ScalarEvolution.cpp revision 4dc534c7fe93743f28c093dde9332cdb9d8edfa3
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/Instructions.h"
67#include "llvm/Analysis/LoopInfo.h"
68#include "llvm/Assembly/Writer.h"
69#include "llvm/Transforms/Scalar.h"
70#include "llvm/Transforms/Utils/Local.h"
71#include "llvm/Support/CFG.h"
72#include "llvm/Support/ConstantRange.h"
73#include "llvm/Support/InstIterator.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/ADT/Statistic.h"
76#include <cmath>
77#include <algorithm>
78using namespace llvm;
79
80namespace {
81  RegisterAnalysis<ScalarEvolution>
82  R("scalar-evolution", "Scalar Evolution Analysis");
83
84  Statistic<>
85  NumBruteForceEvaluations("scalar-evolution",
86                           "Number of brute force evaluations needed to "
87                           "calculate high-order polynomial exit values");
88  Statistic<>
89  NumArrayLenItCounts("scalar-evolution",
90                      "Number of trip counts computed with array length");
91  Statistic<>
92  NumTripCountsComputed("scalar-evolution",
93                        "Number of loops with predictable loop counts");
94  Statistic<>
95  NumTripCountsNotComputed("scalar-evolution",
96                           "Number of loops without predictable loop counts");
97  Statistic<>
98  NumBruteForceTripCountsComputed("scalar-evolution",
99                        "Number of loops with trip counts computed by force");
100
101  cl::opt<unsigned>
102  MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103                          cl::desc("Maximum number of iterations SCEV will symbolically execute a constant derived loop"),
104                          cl::init(100));
105}
106
107//===----------------------------------------------------------------------===//
108//                           SCEV class definitions
109//===----------------------------------------------------------------------===//
110
111//===----------------------------------------------------------------------===//
112// Implementation of the SCEV class.
113//
114SCEV::~SCEV() {}
115void SCEV::dump() const {
116  print(std::cerr);
117}
118
119/// getValueRange - Return the tightest constant bounds that this value is
120/// known to have.  This method is only valid on integer SCEV objects.
121ConstantRange SCEV::getValueRange() const {
122  const Type *Ty = getType();
123  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
124  Ty = Ty->getUnsignedVersion();
125  // Default to a full range if no better information is available.
126  return ConstantRange(getType());
127}
128
129
130SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
131
132bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
133  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
134  return false;
135}
136
137const Type *SCEVCouldNotCompute::getType() const {
138  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
139  return 0;
140}
141
142bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
143  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144  return false;
145}
146
147SCEVHandle SCEVCouldNotCompute::
148replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
149                                  const SCEVHandle &Conc) const {
150  return this;
151}
152
153void SCEVCouldNotCompute::print(std::ostream &OS) const {
154  OS << "***COULDNOTCOMPUTE***";
155}
156
157bool SCEVCouldNotCompute::classof(const SCEV *S) {
158  return S->getSCEVType() == scCouldNotCompute;
159}
160
161
162// SCEVConstants - Only allow the creation of one SCEVConstant for any
163// particular value.  Don't use a SCEVHandle here, or else the object will
164// never be deleted!
165static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
166
167
168SCEVConstant::~SCEVConstant() {
169  SCEVConstants.erase(V);
170}
171
172SCEVHandle SCEVConstant::get(ConstantInt *V) {
173  // Make sure that SCEVConstant instances are all unsigned.
174  if (V->getType()->isSigned()) {
175    const Type *NewTy = V->getType()->getUnsignedVersion();
176    V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
177  }
178
179  SCEVConstant *&R = SCEVConstants[V];
180  if (R == 0) R = new SCEVConstant(V);
181  return R;
182}
183
184ConstantRange SCEVConstant::getValueRange() const {
185  return ConstantRange(V);
186}
187
188const Type *SCEVConstant::getType() const { return V->getType(); }
189
190void SCEVConstant::print(std::ostream &OS) const {
191  WriteAsOperand(OS, V, false);
192}
193
194// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
195// particular input.  Don't use a SCEVHandle here, or else the object will
196// never be deleted!
197static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
198
199SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
200  : SCEV(scTruncate), Op(op), Ty(ty) {
201  assert(Op->getType()->isInteger() && Ty->isInteger() &&
202         Ty->isUnsigned() &&
203         "Cannot truncate non-integer value!");
204  assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
205         "This is not a truncating conversion!");
206}
207
208SCEVTruncateExpr::~SCEVTruncateExpr() {
209  SCEVTruncates.erase(std::make_pair(Op, Ty));
210}
211
212ConstantRange SCEVTruncateExpr::getValueRange() const {
213  return getOperand()->getValueRange().truncate(getType());
214}
215
216void SCEVTruncateExpr::print(std::ostream &OS) const {
217  OS << "(truncate " << *Op << " to " << *Ty << ")";
218}
219
220// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
221// particular input.  Don't use a SCEVHandle here, or else the object will never
222// be deleted!
223static std::map<std::pair<SCEV*, const Type*>,
224                SCEVZeroExtendExpr*> SCEVZeroExtends;
225
226SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
227  : SCEV(scTruncate), Op(Op), Ty(ty) {
228  assert(Op->getType()->isInteger() && Ty->isInteger() &&
229         Ty->isUnsigned() &&
230         "Cannot zero extend non-integer value!");
231  assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
232         "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends.erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240  return getOperand()->getValueRange().zeroExtend(getType());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input.  Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static std::map<std::pair<unsigned, std::vector<SCEV*> >,
251                SCEVCommutativeExpr*> SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254  SCEVCommExprs.erase(std::make_pair(getSCEVType(),
255                                     std::vector<SCEV*>(Operands.begin(),
256                                                        Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261  const char *OpStr = getOperationStr();
262  OS << "(" << *Operands[0];
263  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264    OS << OpStr << *Operands[i];
265  OS << ")";
266}
267
268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270                                  const SCEVHandle &Conc) const {
271  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273    if (H != getOperand(i)) {
274      std::vector<SCEVHandle> NewOps;
275      NewOps.reserve(getNumOperands());
276      for (unsigned j = 0; j != i; ++j)
277        NewOps.push_back(getOperand(j));
278      NewOps.push_back(H);
279      for (++i; i != e; ++i)
280        NewOps.push_back(getOperand(i)->
281                         replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283      if (isa<SCEVAddExpr>(this))
284        return SCEVAddExpr::get(NewOps);
285      else if (isa<SCEVMulExpr>(this))
286        return SCEVMulExpr::get(NewOps);
287      else
288        assert(0 && "Unknown commutative expr!");
289    }
290  }
291  return this;
292}
293
294
295// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
296// input.  Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
299
300SCEVUDivExpr::~SCEVUDivExpr() {
301  SCEVUDivs.erase(std::make_pair(LHS, RHS));
302}
303
304void SCEVUDivExpr::print(std::ostream &OS) const {
305  OS << "(" << *LHS << " /u " << *RHS << ")";
306}
307
308const Type *SCEVUDivExpr::getType() const {
309  const Type *Ty = LHS->getType();
310  if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
311  return Ty;
312}
313
314// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
315// particular input.  Don't use a SCEVHandle here, or else the object will never
316// be deleted!
317static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
318                SCEVAddRecExpr*> SCEVAddRecExprs;
319
320SCEVAddRecExpr::~SCEVAddRecExpr() {
321  SCEVAddRecExprs.erase(std::make_pair(L,
322                                       std::vector<SCEV*>(Operands.begin(),
323                                                          Operands.end())));
324}
325
326SCEVHandle SCEVAddRecExpr::
327replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
328                                  const SCEVHandle &Conc) const {
329  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
330    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
331    if (H != getOperand(i)) {
332      std::vector<SCEVHandle> NewOps;
333      NewOps.reserve(getNumOperands());
334      for (unsigned j = 0; j != i; ++j)
335        NewOps.push_back(getOperand(j));
336      NewOps.push_back(H);
337      for (++i; i != e; ++i)
338        NewOps.push_back(getOperand(i)->
339                         replaceSymbolicValuesWithConcrete(Sym, Conc));
340
341      return get(NewOps, L);
342    }
343  }
344  return this;
345}
346
347
348bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
349  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
350  // contain L.
351  return !QueryLoop->contains(L->getHeader());
352}
353
354
355void SCEVAddRecExpr::print(std::ostream &OS) const {
356  OS << "{" << *Operands[0];
357  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358    OS << ",+," << *Operands[i];
359  OS << "}<" << L->getHeader()->getName() + ">";
360}
361
362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value.  Don't use a SCEVHandle here, or else the object will never be
364// deleted!
365static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
366
367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
368
369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370  // All non-instruction values are loop invariant.  All instructions are loop
371  // invariant if they are not contained in the specified loop.
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    return !L->contains(I->getParent());
374  return true;
375}
376
377const Type *SCEVUnknown::getType() const {
378  return V->getType();
379}
380
381void SCEVUnknown::print(std::ostream &OS) const {
382  WriteAsOperand(OS, V, false);
383}
384
385//===----------------------------------------------------------------------===//
386//                               SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391  /// than the complexity of the RHS.  This comparator is used to canonicalize
392  /// expressions.
