773  if (LHS == RHS)
2774    return getConstant(LHS->getType(), 0);
2775
2776  // X - Y --> X + -Y
2777  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2778}
2779
2780/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2781/// input value to the specified type.  If the type must be extended, it is zero
2782/// extended.
2783const SCEV *
2784ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2785  Type *SrcTy = V->getType();
2786  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2787         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2788         "Cannot truncate or zero extend with non-integer arguments!");
2789  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2790    return V;  // No conversion
2791  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2792    return getTruncateExpr(V, Ty);
2793  return getZeroExtendExpr(V, Ty);
2794}
2795
2796/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2797/// input value to the specified type.  If the type must be extended, it is sign
2798/// extended.
2799const SCEV *
2800ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2801                                         Type *Ty) {
2802  Type *SrcTy = V->getType();
2803  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2804         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2805         "Cannot truncate or zero extend with non-integer arguments!");
2806  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2807    return V;  // No conversion
2808  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2809    return getTruncateExpr(V, Ty);
2810  return getSignExtendExpr(V, Ty);
2811}
2812
2813/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2814/// input value to the specified type.  If the type must be extended, it is zero
2815/// extended.  The conversion must not be narrowing.
2816const SCEV *
2817ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2818  Type *SrcTy = V->getType();
2819  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2820         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2821         "Cannot noop or zero extend with non-integer arguments!");
2822  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2823         "getNoopOrZeroExtend cannot truncate!");
2824  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2825    return V;  // No conversion
2826  return getZeroExtendExpr(V, Ty);
2827}
2828
2829/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2830/// input value to the specified type.  If the type must be extended, it is sign
2831/// extended.  The conversion must not be narrowing.
2832const SCEV *
2833ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2834  Type *SrcTy = V->getType();
2835  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2836         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2837         "Cannot noop or sign extend with non-integer arguments!");
2838  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2839         "getNoopOrSignExtend cannot truncate!");
2840  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2841    return V;  // No conversion
2842  return getSignExtendExpr(V, Ty);
2843}
2844
2845/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2846/// the input value to the specified type. If the type must be extended,
2847/// it is extended with unspecified bits. The conversion must not be
2848/// narrowing.
2849const SCEV *
2850ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2851  Type *SrcTy = V->getType();
2852  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2853         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2854         "Cannot noop or any extend with non-integer arguments!");
2855  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2856         "getNoopOrAnyExtend cannot truncate!");
2857  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2858    return V;  // No conversion
2859  return getAnyExtendExpr(V, Ty);
2860}
2861
2862/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2863/// input value to the specified type.  The conversion must not be widening.
2864const SCEV *
2865ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2866  Type *SrcTy = V->getType();
2867  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2868         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2869         "Cannot truncate or noop with non-integer arguments!");
2870  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2871         "getTruncateOrNoop cannot extend!");
2872  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2873    return V;  // No conversion
2874  return getTruncateExpr(V, Ty);
2875}
2876
2877/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2878/// the types using zero-extension, and then perform a umax operation
2879/// with them.
2880const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2881                                                        const SCEV *RHS) {
2882  const SCEV *PromotedLHS = LHS;
2883  const SCEV *PromotedRHS = RHS;
2884
2885  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2886    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2887  else
2888    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2889
2890  return getUMaxExpr(PromotedLHS, PromotedRHS);
2891}
2892
2893/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2894/// the types using zero-extension, and then perform a umin operation
2895/// with them.
2896const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2897                                                        const SCEV *RHS) {
2898  const SCEV *PromotedLHS = LHS;
2899  const SCEV *PromotedRHS = RHS;
2900
2901  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2902    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2903  else
2904    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2905
2906  return getUMinExpr(PromotedLHS, PromotedRHS);
2907}
2908
2909/// getPointerBase - Transitively follow the chain of pointer-type operands
2910/// until reaching a SCEV that does not have a single pointer operand. This
2911/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2912/// but corner cases do exist.
2913const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2914  // A pointer operand may evaluate to a nonpointer expression, such as null.
2915  if (!V->getType()->isPointerTy())
2916    return V;
2917
2918  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2919    return getPointerBase(Cast->getOperand());
2920  }
2921  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2922    const SCEV *PtrOp = 0;
2923    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2924         I != E; ++I) {
2925      if ((*I)->getType()->isPointerTy()) {
2926        // Cannot find the base of an expression with multiple pointer operands.
2927        if (PtrOp)
2928          return V;
2929        PtrOp = *I;
2930      }
2931    }
2932    if (!PtrOp)
2933      return V;
2934    return getPointerBase(PtrOp);
2935  }
2936  return V;
2937}
2938
2939/// PushDefUseChildren - Push users of the given Instruction
2940/// onto the given Worklist.
2941static void
2942PushDefUseChildren(Instruction *I,
2943                   SmallVectorImpl<Instruction *> &Worklist) {
2944  // Push the def-use children onto the Worklist stack.
2945  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2946       UI != UE; ++UI)
2947    Worklist.push_back(cast<Instruction>(*UI));
2948}
2949
2950/// ForgetSymbolicValue - This looks up computed SCEV values for all
2951/// instructions that depend on the given instruction and removes them from
2952/// the ValueExprMapType map if they reference SymName. This is used during PHI
2953/// resolution.
2954void
2955ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2956  SmallVector<Instruction *, 16> Worklist;
2957  PushDefUseChildren(PN, Worklist);
2958
2959  SmallPtrSet<Instruction *, 8> Visited;
2960  Visited.insert(PN);
2961  while (!Worklist.empty()) {
2962    Instruction *I = Worklist.pop_back_val();
2963    if (!Visited.insert(I)) continue;
2964
2965    ValueExprMapType::iterator It =
2966      ValueExprMap.find(static_cast<Value *>(I));
2967    if (It != ValueExprMap.end()) {
2968      const SCEV *Old = It->second;
2969
2970      // Short-circuit the def-use traversal if the symbolic name
2971      // ceases to appear in expressions.
2972      if (Old != SymName && !hasOperand(Old, SymName))
2973        continue;
2974
2975      // SCEVUnknown for a PHI either means that it has an unrecognized
2976      // structure, it's a PHI that's in the progress of being computed
2977      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2978      // additional loop trip count information isn't going to change anything.
2979      // In the second case, createNodeForPHI will perform the necessary
2980      // updates on its own when it gets to that point. In the third, we do
2981      // want to forget the SCEVUnknown.
2982      if (!isa<PHINode>(I) ||
2983          !isa<SCEVUnknown>(Old) ||
2984          (I != PN && Old == SymName)) {
2985        forgetMemoizedResults(Old);
2986        ValueExprMap.erase(It);
2987      }
2988    }
2989
2990    PushDefUseChildren(I, Worklist);
2991  }
2992}
2993
2994/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2995/// a loop header, making it a potential recurrence, or it doesn't.
2996///
2997const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2998  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2999    if (L->getHeader() == PN->getParent()) {
3000      // The loop may have multiple entrances or multiple exits; we can analyze
3001      // this phi as an addrec if it has a unique entry value and a unique
3002      // backedge value.
3003      Value *BEValueV = 0, *StartValueV = 0;
3004      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3005        Value *V = PN->getIncomingValue(i);
3006        if (L->contains(PN->getIncomingBlock(i))) {
3007          if (!BEValueV) {
3008            BEValueV = V;
3009          } else if (BEValueV != V) {
3010            BEValueV = 0;
3011            break;
3012          }
3013        } else if (!StartValueV) {
3014          StartValueV = V;
3015        } else if (StartValueV != V) {
3016          StartValueV = 0;
3017          break;
3018        }
3019      }
3020      if (BEValueV && StartValueV) {
3021        // While we are analyzing this PHI node, handle its value symbolically.
3022        const SCEV *SymbolicName = getUnknown(PN);
3023        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
3024               "PHI node already processed?");
3025        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3026
3027        // Using this symbolic name for the PHI, analyze the value coming around
3028        // the back-edge.
3029        const SCEV *BEValue = getSCEV(BEValueV);
3030
3031        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3032        // has a special value for the first iteration of the loop.
3033
3034        // If the value coming around the backedge is an add with the symbolic
3035        // value we just inserted, then we found a simple induction variable!
3036        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3037          // If there is a single occurrence of the symbolic value, replace it
3038          // with a recurrence.
3039          unsigned FoundIndex = Add->getNumOperands();
3040          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3041            if (Add->getOperand(i) == SymbolicName)
3042              if (FoundIndex == e) {
3043                FoundIndex = i;
3044                break;
3045              }
3046
3047          if (FoundIndex != Add->getNumOperands()) {
3048            // Create an add with everything but the specified operand.
3049            SmallVector<const SCEV *, 8> Ops;
3050            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3051              if (i != FoundIndex)
3052                Ops.push_back(Add->getOperand(i));
3053            const SCEV *Accum = getAddExpr(Ops);
3054
3055            // This is not a valid addrec if the step amount is varying each
3056            // loop iteration, but is not itself an addrec in this loop.
3057            if (isLoopInvariant(Accum, L) ||
3058                (isa<SCEVAddRecExpr>(Accum) &&
3059                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3060              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3061
3062              // If the increment doesn't overflow, then neither the addrec nor
3063              // the post-increment will overflow.
3064              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3065                if (OBO->hasNoUnsignedWrap())
3066                  Flags = setFlags(Flags, SCEV::FlagNUW);
3067                if (OBO->hasNoSignedWrap())
3068                  Flags = setFlags(Flags, SCEV::FlagNSW);
3069              } else if (const GEPOperator *GEP =
3070                         dyn_cast<GEPOperator>(BEValueV)) {
3071                // If the increment is an inbounds GEP, then we know the address
3072                // space cannot be wrapped around. We cannot make any guarantee
3073                // about signed or unsigned overflow because pointers are
3074                // unsigned but we may have a negative index from the base
3075                // pointer.
3076                if (GEP->isInBounds())
3077                  Flags = setFlags(Flags, SCEV::FlagNW);
3078              }
3079
3080              const SCEV *StartVal = getSCEV(StartValueV);
3081              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3082
3083              // Since the no-wrap flags are on the increment, they apply to the
3084              // post-incremented value as well.
3085              if (isLoopInvariant(Accum, L))
3086                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3087                                    Accum, L, Flags);
3088
3089              // Okay, for the entire analysis of this edge we assumed the PHI
3090              // to be symbolic.  We now need to go back and purge all of the
3091              // entries for the scalars that use the symbolic expression.
3092              ForgetSymbolicName(PN, SymbolicName);
3093              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3094              return PHISCEV;
3095            }
3096          }
3097        } else if (const SCEVAddRecExpr *AddRec =
3098                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3099          // Otherwise, this could be a loop like this:
3100          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3101          // In this case, j = {1,+,1}  and BEValue is j.
3102          // Because the other in-value of i (0) fits the evolution of BEValue
3103          // i really is an addrec evolution.
3104          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3105            const SCEV *StartVal = getSCEV(StartValueV);
3106
3107            // If StartVal = j.start - j.stride, we can use StartVal as the
3108            // initial step of the addrec evolution.
3109            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3110                                         AddRec->getOperand(1))) {
3111              // FIXME: For constant StartVal, we should be able to infer
3112              // no-wrap flags.
3113              const SCEV *PHISCEV =
3114                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3115                              SCEV::FlagAnyWrap);
3116
3117              // Okay, for the entire analysis of this edge we assumed the PHI
3118              // to be symbolic.  We now need to go back and purge all of the
3119              // entries for the scalars that use the symbolic expression.
3120              ForgetSymbolicName(PN, SymbolicName);
3121              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3122              return PHISCEV;
3123            }
3124          }
3125        }
3126      }
3127    }
3128
3129  // If the PHI has a single incoming value, follow that value, unless the
3130  // PHI's incoming blocks are in a different loop, in which case doing so
3131  // risks breaking LCSSA form. Instcombine would normally zap these, but
3132  // it doesn't have DominatorTree information, so it may miss cases.
3133  if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
3134    if (LI->replacementPreservesLCSSAForm(PN, V))
3135      return getSCEV(V);
3136
3137  // If it's not a loop phi, we can't handle it yet.
3138  return getUnknown(PN);
3139}
3140
3141/// createNodeForGEP - Expand GEP instructions into add and multiply
3142/// operations. This allows them to be analyzed by regular SCEV code.
3143///
3144const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3145
3146  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3147  // Add expression, because the Instruction may be guarded by control flow
3148  // and the no-overflow bits may not be valid for the expression in any
3149  // context.
3150  bool isInBounds = GEP->isInBounds();
3151
3152  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3153  Value *Base = GEP->getOperand(0);
3154  // Don't attempt to analyze GEPs over unsized objects.
3155  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3156    return getUnknown(GEP);
3157  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3158  gep_type_iterator GTI = gep_type_begin(GEP);
3159  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3160                                      E = GEP->op_end();
3161       I != E; ++I) {
3162    Value *Index = *I;
3163    // Compute the (potentially symbolic) offset in bytes for this index.
3164    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3165      // For a struct, add the member offset.
3166      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3167      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3168
3169      // Add the field offset to the running total offset.
3170      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3171    } else {
3172      // For an array, add the element offset, explicitly scaled.
3173      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3174      const SCEV *IndexS = getSCEV(Index);
3175      // Getelementptr indices are signed.
3176      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3177
3178      // Multiply the index by the element size to compute the element offset.
3179      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3180                                           isInBounds ? SCEV::FlagNSW :
3181                                           SCEV::FlagAnyWrap);
3182
3183      // Add the element offset to the running total offset.
3184      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3185    }
3186  }
3187
3188  // Get the SCEV for the GEP base.
3189  const SCEV *BaseS = getSCEV(Base);
3190
3191  // Add the total offset from all the GEP indices to the base.
3192  return getAddExpr(BaseS, TotalOffset,
3193                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3194}
3195
3196/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3197/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3198/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3199/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3200uint32_t
3201ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3202  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3203    return C->getValue()->getValue().countTrailingZeros();
3204
3205  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3206    return std::min(GetMinTrailingZeros(T->getOperand()),
3207                    (uint32_t)getTypeSizeInBits(T->getType()));
3208
3209  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3210    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3211    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3212             getTypeSizeInBits(E->getType()) : OpRes;
3213  }
3214
3215  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3216    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3217    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3218             getTypeSizeInBits(E->getType()) : OpRes;
3219  }
3220
3221  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3222    // The result is the min of all operands results.
3223    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3224    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3225      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3226    return MinOpRes;
3227  }
3228
3229  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3230    // The result is the sum of all operands results.
3231    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3232    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3233    for (unsigned i = 1, e = M->getNumOperands();
3234         SumOpRes != BitWidth && i != e; ++i)
3235      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3236                          BitWidth);
3237    return SumOpRes;
3238  }
3239
3240  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3241    // The result is the min of all operands results.
3242    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3243    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3244      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3245    return MinOpRes;
3246  }
3247
3248  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3249    // The result is the min of all operands results.
3250    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3251    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3252      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3253    return MinOpRes;
3254  }
3255
3256  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3257    // The result is the min of all operands results.
3258    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3259    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3260      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3261    return MinOpRes;
3262  }
3263
3264  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3265    // For a SCEVUnknown, ask ValueTracking.
3266    unsigned BitWidth = getTypeSizeInBits(U->getType());
3267    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3268    ComputeMaskedBits(U->getValue(), Zeros, Ones);
3269    return Zeros.countTrailingOnes();
3270  }
3271
3272  // SCEVUDivExpr
3273  return 0;
3274}
3275
3276/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3277///
3278ConstantRange
3279ScalarEvolution::getUnsignedRange(const SCEV *S) {
3280  // See if we've computed this range already.
3281  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3282  if (I != UnsignedRanges.end())
3283    return I->second;
3284
3285  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3286    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3287
3288  unsigned BitWidth = getTypeSizeInBits(S->getType());
3289  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3290
3291  // If the value has known zeros, the maximum unsigned value will have those
3292  // known zeros as well.
3293  uint32_t TZ = GetMinTrailingZeros(S);
3294  if (TZ != 0)
3295    ConservativeResult =
3296      ConstantRange(APInt::getMinValue(BitWidth),
3297                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3298
3299  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3300    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3301    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3302      X = X.add(getUnsignedRange(Add->getOperand(i)));
3303    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3304  }
3305
3306  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3307    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3308    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3309      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3310    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3311  }
3312
3313  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3314    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3315    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3316      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3317    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3318  }
3319
3320  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3321    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3322    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3323      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3324    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3325  }
3326
3327  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3328    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3329    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3330    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3331  }
3332
3333  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3334    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3335    return setUnsignedRange(ZExt,
3336      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3337  }
3338
3339  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3340    ConstantRange X = getUnsignedRange(SExt->getOperand());
3341    return setUnsignedRange(SExt,
3342      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3343  }
3344
3345  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3346    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3347    return setUnsignedRange(Trunc,
3348      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3349  }
3350
3351  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3352    // If there's no unsigned wrap, the value will never be less than its
3353    // initial value.
