ScalarEvolution.cpp revision 5230ad61fd35d3006e7764c3152d28e2e68c288f
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/ConstantFolding.h"
67#include "llvm/Analysis/Dominators.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/ValueTracking.h"
72#include "llvm/Assembly/Writer.h"
73#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DerivedTypes.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Operator.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/ConstantRange.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/GetElementPtrTypeIterator.h"
86#include "llvm/Support/InstIterator.h"
87#include "llvm/Support/MathExtras.h"
88#include "llvm/Support/raw_ostream.h"
89#include "llvm/Target/TargetLibraryInfo.h"
90#include <algorithm>
91using namespace llvm;
92
93STATISTIC(NumArrayLenItCounts,
94          "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96          "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98          "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100          "Number of loops with trip counts computed by force");
101
102static cl::opt<unsigned>
103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104                        cl::desc("Maximum number of iterations SCEV will "
105                                 "symbolically execute a constant "
106                                 "derived loop"),
107                        cl::init(100));
108
109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112           cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115                "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTree)
118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
120                "Scalar Evolution Analysis", false, true)
121char ScalarEvolution::ID = 0;
122
123//===----------------------------------------------------------------------===//
124//                           SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
130
131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
132void SCEV::dump() const {
133  print(dbgs());
134  dbgs() << '\n';
135}
136#endif
137
138void SCEV::print(raw_ostream &OS) const {
139  switch (getSCEVType()) {
140  case scConstant:
141    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
142    return;
143  case scTruncate: {
144    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145    const SCEV *Op = Trunc->getOperand();
146    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147       << *Trunc->getType() << ")";
148    return;
149  }
150  case scZeroExtend: {
151    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152    const SCEV *Op = ZExt->getOperand();
153    OS << "(zext " << *Op->getType() << " " << *Op << " to "
154       << *ZExt->getType() << ")";
155    return;
156  }
157  case scSignExtend: {
158    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159    const SCEV *Op = SExt->getOperand();
160    OS << "(sext " << *Op->getType() << " " << *Op << " to "
161       << *SExt->getType() << ")";
162    return;
163  }
164  case scAddRecExpr: {
165    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166    OS << "{" << *AR->getOperand(0);
167    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168      OS << ",+," << *AR->getOperand(i);
169    OS << "}<";
170    if (AR->getNoWrapFlags(FlagNUW))
171      OS << "nuw><";
172    if (AR->getNoWrapFlags(FlagNSW))
173      OS << "nsw><";
174    if (AR->getNoWrapFlags(FlagNW) &&
175        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176      OS << "nw><";
177    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
178    OS << ">";
179    return;
180  }
181  case scAddExpr:
182  case scMulExpr:
183  case scUMaxExpr:
184  case scSMaxExpr: {
185    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
186    const char *OpStr = 0;
187    switch (NAry->getSCEVType()) {
188    case scAddExpr: OpStr = " + "; break;
189    case scMulExpr: OpStr = " * "; break;
190    case scUMaxExpr: OpStr = " umax "; break;
191    case scSMaxExpr: OpStr = " smax "; break;
192    }
193    OS << "(";
194    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195         I != E; ++I) {
196      OS << **I;
197      if (llvm::next(I) != E)
198        OS << OpStr;
199    }
200    OS << ")";
201    switch (NAry->getSCEVType()) {
202    case scAddExpr:
203    case scMulExpr:
204      if (NAry->getNoWrapFlags(FlagNUW))
205        OS << "<nuw>";
206      if (NAry->getNoWrapFlags(FlagNSW))
207        OS << "<nsw>";
208    }
209    return;
210  }
211  case scUDivExpr: {
212    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214    return;
215  }
216  case scUnknown: {
217    const SCEVUnknown *U = cast<SCEVUnknown>(this);
218    Type *AllocTy;
219    if (U->isSizeOf(AllocTy)) {
220      OS << "sizeof(" << *AllocTy << ")";
221      return;
222    }
223    if (U->isAlignOf(AllocTy)) {
224      OS << "alignof(" << *AllocTy << ")";
225      return;
226    }
227
228    Type *CTy;
229    Constant *FieldNo;
230    if (U->isOffsetOf(CTy, FieldNo)) {
231      OS << "offsetof(" << *CTy << ", ";
232      WriteAsOperand(OS, FieldNo, false);
233      OS << ")";
234      return;
235    }
236
237    // Otherwise just print it normally.
238    WriteAsOperand(OS, U->getValue(), false);
239    return;
240  }
241  case scCouldNotCompute:
242    OS << "***COULDNOTCOMPUTE***";
243    return;
244  default: break;
245  }
246  llvm_unreachable("Unknown SCEV kind!");
247}
248
249Type *SCEV::getType() const {
250  switch (getSCEVType()) {
251  case scConstant:
252    return cast<SCEVConstant>(this)->getType();
253  case scTruncate:
254  case scZeroExtend:
255  case scSignExtend:
256    return cast<SCEVCastExpr>(this)->getType();
257  case scAddRecExpr:
258  case scMulExpr:
259  case scUMaxExpr:
260  case scSMaxExpr:
261    return cast<SCEVNAryExpr>(this)->getType();
262  case scAddExpr:
263    return cast<SCEVAddExpr>(this)->getType();
264  case scUDivExpr:
265    return cast<SCEVUDivExpr>(this)->getType();
266  case scUnknown:
267    return cast<SCEVUnknown>(this)->getType();
268  case scCouldNotCompute:
269    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
270  default:
271    llvm_unreachable("Unknown SCEV kind!");
272  }
273}
274
275bool SCEV::isZero() const {
276  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277    return SC->getValue()->isZero();
278  return false;
279}
280
281bool SCEV::isOne() const {
282  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283    return SC->getValue()->isOne();
284  return false;
285}
286
287bool SCEV::isAllOnesValue() const {
288  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
289    return SC->getValue()->isAllOnesValue();
290  return false;
291}
292
293/// isNonConstantNegative - Return true if the specified scev is negated, but
294/// not a constant.
295bool SCEV::isNonConstantNegative() const {
296  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
297  if (!Mul) return false;
298
299  // If there is a constant factor, it will be first.
300  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
301  if (!SC) return false;
302
303  // Return true if the value is negative, this matches things like (-42 * V).
304  return SC->getValue()->getValue().isNegative();
305}
306
307SCEVCouldNotCompute::SCEVCouldNotCompute() :
308  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
309
310bool SCEVCouldNotCompute::classof(const SCEV *S) {
311  return S->getSCEVType() == scCouldNotCompute;
312}
313
314const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
315  FoldingSetNodeID ID;
316  ID.AddInteger(scConstant);
317  ID.AddPointer(V);
318  void *IP = 0;
319  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
320  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
321  UniqueSCEVs.InsertNode(S, IP);
322  return S;
323}
324
325const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
326  return getConstant(ConstantInt::get(getContext(), Val));
327}
328
329const SCEV *
330ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
331  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
332  return getConstant(ConstantInt::get(ITy, V, isSigned));
333}
334
335SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
336                           unsigned SCEVTy, const SCEV *op, Type *ty)
337  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
338
339SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
340                                   const SCEV *op, Type *ty)
341  : SCEVCastExpr(ID, scTruncate, op, ty) {
342  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
344         "Cannot truncate non-integer value!");
345}
346
347SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
348                                       const SCEV *op, Type *ty)
349  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
350  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
352         "Cannot zero extend non-integer value!");
353}
354
355SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
356                                       const SCEV *op, Type *ty)
357  : SCEVCastExpr(ID, scSignExtend, op, ty) {
358  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
359         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
360         "Cannot sign extend non-integer value!");
361}
362
363void SCEVUnknown::deleted() {
364  // Clear this SCEVUnknown from various maps.
365  SE->forgetMemoizedResults(this);
366
367  // Remove this SCEVUnknown from the uniquing map.
368  SE->UniqueSCEVs.RemoveNode(this);
369
370  // Release the value.
371  setValPtr(0);
372}
373
374void SCEVUnknown::allUsesReplacedWith(Value *New) {
375  // Clear this SCEVUnknown from various maps.
376  SE->forgetMemoizedResults(this);
377
378  // Remove this SCEVUnknown from the uniquing map.
379  SE->UniqueSCEVs.RemoveNode(this);
380
381  // Update this SCEVUnknown to point to the new value. This is needed
382  // because there may still be outstanding SCEVs which still point to
383  // this SCEVUnknown.
384  setValPtr(New);
385}
386
387bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
388  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
389    if (VCE->getOpcode() == Instruction::PtrToInt)
390      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
391        if (CE->getOpcode() == Instruction::GetElementPtr &&
392            CE->getOperand(0)->isNullValue() &&
393            CE->getNumOperands() == 2)
394          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
395            if (CI->isOne()) {
396              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
397                                 ->getElementType();
398              return true;
399            }
400
401  return false;
402}
403
404bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
405  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
406    if (VCE->getOpcode() == Instruction::PtrToInt)
407      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
408        if (CE->getOpcode() == Instruction::GetElementPtr &&
409            CE->getOperand(0)->isNullValue()) {
410          Type *Ty =
411            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
412          if (StructType *STy = dyn_cast<StructType>(Ty))
413            if (!STy->isPacked() &&
414                CE->getNumOperands() == 3 &&
415                CE->getOperand(1)->isNullValue()) {
416              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
417                if (CI->isOne() &&
418                    STy->getNumElements() == 2 &&
419                    STy->getElementType(0)->isIntegerTy(1)) {
420                  AllocTy = STy->getElementType(1);
421                  return true;
422                }
423            }
424        }
425
426  return false;
427}
428
429bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
430  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
431    if (VCE->getOpcode() == Instruction::PtrToInt)
432      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
433        if (CE->getOpcode() == Instruction::GetElementPtr &&
434            CE->getNumOperands() == 3 &&
435            CE->getOperand(0)->isNullValue() &&
436            CE->getOperand(1)->isNullValue()) {
437          Type *Ty =
438            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
439          // Ignore vector types here so that ScalarEvolutionExpander doesn't
440          // emit getelementptrs that index into vectors.
441          if (Ty->isStructTy() || Ty->isArrayTy()) {
442            CTy = Ty;
443            FieldNo = CE->getOperand(2);
444            return true;
445          }
446        }
447
448  return false;
449}
450
451//===----------------------------------------------------------------------===//
452//                               SCEV Utilities
453//===----------------------------------------------------------------------===//
454
455namespace {
456  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
457  /// than the complexity of the RHS.  This comparator is used to canonicalize
458  /// expressions.
459  class SCEVComplexityCompare {
460    const LoopInfo *const LI;
461  public:
462    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
463
464    // Return true or false if LHS is less than, or at least RHS, respectively.
465    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
466      return compare(LHS, RHS) < 0;
467    }
468
469    // Return negative, zero, or positive, if LHS is less than, equal to, or
470    // greater than RHS, respectively. A three-way result allows recursive
471    // comparisons to be more efficient.
472    int compare(const SCEV *LHS, const SCEV *RHS) const {
473      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
474      if (LHS == RHS)
475        return 0;
476
477      // Primarily, sort the SCEVs by their getSCEVType().
478      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
479      if (LType != RType)
480        return (int)LType - (int)RType;
481
482      // Aside from the getSCEVType() ordering, the particular ordering
483      // isn't very important except that it's beneficial to be consistent,
484      // so that (a + b) and (b + a) don't end up as different expressions.
485      switch (LType) {
486      case scUnknown: {
487        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
488        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
489
490        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
491        // not as complete as it could be.
492        const Value *LV = LU->getValue(), *RV = RU->getValue();
493
494        // Order pointer values after integer values. This helps SCEVExpander
495        // form GEPs.
496        bool LIsPointer = LV->getType()->isPointerTy(),
497             RIsPointer = RV->getType()->isPointerTy();
498        if (LIsPointer != RIsPointer)
499          return (int)LIsPointer - (int)RIsPointer;
500
501        // Compare getValueID values.
502        unsigned LID = LV->getValueID(),
503                 RID = RV->getValueID();
504        if (LID != RID)
505          return (int)LID - (int)RID;
506
507        // Sort arguments by their position.
508        if (const Argument *LA = dyn_cast<Argument>(LV)) {
509          const Argument *RA = cast<Argument>(RV);
510          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
511          return (int)LArgNo - (int)RArgNo;
512        }
513
514        // For instructions, compare their loop depth, and their operand
515        // count.  This is pretty loose.
516        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
517          const Instruction *RInst = cast<Instruction>(RV);
518
519          // Compare loop depths.
520          const BasicBlock *LParent = LInst->getParent(),
521                           *RParent = RInst->getParent();
522          if (LParent != RParent) {
523            unsigned LDepth = LI->getLoopDepth(LParent),
524                     RDepth = LI->getLoopDepth(RParent);
525            if (LDepth != RDepth)
526              return (int)LDepth - (int)RDepth;
527          }
528
529          // Compare the number of operands.
530          unsigned LNumOps = LInst->getNumOperands(),
531                   RNumOps = RInst->getNumOperands();
532          return (int)LNumOps - (int)RNumOps;
533        }
534
535        return 0;
536      }
537
538      case scConstant: {
539        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
540        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
541
542        // Compare constant values.
543        const APInt &LA = LC->getValue()->getValue();
544        const APInt &RA = RC->getValue()->getValue();
545        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
546        if (LBitWidth != RBitWidth)
547          return (int)LBitWidth - (int)RBitWidth;
548        return LA.ult(RA) ? -1 : 1;
549      }
550
551      case scAddRecExpr: {
552        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
553        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
554
555        // Compare addrec loop depths.
556        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
557        if (LLoop != RLoop) {
558          unsigned LDepth = LLoop->getLoopDepth(),
559                   RDepth = RLoop->getLoopDepth();
560          if (LDepth != RDepth)
561            return (int)LDepth - (int)RDepth;
562        }
563
564        // Addrec complexity grows with operand count.
565        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
566        if (LNumOps != RNumOps)
567          return (int)LNumOps - (int)RNumOps;
568
569        // Lexicographically compare.
570        for (unsigned i = 0; i != LNumOps; ++i) {
571          long X = compare(LA->getOperand(i), RA->getOperand(i));
572          if (X != 0)
573            return X;
574        }
575
576        return 0;
577      }
578
579      case scAddExpr:
580      case scMulExpr:
581      case scSMaxExpr:
582      case scUMaxExpr: {
583        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
584        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
585
586        // Lexicographically compare n-ary expressions.
587        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
588        if (LNumOps != RNumOps)
589          return (int)LNumOps - (int)RNumOps;
590
591        for (unsigned i = 0; i != LNumOps; ++i) {
592          if (i >= RNumOps)
593            return 1;
594          long X = compare(LC->getOperand(i), RC->getOperand(i));
595          if (X != 0)
596            return X;
597        }
598        return (int)LNumOps - (int)RNumOps;
599      }
600
601      case scUDivExpr: {
602        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
603        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
604
605        // Lexicographically compare udiv expressions.
606        long X = compare(LC->getLHS(), RC->getLHS());
607        if (X != 0)
608          return X;
609        return compare(LC->getRHS(), RC->getRHS());
610      }
611
612      case scTruncate:
613      case scZeroExtend:
614      case scSignExtend: {
615        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
616        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
617
618        // Compare cast expressions by operand.
619        return compare(LC->getOperand(), RC->getOperand());
620      }
621
622      default:
623        llvm_unreachable("Unknown SCEV kind!");
624      }
625    }
626  };
627}
628
629/// GroupByComplexity - Given a list of SCEV objects, order them by their
630/// complexity, and group objects of the same complexity together by value.
631/// When this routine is finished, we know that any duplicates in the vector are
632/// consecutive and that complexity is monotonically increasing.
633///
634/// Note that we go take special precautions to ensure that we get deterministic
635/// results from this routine.  In other words, we don't want the results of
636/// this to depend on where the addresses of various SCEV objects happened to
637/// land in memory.
638///
639static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
640                              LoopInfo *LI) {
641  if (Ops.size() < 2) return;  // Noop
642  if (Ops.size() == 2) {
643    // This is the common case, which also happens to be trivially simple.
644    // Special case it.
645    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
646    if (SCEVComplexityCompare(LI)(RHS, LHS))
647      std::swap(LHS, RHS);
648    return;
649  }
650
651  // Do the rough sort by complexity.
652  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
653
654  // Now that we are sorted by complexity, group elements of the same
655  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
656  // be extremely short in practice.  Note that we take this approach because we
657  // do not want to depend on the addresses of the objects we are grouping.
658  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
659    const SCEV *S = Ops[i];
660    unsigned Complexity = S->getSCEVType();
661
662    // If there are any objects of the same complexity and same value as this
663    // one, group them.
664    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
665      if (Ops[j] == S) { // Found a duplicate.
666        // Move it to immediately after i'th element.
667        std::swap(Ops[i+1], Ops[j]);
668        ++i;   // no need to rescan it.
669        if (i == e-2) return;  // Done!
670      }
671    }
672  }
673}
674
675
676
677//===----------------------------------------------------------------------===//
678//                      Simple SCEV method implementations
679//===----------------------------------------------------------------------===//
680
681/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
682/// Assume, K > 0.
683static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
684                                       ScalarEvolution &SE,
685                                       Type *ResultTy) {
686  // Handle the simplest case efficiently.
687  if (K == 1)
688    return SE.getTruncateOrZeroExtend(It, ResultTy);
689
690  // We are using the following formula for BC(It, K):
691  //
692  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
693  //
694  // Suppose, W is the bitwidth of the return value.  We must be prepared for
695  // overflow.  Hence, we must assure that the result of our computation is
696  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
697  // safe in modular arithmetic.
698  //
699  // However, this code doesn't use exactly that formula; the formula it uses
700  // is something like the following, where T is the number of factors of 2 in
701  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
702  // exponentiation:
703  //
704  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
705  //
706  // This formula is trivially equivalent to the previous formula.  However,
707  // this formula can be implemented much more efficiently.  The trick is that
708  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
709  // arithmetic.  To do exact division in modular arithmetic, all we have
710  // to do is multiply by the inverse.  Therefore, this step can be done at
711  // width W.
712  //
713  // The next issue is how to safely do the division by 2^T.  The way this
714  // is done is by doing the multiplication step at a width of at least W + T
715  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
716  // when we perform the division by 2^T (which is equivalent to a right shift
717  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
718  // truncated out after the division by 2^T.
719  //
720  // In comparison to just directly using the first formula, this technique
721  // is much more efficient; using the first formula requires W * K bits,
722  // but this formula less than W + K bits. Also, the first formula requires
723  // a division step, whereas this formula only requires multiplies and shifts.
724  //
725  // It doesn't matter whether the subtraction step is done in the calculation
726  // width or the input iteration count's width; if the subtraction overflows,
727  // the result must be zero anyway.  We prefer here to do it in the width of
728  // the induction variable because it helps a lot for certain cases; CodeGen
729  // isn't smart enough to ignore the overflow, which leads to much less
730  // efficient code if the width of the subtraction is wider than the native
731  // register width.
732  //
733  // (It's possible to not widen at all by pulling out factors of 2 before
734  // the multiplication; for example, K=2 can be calculated as
735  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
736  // extra arithmetic, so it's not an obvious win, and it gets
737  // much more complicated for K > 3.)
738
739  // Protection from insane SCEVs; this bound is conservative,
740  // but it probably doesn't matter.
741  if (K > 1000)
742    return SE.getCouldNotCompute();
743
744  unsigned W = SE.getTypeSizeInBits(ResultTy);
745
746  // Calculate K! / 2^T and T; we divide out the factors of two before
747  // multiplying for calculating K! / 2^T to avoid overflow.
748  // Other overflow doesn't matter because we only care about the bottom
749  // W bits of the result.
750  APInt OddFactorial(W, 1);
751  unsigned T = 1;
752  for (unsigned i = 3; i <= K; ++i) {
753    APInt Mult(W, i);
754    unsigned TwoFactors = Mult.countTrailingZeros();
755    T += TwoFactors;
756    Mult = Mult.lshr(TwoFactors);
757    OddFactorial *= Mult;
758  }
759
760  // We need at least W + T bits for the multiplication step
761  unsigned CalculationBits = W + T;
762
763  // Calculate 2^T, at width T+W.
764  APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
765
766  // Calculate the multiplicative inverse of K! / 2^T;
767  // this multiplication factor will perform the exact division by
768  // K! / 2^T.
769  APInt Mod = APInt::getSignedMinValue(W+1);
770  APInt MultiplyFactor = OddFactorial.zext(W+1);
771  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
772  MultiplyFactor = MultiplyFactor.trunc(W);
773
774  // Calculate the product, at width T+W
775  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
776                                                      CalculationBits);
777  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
778  for (unsigned i = 1; i != K; ++i) {
779    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
780    Dividend = SE.getMulExpr(Dividend,
781                             SE.getTruncateOrZeroExtend(S, CalculationTy));
782  }
783
784  // Divide by 2^T
785  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
786
787  // Truncate the result, and divide by K! / 2^T.
788
789  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
790                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
791}
792
793/// evaluateAtIteration - Return the value of this chain of recurrences at
794/// the specified iteration number.  We can evaluate this recurrence by
795/// multiplying each element in the chain by the binomial coefficient
796/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
797///
798///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
799///
800/// where BC(It, k) stands for binomial coefficient.
801///
802const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
803                                                ScalarEvolution &SE) const {
804  const SCEV *Result = getStart();
805  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
806    // The computation is correct in the face of overflow provided that the
807    // multiplication is performed _after_ the evaluation of the binomial
808    // coefficient.
809    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
810    if (isa<SCEVCouldNotCompute>(Coeff))
811      return Coeff;
812
813    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
814  }
815  return Result;
816}
817
818//===----------------------------------------------------------------------===//
819//                    SCEV Expression folder implementations
820//===----------------------------------------------------------------------===//
821
822const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
823                                             Type *Ty) {
824  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
825         "This is not a truncating conversion!");
826  assert(isSCEVable(Ty) &&
827         "This is not a conversion to a SCEVable type!");
828  Ty = getEffectiveSCEVType(Ty);
829
830  FoldingSetNodeID ID;
831  ID.AddInteger(scTruncate);
832  ID.AddPointer(Op);
833  ID.AddPointer(Ty);
834  void *IP = 0;
835  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
836
837  // Fold if the operand is constant.
838  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
839    return getConstant(
840      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
841
842  // trunc(trunc(x)) --> trunc(x)
843  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
844    return getTruncateExpr(ST->getOperand(), Ty);
845
846  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
847  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
848    return getTruncateOrSignExtend(SS->getOperand(), Ty);
849
850  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
851  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
852    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
853
854  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
855  // eliminate all the truncates.
856  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
857    SmallVector<const SCEV *, 4> Operands;
858    bool hasTrunc = false;
859    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
860      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
861      hasTrunc = isa<SCEVTruncateExpr>(S);
862      Operands.push_back(S);
863    }
864    if (!hasTrunc)
865      return getAddExpr(Operands);
866    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
867  }
868
869  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
870  // eliminate all the truncates.
871  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
872    SmallVector<const SCEV *, 4> Operands;
873    bool hasTrunc = false;
874    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
875      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
876      hasTrunc = isa<SCEVTruncateExpr>(S);
877      Operands.push_back(S);
878    }
879    if (!hasTrunc)
880      return getMulExpr(Operands);
881    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
882  }
883
884  // If the input value is a chrec scev, truncate the chrec's operands.
885  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
886    SmallVector<const SCEV *, 4> Operands;
887    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
888      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
889    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
890  }
891
892  // The cast wasn't folded; create an explicit cast node. We can reuse
893  // the existing insert position since if we get here, we won't have
894  // made any changes which would invalidate it.
895  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
896                                                 Op, Ty);
897  UniqueSCEVs.InsertNode(S, IP);
898  return S;
899}
900
901const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
902                                               Type *Ty) {
903  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
904         "This is not an extending conversion!");
905  assert(isSCEVable(Ty) &&
906         "This is not a conversion to a SCEVable type!");
907  Ty = getEffectiveSCEVType(Ty);
908
909  // Fold if the operand is constant.
910  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
911    return getConstant(
912      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
913
914  // zext(zext(x)) --> zext(x)
915  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
916    return getZeroExtendExpr(SZ->getOperand(), Ty);
917
918  // Before doing any expensive analysis, check to see if we've already
919  // computed a SCEV for this Op and Ty.
920  FoldingSetNodeID ID;
921  ID.AddInteger(scZeroExtend);
922  ID.AddPointer(Op);
923  ID.AddPointer(Ty);
924  void *IP = 0;
925  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
926
927  // zext(trunc(x)) --> zext(x) or x or trunc(x)
928  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
929    // It's possible the bits taken off by the truncate were all zero bits. If
930    // so, we should be able to simplify this further.