393  struct SCEVComplexityCompare {
394    bool operator()(SCEV *LHS, SCEV *RHS) {
395      return LHS->getSCEVType() < RHS->getSCEVType();
396    }
397  };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine.  In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411  if (Ops.size() < 2) return;  // Noop
412  if (Ops.size() == 2) {
413    // This is the common case, which also happens to be trivially simple.
414    // Special case it.
415    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416      std::swap(Ops[0], Ops[1]);
417    return;
418  }
419
420  // Do the rough sort by complexity.
421  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423  // Now that we are sorted by complexity, group elements of the same
424  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
425  // be extremely short in practice.  Note that we take this approach because we
426  // do not want to depend on the addresses of the objects we are grouping.
427  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
428    SCEV *S = Ops[i];
429    unsigned Complexity = S->getSCEVType();
430
431    // If there are any objects of the same complexity and same value as this
432    // one, group them.
433    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434      if (Ops[j] == S) { // Found a duplicate.
435        // Move it to immediately after i'th element.
436        std::swap(Ops[i+1], Ops[j]);
437        ++i;   // no need to rescan it.
438        if (i == e-2) return;  // Done!
439      }
440    }
441  }
442}
443
444
445
446//===----------------------------------------------------------------------===//
447//                      Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
453  Constant *C;
454  if (Val == 0)
455    C = Constant::getNullValue(Ty);
456  else if (Ty->isFloatingPoint())
457    C = ConstantFP::get(Ty, Val);
458  else if (Ty->isSigned())
459    C = ConstantSInt::get(Ty, Val);
460  else {
461    C = ConstantSInt::get(Ty->getSignedVersion(), Val);
462    C = ConstantExpr::getCast(C, Ty);
463  }
464  return SCEVUnknown::get(C);
465}
466
467/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
468/// input value to the specified type.  If the type must be extended, it is zero
469/// extended.
470static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
471  const Type *SrcTy = V->getType();
472  assert(SrcTy->isInteger() && Ty->isInteger() &&
473         "Cannot truncate or zero extend with non-integer arguments!");
474  if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
475    return V;  // No conversion
476  if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
477    return SCEVTruncateExpr::get(V, Ty);
478  return SCEVZeroExtendExpr::get(V, Ty);
479}
480
481/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
482///
483static SCEVHandle getNegativeSCEV(const SCEVHandle &V) {
484  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
485    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
486
487  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
488}
489
490/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
491///
492static SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
493  // X - Y --> X + -Y
494  return SCEVAddExpr::get(LHS, getNegativeSCEV(RHS));
495}
496
497
498/// Binomial - Evaluate N!/((N-M)!*M!)  .  Note that N is often large and M is
499/// often very small, so we try to reduce the number of N! terms we need to
500/// evaluate by evaluating this as  (N!/(N-M)!)/M!
501static ConstantInt *Binomial(ConstantInt *N, unsigned M) {
502  uint64_t NVal = N->getRawValue();
503  uint64_t FirstTerm = 1;
504  for (unsigned i = 0; i != M; ++i)
505    FirstTerm *= NVal-i;
506
507  unsigned MFactorial = 1;
508  for (; M; --M)
509    MFactorial *= M;
510
511  Constant *Result = ConstantUInt::get(Type::ULongTy, FirstTerm/MFactorial);
512  Result = ConstantExpr::getCast(Result, N->getType());
513  assert(isa<ConstantInt>(Result) && "Cast of integer not folded??");
514  return cast<ConstantInt>(Result);
515}
516
517/// PartialFact - Compute V!/(V-NumSteps)!
518static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
519  // Handle this case efficiently, it is common to have constant iteration
520  // counts while computing loop exit values.
521  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
522    uint64_t Val = SC->getValue()->getRawValue();
523    uint64_t Result = 1;
524    for (; NumSteps; --NumSteps)
525      Result *= Val-(NumSteps-1);
526    Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
527    return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
528  }
529
530  const Type *Ty = V->getType();
531  if (NumSteps == 0)
532    return SCEVUnknown::getIntegerSCEV(1, Ty);
533
534  SCEVHandle Result = V;
535  for (unsigned i = 1; i != NumSteps; ++i)
536    Result = SCEVMulExpr::get(Result, getMinusSCEV(V,
537                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
538  return Result;
539}
540
541
542/// evaluateAtIteration - Return the value of this chain of recurrences at
543/// the specified iteration number.  We can evaluate this recurrence by
544/// multiplying each element in the chain by the binomial coefficient
545/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
546///
547///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
548///
549/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
550/// Is the binomial equation safe using modular arithmetic??
551///
552SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
553  SCEVHandle Result = getStart();
554  int Divisor = 1;
555  const Type *Ty = It->getType();
556  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
557    SCEVHandle BC = PartialFact(It, i);
558    Divisor *= i;
559    SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
560                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
561    Result = SCEVAddExpr::get(Result, Val);
562  }
563  return Result;
564}
565
566
567//===----------------------------------------------------------------------===//
568//                    SCEV Expression folder implementations
569//===----------------------------------------------------------------------===//
570
571SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
572  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
573    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
574
575  // If the input value is a chrec scev made out of constants, truncate
576  // all of the constants.
577  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
578    std::vector<SCEVHandle> Operands;
579    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
580      // FIXME: This should allow truncation of other expression types!
581      if (isa<SCEVConstant>(AddRec->getOperand(i)))
582        Operands.push_back(get(AddRec->getOperand(i), Ty));
583      else
584        break;
585    if (Operands.size() == AddRec->getNumOperands())
586      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
587  }
588
589  SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
590  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
591  return Result;
592}
593
594SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
595  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
596    return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
597
598  // FIXME: If the input value is a chrec scev, and we can prove that the value
599  // did not overflow the old, smaller, value, we can zero extend all of the
600  // operands (often constants).  This would allow analysis of something like
601  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
602
603  SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
604  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
605  return Result;
606}
607
608// get - Get a canonical add expression, or something simpler if possible.
609SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
610  assert(!Ops.empty() && "Cannot get empty add!");
611  if (Ops.size() == 1) return Ops[0];
612
613  // Sort by complexity, this groups all similar expression types together.
614  GroupByComplexity(Ops);
615
616  // If there are any constants, fold them together.
617  unsigned Idx = 0;
618  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
619    ++Idx;
620    assert(Idx < Ops.size());
621    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
622      // We found two constants, fold them together!
623      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
624      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
625        Ops[0] = SCEVConstant::get(CI);
626        Ops.erase(Ops.begin()+1);  // Erase the folded element
627        if (Ops.size() == 1) return Ops[0];
628      } else {
629        // If we couldn't fold the expression, move to the next constant.  Note
630        // that this is impossible to happen in practice because we always
631        // constant fold constant ints to constant ints.
632        ++Idx;
633      }
634    }
635
636    // If we are left with a constant zero being added, strip it off.
637    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
638      Ops.erase(Ops.begin());
639      --Idx;
640    }
641  }
642
643  if (Ops.size() == 1) return Ops[0];
644
645  // Okay, check to see if the same value occurs in the operand list twice.  If
646  // so, merge them together into an multiply expression.  Since we sorted the
647  // list, these values are required to be adjacent.
648  const Type *Ty = Ops[0]->getType();
649  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
650    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
651      // Found a match, merge the two values into a multiply, and add any
652      // remaining values to the result.
653      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
654      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
655      if (Ops.size() == 2)
656        return Mul;
657      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
658      Ops.push_back(Mul);
659      return SCEVAddExpr::get(Ops);
660    }
661
662  // Okay, now we know the first non-constant operand.  If there are add
663  // operands they would be next.
664  if (Idx < Ops.size()) {
665    bool DeletedAdd = false;
666    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
667      // If we have an add, expand the add operands onto the end of the operands
668      // list.
669      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
670      Ops.erase(Ops.begin()+Idx);
671      DeletedAdd = true;
672    }
673
674    // If we deleted at least one add, we added operands to the end of the list,
675    // and they are not necessarily sorted.  Recurse to resort and resimplify
676    // any operands we just aquired.
677    if (DeletedAdd)
678      return get(Ops);
679  }
680
681  // Skip over the add expression until we get to a multiply.
682  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
683    ++Idx;
684
685  // If we are adding something to a multiply expression, make sure the
686  // something is not already an operand of the multiply.  If so, merge it into
687  // the multiply.
688  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
689    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
690    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
691      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
692      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
693        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
694          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
695          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
696          if (Mul->getNumOperands() != 2) {
697            // If the multiply has more than two operands, we must get the
698            // Y*Z term.
699            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
700            MulOps.erase(MulOps.begin()+MulOp);
701            InnerMul = SCEVMulExpr::get(MulOps);
702          }
703          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
704          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
705          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
706          if (Ops.size() == 2) return OuterMul;
707          if (AddOp < Idx) {
708            Ops.erase(Ops.begin()+AddOp);
709            Ops.erase(Ops.begin()+Idx-1);
710          } else {
711            Ops.erase(Ops.begin()+Idx);
712            Ops.erase(Ops.begin()+AddOp-1);
713          }
714          Ops.push_back(OuterMul);
715          return SCEVAddExpr::get(Ops);
716        }
717
718      // Check this multiply against other multiplies being added together.