3354    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3355      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3356        if (!C->getValue()->isZero())
3357          ConservativeResult =
3358            ConservativeResult.intersectWith(
3359              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3360
3361    // TODO: non-affine addrec
3362    if (AddRec->isAffine()) {
3363      Type *Ty = AddRec->getType();
3364      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3365      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3366          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3367        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3368
3369        const SCEV *Start = AddRec->getStart();
3370        const SCEV *Step = AddRec->getStepRecurrence(*this);
3371
3372        ConstantRange StartRange = getUnsignedRange(Start);
3373        ConstantRange StepRange = getSignedRange(Step);
3374        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3375        ConstantRange EndRange =
3376          StartRange.add(MaxBECountRange.multiply(StepRange));
3377
3378        // Check for overflow. This must be done with ConstantRange arithmetic
3379        // because we could be called from within the ScalarEvolution overflow
3380        // checking code.
3381        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3382        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3383        ConstantRange ExtMaxBECountRange =
3384          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3385        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3386        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3387            ExtEndRange)
3388          return setUnsignedRange(AddRec, ConservativeResult);
3389
3390        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3391                                   EndRange.getUnsignedMin());
3392        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3393                                   EndRange.getUnsignedMax());
3394        if (Min.isMinValue() && Max.isMaxValue())
3395          return setUnsignedRange(AddRec, ConservativeResult);
3396        return setUnsignedRange(AddRec,
3397          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3398      }
3399    }
3400
3401    return setUnsignedRange(AddRec, ConservativeResult);
3402  }
3403
3404  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3405    // For a SCEVUnknown, ask ValueTracking.
3406    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3407    ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
3408    if (Ones == ~Zeros + 1)
3409      return setUnsignedRange(U, ConservativeResult);
3410    return setUnsignedRange(U,
3411      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3412  }
3413
3414  return setUnsignedRange(S, ConservativeResult);
3415}
3416
3417/// getSignedRange - Determine the signed range for a particular SCEV.
3418///
3419ConstantRange
3420ScalarEvolution::getSignedRange(const SCEV *S) {
3421  // See if we've computed this range already.
3422  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3423  if (I != SignedRanges.end())
3424    return I->second;
3425
3426  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3427    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3428
3429  unsigned BitWidth = getTypeSizeInBits(S->getType());
3430  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3431
3432  // If the value has known zeros, the maximum signed value will have those
3433  // known zeros as well.
3434  uint32_t TZ = GetMinTrailingZeros(S);
3435  if (TZ != 0)
3436    ConservativeResult =
3437      ConstantRange(APInt::getSignedMinValue(BitWidth),
3438                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3439
3440  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3441    ConstantRange X = getSignedRange(Add->getOperand(0));
3442    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3443      X = X.add(getSignedRange(Add->getOperand(i)));
3444    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3445  }
3446
3447  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3448    ConstantRange X = getSignedRange(Mul->getOperand(0));
3449    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3450      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3451    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3452  }
3453
3454  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3455    ConstantRange X = getSignedRange(SMax->getOperand(0));
3456    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3457      X = X.smax(getSignedRange(SMax->getOperand(i)));
3458    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3459  }
3460
3461  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3462    ConstantRange X = getSignedRange(UMax->getOperand(0));
3463    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3464      X = X.umax(getSignedRange(UMax->getOperand(i)));
3465    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3466  }
3467
3468  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3469    ConstantRange X = getSignedRange(UDiv->getLHS());
3470    ConstantRange Y = getSignedRange(UDiv->getRHS());
3471    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3472  }
3473
3474  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3475    ConstantRange X = getSignedRange(ZExt->getOperand());
3476    return setSignedRange(ZExt,
3477      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3478  }
3479
3480  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3481    ConstantRange X = getSignedRange(SExt->getOperand());
3482    return setSignedRange(SExt,
3483      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3484  }
3485
3486  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3487    ConstantRange X = getSignedRange(Trunc->getOperand());
3488    return setSignedRange(Trunc,
3489      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3490  }
3491
3492  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3493    // If there's no signed wrap, and all the operands have the same sign or
3494    // zero, the value won't ever change sign.
3495    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3496      bool AllNonNeg = true;
3497      bool AllNonPos = true;
3498      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3499        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3500        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3501      }
3502      if (AllNonNeg)
3503        ConservativeResult = ConservativeResult.intersectWith(
3504          ConstantRange(APInt(BitWidth, 0),
3505                        APInt::getSignedMinValue(BitWidth)));
3506      else if (AllNonPos)
3507        ConservativeResult = ConservativeResult.intersectWith(
3508          ConstantRange(APInt::getSignedMinValue(BitWidth),
3509                        APInt(BitWidth, 1)));
3510    }
3511
3512    // TODO: non-affine addrec
3513    if (AddRec->isAffine()) {
3514      Type *Ty = AddRec->getType();
3515      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3516      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3517          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3518        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3519
3520        const SCEV *Start = AddRec->getStart();
3521        const SCEV *Step = AddRec->getStepRecurrence(*this);
3522
3523        ConstantRange StartRange = getSignedRange(Start);
3524        ConstantRange StepRange = getSignedRange(Step);
3525        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3526        ConstantRange EndRange =
3527          StartRange.add(MaxBECountRange.multiply(StepRange));
3528
3529        // Check for overflow. This must be done with ConstantRange arithmetic
3530        // because we could be called from within the ScalarEvolution overflow
3531        // checking code.
3532        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3533        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3534        ConstantRange ExtMaxBECountRange =
3535          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3536        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3537        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3538            ExtEndRange)
3539          return setSignedRange(AddRec, ConservativeResult);
3540
3541        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3542                                   EndRange.getSignedMin());
3543        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3544                                   EndRange.getSignedMax());
3545        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3546          return setSignedRange(AddRec, ConservativeResult);
3547        return setSignedRange(AddRec,
3548          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3549      }
3550    }
3551
3552    return setSignedRange(AddRec, ConservativeResult);
3553  }
3554
3555  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3556    // For a SCEVUnknown, ask ValueTracking.
3557    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3558      return setSignedRange(U, ConservativeResult);
3559    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3560    if (NS == 1)
3561      return setSignedRange(U, ConservativeResult);
3562    return setSignedRange(U, ConservativeResult.intersectWith(
3563      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3564                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3565  }
3566
3567  return setSignedRange(S, ConservativeResult);
3568}
3569
3570/// createSCEV - We know that there is no SCEV for the specified value.
3571/// Analyze the expression.
3572///
3573const SCEV *ScalarEvolution::createSCEV(Value *V) {
3574  if (!isSCEVable(V->getType()))
3575    return getUnknown(V);
3576
3577  unsigned Opcode = Instruction::UserOp1;
3578  if (Instruction *I = dyn_cast<Instruction>(V)) {
3579    Opcode = I->getOpcode();
3580
3581    // Don't attempt to analyze instructions in blocks that aren't
3582    // reachable. Such instructions don't matter, and they aren't required
3583    // to obey basic rules for definitions dominating uses which this
3584    // analysis depends on.
3585    if (!DT->isReachableFromEntry(I->getParent()))
3586      return getUnknown(V);
3587  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3588    Opcode = CE->getOpcode();
3589  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3590    return getConstant(CI);
3591  else if (isa<ConstantPointerNull>(V))
3592    return getConstant(V->getType(), 0);
3593  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3594    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3595  else
3596    return getUnknown(V);
3597
3598  Operator *U = cast<Operator>(V);
3599  switch (Opcode) {
3600  case Instruction::Add: {
3601    // The simple thing to do would be to just call getSCEV on both operands
3602    // and call getAddExpr with the result. However if we're looking at a
3603    // bunch of things all added together, this can be quite inefficient,
3604    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3605    // Instead, gather up all the operands and make a single getAddExpr call.
3606    // LLVM IR canonical form means we need only traverse the left operands.
3607    //
3608    // Don't apply this instruction's NSW or NUW flags to the new
3609    // expression. The instruction may be guarded by control flow that the
3610    // no-wrap behavior depends on. Non-control-equivalent instructions can be
3611    // mapped to the same SCEV expression, and it would be incorrect to transfer
3612    // NSW/NUW semantics to those operations.
3613    SmallVector<const SCEV *, 4> AddOps;
3614    AddOps.push_back(getSCEV(U->getOperand(1)));
3615    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3616      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3617      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3618        break;
3619      U = cast<Operator>(Op);
3620      const SCEV *Op1 = getSCEV(U->getOperand(1));
3621      if (Opcode == Instruction::Sub)
3622        AddOps.push_back(getNegativeSCEV(Op1));
3623      else
3624        AddOps.push_back(Op1);
3625    }
3626    AddOps.push_back(getSCEV(U->getOperand(0)));
3627    return getAddExpr(AddOps);
3628  }
3629  case Instruction::Mul: {
3630    // Don't transfer NSW/NUW for the same reason as AddExpr.
3631    SmallVector<const SCEV *, 4> MulOps;
3632    MulOps.push_back(getSCEV(U->getOperand(1)));
3633    for (Value *Op = U->getOperand(0);
3634         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3635         Op = U->getOperand(0)) {
3636      U = cast<Operator>(Op);
3637      MulOps.push_back(getSCEV(U->getOperand(1)));
3638    }
3639    MulOps.push_back(getSCEV(U->getOperand(0)));
3640    return getMulExpr(MulOps);
3641  }
3642  case Instruction::UDiv:
3643    return getUDivExpr(getSCEV(U->getOperand(0)),
3644                       getSCEV(U->getOperand(1)));
3645  case Instruction::Sub:
3646    return getMinusSCEV(getSCEV(U->getOperand(0)),
3647                        getSCEV(U->getOperand(1)));
3648  case Instruction::And:
3649    // For an expression like x&255 that merely masks off the high bits,
3650    // use zext(trunc(x)) as the SCEV expression.
3651    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3652      if (CI->isNullValue())
3653        return getSCEV(U->getOperand(1));
3654      if (CI->isAllOnesValue())
3655        return getSCEV(U->getOperand(0));
3656      const APInt &A = CI->getValue();
3657
3658      // Instcombine's ShrinkDemandedConstant may strip bits out of
3659      // constants, obscuring what would otherwise be a low-bits mask.
3660      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3661      // knew about to reconstruct a low-bits mask value.
3662      unsigned LZ = A.countLeadingZeros();
3663      unsigned BitWidth = A.getBitWidth();
3664      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3665      ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
3666
3667      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3668
3669      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3670        return
3671          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3672                                IntegerType::get(getContext(), BitWidth - LZ)),
3673                            U->getType());
3674    }
3675    break;
3676
3677  case Instruction::Or:
3678    // If the RHS of the Or is a constant, we may have something like:
3679    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3680    // optimizations will transparently handle this case.
3681    //
3682    // In order for this transformation to be safe, the LHS must be of the
3683    // form X*(2^n) and the Or constant must be less than 2^n.
3684    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3685      const SCEV *LHS = getSCEV(U->getOperand(0));
3686      const APInt &CIVal = CI->getValue();
3687      if (GetMinTrailingZeros(LHS) >=
3688          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3689        // Build a plain add SCEV.
3690        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3691        // If the LHS of the add was an addrec and it has no-wrap flags,
3692        // transfer the no-wrap flags, since an or won't introduce a wrap.
3693        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3694          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3695          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3696            OldAR->getNoWrapFlags());
3697        }
3698        return S;
3699      }
3700    }
3701    break;
3702  case Instruction::Xor:
3703    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3704      // If the RHS of the xor is a signbit, then this is just an add.
3705      // Instcombine turns add of signbit into xor as a strength reduction step.
3706      if (CI->getValue().isSignBit())
3707        return getAddExpr(getSCEV(U->getOperand(0)),
3708                          getSCEV(U->getOperand(1)));
3709
3710      // If the RHS of xor is -1, then this is a not operation.
3711      if (CI->isAllOnesValue())
3712        return getNotSCEV(getSCEV(U->getOperand(0)));
3713
3714      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3715      // This is a variant of the check for xor with -1, and it handles
3716      // the case where instcombine has trimmed non-demanded bits out
3717      // of an xor with -1.
3718      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3719        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3720          if (BO->getOpcode() == Instruction::And &&
3721              LCI->getValue() == CI->getValue())
3722            if (const SCEVZeroExtendExpr *Z =
3723                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3724              Type *UTy = U->getType();
3725              const SCEV *Z0 = Z->getOperand();
3726              Type *Z0Ty = Z0->getType();
3727              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3728
3729              // If C is a low-bits mask, the zero extend is serving to
3730              // mask off the high bits. Complement the operand and
3731              // re-apply the zext.
3732              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3733                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3734
3735              // If C is a single bit, it may be in the sign-bit position
3736              // before the zero-extend. In this case, represent the xor
3737              // using an add, which is equivalent, and re-apply the zext.
3738              APInt Trunc = CI->getValue().trunc(Z0TySize);
3739              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3740                  Trunc.isSignBit())
3741                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3742                                         UTy);
3743            }
3744    }
3745    break;
3746
3747  case Instruction::Shl:
3748    // Turn shift left of a constant amount into a multiply.
3749    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3750      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3751
3752      // If the shift count is not less than the bitwidth, the result of
3753      // the shift is undefined. Don't try to analyze it, because the
3754      // resolution chosen here may differ from the resolution chosen in
3755      // other parts of the compiler.
3756      if (SA->getValue().uge(BitWidth))
3757        break;
3758
3759      Constant *X = ConstantInt::get(getContext(),
3760        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3761      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3762    }
3763    break;
3764
3765  case Instruction::LShr:
3766    // Turn logical shift right of a constant into a unsigned divide.
3767    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3768      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3769
3770      // If the shift count is not less than the bitwidth, the result of
3771      // the shift is undefined. Don't try to analyze it, because the
3772      // resolution chosen here may differ from the resolution chosen in
3773      // other parts of the compiler.
3774      if (SA->getValue().uge(BitWidth))
3775        break;
3776
3777      Constant *X = ConstantInt::get(getContext(),
3778        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3779      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3780    }
3781    break;
3782
3783  case Instruction::AShr:
3784    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3785    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3786      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3787        if (L->getOpcode() == Instruction::Shl &&
3788            L->getOperand(1) == U->getOperand(1)) {
3789          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3790
3791          // If the shift count is not less than the bitwidth, the result of
3792          // the shift is undefined. Don't try to analyze it, because the
3793          // resolution chosen here may differ from the resolution chosen in
3794          // other parts of the compiler.
3795          if (CI->getValue().uge(BitWidth))
3796            break;
3797
3798          uint64_t Amt = BitWidth - CI->getZExtValue();
3799          if (Amt == BitWidth)
3800            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3801          return
3802            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3803                                              IntegerType::get(getContext(),
3804                                                               Amt)),
3805                              U->getType());
3806        }
3807    break;
3808
3809  case Instruction::Trunc:
3810    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3811
3812  case Instruction::ZExt:
3813    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3814
3815  case Instruction::SExt:
3816    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3817
3818  case Instruction::BitCast:
3819    // BitCasts are no-op casts so we just eliminate the cast.
3820    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3821      return getSCEV(U->getOperand(0));
3822    break;
3823
3824  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3825  // lead to pointer expressions which cannot safely be expanded to GEPs,
3826  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3827  // simplifying integer expressions.
3828
3829  case Instruction::GetElementPtr:
3830    return createNodeForGEP(cast<GEPOperator>(U));
3831
3832  case Instruction::PHI:
3833    return createNodeForPHI(cast<PHINode>(U));
3834
3835  case Instruction::Select:
3836    // This could be a smax or umax that was lowered earlier.
3837    // Try to recover it.