931    const SCEV *X = ST->getOperand();
932    ConstantRange CR = getUnsignedRange(X);
933    unsigned TruncBits = getTypeSizeInBits(ST->getType());
934    unsigned NewBits = getTypeSizeInBits(Ty);
935    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
936            CR.zextOrTrunc(NewBits)))
937      return getTruncateOrZeroExtend(X, Ty);
938  }
939
940  // If the input value is a chrec scev, and we can prove that the value
941  // did not overflow the old, smaller, value, we can zero extend all of the
942  // operands (often constants).  This allows analysis of something like
943  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
944  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
945    if (AR->isAffine()) {
946      const SCEV *Start = AR->getStart();
947      const SCEV *Step = AR->getStepRecurrence(*this);
948      unsigned BitWidth = getTypeSizeInBits(AR->getType());
949      const Loop *L = AR->getLoop();
950
951      // If we have special knowledge that this addrec won't overflow,
952      // we don't need to do any further analysis.
953      if (AR->getNoWrapFlags(SCEV::FlagNUW))
954        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
955                             getZeroExtendExpr(Step, Ty),
956                             L, AR->getNoWrapFlags());
957
958      // Check whether the backedge-taken count is SCEVCouldNotCompute.
959      // Note that this serves two purposes: It filters out loops that are
960      // simply not analyzable, and it covers the case where this code is
961      // being called from within backedge-taken count analysis, such that
962      // attempting to ask for the backedge-taken count would likely result
963      // in infinite recursion. In the later case, the analysis code will
964      // cope with a conservative value, and it will take care to purge
965      // that value once it has finished.
966      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
967      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
968        // Manually compute the final value for AR, checking for
969        // overflow.
970
971        // Check whether the backedge-taken count can be losslessly casted to
972        // the addrec's type. The count is always unsigned.
973        const SCEV *CastedMaxBECount =
974          getTruncateOrZeroExtend(MaxBECount, Start->getType());
975        const SCEV *RecastedMaxBECount =
976          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
977        if (MaxBECount == RecastedMaxBECount) {
978          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
979          // Check whether Start+Step*MaxBECount has no unsigned overflow.
980          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
981          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
982          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
983          const SCEV *WideMaxBECount =
984            getZeroExtendExpr(CastedMaxBECount, WideTy);
985          const SCEV *OperandExtendedAdd =
986            getAddExpr(WideStart,
987                       getMulExpr(WideMaxBECount,
988                                  getZeroExtendExpr(Step, WideTy)));
989          if (ZAdd == OperandExtendedAdd) {
990            // Cache knowledge of AR NUW, which is propagated to this AddRec.
991            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
992            // Return the expression with the addrec on the outside.
993            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994                                 getZeroExtendExpr(Step, Ty),
995                                 L, AR->getNoWrapFlags());
996          }
997          // Similar to above, only this time treat the step value as signed.
998          // This covers loops that count down.
999          OperandExtendedAdd =
1000            getAddExpr(WideStart,
1001                       getMulExpr(WideMaxBECount,
1002                                  getSignExtendExpr(Step, WideTy)));
1003          if (ZAdd == OperandExtendedAdd) {
1004            // Cache knowledge of AR NW, which is propagated to this AddRec.
1005            // Negative step causes unsigned wrap, but it still can't self-wrap.
1006            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1007            // Return the expression with the addrec on the outside.
1008            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1009                                 getSignExtendExpr(Step, Ty),
1010                                 L, AR->getNoWrapFlags());
1011          }
1012        }
1013
1014        // If the backedge is guarded by a comparison with the pre-inc value
1015        // the addrec is safe. Also, if the entry is guarded by a comparison
1016        // with the start value and the backedge is guarded by a comparison
1017        // with the post-inc value, the addrec is safe.
1018        if (isKnownPositive(Step)) {
1019          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1020                                      getUnsignedRange(Step).getUnsignedMax());
1021          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1022              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1023               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1024                                           AR->getPostIncExpr(*this), N))) {
1025            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1026            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1027            // Return the expression with the addrec on the outside.
1028            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1029                                 getZeroExtendExpr(Step, Ty),
1030                                 L, AR->getNoWrapFlags());
1031          }
1032        } else if (isKnownNegative(Step)) {
1033          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1034                                      getSignedRange(Step).getSignedMin());
1035          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1036              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1037               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1038                                           AR->getPostIncExpr(*this), N))) {
1039            // Cache knowledge of AR NW, which is propagated to this AddRec.
1040            // Negative step causes unsigned wrap, but it still can't self-wrap.
1041            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1042            // Return the expression with the addrec on the outside.
1043            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1044                                 getSignExtendExpr(Step, Ty),
1045                                 L, AR->getNoWrapFlags());
1046          }
1047        }
1048      }
1049    }
1050
1051  // The cast wasn't folded; create an explicit cast node.
1052  // Recompute the insert position, as it may have been invalidated.
1053  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1054  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1055                                                   Op, Ty);
1056  UniqueSCEVs.InsertNode(S, IP);
1057  return S;
1058}
1059
1060// Get the limit of a recurrence such that incrementing by Step cannot cause
1061// signed overflow as long as the value of the recurrence within the loop does
1062// not exceed this limit before incrementing.
1063static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1064                                           ICmpInst::Predicate *Pred,
1065                                           ScalarEvolution *SE) {
1066  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1067  if (SE->isKnownPositive(Step)) {
1068    *Pred = ICmpInst::ICMP_SLT;
1069    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1070                           SE->getSignedRange(Step).getSignedMax());
1071  }
1072  if (SE->isKnownNegative(Step)) {
1073    *Pred = ICmpInst::ICMP_SGT;
1074    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1075                       SE->getSignedRange(Step).getSignedMin());
1076  }
1077  return 0;
1078}
1079
1080// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1081// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1082// or postincrement sibling. This allows normalizing a sign extended AddRec as
1083// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1084// result, the expression "Step + sext(PreIncAR)" is congruent with
1085// "sext(PostIncAR)"
1086static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1087                                            Type *Ty,
1088                                            ScalarEvolution *SE) {
1089  const Loop *L = AR->getLoop();
1090  const SCEV *Start = AR->getStart();
1091  const SCEV *Step = AR->getStepRecurrence(*SE);
1092
1093  // Check for a simple looking step prior to loop entry.
1094  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1095  if (!SA)
1096    return 0;
1097
1098  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1099  // subtraction is expensive. For this purpose, perform a quick and dirty
1100  // difference, by checking for Step in the operand list.
1101  SmallVector<const SCEV *, 4> DiffOps;
1102  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1103       I != E; ++I) {
1104    if (*I != Step)
1105      DiffOps.push_back(*I);
1106  }
1107  if (DiffOps.size() == SA->getNumOperands())
1108    return 0;
1109
1110  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1111  // same three conditions that getSignExtendedExpr checks.
1112
1113  // 1. NSW flags on the step increment.
1114  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1115  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1116    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1117
1118  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1119    return PreStart;
1120
1121  // 2. Direct overflow check on the step operation's expression.
1122  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1123  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1124  const SCEV *OperandExtendedStart =
1125    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1126                   SE->getSignExtendExpr(Step, WideTy));
1127  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1128    // Cache knowledge of PreAR NSW.
1129    if (PreAR)
1130      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1131    // FIXME: this optimization needs a unit test
1132    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1133    return PreStart;
1134  }
1135
1136  // 3. Loop precondition.
1137  ICmpInst::Predicate Pred;
1138  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1139
1140  if (OverflowLimit &&
1141      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1142    return PreStart;
1143  }
1144  return 0;
1145}
1146
1147// Get the normalized sign-extended expression for this AddRec's Start.
1148static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1149                                            Type *Ty,
1150                                            ScalarEvolution *SE) {
1151  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1152  if (!PreStart)
1153    return SE->getSignExtendExpr(AR->getStart(), Ty);
1154
1155  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1156                        SE->getSignExtendExpr(PreStart, Ty));
1157}
1158
1159const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1160                                               Type *Ty) {
1161  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1162         "This is not an extending conversion!");
1163  assert(isSCEVable(Ty) &&
1164         "This is not a conversion to a SCEVable type!");
1165  Ty = getEffectiveSCEVType(Ty);
1166
1167  // Fold if the operand is constant.
1168  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1169    return getConstant(
1170      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1171
1172  // sext(sext(x)) --> sext(x)
1173  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1174    return getSignExtendExpr(SS->getOperand(), Ty);
1175
1176  // sext(zext(x)) --> zext(x)
1177  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1178    return getZeroExtendExpr(SZ->getOperand(), Ty);
1179
1180  // Before doing any expensive analysis, check to see if we've already
1181  // computed a SCEV for this Op and Ty.
1182  FoldingSetNodeID ID;
1183  ID.AddInteger(scSignExtend);
1184  ID.AddPointer(Op);
1185  ID.AddPointer(Ty);
1186  void *IP = 0;
1187  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1188
1189  // If the input value is provably positive, build a zext instead.
1190  if (isKnownNonNegative(Op))
1191    return getZeroExtendExpr(Op, Ty);
1192
1193  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1194  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1195    // It's possible the bits taken off by the truncate were all sign bits. If
1196    // so, we should be able to simplify this further.
1197    const SCEV *X = ST->getOperand();
1198    ConstantRange CR = getSignedRange(X);
1199    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1200    unsigned NewBits = getTypeSizeInBits(Ty);
1201    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1202            CR.sextOrTrunc(NewBits)))
1203      return getTruncateOrSignExtend(X, Ty);
1204  }
1205
1206  // If the input value is a chrec scev, and we can prove that the value
1207  // did not overflow the old, smaller, value, we can sign extend all of the
1208  // operands (often constants).  This allows analysis of something like
1209  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1210  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1211    if (AR->isAffine()) {
1212      const SCEV *Start = AR->getStart();
1213      const SCEV *Step = AR->getStepRecurrence(*this);
1214      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1215      const Loop *L = AR->getLoop();
1216
1217      // If we have special knowledge that this addrec won't overflow,
1218      // we don't need to do any further analysis.
1219      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1220        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1221                             getSignExtendExpr(Step, Ty),
1222                             L, SCEV::FlagNSW);
1223
1224      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1225      // Note that this serves two purposes: It filters out loops that are
1226      // simply not analyzable, and it covers the case where this code is
1227      // being called from within backedge-taken count analysis, such that
1228      // attempting to ask for the backedge-taken count would likely result
1229      // in infinite recursion. In the later case, the analysis code will
1230      // cope with a conservative value, and it will take care to purge
1231      // that value once it has finished.
1232      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1233      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1234        // Manually compute the final value for AR, checking for
1235        // overflow.
1236
1237        // Check whether the backedge-taken count can be losslessly casted to
1238        // the addrec's type. The count is always unsigned.
1239        const SCEV *CastedMaxBECount =
1240          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1241        const SCEV *RecastedMaxBECount =
1242          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1243        if (MaxBECount == RecastedMaxBECount) {
1244          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1245          // Check whether Start+Step*MaxBECount has no signed overflow.
1246          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1247          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1248          const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1249          const SCEV *WideMaxBECount =
1250            getZeroExtendExpr(CastedMaxBECount, WideTy);
1251          const SCEV *OperandExtendedAdd =
1252            getAddExpr(WideStart,
1253                       getMulExpr(WideMaxBECount,
1254                                  getSignExtendExpr(Step, WideTy)));
1255          if (SAdd == OperandExtendedAdd) {
1256            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258            // Return the expression with the addrec on the outside.
1259            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1260                                 getSignExtendExpr(Step, Ty),
1261                                 L, AR->getNoWrapFlags());
1262          }
1263          // Similar to above, only this time treat the step value as unsigned.
1264          // This covers loops that count up with an unsigned step.
1265          OperandExtendedAdd =
1266            getAddExpr(WideStart,
1267                       getMulExpr(WideMaxBECount,
1268                                  getZeroExtendExpr(Step, WideTy)));
1269          if (SAdd == OperandExtendedAdd) {
1270            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1271            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1272            // Return the expression with the addrec on the outside.
1273            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1274                                 getZeroExtendExpr(Step, Ty),
1275                                 L, AR->getNoWrapFlags());
1276          }
1277        }
1278
1279        // If the backedge is guarded by a comparison with the pre-inc value
1280        // the addrec is safe. Also, if the entry is guarded by a comparison
1281        // with the start value and the backedge is guarded by a comparison
1282        // with the post-inc value, the addrec is safe.
1283        ICmpInst::Predicate Pred;
1284        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1285        if (OverflowLimit &&
1286            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1287             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1288              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1289                                          OverflowLimit)))) {
1290          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1291          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1292          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1293                               getSignExtendExpr(Step, Ty),
1294                               L, AR->getNoWrapFlags());
1295        }
1296      }
1297    }
1298
1299  // The cast wasn't folded; create an explicit cast node.
1300  // Recompute the insert position, as it may have been invalidated.
1301  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1302  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1303                                                   Op, Ty);
1304  UniqueSCEVs.InsertNode(S, IP);
1305  return S;
1306}
1307
1308/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1309/// unspecified bits out to the given type.
1310///
1311const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1312                                              Type *Ty) {
1313  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1314         "This is not an extending conversion!");
1315  assert(isSCEVable(Ty) &&
1316         "This is not a conversion to a SCEVable type!");
1317  Ty = getEffectiveSCEVType(Ty);
1318
1319  // Sign-extend negative constants.
1320  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1321    if (SC->getValue()->getValue().isNegative())
1322      return getSignExtendExpr(Op, Ty);
1323
1324  // Peel off a truncate cast.
1325  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1326    const SCEV *NewOp = T->getOperand();
1327    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1328      return getAnyExtendExpr(NewOp, Ty);
1329    return getTruncateOrNoop(NewOp, Ty);
1330  }
1331
1332  // Next try a zext cast. If the cast is folded, use it.
1333  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1334  if (!isa<SCEVZeroExtendExpr>(ZExt))
1335    return ZExt;
1336
1337  // Next try a sext cast. If the cast is folded, use it.
1338  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1339  if (!isa<SCEVSignExtendExpr>(SExt))
1340    return SExt;
1341
1342  // Force the cast to be folded into the operands of an addrec.
1343  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1344    SmallVector<const SCEV *, 4> Ops;
1345    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1346         I != E; ++I)
1347      Ops.push_back(getAnyExtendExpr(*I, Ty));
1348    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1349  }
1350
1351  // If the expression is obviously signed, use the sext cast value.
1352  if (isa<SCEVSMaxExpr>(Op))
1353    return SExt;
1354
1355  // Absent any other information, use the zext cast value.
1356  return ZExt;
1357}
1358
1359/// CollectAddOperandsWithScales - Process the given Ops list, which is
1360/// a list of operands to be added under the given scale, update the given
1361/// map. This is a helper function for getAddRecExpr. As an example of
1362/// what it does, given a sequence of operands that would form an add
1363/// expression like this:
1364///
1365///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1366///
1367/// where A and B are constants, update the map with these values:
1368///
1369///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1370///
1371/// and add 13 + A*B*29 to AccumulatedConstant.
1372/// This will allow getAddRecExpr to produce this:
1373///
1374///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1375///
1376/// This form often exposes folding opportunities that are hidden in
1377/// the original operand list.
1378///
1379/// Return true iff it appears that any interesting folding opportunities
1380/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1381/// the common case where no interesting opportunities are present, and
1382/// is also used as a check to avoid infinite recursion.
1383///
1384static bool
1385CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1386                             SmallVectorImpl<const SCEV *> &NewOps,
1387                             APInt &AccumulatedConstant,
1388                             const SCEV *const *Ops, size_t NumOperands,
1389                             const APInt &Scale,
1390                             ScalarEvolution &SE) {
1391  bool Interesting = false;
1392
1393  // Iterate over the add operands. They are sorted, with constants first.
1394  unsigned i = 0;
1395  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1396    ++i;
1397    // Pull a buried constant out to the outside.
1398    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1399      Interesting = true;
1400    AccumulatedConstant += Scale * C->getValue()->getValue();
1401  }
1402
1403  // Next comes everything else. We're especially interested in multiplies
1404  // here, but they're in the middle, so just visit the rest with one loop.
1405  for (; i != NumOperands; ++i) {
1406    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1407    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1408      APInt NewScale =
1409        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1410      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1411        // A multiplication of a constant with another add; recurse.
1412        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1413        Interesting |=
1414          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1415                                       Add->op_begin(), Add->getNumOperands(),
1416                                       NewScale, SE);
1417      } else {
1418        // A multiplication of a constant with some other value. Update
1419        // the map.
1420        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1421        const SCEV *Key = SE.getMulExpr(MulOps);
1422        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1423          M.insert(std::make_pair(Key, NewScale));
1424        if (Pair.second) {
1425          NewOps.push_back(Pair.first->first);
1426        } else {
1427          Pair.first->second += NewScale;
1428          // The map already had an entry for this value, which may indicate
1429          // a folding opportunity.
1430          Interesting = true;
1431        }
1432      }
1433    } else {
1434      // An ordinary operand. Update the map.
1435      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1436        M.insert(std::make_pair(Ops[i], Scale));
1437      if (Pair.second) {
1438        NewOps.push_back(Pair.first->first);
1439      } else {
1440        Pair.first->second += Scale;
1441        // The map already had an entry for this value, which may indicate
1442        // a folding opportunity.
1443        Interesting = true;
1444      }
1445    }
1446  }
1447
1448  return Interesting;
1449}
1450
1451namespace {
1452  struct APIntCompare {
1453    bool operator()(const APInt &LHS, const APInt &RHS) const {
1454      return LHS.ult(RHS);
1455    }
1456  };
1457}
1458
1459/// getAddExpr - Get a canonical add expression, or something simpler if
1460/// possible.
1461const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1462                                        SCEV::NoWrapFlags Flags) {
1463  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1464         "only nuw or nsw allowed");
1465  assert(!Ops.empty() && "Cannot get empty add!");
1466  if (Ops.size() == 1) return Ops[0];
1467#ifndef NDEBUG
1468  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1469  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1470    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1471           "SCEVAddExpr operand types don't match!");
1472#endif
1473
1474  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1475  // And vice-versa.
1476  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1477  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1478  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1479    bool All = true;
1480    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1481         E = Ops.end(); I != E; ++I)
1482      if (!isKnownNonNegative(*I)) {
1483        All = false;
1484        break;
1485      }
1486    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1487  }
1488
1489  // Sort by complexity, this groups all similar expression types together.
1490  GroupByComplexity(Ops, LI);
1491
1492  // If there are any constants, fold them together.
1493  unsigned Idx = 0;
1494  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1495    ++Idx;
1496    assert(Idx < Ops.size());
1497    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1498      // We found two constants, fold them together!
1499      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1500                           RHSC->getValue()->getValue());
1501      if (Ops.size() == 2) return Ops[0];
1502      Ops.erase(Ops.begin()+1);  // Erase the folded element
1503      LHSC = cast<SCEVConstant>(Ops[0]);
1504    }
1505
1506    // If we are left with a constant zero being added, strip it off.
1507    if (LHSC->getValue()->isZero()) {
1508      Ops.erase(Ops.begin());
1509      --Idx;
1510    }
1511
1512    if (Ops.size() == 1) return Ops[0];
1513  }
1514
1515  // Okay, check to see if the same value occurs in the operand list more than
1516  // once.  If so, merge them together into an multiply expression.  Since we
1517  // sorted the list, these values are required to be adjacent.
1518  Type *Ty = Ops[0]->getType();
1519  bool FoundMatch = false;
1520  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1521    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1522      // Scan ahead to count how many equal operands there are.
1523      unsigned Count = 2;
1524      while (i+Count != e && Ops[i+Count] == Ops[i])
1525        ++Count;
1526      // Merge the values into a multiply.
1527      const SCEV *Scale = getConstant(Ty, Count);
1528      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1529      if (Ops.size() == Count)
1530        return Mul;
1531      Ops[i] = Mul;
1532      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1533      --i; e -= Count - 1;
1534      FoundMatch = true;
1535    }
1536  if (FoundMatch)
1537    return getAddExpr(Ops, Flags);
1538
1539  // Check for truncates. If all the operands are truncated from the same
1540  // type, see if factoring out the truncate would permit the result to be
1541  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1542  // if the contents of the resulting outer trunc fold to something simple.
1543  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1544    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1545    Type *DstType = Trunc->getType();
1546    Type *SrcType = Trunc->getOperand()->getType();
1547    SmallVector<const SCEV *, 8> LargeOps;
1548    bool Ok = true;
1549    // Check all the operands to see if they can be represented in the
1550    // source type of the truncate.
1551    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1552      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1553        if (T->getOperand()->getType() != SrcType) {
1554          Ok = false;
1555          break;
1556        }
1557        LargeOps.push_back(T->getOperand());
1558      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1559        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1560      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1561        SmallVector<const SCEV *, 8> LargeMulOps;
1562        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1563          if (const SCEVTruncateExpr *T =
1564                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1565            if (T->getOperand()->getType() != SrcType) {
1566              Ok = false;
1567              break;
1568            }
1569            LargeMulOps.push_back(T->getOperand());
1570          } else if (const SCEVConstant *C =
1571                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1572            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1573          } else {
1574            Ok = false;
1575            break;
1576          }
1577        }
1578        if (Ok)
1579          LargeOps.push_back(getMulExpr(LargeMulOps));
1580      } else {
1581        Ok = false;
1582        break;
1583      }
1584    }
1585    if (Ok) {
1586      // Evaluate the expression in the larger type.
1587      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1588      // If it folds to something simple, use it. Otherwise, don't.
1589      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1590        return getTruncateExpr(Fold, DstType);
1591    }
1592  }
1593
1594  // Skip past any other cast SCEVs.
1595  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1596    ++Idx;
1597
1598  // If there are add operands they would be next.
1599  if (Idx < Ops.size()) {
1600    bool DeletedAdd = false;
1601    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1602      // If we have an add, expand the add operands onto the end of the operands
1603      // list.
1604      Ops.erase(Ops.begin()+Idx);
1605      Ops.append(Add->op_begin(), Add->op_end());
1606      DeletedAdd = true;
1607    }
1608
1609    // If we deleted at least one add, we added operands to the end of the list,
1610    // and they are not necessarily sorted.  Recurse to resort and resimplify
1611    // any operands we just acquired.
1612    if (DeletedAdd)
1613      return getAddExpr(Ops);
1614  }
1615
1616  // Skip over the add expression until we get to a multiply.
1617  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1618    ++Idx;
1619
1620  // Check to see if there are any folding opportunities present with
1621  // operands multiplied by constant values.
1622  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1623    uint64_t BitWidth = getTypeSizeInBits(Ty);
1624    DenseMap<const SCEV *, APInt> M;
1625    SmallVector<const SCEV *, 8> NewOps;
1626    APInt AccumulatedConstant(BitWidth, 0);
1627    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1628                                     Ops.data(), Ops.size(),
1629                                     APInt(BitWidth, 1), *this)) {
1630      // Some interesting folding opportunity is present, so its worthwhile to
1631      // re-generate the operands list. Group the operands by constant scale,
1632      // to avoid multiplying by the same constant scale multiple times.
1633      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1634      for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
1635           E = NewOps.end(); I != E; ++I)
1636        MulOpLists[M.find(*I)->second].push_back(*I);
1637      // Re-generate the operands list.
1638      Ops.clear();
1639      if (AccumulatedConstant != 0)
1640        Ops.push_back(getConstant(AccumulatedConstant));
1641      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1642           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1643        if (I->first != 0)
1644          Ops.push_back(getMulExpr(getConstant(I->first),
1645                                   getAddExpr(I->second)));
1646      if (Ops.empty())
1647        return getConstant(Ty, 0);
1648      if (Ops.size() == 1)
1649        return Ops[0];
1650      return getAddExpr(Ops);
1651    }
1652  }
1653
1654  // If we are adding something to a multiply expression, make sure the
1655  // something is not already an operand of the multiply.  If so, merge it into
1656  // the multiply.
1657  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1658    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1659    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1660      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1661      if (isa<SCEVConstant>(MulOpSCEV))
1662        continue;
1663      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1664        if (MulOpSCEV == Ops[AddOp]) {
1665          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1666          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1667          if (Mul->getNumOperands() != 2) {
1668            // If the multiply has more than two operands, we must get the
1669            // Y*Z term.
1670            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1671                                                Mul->op_begin()+MulOp);
1672            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1673            InnerMul = getMulExpr(MulOps);
1674          }
1675          const SCEV *One = getConstant(Ty, 1);
1676          const SCEV *AddOne = getAddExpr(One, InnerMul);
1677          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1678          if (Ops.size() == 2) return OuterMul;
1679          if (AddOp < Idx) {
1680            Ops.erase(Ops.begin()+AddOp);
1681            Ops.erase(Ops.begin()+Idx-1);
1682          } else {
1683            Ops.erase(Ops.begin()+Idx);
1684            Ops.erase(Ops.begin()+AddOp-1);
1685          }
1686          Ops.push_back(OuterMul);
1687          return getAddExpr(Ops);
1688        }
1689
1690      // Check this multiply against other multiplies being added together.