719      for (unsigned OtherMulIdx = Idx+1;
720           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
721           ++OtherMulIdx) {
722        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
723        // If MulOp occurs in OtherMul, we can fold the two multiplies
724        // together.
725        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
726             OMulOp != e; ++OMulOp)
727          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
728            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
729            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
730            if (Mul->getNumOperands() != 2) {
731              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
732              MulOps.erase(MulOps.begin()+MulOp);
733              InnerMul1 = SCEVMulExpr::get(MulOps);
734            }
735            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
736            if (OtherMul->getNumOperands() != 2) {
737              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
738                                             OtherMul->op_end());
739              MulOps.erase(MulOps.begin()+OMulOp);
740              InnerMul2 = SCEVMulExpr::get(MulOps);
741            }
742            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
743            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
744            if (Ops.size() == 2) return OuterMul;
745            Ops.erase(Ops.begin()+Idx);
746            Ops.erase(Ops.begin()+OtherMulIdx-1);
747            Ops.push_back(OuterMul);
748            return SCEVAddExpr::get(Ops);
749          }
750      }
751    }
752  }
753
754  // If there are any add recurrences in the operands list, see if any other
755  // added values are loop invariant.  If so, we can fold them into the
756  // recurrence.
757  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
758    ++Idx;
759
760  // Scan over all recurrences, trying to fold loop invariants into them.
761  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
762    // Scan all of the other operands to this add and add them to the vector if
763    // they are loop invariant w.r.t. the recurrence.
764    std::vector<SCEVHandle> LIOps;
765    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
766    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
767      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
768        LIOps.push_back(Ops[i]);
769        Ops.erase(Ops.begin()+i);
770        --i; --e;
771      }
772
773    // If we found some loop invariants, fold them into the recurrence.
774    if (!LIOps.empty()) {
775      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
776      LIOps.push_back(AddRec->getStart());
777
778      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
779      AddRecOps[0] = SCEVAddExpr::get(LIOps);
780
781      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
782      // If all of the other operands were loop invariant, we are done.
783      if (Ops.size() == 1) return NewRec;
784
785      // Otherwise, add the folded AddRec by the non-liv parts.
786      for (unsigned i = 0;; ++i)
787        if (Ops[i] == AddRec) {
788          Ops[i] = NewRec;
789          break;
790        }
791      return SCEVAddExpr::get(Ops);
792    }
793
794    // Okay, if there weren't any loop invariants to be folded, check to see if
795    // there are multiple AddRec's with the same loop induction variable being
796    // added together.  If so, we can fold them.
797    for (unsigned OtherIdx = Idx+1;
798         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
799      if (OtherIdx != Idx) {
800        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
801        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
802          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
803          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
804          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
805            if (i >= NewOps.size()) {
806              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
807                            OtherAddRec->op_end());
808              break;
809            }
810            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
811          }
812          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
813
814          if (Ops.size() == 2) return NewAddRec;
815
816          Ops.erase(Ops.begin()+Idx);
817          Ops.erase(Ops.begin()+OtherIdx-1);
818          Ops.push_back(NewAddRec);
819          return SCEVAddExpr::get(Ops);
820        }
821      }
822
823    // Otherwise couldn't fold anything into this recurrence.  Move onto the
824    // next one.
825  }
826
827  // Okay, it looks like we really DO need an add expr.  Check to see if we
828  // already have one, otherwise create a new one.
829  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
830  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
831                                                              SCEVOps)];
832  if (Result == 0) Result = new SCEVAddExpr(Ops);
833  return Result;
834}
835
836
837SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
838  assert(!Ops.empty() && "Cannot get empty mul!");
839
840  // Sort by complexity, this groups all similar expression types together.
841  GroupByComplexity(Ops);
842
843  // If there are any constants, fold them together.
844  unsigned Idx = 0;
845  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
846
847    // C1*(C2+V) -> C1*C2 + C1*V
848    if (Ops.size() == 2)
849      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
850        if (Add->getNumOperands() == 2 &&
851            isa<SCEVConstant>(Add->getOperand(0)))
852          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
853                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
854
855
856    ++Idx;
857    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
858      // We found two constants, fold them together!
859      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
860      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
861        Ops[0] = SCEVConstant::get(CI);
862        Ops.erase(Ops.begin()+1);  // Erase the folded element
863        if (Ops.size() == 1) return Ops[0];
864      } else {
865        // If we couldn't fold the expression, move to the next constant.  Note
866        // that this is impossible to happen in practice because we always
867        // constant fold constant ints to constant ints.
868        ++Idx;
869      }
870    }
871
872    // If we are left with a constant one being multiplied, strip it off.
873    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
874      Ops.erase(Ops.begin());
875      --Idx;
876    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
877      // If we have a multiply of zero, it will always be zero.
878      return Ops[0];
879    }
880  }
881
882  // Skip over the add expression until we get to a multiply.
883  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
884    ++Idx;
885
886  if (Ops.size() == 1)
887    return Ops[0];
888
889  // If there are mul operands inline them all into this expression.
890  if (Idx < Ops.size()) {
891    bool DeletedMul = false;
892    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
893      // If we have an mul, expand the mul operands onto the end of the operands
894      // list.
895      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
896      Ops.erase(Ops.begin()+Idx);
897      DeletedMul = true;
898    }
899
900    // If we deleted at least one mul, we added operands to the end of the list,
901    // and they are not necessarily sorted.  Recurse to resort and resimplify
902    // any operands we just aquired.
903    if (DeletedMul)
904      return get(Ops);
905  }
906
907  // If there are any add recurrences in the operands list, see if any other
908  // added values are loop invariant.  If so, we can fold them into the
909  // recurrence.
910  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
911    ++Idx;
912
913  // Scan over all recurrences, trying to fold loop invariants into them.
914  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
915    // Scan all of the other operands to this mul and add them to the vector if
916    // they are loop invariant w.r.t. the recurrence.
917    std::vector<SCEVHandle> LIOps;
918    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
919    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
920      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
921        LIOps.push_back(Ops[i]);
922        Ops.erase(Ops.begin()+i);
923        --i; --e;
924      }
925
926    // If we found some loop invariants, fold them into the recurrence.
927    if (!LIOps.empty()) {
928      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
929      std::vector<SCEVHandle> NewOps;
930      NewOps.reserve(AddRec->getNumOperands());
931      if (LIOps.size() == 1) {
932        SCEV *Scale = LIOps[0];
933        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
934          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
935      } else {
936        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
937          std::vector<SCEVHandle> MulOps(LIOps);
938          MulOps.push_back(AddRec->getOperand(i));
939          NewOps.push_back(SCEVMulExpr::get(MulOps));
940        }
941      }
942
943      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
944
945      // If all of the other operands were loop invariant, we are done.
946      if (Ops.size() == 1) return NewRec;
947
948      // Otherwise, multiply the folded AddRec by the non-liv parts.
949      for (unsigned i = 0;; ++i)
950        if (Ops[i] == AddRec) {
951          Ops[i] = NewRec;
952          break;
953        }
954      return SCEVMulExpr::get(Ops);
955    }
956
957    // Okay, if there weren't any loop invariants to be folded, check to see if
958    // there are multiple AddRec's with the same loop induction variable being
959    // multiplied together.  If so, we can fold them.
960    for (unsigned OtherIdx = Idx+1;
961         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
962      if (OtherIdx != Idx) {
963        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
964        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
965          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
966          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
967          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
968                                                 G->getStart());
969          SCEVHandle B = F->getStepRecurrence();
970          SCEVHandle D = G->getStepRecurrence();
971          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
972                                                SCEVMulExpr::get(G, B),
973                                                SCEVMulExpr::get(B, D));
974          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
975                                                     F->getLoop());
976          if (Ops.size() == 2) return NewAddRec;
977
978          Ops.erase(Ops.begin()+Idx);
979          Ops.erase(Ops.begin()+OtherIdx-1);
980          Ops.push_back(NewAddRec);
981          return SCEVMulExpr::get(Ops);
982        }
983      }
984
985    // Otherwise couldn't fold anything into this recurrence.  Move onto the
986    // next one.
987  }
988
989  // Okay, it looks like we really DO need an mul expr.  Check to see if we
990  // already have one, otherwise create a new one.
991  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
992  SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
993                                                              SCEVOps)];
994  if (Result == 0)
995    Result = new SCEVMulExpr(Ops);
996  return Result;
997}
998
999SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1000  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1001    if (RHSC->getValue()->equalsInt(1))
1002      return LHS;                            // X /u 1 --> x
1003    if (RHSC->getValue()->isAllOnesValue())
1004      return getNegativeSCEV(LHS);           // X /u -1  -->  -x
1005
1006    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1007      Constant *LHSCV = LHSC->getValue();
1008      Constant *RHSCV = RHSC->getValue();
1009      if (LHSCV->getType()->isSigned())
1010        LHSCV = ConstantExpr::getCast(LHSCV,
1011                                      LHSCV->getType()->getUnsignedVersion());
1012      if (RHSCV->getType()->isSigned())
1013        RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
1014      return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
1015    }
1016  }
1017
1018  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1019
1020  SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
1021  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1022  return Result;
1023}
1024
1025
1026/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1027/// specified loop.  Simplify the expression as much as possible.