3838    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3839      Value *LHS = ICI->getOperand(0);
3840      Value *RHS = ICI->getOperand(1);
3841      switch (ICI->getPredicate()) {
3842      case ICmpInst::ICMP_SLT:
3843      case ICmpInst::ICMP_SLE:
3844        std::swap(LHS, RHS);
3845        // fall through
3846      case ICmpInst::ICMP_SGT:
3847      case ICmpInst::ICMP_SGE:
3848        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3849        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3850        if (LHS->getType() == U->getType()) {
3851          const SCEV *LS = getSCEV(LHS);
3852          const SCEV *RS = getSCEV(RHS);
3853          const SCEV *LA = getSCEV(U->getOperand(1));
3854          const SCEV *RA = getSCEV(U->getOperand(2));
3855          const SCEV *LDiff = getMinusSCEV(LA, LS);
3856          const SCEV *RDiff = getMinusSCEV(RA, RS);
3857          if (LDiff == RDiff)
3858            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3859          LDiff = getMinusSCEV(LA, RS);
3860          RDiff = getMinusSCEV(RA, LS);
3861          if (LDiff == RDiff)
3862            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3863        }
3864        break;
3865      case ICmpInst::ICMP_ULT:
3866      case ICmpInst::ICMP_ULE:
3867        std::swap(LHS, RHS);
3868        // fall through
3869      case ICmpInst::ICMP_UGT:
3870      case ICmpInst::ICMP_UGE:
3871        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3872        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3873        if (LHS->getType() == U->getType()) {
3874          const SCEV *LS = getSCEV(LHS);
3875          const SCEV *RS = getSCEV(RHS);
3876          const SCEV *LA = getSCEV(U->getOperand(1));
3877          const SCEV *RA = getSCEV(U->getOperand(2));
3878          const SCEV *LDiff = getMinusSCEV(LA, LS);
3879          const SCEV *RDiff = getMinusSCEV(RA, RS);
3880          if (LDiff == RDiff)
3881            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3882          LDiff = getMinusSCEV(LA, RS);
3883          RDiff = getMinusSCEV(RA, LS);
3884          if (LDiff == RDiff)
3885            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3886        }
3887        break;
3888      case ICmpInst::ICMP_NE:
3889        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3890        if (LHS->getType() == U->getType() &&
3891            isa<ConstantInt>(RHS) &&
3892            cast<ConstantInt>(RHS)->isZero()) {
3893          const SCEV *One = getConstant(LHS->getType(), 1);
3894          const SCEV *LS = getSCEV(LHS);
3895          const SCEV *LA = getSCEV(U->getOperand(1));
3896          const SCEV *RA = getSCEV(U->getOperand(2));
3897          const SCEV *LDiff = getMinusSCEV(LA, LS);
3898          const SCEV *RDiff = getMinusSCEV(RA, One);
3899          if (LDiff == RDiff)
3900            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3901        }
3902        break;
3903      case ICmpInst::ICMP_EQ:
3904        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3905        if (LHS->getType() == U->getType() &&
3906            isa<ConstantInt>(RHS) &&
3907            cast<ConstantInt>(RHS)->isZero()) {
3908          const SCEV *One = getConstant(LHS->getType(), 1);
3909          const SCEV *LS = getSCEV(LHS);
3910          const SCEV *LA = getSCEV(U->getOperand(1));
3911          const SCEV *RA = getSCEV(U->getOperand(2));
3912          const SCEV *LDiff = getMinusSCEV(LA, One);
3913          const SCEV *RDiff = getMinusSCEV(RA, LS);
3914          if (LDiff == RDiff)
3915            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3916        }
3917        break;
3918      default:
3919        break;
3920      }
3921    }
3922
3923  default: // We cannot analyze this expression.
3924    break;
3925  }
3926
3927  return getUnknown(V);
3928}
3929
3930
3931
3932//===----------------------------------------------------------------------===//
3933//                   Iteration Count Computation Code
3934//
3935
3936/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3937/// normal unsigned value. Returns 0 if the trip count is unknown or not
3938/// constant. Will also return 0 if the maximum trip count is very large (>=
3939/// 2^32).
3940///
3941/// This "trip count" assumes that control exits via ExitingBlock. More
3942/// precisely, it is the number of times that control may reach ExitingBlock
3943/// before taking the branch. For loops with multiple exits, it may not be the
3944/// number times that the loop header executes because the loop may exit
3945/// prematurely via another branch.
3946unsigned ScalarEvolution::
3947getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
3948  const SCEVConstant *ExitCount =
3949    dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
3950  if (!ExitCount)
3951    return 0;
3952
3953  ConstantInt *ExitConst = ExitCount->getValue();
3954
3955  // Guard against huge trip counts.
3956  if (ExitConst->getValue().getActiveBits() > 32)
3957    return 0;
3958
3959  // In case of integer overflow, this returns 0, which is correct.
3960  return ((unsigned)ExitConst->getZExtValue()) + 1;
3961}
3962
3963/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3964/// trip count of this loop as a normal unsigned value, if possible. This
3965/// means that the actual trip count is always a multiple of the returned
3966/// value (don't forget the trip count could very well be zero as well!).
3967///
3968/// Returns 1 if the trip count is unknown or not guaranteed to be the
3969/// multiple of a constant (which is also the case if the trip count is simply
3970/// constant, use getSmallConstantTripCount for that case), Will also return 1
3971/// if the trip count is very large (>= 2^32).
3972///
3973/// As explained in the comments for getSmallConstantTripCount, this assumes
3974/// that control exits the loop via ExitingBlock.
3975unsigned ScalarEvolution::
3976getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3977  const SCEV *ExitCount = getExitCount(L, ExitingBlock);
3978  if (ExitCount == getCouldNotCompute())
3979    return 1;
3980
3981  // Get the trip count from the BE count by adding 1.
3982  const SCEV *TCMul = getAddExpr(ExitCount,
3983                                 getConstant(ExitCount->getType(), 1));
3984  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3985  // to factor simple cases.
3986  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3987    TCMul = Mul->getOperand(0);
3988
3989  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3990  if (!MulC)
3991    return 1;
3992
3993  ConstantInt *Result = MulC->getValue();
3994
3995  // Guard against huge trip counts.
3996  if (!Result || Result->getValue().getActiveBits() > 32)
3997    return 1;
3998
3999  return (unsigned)Result->getZExtValue();
4000}
4001
4002// getExitCount - Get the expression for the number of loop iterations for which
4003// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
4004// SCEVCouldNotCompute.
4005const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4006  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4007}
4008
4009/// getBackedgeTakenCount - If the specified loop has a predictable
4010/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4011/// object. The backedge-taken count is the number of times the loop header
4012/// will be branched to from within the loop. This is one less than the
4013/// trip count of the loop, since it doesn't count the first iteration,
4014/// when the header is branched to from outside the loop.
4015///
4016/// Note that it is not valid to call this method on a loop without a
4017/// loop-invariant backedge-taken count (see
4018/// hasLoopInvariantBackedgeTakenCount).
4019///
4020const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4021  return getBackedgeTakenInfo(L).getExact(this);
4022}
4023
4024/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4025/// return the least SCEV value that is known never to be less than the
4026/// actual backedge taken count.
4027const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4028  return getBackedgeTakenInfo(L).getMax(this);
4029}
4030
4031/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4032/// onto the given Worklist.
4033static void
4034PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4035  BasicBlock *Header = L->getHeader();
4036
4037  // Push all Loop-header PHIs onto the Worklist stack.
4038  for (BasicBlock::iterator I = Header->begin();
4039       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4040    Worklist.push_back(PN);
4041}
4042
4043const ScalarEvolution::BackedgeTakenInfo &
4044ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4045  // Initially insert an invalid entry for this loop. If the insertion
4046  // succeeds, proceed to actually compute a backedge-taken count and
4047  // update the value. The temporary CouldNotCompute value tells SCEV
4048  // code elsewhere that it shouldn't attempt to request a new
4049  // backedge-taken count, which could result in infinite recursion.
4050  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4051    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4052  if (!Pair.second)
4053    return Pair.first->second;
4054
4055  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4056  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4057  // must be cleared in this scope.
4058  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4059
4060  if (Result.getExact(this) != getCouldNotCompute()) {
4061    assert(isLoopInvariant(Result.getExact(this), L) &&
4062           isLoopInvariant(Result.getMax(this), L) &&
4063           "Computed backedge-taken count isn't loop invariant for loop!");
4064    ++NumTripCountsComputed;
4065  }
4066  else if (Result.getMax(this) == getCouldNotCompute() &&
4067           isa<PHINode>(L->getHeader()->begin())) {
4068    // Only count loops that have phi nodes as not being computable.
4069    ++NumTripCountsNotComputed;
4070  }
4071
4072  // Now that we know more about the trip count for this loop, forget any
4073  // existing SCEV values for PHI nodes in this loop since they are only
4074  // conservative estimates made without the benefit of trip count
4075  // information. This is similar to the code in forgetLoop, except that
4076  // it handles SCEVUnknown PHI nodes specially.
4077  if (Result.hasAnyInfo()) {
4078    SmallVector<Instruction *, 16> Worklist;
4079    PushLoopPHIs(L, Worklist);
4080
4081    SmallPtrSet<Instruction *, 8> Visited;
4082    while (!Worklist.empty()) {
4083      Instruction *I = Worklist.pop_back_val();
4084      if (!Visited.insert(I)) continue;
4085
4086      ValueExprMapType::iterator It =
4087        ValueExprMap.find(static_cast<Value *>(I));
4088      if (It != ValueExprMap.end()) {
4089        const SCEV *Old = It->second;
4090
4091        // SCEVUnknown for a PHI either means that it has an unrecognized
4092        // structure, or it's a PHI that's in the progress of being computed
4093        // by createNodeForPHI.  In the former case, additional loop trip
4094        // count information isn't going to change anything. In the later
4095        // case, createNodeForPHI will perform the necessary updates on its
4096        // own when it gets to that point.
4097        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4098          forgetMemoizedResults(Old);
4099          ValueExprMap.erase(It);
4100        }
4101        if (PHINode *PN = dyn_cast<PHINode>(I))
4102          ConstantEvolutionLoopExitValue.erase(PN);
4103      }
4104
4105      PushDefUseChildren(I, Worklist);
4106    }
4107  }
4108
4109  // Re-lookup the insert position, since the call to
4110  // ComputeBackedgeTakenCount above could result in a
4111  // recusive call to getBackedgeTakenInfo (on a different
4112  // loop), which would invalidate the iterator computed
4113  // earlier.
4114  return BackedgeTakenCounts.find(L)->second = Result;
4115}
4116
4117/// forgetLoop - This method should be called by the client when it has
4118/// changed a loop in a way that may effect ScalarEvolution's ability to
4119/// compute a trip count, or if the loop is deleted.
4120void ScalarEvolution::forgetLoop(const Loop *L) {
4121  // Drop any stored trip count value.
4122  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4123    BackedgeTakenCounts.find(L);
4124  if (BTCPos != BackedgeTakenCounts.end()) {
4125    BTCPos->second.clear();
4126    BackedgeTakenCounts.erase(BTCPos);
4127  }
4128
4129  // Drop information about expressions based on loop-header PHIs.
4130  SmallVector<Instruction *, 16> Worklist;
4131  PushLoopPHIs(L, Worklist);
4132
4133  SmallPtrSet<Instruction *, 8> Visited;
4134  while (!Worklist.empty()) {
4135    Instruction *I = Worklist.pop_back_val();
4136    if (!Visited.insert(I)) continue;
4137
4138    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4139    if (It != ValueExprMap.end()) {
4140      forgetMemoizedResults(It->second);
4141      ValueExprMap.erase(It);
4142      if (PHINode *PN = dyn_cast<PHINode>(I))
4143        ConstantEvolutionLoopExitValue.erase(PN);
4144    }
4145
4146    PushDefUseChildren(I, Worklist);
4147  }
4148
4149  // Forget all contained loops too, to avoid dangling entries in the
4150  // ValuesAtScopes map.
4151  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4152    forgetLoop(*I);
4153}
4154
4155/// forgetValue - This method should be called by the client when it has
4156/// changed a value in a way that may effect its value, or which may
4157/// disconnect it from a def-use chain linking it to a loop.
4158void ScalarEvolution::forgetValue(Value *V) {
4159  Instruction *I = dyn_cast<Instruction>(V);
4160  if (!I) return;
4161
4162  // Drop information about expressions based on loop-header PHIs.
4163  SmallVector<Instruction *, 16> Worklist;
4164  Worklist.push_back(I);
4165
4166  SmallPtrSet<Instruction *, 8> Visited;
4167  while (!Worklist.empty()) {
4168    I = Worklist.pop_back_val();
4169    if (!Visited.insert(I)) continue;
4170
4171    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4172    if (It != ValueExprMap.end()) {
4173      forgetMemoizedResults(It->second);
4174      ValueExprMap.erase(It);
4175      if (PHINode *PN = dyn_cast<PHINode>(I))
4176        ConstantEvolutionLoopExitValue.erase(PN);
4177    }
4178
4179    PushDefUseChildren(I, Worklist);
4180  }
4181}
4182
4183/// getExact - Get the exact loop backedge taken count considering all loop
4184/// exits. A computable result can only be return for loops with a single exit.
4185/// Returning the minimum taken count among all exits is incorrect because one
4186/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4187/// the limit of each loop test is never skipped. This is a valid assumption as
4188/// long as the loop exits via that test. For precise results, it is the
4189/// caller's responsibility to specify the relevant loop exit using
4190/// getExact(ExitingBlock, SE).
4191const SCEV *
4192ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4193  // If any exits were not computable, the loop is not computable.
4194  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4195
4196  // We need exactly one computable exit.
4197  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4198  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4199
4200  const SCEV *BECount = 0;
4201  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4202       ENT != 0; ENT = ENT->getNextExit()) {
4203
4204    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4205
4206    if (!BECount)
4207      BECount = ENT->ExactNotTaken;
4208    else if (BECount != ENT->ExactNotTaken)
4209      return SE->getCouldNotCompute();
4210  }
4211  assert(BECount && "Invalid not taken count for loop exit");
4212  return BECount;
4213}
4214
4215/// getExact - Get the exact not taken count for this loop exit.
4216const SCEV *
4217ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4218                                             ScalarEvolution *SE) const {
4219  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4220       ENT != 0; ENT = ENT->getNextExit()) {
4221
4222    if (ENT->ExitingBlock == ExitingBlock)
4223      return ENT->ExactNotTaken;
4224  }
4225  return SE->getCouldNotCompute();
4226}
4227
4228/// getMax - Get the max backedge taken count for the loop.
4229const SCEV *
4230ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4231  return Max ? Max : SE->getCouldNotCompute();
4232}
4233
4234/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4235/// computable exit into a persistent ExitNotTakenInfo array.
4236ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4237  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4238  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4239
4240  if (!Complete)
4241    ExitNotTaken.setIncomplete();
4242
4243  unsigned NumExits = ExitCounts.size();
4244  if (NumExits == 0) return;
4245
4246  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4247  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4248  if (NumExits == 1) return;
4249
4250  // Handle the rare case of multiple computable exits.
4251  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4252
4253  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4254  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4255    PrevENT->setNextExit(ENT);
4256    ENT->ExitingBlock = ExitCounts[i].first;
4257    ENT->ExactNotTaken = ExitCounts[i].second;
4258  }
4259}
4260
4261/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4262void ScalarEvolution::BackedgeTakenInfo::clear() {
4263  ExitNotTaken.ExitingBlock = 0;
4264  ExitNotTaken.ExactNotTaken = 0;
4265  delete[] ExitNotTaken.getNextExit();
4266}
4267
4268/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4269/// of the specified loop will execute.
4270ScalarEvolution::BackedgeTakenInfo
4271ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4272  SmallVector<BasicBlock *, 8> ExitingBlocks;
4273  L->getExitingBlocks(ExitingBlocks);
4274
4275  // Examine all exits and pick the most conservative values.
4276  const SCEV *MaxBECount = getCouldNotCompute();
4277  bool CouldComputeBECount = true;
4278  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4279  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4280    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4281    if (EL.Exact == getCouldNotCompute())
4282      // We couldn't compute an exact value for this exit, so
4283      // we won't be able to compute an exact value for the loop.
4284      CouldComputeBECount = false;
4285    else
4286      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4287
4288    if (MaxBECount == getCouldNotCompute())
4289      MaxBECount = EL.Max;
4290    else if (EL.Max != getCouldNotCompute()) {
4291      // We cannot take the "min" MaxBECount, because non-unit stride loops may
4292      // skip some loop tests. Taking the max over the exits is sufficiently
4293      // conservative.  TODO: We could do better taking into consideration
4294      // that (1) the loop has unit stride (2) the last loop test is
4295      // less-than/greater-than (3) any loop test is less-than/greater-than AND
4296      // falls-through some constant times less then the other tests.
4297      MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4298    }
4299  }
4300
4301  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4302}
4303
4304/// ComputeExitLimit - Compute the number of times the backedge of the specified
4305/// loop will execute if it exits via the specified block.
4306ScalarEvolution::ExitLimit
4307ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4308
4309  // Okay, we've chosen an exiting block.  See what condition causes us to
4310  // exit at this block.
4311  //
4312  // FIXME: we should be able to handle switch instructions (with a single exit)
4313  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4314  if (ExitBr == 0) return getCouldNotCompute();
4315  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4316
4317  // At this point, we know we have a conditional branch that determines whether
4318  // the loop is exited.  However, we don't know if the branch is executed each
4319  // time through the loop.  If not, then the execution count of the branch will
4320  // not be equal to the trip count of the loop.
4321  //
4322  // Currently we check for this by checking to see if the Exit branch goes to
4323  // the loop header.  If so, we know it will always execute the same number of
4324  // times as the loop.  We also handle the case where the exit block *is* the
4325  // loop header.  This is common for un-rotated loops.
4326  //
4327  // If both of those tests fail, walk up the unique predecessor chain to the
4328  // header, stopping if there is an edge that doesn't exit the loop. If the
4329  // header is reached, the execution count of the branch will be equal to the
4330  // trip count of the loop.
4331  //
4332  //  More extensive analysis could be done to handle more cases here.