1691      for (unsigned OtherMulIdx = Idx+1;
1692           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1693           ++OtherMulIdx) {
1694        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1695        // If MulOp occurs in OtherMul, we can fold the two multiplies
1696        // together.
1697        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1698             OMulOp != e; ++OMulOp)
1699          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1700            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1701            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1702            if (Mul->getNumOperands() != 2) {
1703              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1704                                                  Mul->op_begin()+MulOp);
1705              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1706              InnerMul1 = getMulExpr(MulOps);
1707            }
1708            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1709            if (OtherMul->getNumOperands() != 2) {
1710              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1711                                                  OtherMul->op_begin()+OMulOp);
1712              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1713              InnerMul2 = getMulExpr(MulOps);
1714            }
1715            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1716            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1717            if (Ops.size() == 2) return OuterMul;
1718            Ops.erase(Ops.begin()+Idx);
1719            Ops.erase(Ops.begin()+OtherMulIdx-1);
1720            Ops.push_back(OuterMul);
1721            return getAddExpr(Ops);
1722          }
1723      }
1724    }
1725  }
1726
1727  // If there are any add recurrences in the operands list, see if any other
1728  // added values are loop invariant.  If so, we can fold them into the
1729  // recurrence.
1730  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1731    ++Idx;
1732
1733  // Scan over all recurrences, trying to fold loop invariants into them.
1734  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1735    // Scan all of the other operands to this add and add them to the vector if
1736    // they are loop invariant w.r.t. the recurrence.
1737    SmallVector<const SCEV *, 8> LIOps;
1738    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1739    const Loop *AddRecLoop = AddRec->getLoop();
1740    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1741      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1742        LIOps.push_back(Ops[i]);
1743        Ops.erase(Ops.begin()+i);
1744        --i; --e;
1745      }
1746
1747    // If we found some loop invariants, fold them into the recurrence.
1748    if (!LIOps.empty()) {
1749      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1750      LIOps.push_back(AddRec->getStart());
1751
1752      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1753                                             AddRec->op_end());
1754      AddRecOps[0] = getAddExpr(LIOps);
1755
1756      // Build the new addrec. Propagate the NUW and NSW flags if both the
1757      // outer add and the inner addrec are guaranteed to have no overflow.
1758      // Always propagate NW.
1759      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1760      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1761
1762      // If all of the other operands were loop invariant, we are done.
1763      if (Ops.size() == 1) return NewRec;
1764
1765      // Otherwise, add the folded AddRec by the non-invariant parts.
1766      for (unsigned i = 0;; ++i)
1767        if (Ops[i] == AddRec) {
1768          Ops[i] = NewRec;
1769          break;
1770        }
1771      return getAddExpr(Ops);
1772    }
1773
1774    // Okay, if there weren't any loop invariants to be folded, check to see if
1775    // there are multiple AddRec's with the same loop induction variable being
1776    // added together.  If so, we can fold them.
1777    for (unsigned OtherIdx = Idx+1;
1778         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1779         ++OtherIdx)
1780      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1781        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1782        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783                                               AddRec->op_end());
1784        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1785             ++OtherIdx)
1786          if (const SCEVAddRecExpr *OtherAddRec =
1787                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1788            if (OtherAddRec->getLoop() == AddRecLoop) {
1789              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1790                   i != e; ++i) {
1791                if (i >= AddRecOps.size()) {
1792                  AddRecOps.append(OtherAddRec->op_begin()+i,
1793                                   OtherAddRec->op_end());
1794                  break;
1795                }
1796                AddRecOps[i] = getAddExpr(AddRecOps[i],
1797                                          OtherAddRec->getOperand(i));
1798              }
1799              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1800            }
1801        // Step size has changed, so we cannot guarantee no self-wraparound.
1802        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1803        return getAddExpr(Ops);
1804      }
1805
1806    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1807    // next one.
1808  }
1809
1810  // Okay, it looks like we really DO need an add expr.  Check to see if we
1811  // already have one, otherwise create a new one.
1812  FoldingSetNodeID ID;
1813  ID.AddInteger(scAddExpr);
1814  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1815    ID.AddPointer(Ops[i]);
1816  void *IP = 0;
1817  SCEVAddExpr *S =
1818    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1819  if (!S) {
1820    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1821    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1822    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1823                                        O, Ops.size());
1824    UniqueSCEVs.InsertNode(S, IP);
1825  }
1826  S->setNoWrapFlags(Flags);
1827  return S;
1828}
1829
1830static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1831  uint64_t k = i*j;
1832  if (j > 1 && k / j != i) Overflow = true;
1833  return k;
1834}
1835
1836/// Compute the result of "n choose k", the binomial coefficient.  If an
1837/// intermediate computation overflows, Overflow will be set and the return will
1838/// be garbage. Overflow is not cleared on absence of overflow.
1839static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1840  // We use the multiplicative formula:
1841  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1842  // At each iteration, we take the n-th term of the numeral and divide by the
1843  // (k-n)th term of the denominator.  This division will always produce an
1844  // integral result, and helps reduce the chance of overflow in the
1845  // intermediate computations. However, we can still overflow even when the
1846  // final result would fit.
1847
1848  if (n == 0 || n == k) return 1;
1849  if (k > n) return 0;
1850
1851  if (k > n/2)
1852    k = n-k;
1853
1854  uint64_t r = 1;
1855  for (uint64_t i = 1; i <= k; ++i) {
1856    r = umul_ov(r, n-(i-1), Overflow);
1857    r /= i;
1858  }
1859  return r;
1860}
1861
1862/// getMulExpr - Get a canonical multiply expression, or something simpler if
1863/// possible.
1864const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1865                                        SCEV::NoWrapFlags Flags) {
1866  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1867         "only nuw or nsw allowed");
1868  assert(!Ops.empty() && "Cannot get empty mul!");
1869  if (Ops.size() == 1) return Ops[0];
1870#ifndef NDEBUG
1871  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1872  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1873    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1874           "SCEVMulExpr operand types don't match!");
1875#endif
1876
1877  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1878  // And vice-versa.
1879  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1880  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1881  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1882    bool All = true;
1883    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1884         E = Ops.end(); I != E; ++I)
1885      if (!isKnownNonNegative(*I)) {
1886        All = false;
1887        break;
1888      }
1889    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1890  }
1891
1892  // Sort by complexity, this groups all similar expression types together.
1893  GroupByComplexity(Ops, LI);
1894
1895  // If there are any constants, fold them together.
1896  unsigned Idx = 0;
1897  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1898
1899    // C1*(C2+V) -> C1*C2 + C1*V
1900    if (Ops.size() == 2)
1901      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1902        if (Add->getNumOperands() == 2 &&
1903            isa<SCEVConstant>(Add->getOperand(0)))
1904          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1905                            getMulExpr(LHSC, Add->getOperand(1)));
1906
1907    ++Idx;
1908    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1909      // We found two constants, fold them together!
1910      ConstantInt *Fold = ConstantInt::get(getContext(),
1911                                           LHSC->getValue()->getValue() *
1912                                           RHSC->getValue()->getValue());
1913      Ops[0] = getConstant(Fold);
1914      Ops.erase(Ops.begin()+1);  // Erase the folded element
1915      if (Ops.size() == 1) return Ops[0];
1916      LHSC = cast<SCEVConstant>(Ops[0]);
1917    }
1918
1919    // If we are left with a constant one being multiplied, strip it off.
1920    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1921      Ops.erase(Ops.begin());
1922      --Idx;
1923    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1924      // If we have a multiply of zero, it will always be zero.
1925      return Ops[0];
1926    } else if (Ops[0]->isAllOnesValue()) {
1927      // If we have a mul by -1 of an add, try distributing the -1 among the
1928      // add operands.
1929      if (Ops.size() == 2) {
1930        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1931          SmallVector<const SCEV *, 4> NewOps;
1932          bool AnyFolded = false;
1933          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1934                 E = Add->op_end(); I != E; ++I) {
1935            const SCEV *Mul = getMulExpr(Ops[0], *I);
1936            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1937            NewOps.push_back(Mul);
1938          }
1939          if (AnyFolded)
1940            return getAddExpr(NewOps);
1941        }
1942        else if (const SCEVAddRecExpr *
1943                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1944          // Negation preserves a recurrence's no self-wrap property.
1945          SmallVector<const SCEV *, 4> Operands;
1946          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1947                 E = AddRec->op_end(); I != E; ++I) {
1948            Operands.push_back(getMulExpr(Ops[0], *I));
1949          }
1950          return getAddRecExpr(Operands, AddRec->getLoop(),
1951                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1952        }
1953      }
1954    }
1955
1956    if (Ops.size() == 1)
1957      return Ops[0];
1958  }
1959
1960  // Skip over the add expression until we get to a multiply.
1961  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1962    ++Idx;
1963
1964  // If there are mul operands inline them all into this expression.
1965  if (Idx < Ops.size()) {
1966    bool DeletedMul = false;
1967    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1968      // If we have an mul, expand the mul operands onto the end of the operands
1969      // list.
1970      Ops.erase(Ops.begin()+Idx);
1971      Ops.append(Mul->op_begin(), Mul->op_end());
1972      DeletedMul = true;
1973    }
1974
1975    // If we deleted at least one mul, we added operands to the end of the list,
1976    // and they are not necessarily sorted.  Recurse to resort and resimplify
1977    // any operands we just acquired.
1978    if (DeletedMul)
1979      return getMulExpr(Ops);
1980  }
1981
1982  // If there are any add recurrences in the operands list, see if any other
1983  // added values are loop invariant.  If so, we can fold them into the
1984  // recurrence.
1985  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1986    ++Idx;
1987
1988  // Scan over all recurrences, trying to fold loop invariants into them.
1989  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1990    // Scan all of the other operands to this mul and add them to the vector if
1991    // they are loop invariant w.r.t. the recurrence.
1992    SmallVector<const SCEV *, 8> LIOps;
1993    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1994    const Loop *AddRecLoop = AddRec->getLoop();
1995    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1996      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1997        LIOps.push_back(Ops[i]);
1998        Ops.erase(Ops.begin()+i);
1999        --i; --e;
2000      }
2001
2002    // If we found some loop invariants, fold them into the recurrence.
2003    if (!LIOps.empty()) {
2004      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2005      SmallVector<const SCEV *, 4> NewOps;
2006      NewOps.reserve(AddRec->getNumOperands());
2007      const SCEV *Scale = getMulExpr(LIOps);
2008      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2009        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2010
2011      // Build the new addrec. Propagate the NUW and NSW flags if both the
2012      // outer mul and the inner addrec are guaranteed to have no overflow.
2013      //
2014      // No self-wrap cannot be guaranteed after changing the step size, but
2015      // will be inferred if either NUW or NSW is true.
2016      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2017      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2018
2019      // If all of the other operands were loop invariant, we are done.
2020      if (Ops.size() == 1) return NewRec;
2021
2022      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2023      for (unsigned i = 0;; ++i)
2024        if (Ops[i] == AddRec) {
2025          Ops[i] = NewRec;
2026          break;
2027        }
2028      return getMulExpr(Ops);
2029    }
2030
2031    // Okay, if there weren't any loop invariants to be folded, check to see if
2032    // there are multiple AddRec's with the same loop induction variable being
2033    // multiplied together.  If so, we can fold them.
2034    for (unsigned OtherIdx = Idx+1;
2035         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2036         ++OtherIdx) {
2037      if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2038        continue;
2039
2040      // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2041      // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2042      //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2043      //   ]]],+,...up to x=2n}.
2044      // Note that the arguments to choose() are always integers with values
2045      // known at compile time, never SCEV objects.
2046      //
2047      // The implementation avoids pointless extra computations when the two
2048      // addrec's are of different length (mathematically, it's equivalent to
2049      // an infinite stream of zeros on the right).
2050      bool OpsModified = false;
2051      for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2052           ++OtherIdx) {
2053        const SCEVAddRecExpr *OtherAddRec =
2054          dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2055        if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2056          continue;
2057
2058        bool Overflow = false;
2059        Type *Ty = AddRec->getType();
2060        bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2061        SmallVector<const SCEV*, 7> AddRecOps;
2062        for (int x = 0, xe = AddRec->getNumOperands() +
2063               OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2064          const SCEV *Term = getConstant(Ty, 0);
2065          for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2066            uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2067            for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2068                   ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2069                 z < ze && !Overflow; ++z) {
2070              uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2071              uint64_t Coeff;
2072              if (LargerThan64Bits)
2073                Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2074              else
2075                Coeff = Coeff1*Coeff2;
2076              const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2077              const SCEV *Term1 = AddRec->getOperand(y-z);
2078              const SCEV *Term2 = OtherAddRec->getOperand(z);
2079              Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2080            }
2081          }
2082          AddRecOps.push_back(Term);
2083        }
2084        if (!Overflow) {
2085          const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2086                                                SCEV::FlagAnyWrap);
2087          if (Ops.size() == 2) return NewAddRec;
2088          Ops[Idx] = NewAddRec;
2089          Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2090          OpsModified = true;
2091          AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2092          if (!AddRec)
2093            break;
2094        }
2095      }
2096      if (OpsModified)
2097        return getMulExpr(Ops);
2098    }
2099
2100    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2101    // next one.
2102  }
2103
2104  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2105  // already have one, otherwise create a new one.
2106  FoldingSetNodeID ID;
2107  ID.AddInteger(scMulExpr);
2108  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2109    ID.AddPointer(Ops[i]);
2110  void *IP = 0;
2111  SCEVMulExpr *S =
2112    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2113  if (!S) {
2114    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2115    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2116    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2117                                        O, Ops.size());
2118    UniqueSCEVs.InsertNode(S, IP);
2119  }
2120  S->setNoWrapFlags(Flags);
2121  return S;
2122}
2123
2124/// getUDivExpr - Get a canonical unsigned division expression, or something
2125/// simpler if possible.
2126const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2127                                         const SCEV *RHS) {
2128  assert(getEffectiveSCEVType(LHS->getType()) ==
2129         getEffectiveSCEVType(RHS->getType()) &&
2130         "SCEVUDivExpr operand types don't match!");
2131
2132  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2133    if (RHSC->getValue()->equalsInt(1))
2134      return LHS;                               // X udiv 1 --> x
2135    // If the denominator is zero, the result of the udiv is undefined. Don't
2136    // try to analyze it, because the resolution chosen here may differ from
2137    // the resolution chosen in other parts of the compiler.
2138    if (!RHSC->getValue()->isZero()) {
2139      // Determine if the division can be folded into the operands of
2140      // its operands.
2141      // TODO: Generalize this to non-constants by using known-bits information.
2142      Type *Ty = LHS->getType();
2143      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2144      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2145      // For non-power-of-two values, effectively round the value up to the
2146      // nearest power of two.
2147      if (!RHSC->getValue()->getValue().isPowerOf2())
2148        ++MaxShiftAmt;
2149      IntegerType *ExtTy =
2150        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2151      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2152        if (const SCEVConstant *Step =
2153            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2154          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2155          const APInt &StepInt = Step->getValue()->getValue();
2156          const APInt &DivInt = RHSC->getValue()->getValue();
2157          if (!StepInt.urem(DivInt) &&
2158              getZeroExtendExpr(AR, ExtTy) ==
2159              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2160                            getZeroExtendExpr(Step, ExtTy),
2161                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2162            SmallVector<const SCEV *, 4> Operands;
2163            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2164              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2165            return getAddRecExpr(Operands, AR->getLoop(),
2166                                 SCEV::FlagNW);
2167          }
2168          /// Get a canonical UDivExpr for a recurrence.
2169          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2170          // We can currently only fold X%N if X is constant.
2171          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2172          if (StartC && !DivInt.urem(StepInt) &&
2173              getZeroExtendExpr(AR, ExtTy) ==
2174              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2175                            getZeroExtendExpr(Step, ExtTy),
2176                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2177            const APInt &StartInt = StartC->getValue()->getValue();
2178            const APInt &StartRem = StartInt.urem(StepInt);
2179            if (StartRem != 0)
2180              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2181                                  AR->getLoop(), SCEV::FlagNW);
2182          }
2183        }
2184      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2185      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2186        SmallVector<const SCEV *, 4> Operands;
2187        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2188          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2189        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2190          // Find an operand that's safely divisible.
2191          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2192            const SCEV *Op = M->getOperand(i);
2193            const SCEV *Div = getUDivExpr(Op, RHSC);
2194            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2195              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2196                                                      M->op_end());
2197              Operands[i] = Div;
2198              return getMulExpr(Operands);
2199            }
2200          }
2201      }
2202      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2203      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2204        SmallVector<const SCEV *, 4> Operands;
2205        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2206          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2207        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2208          Operands.clear();
2209          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2210            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2211            if (isa<SCEVUDivExpr>(Op) ||
2212                getMulExpr(Op, RHS) != A->getOperand(i))
2213              break;
2214            Operands.push_back(Op);
2215          }
2216          if (Operands.size() == A->getNumOperands())
2217            return getAddExpr(Operands);
2218        }
2219      }
2220
2221      // Fold if both operands are constant.
2222      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2223        Constant *LHSCV = LHSC->getValue();
2224        Constant *RHSCV = RHSC->getValue();
2225        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2226                                                                   RHSCV)));
2227      }
2228    }
2229  }
2230
2231  FoldingSetNodeID ID;
2232  ID.AddInteger(scUDivExpr);
2233  ID.AddPointer(LHS);
2234  ID.AddPointer(RHS);
2235  void *IP = 0;
2236  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2237  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2238                                             LHS, RHS);
2239  UniqueSCEVs.InsertNode(S, IP);
2240  return S;
2241}
2242
2243
2244/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2245/// Simplify the expression as much as possible.
2246const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2247                                           const Loop *L,
2248                                           SCEV::NoWrapFlags Flags) {
2249  SmallVector<const SCEV *, 4> Operands;
2250  Operands.push_back(Start);
2251  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2252    if (StepChrec->getLoop() == L) {
2253      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2254      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2255    }
2256
2257  Operands.push_back(Step);
2258  return getAddRecExpr(Operands, L, Flags);
2259}
2260
2261/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2262/// Simplify the expression as much as possible.
2263const SCEV *
2264ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2265                               const Loop *L, SCEV::NoWrapFlags Flags) {
2266  if (Operands.size() == 1) return Operands[0];
2267#ifndef NDEBUG
2268  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2269  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2270    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2271           "SCEVAddRecExpr operand types don't match!");
2272  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2273    assert(isLoopInvariant(Operands[i], L) &&
2274           "SCEVAddRecExpr operand is not loop-invariant!");
2275#endif
2276
2277  if (Operands.back()->isZero()) {
2278    Operands.pop_back();
2279    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2280  }
2281
2282  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2283  // use that information to infer NUW and NSW flags. However, computing a
2284  // BE count requires calling getAddRecExpr, so we may not yet have a
2285  // meaningful BE count at this point (and if we don't, we'd be stuck
2286  // with a SCEVCouldNotCompute as the cached BE count).
2287
2288  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2289  // And vice-versa.
2290  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2291  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2292  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2293    bool All = true;
2294    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2295         E = Operands.end(); I != E; ++I)
2296      if (!isKnownNonNegative(*I)) {
2297        All = false;
2298        break;
2299      }
2300    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2301  }
2302
2303  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2304  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2305    const Loop *NestedLoop = NestedAR->getLoop();
2306    if (L->contains(NestedLoop) ?
2307        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2308        (!NestedLoop->contains(L) &&
2309         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2310      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2311                                                  NestedAR->op_end());
2312      Operands[0] = NestedAR->getStart();
2313      // AddRecs require their operands be loop-invariant with respect to their
2314      // loops. Don't perform this transformation if it would break this
2315      // requirement.
2316      bool AllInvariant = true;
2317      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2318        if (!isLoopInvariant(Operands[i], L)) {
2319          AllInvariant = false;
2320          break;
2321        }
2322      if (AllInvariant) {
2323        // Create a recurrence for the outer loop with the same step size.
2324        //
2325        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2326        // inner recurrence has the same property.
2327        SCEV::NoWrapFlags OuterFlags =
2328          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2329
2330        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2331        AllInvariant = true;
2332        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2333          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2334            AllInvariant = false;
2335            break;
2336          }
2337        if (AllInvariant) {
2338          // Ok, both add recurrences are valid after the transformation.
2339          //
2340          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2341          // the outer recurrence has the same property.
2342          SCEV::NoWrapFlags InnerFlags =
2343            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2344          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2345        }
2346      }
2347      // Reset Operands to its original state.
2348      Operands[0] = NestedAR;
2349    }
2350  }
2351
2352  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2353  // already have one, otherwise create a new one.
2354  FoldingSetNodeID ID;
2355  ID.AddInteger(scAddRecExpr);
2356  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2357    ID.AddPointer(Operands[i]);
2358  ID.AddPointer(L);
2359  void *IP = 0;
2360  SCEVAddRecExpr *S =
2361    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2362  if (!S) {
2363    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2364    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2365    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2366                                           O, Operands.size(), L);
2367    UniqueSCEVs.InsertNode(S, IP);
2368  }
2369  S->setNoWrapFlags(Flags);
2370  return S;
2371}
2372
2373const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2374                                         const SCEV *RHS) {
2375  SmallVector<const SCEV *, 2> Ops;
2376  Ops.push_back(LHS);
2377  Ops.push_back(RHS);
2378  return getSMaxExpr(Ops);
2379}
2380
2381const SCEV *
2382ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2383  assert(!Ops.empty() && "Cannot get empty smax!");
2384  if (Ops.size() == 1) return Ops[0];
2385#ifndef NDEBUG
2386  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2387  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2388    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2389           "SCEVSMaxExpr operand types don't match!");
2390#endif
2391
2392  // Sort by complexity, this groups all similar expression types together.
2393  GroupByComplexity(Ops, LI);
2394
2395  // If there are any constants, fold them together.
2396  unsigned Idx = 0;
2397  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2398    ++Idx;
2399    assert(Idx < Ops.size());
2400    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2401      // We found two constants, fold them together!
2402      ConstantInt *Fold = ConstantInt::get(getContext(),
2403                              APIntOps::smax(LHSC->getValue()->getValue(),
2404                                             RHSC->getValue()->getValue()));
2405      Ops[0] = getConstant(Fold);
2406      Ops.erase(Ops.begin()+1);  // Erase the folded element
2407      if (Ops.size() == 1) return Ops[0];
2408      LHSC = cast<SCEVConstant>(Ops[0]);
2409    }
2410
2411    // If we are left with a constant minimum-int, strip it off.
2412    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2413      Ops.erase(Ops.begin());
2414      --Idx;
2415    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2416      // If we have an smax with a constant maximum-int, it will always be
2417      // maximum-int.
2418      return Ops[0];
2419    }
2420
2421    if (Ops.size() == 1) return Ops[0];
2422  }
2423
2424  // Find the first SMax
2425  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2426    ++Idx;
2427
2428  // Check to see if one of the operands is an SMax. If so, expand its operands
2429  // onto our operand list, and recurse to simplify.
2430  if (Idx < Ops.size()) {
2431    bool DeletedSMax = false;
2432    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2433      Ops.erase(Ops.begin()+Idx);
2434      Ops.append(SMax->op_begin(), SMax->op_end());
2435      DeletedSMax = true;
2436    }
2437
2438    if (DeletedSMax)
2439      return getSMaxExpr(Ops);
2440  }
2441
2442  // Okay, check to see if the same value occurs in the operand list twice.  If
2443  // so, delete one.  Since we sorted the list, these values are required to
2444  // be adjacent.
2445  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2446    //  X smax Y smax Y  -->  X smax Y
2447    //  X smax Y         -->  X, if X is always greater than Y
2448    if (Ops[i] == Ops[i+1] ||
2449        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2450      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2451      --i; --e;
2452    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2453      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2454      --i; --e;
2455    }
2456
2457  if (Ops.size() == 1) return Ops[0];
2458
2459  assert(!Ops.empty() && "Reduced smax down to nothing!");
2460
2461  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2462  // already have one, otherwise create a new one.
2463  FoldingSetNodeID ID;
2464  ID.AddInteger(scSMaxExpr);
2465  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2466    ID.AddPointer(Ops[i]);
2467  void *IP = 0;
2468  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2469  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2470  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2471  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2472                                             O, Ops.size());
2473  UniqueSCEVs.InsertNode(S, IP);
2474  return S;
2475}
2476
2477const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2478                                         const SCEV *RHS) {
2479  SmallVector<const SCEV *, 2> Ops;
2480  Ops.push_back(LHS);
2481  Ops.push_back(RHS);
2482  return getUMaxExpr(Ops);
2483}
2484
2485const SCEV *
2486ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2487  assert(!Ops.empty() && "Cannot get empty umax!");
2488  if (Ops.size() == 1) return Ops[0];
2489#ifndef NDEBUG
2490  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2491  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2492    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2493           "SCEVUMaxExpr operand types don't match!");
2494#endif
2495
2496  // Sort by complexity, this groups all similar expression types together.