1028SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1029                               const SCEVHandle &Step, const Loop *L) {
1030  std::vector<SCEVHandle> Operands;
1031  Operands.push_back(Start);
1032  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1033    if (StepChrec->getLoop() == L) {
1034      Operands.insert(Operands.end(), StepChrec->op_begin(),
1035                      StepChrec->op_end());
1036      return get(Operands, L);
1037    }
1038
1039  Operands.push_back(Step);
1040  return get(Operands, L);
1041}
1042
1043/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1044/// specified loop.  Simplify the expression as much as possible.
1045SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1046                               const Loop *L) {
1047  if (Operands.size() == 1) return Operands[0];
1048
1049  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1050    if (StepC->getValue()->isNullValue()) {
1051      Operands.pop_back();
1052      return get(Operands, L);             // { X,+,0 }  -->  X
1053    }
1054
1055  SCEVAddRecExpr *&Result =
1056    SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1057                                                         Operands.end()))];
1058  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1059  return Result;
1060}
1061
1062SCEVHandle SCEVUnknown::get(Value *V) {
1063  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1064    return SCEVConstant::get(CI);
1065  SCEVUnknown *&Result = SCEVUnknowns[V];
1066  if (Result == 0) Result = new SCEVUnknown(V);
1067  return Result;
1068}
1069
1070
1071//===----------------------------------------------------------------------===//
1072//             ScalarEvolutionsImpl Definition and Implementation
1073//===----------------------------------------------------------------------===//
1074//
1075/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1076/// evolution code.
1077///
1078namespace {
1079  struct ScalarEvolutionsImpl {
1080    /// F - The function we are analyzing.
1081    ///
1082    Function &F;
1083
1084    /// LI - The loop information for the function we are currently analyzing.
1085    ///
1086    LoopInfo &LI;
1087
1088    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1089    /// things.
1090    SCEVHandle UnknownValue;
1091
1092    /// Scalars - This is a cache of the scalars we have analyzed so far.
1093    ///
1094    std::map<Value*, SCEVHandle> Scalars;
1095
1096    /// IterationCounts - Cache the iteration count of the loops for this
1097    /// function as they are computed.
1098    std::map<const Loop*, SCEVHandle> IterationCounts;
1099
1100    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1101    /// the PHI instructions that we attempt to compute constant evolutions for.
1102    /// This allows us to avoid potentially expensive recomputation of these
1103    /// properties.  An instruction maps to null if we are unable to compute its
1104    /// exit value.
1105    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1106
1107  public:
1108    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1109      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1110
1111    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1112    /// expression and create a new one.
1113    SCEVHandle getSCEV(Value *V);
1114
1115    /// getSCEVAtScope - Compute the value of the specified expression within
1116    /// the indicated loop (which may be null to indicate in no loop).  If the
1117    /// expression cannot be evaluated, return UnknownValue itself.
1118    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1119
1120
1121    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1122    /// an analyzable loop-invariant iteration count.
1123    bool hasLoopInvariantIterationCount(const Loop *L);
1124
1125    /// getIterationCount - If the specified loop has a predictable iteration
1126    /// count, return it.  Note that it is not valid to call this method on a
1127    /// loop without a loop-invariant iteration count.
1128    SCEVHandle getIterationCount(const Loop *L);
1129
1130    /// deleteInstructionFromRecords - This method should be called by the
1131    /// client before it removes an instruction from the program, to make sure
1132    /// that no dangling references are left around.
1133    void deleteInstructionFromRecords(Instruction *I);
1134
1135  private:
1136    /// createSCEV - We know that there is no SCEV for the specified value.
1137    /// Analyze the expression.
1138    SCEVHandle createSCEV(Value *V);
1139    SCEVHandle createNodeForCast(CastInst *CI);
1140
1141    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1142    /// SCEVs.
1143    SCEVHandle createNodeForPHI(PHINode *PN);
1144
1145    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1146    /// for the specified instruction and replaces any references to the
1147    /// symbolic value SymName with the specified value.  This is used during
1148    /// PHI resolution.
1149    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1150                                          const SCEVHandle &SymName,
1151                                          const SCEVHandle &NewVal);
1152
1153    /// ComputeIterationCount - Compute the number of times the specified loop
1154    /// will iterate.
1155    SCEVHandle ComputeIterationCount(const Loop *L);
1156
1157    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1158    /// 'setcc load X, cst', try to se if we can compute the trip count.
1159    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1160                                                        Constant *RHS,
1161                                                        const Loop *L,
1162                                                        unsigned SetCCOpcode);
1163
1164    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1165    /// constant number of times (the condition evolves only from constants),
1166    /// try to evaluate a few iterations of the loop until we get the exit
1167    /// condition gets a value of ExitWhen (true or false).  If we cannot
1168    /// evaluate the trip count of the loop, return UnknownValue.
1169    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1170                                                 bool ExitWhen);
1171
1172    /// HowFarToZero - Return the number of times a backedge comparing the
1173    /// specified value to zero will execute.  If not computable, return
1174    /// UnknownValue
1175    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1176
1177    /// HowFarToNonZero - Return the number of times a backedge checking the
1178    /// specified value for nonzero will execute.  If not computable, return
1179    /// UnknownValue
1180    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1181
1182    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1183    /// in the header of its containing loop, we know the loop executes a
1184    /// constant number of times, and the PHI node is just a recurrence
1185    /// involving constants, fold it.
1186    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1187                                                const Loop *L);
1188  };
1189}
1190
1191//===----------------------------------------------------------------------===//
1192//            Basic SCEV Analysis and PHI Idiom Recognition Code
1193//
1194
1195/// deleteInstructionFromRecords - This method should be called by the
1196/// client before it removes an instruction from the program, to make sure
1197/// that no dangling references are left around.
1198void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1199  Scalars.erase(I);
1200  if (PHINode *PN = dyn_cast<PHINode>(I))
1201    ConstantEvolutionLoopExitValue.erase(PN);
1202}
1203
1204
1205/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1206/// expression and create a new one.
1207SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1208  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1209
1210  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1211  if (I != Scalars.end()) return I->second;
1212  SCEVHandle S = createSCEV(V);
1213  Scalars.insert(std::make_pair(V, S));
1214  return S;
1215}
1216
1217/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1218/// the specified instruction and replaces any references to the symbolic value
1219/// SymName with the specified value.  This is used during PHI resolution.
1220void ScalarEvolutionsImpl::
1221ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1222                                 const SCEVHandle &NewVal) {
1223  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1224  if (SI == Scalars.end()) return;
1225
1226  SCEVHandle NV =
1227    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1228  if (NV == SI->second) return;  // No change.
1229
1230  SI->second = NV;       // Update the scalars map!
1231
1232  // Any instruction values that use this instruction might also need to be
1233  // updated!
1234  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1235       UI != E; ++UI)
1236    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1237}
1238
1239/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1240/// a loop header, making it a potential recurrence, or it doesn't.
1241///
1242SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1243  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1244    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1245      if (L->getHeader() == PN->getParent()) {
1246        // If it lives in the loop header, it has two incoming values, one
1247        // from outside the loop, and one from inside.
1248        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1249        unsigned BackEdge     = IncomingEdge^1;
1250
1251        // While we are analyzing this PHI node, handle its value symbolically.
1252        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1253        assert(Scalars.find(PN) == Scalars.end() &&
1254               "PHI node already processed?");
1255        Scalars.insert(std::make_pair(PN, SymbolicName));
1256
1257        // Using this symbolic name for the PHI, analyze the value coming around
1258        // the back-edge.
1259        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1260
1261        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1262        // has a special value for the first iteration of the loop.
1263
1264        // If the value coming around the backedge is an add with the symbolic
1265        // value we just inserted, then we found a simple induction variable!
1266        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1267          // If there is a single occurrence of the symbolic value, replace it
1268          // with a recurrence.
1269          unsigned FoundIndex = Add->getNumOperands();
1270          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1271            if (Add->getOperand(i) == SymbolicName)
1272              if (FoundIndex == e) {
1273                FoundIndex = i;
1274                break;
1275              }
1276
1277          if (FoundIndex != Add->getNumOperands()) {
1278            // Create an add with everything but the specified operand.
1279            std::vector<SCEVHandle> Ops;
1280            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1281              if (i != FoundIndex)
1282                Ops.push_back(Add->getOperand(i));
1283            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1284
1285            // This is not a valid addrec if the step amount is varying each
1286            // loop iteration, but is not itself an addrec in this loop.
1287            if (Accum->isLoopInvariant(L) ||
1288                (isa<SCEVAddRecExpr>(Accum) &&
1289                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1290              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1291              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1292
1293              // Okay, for the entire analysis of this edge we assumed the PHI
1294              // to be symbolic.  We now need to go back and update all of the
1295              // entries for the scalars that use the PHI (except for the PHI
1296              // itself) to use the new analyzed value instead of the "symbolic"
1297              // value.
1298              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1299              return PHISCEV;
1300            }
1301          }
1302        }
1303
1304        return SymbolicName;
1305      }
1306
1307  // If it's not a loop phi, we can't handle it yet.