4333  //
4334  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4335      ExitBr->getSuccessor(1) != L->getHeader() &&
4336      ExitBr->getParent() != L->getHeader()) {
4337    // The simple checks failed, try climbing the unique predecessor chain
4338    // up to the header.
4339    bool Ok = false;
4340    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4341      BasicBlock *Pred = BB->getUniquePredecessor();
4342      if (!Pred)
4343        return getCouldNotCompute();
4344      TerminatorInst *PredTerm = Pred->getTerminator();
4345      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4346        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4347        if (PredSucc == BB)
4348          continue;
4349        // If the predecessor has a successor that isn't BB and isn't
4350        // outside the loop, assume the worst.
4351        if (L->contains(PredSucc))
4352          return getCouldNotCompute();
4353      }
4354      if (Pred == L->getHeader()) {
4355        Ok = true;
4356        break;
4357      }
4358      BB = Pred;
4359    }
4360    if (!Ok)
4361      return getCouldNotCompute();
4362  }
4363
4364  // Proceed to the next level to examine the exit condition expression.
4365  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4366                                  ExitBr->getSuccessor(0),
4367                                  ExitBr->getSuccessor(1));
4368}
4369
4370/// ComputeExitLimitFromCond - Compute the number of times the
4371/// backedge of the specified loop will execute if its exit condition
4372/// were a conditional branch of ExitCond, TBB, and FBB.
4373ScalarEvolution::ExitLimit
4374ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4375                                          Value *ExitCond,
4376                                          BasicBlock *TBB,
4377                                          BasicBlock *FBB) {
4378  // Check if the controlling expression for this loop is an And or Or.
4379  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4380    if (BO->getOpcode() == Instruction::And) {
4381      // Recurse on the operands of the and.
4382      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4383      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4384      const SCEV *BECount = getCouldNotCompute();
4385      const SCEV *MaxBECount = getCouldNotCompute();
4386      if (L->contains(TBB)) {
4387        // Both conditions must be true for the loop to continue executing.
4388        // Choose the less conservative count.
4389        if (EL0.Exact == getCouldNotCompute() ||
4390            EL1.Exact == getCouldNotCompute())
4391          BECount = getCouldNotCompute();
4392        else
4393          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4394        if (EL0.Max == getCouldNotCompute())
4395          MaxBECount = EL1.Max;
4396        else if (EL1.Max == getCouldNotCompute())
4397          MaxBECount = EL0.Max;
4398        else
4399          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4400      } else {
4401        // Both conditions must be true at the same time for the loop to exit.
4402        // For now, be conservative.
4403        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4404        if (EL0.Max == EL1.Max)
4405          MaxBECount = EL0.Max;
4406        if (EL0.Exact == EL1.Exact)
4407          BECount = EL0.Exact;
4408      }
4409
4410      return ExitLimit(BECount, MaxBECount);
4411    }
4412    if (BO->getOpcode() == Instruction::Or) {
4413      // Recurse on the operands of the or.
4414      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4415      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4416      const SCEV *BECount = getCouldNotCompute();
4417      const SCEV *MaxBECount = getCouldNotCompute();
4418      if (L->contains(FBB)) {
4419        // Both conditions must be false for the loop to continue executing.
4420        // Choose the less conservative count.
4421        if (EL0.Exact == getCouldNotCompute() ||
4422            EL1.Exact == getCouldNotCompute())
4423          BECount = getCouldNotCompute();
4424        else
4425          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4426        if (EL0.Max == getCouldNotCompute())
4427          MaxBECount = EL1.Max;
4428        else if (EL1.Max == getCouldNotCompute())
4429          MaxBECount = EL0.Max;
4430        else
4431          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4432      } else {
4433        // Both conditions must be false at the same time for the loop to exit.
4434        // For now, be conservative.
4435        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4436        if (EL0.Max == EL1.Max)
4437          MaxBECount = EL0.Max;
4438        if (EL0.Exact == EL1.Exact)
4439          BECount = EL0.Exact;
4440      }
4441
4442      return ExitLimit(BECount, MaxBECount);
4443    }
4444  }
4445
4446  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4447  // Proceed to the next level to examine the icmp.
4448  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4449    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4450
4451  // Check for a constant condition. These are normally stripped out by
4452  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4453  // preserve the CFG and is temporarily leaving constant conditions
4454  // in place.
4455  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4456    if (L->contains(FBB) == !CI->getZExtValue())
4457      // The backedge is always taken.
4458      return getCouldNotCompute();
4459    else
4460      // The backedge is never taken.
4461      return getConstant(CI->getType(), 0);
4462  }
4463
4464  // If it's not an integer or pointer comparison then compute it the hard way.
4465  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4466}
4467
4468/// ComputeExitLimitFromICmp - Compute the number of times the
4469/// backedge of the specified loop will execute if its exit condition
4470/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4471ScalarEvolution::ExitLimit
4472ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4473                                          ICmpInst *ExitCond,
4474                                          BasicBlock *TBB,
4475                                          BasicBlock *FBB) {
4476
4477  // If the condition was exit on true, convert the condition to exit on false
4478  ICmpInst::Predicate Cond;
4479  if (!L->contains(FBB))
4480    Cond = ExitCond->getPredicate();
4481  else
4482    Cond = ExitCond->getInversePredicate();
4483
4484  // Handle common loops like: for (X = "string"; *X; ++X)
4485  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4486    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4487      ExitLimit ItCnt =
4488        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4489      if (ItCnt.hasAnyInfo())
4490        return ItCnt;
4491    }
4492
4493  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4494  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4495
4496  // Try to evaluate any dependencies out of the loop.
4497  LHS = getSCEVAtScope(LHS, L);
4498  RHS = getSCEVAtScope(RHS, L);
4499
4500  // At this point, we would like to compute how many iterations of the
4501  // loop the predicate will return true for these inputs.
4502  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4503    // If there is a loop-invariant, force it into the RHS.
4504    std::swap(LHS, RHS);
4505    Cond = ICmpInst::getSwappedPredicate(Cond);
4506  }
4507
4508  // Simplify the operands before analyzing them.
4509  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4510
4511  // If we have a comparison of a chrec against a constant, try to use value
4512  // ranges to answer this query.
4513  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4514    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4515      if (AddRec->getLoop() == L) {
4516        // Form the constant range.
4517        ConstantRange CompRange(
4518            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4519
4520        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4521        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4522      }
4523
4524  switch (Cond) {
4525  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4526    // Convert to: while (X-Y != 0)
4527    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4528    if (EL.hasAnyInfo()) return EL;
4529    break;
4530  }
4531  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4532    // Convert to: while (X-Y == 0)
4533    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4534    if (EL.hasAnyInfo()) return EL;
4535    break;
4536  }
4537  case ICmpInst::ICMP_SLT: {
4538    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4539    if (EL.hasAnyInfo()) return EL;
4540    break;
4541  }
4542  case ICmpInst::ICMP_SGT: {
4543    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4544                                             getNotSCEV(RHS), L, true);
4545    if (EL.hasAnyInfo()) return EL;
4546    break;
4547  }
4548  case ICmpInst::ICMP_ULT: {
4549    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4550    if (EL.hasAnyInfo()) return EL;
4551    break;
4552  }
4553  case ICmpInst::ICMP_UGT: {
4554    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4555                                             getNotSCEV(RHS), L, false);
4556    if (EL.hasAnyInfo()) return EL;
4557    break;
4558  }
4559  default:
4560#if 0
4561    dbgs() << "ComputeBackedgeTakenCount ";
4562    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4563      dbgs() << "[unsigned] ";
4564    dbgs() << *LHS << "   "
4565         << Instruction::getOpcodeName(Instruction::ICmp)
4566         << "   " << *RHS << "\n";
4567#endif
4568    break;
4569  }
4570  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4571}
4572
4573static ConstantInt *
4574EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4575                                ScalarEvolution &SE) {
4576  const SCEV *InVal = SE.getConstant(C);
4577  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4578  assert(isa<SCEVConstant>(Val) &&
4579         "Evaluation of SCEV at constant didn't fold correctly?");
4580  return cast<SCEVConstant>(Val)->getValue();
4581}
4582
4583/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4584/// 'icmp op load X, cst', try to see if we can compute the backedge
4585/// execution count.
4586ScalarEvolution::ExitLimit
4587ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4588  LoadInst *LI,
4589  Constant *RHS,
4590  const Loop *L,
4591  ICmpInst::Predicate predicate) {
4592
4593  if (LI->isVolatile()) return getCouldNotCompute();
4594
4595  // Check to see if the loaded pointer is a getelementptr of a global.
4596  // TODO: Use SCEV instead of manually grubbing with GEPs.
4597  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4598  if (!GEP) return getCouldNotCompute();
4599
4600  // Make sure that it is really a constant global we are gepping, with an
4601  // initializer, and make sure the first IDX is really 0.
4602  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4603  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4604      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4605      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4606    return getCouldNotCompute();
4607
4608  // Okay, we allow one non-constant index into the GEP instruction.
4609  Value *VarIdx = 0;
4610  std::vector<Constant*> Indexes;
4611  unsigned VarIdxNum = 0;
4612  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4613    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4614      Indexes.push_back(CI);
4615    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4616      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4617      VarIdx = GEP->getOperand(i);
4618      VarIdxNum = i-2;
4619      Indexes.push_back(0);
4620    }
4621
4622  // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4623  if (!VarIdx)
4624    return getCouldNotCompute();
4625
4626  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4627  // Check to see if X is a loop variant variable value now.
4628  const SCEV *Idx = getSCEV(VarIdx);
4629  Idx = getSCEVAtScope(Idx, L);
4630
4631  // We can only recognize very limited forms of loop index expressions, in
4632  // particular, only affine AddRec's like {C1,+,C2}.
4633  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4634  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4635      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4636      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4637    return getCouldNotCompute();
4638
4639  unsigned MaxSteps = MaxBruteForceIterations;
4640  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4641    ConstantInt *ItCst = ConstantInt::get(
4642                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4643    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4644
4645    // Form the GEP offset.
4646    Indexes[VarIdxNum] = Val;
4647
4648    Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4649                                                         Indexes);
4650    if (Result == 0) break;  // Cannot compute!
4651
4652    // Evaluate the condition for this iteration.
4653    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4654    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4655    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4656#if 0
4657      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4658             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4659             << "***\n";
4660#endif
4661      ++NumArrayLenItCounts;
4662      return getConstant(ItCst);   // Found terminating iteration!
4663    }
4664  }
4665  return getCouldNotCompute();
4666}
4667
4668
4669/// CanConstantFold - Return true if we can constant fold an instruction of the
4670/// specified type, assuming that all operands were constants.
4671static bool CanConstantFold(const Instruction *I) {
4672  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4673      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4674      isa<LoadInst>(I))
4675    return true;
4676
4677  if (const CallInst *CI = dyn_cast<CallInst>(I))
4678    if (const Function *F = CI->getCalledFunction())
4679      return canConstantFoldCallTo(F);
4680  return false;
4681}
4682
4683/// Determine whether this instruction can constant evolve within this loop
4684/// assuming its operands can all constant evolve.
4685static bool canConstantEvolve(Instruction *I, const Loop *L) {
4686  // An instruction outside of the loop can't be derived from a loop PHI.
4687  if (!L->contains(I)) return false;
4688
4689  if (isa<PHINode>(I)) {
4690    if (L->getHeader() == I->getParent())
4691      return true;
4692    else
4693      // We don't currently keep track of the control flow needed to evaluate
4694      // PHIs, so we cannot handle PHIs inside of loops.
4695      return false;
4696  }
4697
4698  // If we won't be able to constant fold this expression even if the operands
4699  // are constants, bail early.
4700  return CanConstantFold(I);
4701}
4702
4703/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4704/// recursing through each instruction operand until reaching a loop header phi.
4705static PHINode *
4706getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4707                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4708
4709  // Otherwise, we can evaluate this instruction if all of its operands are
4710  // constant or derived from a PHI node themselves.
4711  PHINode *PHI = 0;
4712  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4713         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4714
4715    if (isa<Constant>(*OpI)) continue;
4716
4717    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4718    if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4719
4720    PHINode *P = dyn_cast<PHINode>(OpInst);
4721    if (!P)
4722      // If this operand is already visited, reuse the prior result.
4723      // We may have P != PHI if this is the deepest point at which the
4724      // inconsistent paths meet.
4725      P = PHIMap.lookup(OpInst);
4726    if (!P) {
4727      // Recurse and memoize the results, whether a phi is found or not.
4728      // This recursive call invalidates pointers into PHIMap.
4729      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4730      PHIMap[OpInst] = P;
4731    }
4732    if (P == 0) return 0;        // Not evolving from PHI
4733    if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
4734    PHI = P;
4735  }
4736  // This is a expression evolving from a constant PHI!
4737  return PHI;
4738}
4739
4740/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4741/// in the loop that V is derived from.  We allow arbitrary operations along the
4742/// way, but the operands of an operation must either be constants or a value
4743/// derived from a constant PHI.  If this expression does not fit with these
4744/// constraints, return null.
4745static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4746  Instruction *I = dyn_cast<Instruction>(V);
4747  if (I == 0 || !canConstantEvolve(I, L)) return 0;
4748
4749  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4750    return PN;
4751  }
4752
4753  // Record non-constant instructions contained by the loop.
4754  DenseMap<Instruction *, PHINode *> PHIMap;
4755  return getConstantEvolvingPHIOperands(I, L, PHIMap);
4756}
4757
4758/// EvaluateExpression - Given an expression that passes the
4759/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4760/// in the loop has the value PHIVal.  If we can't fold this expression for some
4761/// reason, return null.
4762static Constant *EvaluateExpression(Value *V, const Loop *L,
4763                                    DenseMap<Instruction *, Constant *> &Vals,
4764                                    const TargetData *TD,
4765                                    const TargetLibraryInfo *TLI) {
4766  // Convenient constant check, but redundant for recursive calls.
4767  if (Constant *C = dyn_cast<Constant>(V)) return C;
4768  Instruction *I = dyn_cast<Instruction>(V);
4769  if (!I) return 0;
4770
4771  if (Constant *C = Vals.lookup(I)) return C;
4772
4773  // An instruction inside the loop depends on a value outside the loop that we
4774  // weren't given a mapping for, or a value such as a call inside the loop.
4775  if (!canConstantEvolve(I, L)) return 0;
4776
4777  // An unmapped PHI can be due to a branch or another loop inside this loop,
4778  // or due to this not being the initial iteration through a loop where we
4779  // couldn't compute the evolution of this particular PHI last time.
4780  if (isa<PHINode>(I)) return 0;
4781
4782  std::vector<Constant*> Operands(I->getNumOperands());
4783
4784  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4785    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4786    if (!Operand) {
4787      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4788      if (!Operands[i]) return 0;
4789      continue;
4790    }
4791    Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
4792    Vals[Operand] = C;
4793    if (!C) return 0;
4794    Operands[i] = C;
4795  }
4796
4797  if (CmpInst *CI = dyn_cast<CmpInst>(I))
4798    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4799                                           Operands[1], TD, TLI);
4800  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4801    if (!LI->isVolatile())
4802      return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4803  }
4804  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4805                                  TLI);
4806}
4807
4808/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4809/// in the header of its containing loop, we know the loop executes a
4810/// constant number of times, and the PHI node is just a recurrence
4811/// involving constants, fold it.
4812Constant *
4813ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4814                                                   const APInt &BEs,
4815                                                   const Loop *L) {
4816  DenseMap<PHINode*, Constant*>::const_iterator I =
4817    ConstantEvolutionLoopExitValue.find(PN);
4818  if (I != ConstantEvolutionLoopExitValue.end())
4819    return I->second;
4820
4821  if (BEs.ugt(MaxBruteForceIterations))
4822    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4823
4824  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4825
4826  DenseMap<Instruction *, Constant *> CurrentIterVals;
4827  BasicBlock *Header = L->getHeader();
4828  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4829
4830  // Since the loop is canonicalized, the PHI node must have two entries.  One
4831  // entry must be a constant (coming in from outside of the loop), and the
4832  // second must be derived from the same PHI.
4833  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4834  PHINode *PHI = 0;
4835  for (BasicBlock::iterator I = Header->begin();
4836       (PHI = dyn_cast<PHINode>(I)); ++I) {
4837    Constant *StartCST =
4838      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4839    if (StartCST == 0) continue;
4840    CurrentIterVals[PHI] = StartCST;
4841  }
4842  if (!CurrentIterVals.count(PN))
4843    return RetVal = 0;
4844
4845  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4846
4847  // Execute the loop symbolically to determine the exit value.
4848  if (BEs.getActiveBits() >= 32)
4849    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4850
4851  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4852  unsigned IterationNum = 0;
4853  for (; ; ++IterationNum) {
4854    if (IterationNum == NumIterations)
4855      return RetVal = CurrentIterVals[PN];  // Got exit value!
4856
4857    // Compute the value of the PHIs for the next iteration.
4858    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4859    DenseMap<Instruction *, Constant *> NextIterVals;
4860    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4861                                           TLI);
4862    if (NextPHI == 0)
4863      return 0;        // Couldn't evaluate!