2497  GroupByComplexity(Ops, LI);
2498
2499  // If there are any constants, fold them together.
2500  unsigned Idx = 0;
2501  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2502    ++Idx;
2503    assert(Idx < Ops.size());
2504    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2505      // We found two constants, fold them together!
2506      ConstantInt *Fold = ConstantInt::get(getContext(),
2507                              APIntOps::umax(LHSC->getValue()->getValue(),
2508                                             RHSC->getValue()->getValue()));
2509      Ops[0] = getConstant(Fold);
2510      Ops.erase(Ops.begin()+1);  // Erase the folded element
2511      if (Ops.size() == 1) return Ops[0];
2512      LHSC = cast<SCEVConstant>(Ops[0]);
2513    }
2514
2515    // If we are left with a constant minimum-int, strip it off.
2516    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2517      Ops.erase(Ops.begin());
2518      --Idx;
2519    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2520      // If we have an umax with a constant maximum-int, it will always be
2521      // maximum-int.
2522      return Ops[0];
2523    }
2524
2525    if (Ops.size() == 1) return Ops[0];
2526  }
2527
2528  // Find the first UMax
2529  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2530    ++Idx;
2531
2532  // Check to see if one of the operands is a UMax. If so, expand its operands
2533  // onto our operand list, and recurse to simplify.
2534  if (Idx < Ops.size()) {
2535    bool DeletedUMax = false;
2536    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2537      Ops.erase(Ops.begin()+Idx);
2538      Ops.append(UMax->op_begin(), UMax->op_end());
2539      DeletedUMax = true;
2540    }
2541
2542    if (DeletedUMax)
2543      return getUMaxExpr(Ops);
2544  }
2545
2546  // Okay, check to see if the same value occurs in the operand list twice.  If
2547  // so, delete one.  Since we sorted the list, these values are required to
2548  // be adjacent.
2549  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2550    //  X umax Y umax Y  -->  X umax Y
2551    //  X umax Y         -->  X, if X is always greater than Y
2552    if (Ops[i] == Ops[i+1] ||
2553        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2554      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2555      --i; --e;
2556    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2557      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2558      --i; --e;
2559    }
2560
2561  if (Ops.size() == 1) return Ops[0];
2562
2563  assert(!Ops.empty() && "Reduced umax down to nothing!");
2564
2565  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2566  // already have one, otherwise create a new one.
2567  FoldingSetNodeID ID;
2568  ID.AddInteger(scUMaxExpr);
2569  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2570    ID.AddPointer(Ops[i]);
2571  void *IP = 0;
2572  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2573  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2574  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2575  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2576                                             O, Ops.size());
2577  UniqueSCEVs.InsertNode(S, IP);
2578  return S;
2579}
2580
2581const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2582                                         const SCEV *RHS) {
2583  // ~smax(~x, ~y) == smin(x, y).
2584  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2585}
2586
2587const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2588                                         const SCEV *RHS) {
2589  // ~umax(~x, ~y) == umin(x, y)
2590  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2591}
2592
2593const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
2594  // If we have DataLayout, we can bypass creating a target-independent
2595  // constant expression and then folding it back into a ConstantInt.
2596  // This is just a compile-time optimization.
2597  if (TD)
2598    return getConstant(IntTy, TD->getTypeAllocSize(AllocTy));
2599
2600  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2601  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2602    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2603      C = Folded;
2604  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2605  assert(Ty == IntTy && "Effective SCEV type doesn't match");
2606  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
2609const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2610                                             StructType *STy,
2611                                             unsigned FieldNo) {
2612  // If we have DataLayout, we can bypass creating a target-independent
2613  // constant expression and then folding it back into a ConstantInt.
2614  // This is just a compile-time optimization.
2615  if (TD) {
2616    return getConstant(IntTy,
2617                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2618  }
2619
2620  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2621  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2622    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2623      C = Folded;
2624
2625  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2626  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2627}
2628
2629const SCEV *ScalarEvolution::getUnknown(Value *V) {
2630  // Don't attempt to do anything other than create a SCEVUnknown object
2631  // here.  createSCEV only calls getUnknown after checking for all other
2632  // interesting possibilities, and any other code that calls getUnknown
2633  // is doing so in order to hide a value from SCEV canonicalization.
2634
2635  FoldingSetNodeID ID;
2636  ID.AddInteger(scUnknown);
2637  ID.AddPointer(V);
2638  void *IP = 0;
2639  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2640    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2641           "Stale SCEVUnknown in uniquing map!");
2642    return S;
2643  }
2644  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2645                                            FirstUnknown);
2646  FirstUnknown = cast<SCEVUnknown>(S);
2647  UniqueSCEVs.InsertNode(S, IP);
2648  return S;
2649}
2650
2651//===----------------------------------------------------------------------===//
2652//            Basic SCEV Analysis and PHI Idiom Recognition Code
2653//
2654
2655/// isSCEVable - Test if values of the given type are analyzable within
2656/// the SCEV framework. This primarily includes integer types, and it
2657/// can optionally include pointer types if the ScalarEvolution class
2658/// has access to target-specific information.
2659bool ScalarEvolution::isSCEVable(Type *Ty) const {
2660  // Integers and pointers are always SCEVable.
2661  return Ty->isIntegerTy() || Ty->isPointerTy();
2662}
2663
2664/// getTypeSizeInBits - Return the size in bits of the specified type,
2665/// for which isSCEVable must return true.
2666uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2667  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2668
2669  // If we have a DataLayout, use it!
2670  if (TD)
2671    return TD->getTypeSizeInBits(Ty);
2672
2673  // Integer types have fixed sizes.
2674  if (Ty->isIntegerTy())
2675    return Ty->getPrimitiveSizeInBits();
2676
2677  // The only other support type is pointer. Without DataLayout, conservatively
2678  // assume pointers are 64-bit.
2679  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2680  return 64;
2681}
2682
2683/// getEffectiveSCEVType - Return a type with the same bitwidth as
2684/// the given type and which represents how SCEV will treat the given
2685/// type, for which isSCEVable must return true. For pointer types,
2686/// this is the pointer-sized integer type.
2687Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2688  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2689
2690  if (Ty->isIntegerTy()) {
2691    return Ty;
2692  }
2693
2694  // The only other support type is pointer.
2695  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2696
2697  if (TD)
2698    return TD->getIntPtrType(Ty);
2699
2700  // Without DataLayout, conservatively assume pointers are 64-bit.
2701  return Type::getInt64Ty(getContext());
2702}
2703
2704const SCEV *ScalarEvolution::getCouldNotCompute() {
2705  return &CouldNotCompute;
2706}
2707
2708namespace {
2709  // Helper class working with SCEVTraversal to figure out if a SCEV contains
2710  // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2711  // is set iff if find such SCEVUnknown.
2712  //
2713  struct FindInvalidSCEVUnknown {
2714    bool FindOne;
2715    FindInvalidSCEVUnknown() { FindOne = false; }
2716    bool follow(const SCEV *S) {
2717      switch (S->getSCEVType()) {
2718      case scConstant:
2719        return false;
2720      case scUnknown:
2721        if (!cast<SCEVUnknown>(S)->getValue())
2722          FindOne = true;
2723        return false;
2724      default:
2725        return true;
2726      }
2727    }
2728    bool isDone() const { return FindOne; }
2729  };
2730}
2731
2732bool ScalarEvolution::checkValidity(const SCEV *S) const {
2733  FindInvalidSCEVUnknown F;
2734  SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2735  ST.visitAll(S);
2736
2737  return !F.FindOne;
2738}
2739
2740/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2741/// expression and create a new one.
2742const SCEV *ScalarEvolution::getSCEV(Value *V) {
2743  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2744
2745  ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2746  if (I != ValueExprMap.end()) {
2747    const SCEV *S = I->second;
2748    if (checkValidity(S))
2749      return S;
2750    else
2751      ValueExprMap.erase(I);
2752  }
2753  const SCEV *S = createSCEV(V);
2754
2755  // The process of creating a SCEV for V may have caused other SCEVs
2756  // to have been created, so it's necessary to insert the new entry
2757  // from scratch, rather than trying to remember the insert position
2758  // above.
2759  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2760  return S;
2761}
2762
2763/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2764///
2765const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2766  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2767    return getConstant(
2768               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2769
2770  Type *Ty = V->getType();
2771  Ty = getEffectiveSCEVType(Ty);
2772  return getMulExpr(V,
2773                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2774}
2775
2776/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2777const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2778  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2779    return getConstant(
2780                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2781
2782  Type *Ty = V->getType();
2783  Ty = getEffectiveSCEVType(Ty);
2784  const SCEV *AllOnes =
2785                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2786  return getMinusSCEV(AllOnes, V);
2787}
2788
2789/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2790const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2791                                          SCEV::NoWrapFlags Flags) {
2792  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2793
2794  // Fast path: X - X --> 0.
2795  if (LHS == RHS)
2796    return getConstant(LHS->getType(), 0);
2797
2798  // X - Y --> X + -Y
2799  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2800}
2801
2802/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2803/// input value to the specified type.  If the type must be extended, it is zero
2804/// extended.
2805const SCEV *
2806ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2807  Type *SrcTy = V->getType();
2808  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2809         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2810         "Cannot truncate or zero extend with non-integer arguments!");
2811  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2812    return V;  // No conversion
2813  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2814    return getTruncateExpr(V, Ty);
2815  return getZeroExtendExpr(V, Ty);
2816}
2817
2818/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2819/// input value to the specified type.  If the type must be extended, it is sign
2820/// extended.
2821const SCEV *
2822ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2823                                         Type *Ty) {
2824  Type *SrcTy = V->getType();
2825  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2826         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2827         "Cannot truncate or zero extend with non-integer arguments!");
2828  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2829    return V;  // No conversion
2830  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2831    return getTruncateExpr(V, Ty);
2832  return getSignExtendExpr(V, Ty);
2833}
2834
2835/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2836/// input value to the specified type.  If the type must be extended, it is zero
2837/// extended.  The conversion must not be narrowing.
2838const SCEV *
2839ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2840  Type *SrcTy = V->getType();
2841  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2842         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2843         "Cannot noop or zero extend with non-integer arguments!");
2844  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2845         "getNoopOrZeroExtend cannot truncate!");
2846  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2847    return V;  // No conversion
2848  return getZeroExtendExpr(V, Ty);
2849}
2850
2851/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2852/// input value to the specified type.  If the type must be extended, it is sign
2853/// extended.  The conversion must not be narrowing.
2854const SCEV *
2855ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2856  Type *SrcTy = V->getType();
2857  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2858         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2859         "Cannot noop or sign extend with non-integer arguments!");
2860  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2861         "getNoopOrSignExtend cannot truncate!");
2862  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2863    return V;  // No conversion
2864  return getSignExtendExpr(V, Ty);
2865}
2866
2867/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2868/// the input value to the specified type. If the type must be extended,
2869/// it is extended with unspecified bits. The conversion must not be
2870/// narrowing.
2871const SCEV *
2872ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2873  Type *SrcTy = V->getType();
2874  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2875         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2876         "Cannot noop or any extend with non-integer arguments!");
2877  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2878         "getNoopOrAnyExtend cannot truncate!");
2879  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2880    return V;  // No conversion
2881  return getAnyExtendExpr(V, Ty);
2882}
2883
2884/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2885/// input value to the specified type.  The conversion must not be widening.
2886const SCEV *
2887ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2888  Type *SrcTy = V->getType();
2889  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2890         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2891         "Cannot truncate or noop with non-integer arguments!");
2892  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2893         "getTruncateOrNoop cannot extend!");
2894  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2895    return V;  // No conversion
2896  return getTruncateExpr(V, Ty);
2897}
2898
2899/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2900/// the types using zero-extension, and then perform a umax operation
2901/// with them.
2902const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2903                                                        const SCEV *RHS) {
2904  const SCEV *PromotedLHS = LHS;
2905  const SCEV *PromotedRHS = RHS;
2906
2907  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2908    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2909  else
2910    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2911
2912  return getUMaxExpr(PromotedLHS, PromotedRHS);
2913}
2914
2915/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2916/// the types using zero-extension, and then perform a umin operation
2917/// with them.
2918const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2919                                                        const SCEV *RHS) {
2920  const SCEV *PromotedLHS = LHS;
2921  const SCEV *PromotedRHS = RHS;
2922
2923  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2924    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2925  else
2926    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2927
2928  return getUMinExpr(PromotedLHS, PromotedRHS);
2929}
2930
2931/// getPointerBase - Transitively follow the chain of pointer-type operands
2932/// until reaching a SCEV that does not have a single pointer operand. This
2933/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2934/// but corner cases do exist.
2935const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2936  // A pointer operand may evaluate to a nonpointer expression, such as null.
2937  if (!V->getType()->isPointerTy())
2938    return V;
2939
2940  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2941    return getPointerBase(Cast->getOperand());
2942  }
2943  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2944    const SCEV *PtrOp = 0;
2945    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2946         I != E; ++I) {
2947      if ((*I)->getType()->isPointerTy()) {
2948        // Cannot find the base of an expression with multiple pointer operands.
2949        if (PtrOp)
2950          return V;
2951        PtrOp = *I;
2952      }
2953    }
2954    if (!PtrOp)
2955      return V;
2956    return getPointerBase(PtrOp);
2957  }
2958  return V;
2959}
2960
2961/// PushDefUseChildren - Push users of the given Instruction
2962/// onto the given Worklist.
2963static void
2964PushDefUseChildren(Instruction *I,
2965                   SmallVectorImpl<Instruction *> &Worklist) {
2966  // Push the def-use children onto the Worklist stack.
2967  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2968       UI != UE; ++UI)
2969    Worklist.push_back(cast<Instruction>(*UI));
2970}
2971
2972/// ForgetSymbolicValue - This looks up computed SCEV values for all
2973/// instructions that depend on the given instruction and removes them from
2974/// the ValueExprMapType map if they reference SymName. This is used during PHI
2975/// resolution.
2976void
2977ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2978  SmallVector<Instruction *, 16> Worklist;
2979  PushDefUseChildren(PN, Worklist);
2980
2981  SmallPtrSet<Instruction *, 8> Visited;
2982  Visited.insert(PN);
2983  while (!Worklist.empty()) {
2984    Instruction *I = Worklist.pop_back_val();
2985    if (!Visited.insert(I)) continue;
2986
2987    ValueExprMapType::iterator It =
2988      ValueExprMap.find_as(static_cast<Value *>(I));
2989    if (It != ValueExprMap.end()) {
2990      const SCEV *Old = It->second;
2991
2992      // Short-circuit the def-use traversal if the symbolic name
2993      // ceases to appear in expressions.
2994      if (Old != SymName && !hasOperand(Old, SymName))
2995        continue;
2996
2997      // SCEVUnknown for a PHI either means that it has an unrecognized
2998      // structure, it's a PHI that's in the progress of being computed
2999      // by createNodeForPHI, or it's a single-value PHI. In the first case,
3000      // additional loop trip count information isn't going to change anything.
3001      // In the second case, createNodeForPHI will perform the necessary
3002      // updates on its own when it gets to that point. In the third, we do
3003      // want to forget the SCEVUnknown.
3004      if (!isa<PHINode>(I) ||
3005          !isa<SCEVUnknown>(Old) ||
3006          (I != PN && Old == SymName)) {
3007        forgetMemoizedResults(Old);
3008        ValueExprMap.erase(It);
3009      }
3010    }
3011
3012    PushDefUseChildren(I, Worklist);
3013  }
3014}
3015
3016/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
3017/// a loop header, making it a potential recurrence, or it doesn't.
3018///
3019const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3020  if (const Loop *L = LI->getLoopFor(PN->getParent()))
3021    if (L->getHeader() == PN->getParent()) {
3022      // The loop may have multiple entrances or multiple exits; we can analyze
3023      // this phi as an addrec if it has a unique entry value and a unique
3024      // backedge value.
3025      Value *BEValueV = 0, *StartValueV = 0;
3026      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3027        Value *V = PN->getIncomingValue(i);
3028        if (L->contains(PN->getIncomingBlock(i))) {
3029          if (!BEValueV) {
3030            BEValueV = V;
3031          } else if (BEValueV != V) {
3032            BEValueV = 0;
3033            break;
3034          }
3035        } else if (!StartValueV) {
3036          StartValueV = V;
3037        } else if (StartValueV != V) {
3038          StartValueV = 0;
3039          break;
3040        }
3041      }
3042      if (BEValueV && StartValueV) {
3043        // While we are analyzing this PHI node, handle its value symbolically.
3044        const SCEV *SymbolicName = getUnknown(PN);
3045        assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3046               "PHI node already processed?");
3047        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3048
3049        // Using this symbolic name for the PHI, analyze the value coming around
3050        // the back-edge.
3051        const SCEV *BEValue = getSCEV(BEValueV);
3052
3053        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3054        // has a special value for the first iteration of the loop.
3055
3056        // If the value coming around the backedge is an add with the symbolic
3057        // value we just inserted, then we found a simple induction variable!
3058        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3059          // If there is a single occurrence of the symbolic value, replace it
3060          // with a recurrence.
3061          unsigned FoundIndex = Add->getNumOperands();
3062          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3063            if (Add->getOperand(i) == SymbolicName)
3064              if (FoundIndex == e) {
3065                FoundIndex = i;
3066                break;
3067              }
3068
3069          if (FoundIndex != Add->getNumOperands()) {
3070            // Create an add with everything but the specified operand.
3071            SmallVector<const SCEV *, 8> Ops;
3072            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3073              if (i != FoundIndex)
3074                Ops.push_back(Add->getOperand(i));
3075            const SCEV *Accum = getAddExpr(Ops);
3076
3077            // This is not a valid addrec if the step amount is varying each
3078            // loop iteration, but is not itself an addrec in this loop.
3079            if (isLoopInvariant(Accum, L) ||
3080                (isa<SCEVAddRecExpr>(Accum) &&
3081                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3082              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3083
3084              // If the increment doesn't overflow, then neither the addrec nor
3085              // the post-increment will overflow.
3086              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3087                if (OBO->hasNoUnsignedWrap())
3088                  Flags = setFlags(Flags, SCEV::FlagNUW);
3089                if (OBO->hasNoSignedWrap())
3090                  Flags = setFlags(Flags, SCEV::FlagNSW);
3091              } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3092                // If the increment is an inbounds GEP, then we know the address
3093                // space cannot be wrapped around. We cannot make any guarantee
3094                // about signed or unsigned overflow because pointers are
3095                // unsigned but we may have a negative index from the base
3096                // pointer. We can guarantee that no unsigned wrap occurs if the
3097                // indices form a positive value.
3098                if (GEP->isInBounds()) {
3099                  Flags = setFlags(Flags, SCEV::FlagNW);
3100
3101                  const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3102                  if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3103                    Flags = setFlags(Flags, SCEV::FlagNUW);
3104                }
3105              } else if (const SubOperator *OBO =
3106                           dyn_cast<SubOperator>(BEValueV)) {
3107                if (OBO->hasNoUnsignedWrap())
3108                  Flags = setFlags(Flags, SCEV::FlagNUW);
3109                if (OBO->hasNoSignedWrap())
3110                  Flags = setFlags(Flags, SCEV::FlagNSW);
3111              }
3112
3113              const SCEV *StartVal = getSCEV(StartValueV);
3114              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3115
3116              // Since the no-wrap flags are on the increment, they apply to the
3117              // post-incremented value as well.
3118              if (isLoopInvariant(Accum, L))
3119                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3120                                    Accum, L, Flags);
3121
3122              // Okay, for the entire analysis of this edge we assumed the PHI
3123              // to be symbolic.  We now need to go back and purge all of the
3124              // entries for the scalars that use the symbolic expression.
3125              ForgetSymbolicName(PN, SymbolicName);
3126              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3127              return PHISCEV;
3128            }
3129          }
3130        } else if (const SCEVAddRecExpr *AddRec =
3131                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3132          // Otherwise, this could be a loop like this:
3133          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3134          // In this case, j = {1,+,1}  and BEValue is j.
3135          // Because the other in-value of i (0) fits the evolution of BEValue
3136          // i really is an addrec evolution.
3137          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3138            const SCEV *StartVal = getSCEV(StartValueV);
3139
3140            // If StartVal = j.start - j.stride, we can use StartVal as the
3141            // initial step of the addrec evolution.
3142            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3143                                         AddRec->getOperand(1))) {
3144              // FIXME: For constant StartVal, we should be able to infer
3145              // no-wrap flags.
3146              const SCEV *PHISCEV =
3147                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3148                              SCEV::FlagAnyWrap);
3149
3150              // Okay, for the entire analysis of this edge we assumed the PHI
3151              // to be symbolic.  We now need to go back and purge all of the
3152              // entries for the scalars that use the symbolic expression.
3153              ForgetSymbolicName(PN, SymbolicName);
3154              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3155              return PHISCEV;
3156            }
3157          }
3158        }
3159      }
3160    }
3161
3162  // If the PHI has a single incoming value, follow that value, unless the
3163  // PHI's incoming blocks are in a different loop, in which case doing so
3164  // risks breaking LCSSA form. Instcombine would normally zap these, but
3165  // it doesn't have DominatorTree information, so it may miss cases.
3166  if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
3167    if (LI->replacementPreservesLCSSAForm(PN, V))
3168      return getSCEV(V);
3169
3170  // If it's not a loop phi, we can't handle it yet.
3171  return getUnknown(PN);
3172}
3173
3174/// createNodeForGEP - Expand GEP instructions into add and multiply
3175/// operations. This allows them to be analyzed by regular SCEV code.
3176///
3177const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3178  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3179  Value *Base = GEP->getOperand(0);
3180  // Don't attempt to analyze GEPs over unsized objects.
3181  if (!Base->getType()->getPointerElementType()->isSized())
3182    return getUnknown(GEP);
3183
3184  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3185  // Add expression, because the Instruction may be guarded by control flow
3186  // and the no-overflow bits may not be valid for the expression in any
3187  // context.
3188  SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3189
3190  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3191  gep_type_iterator GTI = gep_type_begin(GEP);
3192  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3193                                      E = GEP->op_end();
3194       I != E; ++I) {
3195    Value *Index = *I;
3196    // Compute the (potentially symbolic) offset in bytes for this index.
3197    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3198      // For a struct, add the member offset.
3199      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3200      const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3201
3202      // Add the field offset to the running total offset.
3203      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3204    } else {
3205      // For an array, add the element offset, explicitly scaled.
3206      const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3207      const SCEV *IndexS = getSCEV(Index);
3208      // Getelementptr indices are signed.
3209      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3210
3211      // Multiply the index by the element size to compute the element offset.
3212      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3213
3214      // Add the element offset to the running total offset.
3215      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3216    }
3217  }
3218
3219  // Get the SCEV for the GEP base.
3220  const SCEV *BaseS = getSCEV(Base);
3221
3222  // Add the total offset from all the GEP indices to the base.
3223  return getAddExpr(BaseS, TotalOffset, Wrap);
3224}
3225
3226/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3227/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3228/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3229/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3230uint32_t
3231ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3232  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3233    return C->getValue()->getValue().countTrailingZeros();
3234
3235  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3236    return std::min(GetMinTrailingZeros(T->getOperand()),
3237                    (uint32_t)getTypeSizeInBits(T->getType()));
3238
3239  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3240    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3241    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3242             getTypeSizeInBits(E->getType()) : OpRes;
3243  }
3244
3245  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3246    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3247    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3248             getTypeSizeInBits(E->getType()) : OpRes;
3249  }
3250
3251  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3252    // The result is the min of all operands results.
3253    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3254    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3255      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3256    return MinOpRes;
3257  }
3258
3259  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3260    // The result is the sum of all operands results.
3261    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3262    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3263    for (unsigned i = 1, e = M->getNumOperands();
3264         SumOpRes != BitWidth && i != e; ++i)
3265      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3266                          BitWidth);
3267    return SumOpRes;
3268  }
3269
3270  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3271    // The result is the min of all operands results.
3272    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3273    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3274      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3275    return MinOpRes;
3276  }
3277
3278  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3279    // The result is the min of all operands results.
3280    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3281    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3282      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3283    return MinOpRes;
3284  }
3285
3286  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3287    // The result is the min of all operands results.
3288    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3289    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3290      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3291    return MinOpRes;
3292  }
3293
3294  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3295    // For a SCEVUnknown, ask ValueTracking.
3296    unsigned BitWidth = getTypeSizeInBits(U->getType());
3297    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3298    ComputeMaskedBits(U->getValue(), Zeros, Ones);
3299    return Zeros.countTrailingOnes();
3300  }
3301
3302  // SCEVUDivExpr
3303  return 0;
3304}
3305
3306/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3307///
3308ConstantRange
3309ScalarEvolution::getUnsignedRange(const SCEV *S) {
3310  // See if we've computed this range already.