1308  return SCEVUnknown::get(PN);
1309}
1310
1311/// createNodeForCast - Handle the various forms of casts that we support.
1312///
1313SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
1314  const Type *SrcTy = CI->getOperand(0)->getType();
1315  const Type *DestTy = CI->getType();
1316
1317  // If this is a noop cast (ie, conversion from int to uint), ignore it.
1318  if (SrcTy->isLosslesslyConvertibleTo(DestTy))
1319    return getSCEV(CI->getOperand(0));
1320
1321  if (SrcTy->isInteger() && DestTy->isInteger()) {
1322    // Otherwise, if this is a truncating integer cast, we can represent this
1323    // cast.
1324    if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1325      return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
1326                                   CI->getType()->getUnsignedVersion());
1327    if (SrcTy->isUnsigned() &&
1328        SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
1329      return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
1330                                     CI->getType()->getUnsignedVersion());
1331  }
1332
1333  // If this is an sign or zero extending cast and we can prove that the value
1334  // will never overflow, we could do similar transformations.
1335
1336  // Otherwise, we can't handle this cast!
1337  return SCEVUnknown::get(CI);
1338}
1339
1340
1341/// createSCEV - We know that there is no SCEV for the specified value.
1342/// Analyze the expression.
1343///
1344SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1345  if (Instruction *I = dyn_cast<Instruction>(V)) {
1346    switch (I->getOpcode()) {
1347    case Instruction::Add:
1348      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1349                              getSCEV(I->getOperand(1)));
1350    case Instruction::Mul:
1351      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1352                              getSCEV(I->getOperand(1)));
1353    case Instruction::Div:
1354      if (V->getType()->isInteger() && V->getType()->isUnsigned())
1355        return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
1356                                 getSCEV(I->getOperand(1)));
1357      break;
1358
1359    case Instruction::Sub:
1360      return getMinusSCEV(getSCEV(I->getOperand(0)), getSCEV(I->getOperand(1)));
1361
1362    case Instruction::Shl:
1363      // Turn shift left of a constant amount into a multiply.
1364      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1365        Constant *X = ConstantInt::get(V->getType(), 1);
1366        X = ConstantExpr::getShl(X, SA);
1367        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1368      }
1369      break;
1370
1371    case Instruction::Shr:
1372      if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
1373        if (V->getType()->isUnsigned()) {
1374          Constant *X = ConstantInt::get(V->getType(), 1);
1375          X = ConstantExpr::getShl(X, SA);
1376          return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1377        }
1378      break;
1379
1380    case Instruction::Cast:
1381      return createNodeForCast(cast<CastInst>(I));
1382
1383    case Instruction::PHI:
1384      return createNodeForPHI(cast<PHINode>(I));
1385
1386    default: // We cannot analyze this expression.
1387      break;
1388    }
1389  }
1390
1391  return SCEVUnknown::get(V);
1392}
1393
1394
1395
1396//===----------------------------------------------------------------------===//
1397//                   Iteration Count Computation Code
1398//
1399
1400/// getIterationCount - If the specified loop has a predictable iteration
1401/// count, return it.  Note that it is not valid to call this method on a
1402/// loop without a loop-invariant iteration count.
1403SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1404  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1405  if (I == IterationCounts.end()) {
1406    SCEVHandle ItCount = ComputeIterationCount(L);
1407    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1408    if (ItCount != UnknownValue) {
1409      assert(ItCount->isLoopInvariant(L) &&
1410             "Computed trip count isn't loop invariant for loop!");
1411      ++NumTripCountsComputed;
1412    } else if (isa<PHINode>(L->getHeader()->begin())) {
1413      // Only count loops that have phi nodes as not being computable.
1414      ++NumTripCountsNotComputed;
1415    }
1416  }
1417  return I->second;
1418}
1419
1420/// ComputeIterationCount - Compute the number of times the specified loop
1421/// will iterate.
1422SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1423  // If the loop has a non-one exit block count, we can't analyze it.
1424  std::vector<BasicBlock*> ExitBlocks;
1425  L->getExitBlocks(ExitBlocks);
1426  if (ExitBlocks.size() != 1) return UnknownValue;
1427
1428  // Okay, there is one exit block.  Try to find the condition that causes the
1429  // loop to be exited.
1430  BasicBlock *ExitBlock = ExitBlocks[0];
1431
1432  BasicBlock *ExitingBlock = 0;
1433  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1434       PI != E; ++PI)
1435    if (L->contains(*PI)) {
1436      if (ExitingBlock == 0)
1437        ExitingBlock = *PI;
1438      else
1439        return UnknownValue;   // More than one block exiting!
1440    }
1441  assert(ExitingBlock && "No exits from loop, something is broken!");
1442
1443  // Okay, we've computed the exiting block.  See what condition causes us to
1444  // exit.
1445  //
1446  // FIXME: we should be able to handle switch instructions (with a single exit)
1447  // FIXME: We should handle cast of int to bool as well
1448  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1449  if (ExitBr == 0) return UnknownValue;
1450  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1451  SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
1452  if (ExitCond == 0)  // Not a setcc
1453    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1454                                          ExitBr->getSuccessor(0) == ExitBlock);
1455
1456  // If the condition was exit on true, convert the condition to exit on false.
1457  Instruction::BinaryOps Cond;
1458  if (ExitBr->getSuccessor(1) == ExitBlock)
1459    Cond = ExitCond->getOpcode();
1460  else
1461    Cond = ExitCond->getInverseCondition();
1462
1463  // Handle common loops like: for (X = "string"; *X; ++X)
1464  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1465    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1466      SCEVHandle ItCnt =
1467        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1468      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1469    }
1470
1471  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1472  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1473
1474  // Try to evaluate any dependencies out of the loop.
1475  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1476  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1477  Tmp = getSCEVAtScope(RHS, L);
1478  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1479
1480  // At this point, we would like to compute how many iterations of the loop the
1481  // predicate will return true for these inputs.
1482  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1483    // If there is a constant, force it into the RHS.
1484    std::swap(LHS, RHS);
1485    Cond = SetCondInst::getSwappedCondition(Cond);
1486  }
1487
1488  // FIXME: think about handling pointer comparisons!  i.e.:
1489  // while (P != P+100) ++P;
1490
1491  // If we have a comparison of a chrec against a constant, try to use value
1492  // ranges to answer this query.
1493  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1494    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1495      if (AddRec->getLoop() == L) {
1496        // Form the comparison range using the constant of the correct type so
1497        // that the ConstantRange class knows to do a signed or unsigned
1498        // comparison.
1499        ConstantInt *CompVal = RHSC->getValue();
1500        const Type *RealTy = ExitCond->getOperand(0)->getType();
1501        CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
1502        if (CompVal) {
1503          // Form the constant range.
1504          ConstantRange CompRange(Cond, CompVal);
1505
1506          // Now that we have it, if it's signed, convert it to an unsigned
1507          // range.
1508          if (CompRange.getLower()->getType()->isSigned()) {
1509            const Type *NewTy = RHSC->getValue()->getType();
1510            Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
1511            Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
1512            CompRange = ConstantRange(NewL, NewU);
1513          }
1514
1515          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1516          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1517        }
1518      }
1519
1520  switch (Cond) {
1521  case Instruction::SetNE:                     // while (X != Y)
1522    // Convert to: while (X-Y != 0)
1523    if (LHS->getType()->isInteger()) {
1524      SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
1525      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1526    }
1527    break;
1528  case Instruction::SetEQ:
1529    // Convert to: while (X-Y == 0)           // while (X == Y)
1530    if (LHS->getType()->isInteger()) {
1531      SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
1532      if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1533    }
1534    break;
1535  default:
1536#if 0
1537    std::cerr << "ComputeIterationCount ";
1538    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1539      std::cerr << "[unsigned] ";
1540    std::cerr << *LHS << "   "
1541              << Instruction::getOpcodeName(Cond) << "   " << *RHS << "\n";
1542#endif
1543    break;
1544  }
1545
1546  return ComputeIterationCountExhaustively(L, ExitCond,
1547                                         ExitBr->getSuccessor(0) == ExitBlock);
1548}
1549
1550static ConstantInt *
1551EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1552  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1553  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1554  assert(isa<SCEVConstant>(Val) &&
1555         "Evaluation of SCEV at constant didn't fold correctly?");
1556  return cast<SCEVConstant>(Val)->getValue();
1557}
1558
1559/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1560/// and a GEP expression (missing the pointer index) indexing into it, return
1561/// the addressed element of the initializer or null if the index expression is
1562/// invalid.
1563static Constant *
1564GetAddressedElementFromGlobal(GlobalVariable *GV,
1565                              const std::vector<ConstantInt*> &Indices) {
1566  Constant *Init = GV->getInitializer();
1567  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1568    uint64_t Idx = Indices[i]->getRawValue();
1569    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1570      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1571      Init = cast<Constant>(CS->getOperand(Idx));
1572    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1573      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1574      Init = cast<Constant>(CA->getOperand(Idx));
1575    } else if (isa<ConstantAggregateZero>(Init)) {
1576      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1577        assert(Idx < STy->getNumElements() && "Bad struct index!");
1578        Init = Constant::getNullValue(STy->getElementType(Idx));
1579      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1580        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1581        Init = Constant::getNullValue(ATy->getElementType());
1582      } else {
1583        assert(0 && "Unknown constant aggregate type!");
1584      }
1585      return 0;
1586    } else {
1587      return 0; // Unknown initializer type
1588    }
1589  }
1590  return Init;
1591}
1592
1593/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1594/// 'setcc load X, cst', try to se if we can compute the trip count.