4864    NextIterVals[PN] = NextPHI;
4865
4866    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4867
4868    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
4869    // cease to be able to evaluate one of them or if they stop evolving,
4870    // because that doesn't necessarily prevent us from computing PN.
4871    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4872    for (DenseMap<Instruction *, Constant *>::const_iterator
4873           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4874      PHINode *PHI = dyn_cast<PHINode>(I->first);
4875      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4876      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4877    }
4878    // We use two distinct loops because EvaluateExpression may invalidate any
4879    // iterators into CurrentIterVals.
4880    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4881             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4882      PHINode *PHI = I->first;
4883      Constant *&NextPHI = NextIterVals[PHI];
4884      if (!NextPHI) {   // Not already computed.
4885        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4886        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4887      }
4888      if (NextPHI != I->second)
4889        StoppedEvolving = false;
4890    }
4891
4892    // If all entries in CurrentIterVals == NextIterVals then we can stop
4893    // iterating, the loop can't continue to change.
4894    if (StoppedEvolving)
4895      return RetVal = CurrentIterVals[PN];
4896
4897    CurrentIterVals.swap(NextIterVals);
4898  }
4899}
4900
4901/// ComputeExitCountExhaustively - If the loop is known to execute a
4902/// constant number of times (the condition evolves only from constants),
4903/// try to evaluate a few iterations of the loop until we get the exit
4904/// condition gets a value of ExitWhen (true or false).  If we cannot
4905/// evaluate the trip count of the loop, return getCouldNotCompute().
4906const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4907                                                          Value *Cond,
4908                                                          bool ExitWhen) {
4909  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4910  if (PN == 0) return getCouldNotCompute();
4911
4912  // If the loop is canonicalized, the PHI will have exactly two entries.
4913  // That's the only form we support here.
4914  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4915
4916  DenseMap<Instruction *, Constant *> CurrentIterVals;
4917  BasicBlock *Header = L->getHeader();
4918  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4919
4920  // One entry must be a constant (coming in from outside of the loop), and the
4921  // second must be derived from the same PHI.
4922  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4923  PHINode *PHI = 0;
4924  for (BasicBlock::iterator I = Header->begin();
4925       (PHI = dyn_cast<PHINode>(I)); ++I) {
4926    Constant *StartCST =
4927      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4928    if (StartCST == 0) continue;
4929    CurrentIterVals[PHI] = StartCST;
4930  }
4931  if (!CurrentIterVals.count(PN))
4932    return getCouldNotCompute();
4933
4934  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4935  // the loop symbolically to determine when the condition gets a value of
4936  // "ExitWhen".
4937
4938  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4939  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
4940    ConstantInt *CondVal =
4941      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4942                                                       TD, TLI));
4943
4944    // Couldn't symbolically evaluate.
4945    if (!CondVal) return getCouldNotCompute();
4946
4947    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4948      ++NumBruteForceTripCountsComputed;
4949      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4950    }
4951
4952    // Update all the PHI nodes for the next iteration.
4953    DenseMap<Instruction *, Constant *> NextIterVals;
4954
4955    // Create a list of which PHIs we need to compute. We want to do this before
4956    // calling EvaluateExpression on them because that may invalidate iterators
4957    // into CurrentIterVals.
4958    SmallVector<PHINode *, 8> PHIsToCompute;
4959    for (DenseMap<Instruction *, Constant *>::const_iterator
4960           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4961      PHINode *PHI = dyn_cast<PHINode>(I->first);
4962      if (!PHI || PHI->getParent() != Header) continue;
4963      PHIsToCompute.push_back(PHI);
4964    }
4965    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4966             E = PHIsToCompute.end(); I != E; ++I) {
4967      PHINode *PHI = *I;
4968      Constant *&NextPHI = NextIterVals[PHI];
4969      if (NextPHI) continue;    // Already computed!
4970
4971      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4972      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4973    }
4974    CurrentIterVals.swap(NextIterVals);
4975  }
4976
4977  // Too many iterations were needed to evaluate.
4978  return getCouldNotCompute();
4979}
4980
4981/// getSCEVAtScope - Return a SCEV expression for the specified value
4982/// at the specified scope in the program.  The L value specifies a loop
4983/// nest to evaluate the expression at, where null is the top-level or a
4984/// specified loop is immediately inside of the loop.
4985///
4986/// This method can be used to compute the exit value for a variable defined
4987/// in a loop by querying what the value will hold in the parent loop.
4988///
4989/// In the case that a relevant loop exit value cannot be computed, the
4990/// original value V is returned.
4991const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4992  // Check to see if we've folded this expression at this loop before.
4993  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4994  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4995    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4996  if (!Pair.second)
4997    return Pair.first->second ? Pair.first->second : V;
4998
4999  // Otherwise compute it.
5000  const SCEV *C = computeSCEVAtScope(V, L);
5001  ValuesAtScopes[V][L] = C;
5002  return C;
5003}
5004
5005/// This builds up a Constant using the ConstantExpr interface.  That way, we
5006/// will return Constants for objects which aren't represented by a
5007/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5008/// Returns NULL if the SCEV isn't representable as a Constant.
5009static Constant *BuildConstantFromSCEV(const SCEV *V) {
5010  switch (V->getSCEVType()) {
5011    default:  // TODO: smax, umax.
5012    case scCouldNotCompute:
5013    case scAddRecExpr:
5014      break;
5015    case scConstant:
5016      return cast<SCEVConstant>(V)->getValue();
5017    case scUnknown:
5018      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5019    case scSignExtend: {
5020      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5021      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5022        return ConstantExpr::getSExt(CastOp, SS->getType());
5023      break;
5024    }
5025    case scZeroExtend: {
5026      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5027      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5028        return ConstantExpr::getZExt(CastOp, SZ->getType());
5029      break;
5030    }
5031    case scTruncate: {
5032      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5033      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5034        return ConstantExpr::getTrunc(CastOp, ST->getType());
5035      break;
5036    }
5037    case scAddExpr: {
5038      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5039      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5040        if (C->getType()->isPointerTy())
5041          C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5042        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5043          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5044          if (!C2) return 0;
5045
5046          // First pointer!
5047          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5048            std::swap(C, C2);
5049            // The offsets have been converted to bytes.  We can add bytes to an
5050            // i8* by GEP with the byte count in the first index.
5051            C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5052          }
5053
5054          // Don't bother trying to sum two pointers. We probably can't
5055          // statically compute a load that results from it anyway.
5056          if (C2->getType()->isPointerTy())
5057            return 0;
5058
5059          if (C->getType()->isPointerTy()) {
5060            if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5061              C2 = ConstantExpr::getIntegerCast(
5062                  C2, Type::getInt32Ty(C->getContext()), true);
5063            C = ConstantExpr::getGetElementPtr(C, C2);
5064          } else
5065            C = ConstantExpr::getAdd(C, C2);
5066        }
5067        return C;
5068      }
5069      break;
5070    }
5071    case scMulExpr: {
5072      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5073      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5074        // Don't bother with pointers at all.
5075        if (C->getType()->isPointerTy()) return 0;
5076        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5077          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5078          if (!C2 || C2->getType()->isPointerTy()) return 0;
5079          C = ConstantExpr::getMul(C, C2);
5080        }
5081        return C;
5082      }
5083      break;
5084    }
5085    case scUDivExpr: {
5086      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5087      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5088        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5089          if (LHS->getType() == RHS->getType())
5090            return ConstantExpr::getUDiv(LHS, RHS);
5091      break;
5092    }
5093  }
5094  return 0;
5095}
5096
5097const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5098  if (isa<SCEVConstant>(V)) return V;
5099
5100  // If this instruction is evolved from a constant-evolving PHI, compute the
5101  // exit value from the loop without using SCEVs.
5102  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5103    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5104      const Loop *LI = (*this->LI)[I->getParent()];
5105      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5106        if (PHINode *PN = dyn_cast<PHINode>(I))
5107          if (PN->getParent() == LI->getHeader()) {
5108            // Okay, there is no closed form solution for the PHI node.  Check
5109            // to see if the loop that contains it has a known backedge-taken
5110            // count.  If so, we may be able to force computation of the exit
5111            // value.
5112            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5113            if (const SCEVConstant *BTCC =
5114                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5115              // Okay, we know how many times the containing loop executes.  If
5116              // this is a constant evolving PHI node, get the final value at
5117              // the specified iteration number.
5118              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5119                                                   BTCC->getValue()->getValue(),
5120                                                               LI);
5121              if (RV) return getSCEV(RV);
5122            }
5123          }
5124
5125      // Okay, this is an expression that we cannot symbolically evaluate
5126      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5127      // the arguments into constants, and if so, try to constant propagate the
5128      // result.  This is particularly useful for computing loop exit values.
5129      if (CanConstantFold(I)) {
5130        SmallVector<Constant *, 4> Operands;
5131        bool MadeImprovement = false;
5132        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5133          Value *Op = I->getOperand(i);
5134          if (Constant *C = dyn_cast<Constant>(Op)) {
5135            Operands.push_back(C);
5136            continue;
5137          }
5138
5139          // If any of the operands is non-constant and if they are
5140          // non-integer and non-pointer, don't even try to analyze them
5141          // with scev techniques.
5142          if (!isSCEVable(Op->getType()))
5143            return V;
5144
5145          const SCEV *OrigV = getSCEV(Op);
5146          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5147          MadeImprovement |= OrigV != OpV;
5148
5149          Constant *C = BuildConstantFromSCEV(OpV);
5150          if (!C) return V;
5151          if (C->getType() != Op->getType())
5152            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5153                                                              Op->getType(),
5154                                                              false),
5155                                      C, Op->getType());
5156          Operands.push_back(C);
5157        }
5158
5159        // Check to see if getSCEVAtScope actually made an improvement.
5160        if (MadeImprovement) {
5161          Constant *C = 0;
5162          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5163            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5164                                                Operands[0], Operands[1], TD,
5165                                                TLI);
5166          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5167            if (!LI->isVolatile())
5168              C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5169          } else
5170            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5171                                         Operands, TD, TLI);
5172          if (!C) return V;
5173          return getSCEV(C);
5174        }
5175      }
5176    }
5177
5178    // This is some other type of SCEVUnknown, just return it.
5179    return V;
5180  }
5181
5182  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5183    // Avoid performing the look-up in the common case where the specified
5184    // expression has no loop-variant portions.
5185    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5186      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5187      if (OpAtScope != Comm->getOperand(i)) {
5188        // Okay, at least one of these operands is loop variant but might be
5189        // foldable.  Build a new instance of the folded commutative expression.
5190        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5191                                            Comm->op_begin()+i);
5192        NewOps.push_back(OpAtScope);
5193
5194        for (++i; i != e; ++i) {
5195          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5196          NewOps.push_back(OpAtScope);
5197        }
5198        if (isa<SCEVAddExpr>(Comm))
5199          return getAddExpr(NewOps);
5200        if (isa<SCEVMulExpr>(Comm))
5201          return getMulExpr(NewOps);
5202        if (isa<SCEVSMaxExpr>(Comm))
5203          return getSMaxExpr(NewOps);
5204        if (isa<SCEVUMaxExpr>(Comm))
5205          return getUMaxExpr(NewOps);
5206        llvm_unreachable("Unknown commutative SCEV type!");
5207      }
5208    }
5209    // If we got here, all operands are loop invariant.
5210    return Comm;
5211  }
5212
5213  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5214    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5215    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5216    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5217      return Div;   // must be loop invariant
5218    return getUDivExpr(LHS, RHS);
5219  }
5220
5221  // If this is a loop recurrence for a loop that does not contain L, then we
5222  // are dealing with the final value computed by the loop.
5223  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5224    // First, attempt to evaluate each operand.
5225    // Avoid performing the look-up in the common case where the specified
5226    // expression has no loop-variant portions.
5227    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5228      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5229      if (OpAtScope == AddRec->getOperand(i))
5230        continue;
5231
5232      // Okay, at least one of these operands is loop variant but might be
5233      // foldable.  Build a new instance of the folded commutative expression.
5234      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5235                                          AddRec->op_begin()+i);
5236      NewOps.push_back(OpAtScope);
5237      for (++i; i != e; ++i)
5238        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5239
5240      const SCEV *FoldedRec =
5241        getAddRecExpr(NewOps, AddRec->getLoop(),
5242                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5243      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5244      // The addrec may be folded to a nonrecurrence, for example, if the
5245      // induction variable is multiplied by zero after constant folding. Go
5246      // ahead and return the folded value.
5247      if (!AddRec)
5248        return FoldedRec;
5249      break;
5250    }
5251
5252    // If the scope is outside the addrec's loop, evaluate it by using the
5253    // loop exit value of the addrec.
5254    if (!AddRec->getLoop()->contains(L)) {
5255      // To evaluate this recurrence, we need to know how many times the AddRec
5256      // loop iterates.  Compute this now.
5257      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5258      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5259
5260      // Then, evaluate the AddRec.
5261      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5262    }
5263
5264    return AddRec;
5265  }
5266
5267  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5268    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5269    if (Op == Cast->getOperand())
5270      return Cast;  // must be loop invariant
5271    return getZeroExtendExpr(Op, Cast->getType());
5272  }
5273
5274  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5275    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5276    if (Op == Cast->getOperand())
5277      return Cast;  // must be loop invariant
5278    return getSignExtendExpr(Op, Cast->getType());
5279  }
5280
5281  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5282    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5283    if (Op == Cast->getOperand())
5284      return Cast;  // must be loop invariant
5285    return getTruncateExpr(Op, Cast->getType());
5286  }
5287
5288  llvm_unreachable("Unknown SCEV type!");
5289}
5290
5291/// getSCEVAtScope - This is a convenience function which does
5292/// getSCEVAtScope(getSCEV(V), L).
5293const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5294  return getSCEVAtScope(getSCEV(V), L);
5295}
5296
5297/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5298/// following equation:
5299///
5300///     A * X = B (mod N)
5301///
5302/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5303/// A and B isn't important.
5304///
5305/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5306static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5307                                               ScalarEvolution &SE) {
5308  uint32_t BW = A.getBitWidth();
5309  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5310  assert(A != 0 && "A must be non-zero.");
5311
5312  // 1. D = gcd(A, N)
5313  //
5314  // The gcd of A and N may have only one prime factor: 2. The number of
5315  // trailing zeros in A is its multiplicity
5316  uint32_t Mult2 = A.countTrailingZeros();
5317  // D = 2^Mult2
5318
5319  // 2. Check if B is divisible by D.
5320  //
5321  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5322  // is not less than multiplicity of this prime factor for D.
5323  if (B.countTrailingZeros() < Mult2)
5324    return SE.getCouldNotCompute();
5325
5326  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5327  // modulo (N / D).
5328  //
5329  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5330  // bit width during computations.
5331  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5332  APInt Mod(BW + 1, 0);
5333  Mod.setBit(BW - Mult2);  // Mod = N / D
5334  APInt I = AD.multiplicativeInverse(Mod);
5335
5336  // 4. Compute the minimum unsigned root of the equation:
5337  // I * (B / D) mod (N / D)
5338  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5339
5340  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5341  // bits.
5342  return SE.getConstant(Result.trunc(BW));
5343}
5344
5345/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5346/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5347/// might be the same) or two SCEVCouldNotCompute objects.
5348///
5349static std::pair<const SCEV *,const SCEV *>
5350SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5351  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5352  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5353  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5354  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5355
5356  // We currently can only solve this if the coefficients are constants.
5357  if (!LC || !MC || !NC) {
5358    const SCEV *CNC = SE.getCouldNotCompute();
5359    return std::make_pair(CNC, CNC);
5360  }
5361
5362  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5363  const APInt &L = LC->getValue()->getValue();
5364  const APInt &M = MC->getValue()->getValue();
5365  const APInt &N = NC->getValue()->getValue();
5366  APInt Two(BitWidth, 2);
5367  APInt Four(BitWidth, 4);
5368
5369  {
5370    using namespace APIntOps;
5371    const APInt& C = L;
5372    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5373    // The B coefficient is M-N/2
5374    APInt B(M);
5375    B -= sdiv(N,Two);
5376
5377    // The A coefficient is N/2
5378    APInt A(N.sdiv(Two));
5379
5380    // Compute the B^2-4ac term.
5381    APInt SqrtTerm(B);
5382    SqrtTerm *= B;
5383    SqrtTerm -= Four * (A * C);
5384
5385    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5386    // integer value or else APInt::sqrt() will assert.
5387    APInt SqrtVal(SqrtTerm.sqrt());
5388
5389    // Compute the two solutions for the quadratic formula.
5390    // The divisions must be performed as signed divisions.