3311  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3312  if (I != UnsignedRanges.end())
3313    return I->second;
3314
3315  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3316    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3317
3318  unsigned BitWidth = getTypeSizeInBits(S->getType());
3319  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3320
3321  // If the value has known zeros, the maximum unsigned value will have those
3322  // known zeros as well.
3323  uint32_t TZ = GetMinTrailingZeros(S);
3324  if (TZ != 0)
3325    ConservativeResult =
3326      ConstantRange(APInt::getMinValue(BitWidth),
3327                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3328
3329  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3330    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3331    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3332      X = X.add(getUnsignedRange(Add->getOperand(i)));
3333    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3334  }
3335
3336  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3337    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3338    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3339      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3340    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3341  }
3342
3343  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3344    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3345    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3346      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3347    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3348  }
3349
3350  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3351    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3352    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3353      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3354    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3355  }
3356
3357  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3358    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3359    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3360    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3361  }
3362
3363  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3364    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3365    return setUnsignedRange(ZExt,
3366      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3367  }
3368
3369  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3370    ConstantRange X = getUnsignedRange(SExt->getOperand());
3371    return setUnsignedRange(SExt,
3372      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3373  }
3374
3375  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3376    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3377    return setUnsignedRange(Trunc,
3378      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3379  }
3380
3381  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3382    // If there's no unsigned wrap, the value will never be less than its
3383    // initial value.
3384    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3385      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3386        if (!C->getValue()->isZero())
3387          ConservativeResult =
3388            ConservativeResult.intersectWith(
3389              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3390
3391    // TODO: non-affine addrec
3392    if (AddRec->isAffine()) {
3393      Type *Ty = AddRec->getType();
3394      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3395      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3396          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3397        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3398
3399        const SCEV *Start = AddRec->getStart();
3400        const SCEV *Step = AddRec->getStepRecurrence(*this);
3401
3402        ConstantRange StartRange = getUnsignedRange(Start);
3403        ConstantRange StepRange = getSignedRange(Step);
3404        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3405        ConstantRange EndRange =
3406          StartRange.add(MaxBECountRange.multiply(StepRange));
3407
3408        // Check for overflow. This must be done with ConstantRange arithmetic
3409        // because we could be called from within the ScalarEvolution overflow
3410        // checking code.
3411        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3412        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3413        ConstantRange ExtMaxBECountRange =
3414          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3415        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3416        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3417            ExtEndRange)
3418          return setUnsignedRange(AddRec, ConservativeResult);
3419
3420        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3421                                   EndRange.getUnsignedMin());
3422        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3423                                   EndRange.getUnsignedMax());
3424        if (Min.isMinValue() && Max.isMaxValue())
3425          return setUnsignedRange(AddRec, ConservativeResult);
3426        return setUnsignedRange(AddRec,
3427          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3428      }
3429    }
3430
3431    return setUnsignedRange(AddRec, ConservativeResult);
3432  }
3433
3434  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3435    // For a SCEVUnknown, ask ValueTracking.
3436    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3437    ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
3438    if (Ones == ~Zeros + 1)
3439      return setUnsignedRange(U, ConservativeResult);
3440    return setUnsignedRange(U,
3441      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3442  }
3443
3444  return setUnsignedRange(S, ConservativeResult);
3445}
3446
3447/// getSignedRange - Determine the signed range for a particular SCEV.
3448///
3449ConstantRange
3450ScalarEvolution::getSignedRange(const SCEV *S) {
3451  // See if we've computed this range already.
3452  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3453  if (I != SignedRanges.end())
3454    return I->second;
3455
3456  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3457    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3458
3459  unsigned BitWidth = getTypeSizeInBits(S->getType());
3460  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3461
3462  // If the value has known zeros, the maximum signed value will have those
3463  // known zeros as well.
3464  uint32_t TZ = GetMinTrailingZeros(S);
3465  if (TZ != 0)
3466    ConservativeResult =
3467      ConstantRange(APInt::getSignedMinValue(BitWidth),
3468                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3469
3470  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3471    ConstantRange X = getSignedRange(Add->getOperand(0));
3472    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3473      X = X.add(getSignedRange(Add->getOperand(i)));
3474    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3475  }
3476
3477  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3478    ConstantRange X = getSignedRange(Mul->getOperand(0));
3479    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3480      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3481    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3482  }
3483
3484  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3485    ConstantRange X = getSignedRange(SMax->getOperand(0));
3486    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3487      X = X.smax(getSignedRange(SMax->getOperand(i)));
3488    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3489  }
3490
3491  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3492    ConstantRange X = getSignedRange(UMax->getOperand(0));
3493    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3494      X = X.umax(getSignedRange(UMax->getOperand(i)));
3495    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3496  }
3497
3498  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3499    ConstantRange X = getSignedRange(UDiv->getLHS());
3500    ConstantRange Y = getSignedRange(UDiv->getRHS());
3501    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3502  }
3503
3504  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3505    ConstantRange X = getSignedRange(ZExt->getOperand());
3506    return setSignedRange(ZExt,
3507      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3508  }
3509
3510  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3511    ConstantRange X = getSignedRange(SExt->getOperand());
3512    return setSignedRange(SExt,
3513      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3514  }
3515
3516  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3517    ConstantRange X = getSignedRange(Trunc->getOperand());
3518    return setSignedRange(Trunc,
3519      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3520  }
3521
3522  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3523    // If there's no signed wrap, and all the operands have the same sign or
3524    // zero, the value won't ever change sign.
3525    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3526      bool AllNonNeg = true;
3527      bool AllNonPos = true;
3528      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3529        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3530        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3531      }
3532      if (AllNonNeg)
3533        ConservativeResult = ConservativeResult.intersectWith(
3534          ConstantRange(APInt(BitWidth, 0),
3535                        APInt::getSignedMinValue(BitWidth)));
3536      else if (AllNonPos)
3537        ConservativeResult = ConservativeResult.intersectWith(
3538          ConstantRange(APInt::getSignedMinValue(BitWidth),
3539                        APInt(BitWidth, 1)));
3540    }
3541
3542    // TODO: non-affine addrec
3543    if (AddRec->isAffine()) {
3544      Type *Ty = AddRec->getType();
3545      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3546      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3547          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3548        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3549
3550        const SCEV *Start = AddRec->getStart();
3551        const SCEV *Step = AddRec->getStepRecurrence(*this);
3552
3553        ConstantRange StartRange = getSignedRange(Start);
3554        ConstantRange StepRange = getSignedRange(Step);
3555        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3556        ConstantRange EndRange =
3557          StartRange.add(MaxBECountRange.multiply(StepRange));
3558
3559        // Check for overflow. This must be done with ConstantRange arithmetic
3560        // because we could be called from within the ScalarEvolution overflow
3561        // checking code.
3562        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3563        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3564        ConstantRange ExtMaxBECountRange =
3565          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3566        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3567        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3568            ExtEndRange)
3569          return setSignedRange(AddRec, ConservativeResult);
3570
3571        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3572                                   EndRange.getSignedMin());
3573        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3574                                   EndRange.getSignedMax());
3575        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3576          return setSignedRange(AddRec, ConservativeResult);
3577        return setSignedRange(AddRec,
3578          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3579      }
3580    }
3581
3582    return setSignedRange(AddRec, ConservativeResult);
3583  }
3584
3585  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3586    // For a SCEVUnknown, ask ValueTracking.
3587    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3588      return setSignedRange(U, ConservativeResult);
3589    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3590    if (NS <= 1)
3591      return setSignedRange(U, ConservativeResult);
3592    return setSignedRange(U, ConservativeResult.intersectWith(
3593      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3594                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3595  }
3596
3597  return setSignedRange(S, ConservativeResult);
3598}
3599
3600/// createSCEV - We know that there is no SCEV for the specified value.
3601/// Analyze the expression.
3602///
3603const SCEV *ScalarEvolution::createSCEV(Value *V) {
3604  if (!isSCEVable(V->getType()))
3605    return getUnknown(V);
3606
3607  unsigned Opcode = Instruction::UserOp1;
3608  if (Instruction *I = dyn_cast<Instruction>(V)) {
3609    Opcode = I->getOpcode();
3610
3611    // Don't attempt to analyze instructions in blocks that aren't
3612    // reachable. Such instructions don't matter, and they aren't required
3613    // to obey basic rules for definitions dominating uses which this
3614    // analysis depends on.
3615    if (!DT->isReachableFromEntry(I->getParent()))
3616      return getUnknown(V);
3617  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3618    Opcode = CE->getOpcode();
3619  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3620    return getConstant(CI);
3621  else if (isa<ConstantPointerNull>(V))
3622    return getConstant(V->getType(), 0);
3623  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3624    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3625  else
3626    return getUnknown(V);
3627
3628  Operator *U = cast<Operator>(V);
3629  switch (Opcode) {
3630  case Instruction::Add: {
3631    // The simple thing to do would be to just call getSCEV on both operands
3632    // and call getAddExpr with the result. However if we're looking at a
3633    // bunch of things all added together, this can be quite inefficient,
3634    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3635    // Instead, gather up all the operands and make a single getAddExpr call.
3636    // LLVM IR canonical form means we need only traverse the left operands.
3637    //
3638    // Don't apply this instruction's NSW or NUW flags to the new
3639    // expression. The instruction may be guarded by control flow that the
3640    // no-wrap behavior depends on. Non-control-equivalent instructions can be
3641    // mapped to the same SCEV expression, and it would be incorrect to transfer
3642    // NSW/NUW semantics to those operations.
3643    SmallVector<const SCEV *, 4> AddOps;
3644    AddOps.push_back(getSCEV(U->getOperand(1)));
3645    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3646      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3647      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3648        break;
3649      U = cast<Operator>(Op);
3650      const SCEV *Op1 = getSCEV(U->getOperand(1));
3651      if (Opcode == Instruction::Sub)
3652        AddOps.push_back(getNegativeSCEV(Op1));
3653      else
3654        AddOps.push_back(Op1);
3655    }
3656    AddOps.push_back(getSCEV(U->getOperand(0)));
3657    return getAddExpr(AddOps);
3658  }
3659  case Instruction::Mul: {
3660    // Don't transfer NSW/NUW for the same reason as AddExpr.
3661    SmallVector<const SCEV *, 4> MulOps;
3662    MulOps.push_back(getSCEV(U->getOperand(1)));
3663    for (Value *Op = U->getOperand(0);
3664         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3665         Op = U->getOperand(0)) {
3666      U = cast<Operator>(Op);
3667      MulOps.push_back(getSCEV(U->getOperand(1)));
3668    }
3669    MulOps.push_back(getSCEV(U->getOperand(0)));
3670    return getMulExpr(MulOps);
3671  }
3672  case Instruction::UDiv:
3673    return getUDivExpr(getSCEV(U->getOperand(0)),
3674                       getSCEV(U->getOperand(1)));
3675  case Instruction::Sub:
3676    return getMinusSCEV(getSCEV(U->getOperand(0)),
3677                        getSCEV(U->getOperand(1)));
3678  case Instruction::And:
3679    // For an expression like x&255 that merely masks off the high bits,
3680    // use zext(trunc(x)) as the SCEV expression.
3681    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3682      if (CI->isNullValue())
3683        return getSCEV(U->getOperand(1));
3684      if (CI->isAllOnesValue())
3685        return getSCEV(U->getOperand(0));
3686      const APInt &A = CI->getValue();
3687
3688      // Instcombine's ShrinkDemandedConstant may strip bits out of
3689      // constants, obscuring what would otherwise be a low-bits mask.
3690      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3691      // knew about to reconstruct a low-bits mask value.
3692      unsigned LZ = A.countLeadingZeros();
3693      unsigned BitWidth = A.getBitWidth();
3694      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3695      ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
3696
3697      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3698
3699      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3700        return
3701          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3702                                IntegerType::get(getContext(), BitWidth - LZ)),
3703                            U->getType());
3704    }
3705    break;
3706
3707  case Instruction::Or:
3708    // If the RHS of the Or is a constant, we may have something like:
3709    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3710    // optimizations will transparently handle this case.
3711    //
3712    // In order for this transformation to be safe, the LHS must be of the
3713    // form X*(2^n) and the Or constant must be less than 2^n.
3714    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3715      const SCEV *LHS = getSCEV(U->getOperand(0));
3716      const APInt &CIVal = CI->getValue();
3717      if (GetMinTrailingZeros(LHS) >=
3718          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3719        // Build a plain add SCEV.
3720        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3721        // If the LHS of the add was an addrec and it has no-wrap flags,
3722        // transfer the no-wrap flags, since an or won't introduce a wrap.
3723        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3724          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3725          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3726            OldAR->getNoWrapFlags());
3727        }
3728        return S;
3729      }
3730    }
3731    break;
3732  case Instruction::Xor:
3733    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3734      // If the RHS of the xor is a signbit, then this is just an add.
3735      // Instcombine turns add of signbit into xor as a strength reduction step.
3736      if (CI->getValue().isSignBit())
3737        return getAddExpr(getSCEV(U->getOperand(0)),
3738                          getSCEV(U->getOperand(1)));
3739
3740      // If the RHS of xor is -1, then this is a not operation.
3741      if (CI->isAllOnesValue())
3742        return getNotSCEV(getSCEV(U->getOperand(0)));
3743
3744      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3745      // This is a variant of the check for xor with -1, and it handles
3746      // the case where instcombine has trimmed non-demanded bits out
3747      // of an xor with -1.
3748      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3749        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3750          if (BO->getOpcode() == Instruction::And &&
3751              LCI->getValue() == CI->getValue())
3752            if (const SCEVZeroExtendExpr *Z =
3753                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3754              Type *UTy = U->getType();
3755              const SCEV *Z0 = Z->getOperand();
3756              Type *Z0Ty = Z0->getType();
3757              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3758
3759              // If C is a low-bits mask, the zero extend is serving to
3760              // mask off the high bits. Complement the operand and
3761              // re-apply the zext.
3762              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3763                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3764
3765              // If C is a single bit, it may be in the sign-bit position
3766              // before the zero-extend. In this case, represent the xor
3767              // using an add, which is equivalent, and re-apply the zext.
3768              APInt Trunc = CI->getValue().trunc(Z0TySize);
3769              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3770                  Trunc.isSignBit())
3771                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3772                                         UTy);
3773            }
3774    }
3775    break;
3776
3777  case Instruction::Shl:
3778    // Turn shift left of a constant amount into a multiply.
3779    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3780      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3781
3782      // If the shift count is not less than the bitwidth, the result of
3783      // the shift is undefined. Don't try to analyze it, because the
3784      // resolution chosen here may differ from the resolution chosen in
3785      // other parts of the compiler.
3786      if (SA->getValue().uge(BitWidth))
3787        break;
3788
3789      Constant *X = ConstantInt::get(getContext(),
3790        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3791      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3792    }
3793    break;
3794
3795  case Instruction::LShr:
3796    // Turn logical shift right of a constant into a unsigned divide.
3797    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3798      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3799
3800      // If the shift count is not less than the bitwidth, the result of
3801      // the shift is undefined. Don't try to analyze it, because the
3802      // resolution chosen here may differ from the resolution chosen in
3803      // other parts of the compiler.
3804      if (SA->getValue().uge(BitWidth))
3805        break;
3806
3807      Constant *X = ConstantInt::get(getContext(),
3808        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3809      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3810    }
3811    break;
3812
3813  case Instruction::AShr:
3814    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3815    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3816      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3817        if (L->getOpcode() == Instruction::Shl &&
3818            L->getOperand(1) == U->getOperand(1)) {
3819          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3820
3821          // If the shift count is not less than the bitwidth, the result of
3822          // the shift is undefined. Don't try to analyze it, because the
3823          // resolution chosen here may differ from the resolution chosen in
3824          // other parts of the compiler.
3825          if (CI->getValue().uge(BitWidth))
3826            break;
3827
3828          uint64_t Amt = BitWidth - CI->getZExtValue();
3829          if (Amt == BitWidth)
3830            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3831          return
3832            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3833                                              IntegerType::get(getContext(),
3834                                                               Amt)),
3835                              U->getType());
3836        }
3837    break;
3838
3839  case Instruction::Trunc:
3840    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3841
3842  case Instruction::ZExt:
3843    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3844
3845  case Instruction::SExt:
3846    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3847
3848  case Instruction::BitCast:
3849    // BitCasts are no-op casts so we just eliminate the cast.
3850    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3851      return getSCEV(U->getOperand(0));
3852    break;
3853
3854  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3855  // lead to pointer expressions which cannot safely be expanded to GEPs,
3856  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3857  // simplifying integer expressions.
3858
3859  case Instruction::GetElementPtr:
3860    return createNodeForGEP(cast<GEPOperator>(U));
3861
3862  case Instruction::PHI:
3863    return createNodeForPHI(cast<PHINode>(U));
3864
3865  case Instruction::Select:
3866    // This could be a smax or umax that was lowered earlier.
3867    // Try to recover it.
3868    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3869      Value *LHS = ICI->getOperand(0);
3870      Value *RHS = ICI->getOperand(1);
3871      switch (ICI->getPredicate()) {
3872      case ICmpInst::ICMP_SLT:
3873      case ICmpInst::ICMP_SLE:
3874        std::swap(LHS, RHS);
3875        // fall through
3876      case ICmpInst::ICMP_SGT:
3877      case ICmpInst::ICMP_SGE:
3878        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3879        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3880        if (LHS->getType() == U->getType()) {
3881          const SCEV *LS = getSCEV(LHS);
3882          const SCEV *RS = getSCEV(RHS);
3883          const SCEV *LA = getSCEV(U->getOperand(1));
3884          const SCEV *RA = getSCEV(U->getOperand(2));
3885          const SCEV *LDiff = getMinusSCEV(LA, LS);
3886          const SCEV *RDiff = getMinusSCEV(RA, RS);
3887          if (LDiff == RDiff)
3888            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3889          LDiff = getMinusSCEV(LA, RS);
3890          RDiff = getMinusSCEV(RA, LS);
3891          if (LDiff == RDiff)
3892            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3893        }
3894        break;
3895      case ICmpInst::ICMP_ULT:
3896      case ICmpInst::ICMP_ULE:
3897        std::swap(LHS, RHS);
3898        // fall through
3899      case ICmpInst::ICMP_UGT:
3900      case ICmpInst::ICMP_UGE:
3901        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3902        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3903        if (LHS->getType() == U->getType()) {
3904          const SCEV *LS = getSCEV(LHS);
3905          const SCEV *RS = getSCEV(RHS);
3906          const SCEV *LA = getSCEV(U->getOperand(1));
3907          const SCEV *RA = getSCEV(U->getOperand(2));
3908          const SCEV *LDiff = getMinusSCEV(LA, LS);
3909          const SCEV *RDiff = getMinusSCEV(RA, RS);
3910          if (LDiff == RDiff)
3911            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3912          LDiff = getMinusSCEV(LA, RS);
3913          RDiff = getMinusSCEV(RA, LS);
3914          if (LDiff == RDiff)
3915            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3916        }
3917        break;
3918      case ICmpInst::ICMP_NE:
3919        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3920        if (LHS->getType() == U->getType() &&
3921            isa<ConstantInt>(RHS) &&
3922            cast<ConstantInt>(RHS)->isZero()) {
3923          const SCEV *One = getConstant(LHS->getType(), 1);
3924          const SCEV *LS = getSCEV(LHS);
3925          const SCEV *LA = getSCEV(U->getOperand(1));
3926          const SCEV *RA = getSCEV(U->getOperand(2));
3927          const SCEV *LDiff = getMinusSCEV(LA, LS);
3928          const SCEV *RDiff = getMinusSCEV(RA, One);
3929          if (LDiff == RDiff)
3930            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3931        }
3932        break;
3933      case ICmpInst::ICMP_EQ:
3934        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3935        if (LHS->getType() == U->getType() &&
3936            isa<ConstantInt>(RHS) &&
3937            cast<ConstantInt>(RHS)->isZero()) {
3938          const SCEV *One = getConstant(LHS->getType(), 1);
3939          const SCEV *LS = getSCEV(LHS);
3940          const SCEV *LA = getSCEV(U->getOperand(1));
3941          const SCEV *RA = getSCEV(U->getOperand(2));
3942          const SCEV *LDiff = getMinusSCEV(LA, One);
3943          const SCEV *RDiff = getMinusSCEV(RA, LS);
3944          if (LDiff == RDiff)
3945            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3946        }
3947        break;
3948      default:
3949        break;
3950      }
3951    }
3952
3953  default: // We cannot analyze this expression.
3954    break;
3955  }
3956
3957  return getUnknown(V);
3958}
3959
3960
3961
3962//===----------------------------------------------------------------------===//
3963//                   Iteration Count Computation Code
3964//
3965
3966/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3967/// normal unsigned value. Returns 0 if the trip count is unknown or not
3968/// constant. Will also return 0 if the maximum trip count is very large (>=
3969/// 2^32).
3970///
3971/// This "trip count" assumes that control exits via ExitingBlock. More
3972/// precisely, it is the number of times that control may reach ExitingBlock
3973/// before taking the branch. For loops with multiple exits, it may not be the
3974/// number times that the loop header executes because the loop may exit
3975/// prematurely via another branch.
3976///
3977/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
3978/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
3979/// loop exits. getExitCount() may return an exact count for this branch
3980/// assuming no-signed-wrap. The number of well-defined iterations may actually
3981/// be higher than this trip count if this exit test is skipped and the loop
3982/// exits via a different branch. Ideally, getExitCount() would know whether it
3983/// depends on a NSW assumption, and we would only fall back to a conservative
3984/// trip count in that case.
3985unsigned ScalarEvolution::
3986getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
3987  const SCEVConstant *ExitCount =
3988    dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
3989  if (!ExitCount)
3990    return 0;
3991
3992  ConstantInt *ExitConst = ExitCount->getValue();
3993
3994  // Guard against huge trip counts.
3995  if (ExitConst->getValue().getActiveBits() > 32)
3996    return 0;
3997
3998  // In case of integer overflow, this returns 0, which is correct.
3999  return ((unsigned)ExitConst->getZExtValue()) + 1;
4000}
4001
4002/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4003/// trip count of this loop as a normal unsigned value, if possible. This
4004/// means that the actual trip count is always a multiple of the returned
4005/// value (don't forget the trip count could very well be zero as well!).
4006///
4007/// Returns 1 if the trip count is unknown or not guaranteed to be the
4008/// multiple of a constant (which is also the case if the trip count is simply
4009/// constant, use getSmallConstantTripCount for that case), Will also return 1
4010/// if the trip count is very large (>= 2^32).
4011///
4012/// As explained in the comments for getSmallConstantTripCount, this assumes
4013/// that control exits the loop via ExitingBlock.
4014unsigned ScalarEvolution::
4015getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
4016  const SCEV *ExitCount = getBackedgeTakenCount(L);
4017  if (ExitCount == getCouldNotCompute())
4018    return 1;
4019
4020  // Get the trip count from the BE count by adding 1.
4021  const SCEV *TCMul = getAddExpr(ExitCount,
4022                                 getConstant(ExitCount->getType(), 1));
4023  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4024  // to factor simple cases.
4025  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4026    TCMul = Mul->getOperand(0);
4027
4028  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4029  if (!MulC)
4030    return 1;
4031
4032  ConstantInt *Result = MulC->getValue();
4033
4034  // Guard against huge trip counts (this requires checking
4035  // for zero to handle the case where the trip count == -1 and the
4036  // addition wraps).
4037  if (!Result || Result->getValue().getActiveBits() > 32 ||
4038      Result->getValue().getActiveBits() == 0)
4039    return 1;
4040
4041  return (unsigned)Result->getZExtValue();
4042}
4043
4044// getExitCount - Get the expression for the number of loop iterations for which
4045// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4046// SCEVCouldNotCompute.
4047const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4048  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4049}
4050
4051/// getBackedgeTakenCount - If the specified loop has a predictable
4052/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4053/// object. The backedge-taken count is the number of times the loop header
4054/// will be branched to from within the loop. This is one less than the
4055/// trip count of the loop, since it doesn't count the first iteration,
4056/// when the header is branched to from outside the loop.
4057///
4058/// Note that it is not valid to call this method on a loop without a
4059/// loop-invariant backedge-taken count (see
4060/// hasLoopInvariantBackedgeTakenCount).
4061///
4062const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4063  return getBackedgeTakenInfo(L).getExact(this);
4064}
4065
4066/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4067/// return the least SCEV value that is known never to be less than the
4068/// actual backedge taken count.
4069const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4070  return getBackedgeTakenInfo(L).getMax(this);
4071}
4072
4073/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4074/// onto the given Worklist.
4075static void
4076PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4077  BasicBlock *Header = L->getHeader();
4078
4079  // Push all Loop-header PHIs onto the Worklist stack.
4080  for (BasicBlock::iterator I = Header->begin();
4081       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4082    Worklist.push_back(PN);
4083}
4084
4085const ScalarEvolution::BackedgeTakenInfo &
4086ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4087  // Initially insert an invalid entry for this loop. If the insertion
4088  // succeeds, proceed to actually compute a backedge-taken count and
4089  // update the value. The temporary CouldNotCompute value tells SCEV
4090  // code elsewhere that it shouldn't attempt to request a new
4091  // backedge-taken count, which could result in infinite recursion.