1595SCEVHandle ScalarEvolutionsImpl::
1596ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1597                                         const Loop *L, unsigned SetCCOpcode) {
1598  if (LI->isVolatile()) return UnknownValue;
1599
1600  // Check to see if the loaded pointer is a getelementptr of a global.
1601  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1602  if (!GEP) return UnknownValue;
1603
1604  // Make sure that it is really a constant global we are gepping, with an
1605  // initializer, and make sure the first IDX is really 0.
1606  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1607  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1608      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1609      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1610    return UnknownValue;
1611
1612  // Okay, we allow one non-constant index into the GEP instruction.
1613  Value *VarIdx = 0;
1614  std::vector<ConstantInt*> Indexes;
1615  unsigned VarIdxNum = 0;
1616  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1617    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1618      Indexes.push_back(CI);
1619    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1620      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1621      VarIdx = GEP->getOperand(i);
1622      VarIdxNum = i-2;
1623      Indexes.push_back(0);
1624    }
1625
1626  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1627  // Check to see if X is a loop variant variable value now.
1628  SCEVHandle Idx = getSCEV(VarIdx);
1629  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1630  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1631
1632  // We can only recognize very limited forms of loop index expressions, in
1633  // particular, only affine AddRec's like {C1,+,C2}.
1634  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1635  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1636      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1637      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1638    return UnknownValue;
1639
1640  unsigned MaxSteps = MaxBruteForceIterations;
1641  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1642    ConstantUInt *ItCst =
1643      ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
1644    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1645
1646    // Form the GEP offset.
1647    Indexes[VarIdxNum] = Val;
1648
1649    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1650    if (Result == 0) break;  // Cannot compute!
1651
1652    // Evaluate the condition for this iteration.
1653    Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
1654    if (!isa<ConstantBool>(Result)) break;  // Couldn't decide for sure
1655    if (Result == ConstantBool::False) {
1656#if 0
1657      std::cerr << "\n***\n*** Computed loop count " << *ItCst
1658                << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1659                << "***\n";
1660#endif
1661      ++NumArrayLenItCounts;
1662      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1663    }
1664  }
1665  return UnknownValue;
1666}
1667
1668
1669/// CanConstantFold - Return true if we can constant fold an instruction of the
1670/// specified type, assuming that all operands were constants.
1671static bool CanConstantFold(const Instruction *I) {
1672  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
1673      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1674    return true;
1675
1676  if (const CallInst *CI = dyn_cast<CallInst>(I))
1677    if (const Function *F = CI->getCalledFunction())
1678      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1679  return false;
1680}
1681
1682/// ConstantFold - Constant fold an instruction of the specified type with the
1683/// specified constant operands.  This function may modify the operands vector.
1684static Constant *ConstantFold(const Instruction *I,
1685                              std::vector<Constant*> &Operands) {
1686  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
1687    return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
1688
1689  switch (I->getOpcode()) {
1690  case Instruction::Cast:
1691    return ConstantExpr::getCast(Operands[0], I->getType());
1692  case Instruction::Select:
1693    return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
1694  case Instruction::Call:
1695    if (Function *GV = dyn_cast<Function>(Operands[0])) {
1696      Operands.erase(Operands.begin());
1697      return ConstantFoldCall(cast<Function>(GV), Operands);
1698    }
1699
1700    return 0;
1701  case Instruction::GetElementPtr:
1702    Constant *Base = Operands[0];
1703    Operands.erase(Operands.begin());
1704    return ConstantExpr::getGetElementPtr(Base, Operands);
1705  }
1706  return 0;
1707}
1708
1709
1710/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1711/// in the loop that V is derived from.  We allow arbitrary operations along the
1712/// way, but the operands of an operation must either be constants or a value
1713/// derived from a constant PHI.  If this expression does not fit with these
1714/// constraints, return null.
1715static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1716  // If this is not an instruction, or if this is an instruction outside of the
1717  // loop, it can't be derived from a loop PHI.
1718  Instruction *I = dyn_cast<Instruction>(V);
1719  if (I == 0 || !L->contains(I->getParent())) return 0;
1720
1721  if (PHINode *PN = dyn_cast<PHINode>(I))
1722    if (L->getHeader() == I->getParent())
1723      return PN;
1724    else
1725      // We don't currently keep track of the control flow needed to evaluate
1726      // PHIs, so we cannot handle PHIs inside of loops.
1727      return 0;
1728
1729  // If we won't be able to constant fold this expression even if the operands
1730  // are constants, return early.
1731  if (!CanConstantFold(I)) return 0;
1732
1733  // Otherwise, we can evaluate this instruction if all of its operands are
1734  // constant or derived from a PHI node themselves.
1735  PHINode *PHI = 0;
1736  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1737    if (!(isa<Constant>(I->getOperand(Op)) ||
1738          isa<GlobalValue>(I->getOperand(Op)))) {
1739      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1740      if (P == 0) return 0;  // Not evolving from PHI
1741      if (PHI == 0)
1742        PHI = P;
1743      else if (PHI != P)
1744        return 0;  // Evolving from multiple different PHIs.
1745    }
1746
1747  // This is a expression evolving from a constant PHI!
1748  return PHI;
1749}
1750
1751/// EvaluateExpression - Given an expression that passes the
1752/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1753/// in the loop has the value PHIVal.  If we can't fold this expression for some
1754/// reason, return null.
1755static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1756  if (isa<PHINode>(V)) return PHIVal;
1757  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1758    return GV;
1759  if (Constant *C = dyn_cast<Constant>(V)) return C;
1760  Instruction *I = cast<Instruction>(V);
1761
1762  std::vector<Constant*> Operands;
1763  Operands.resize(I->getNumOperands());
1764
1765  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1766    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1767    if (Operands[i] == 0) return 0;
1768  }
1769
1770  return ConstantFold(I, Operands);
1771}
1772
1773/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1774/// in the header of its containing loop, we know the loop executes a
1775/// constant number of times, and the PHI node is just a recurrence
1776/// involving constants, fold it.
1777Constant *ScalarEvolutionsImpl::
1778getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1779  std::map<PHINode*, Constant*>::iterator I =
1780    ConstantEvolutionLoopExitValue.find(PN);
1781  if (I != ConstantEvolutionLoopExitValue.end())
1782    return I->second;
1783
1784  if (Its > MaxBruteForceIterations)
1785    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1786
1787  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1788
1789  // Since the loop is canonicalized, the PHI node must have two entries.  One
1790  // entry must be a constant (coming in from outside of the loop), and the
1791  // second must be derived from the same PHI.
1792  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1793  Constant *StartCST =
1794    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1795  if (StartCST == 0)
1796    return RetVal = 0;  // Must be a constant.
1797
1798  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1799  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1800  if (PN2 != PN)
1801    return RetVal = 0;  // Not derived from same PHI.
1802
1803  // Execute the loop symbolically to determine the exit value.
1804  unsigned IterationNum = 0;
1805  unsigned NumIterations = Its;
1806  if (NumIterations != Its)
1807    return RetVal = 0;  // More than 2^32 iterations??
1808
1809  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1810    if (IterationNum == NumIterations)
1811      return RetVal = PHIVal;  // Got exit value!
1812
1813    // Compute the value of the PHI node for the next iteration.
1814    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1815    if (NextPHI == PHIVal)
1816      return RetVal = NextPHI;  // Stopped evolving!
1817    if (NextPHI == 0)
1818      return 0;        // Couldn't evaluate!
1819    PHIVal = NextPHI;
1820  }
1821}
1822
1823/// ComputeIterationCountExhaustively - If the trip is known to execute a
1824/// constant number of times (the condition evolves only from constants),
1825/// try to evaluate a few iterations of the loop until we get the exit
1826/// condition gets a value of ExitWhen (true or false).  If we cannot
1827/// evaluate the trip count of the loop, return UnknownValue.
1828SCEVHandle ScalarEvolutionsImpl::
1829ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1830  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1831  if (PN == 0) return UnknownValue;
1832
1833  // Since the loop is canonicalized, the PHI node must have two entries.  One
1834  // entry must be a constant (coming in from outside of the loop), and the
1835  // second must be derived from the same PHI.
1836  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1837  Constant *StartCST =
1838    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1839  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1840
1841  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1842  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1843  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1844
1845  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1846  // the loop symbolically to determine when the condition gets a value of
1847  // "ExitWhen".
1848  unsigned IterationNum = 0;
1849  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1850  for (Constant *PHIVal = StartCST;
1851       IterationNum != MaxIterations; ++IterationNum) {
1852    ConstantBool *CondVal =
1853      dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
1854    if (!CondVal) return UnknownValue;     // Couldn't symbolically evaluate.