5391    APInt NegB(-B);
5392    APInt TwoA(A << 1);
5393    if (TwoA.isMinValue()) {
5394      const SCEV *CNC = SE.getCouldNotCompute();
5395      return std::make_pair(CNC, CNC);
5396    }
5397
5398    LLVMContext &Context = SE.getContext();
5399
5400    ConstantInt *Solution1 =
5401      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5402    ConstantInt *Solution2 =
5403      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5404
5405    return std::make_pair(SE.getConstant(Solution1),
5406                          SE.getConstant(Solution2));
5407  } // end APIntOps namespace
5408}
5409
5410/// HowFarToZero - Return the number of times a backedge comparing the specified
5411/// value to zero will execute.  If not computable, return CouldNotCompute.
5412///
5413/// This is only used for loops with a "x != y" exit test. The exit condition is
5414/// now expressed as a single expression, V = x-y. So the exit test is
5415/// effectively V != 0.  We know and take advantage of the fact that this
5416/// expression only being used in a comparison by zero context.
5417ScalarEvolution::ExitLimit
5418ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5419  // If the value is a constant
5420  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5421    // If the value is already zero, the branch will execute zero times.
5422    if (C->getValue()->isZero()) return C;
5423    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5424  }
5425
5426  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5427  if (!AddRec || AddRec->getLoop() != L)
5428    return getCouldNotCompute();
5429
5430  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5431  // the quadratic equation to solve it.
5432  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5433    std::pair<const SCEV *,const SCEV *> Roots =
5434      SolveQuadraticEquation(AddRec, *this);
5435    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5436    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5437    if (R1 && R2) {
5438#if 0
5439      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5440             << "  sol#2: " << *R2 << "\n";
5441#endif
5442      // Pick the smallest positive root value.
5443      if (ConstantInt *CB =
5444          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5445                                                      R1->getValue(),
5446                                                      R2->getValue()))) {
5447        if (CB->getZExtValue() == false)
5448          std::swap(R1, R2);   // R1 is the minimum root now.
5449
5450        // We can only use this value if the chrec ends up with an exact zero
5451        // value at this index.  When solving for "X*X != 5", for example, we
5452        // should not accept a root of 2.
5453        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5454        if (Val->isZero())
5455          return R1;  // We found a quadratic root!
5456      }
5457    }
5458    return getCouldNotCompute();
5459  }
5460
5461  // Otherwise we can only handle this if it is affine.
5462  if (!AddRec->isAffine())
5463    return getCouldNotCompute();
5464
5465  // If this is an affine expression, the execution count of this branch is
5466  // the minimum unsigned root of the following equation:
5467  //
5468  //     Start + Step*N = 0 (mod 2^BW)
5469  //
5470  // equivalent to:
5471  //
5472  //             Step*N = -Start (mod 2^BW)
5473  //
5474  // where BW is the common bit width of Start and Step.
5475
5476  // Get the initial value for the loop.
5477  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5478  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5479
5480  // For now we handle only constant steps.
5481  //
5482  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5483  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5484  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5485  // We have not yet seen any such cases.
5486  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5487  if (StepC == 0 || StepC->getValue()->equalsInt(0))
5488    return getCouldNotCompute();
5489
5490  // For positive steps (counting up until unsigned overflow):
5491  //   N = -Start/Step (as unsigned)
5492  // For negative steps (counting down to zero):
5493  //   N = Start/-Step
5494  // First compute the unsigned distance from zero in the direction of Step.
5495  bool CountDown = StepC->getValue()->getValue().isNegative();
5496  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5497
5498  // Handle unitary steps, which cannot wraparound.
5499  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5500  //   N = Distance (as unsigned)
5501  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5502    ConstantRange CR = getUnsignedRange(Start);
5503    const SCEV *MaxBECount;
5504    if (!CountDown && CR.getUnsignedMin().isMinValue())
5505      // When counting up, the worst starting value is 1, not 0.
5506      MaxBECount = CR.getUnsignedMax().isMinValue()
5507        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5508        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5509    else
5510      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5511                                         : -CR.getUnsignedMin());
5512    return ExitLimit(Distance, MaxBECount);
5513  }
5514
5515  // If the recurrence is known not to wraparound, unsigned divide computes the
5516  // back edge count. We know that the value will either become zero (and thus
5517  // the loop terminates), that the loop will terminate through some other exit
5518  // condition first, or that the loop has undefined behavior.  This means
5519  // we can't "miss" the exit value, even with nonunit stride.
5520  //
5521  // FIXME: Prove that loops always exhibits *acceptable* undefined
5522  // behavior. Loops must exhibit defined behavior until a wrapped value is
5523  // actually used. So the trip count computed by udiv could be smaller than the
5524  // number of well-defined iterations.
5525  if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5526    // FIXME: We really want an "isexact" bit for udiv.
5527    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5528  }
5529  // Then, try to solve the above equation provided that Start is constant.
5530  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5531    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5532                                        -StartC->getValue()->getValue(),
5533                                        *this);
5534  return getCouldNotCompute();
5535}
5536
5537/// HowFarToNonZero - Return the number of times a backedge checking the
5538/// specified value for nonzero will execute.  If not computable, return
5539/// CouldNotCompute
5540ScalarEvolution::ExitLimit
5541ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5542  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5543  // handle them yet except for the trivial case.  This could be expanded in the
5544  // future as needed.
5545
5546  // If the value is a constant, check to see if it is known to be non-zero
5547  // already.  If so, the backedge will execute zero times.
5548  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5549    if (!C->getValue()->isNullValue())
5550      return getConstant(C->getType(), 0);
5551    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5552  }
5553
5554  // We could implement others, but I really doubt anyone writes loops like
5555  // this, and if they did, they would already be constant folded.
5556  return getCouldNotCompute();
5557}
5558
5559/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5560/// (which may not be an immediate predecessor) which has exactly one
5561/// successor from which BB is reachable, or null if no such block is
5562/// found.
5563///
5564std::pair<BasicBlock *, BasicBlock *>
5565ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5566  // If the block has a unique predecessor, then there is no path from the
5567  // predecessor to the block that does not go through the direct edge
5568  // from the predecessor to the block.
5569  if (BasicBlock *Pred = BB->getSinglePredecessor())
5570    return std::make_pair(Pred, BB);
5571
5572  // A loop's header is defined to be a block that dominates the loop.
5573  // If the header has a unique predecessor outside the loop, it must be
5574  // a block that has exactly one successor that can reach the loop.
5575  if (Loop *L = LI->getLoopFor(BB))
5576    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5577
5578  return std::pair<BasicBlock *, BasicBlock *>();
5579}
5580
5581/// HasSameValue - SCEV structural equivalence is usually sufficient for
5582/// testing whether two expressions are equal, however for the purposes of
5583/// looking for a condition guarding a loop, it can be useful to be a little
5584/// more general, since a front-end may have replicated the controlling
5585/// expression.
5586///
5587static bool HasSameValue(const SCEV *A, const SCEV *B) {
5588  // Quick check to see if they are the same SCEV.
5589  if (A == B) return true;
5590
5591  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5592  // two different instructions with the same value. Check for this case.
5593  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5594    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5595      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5596        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5597          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5598            return true;
5599
5600  // Otherwise assume they may have a different value.
5601  return false;
5602}
5603
5604/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5605/// predicate Pred. Return true iff any changes were made.
5606///
5607bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5608                                           const SCEV *&LHS, const SCEV *&RHS,
5609                                           unsigned Depth) {
5610  bool Changed = false;
5611
5612  // If we hit the max recursion limit bail out.
5613  if (Depth >= 3)
5614    return false;
5615
5616  // Canonicalize a constant to the right side.
5617  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5618    // Check for both operands constant.
5619    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5620      if (ConstantExpr::getICmp(Pred,
5621                                LHSC->getValue(),
5622                                RHSC->getValue())->isNullValue())
5623        goto trivially_false;
5624      else
5625        goto trivially_true;
5626    }
5627    // Otherwise swap the operands to put the constant on the right.
5628    std::swap(LHS, RHS);
5629    Pred = ICmpInst::getSwappedPredicate(Pred);
5630    Changed = true;
5631  }
5632
5633  // If we're comparing an addrec with a value which is loop-invariant in the
5634  // addrec's loop, put the addrec on the left. Also make a dominance check,
5635  // as both operands could be addrecs loop-invariant in each other's loop.
5636  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5637    const Loop *L = AR->getLoop();
5638    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5639      std::swap(LHS, RHS);
5640      Pred = ICmpInst::getSwappedPredicate(Pred);
5641      Changed = true;
5642    }
5643  }
5644
5645  // If there's a constant operand, canonicalize comparisons with boundary
5646  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5647  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5648    const APInt &RA = RC->getValue()->getValue();
5649    switch (Pred) {
5650    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5651    case ICmpInst::ICMP_EQ:
5652    case ICmpInst::ICMP_NE:
5653      // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5654      if (!RA)
5655        if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5656          if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5657            if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5658                ME->getOperand(0)->isAllOnesValue()) {
5659              RHS = AE->getOperand(1);
5660              LHS = ME->getOperand(1);
5661              Changed = true;
5662            }
5663      break;
5664    case ICmpInst::ICMP_UGE:
5665      if ((RA - 1).isMinValue()) {
5666        Pred = ICmpInst::ICMP_NE;
5667        RHS = getConstant(RA - 1);
5668        Changed = true;
5669        break;
5670      }
5671      if (RA.isMaxValue()) {
5672        Pred = ICmpInst::ICMP_EQ;
5673        Changed = true;
5674        break;
5675      }
5676      if (RA.isMinValue()) goto trivially_true;
5677
5678      Pred = ICmpInst::ICMP_UGT;
5679      RHS = getConstant(RA - 1);
5680      Changed = true;
5681      break;
5682    case ICmpInst::ICMP_ULE:
5683      if ((RA + 1).isMaxValue()) {
5684        Pred = ICmpInst::ICMP_NE;
5685        RHS = getConstant(RA + 1);
5686        Changed = true;
5687        break;
5688      }
5689      if (RA.isMinValue()) {
5690        Pred = ICmpInst::ICMP_EQ;
5691        Changed = true;
5692        break;
5693      }
5694      if (RA.isMaxValue()) goto trivially_true;
5695
5696      Pred = ICmpInst::ICMP_ULT;
5697      RHS = getConstant(RA + 1);
5698      Changed = true;
5699      break;
5700    case ICmpInst::ICMP_SGE:
5701      if ((RA - 1).isMinSignedValue()) {
5702        Pred = ICmpInst::ICMP_NE;
5703        RHS = getConstant(RA - 1);
5704        Changed = true;
5705        break;
5706      }
5707      if (RA.isMaxSignedValue()) {
5708        Pred = ICmpInst::ICMP_EQ;
5709        Changed = true;
5710        break;
5711      }
5712      if (RA.isMinSignedValue()) goto trivially_true;
5713
5714      Pred = ICmpInst::ICMP_SGT;
5715      RHS = getConstant(RA - 1);
5716      Changed = true;
5717      break;
5718    case ICmpInst::ICMP_SLE:
5719      if ((RA + 1).isMaxSignedValue()) {
5720        Pred = ICmpInst::ICMP_NE;
5721        RHS = getConstant(RA + 1);
5722        Changed = true;
5723        break;
5724      }
5725      if (RA.isMinSignedValue()) {
5726        Pred = ICmpInst::ICMP_EQ;
5727        Changed = true;
5728        break;
5729      }
5730      if (RA.isMaxSignedValue()) goto trivially_true;
5731
5732      Pred = ICmpInst::ICMP_SLT;
5733      RHS = getConstant(RA + 1);
5734      Changed = true;
5735      break;
5736    case ICmpInst::ICMP_UGT:
5737      if (RA.isMinValue()) {
5738        Pred = ICmpInst::ICMP_NE;
5739        Changed = true;
5740        break;
5741      }
5742      if ((RA + 1).isMaxValue()) {
5743        Pred = ICmpInst::ICMP_EQ;
5744        RHS = getConstant(RA + 1);
5745        Changed = true;
5746        break;
5747      }
5748      if (RA.isMaxValue()) goto trivially_false;
5749      break;
5750    case ICmpInst::ICMP_ULT:
5751      if (RA.isMaxValue()) {
5752        Pred = ICmpInst::ICMP_NE;
5753        Changed = true;
5754        break;
5755      }
5756      if ((RA - 1).isMinValue()) {
5757        Pred = ICmpInst::ICMP_EQ;
5758        RHS = getConstant(RA - 1);
5759        Changed = true;
5760        break;
5761      }
5762      if (RA.isMinValue()) goto trivially_false;
5763      break;
5764    case ICmpInst::ICMP_SGT:
5765      if (RA.isMinSignedValue()) {
5766        Pred = ICmpInst::ICMP_NE;
5767        Changed = true;
5768        break;
5769      }
5770      if ((RA + 1).isMaxSignedValue()) {
5771        Pred = ICmpInst::ICMP_EQ;
5772        RHS = getConstant(RA + 1);
5773        Changed = true;
5774        break;
5775      }
5776      if (RA.isMaxSignedValue()) goto trivially_false;
5777      break;
5778    case ICmpInst::ICMP_SLT:
5779      if (RA.isMaxSignedValue()) {
5780        Pred = ICmpInst::ICMP_NE;
5781        Changed = true;
5782        break;
5783      }
5784      if ((RA - 1).isMinSignedValue()) {
5785       Pred = ICmpInst::ICMP_EQ;
5786       RHS = getConstant(RA - 1);
5787        Changed = true;
5788       break;
5789      }
5790      if (RA.isMinSignedValue()) goto trivially_false;
5791      break;
5792    }
5793  }
5794
5795  // Check for obvious equality.
5796  if (HasSameValue(LHS, RHS)) {
5797    if (ICmpInst::isTrueWhenEqual(Pred))
5798      goto trivially_true;
5799    if (ICmpInst::isFalseWhenEqual(Pred))
5800      goto trivially_false;
5801  }
5802
5803  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5804  // adding or subtracting 1 from one of the operands.
5805  switch (Pred) {
5806  case ICmpInst::ICMP_SLE:
5807    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5808      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5809                       SCEV::FlagNSW);
5810      Pred = ICmpInst::ICMP_SLT;
5811      Changed = true;
5812    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5813      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5814                       SCEV::FlagNSW);
5815      Pred = ICmpInst::ICMP_SLT;
5816      Changed = true;
5817    }
5818    break;
5819  case ICmpInst::ICMP_SGE:
5820    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5821      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5822                       SCEV::FlagNSW);
5823      Pred = ICmpInst::ICMP_SGT;
5824      Changed = true;
5825    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5826      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5827                       SCEV::FlagNSW);
5828      Pred = ICmpInst::ICMP_SGT;
5829      Changed = true;
5830    }
5831    break;
5832  case ICmpInst::ICMP_ULE:
5833    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5834      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5835                       SCEV::FlagNUW);
5836      Pred = ICmpInst::ICMP_ULT;
5837      Changed = true;
5838    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5839      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5840                       SCEV::FlagNUW);
5841      Pred = ICmpInst::ICMP_ULT;
5842      Changed = true;
5843    }
5844    break;
5845  case ICmpInst::ICMP_UGE:
5846    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5847      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5848                       SCEV::FlagNUW);
5849      Pred = ICmpInst::ICMP_UGT;
5850      Changed = true;
5851    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5852      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5853                       SCEV::FlagNUW);
5854      Pred = ICmpInst::ICMP_UGT;
5855      Changed = true;
5856    }
5857    break;
5858  default:
5859    break;
5860  }
5861
5862  // TODO: More simplifications are possible here.
5863
5864  // Recursively simplify until we either hit a recursion limit or nothing
5865  // changes.
5866  if (Changed)
5867    return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5868
5869  return Changed;
5870
5871trivially_true:
5872  // Return 0 == 0.
5873  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5874  Pred = ICmpInst::ICMP_EQ;
5875  return true;
5876
5877trivially_false:
5878  // Return 0 != 0.
5879  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5880  Pred = ICmpInst::ICMP_NE;
5881  return true;
5882}
5883
5884bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5885  return getSignedRange(S).getSignedMax().isNegative();
5886}
5887
5888bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5889  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5890}
5891
5892bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5893  return !getSignedRange(S).getSignedMin().isNegative();
5894}
5895
5896bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5897  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5898}
5899
5900bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5901  return isKnownNegative(S) || isKnownPositive(S);
5902}
5903
5904bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5905                                       const SCEV *LHS, const SCEV *RHS) {
5906  // Canonicalize the inputs first.
5907  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5908
5909  // If LHS or RHS is an addrec, check to see if the condition is true in
5910  // every iteration of the loop.
5911  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5912    if (isLoopEntryGuardedByCond(
5913          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5914        isLoopBackedgeGuardedByCond(
5915          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5916      return true;
5917  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5918    if (isLoopEntryGuardedByCond(
5919          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5920        isLoopBackedgeGuardedByCond(
5921          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5922      return true;
5923
5924  // Otherwise see what can be done with known constant ranges.
5925  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5926}
5927
5928bool
5929ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5930                                            const SCEV *LHS, const SCEV *RHS) {
5931  if (HasSameValue(LHS, RHS))
5932    return ICmpInst::isTrueWhenEqual(Pred);
5933
5934  // This code is split out from isKnownPredicate because it is called from
5935  // within isLoopEntryGuardedByCond.