4092  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4093    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4094  if (!Pair.second)
4095    return Pair.first->second;
4096
4097  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4098  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4099  // must be cleared in this scope.
4100  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4101
4102  if (Result.getExact(this) != getCouldNotCompute()) {
4103    assert(isLoopInvariant(Result.getExact(this), L) &&
4104           isLoopInvariant(Result.getMax(this), L) &&
4105           "Computed backedge-taken count isn't loop invariant for loop!");
4106    ++NumTripCountsComputed;
4107  }
4108  else if (Result.getMax(this) == getCouldNotCompute() &&
4109           isa<PHINode>(L->getHeader()->begin())) {
4110    // Only count loops that have phi nodes as not being computable.
4111    ++NumTripCountsNotComputed;
4112  }
4113
4114  // Now that we know more about the trip count for this loop, forget any
4115  // existing SCEV values for PHI nodes in this loop since they are only
4116  // conservative estimates made without the benefit of trip count
4117  // information. This is similar to the code in forgetLoop, except that
4118  // it handles SCEVUnknown PHI nodes specially.
4119  if (Result.hasAnyInfo()) {
4120    SmallVector<Instruction *, 16> Worklist;
4121    PushLoopPHIs(L, Worklist);
4122
4123    SmallPtrSet<Instruction *, 8> Visited;
4124    while (!Worklist.empty()) {
4125      Instruction *I = Worklist.pop_back_val();
4126      if (!Visited.insert(I)) continue;
4127
4128      ValueExprMapType::iterator It =
4129        ValueExprMap.find_as(static_cast<Value *>(I));
4130      if (It != ValueExprMap.end()) {
4131        const SCEV *Old = It->second;
4132
4133        // SCEVUnknown for a PHI either means that it has an unrecognized
4134        // structure, or it's a PHI that's in the progress of being computed
4135        // by createNodeForPHI.  In the former case, additional loop trip
4136        // count information isn't going to change anything. In the later
4137        // case, createNodeForPHI will perform the necessary updates on its
4138        // own when it gets to that point.
4139        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4140          forgetMemoizedResults(Old);
4141          ValueExprMap.erase(It);
4142        }
4143        if (PHINode *PN = dyn_cast<PHINode>(I))
4144          ConstantEvolutionLoopExitValue.erase(PN);
4145      }
4146
4147      PushDefUseChildren(I, Worklist);
4148    }
4149  }
4150
4151  // Re-lookup the insert position, since the call to
4152  // ComputeBackedgeTakenCount above could result in a
4153  // recusive call to getBackedgeTakenInfo (on a different
4154  // loop), which would invalidate the iterator computed
4155  // earlier.
4156  return BackedgeTakenCounts.find(L)->second = Result;
4157}
4158
4159/// forgetLoop - This method should be called by the client when it has
4160/// changed a loop in a way that may effect ScalarEvolution's ability to
4161/// compute a trip count, or if the loop is deleted.
4162void ScalarEvolution::forgetLoop(const Loop *L) {
4163  // Drop any stored trip count value.
4164  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4165    BackedgeTakenCounts.find(L);
4166  if (BTCPos != BackedgeTakenCounts.end()) {
4167    BTCPos->second.clear();
4168    BackedgeTakenCounts.erase(BTCPos);
4169  }
4170
4171  // Drop information about expressions based on loop-header PHIs.
4172  SmallVector<Instruction *, 16> Worklist;
4173  PushLoopPHIs(L, Worklist);
4174
4175  SmallPtrSet<Instruction *, 8> Visited;
4176  while (!Worklist.empty()) {
4177    Instruction *I = Worklist.pop_back_val();
4178    if (!Visited.insert(I)) continue;
4179
4180    ValueExprMapType::iterator It =
4181      ValueExprMap.find_as(static_cast<Value *>(I));
4182    if (It != ValueExprMap.end()) {
4183      forgetMemoizedResults(It->second);
4184      ValueExprMap.erase(It);
4185      if (PHINode *PN = dyn_cast<PHINode>(I))
4186        ConstantEvolutionLoopExitValue.erase(PN);
4187    }
4188
4189    PushDefUseChildren(I, Worklist);
4190  }
4191
4192  // Forget all contained loops too, to avoid dangling entries in the
4193  // ValuesAtScopes map.
4194  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4195    forgetLoop(*I);
4196}
4197
4198/// forgetValue - This method should be called by the client when it has
4199/// changed a value in a way that may effect its value, or which may
4200/// disconnect it from a def-use chain linking it to a loop.
4201void ScalarEvolution::forgetValue(Value *V) {
4202  Instruction *I = dyn_cast<Instruction>(V);
4203  if (!I) return;
4204
4205  // Drop information about expressions based on loop-header PHIs.
4206  SmallVector<Instruction *, 16> Worklist;
4207  Worklist.push_back(I);
4208
4209  SmallPtrSet<Instruction *, 8> Visited;
4210  while (!Worklist.empty()) {
4211    I = Worklist.pop_back_val();
4212    if (!Visited.insert(I)) continue;
4213
4214    ValueExprMapType::iterator It =
4215      ValueExprMap.find_as(static_cast<Value *>(I));
4216    if (It != ValueExprMap.end()) {
4217      forgetMemoizedResults(It->second);
4218      ValueExprMap.erase(It);
4219      if (PHINode *PN = dyn_cast<PHINode>(I))
4220        ConstantEvolutionLoopExitValue.erase(PN);
4221    }
4222
4223    PushDefUseChildren(I, Worklist);
4224  }
4225}
4226
4227/// getExact - Get the exact loop backedge taken count considering all loop
4228/// exits. A computable result can only be return for loops with a single exit.
4229/// Returning the minimum taken count among all exits is incorrect because one
4230/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4231/// the limit of each loop test is never skipped. This is a valid assumption as
4232/// long as the loop exits via that test. For precise results, it is the
4233/// caller's responsibility to specify the relevant loop exit using
4234/// getExact(ExitingBlock, SE).
4235const SCEV *
4236ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4237  // If any exits were not computable, the loop is not computable.
4238  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4239
4240  // We need exactly one computable exit.
4241  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4242  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4243
4244  const SCEV *BECount = 0;
4245  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4246       ENT != 0; ENT = ENT->getNextExit()) {
4247
4248    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4249
4250    if (!BECount)
4251      BECount = ENT->ExactNotTaken;
4252    else if (BECount != ENT->ExactNotTaken)
4253      return SE->getCouldNotCompute();
4254  }
4255  assert(BECount && "Invalid not taken count for loop exit");
4256  return BECount;
4257}
4258
4259/// getExact - Get the exact not taken count for this loop exit.
4260const SCEV *
4261ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4262                                             ScalarEvolution *SE) const {
4263  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4264       ENT != 0; ENT = ENT->getNextExit()) {
4265
4266    if (ENT->ExitingBlock == ExitingBlock)
4267      return ENT->ExactNotTaken;
4268  }
4269  return SE->getCouldNotCompute();
4270}
4271
4272/// getMax - Get the max backedge taken count for the loop.
4273const SCEV *
4274ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4275  return Max ? Max : SE->getCouldNotCompute();
4276}
4277
4278bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4279                                                    ScalarEvolution *SE) const {
4280  if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4281    return true;
4282
4283  if (!ExitNotTaken.ExitingBlock)
4284    return false;
4285
4286  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4287       ENT != 0; ENT = ENT->getNextExit()) {
4288
4289    if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4290        && SE->hasOperand(ENT->ExactNotTaken, S)) {
4291      return true;
4292    }
4293  }
4294  return false;
4295}
4296
4297/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4298/// computable exit into a persistent ExitNotTakenInfo array.
4299ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4300  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4301  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4302
4303  if (!Complete)
4304    ExitNotTaken.setIncomplete();
4305
4306  unsigned NumExits = ExitCounts.size();
4307  if (NumExits == 0) return;
4308
4309  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4310  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4311  if (NumExits == 1) return;
4312
4313  // Handle the rare case of multiple computable exits.
4314  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4315
4316  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4317  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4318    PrevENT->setNextExit(ENT);
4319    ENT->ExitingBlock = ExitCounts[i].first;
4320    ENT->ExactNotTaken = ExitCounts[i].second;
4321  }
4322}
4323
4324/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4325void ScalarEvolution::BackedgeTakenInfo::clear() {
4326  ExitNotTaken.ExitingBlock = 0;
4327  ExitNotTaken.ExactNotTaken = 0;
4328  delete[] ExitNotTaken.getNextExit();
4329}
4330
4331/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4332/// of the specified loop will execute.
4333ScalarEvolution::BackedgeTakenInfo
4334ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4335  SmallVector<BasicBlock *, 8> ExitingBlocks;
4336  L->getExitingBlocks(ExitingBlocks);
4337
4338  // Examine all exits and pick the most conservative values.
4339  const SCEV *MaxBECount = getCouldNotCompute();
4340  bool CouldComputeBECount = true;
4341  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4342  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4343    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4344    if (EL.Exact == getCouldNotCompute())
4345      // We couldn't compute an exact value for this exit, so
4346      // we won't be able to compute an exact value for the loop.
4347      CouldComputeBECount = false;
4348    else
4349      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4350
4351    if (MaxBECount == getCouldNotCompute())
4352      MaxBECount = EL.Max;
4353    else if (EL.Max != getCouldNotCompute()) {
4354      // We cannot take the "min" MaxBECount, because non-unit stride loops may
4355      // skip some loop tests. Taking the max over the exits is sufficiently
4356      // conservative.  TODO: We could do better taking into consideration
4357      // that (1) the loop has unit stride (2) the last loop test is
4358      // less-than/greater-than (3) any loop test is less-than/greater-than AND
4359      // falls-through some constant times less then the other tests.
4360      MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4361    }
4362  }
4363
4364  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4365}
4366
4367/// ComputeExitLimit - Compute the number of times the backedge of the specified
4368/// loop will execute if it exits via the specified block.
4369ScalarEvolution::ExitLimit
4370ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4371
4372  // Okay, we've chosen an exiting block.  See what condition causes us to
4373  // exit at this block.
4374  //
4375  // FIXME: we should be able to handle switch instructions (with a single exit)
4376  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4377  if (ExitBr == 0) return getCouldNotCompute();
4378  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4379
4380  // At this point, we know we have a conditional branch that determines whether
4381  // the loop is exited.  However, we don't know if the branch is executed each
4382  // time through the loop.  If not, then the execution count of the branch will
4383  // not be equal to the trip count of the loop.
4384  //
4385  // Currently we check for this by checking to see if the Exit branch goes to
4386  // the loop header.  If so, we know it will always execute the same number of
4387  // times as the loop.  We also handle the case where the exit block *is* the
4388  // loop header.  This is common for un-rotated loops.
4389  //
4390  // If both of those tests fail, walk up the unique predecessor chain to the
4391  // header, stopping if there is an edge that doesn't exit the loop. If the
4392  // header is reached, the execution count of the branch will be equal to the
4393  // trip count of the loop.
4394  //
4395  //  More extensive analysis could be done to handle more cases here.
4396  //
4397  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4398      ExitBr->getSuccessor(1) != L->getHeader() &&
4399      ExitBr->getParent() != L->getHeader()) {
4400    // The simple checks failed, try climbing the unique predecessor chain
4401    // up to the header.
4402    bool Ok = false;
4403    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4404      BasicBlock *Pred = BB->getUniquePredecessor();
4405      if (!Pred)
4406        return getCouldNotCompute();
4407      TerminatorInst *PredTerm = Pred->getTerminator();
4408      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4409        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4410        if (PredSucc == BB)
4411          continue;
4412        // If the predecessor has a successor that isn't BB and isn't
4413        // outside the loop, assume the worst.
4414        if (L->contains(PredSucc))
4415          return getCouldNotCompute();
4416      }
4417      if (Pred == L->getHeader()) {
4418        Ok = true;
4419        break;
4420      }
4421      BB = Pred;
4422    }
4423    if (!Ok)
4424      return getCouldNotCompute();
4425  }
4426
4427  // Proceed to the next level to examine the exit condition expression.
4428  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4429                                  ExitBr->getSuccessor(0),
4430                                  ExitBr->getSuccessor(1),
4431                                  /*IsSubExpr=*/false);
4432}
4433
4434/// ComputeExitLimitFromCond - Compute the number of times the
4435/// backedge of the specified loop will execute if its exit condition
4436/// were a conditional branch of ExitCond, TBB, and FBB.
4437///
4438/// @param IsSubExpr is true if ExitCond does not directly control the exit
4439/// branch. In this case, we cannot assume that the loop only exits when the
4440/// condition is true and cannot infer that failing to meet the condition prior
4441/// to integer wraparound results in undefined behavior.
4442ScalarEvolution::ExitLimit
4443ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4444                                          Value *ExitCond,
4445                                          BasicBlock *TBB,
4446                                          BasicBlock *FBB,
4447                                          bool IsSubExpr) {
4448  // Check if the controlling expression for this loop is an And or Or.
4449  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4450    if (BO->getOpcode() == Instruction::And) {
4451      // Recurse on the operands of the and.
4452      bool EitherMayExit = L->contains(TBB);
4453      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4454                                               IsSubExpr || EitherMayExit);
4455      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4456                                               IsSubExpr || EitherMayExit);
4457      const SCEV *BECount = getCouldNotCompute();
4458      const SCEV *MaxBECount = getCouldNotCompute();
4459      if (EitherMayExit) {
4460        // Both conditions must be true for the loop to continue executing.
4461        // Choose the less conservative count.
4462        if (EL0.Exact == getCouldNotCompute() ||
4463            EL1.Exact == getCouldNotCompute())
4464          BECount = getCouldNotCompute();
4465        else
4466          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4467        if (EL0.Max == getCouldNotCompute())
4468          MaxBECount = EL1.Max;
4469        else if (EL1.Max == getCouldNotCompute())
4470          MaxBECount = EL0.Max;
4471        else
4472          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4473      } else {
4474        // Both conditions must be true at the same time for the loop to exit.
4475        // For now, be conservative.
4476        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4477        if (EL0.Max == EL1.Max)
4478          MaxBECount = EL0.Max;
4479        if (EL0.Exact == EL1.Exact)
4480          BECount = EL0.Exact;
4481      }
4482
4483      return ExitLimit(BECount, MaxBECount);
4484    }
4485    if (BO->getOpcode() == Instruction::Or) {
4486      // Recurse on the operands of the or.
4487      bool EitherMayExit = L->contains(FBB);
4488      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4489                                               IsSubExpr || EitherMayExit);
4490      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4491                                               IsSubExpr || EitherMayExit);
4492      const SCEV *BECount = getCouldNotCompute();
4493      const SCEV *MaxBECount = getCouldNotCompute();
4494      if (EitherMayExit) {
4495        // Both conditions must be false for the loop to continue executing.
4496        // Choose the less conservative count.
4497        if (EL0.Exact == getCouldNotCompute() ||
4498            EL1.Exact == getCouldNotCompute())
4499          BECount = getCouldNotCompute();
4500        else
4501          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4502        if (EL0.Max == getCouldNotCompute())
4503          MaxBECount = EL1.Max;
4504        else if (EL1.Max == getCouldNotCompute())
4505          MaxBECount = EL0.Max;
4506        else
4507          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4508      } else {
4509        // Both conditions must be false at the same time for the loop to exit.
4510        // For now, be conservative.
4511        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4512        if (EL0.Max == EL1.Max)
4513          MaxBECount = EL0.Max;
4514        if (EL0.Exact == EL1.Exact)
4515          BECount = EL0.Exact;
4516      }
4517
4518      return ExitLimit(BECount, MaxBECount);
4519    }
4520  }
4521
4522  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4523  // Proceed to the next level to examine the icmp.
4524  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4525    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
4526
4527  // Check for a constant condition. These are normally stripped out by
4528  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4529  // preserve the CFG and is temporarily leaving constant conditions
4530  // in place.
4531  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4532    if (L->contains(FBB) == !CI->getZExtValue())
4533      // The backedge is always taken.
4534      return getCouldNotCompute();
4535    else
4536      // The backedge is never taken.
4537      return getConstant(CI->getType(), 0);
4538  }
4539
4540  // If it's not an integer or pointer comparison then compute it the hard way.
4541  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4542}
4543
4544/// ComputeExitLimitFromICmp - Compute the number of times the
4545/// backedge of the specified loop will execute if its exit condition
4546/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4547ScalarEvolution::ExitLimit
4548ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4549                                          ICmpInst *ExitCond,
4550                                          BasicBlock *TBB,
4551                                          BasicBlock *FBB,
4552                                          bool IsSubExpr) {
4553
4554  // If the condition was exit on true, convert the condition to exit on false
4555  ICmpInst::Predicate Cond;
4556  if (!L->contains(FBB))
4557    Cond = ExitCond->getPredicate();
4558  else
4559    Cond = ExitCond->getInversePredicate();
4560
4561  // Handle common loops like: for (X = "string"; *X; ++X)
4562  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4563    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4564      ExitLimit ItCnt =
4565        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4566      if (ItCnt.hasAnyInfo())
4567        return ItCnt;
4568    }
4569
4570  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4571  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4572
4573  // Try to evaluate any dependencies out of the loop.
4574  LHS = getSCEVAtScope(LHS, L);
4575  RHS = getSCEVAtScope(RHS, L);
4576
4577  // At this point, we would like to compute how many iterations of the
4578  // loop the predicate will return true for these inputs.
4579  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4580    // If there is a loop-invariant, force it into the RHS.
4581    std::swap(LHS, RHS);
4582    Cond = ICmpInst::getSwappedPredicate(Cond);
4583  }
4584
4585  // Simplify the operands before analyzing them.
4586  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4587
4588  // If we have a comparison of a chrec against a constant, try to use value
4589  // ranges to answer this query.
4590  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4591    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4592      if (AddRec->getLoop() == L) {
4593        // Form the constant range.
4594        ConstantRange CompRange(
4595            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4596
4597        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4598        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4599      }
4600
4601  switch (Cond) {
4602  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4603    // Convert to: while (X-Y != 0)
4604    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4605    if (EL.hasAnyInfo()) return EL;
4606    break;
4607  }
4608  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4609    // Convert to: while (X-Y == 0)
4610    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4611    if (EL.hasAnyInfo()) return EL;
4612    break;
4613  }
4614  case ICmpInst::ICMP_SLT:
4615  case ICmpInst::ICMP_ULT: {                    // while (X < Y)
4616    bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4617    ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
4618    if (EL.hasAnyInfo()) return EL;
4619    break;
4620  }
4621  case ICmpInst::ICMP_SGT:
4622  case ICmpInst::ICMP_UGT: {                    // while (X > Y)
4623    bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4624    ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
4625    if (EL.hasAnyInfo()) return EL;
4626    break;
4627  }
4628  default:
4629#if 0
4630    dbgs() << "ComputeBackedgeTakenCount ";
4631    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4632      dbgs() << "[unsigned] ";
4633    dbgs() << *LHS << "   "
4634         << Instruction::getOpcodeName(Instruction::ICmp)
4635         << "   " << *RHS << "\n";
4636#endif
4637    break;
4638  }
4639  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4640}
4641
4642static ConstantInt *
4643EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4644                                ScalarEvolution &SE) {
4645  const SCEV *InVal = SE.getConstant(C);
4646  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4647  assert(isa<SCEVConstant>(Val) &&
4648         "Evaluation of SCEV at constant didn't fold correctly?");
4649  return cast<SCEVConstant>(Val)->getValue();
4650}
4651
4652/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4653/// 'icmp op load X, cst', try to see if we can compute the backedge
4654/// execution count.
4655ScalarEvolution::ExitLimit
4656ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4657  LoadInst *LI,
4658  Constant *RHS,
4659  const Loop *L,
4660  ICmpInst::Predicate predicate) {
4661
4662  if (LI->isVolatile()) return getCouldNotCompute();
4663
4664  // Check to see if the loaded pointer is a getelementptr of a global.
4665  // TODO: Use SCEV instead of manually grubbing with GEPs.
4666  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4667  if (!GEP) return getCouldNotCompute();
4668
4669  // Make sure that it is really a constant global we are gepping, with an
4670  // initializer, and make sure the first IDX is really 0.
4671  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4672  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4673      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4674      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4675    return getCouldNotCompute();
4676
4677  // Okay, we allow one non-constant index into the GEP instruction.
4678  Value *VarIdx = 0;
4679  std::vector<Constant*> Indexes;
4680  unsigned VarIdxNum = 0;
4681  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4682    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4683      Indexes.push_back(CI);
4684    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4685      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4686      VarIdx = GEP->getOperand(i);
4687      VarIdxNum = i-2;
4688      Indexes.push_back(0);
4689    }
4690
4691  // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4692  if (!VarIdx)
4693    return getCouldNotCompute();
4694
4695  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4696  // Check to see if X is a loop variant variable value now.
4697  const SCEV *Idx = getSCEV(VarIdx);
4698  Idx = getSCEVAtScope(Idx, L);
4699
4700  // We can only recognize very limited forms of loop index expressions, in
4701  // particular, only affine AddRec's like {C1,+,C2}.
4702  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4703  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4704      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4705      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4706    return getCouldNotCompute();
4707
4708  unsigned MaxSteps = MaxBruteForceIterations;
4709  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4710    ConstantInt *ItCst = ConstantInt::get(
4711                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4712    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4713
4714    // Form the GEP offset.
4715    Indexes[VarIdxNum] = Val;
4716
4717    Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4718                                                         Indexes);
4719    if (Result == 0) break;  // Cannot compute!
4720
4721    // Evaluate the condition for this iteration.
4722    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4723    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4724    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4725#if 0
4726      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4727             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4728             << "***\n";
4729#endif
4730      ++NumArrayLenItCounts;
4731      return getConstant(ItCst);   // Found terminating iteration!
4732    }
4733  }
4734  return getCouldNotCompute();
4735}
4736
4737
4738/// CanConstantFold - Return true if we can constant fold an instruction of the
4739/// specified type, assuming that all operands were constants.
4740static bool CanConstantFold(const Instruction *I) {
4741  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4742      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4743      isa<LoadInst>(I))
4744    return true;
4745
4746  if (const CallInst *CI = dyn_cast<CallInst>(I))
4747    if (const Function *F = CI->getCalledFunction())
4748      return canConstantFoldCallTo(F);
4749  return false;
4750}
4751
4752/// Determine whether this instruction can constant evolve within this loop
4753/// assuming its operands can all constant evolve.
4754static bool canConstantEvolve(Instruction *I, const Loop *L) {
4755  // An instruction outside of the loop can't be derived from a loop PHI.
4756  if (!L->contains(I)) return false;
4757
4758  if (isa<PHINode>(I)) {
4759    if (L->getHeader() == I->getParent())
4760      return true;
4761    else
4762      // We don't currently keep track of the control flow needed to evaluate
4763      // PHIs, so we cannot handle PHIs inside of loops.
4764      return false;
4765  }
4766
4767  // If we won't be able to constant fold this expression even if the operands
4768  // are constants, bail early.
4769  return CanConstantFold(I);
4770}
4771
4772/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4773/// recursing through each instruction operand until reaching a loop header phi.
4774static PHINode *
4775getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4776                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4777
4778  // Otherwise, we can evaluate this instruction if all of its operands are
4779  // constant or derived from a PHI node themselves.
4780  PHINode *PHI = 0;
4781  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4782         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4783
4784    if (isa<Constant>(*OpI)) continue;
4785
4786    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4787    if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4788
4789    PHINode *P = dyn_cast<PHINode>(OpInst);
4790    if (!P)
4791      // If this operand is already visited, reuse the prior result.
4792      // We may have P != PHI if this is the deepest point at which the
4793      // inconsistent paths meet.
4794      P = PHIMap.lookup(OpInst);
4795    if (!P) {
4796      // Recurse and memoize the results, whether a phi is found or not.
4797      // This recursive call invalidates pointers into PHIMap.
4798      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4799      PHIMap[OpInst] = P;
4800    }
4801    if (P == 0) return 0;        // Not evolving from PHI
4802    if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
4803    PHI = P;
4804  }
4805  // This is a expression evolving from a constant PHI!
4806  return PHI;
4807}
4808
4809/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4810/// in the loop that V is derived from.  We allow arbitrary operations along the
4811/// way, but the operands of an operation must either be constants or a value
4812/// derived from a constant PHI.  If this expression does not fit with these
4813/// constraints, return null.
4814static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4815  Instruction *I = dyn_cast<Instruction>(V);
4816  if (I == 0 || !canConstantEvolve(I, L)) return 0;
4817
4818  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4819    return PN;
4820  }
4821
4822  // Record non-constant instructions contained by the loop.