1855
1856    if (CondVal->getValue() == ExitWhen) {
1857      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1858      ++NumBruteForceTripCountsComputed;
1859      return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
1860    }
1861
1862    // Compute the value of the PHI node for the next iteration.
1863    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1864    if (NextPHI == 0 || NextPHI == PHIVal)
1865      return UnknownValue;  // Couldn't evaluate or not making progress...
1866    PHIVal = NextPHI;
1867  }
1868
1869  // Too many iterations were needed to evaluate.
1870  return UnknownValue;
1871}
1872
1873/// getSCEVAtScope - Compute the value of the specified expression within the
1874/// indicated loop (which may be null to indicate in no loop).  If the
1875/// expression cannot be evaluated, return UnknownValue.
1876SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1877  // FIXME: this should be turned into a virtual method on SCEV!
1878
1879  if (isa<SCEVConstant>(V)) return V;
1880
1881  // If this instruction is evolves from a constant-evolving PHI, compute the
1882  // exit value from the loop without using SCEVs.
1883  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1884    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1885      const Loop *LI = this->LI[I->getParent()];
1886      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1887        if (PHINode *PN = dyn_cast<PHINode>(I))
1888          if (PN->getParent() == LI->getHeader()) {
1889            // Okay, there is no closed form solution for the PHI node.  Check
1890            // to see if the loop that contains it has a known iteration count.
1891            // If so, we may be able to force computation of the exit value.
1892            SCEVHandle IterationCount = getIterationCount(LI);
1893            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1894              // Okay, we know how many times the containing loop executes.  If
1895              // this is a constant evolving PHI node, get the final value at
1896              // the specified iteration number.
1897              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1898                                               ICC->getValue()->getRawValue(),
1899                                                               LI);
1900              if (RV) return SCEVUnknown::get(RV);
1901            }
1902          }
1903
1904      // Okay, this is a some expression that we cannot symbolically evaluate
1905      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1906      // the arguments into constants, and if see, try to constant propagate the
1907      // result.  This is particularly useful for computing loop exit values.
1908      if (CanConstantFold(I)) {
1909        std::vector<Constant*> Operands;
1910        Operands.reserve(I->getNumOperands());
1911        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1912          Value *Op = I->getOperand(i);
1913          if (Constant *C = dyn_cast<Constant>(Op)) {
1914            Operands.push_back(C);
1915          } else {
1916            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1917            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1918              Operands.push_back(ConstantExpr::getCast(SC->getValue(),
1919                                                       Op->getType()));
1920            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1921              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1922                Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
1923              else
1924                return V;
1925            } else {
1926              return V;
1927            }
1928          }
1929        }
1930        return SCEVUnknown::get(ConstantFold(I, Operands));
1931      }
1932    }
1933
1934    // This is some other type of SCEVUnknown, just return it.
1935    return V;
1936  }
1937
1938  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1939    // Avoid performing the look-up in the common case where the specified
1940    // expression has no loop-variant portions.
1941    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1942      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1943      if (OpAtScope != Comm->getOperand(i)) {
1944        if (OpAtScope == UnknownValue) return UnknownValue;
1945        // Okay, at least one of these operands is loop variant but might be
1946        // foldable.  Build a new instance of the folded commutative expression.
1947        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
1948        NewOps.push_back(OpAtScope);
1949
1950        for (++i; i != e; ++i) {
1951          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1952          if (OpAtScope == UnknownValue) return UnknownValue;
1953          NewOps.push_back(OpAtScope);
1954        }
1955        if (isa<SCEVAddExpr>(Comm))
1956          return SCEVAddExpr::get(NewOps);
1957        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
1958        return SCEVMulExpr::get(NewOps);
1959      }
1960    }
1961    // If we got here, all operands are loop invariant.
1962    return Comm;
1963  }
1964
1965  if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
1966    SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
1967    if (LHS == UnknownValue) return LHS;
1968    SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
1969    if (RHS == UnknownValue) return RHS;
1970    if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
1971      return UDiv;   // must be loop invariant
1972    return SCEVUDivExpr::get(LHS, RHS);
1973  }
1974
1975  // If this is a loop recurrence for a loop that does not contain L, then we
1976  // are dealing with the final value computed by the loop.
1977  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
1978    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
1979      // To evaluate this recurrence, we need to know how many times the AddRec
1980      // loop iterates.  Compute this now.
1981      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
1982      if (IterationCount == UnknownValue) return UnknownValue;
1983      IterationCount = getTruncateOrZeroExtend(IterationCount,
1984                                               AddRec->getType());
1985
1986      // If the value is affine, simplify the expression evaluation to just
1987      // Start + Step*IterationCount.
1988      if (AddRec->isAffine())
1989        return SCEVAddExpr::get(AddRec->getStart(),
1990                                SCEVMulExpr::get(IterationCount,
1991                                                 AddRec->getOperand(1)));
1992
1993      // Otherwise, evaluate it the hard way.
1994      return AddRec->evaluateAtIteration(IterationCount);
1995    }
1996    return UnknownValue;
1997  }
1998
1999  //assert(0 && "Unknown SCEV type!");
2000  return UnknownValue;
2001}
2002
2003
2004/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2005/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2006/// might be the same) or two SCEVCouldNotCompute objects.
2007///
2008static std::pair<SCEVHandle,SCEVHandle>
2009SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2010  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2011  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2012  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2013  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2014
2015  // We currently can only solve this if the coefficients are constants.
2016  if (!L || !M || !N) {
2017    SCEV *CNC = new SCEVCouldNotCompute();
2018    return std::make_pair(CNC, CNC);
2019  }
2020
2021  Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
2022
2023  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2024  Constant *C = L->getValue();
2025  // The B coefficient is M-N/2
2026  Constant *B = ConstantExpr::getSub(M->getValue(),
2027                                     ConstantExpr::getDiv(N->getValue(),
2028                                                          Two));
2029  // The A coefficient is N/2
2030  Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
2031
2032  // Compute the B^2-4ac term.
2033  Constant *SqrtTerm =
2034    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2035                         ConstantExpr::getMul(A, C));
2036  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2037
2038  // Compute floor(sqrt(B^2-4ac))
2039  ConstantUInt *SqrtVal =
2040    cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
2041                                   SqrtTerm->getType()->getUnsignedVersion()));
2042  uint64_t SqrtValV = SqrtVal->getValue();
2043  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2044  // The square root might not be precise for arbitrary 64-bit integer
2045  // values.  Do some sanity checks to ensure it's correct.
2046  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2047      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2048    SCEV *CNC = new SCEVCouldNotCompute();
2049    return std::make_pair(CNC, CNC);
2050  }
2051
2052  SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
2053  SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
2054
2055  Constant *NegB = ConstantExpr::getNeg(B);
2056  Constant *TwoA = ConstantExpr::getMul(A, Two);
2057
2058  // The divisions must be performed as signed divisions.
2059  const Type *SignedTy = NegB->getType()->getSignedVersion();
2060  NegB = ConstantExpr::getCast(NegB, SignedTy);
2061  TwoA = ConstantExpr::getCast(TwoA, SignedTy);
2062  SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
2063
2064  Constant *Solution1 =
2065    ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2066  Constant *Solution2 =
2067    ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2068  return std::make_pair(SCEVUnknown::get(Solution1),
2069                        SCEVUnknown::get(Solution2));
2070}
2071
2072/// HowFarToZero - Return the number of times a backedge comparing the specified
2073/// value to zero will execute.  If not computable, return UnknownValue
2074SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2075  // If the value is a constant
2076  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2077    // If the value is already zero, the branch will execute zero times.
2078    if (C->getValue()->isNullValue()) return C;
2079    return UnknownValue;  // Otherwise it will loop infinitely.
2080  }
2081
2082  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2083  if (!AddRec || AddRec->getLoop() != L)
2084    return UnknownValue;
2085
2086  if (AddRec->isAffine()) {
2087    // If this is an affine expression the execution count of this branch is
2088    // equal to:
2089    //
2090    //     (0 - Start/Step)    iff   Start % Step == 0
2091    //
2092    // Get the initial value for the loop.
2093    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2094    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2095    SCEVHandle Step = AddRec->getOperand(1);
2096
2097    Step = getSCEVAtScope(Step, L->getParentLoop());
2098
2099    // Figure out if Start % Step == 0.
2100    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2101    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2102      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2103        return getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2104      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2105        return Start;                   // 0 - Start/-1 == Start
2106
2107      // Check to see if Start is divisible by SC with no remainder.
2108      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2109        ConstantInt *StartCC = StartC->getValue();
2110        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2111        Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
2112        if (Rem->isNullValue()) {
2113          Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
2114          return SCEVUnknown::get(Result);
2115        }
2116      }
2117    }
2118  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2119    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2120    // the quadratic equation to solve it.
2121    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2122    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2123    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2124    if (R1) {
2125#if 0
2126      std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2127                << "  sol#2: " << *R2 << "\n";
2128#endif
2129      // Pick the smallest positive root value.
2130      assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
2131      if (ConstantBool *CB =
2132          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2133                                                        R2->getValue()))) {
2134        if (CB != ConstantBool::True)
2135          std::swap(R1, R2);   // R1 is the minimum root now.