5936  switch (Pred) {
5937  default:
5938    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5939  case ICmpInst::ICMP_SGT:
5940    Pred = ICmpInst::ICMP_SLT;
5941    std::swap(LHS, RHS);
5942  case ICmpInst::ICMP_SLT: {
5943    ConstantRange LHSRange = getSignedRange(LHS);
5944    ConstantRange RHSRange = getSignedRange(RHS);
5945    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5946      return true;
5947    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5948      return false;
5949    break;
5950  }
5951  case ICmpInst::ICMP_SGE:
5952    Pred = ICmpInst::ICMP_SLE;
5953    std::swap(LHS, RHS);
5954  case ICmpInst::ICMP_SLE: {
5955    ConstantRange LHSRange = getSignedRange(LHS);
5956    ConstantRange RHSRange = getSignedRange(RHS);
5957    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5958      return true;
5959    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5960      return false;
5961    break;
5962  }
5963  case ICmpInst::ICMP_UGT:
5964    Pred = ICmpInst::ICMP_ULT;
5965    std::swap(LHS, RHS);
5966  case ICmpInst::ICMP_ULT: {
5967    ConstantRange LHSRange = getUnsignedRange(LHS);
5968    ConstantRange RHSRange = getUnsignedRange(RHS);
5969    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5970      return true;
5971    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5972      return false;
5973    break;
5974  }
5975  case ICmpInst::ICMP_UGE:
5976    Pred = ICmpInst::ICMP_ULE;
5977    std::swap(LHS, RHS);
5978  case ICmpInst::ICMP_ULE: {
5979    ConstantRange LHSRange = getUnsignedRange(LHS);
5980    ConstantRange RHSRange = getUnsignedRange(RHS);
5981    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5982      return true;
5983    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5984      return false;
5985    break;
5986  }
5987  case ICmpInst::ICMP_NE: {
5988    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5989      return true;
5990    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5991      return true;
5992
5993    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5994    if (isKnownNonZero(Diff))
5995      return true;
5996    break;
5997  }
5998  case ICmpInst::ICMP_EQ:
5999    // The check at the top of the function catches the case where
6000    // the values are known to be equal.
6001    break;
6002  }
6003  return false;
6004}
6005
6006/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6007/// protected by a conditional between LHS and RHS.  This is used to
6008/// to eliminate casts.
6009bool
6010ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6011                                             ICmpInst::Predicate Pred,
6012                                             const SCEV *LHS, const SCEV *RHS) {
6013  // Interpret a null as meaning no loop, where there is obviously no guard
6014  // (interprocedural conditions notwithstanding).
6015  if (!L) return true;
6016
6017  BasicBlock *Latch = L->getLoopLatch();
6018  if (!Latch)
6019    return false;
6020
6021  BranchInst *LoopContinuePredicate =
6022    dyn_cast<BranchInst>(Latch->getTerminator());
6023  if (!LoopContinuePredicate ||
6024      LoopContinuePredicate->isUnconditional())
6025    return false;
6026
6027  return isImpliedCond(Pred, LHS, RHS,
6028                       LoopContinuePredicate->getCondition(),
6029                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6030}
6031
6032/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6033/// by a conditional between LHS and RHS.  This is used to help avoid max
6034/// expressions in loop trip counts, and to eliminate casts.
6035bool
6036ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6037                                          ICmpInst::Predicate Pred,
6038                                          const SCEV *LHS, const SCEV *RHS) {
6039  // Interpret a null as meaning no loop, where there is obviously no guard
6040  // (interprocedural conditions notwithstanding).
6041  if (!L) return false;
6042
6043  // Starting at the loop predecessor, climb up the predecessor chain, as long
6044  // as there are predecessors that can be found that have unique successors
6045  // leading to the original header.
6046  for (std::pair<BasicBlock *, BasicBlock *>
6047         Pair(L->getLoopPredecessor(), L->getHeader());
6048       Pair.first;
6049       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6050
6051    BranchInst *LoopEntryPredicate =
6052      dyn_cast<BranchInst>(Pair.first->getTerminator());
6053    if (!LoopEntryPredicate ||
6054        LoopEntryPredicate->isUnconditional())
6055      continue;
6056
6057    if (isImpliedCond(Pred, LHS, RHS,
6058                      LoopEntryPredicate->getCondition(),
6059                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6060      return true;
6061  }
6062
6063  return false;
6064}
6065
6066/// RAII wrapper to prevent recursive application of isImpliedCond.
6067/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6068/// currently evaluating isImpliedCond.
6069struct MarkPendingLoopPredicate {
6070  Value *Cond;
6071  DenseSet<Value*> &LoopPreds;
6072  bool Pending;
6073
6074  MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6075    : Cond(C), LoopPreds(LP) {
6076    Pending = !LoopPreds.insert(Cond).second;
6077  }
6078  ~MarkPendingLoopPredicate() {
6079    if (!Pending)
6080      LoopPreds.erase(Cond);
6081  }
6082};
6083
6084/// isImpliedCond - Test whether the condition described by Pred, LHS,
6085/// and RHS is true whenever the given Cond value evaluates to true.
6086bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6087                                    const SCEV *LHS, const SCEV *RHS,
6088                                    Value *FoundCondValue,
6089                                    bool Inverse) {
6090  MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6091  if (Mark.Pending)
6092    return false;
6093
6094  // Recursively handle And and Or conditions.
6095  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6096    if (BO->getOpcode() == Instruction::And) {
6097      if (!Inverse)
6098        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6099               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6100    } else if (BO->getOpcode() == Instruction::Or) {
6101      if (Inverse)
6102        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6103               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6104    }
6105  }
6106
6107  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6108  if (!ICI) return false;
6109
6110  // Bail if the ICmp's operands' types are wider than the needed type
6111  // before attempting to call getSCEV on them. This avoids infinite
6112  // recursion, since the analysis of widening casts can require loop
6113  // exit condition information for overflow checking, which would
6114  // lead back here.
6115  if (getTypeSizeInBits(LHS->getType()) <
6116      getTypeSizeInBits(ICI->getOperand(0)->getType()))
6117    return false;
6118
6119  // Now that we found a conditional branch that dominates the loop, check to
6120  // see if it is the comparison we are looking for.
6121  ICmpInst::Predicate FoundPred;
6122  if (Inverse)
6123    FoundPred = ICI->getInversePredicate();
6124  else
6125    FoundPred = ICI->getPredicate();
6126
6127  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6128  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6129
6130  // Balance the types. The case where FoundLHS' type is wider than
6131  // LHS' type is checked for above.
6132  if (getTypeSizeInBits(LHS->getType()) >
6133      getTypeSizeInBits(FoundLHS->getType())) {
6134    if (CmpInst::isSigned(Pred)) {
6135      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6136      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6137    } else {
6138      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6139      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6140    }
6141  }
6142
6143  // Canonicalize the query to match the way instcombine will have
6144  // canonicalized the comparison.
6145  if (SimplifyICmpOperands(Pred, LHS, RHS))
6146    if (LHS == RHS)
6147      return CmpInst::isTrueWhenEqual(Pred);
6148  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6149    if (FoundLHS == FoundRHS)
6150      return CmpInst::isFalseWhenEqual(Pred);
6151
6152  // Check to see if we can make the LHS or RHS match.
6153  if (LHS == FoundRHS || RHS == FoundLHS) {
6154    if (isa<SCEVConstant>(RHS)) {
6155      std::swap(FoundLHS, FoundRHS);
6156      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6157    } else {
6158      std::swap(LHS, RHS);
6159      Pred = ICmpInst::getSwappedPredicate(Pred);
6160    }
6161  }
6162
6163  // Check whether the found predicate is the same as the desired predicate.
6164  if (FoundPred == Pred)
6165    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6166
6167  // Check whether swapping the found predicate makes it the same as the
6168  // desired predicate.
6169  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6170    if (isa<SCEVConstant>(RHS))
6171      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6172    else
6173      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6174                                   RHS, LHS, FoundLHS, FoundRHS);
6175  }
6176
6177  // Check whether the actual condition is beyond sufficient.
6178  if (FoundPred == ICmpInst::ICMP_EQ)
6179    if (ICmpInst::isTrueWhenEqual(Pred))
6180      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6181        return true;
6182  if (Pred == ICmpInst::ICMP_NE)
6183    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6184      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6185        return true;
6186
6187  // Otherwise assume the worst.
6188  return false;
6189}
6190
6191/// isImpliedCondOperands - Test whether the condition described by Pred,
6192/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6193/// and FoundRHS is true.
6194bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6195                                            const SCEV *LHS, const SCEV *RHS,
6196                                            const SCEV *FoundLHS,
6197                                            const SCEV *FoundRHS) {
6198  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6199                                     FoundLHS, FoundRHS) ||
6200         // ~x < ~y --> x > y
6201         isImpliedCondOperandsHelper(Pred, LHS, RHS,
6202                                     getNotSCEV(FoundRHS),
6203                                     getNotSCEV(FoundLHS));
6204}
6205
6206/// isImpliedCondOperandsHelper - Test whether the condition described by
6207/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6208/// FoundLHS, and FoundRHS is true.
6209bool
6210ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6211                                             const SCEV *LHS, const SCEV *RHS,
6212                                             const SCEV *FoundLHS,
6213                                             const SCEV *FoundRHS) {
6214  switch (Pred) {
6215  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6216  case ICmpInst::ICMP_EQ:
6217  case ICmpInst::ICMP_NE:
6218    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6219      return true;
6220    break;
6221  case ICmpInst::ICMP_SLT:
6222  case ICmpInst::ICMP_SLE:
6223    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6224        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6225      return true;
6226    break;
6227  case ICmpInst::ICMP_SGT:
6228  case ICmpInst::ICMP_SGE:
6229    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6230        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6231      return true;
6232    break;
6233  case ICmpInst::ICMP_ULT:
6234  case ICmpInst::ICMP_ULE:
6235    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6236        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6237      return true;
6238    break;
6239  case ICmpInst::ICMP_UGT:
6240  case ICmpInst::ICMP_UGE:
6241    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6242        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6243      return true;
6244    break;
6245  }
6246
6247  return false;
6248}
6249
6250/// getBECount - Subtract the end and start values and divide by the step,
6251/// rounding up, to get the number of times the backedge is executed. Return
6252/// CouldNotCompute if an intermediate computation overflows.
6253const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
6254                                        const SCEV *End,
6255                                        const SCEV *Step,
6256                                        bool NoWrap) {
6257  assert(!isKnownNegative(Step) &&
6258         "This code doesn't handle negative strides yet!");
6259
6260  Type *Ty = Start->getType();
6261
6262  // When Start == End, we have an exact BECount == 0. Short-circuit this case
6263  // here because SCEV may not be able to determine that the unsigned division
6264  // after rounding is zero.
6265  if (Start == End)
6266    return getConstant(Ty, 0);
6267
6268  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
6269  const SCEV *Diff = getMinusSCEV(End, Start);
6270  const SCEV *RoundUp = getAddExpr(Step, NegOne);
6271
6272  // Add an adjustment to the difference between End and Start so that
6273  // the division will effectively round up.
6274  const SCEV *Add = getAddExpr(Diff, RoundUp);
6275
6276  if (!NoWrap) {
6277    // Check Add for unsigned overflow.
6278    // TODO: More sophisticated things could be done here.
6279    Type *WideTy = IntegerType::get(getContext(),
6280                                          getTypeSizeInBits(Ty) + 1);
6281    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6282    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6283    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6284    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6285      return getCouldNotCompute();
6286  }
6287
6288  return getUDivExpr(Add, Step);
6289}
6290
6291/// HowManyLessThans - Return the number of times a backedge containing the
6292/// specified less-than comparison will execute.  If not computable, return
6293/// CouldNotCompute.
6294ScalarEvolution::ExitLimit
6295ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6296                                  const Loop *L, bool isSigned) {
6297  // Only handle:  "ADDREC < LoopInvariant".
6298  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
6299
6300  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
6301  if (!AddRec || AddRec->getLoop() != L)
6302    return getCouldNotCompute();
6303
6304  // Check to see if we have a flag which makes analysis easy.
6305  bool NoWrap = isSigned ?
6306    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6307    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
6308
6309  if (AddRec->isAffine()) {
6310    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
6311    const SCEV *Step = AddRec->getStepRecurrence(*this);
6312
6313    if (Step->isZero())
6314      return getCouldNotCompute();
6315    if (Step->isOne()) {
6316      // With unit stride, the iteration never steps past the limit value.
6317    } else if (isKnownPositive(Step)) {
6318      // Test whether a positive iteration can step past the limit
6319      // value and past the maximum value for its type in a single step.
6320      // Note that it's not sufficient to check NoWrap here, because even
6321      // though the value after a wrap is undefined, it's not undefined
6322      // behavior, so if wrap does occur, the loop could either terminate or
6323      // loop infinitely, but in either case, the loop is guaranteed to
6324      // iterate at least until the iteration where the wrapping occurs.
6325      const SCEV *One = getConstant(Step->getType(), 1);
6326      if (isSigned) {
6327        APInt Max = APInt::getSignedMaxValue(BitWidth);
6328        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6329              .slt(getSignedRange(RHS).getSignedMax()))
6330          return getCouldNotCompute();
6331      } else {
6332        APInt Max = APInt::getMaxValue(BitWidth);
6333        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6334              .ult(getUnsignedRange(RHS).getUnsignedMax()))
6335          return getCouldNotCompute();
6336      }
6337    } else
6338      // TODO: Handle negative strides here and below.
6339      return getCouldNotCompute();
6340
6341    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6342    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
6343    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
6344    // treat m-n as signed nor unsigned due to overflow possibility.
6345
6346    // First, we get the value of the LHS in the first iteration: n
6347    const SCEV *Start = AddRec->getOperand(0);
6348
6349    // Determine the minimum constant start value.
6350    const SCEV *MinStart = getConstant(isSigned ?
6351      getSignedRange(Start).getSignedMin() :
6352      getUnsignedRange(Start).getUnsignedMin());
6353
6354    // If we know that the condition is true in order to enter the loop,
6355    // then we know that it will run exactly (m-n)/s times. Otherwise, we
6356    // only know that it will execute (max(m,n)-n)/s times. In both cases,
6357    // the division must round up.
6358    const SCEV *End = RHS;
6359    if (!isLoopEntryGuardedByCond(L,
6360                                  isSigned ? ICmpInst::ICMP_SLT :
6361                                             ICmpInst::ICMP_ULT,
6362                                  getMinusSCEV(Start, Step), RHS))
6363      End = isSigned ? getSMaxExpr(RHS, Start)
6364                     : getUMaxExpr(RHS, Start);
6365
6366    // Determine the maximum constant end value.
6367    const SCEV *MaxEnd = getConstant(isSigned ?
6368      getSignedRange(End).getSignedMax() :
6369      getUnsignedRange(End).getUnsignedMax());
6370
6371    // If MaxEnd is within a step of the maximum integer value in its type,
6372    // adjust it down to the minimum value which would produce the same effect.
6373    // This allows the subsequent ceiling division of (N+(step-1))/step to
6374    // compute the correct value.
6375    const SCEV *StepMinusOne = getMinusSCEV(Step,
6376                                            getConstant(Step->getType(), 1));
6377    MaxEnd = isSigned ?
6378      getSMinExpr(MaxEnd,
6379                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6380                               StepMinusOne)) :
6381      getUMinExpr(MaxEnd,
6382                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6383                               StepMinusOne));
6384
6385    // Finally, we subtract these two values and divide, rounding up, to get
6386    // the number of times the backedge is executed.
6387    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6388
6389    // The maximum backedge count is similar, except using the minimum start
6390    // value and the maximum end value.
6391    // If we already have an exact constant BECount, use it instead.
6392    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6393      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6394
6395    // If the stride is nonconstant, and NoWrap == true, then
6396    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6397    // exact BECount and invalid MaxBECount, which should be avoided to catch
6398    // more optimization opportunities.
6399    if (isa<SCEVCouldNotCompute>(MaxBECount))
6400      MaxBECount = BECount;
6401
6402    return ExitLimit(BECount, MaxBECount);
6403  }
6404
6405  return getCouldNotCompute();
6406}
6407
6408/// getNumIterationsInRange - Return the number of iterations of this loop that
6409/// produce values in the specified constant range.  Another way of looking at
6410/// this is that it returns the first iteration number where the value is not in
6411/// the condition, thus computing the exit count. If the iteration count can't
6412/// be computed, an instance of SCEVCouldNotCompute is returned.
6413const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6414                                                    ScalarEvolution &SE) const {
6415  if (Range.isFullSet())  // Infinite loop.
6416    return SE.getCouldNotCompute();
6417
6418  // If the start is a non-zero constant, shift the range to simplify things.