4823  DenseMap<Instruction *, PHINode *> PHIMap;
4824  return getConstantEvolvingPHIOperands(I, L, PHIMap);
4825}
4826
4827/// EvaluateExpression - Given an expression that passes the
4828/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4829/// in the loop has the value PHIVal.  If we can't fold this expression for some
4830/// reason, return null.
4831static Constant *EvaluateExpression(Value *V, const Loop *L,
4832                                    DenseMap<Instruction *, Constant *> &Vals,
4833                                    const DataLayout *TD,
4834                                    const TargetLibraryInfo *TLI) {
4835  // Convenient constant check, but redundant for recursive calls.
4836  if (Constant *C = dyn_cast<Constant>(V)) return C;
4837  Instruction *I = dyn_cast<Instruction>(V);
4838  if (!I) return 0;
4839
4840  if (Constant *C = Vals.lookup(I)) return C;
4841
4842  // An instruction inside the loop depends on a value outside the loop that we
4843  // weren't given a mapping for, or a value such as a call inside the loop.
4844  if (!canConstantEvolve(I, L)) return 0;
4845
4846  // An unmapped PHI can be due to a branch or another loop inside this loop,
4847  // or due to this not being the initial iteration through a loop where we
4848  // couldn't compute the evolution of this particular PHI last time.
4849  if (isa<PHINode>(I)) return 0;
4850
4851  std::vector<Constant*> Operands(I->getNumOperands());
4852
4853  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4854    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4855    if (!Operand) {
4856      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4857      if (!Operands[i]) return 0;
4858      continue;
4859    }
4860    Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
4861    Vals[Operand] = C;
4862    if (!C) return 0;
4863    Operands[i] = C;
4864  }
4865
4866  if (CmpInst *CI = dyn_cast<CmpInst>(I))
4867    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4868                                           Operands[1], TD, TLI);
4869  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4870    if (!LI->isVolatile())
4871      return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4872  }
4873  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4874                                  TLI);
4875}
4876
4877/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4878/// in the header of its containing loop, we know the loop executes a
4879/// constant number of times, and the PHI node is just a recurrence
4880/// involving constants, fold it.
4881Constant *
4882ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4883                                                   const APInt &BEs,
4884                                                   const Loop *L) {
4885  DenseMap<PHINode*, Constant*>::const_iterator I =
4886    ConstantEvolutionLoopExitValue.find(PN);
4887  if (I != ConstantEvolutionLoopExitValue.end())
4888    return I->second;
4889
4890  if (BEs.ugt(MaxBruteForceIterations))
4891    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4892
4893  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4894
4895  DenseMap<Instruction *, Constant *> CurrentIterVals;
4896  BasicBlock *Header = L->getHeader();
4897  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4898
4899  // Since the loop is canonicalized, the PHI node must have two entries.  One
4900  // entry must be a constant (coming in from outside of the loop), and the
4901  // second must be derived from the same PHI.
4902  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4903  PHINode *PHI = 0;
4904  for (BasicBlock::iterator I = Header->begin();
4905       (PHI = dyn_cast<PHINode>(I)); ++I) {
4906    Constant *StartCST =
4907      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4908    if (StartCST == 0) continue;
4909    CurrentIterVals[PHI] = StartCST;
4910  }
4911  if (!CurrentIterVals.count(PN))
4912    return RetVal = 0;
4913
4914  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4915
4916  // Execute the loop symbolically to determine the exit value.
4917  if (BEs.getActiveBits() >= 32)
4918    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4919
4920  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4921  unsigned IterationNum = 0;
4922  for (; ; ++IterationNum) {
4923    if (IterationNum == NumIterations)
4924      return RetVal = CurrentIterVals[PN];  // Got exit value!
4925
4926    // Compute the value of the PHIs for the next iteration.
4927    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4928    DenseMap<Instruction *, Constant *> NextIterVals;
4929    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4930                                           TLI);
4931    if (NextPHI == 0)
4932      return 0;        // Couldn't evaluate!
4933    NextIterVals[PN] = NextPHI;
4934
4935    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4936
4937    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
4938    // cease to be able to evaluate one of them or if they stop evolving,
4939    // because that doesn't necessarily prevent us from computing PN.
4940    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4941    for (DenseMap<Instruction *, Constant *>::const_iterator
4942           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4943      PHINode *PHI = dyn_cast<PHINode>(I->first);
4944      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4945      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4946    }
4947    // We use two distinct loops because EvaluateExpression may invalidate any
4948    // iterators into CurrentIterVals.
4949    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4950             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4951      PHINode *PHI = I->first;
4952      Constant *&NextPHI = NextIterVals[PHI];
4953      if (!NextPHI) {   // Not already computed.
4954        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4955        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4956      }
4957      if (NextPHI != I->second)
4958        StoppedEvolving = false;
4959    }
4960
4961    // If all entries in CurrentIterVals == NextIterVals then we can stop
4962    // iterating, the loop can't continue to change.
4963    if (StoppedEvolving)
4964      return RetVal = CurrentIterVals[PN];
4965
4966    CurrentIterVals.swap(NextIterVals);
4967  }
4968}
4969
4970/// ComputeExitCountExhaustively - If the loop is known to execute a
4971/// constant number of times (the condition evolves only from constants),
4972/// try to evaluate a few iterations of the loop until we get the exit
4973/// condition gets a value of ExitWhen (true or false).  If we cannot
4974/// evaluate the trip count of the loop, return getCouldNotCompute().
4975const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4976                                                          Value *Cond,
4977                                                          bool ExitWhen) {
4978  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4979  if (PN == 0) return getCouldNotCompute();
4980
4981  // If the loop is canonicalized, the PHI will have exactly two entries.
4982  // That's the only form we support here.
4983  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4984
4985  DenseMap<Instruction *, Constant *> CurrentIterVals;
4986  BasicBlock *Header = L->getHeader();
4987  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4988
4989  // One entry must be a constant (coming in from outside of the loop), and the
4990  // second must be derived from the same PHI.
4991  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4992  PHINode *PHI = 0;
4993  for (BasicBlock::iterator I = Header->begin();
4994       (PHI = dyn_cast<PHINode>(I)); ++I) {
4995    Constant *StartCST =
4996      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4997    if (StartCST == 0) continue;
4998    CurrentIterVals[PHI] = StartCST;
4999  }
5000  if (!CurrentIterVals.count(PN))
5001    return getCouldNotCompute();
5002
5003  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
5004  // the loop symbolically to determine when the condition gets a value of
5005  // "ExitWhen".
5006
5007  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
5008  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5009    ConstantInt *CondVal =
5010      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5011                                                       TD, TLI));
5012
5013    // Couldn't symbolically evaluate.
5014    if (!CondVal) return getCouldNotCompute();
5015
5016    if (CondVal->getValue() == uint64_t(ExitWhen)) {
5017      ++NumBruteForceTripCountsComputed;
5018      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5019    }
5020
5021    // Update all the PHI nodes for the next iteration.
5022    DenseMap<Instruction *, Constant *> NextIterVals;
5023
5024    // Create a list of which PHIs we need to compute. We want to do this before
5025    // calling EvaluateExpression on them because that may invalidate iterators
5026    // into CurrentIterVals.
5027    SmallVector<PHINode *, 8> PHIsToCompute;
5028    for (DenseMap<Instruction *, Constant *>::const_iterator
5029           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5030      PHINode *PHI = dyn_cast<PHINode>(I->first);
5031      if (!PHI || PHI->getParent() != Header) continue;
5032      PHIsToCompute.push_back(PHI);
5033    }
5034    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5035             E = PHIsToCompute.end(); I != E; ++I) {
5036      PHINode *PHI = *I;
5037      Constant *&NextPHI = NextIterVals[PHI];
5038      if (NextPHI) continue;    // Already computed!
5039
5040      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5041      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
5042    }
5043    CurrentIterVals.swap(NextIterVals);
5044  }
5045
5046  // Too many iterations were needed to evaluate.
5047  return getCouldNotCompute();
5048}
5049
5050/// getSCEVAtScope - Return a SCEV expression for the specified value
5051/// at the specified scope in the program.  The L value specifies a loop
5052/// nest to evaluate the expression at, where null is the top-level or a
5053/// specified loop is immediately inside of the loop.
5054///
5055/// This method can be used to compute the exit value for a variable defined
5056/// in a loop by querying what the value will hold in the parent loop.
5057///
5058/// In the case that a relevant loop exit value cannot be computed, the
5059/// original value V is returned.
5060const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5061  // Check to see if we've folded this expression at this loop before.
5062  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5063  for (unsigned u = 0; u < Values.size(); u++) {
5064    if (Values[u].first == L)
5065      return Values[u].second ? Values[u].second : V;
5066  }
5067  Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0)));
5068  // Otherwise compute it.
5069  const SCEV *C = computeSCEVAtScope(V, L);
5070  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5071  for (unsigned u = Values2.size(); u > 0; u--) {
5072    if (Values2[u - 1].first == L) {
5073      Values2[u - 1].second = C;
5074      break;
5075    }
5076  }
5077  return C;
5078}
5079
5080/// This builds up a Constant using the ConstantExpr interface.  That way, we
5081/// will return Constants for objects which aren't represented by a
5082/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5083/// Returns NULL if the SCEV isn't representable as a Constant.
5084static Constant *BuildConstantFromSCEV(const SCEV *V) {
5085  switch (V->getSCEVType()) {
5086    default:  // TODO: smax, umax.
5087    case scCouldNotCompute:
5088    case scAddRecExpr:
5089      break;
5090    case scConstant:
5091      return cast<SCEVConstant>(V)->getValue();
5092    case scUnknown:
5093      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5094    case scSignExtend: {
5095      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5096      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5097        return ConstantExpr::getSExt(CastOp, SS->getType());
5098      break;
5099    }
5100    case scZeroExtend: {
5101      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5102      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5103        return ConstantExpr::getZExt(CastOp, SZ->getType());
5104      break;
5105    }
5106    case scTruncate: {
5107      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5108      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5109        return ConstantExpr::getTrunc(CastOp, ST->getType());
5110      break;
5111    }
5112    case scAddExpr: {
5113      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5114      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5115        if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5116          unsigned AS = PTy->getAddressSpace();
5117          Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5118          C = ConstantExpr::getBitCast(C, DestPtrTy);
5119        }
5120        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5121          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5122          if (!C2) return 0;
5123
5124          // First pointer!
5125          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5126            unsigned AS = C2->getType()->getPointerAddressSpace();
5127            std::swap(C, C2);
5128            Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5129            // The offsets have been converted to bytes.  We can add bytes to an
5130            // i8* by GEP with the byte count in the first index.
5131            C = ConstantExpr::getBitCast(C, DestPtrTy);
5132          }
5133
5134          // Don't bother trying to sum two pointers. We probably can't
5135          // statically compute a load that results from it anyway.
5136          if (C2->getType()->isPointerTy())
5137            return 0;
5138
5139          if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5140            if (PTy->getElementType()->isStructTy())
5141              C2 = ConstantExpr::getIntegerCast(
5142                  C2, Type::getInt32Ty(C->getContext()), true);
5143            C = ConstantExpr::getGetElementPtr(C, C2);
5144          } else
5145            C = ConstantExpr::getAdd(C, C2);
5146        }
5147        return C;
5148      }
5149      break;
5150    }
5151    case scMulExpr: {
5152      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5153      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5154        // Don't bother with pointers at all.
5155        if (C->getType()->isPointerTy()) return 0;
5156        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5157          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5158          if (!C2 || C2->getType()->isPointerTy()) return 0;
5159          C = ConstantExpr::getMul(C, C2);
5160        }
5161        return C;
5162      }
5163      break;
5164    }
5165    case scUDivExpr: {
5166      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5167      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5168        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5169          if (LHS->getType() == RHS->getType())
5170            return ConstantExpr::getUDiv(LHS, RHS);
5171      break;
5172    }
5173  }
5174  return 0;
5175}
5176
5177const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5178  if (isa<SCEVConstant>(V)) return V;
5179
5180  // If this instruction is evolved from a constant-evolving PHI, compute the
5181  // exit value from the loop without using SCEVs.
5182  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5183    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5184      const Loop *LI = (*this->LI)[I->getParent()];
5185      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5186        if (PHINode *PN = dyn_cast<PHINode>(I))
5187          if (PN->getParent() == LI->getHeader()) {
5188            // Okay, there is no closed form solution for the PHI node.  Check
5189            // to see if the loop that contains it has a known backedge-taken
5190            // count.  If so, we may be able to force computation of the exit
5191            // value.
5192            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5193            if (const SCEVConstant *BTCC =
5194                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5195              // Okay, we know how many times the containing loop executes.  If
5196              // this is a constant evolving PHI node, get the final value at
5197              // the specified iteration number.
5198              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5199                                                   BTCC->getValue()->getValue(),
5200                                                               LI);
5201              if (RV) return getSCEV(RV);
5202            }
5203          }
5204
5205      // Okay, this is an expression that we cannot symbolically evaluate
5206      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5207      // the arguments into constants, and if so, try to constant propagate the
5208      // result.  This is particularly useful for computing loop exit values.
5209      if (CanConstantFold(I)) {
5210        SmallVector<Constant *, 4> Operands;
5211        bool MadeImprovement = false;
5212        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5213          Value *Op = I->getOperand(i);
5214          if (Constant *C = dyn_cast<Constant>(Op)) {
5215            Operands.push_back(C);
5216            continue;
5217          }
5218
5219          // If any of the operands is non-constant and if they are
5220          // non-integer and non-pointer, don't even try to analyze them
5221          // with scev techniques.
5222          if (!isSCEVable(Op->getType()))
5223            return V;
5224
5225          const SCEV *OrigV = getSCEV(Op);
5226          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5227          MadeImprovement |= OrigV != OpV;
5228
5229          Constant *C = BuildConstantFromSCEV(OpV);
5230          if (!C) return V;
5231          if (C->getType() != Op->getType())
5232            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5233                                                              Op->getType(),
5234                                                              false),
5235                                      C, Op->getType());
5236          Operands.push_back(C);
5237        }
5238
5239        // Check to see if getSCEVAtScope actually made an improvement.
5240        if (MadeImprovement) {
5241          Constant *C = 0;
5242          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5243            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5244                                                Operands[0], Operands[1], TD,
5245                                                TLI);
5246          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5247            if (!LI->isVolatile())
5248              C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5249          } else
5250            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5251                                         Operands, TD, TLI);
5252          if (!C) return V;
5253          return getSCEV(C);
5254        }
5255      }
5256    }
5257
5258    // This is some other type of SCEVUnknown, just return it.
5259    return V;
5260  }
5261
5262  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5263    // Avoid performing the look-up in the common case where the specified
5264    // expression has no loop-variant portions.
5265    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5266      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5267      if (OpAtScope != Comm->getOperand(i)) {
5268        // Okay, at least one of these operands is loop variant but might be
5269        // foldable.  Build a new instance of the folded commutative expression.
5270        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5271                                            Comm->op_begin()+i);
5272        NewOps.push_back(OpAtScope);
5273
5274        for (++i; i != e; ++i) {
5275          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5276          NewOps.push_back(OpAtScope);
5277        }
5278        if (isa<SCEVAddExpr>(Comm))
5279          return getAddExpr(NewOps);
5280        if (isa<SCEVMulExpr>(Comm))
5281          return getMulExpr(NewOps);
5282        if (isa<SCEVSMaxExpr>(Comm))
5283          return getSMaxExpr(NewOps);
5284        if (isa<SCEVUMaxExpr>(Comm))
5285          return getUMaxExpr(NewOps);
5286        llvm_unreachable("Unknown commutative SCEV type!");
5287      }
5288    }
5289    // If we got here, all operands are loop invariant.
5290    return Comm;
5291  }
5292
5293  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5294    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5295    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5296    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5297      return Div;   // must be loop invariant
5298    return getUDivExpr(LHS, RHS);
5299  }
5300
5301  // If this is a loop recurrence for a loop that does not contain L, then we
5302  // are dealing with the final value computed by the loop.
5303  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5304    // First, attempt to evaluate each operand.
5305    // Avoid performing the look-up in the common case where the specified
5306    // expression has no loop-variant portions.
5307    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5308      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5309      if (OpAtScope == AddRec->getOperand(i))
5310        continue;
5311
5312      // Okay, at least one of these operands is loop variant but might be
5313      // foldable.  Build a new instance of the folded commutative expression.
5314      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5315                                          AddRec->op_begin()+i);
5316      NewOps.push_back(OpAtScope);
5317      for (++i; i != e; ++i)
5318        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5319
5320      const SCEV *FoldedRec =
5321        getAddRecExpr(NewOps, AddRec->getLoop(),
5322                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5323      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5324      // The addrec may be folded to a nonrecurrence, for example, if the
5325      // induction variable is multiplied by zero after constant folding. Go
5326      // ahead and return the folded value.
5327      if (!AddRec)
5328        return FoldedRec;
5329      break;
5330    }
5331
5332    // If the scope is outside the addrec's loop, evaluate it by using the
5333    // loop exit value of the addrec.
5334    if (!AddRec->getLoop()->contains(L)) {
5335      // To evaluate this recurrence, we need to know how many times the AddRec
5336      // loop iterates.  Compute this now.
5337      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5338      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5339
5340      // Then, evaluate the AddRec.
5341      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5342    }
5343
5344    return AddRec;
5345  }
5346
5347  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5348    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5349    if (Op == Cast->getOperand())
5350      return Cast;  // must be loop invariant
5351    return getZeroExtendExpr(Op, Cast->getType());
5352  }
5353
5354  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5355    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5356    if (Op == Cast->getOperand())
5357      return Cast;  // must be loop invariant
5358    return getSignExtendExpr(Op, Cast->getType());
5359  }
5360
5361  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5362    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5363    if (Op == Cast->getOperand())
5364      return Cast;  // must be loop invariant
5365    return getTruncateExpr(Op, Cast->getType());
5366  }
5367
5368  llvm_unreachable("Unknown SCEV type!");
5369}
5370
5371/// getSCEVAtScope - This is a convenience function which does
5372/// getSCEVAtScope(getSCEV(V), L).
5373const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5374  return getSCEVAtScope(getSCEV(V), L);
5375}
5376
5377/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5378/// following equation:
5379///
5380///     A * X = B (mod N)
5381///
5382/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5383/// A and B isn't important.
5384///
5385/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5386static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5387                                               ScalarEvolution &SE) {
5388  uint32_t BW = A.getBitWidth();
5389  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5390  assert(A != 0 && "A must be non-zero.");
5391
5392  // 1. D = gcd(A, N)
5393  //
5394  // The gcd of A and N may have only one prime factor: 2. The number of
5395  // trailing zeros in A is its multiplicity
5396  uint32_t Mult2 = A.countTrailingZeros();
5397  // D = 2^Mult2
5398
5399  // 2. Check if B is divisible by D.
5400  //
5401  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5402  // is not less than multiplicity of this prime factor for D.
5403  if (B.countTrailingZeros() < Mult2)
5404    return SE.getCouldNotCompute();
5405
5406  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5407  // modulo (N / D).
5408  //
5409  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5410  // bit width during computations.
5411  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5412  APInt Mod(BW + 1, 0);
5413  Mod.setBit(BW - Mult2);  // Mod = N / D
5414  APInt I = AD.multiplicativeInverse(Mod);
5415
5416  // 4. Compute the minimum unsigned root of the equation:
5417  // I * (B / D) mod (N / D)
5418  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5419
5420  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5421  // bits.
5422  return SE.getConstant(Result.trunc(BW));
5423}
5424
5425/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5426/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5427/// might be the same) or two SCEVCouldNotCompute objects.
5428///
5429static std::pair<const SCEV *,const SCEV *>
5430SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5431  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5432  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5433  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5434  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5435
5436  // We currently can only solve this if the coefficients are constants.
5437  if (!LC || !MC || !NC) {
5438    const SCEV *CNC = SE.getCouldNotCompute();
5439    return std::make_pair(CNC, CNC);
5440  }
5441
5442  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5443  const APInt &L = LC->getValue()->getValue();
5444  const APInt &M = MC->getValue()->getValue();
5445  const APInt &N = NC->getValue()->getValue();
5446  APInt Two(BitWidth, 2);
5447  APInt Four(BitWidth, 4);
5448
5449  {
5450    using namespace APIntOps;
5451    const APInt& C = L;
5452    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5453    // The B coefficient is M-N/2
5454    APInt B(M);
5455    B -= sdiv(N,Two);
5456
5457    // The A coefficient is N/2
5458    APInt A(N.sdiv(Two));
5459
5460    // Compute the B^2-4ac term.
5461    APInt SqrtTerm(B);
5462    SqrtTerm *= B;
5463    SqrtTerm -= Four * (A * C);
5464
5465    if (SqrtTerm.isNegative()) {
5466      // The loop is provably infinite.
5467      const SCEV *CNC = SE.getCouldNotCompute();
5468      return std::make_pair(CNC, CNC);
5469    }
5470
5471    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5472    // integer value or else APInt::sqrt() will assert.
5473    APInt SqrtVal(SqrtTerm.sqrt());
5474
5475    // Compute the two solutions for the quadratic formula.
5476    // The divisions must be performed as signed divisions.
5477    APInt NegB(-B);
5478    APInt TwoA(A << 1);
5479    if (TwoA.isMinValue()) {
5480      const SCEV *CNC = SE.getCouldNotCompute();
5481      return std::make_pair(CNC, CNC);
5482    }
5483
5484    LLVMContext &Context = SE.getContext();
5485
5486    ConstantInt *Solution1 =
5487      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5488    ConstantInt *Solution2 =
5489      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5490
5491    return std::make_pair(SE.getConstant(Solution1),
5492                          SE.getConstant(Solution2));
5493  } // end APIntOps namespace
5494}
5495
5496/// HowFarToZero - Return the number of times a backedge comparing the specified
5497/// value to zero will execute.  If not computable, return CouldNotCompute.
5498///
5499/// This is only used for loops with a "x != y" exit test. The exit condition is
5500/// now expressed as a single expression, V = x-y. So the exit test is
5501/// effectively V != 0.  We know and take advantage of the fact that this
5502/// expression only being used in a comparison by zero context.
5503ScalarEvolution::ExitLimit
5504ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
5505  // If the value is a constant
5506  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5507    // If the value is already zero, the branch will execute zero times.
5508    if (C->getValue()->isZero()) return C;
5509    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5510  }
5511
5512  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5513  if (!AddRec || AddRec->getLoop() != L)
5514    return getCouldNotCompute();
5515
5516  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5517  // the quadratic equation to solve it.
5518  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5519    std::pair<const SCEV *,const SCEV *> Roots =
5520      SolveQuadraticEquation(AddRec, *this);
5521    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5522    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5523    if (R1 && R2) {
5524#if 0
5525      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5526             << "  sol#2: " << *R2 << "\n";
5527#endif
5528      // Pick the smallest positive root value.
5529      if (ConstantInt *CB =
5530          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5531                                                      R1->getValue(),
5532                                                      R2->getValue()))) {
5533        if (CB->getZExtValue() == false)
5534          std::swap(R1, R2);   // R1 is the minimum root now.
5535
5536        // We can only use this value if the chrec ends up with an exact zero
5537        // value at this index.  When solving for "X*X != 5", for example, we
5538        // should not accept a root of 2.
5539        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5540        if (Val->isZero())
5541          return R1;  // We found a quadratic root!
5542      }
5543    }
5544    return getCouldNotCompute();
5545  }
5546
5547  // Otherwise we can only handle this if it is affine.
5548  if (!AddRec->isAffine())
5549    return getCouldNotCompute();
5550
5551  // If this is an affine expression, the execution count of this branch is
5552  // the minimum unsigned root of the following equation:
5553  //
5554  //     Start + Step*N = 0 (mod 2^BW)
5555  //
5556  // equivalent to:
5557  //
5558  //             Step*N = -Start (mod 2^BW)
5559  //
5560  // where BW is the common bit width of Start and Step.
5561
5562  // Get the initial value for the loop.
5563  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5564  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5565
5566  // For now we handle only constant steps.
5567  //
5568  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5569  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5570  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5571  // We have not yet seen any such cases.
5572  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5573  if (StepC == 0 || StepC->getValue()->equalsInt(0))
5574    return getCouldNotCompute();
5575
5576  // For positive steps (counting up until unsigned overflow):
5577  //   N = -Start/Step (as unsigned)
5578  // For negative steps (counting down to zero):
5579  //   N = Start/-Step
5580  // First compute the unsigned distance from zero in the direction of Step.
5581  bool CountDown = StepC->getValue()->getValue().isNegative();
5582  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5583
5584  // Handle unitary steps, which cannot wraparound.
5585  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5586  //   N = Distance (as unsigned)
5587  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5588    ConstantRange CR = getUnsignedRange(Start);
5589    const SCEV *MaxBECount;
5590    if (!CountDown && CR.getUnsignedMin().isMinValue())
5591      // When counting up, the worst starting value is 1, not 0.