2136
2137        // We can only use this value if the chrec ends up with an exact zero
2138        // value at this index.  When solving for "X*X != 5", for example, we
2139        // should not accept a root of 2.
2140        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2141        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2142          if (EvalVal->getValue()->isNullValue())
2143            return R1;  // We found a quadratic root!
2144      }
2145    }
2146  }
2147
2148  return UnknownValue;
2149}
2150
2151/// HowFarToNonZero - Return the number of times a backedge checking the
2152/// specified value for nonzero will execute.  If not computable, return
2153/// UnknownValue
2154SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2155  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2156  // handle them yet except for the trivial case.  This could be expanded in the
2157  // future as needed.
2158
2159  // If the value is a constant, check to see if it is known to be non-zero
2160  // already.  If so, the backedge will execute zero times.
2161  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2162    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2163    Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
2164    if (NonZero == ConstantBool::True)
2165      return getSCEV(Zero);
2166    return UnknownValue;  // Otherwise it will loop infinitely.
2167  }
2168
2169  // We could implement others, but I really doubt anyone writes loops like
2170  // this, and if they did, they would already be constant folded.
2171  return UnknownValue;
2172}
2173
2174/// getNumIterationsInRange - Return the number of iterations of this loop that
2175/// produce values in the specified constant range.  Another way of looking at
2176/// this is that it returns the first iteration number where the value is not in
2177/// the condition, thus computing the exit count. If the iteration count can't
2178/// be computed, an instance of SCEVCouldNotCompute is returned.
2179SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2180  if (Range.isFullSet())  // Infinite loop.
2181    return new SCEVCouldNotCompute();
2182
2183  // If the start is a non-zero constant, shift the range to simplify things.
2184  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2185    if (!SC->getValue()->isNullValue()) {
2186      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2187      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2188      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2189      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2190        return ShiftedAddRec->getNumIterationsInRange(
2191                                              Range.subtract(SC->getValue()));
2192      // This is strange and shouldn't happen.
2193      return new SCEVCouldNotCompute();
2194    }
2195
2196  // The only time we can solve this is when we have all constant indices.
2197  // Otherwise, we cannot determine the overflow conditions.
2198  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2199    if (!isa<SCEVConstant>(getOperand(i)))
2200      return new SCEVCouldNotCompute();
2201
2202
2203  // Okay at this point we know that all elements of the chrec are constants and
2204  // that the start element is zero.
2205
2206  // First check to see if the range contains zero.  If not, the first
2207  // iteration exits.
2208  ConstantInt *Zero = ConstantInt::get(getType(), 0);
2209  if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
2210
2211  if (isAffine()) {
2212    // If this is an affine expression then we have this situation:
2213    //   Solve {0,+,A} in Range  ===  Ax in Range
2214
2215    // Since we know that zero is in the range, we know that the upper value of
2216    // the range must be the first possible exit value.  Also note that we
2217    // already checked for a full range.
2218    ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
2219    ConstantInt *A     = cast<SCEVConstant>(getOperand(1))->getValue();
2220    ConstantInt *One   = ConstantInt::get(getType(), 1);
2221
2222    // The exit value should be (Upper+A-1)/A.
2223    Constant *ExitValue = Upper;
2224    if (A != One) {
2225      ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
2226      ExitValue = ConstantExpr::getDiv(ExitValue, A);
2227    }
2228    assert(isa<ConstantInt>(ExitValue) &&
2229           "Constant folding of integers not implemented?");
2230
2231    // Evaluate at the exit value.  If we really did fall out of the valid
2232    // range, then we computed our trip count, otherwise wrap around or other
2233    // things must have happened.
2234    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2235    if (Range.contains(Val))
2236      return new SCEVCouldNotCompute();  // Something strange happened
2237
2238    // Ensure that the previous value is in the range.  This is a sanity check.
2239    assert(Range.contains(EvaluateConstantChrecAtConstant(this,
2240                              ConstantExpr::getSub(ExitValue, One))) &&
2241           "Linear scev computation is off in a bad way!");
2242    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2243  } else if (isQuadratic()) {
2244    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2245    // quadratic equation to solve it.  To do this, we must frame our problem in
2246    // terms of figuring out when zero is crossed, instead of when
2247    // Range.getUpper() is crossed.
2248    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2249    NewOps[0] = getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
2250    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2251
2252    // Next, solve the constructed addrec
2253    std::pair<SCEVHandle,SCEVHandle> Roots =
2254      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2255    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2256    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2257    if (R1) {
2258      // Pick the smallest positive root value.
2259      assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
2260      if (ConstantBool *CB =
2261          dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
2262                                                        R2->getValue()))) {
2263        if (CB != ConstantBool::True)
2264          std::swap(R1, R2);   // R1 is the minimum root now.
2265
2266        // Make sure the root is not off by one.  The returned iteration should
2267        // not be in the range, but the previous one should be.  When solving
2268        // for "X*X < 5", for example, we should not return a root of 2.
2269        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2270                                                             R1->getValue());
2271        if (Range.contains(R1Val)) {
2272          // The next iteration must be out of the range...
2273          Constant *NextVal =
2274            ConstantExpr::getAdd(R1->getValue(),
2275                                 ConstantInt::get(R1->getType(), 1));
2276
2277          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2278          if (!Range.contains(R1Val))
2279            return SCEVUnknown::get(NextVal);
2280          return new SCEVCouldNotCompute();  // Something strange happened
2281        }
2282
2283        // If R1 was not in the range, then it is a good return value.  Make
2284        // sure that R1-1 WAS in the range though, just in case.
2285        Constant *NextVal =
2286          ConstantExpr::getSub(R1->getValue(),
2287                               ConstantInt::get(R1->getType(), 1));
2288        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2289        if (Range.contains(R1Val))
2290          return R1;
2291        return new SCEVCouldNotCompute();  // Something strange happened
2292      }
2293    }
2294  }
2295
2296  // Fallback, if this is a general polynomial, figure out the progression
2297  // through brute force: evaluate until we find an iteration that fails the
2298  // test.  This is likely to be slow, but getting an accurate trip count is
2299  // incredibly important, we will be able to simplify the exit test a lot, and
2300  // we are almost guaranteed to get a trip count in this case.
2301  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2302  ConstantInt *One     = ConstantInt::get(getType(), 1);
2303  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2304  do {
2305    ++NumBruteForceEvaluations;
2306    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2307    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2308      return new SCEVCouldNotCompute();
2309
2310    // Check to see if we found the value!
2311    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
2312      return SCEVConstant::get(TestVal);
2313
2314    // Increment to test the next index.
2315    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2316  } while (TestVal != EndVal);
2317
2318  return new SCEVCouldNotCompute();
2319}
2320
2321
2322
2323//===----------------------------------------------------------------------===//
2324//                   ScalarEvolution Class Implementation
2325//===----------------------------------------------------------------------===//
2326
2327bool ScalarEvolution::runOnFunction(Function &F) {
2328  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2329  return false;
2330}
2331
2332void ScalarEvolution::releaseMemory() {
2333  delete (ScalarEvolutionsImpl*)Impl;
2334  Impl = 0;
2335}
2336
2337void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2338  AU.setPreservesAll();
2339  AU.addRequiredID(LoopSimplifyID);
2340  AU.addRequiredTransitive<LoopInfo>();
2341}
2342
2343SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2344  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2345}
2346
2347SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2348  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2349}
2350
2351bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2352  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2353}
2354
2355SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2356  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2357}
2358
2359void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2360  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2361}
2362
2363static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2364                          const Loop *L) {
2365  // Print all inner loops first
2366  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2367    PrintLoopInfo(OS, SE, *I);
2368
2369  std::cerr << "Loop " << L->getHeader()->getName() << ": ";
2370
2371  std::vector<BasicBlock*> ExitBlocks;
2372  L->getExitBlocks(ExitBlocks);
2373  if (ExitBlocks.size() != 1)
2374    std::cerr << "<multiple exits> ";
2375
2376  if (SE->hasLoopInvariantIterationCount(L)) {
2377    std::cerr << *SE->getIterationCount(L) << " iterations! ";
2378  } else {
2379    std::cerr << "Unpredictable iteration count. ";
2380  }
2381
2382  std::cerr << "\n";
2383}
2384
2385void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2386  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2387  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2388
2389  OS << "Classifying expressions for: " << F.getName() << "\n";
2390  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2391    if (I->getType()->isInteger()) {
2392      OS << *I;
2393      OS << "  --> ";
2394      SCEVHandle SV = getSCEV(&*I);
2395      SV->print(OS);
2396      OS << "\t\t";
2397
2398      if ((*I).getType()->isIntegral()) {
2399        ConstantRange Bounds = SV->getValueRange();
2400        if (!Bounds.isFullSet())
2401          OS << "Bounds: " << Bounds << " ";
2402      }
2403
2404      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2405        OS << "Exits: ";
2406        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2407        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2408          OS << "<<Unknown>>";
2409        } else {
2410          OS << *ExitValue;
2411        }
2412      }
2413
2414
2415      OS << "\n";
2416    }
2417
2418  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2419  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2420    PrintLoopInfo(OS, this, *I);
2421}
2422
2423