6419  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6420    if (!SC->getValue()->isZero()) {
6421      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6422      Operands[0] = SE.getConstant(SC->getType(), 0);
6423      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6424                                             getNoWrapFlags(FlagNW));
6425      if (const SCEVAddRecExpr *ShiftedAddRec =
6426            dyn_cast<SCEVAddRecExpr>(Shifted))
6427        return ShiftedAddRec->getNumIterationsInRange(
6428                           Range.subtract(SC->getValue()->getValue()), SE);
6429      // This is strange and shouldn't happen.
6430      return SE.getCouldNotCompute();
6431    }
6432
6433  // The only time we can solve this is when we have all constant indices.
6434  // Otherwise, we cannot determine the overflow conditions.
6435  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6436    if (!isa<SCEVConstant>(getOperand(i)))
6437      return SE.getCouldNotCompute();
6438
6439
6440  // Okay at this point we know that all elements of the chrec are constants and
6441  // that the start element is zero.
6442
6443  // First check to see if the range contains zero.  If not, the first
6444  // iteration exits.
6445  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6446  if (!Range.contains(APInt(BitWidth, 0)))
6447    return SE.getConstant(getType(), 0);
6448
6449  if (isAffine()) {
6450    // If this is an affine expression then we have this situation:
6451    //   Solve {0,+,A} in Range  ===  Ax in Range
6452
6453    // We know that zero is in the range.  If A is positive then we know that
6454    // the upper value of the range must be the first possible exit value.
6455    // If A is negative then the lower of the range is the last possible loop
6456    // value.  Also note that we already checked for a full range.
6457    APInt One(BitWidth,1);
6458    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6459    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6460
6461    // The exit value should be (End+A)/A.
6462    APInt ExitVal = (End + A).udiv(A);
6463    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6464
6465    // Evaluate at the exit value.  If we really did fall out of the valid
6466    // range, then we computed our trip count, otherwise wrap around or other
6467    // things must have happened.
6468    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6469    if (Range.contains(Val->getValue()))
6470      return SE.getCouldNotCompute();  // Something strange happened
6471
6472    // Ensure that the previous value is in the range.  This is a sanity check.
6473    assert(Range.contains(
6474           EvaluateConstantChrecAtConstant(this,
6475           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6476           "Linear scev computation is off in a bad way!");
6477    return SE.getConstant(ExitValue);
6478  } else if (isQuadratic()) {
6479    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6480    // quadratic equation to solve it.  To do this, we must frame our problem in
6481    // terms of figuring out when zero is crossed, instead of when
6482    // Range.getUpper() is crossed.
6483    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6484    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6485    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6486                                             // getNoWrapFlags(FlagNW)
6487                                             FlagAnyWrap);
6488
6489    // Next, solve the constructed addrec
6490    std::pair<const SCEV *,const SCEV *> Roots =
6491      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6492    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6493    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6494    if (R1) {
6495      // Pick the smallest positive root value.
6496      if (ConstantInt *CB =
6497          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6498                         R1->getValue(), R2->getValue()))) {
6499        if (CB->getZExtValue() == false)
6500          std::swap(R1, R2);   // R1 is the minimum root now.
6501
6502        // Make sure the root is not off by one.  The returned iteration should
6503        // not be in the range, but the previous one should be.  When solving
6504        // for "X*X < 5", for example, we should not return a root of 2.
6505        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6506                                                             R1->getValue(),
6507                                                             SE);
6508        if (Range.contains(R1Val->getValue())) {
6509          // The next iteration must be out of the range...
6510          ConstantInt *NextVal =
6511                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6512
6513          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6514          if (!Range.contains(R1Val->getValue()))
6515            return SE.getConstant(NextVal);
6516          return SE.getCouldNotCompute();  // Something strange happened
6517        }
6518
6519        // If R1 was not in the range, then it is a good return value.  Make
6520        // sure that R1-1 WAS in the range though, just in case.
6521        ConstantInt *NextVal =
6522               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6523        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6524        if (Range.contains(R1Val->getValue()))
6525          return R1;
6526        return SE.getCouldNotCompute();  // Something strange happened
6527      }
6528    }
6529  }
6530
6531  return SE.getCouldNotCompute();
6532}
6533
6534
6535
6536//===----------------------------------------------------------------------===//
6537//                   SCEVCallbackVH Class Implementation
6538//===----------------------------------------------------------------------===//
6539
6540void ScalarEvolution::SCEVCallbackVH::deleted() {
6541  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6542  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6543    SE->ConstantEvolutionLoopExitValue.erase(PN);
6544  SE->ValueExprMap.erase(getValPtr());
6545  // this now dangles!
6546}
6547
6548void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6549  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6550
6551  // Forget all the expressions associated with users of the old value,
6552  // so that future queries will recompute the expressions using the new
6553  // value.
6554  Value *Old = getValPtr();
6555  SmallVector<User *, 16> Worklist;
6556  SmallPtrSet<User *, 8> Visited;
6557  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6558       UI != UE; ++UI)
6559    Worklist.push_back(*UI);
6560  while (!Worklist.empty()) {
6561    User *U = Worklist.pop_back_val();
6562    // Deleting the Old value will cause this to dangle. Postpone
6563    // that until everything else is done.
6564    if (U == Old)
6565      continue;
6566    if (!Visited.insert(U))
6567      continue;
6568    if (PHINode *PN = dyn_cast<PHINode>(U))
6569      SE->ConstantEvolutionLoopExitValue.erase(PN);
6570    SE->ValueExprMap.erase(U);
6571    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6572         UI != UE; ++UI)
6573      Worklist.push_back(*UI);
6574  }
6575  // Delete the Old value.
6576  if (PHINode *PN = dyn_cast<PHINode>(Old))
6577    SE->ConstantEvolutionLoopExitValue.erase(PN);
6578  SE->ValueExprMap.erase(Old);
6579  // this now dangles!
6580}
6581
6582ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6583  : CallbackVH(V), SE(se) {}
6584
6585//===----------------------------------------------------------------------===//
6586//                   ScalarEvolution Class Implementation
6587//===----------------------------------------------------------------------===//
6588
6589ScalarEvolution::ScalarEvolution()
6590  : FunctionPass(ID), FirstUnknown(0) {
6591  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6592}
6593
6594bool ScalarEvolution::runOnFunction(Function &F) {
6595  this->F = &F;
6596  LI = &getAnalysis<LoopInfo>();
6597  TD = getAnalysisIfAvailable<TargetData>();
6598  TLI = &getAnalysis<TargetLibraryInfo>();
6599  DT = &getAnalysis<DominatorTree>();
6600  return false;
6601}
6602
6603void ScalarEvolution::releaseMemory() {
6604  // Iterate through all the SCEVUnknown instances and call their
6605  // destructors, so that they release their references to their values.
6606  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6607    U->~SCEVUnknown();
6608  FirstUnknown = 0;
6609
6610  ValueExprMap.clear();
6611
6612  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6613  // that a loop had multiple computable exits.
6614  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6615         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6616       I != E; ++I) {
6617    I->second.clear();
6618  }
6619
6620  assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6621
6622  BackedgeTakenCounts.clear();
6623  ConstantEvolutionLoopExitValue.clear();
6624  ValuesAtScopes.clear();
6625  LoopDispositions.clear();
6626  BlockDispositions.clear();
6627  UnsignedRanges.clear();
6628  SignedRanges.clear();
6629  UniqueSCEVs.clear();
6630  SCEVAllocator.Reset();
6631}
6632
6633void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6634  AU.setPreservesAll();
6635  AU.addRequiredTransitive<LoopInfo>();
6636  AU.addRequiredTransitive<DominatorTree>();
6637  AU.addRequired<TargetLibraryInfo>();
6638}
6639
6640bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6641  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6642}
6643
6644static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6645                          const Loop *L) {
6646  // Print all inner loops first
6647  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6648    PrintLoopInfo(OS, SE, *I);
6649
6650  OS << "Loop ";
6651  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6652  OS << ": ";
6653
6654  SmallVector<BasicBlock *, 8> ExitBlocks;
6655  L->getExitBlocks(ExitBlocks);
6656  if (ExitBlocks.size() != 1)
6657    OS << "<multiple exits> ";
6658
6659  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6660    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6661  } else {
6662    OS << "Unpredictable backedge-taken count. ";
6663  }
6664
6665  OS << "\n"
6666        "Loop ";
6667  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6668  OS << ": ";
6669
6670  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6671    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6672  } else {
6673    OS << "Unpredictable max backedge-taken count. ";
6674  }
6675
6676  OS << "\n";
6677}
6678
6679void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6680  // ScalarEvolution's implementation of the print method is to print
6681  // out SCEV values of all instructions that are interesting. Doing
6682  // this potentially causes it to create new SCEV objects though,
6683  // which technically conflicts with the const qualifier. This isn't
6684  // observable from outside the class though, so casting away the
6685  // const isn't dangerous.
6686  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6687
6688  OS << "Classifying expressions for: ";
6689  WriteAsOperand(OS, F, /*PrintType=*/false);
6690  OS << "\n";
6691  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6692    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6693      OS << *I << '\n';
6694      OS << "  -->  ";
6695      const SCEV *SV = SE.getSCEV(&*I);
6696      SV->print(OS);
6697
6698      const Loop *L = LI->getLoopFor((*I).getParent());
6699
6700      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6701      if (AtUse != SV) {
6702        OS << "  -->  ";
6703        AtUse->print(OS);
6704      }
6705
6706      if (L) {
6707        OS << "\t\t" "Exits: ";
6708        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6709        if (!SE.isLoopInvariant(ExitValue, L)) {
6710          OS << "<<Unknown>>";
6711        } else {
6712          OS << *ExitValue;
6713        }
6714      }
6715
6716      OS << "\n";
6717    }
6718
6719  OS << "Determining loop execution counts for: ";
6720  WriteAsOperand(OS, F, /*PrintType=*/false);
6721  OS << "\n";
6722  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6723    PrintLoopInfo(OS, &SE, *I);
6724}
6725
6726ScalarEvolution::LoopDisposition
6727ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6728  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6729  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6730    Values.insert(std::make_pair(L, LoopVariant));
6731  if (!Pair.second)
6732    return Pair.first->second;
6733
6734  LoopDisposition D = computeLoopDisposition(S, L);
6735  return LoopDispositions[S][L] = D;
6736}
6737
6738ScalarEvolution::LoopDisposition
6739ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6740  switch (S->getSCEVType()) {
6741  case scConstant:
6742    return LoopInvariant;
6743  case scTruncate:
6744  case scZeroExtend:
6745  case scSignExtend:
6746    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6747  case scAddRecExpr: {
6748    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6749
6750    // If L is the addrec's loop, it's computable.
6751    if (AR->getLoop() == L)
6752      return LoopComputable;
6753
6754    // Add recurrences are never invariant in the function-body (null loop).
6755    if (!L)
6756      return LoopVariant;
6757
6758    // This recurrence is variant w.r.t. L if L contains AR's loop.
6759    if (L->contains(AR->getLoop()))
6760      return LoopVariant;
6761
6762    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6763    if (AR->getLoop()->contains(L))
6764      return LoopInvariant;
6765
6766    // This recurrence is variant w.r.t. L if any of its operands
6767    // are variant.
6768    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6769         I != E; ++I)
6770      if (!isLoopInvariant(*I, L))
6771        return LoopVariant;
6772
6773    // Otherwise it's loop-invariant.
6774    return LoopInvariant;
6775  }
6776  case scAddExpr:
6777  case scMulExpr:
6778  case scUMaxExpr:
6779  case scSMaxExpr: {
6780    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6781    bool HasVarying = false;
6782    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6783         I != E; ++I) {
6784      LoopDisposition D = getLoopDisposition(*I, L);
6785      if (D == LoopVariant)
6786        return LoopVariant;
6787      if (D == LoopComputable)
6788        HasVarying = true;
6789    }
6790    return HasVarying ? LoopComputable : LoopInvariant;
6791  }
6792  case scUDivExpr: {
6793    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6794    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6795    if (LD == LoopVariant)
6796      return LoopVariant;
6797    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6798    if (RD == LoopVariant)
6799      return LoopVariant;
6800    return (LD == LoopInvariant && RD == LoopInvariant) ?
6801           LoopInvariant : LoopComputable;
6802  }
6803  case scUnknown:
6804    // All non-instruction values are loop invariant.  All instructions are loop
6805    // invariant if they are not contained in the specified loop.
6806    // Instructions are never considered invariant in the function body
6807    // (null loop) because they are defined within the "loop".
6808    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6809      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6810    return LoopInvariant;
6811  case scCouldNotCompute:
6812    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6813  default: llvm_unreachable("Unknown SCEV kind!");
6814  }
6815}
6816
6817bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6818  return getLoopDisposition(S, L) == LoopInvariant;
6819}
6820
6821bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6822  return getLoopDisposition(S, L) == LoopComputable;
6823}
6824
6825ScalarEvolution::BlockDisposition
6826ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6827  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6828  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6829    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6830  if (!Pair.second)
6831    return Pair.first->second;
6832
6833  BlockDisposition D = computeBlockDisposition(S, BB);
6834  return BlockDispositions[S][BB] = D;
6835}
6836
6837ScalarEvolution::BlockDisposition
6838ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6839  switch (S->getSCEVType()) {
6840  case scConstant:
6841    return ProperlyDominatesBlock;
6842  case scTruncate:
6843  case scZeroExtend:
6844  case scSignExtend:
6845    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6846  case scAddRecExpr: {
6847    // This uses a "dominates" query instead of "properly dominates" query
6848    // to test for proper dominance too, because the instruction which
6849    // produces the addrec's value is a PHI, and a PHI effectively properly
6850    // dominates its entire containing block.
6851    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6852    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6853      return DoesNotDominateBlock;
6854  }
6855  // FALL THROUGH into SCEVNAryExpr handling.
6856  case scAddExpr:
6857  case scMulExpr:
6858  case scUMaxExpr:
6859  case scSMaxExpr: {
6860    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6861    bool Proper = true;
6862    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6863         I != E; ++I) {
6864      BlockDisposition D = getBlockDisposition(*I, BB);
6865      if (D == DoesNotDominateBlock)
6866        return DoesNotDominateBlock;
6867      if (D == DominatesBlock)
6868        Proper = false;
6869    }
6870    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6871  }
6872  case scUDivExpr: {
6873    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6874    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6875    BlockDisposition LD = getBlockDisposition(LHS, BB);
6876    if (LD == DoesNotDominateBlock)
6877      return DoesNotDominateBlock;
6878    BlockDisposition RD = getBlockDisposition(RHS, BB);
6879    if (RD == DoesNotDominateBlock)
6880      return DoesNotDominateBlock;
6881    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6882      ProperlyDominatesBlock : DominatesBlock;
6883  }
6884  case scUnknown:
6885    if (Instruction *I =
6886          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6887      if (I->getParent() == BB)
6888        return DominatesBlock;
6889      if (DT->properlyDominates(I->getParent(), BB))
6890        return ProperlyDominatesBlock;
6891      return DoesNotDominateBlock;
6892    }
6893    return ProperlyDominatesBlock;
6894  case scCouldNotCompute:
6895    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6896  default:
6897    llvm_unreachable("Unknown SCEV kind!");
6898  }
6899}
6900
6901bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6902  return getBlockDisposition(S, BB) >= DominatesBlock;
6903}
6904
6905bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6906  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6907}
6908
6909bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6910  SmallVector<const SCEV *, 8> Worklist;
6911  Worklist.push_back(S);
6912  do {
6913    S = Worklist.pop_back_val();
6914
6915    switch (S->getSCEVType()) {
6916    case scConstant:
6917      break;
6918    case scTruncate:
6919    case scZeroExtend:
6920    case scSignExtend: {
6921      const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6922      const SCEV *CastOp = Cast->getOperand();
6923      if (Op == CastOp)
6924        return true;
6925      Worklist.push_back(CastOp);
6926      break;
6927    }
6928    case scAddRecExpr:
6929    case scAddExpr:
6930    case scMulExpr:
6931    case scUMaxExpr:
6932    case scSMaxExpr: {
6933      const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6934      for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6935           I != E; ++I) {
6936        const SCEV *NAryOp = *I;
6937        if (NAryOp == Op)
6938          return true;
6939        Worklist.push_back(NAryOp);
6940      }
6941      break;
6942    }
6943    case scUDivExpr: {
6944      const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6945      const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6946      if (LHS == Op || RHS == Op)
6947        return true;
6948      Worklist.push_back(LHS);
6949      Worklist.push_back(RHS);
6950      break;
6951    }
6952    case scUnknown:
6953      break;
6954    case scCouldNotCompute:
6955      llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6956    default:
6957      llvm_unreachable("Unknown SCEV kind!");
6958    }
6959  } while (!Worklist.empty());
6960
6961  return false;
6962}
6963
6964void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6965  ValuesAtScopes.erase(S);
6966  LoopDispositions.erase(S);
6967  BlockDispositions.erase(S);
6968  UnsignedRanges.erase(S);
6969  SignedRanges.erase(S);
6970}
6971