5592      MaxBECount = CR.getUnsignedMax().isMinValue()
5593        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5594        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5595    else
5596      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5597                                         : -CR.getUnsignedMin());
5598    return ExitLimit(Distance, MaxBECount);
5599  }
5600
5601  // If the recurrence is known not to wraparound, unsigned divide computes the
5602  // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5603  // that the value will either become zero (and thus the loop terminates), that
5604  // the loop will terminate through some other exit condition first, or that
5605  // the loop has undefined behavior.  This means we can't "miss" the exit
5606  // value, even with nonunit stride.
5607  //
5608  // This is only valid for expressions that directly compute the loop exit. It
5609  // is invalid for subexpressions in which the loop may exit through this
5610  // branch even if this subexpression is false. In that case, the trip count
5611  // computed by this udiv could be smaller than the number of well-defined
5612  // iterations.
5613  if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW))
5614    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5615
5616  // Then, try to solve the above equation provided that Start is constant.
5617  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5618    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5619                                        -StartC->getValue()->getValue(),
5620                                        *this);
5621  return getCouldNotCompute();
5622}
5623
5624/// HowFarToNonZero - Return the number of times a backedge checking the
5625/// specified value for nonzero will execute.  If not computable, return
5626/// CouldNotCompute
5627ScalarEvolution::ExitLimit
5628ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5629  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5630  // handle them yet except for the trivial case.  This could be expanded in the
5631  // future as needed.
5632
5633  // If the value is a constant, check to see if it is known to be non-zero
5634  // already.  If so, the backedge will execute zero times.
5635  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5636    if (!C->getValue()->isNullValue())
5637      return getConstant(C->getType(), 0);
5638    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5639  }
5640
5641  // We could implement others, but I really doubt anyone writes loops like
5642  // this, and if they did, they would already be constant folded.
5643  return getCouldNotCompute();
5644}
5645
5646/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5647/// (which may not be an immediate predecessor) which has exactly one
5648/// successor from which BB is reachable, or null if no such block is
5649/// found.
5650///
5651std::pair<BasicBlock *, BasicBlock *>
5652ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5653  // If the block has a unique predecessor, then there is no path from the
5654  // predecessor to the block that does not go through the direct edge
5655  // from the predecessor to the block.
5656  if (BasicBlock *Pred = BB->getSinglePredecessor())
5657    return std::make_pair(Pred, BB);
5658
5659  // A loop's header is defined to be a block that dominates the loop.
5660  // If the header has a unique predecessor outside the loop, it must be
5661  // a block that has exactly one successor that can reach the loop.
5662  if (Loop *L = LI->getLoopFor(BB))
5663    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5664
5665  return std::pair<BasicBlock *, BasicBlock *>();
5666}
5667
5668/// HasSameValue - SCEV structural equivalence is usually sufficient for
5669/// testing whether two expressions are equal, however for the purposes of
5670/// looking for a condition guarding a loop, it can be useful to be a little
5671/// more general, since a front-end may have replicated the controlling
5672/// expression.
5673///
5674static bool HasSameValue(const SCEV *A, const SCEV *B) {
5675  // Quick check to see if they are the same SCEV.
5676  if (A == B) return true;
5677
5678  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5679  // two different instructions with the same value. Check for this case.
5680  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5681    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5682      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5683        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5684          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5685            return true;
5686
5687  // Otherwise assume they may have a different value.
5688  return false;
5689}
5690
5691/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5692/// predicate Pred. Return true iff any changes were made.
5693///
5694bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5695                                           const SCEV *&LHS, const SCEV *&RHS,
5696                                           unsigned Depth) {
5697  bool Changed = false;
5698
5699  // If we hit the max recursion limit bail out.
5700  if (Depth >= 3)
5701    return false;
5702
5703  // Canonicalize a constant to the right side.
5704  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5705    // Check for both operands constant.
5706    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5707      if (ConstantExpr::getICmp(Pred,
5708                                LHSC->getValue(),
5709                                RHSC->getValue())->isNullValue())
5710        goto trivially_false;
5711      else
5712        goto trivially_true;
5713    }
5714    // Otherwise swap the operands to put the constant on the right.
5715    std::swap(LHS, RHS);
5716    Pred = ICmpInst::getSwappedPredicate(Pred);
5717    Changed = true;
5718  }
5719
5720  // If we're comparing an addrec with a value which is loop-invariant in the
5721  // addrec's loop, put the addrec on the left. Also make a dominance check,
5722  // as both operands could be addrecs loop-invariant in each other's loop.
5723  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5724    const Loop *L = AR->getLoop();
5725    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5726      std::swap(LHS, RHS);
5727      Pred = ICmpInst::getSwappedPredicate(Pred);
5728      Changed = true;
5729    }
5730  }
5731
5732  // If there's a constant operand, canonicalize comparisons with boundary
5733  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5734  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5735    const APInt &RA = RC->getValue()->getValue();
5736    switch (Pred) {
5737    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5738    case ICmpInst::ICMP_EQ:
5739    case ICmpInst::ICMP_NE:
5740      // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5741      if (!RA)
5742        if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5743          if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5744            if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5745                ME->getOperand(0)->isAllOnesValue()) {
5746              RHS = AE->getOperand(1);
5747              LHS = ME->getOperand(1);
5748              Changed = true;
5749            }
5750      break;
5751    case ICmpInst::ICMP_UGE:
5752      if ((RA - 1).isMinValue()) {
5753        Pred = ICmpInst::ICMP_NE;
5754        RHS = getConstant(RA - 1);
5755        Changed = true;
5756        break;
5757      }
5758      if (RA.isMaxValue()) {
5759        Pred = ICmpInst::ICMP_EQ;
5760        Changed = true;
5761        break;
5762      }
5763      if (RA.isMinValue()) goto trivially_true;
5764
5765      Pred = ICmpInst::ICMP_UGT;
5766      RHS = getConstant(RA - 1);
5767      Changed = true;
5768      break;
5769    case ICmpInst::ICMP_ULE:
5770      if ((RA + 1).isMaxValue()) {
5771        Pred = ICmpInst::ICMP_NE;
5772        RHS = getConstant(RA + 1);
5773        Changed = true;
5774        break;
5775      }
5776      if (RA.isMinValue()) {
5777        Pred = ICmpInst::ICMP_EQ;
5778        Changed = true;
5779        break;
5780      }
5781      if (RA.isMaxValue()) goto trivially_true;
5782
5783      Pred = ICmpInst::ICMP_ULT;
5784      RHS = getConstant(RA + 1);
5785      Changed = true;
5786      break;
5787    case ICmpInst::ICMP_SGE:
5788      if ((RA - 1).isMinSignedValue()) {
5789        Pred = ICmpInst::ICMP_NE;
5790        RHS = getConstant(RA - 1);
5791        Changed = true;
5792        break;
5793      }
5794      if (RA.isMaxSignedValue()) {
5795        Pred = ICmpInst::ICMP_EQ;
5796        Changed = true;
5797        break;
5798      }
5799      if (RA.isMinSignedValue()) goto trivially_true;
5800
5801      Pred = ICmpInst::ICMP_SGT;
5802      RHS = getConstant(RA - 1);
5803      Changed = true;
5804      break;
5805    case ICmpInst::ICMP_SLE:
5806      if ((RA + 1).isMaxSignedValue()) {
5807        Pred = ICmpInst::ICMP_NE;
5808        RHS = getConstant(RA + 1);
5809        Changed = true;
5810        break;
5811      }
5812      if (RA.isMinSignedValue()) {
5813        Pred = ICmpInst::ICMP_EQ;
5814        Changed = true;
5815        break;
5816      }
5817      if (RA.isMaxSignedValue()) goto trivially_true;
5818
5819      Pred = ICmpInst::ICMP_SLT;
5820      RHS = getConstant(RA + 1);
5821      Changed = true;
5822      break;
5823    case ICmpInst::ICMP_UGT:
5824      if (RA.isMinValue()) {
5825        Pred = ICmpInst::ICMP_NE;
5826        Changed = true;
5827        break;
5828      }
5829      if ((RA + 1).isMaxValue()) {
5830        Pred = ICmpInst::ICMP_EQ;
5831        RHS = getConstant(RA + 1);
5832        Changed = true;
5833        break;
5834      }
5835      if (RA.isMaxValue()) goto trivially_false;
5836      break;
5837    case ICmpInst::ICMP_ULT:
5838      if (RA.isMaxValue()) {
5839        Pred = ICmpInst::ICMP_NE;
5840        Changed = true;
5841        break;
5842      }
5843      if ((RA - 1).isMinValue()) {
5844        Pred = ICmpInst::ICMP_EQ;
5845        RHS = getConstant(RA - 1);
5846        Changed = true;
5847        break;
5848      }
5849      if (RA.isMinValue()) goto trivially_false;
5850      break;
5851    case ICmpInst::ICMP_SGT:
5852      if (RA.isMinSignedValue()) {
5853        Pred = ICmpInst::ICMP_NE;
5854        Changed = true;
5855        break;
5856      }
5857      if ((RA + 1).isMaxSignedValue()) {
5858        Pred = ICmpInst::ICMP_EQ;
5859        RHS = getConstant(RA + 1);
5860        Changed = true;
5861        break;
5862      }
5863      if (RA.isMaxSignedValue()) goto trivially_false;
5864      break;
5865    case ICmpInst::ICMP_SLT:
5866      if (RA.isMaxSignedValue()) {
5867        Pred = ICmpInst::ICMP_NE;
5868        Changed = true;
5869        break;
5870      }
5871      if ((RA - 1).isMinSignedValue()) {
5872       Pred = ICmpInst::ICMP_EQ;
5873       RHS = getConstant(RA - 1);
5874        Changed = true;
5875       break;
5876      }
5877      if (RA.isMinSignedValue()) goto trivially_false;
5878      break;
5879    }
5880  }
5881
5882  // Check for obvious equality.
5883  if (HasSameValue(LHS, RHS)) {
5884    if (ICmpInst::isTrueWhenEqual(Pred))
5885      goto trivially_true;
5886    if (ICmpInst::isFalseWhenEqual(Pred))
5887      goto trivially_false;
5888  }
5889
5890  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5891  // adding or subtracting 1 from one of the operands.
5892  switch (Pred) {
5893  case ICmpInst::ICMP_SLE:
5894    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5895      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5896                       SCEV::FlagNSW);
5897      Pred = ICmpInst::ICMP_SLT;
5898      Changed = true;
5899    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5900      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5901                       SCEV::FlagNSW);
5902      Pred = ICmpInst::ICMP_SLT;
5903      Changed = true;
5904    }
5905    break;
5906  case ICmpInst::ICMP_SGE:
5907    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5908      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5909                       SCEV::FlagNSW);
5910      Pred = ICmpInst::ICMP_SGT;
5911      Changed = true;
5912    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5913      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5914                       SCEV::FlagNSW);
5915      Pred = ICmpInst::ICMP_SGT;
5916      Changed = true;
5917    }
5918    break;
5919  case ICmpInst::ICMP_ULE:
5920    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5921      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5922                       SCEV::FlagNUW);
5923      Pred = ICmpInst::ICMP_ULT;
5924      Changed = true;
5925    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5926      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5927                       SCEV::FlagNUW);
5928      Pred = ICmpInst::ICMP_ULT;
5929      Changed = true;
5930    }
5931    break;
5932  case ICmpInst::ICMP_UGE:
5933    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5934      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5935                       SCEV::FlagNUW);
5936      Pred = ICmpInst::ICMP_UGT;
5937      Changed = true;
5938    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5939      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5940                       SCEV::FlagNUW);
5941      Pred = ICmpInst::ICMP_UGT;
5942      Changed = true;
5943    }
5944    break;
5945  default:
5946    break;
5947  }
5948
5949  // TODO: More simplifications are possible here.
5950
5951  // Recursively simplify until we either hit a recursion limit or nothing
5952  // changes.
5953  if (Changed)
5954    return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5955
5956  return Changed;
5957
5958trivially_true:
5959  // Return 0 == 0.
5960  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5961  Pred = ICmpInst::ICMP_EQ;
5962  return true;
5963
5964trivially_false:
5965  // Return 0 != 0.
5966  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5967  Pred = ICmpInst::ICMP_NE;
5968  return true;
5969}
5970
5971bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5972  return getSignedRange(S).getSignedMax().isNegative();
5973}
5974
5975bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5976  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5977}
5978
5979bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5980  return !getSignedRange(S).getSignedMin().isNegative();
5981}
5982
5983bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5984  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5985}
5986
5987bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5988  return isKnownNegative(S) || isKnownPositive(S);
5989}
5990
5991bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5992                                       const SCEV *LHS, const SCEV *RHS) {
5993  // Canonicalize the inputs first.
5994  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5995
5996  // If LHS or RHS is an addrec, check to see if the condition is true in
5997  // every iteration of the loop.
5998  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5999    if (isLoopEntryGuardedByCond(
6000          AR->getLoop(), Pred, AR->getStart(), RHS) &&
6001        isLoopBackedgeGuardedByCond(
6002          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
6003      return true;
6004  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6005    if (isLoopEntryGuardedByCond(
6006          AR->getLoop(), Pred, LHS, AR->getStart()) &&
6007        isLoopBackedgeGuardedByCond(
6008          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
6009      return true;
6010
6011  // Otherwise see what can be done with known constant ranges.
6012  return isKnownPredicateWithRanges(Pred, LHS, RHS);
6013}
6014
6015bool
6016ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6017                                            const SCEV *LHS, const SCEV *RHS) {
6018  if (HasSameValue(LHS, RHS))
6019    return ICmpInst::isTrueWhenEqual(Pred);
6020
6021  // This code is split out from isKnownPredicate because it is called from
6022  // within isLoopEntryGuardedByCond.
6023  switch (Pred) {
6024  default:
6025    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6026  case ICmpInst::ICMP_SGT:
6027    Pred = ICmpInst::ICMP_SLT;
6028    std::swap(LHS, RHS);
6029  case ICmpInst::ICMP_SLT: {
6030    ConstantRange LHSRange = getSignedRange(LHS);
6031    ConstantRange RHSRange = getSignedRange(RHS);
6032    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6033      return true;
6034    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6035      return false;
6036    break;
6037  }
6038  case ICmpInst::ICMP_SGE:
6039    Pred = ICmpInst::ICMP_SLE;
6040    std::swap(LHS, RHS);
6041  case ICmpInst::ICMP_SLE: {
6042    ConstantRange LHSRange = getSignedRange(LHS);
6043    ConstantRange RHSRange = getSignedRange(RHS);
6044    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6045      return true;
6046    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6047      return false;
6048    break;
6049  }
6050  case ICmpInst::ICMP_UGT:
6051    Pred = ICmpInst::ICMP_ULT;
6052    std::swap(LHS, RHS);
6053  case ICmpInst::ICMP_ULT: {
6054    ConstantRange LHSRange = getUnsignedRange(LHS);
6055    ConstantRange RHSRange = getUnsignedRange(RHS);
6056    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6057      return true;
6058    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6059      return false;
6060    break;
6061  }
6062  case ICmpInst::ICMP_UGE:
6063    Pred = ICmpInst::ICMP_ULE;
6064    std::swap(LHS, RHS);
6065  case ICmpInst::ICMP_ULE: {
6066    ConstantRange LHSRange = getUnsignedRange(LHS);
6067    ConstantRange RHSRange = getUnsignedRange(RHS);
6068    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6069      return true;
6070    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6071      return false;
6072    break;
6073  }
6074  case ICmpInst::ICMP_NE: {
6075    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6076      return true;
6077    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6078      return true;
6079
6080    const SCEV *Diff = getMinusSCEV(LHS, RHS);
6081    if (isKnownNonZero(Diff))
6082      return true;
6083    break;
6084  }
6085  case ICmpInst::ICMP_EQ:
6086    // The check at the top of the function catches the case where
6087    // the values are known to be equal.
6088    break;
6089  }
6090  return false;
6091}
6092
6093/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6094/// protected by a conditional between LHS and RHS.  This is used to
6095/// to eliminate casts.
6096bool
6097ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6098                                             ICmpInst::Predicate Pred,
6099                                             const SCEV *LHS, const SCEV *RHS) {
6100  // Interpret a null as meaning no loop, where there is obviously no guard
6101  // (interprocedural conditions notwithstanding).
6102  if (!L) return true;
6103
6104  BasicBlock *Latch = L->getLoopLatch();
6105  if (!Latch)
6106    return false;
6107
6108  BranchInst *LoopContinuePredicate =
6109    dyn_cast<BranchInst>(Latch->getTerminator());
6110  if (!LoopContinuePredicate ||
6111      LoopContinuePredicate->isUnconditional())
6112    return false;
6113
6114  return isImpliedCond(Pred, LHS, RHS,
6115                       LoopContinuePredicate->getCondition(),
6116                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6117}
6118
6119/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6120/// by a conditional between LHS and RHS.  This is used to help avoid max
6121/// expressions in loop trip counts, and to eliminate casts.
6122bool
6123ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6124                                          ICmpInst::Predicate Pred,
6125                                          const SCEV *LHS, const SCEV *RHS) {
6126  // Interpret a null as meaning no loop, where there is obviously no guard
6127  // (interprocedural conditions notwithstanding).
6128  if (!L) return false;
6129
6130  // Starting at the loop predecessor, climb up the predecessor chain, as long
6131  // as there are predecessors that can be found that have unique successors
6132  // leading to the original header.
6133  for (std::pair<BasicBlock *, BasicBlock *>
6134         Pair(L->getLoopPredecessor(), L->getHeader());
6135       Pair.first;
6136       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6137
6138    BranchInst *LoopEntryPredicate =
6139      dyn_cast<BranchInst>(Pair.first->getTerminator());
6140    if (!LoopEntryPredicate ||
6141        LoopEntryPredicate->isUnconditional())
6142      continue;
6143
6144    if (isImpliedCond(Pred, LHS, RHS,
6145                      LoopEntryPredicate->getCondition(),
6146                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6147      return true;
6148  }
6149
6150  return false;
6151}
6152
6153/// RAII wrapper to prevent recursive application of isImpliedCond.
6154/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6155/// currently evaluating isImpliedCond.
6156struct MarkPendingLoopPredicate {
6157  Value *Cond;
6158  DenseSet<Value*> &LoopPreds;
6159  bool Pending;
6160
6161  MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6162    : Cond(C), LoopPreds(LP) {
6163    Pending = !LoopPreds.insert(Cond).second;
6164  }
6165  ~MarkPendingLoopPredicate() {
6166    if (!Pending)
6167      LoopPreds.erase(Cond);
6168  }
6169};
6170
6171/// isImpliedCond - Test whether the condition described by Pred, LHS,
6172/// and RHS is true whenever the given Cond value evaluates to true.
6173bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6174                                    const SCEV *LHS, const SCEV *RHS,
6175                                    Value *FoundCondValue,
6176                                    bool Inverse) {
6177  MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6178  if (Mark.Pending)
6179    return false;
6180
6181  // Recursively handle And and Or conditions.
6182  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6183    if (BO->getOpcode() == Instruction::And) {
6184      if (!Inverse)
6185        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6186               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6187    } else if (BO->getOpcode() == Instruction::Or) {
6188      if (Inverse)
6189        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6190               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6191    }
6192  }
6193
6194  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6195  if (!ICI) return false;
6196
6197  // Bail if the ICmp's operands' types are wider than the needed type
6198  // before attempting to call getSCEV on them. This avoids infinite
6199  // recursion, since the analysis of widening casts can require loop
6200  // exit condition information for overflow checking, which would
6201  // lead back here.
6202  if (getTypeSizeInBits(LHS->getType()) <
6203      getTypeSizeInBits(ICI->getOperand(0)->getType()))
6204    return false;
6205
6206  // Now that we found a conditional branch that dominates the loop or controls
6207  // the loop latch. Check to see if it is the comparison we are looking for.
6208  ICmpInst::Predicate FoundPred;
6209  if (Inverse)
6210    FoundPred = ICI->getInversePredicate();
6211  else
6212    FoundPred = ICI->getPredicate();
6213
6214  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6215  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6216
6217  // Balance the types. The case where FoundLHS' type is wider than
6218  // LHS' type is checked for above.
6219  if (getTypeSizeInBits(LHS->getType()) >
6220      getTypeSizeInBits(FoundLHS->getType())) {
6221    if (CmpInst::isSigned(Pred)) {
6222      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6223      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6224    } else {
6225      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6226      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6227    }
6228  }
6229
6230  // Canonicalize the query to match the way instcombine will have
6231  // canonicalized the comparison.
6232  if (SimplifyICmpOperands(Pred, LHS, RHS))
6233    if (LHS == RHS)
6234      return CmpInst::isTrueWhenEqual(Pred);
6235  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6236    if (FoundLHS == FoundRHS)
6237      return CmpInst::isFalseWhenEqual(FoundPred);
6238
6239  // Check to see if we can make the LHS or RHS match.
6240  if (LHS == FoundRHS || RHS == FoundLHS) {
6241    if (isa<SCEVConstant>(RHS)) {
6242      std::swap(FoundLHS, FoundRHS);
6243      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6244    } else {
6245      std::swap(LHS, RHS);
6246      Pred = ICmpInst::getSwappedPredicate(Pred);
6247    }
6248  }
6249
6250  // Check whether the found predicate is the same as the desired predicate.
6251  if (FoundPred == Pred)
6252    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6253
6254  // Check whether swapping the found predicate makes it the same as the
6255  // desired predicate.
6256  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6257    if (isa<SCEVConstant>(RHS))
6258      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6259    else
6260      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6261                                   RHS, LHS, FoundLHS, FoundRHS);
6262  }
6263
6264  // Check whether the actual condition is beyond sufficient.
6265  if (FoundPred == ICmpInst::ICMP_EQ)
6266    if (ICmpInst::isTrueWhenEqual(Pred))
6267      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6268        return true;
6269  if (Pred == ICmpInst::ICMP_NE)
6270    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6271      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6272        return true;
6273
6274  // Otherwise assume the worst.
6275  return false;
6276}
6277
6278/// isImpliedCondOperands - Test whether the condition described by Pred,
6279/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6280/// and FoundRHS is true.
6281bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6282                                            const SCEV *LHS, const SCEV *RHS,
6283                                            const SCEV *FoundLHS,
6284                                            const SCEV *FoundRHS) {
6285  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6286                                     FoundLHS, FoundRHS) ||
6287         // ~x < ~y --> x > y
6288         isImpliedCondOperandsHelper(Pred, LHS, RHS,
6289                                     getNotSCEV(FoundRHS),
6290                                     getNotSCEV(FoundLHS));
6291}
6292
6293/// isImpliedCondOperandsHelper - Test whether the condition described by
6294/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6295/// FoundLHS, and FoundRHS is true.
6296bool
6297ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6298                                             const SCEV *LHS, const SCEV *RHS,
6299                                             const SCEV *FoundLHS,
6300                                             const SCEV *FoundRHS) {
6301  switch (Pred) {
6302  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6303  case ICmpInst::ICMP_EQ:
6304  case ICmpInst::ICMP_NE:
6305    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6306      return true;
6307    break;
6308  case ICmpInst::ICMP_SLT:
6309  case ICmpInst::ICMP_SLE:
6310    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6311        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6312      return true;
6313    break;
6314  case ICmpInst::ICMP_SGT:
6315  case ICmpInst::ICMP_SGE:
6316    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6317        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6318      return true;
6319    break;
6320  case ICmpInst::ICMP_ULT:
6321  case ICmpInst::ICMP_ULE:
6322    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6323        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6324      return true;
6325    break;
6326  case ICmpInst::ICMP_UGT:
6327  case ICmpInst::ICMP_UGE:
6328    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6329        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6330      return true;
6331    break;
6332  }
6333
6334  return false;
6335}
6336
6337// Verify if an linear IV with positive stride can overflow when in a
6338// less-than comparison, knowing the invariant term of the comparison, the
6339// stride and the knowledge of NSW/NUW flags on the recurrence.
6340bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6341                                         bool IsSigned, bool NoWrap) {
6342  if (NoWrap) return false;
6343
6344  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6345  const SCEV *One = getConstant(Stride->getType(), 1);
6346
6347  if (IsSigned) {
6348    APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6349    APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6350    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6351                                .getSignedMax();
6352
6353    // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6354    return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
6355  }
6356
6357  APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6358  APInt MaxValue = APInt::getMaxValue(BitWidth);
6359  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6360                              .getUnsignedMax();
6361
6362  // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6363  return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6364}
6365
6366// Verify if an linear IV with negative stride can overflow when in a
6367// greater-than comparison, knowing the invariant term of the comparison,
6368// the stride and the knowledge of NSW/NUW flags on the recurrence.
6369bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6370                                         bool IsSigned, bool NoWrap) {
6371  if (NoWrap) return false;
6372
6373  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6374  const SCEV *One = getConstant(Stride->getType(), 1);
6375
6376  if (IsSigned) {
6377    APInt MinRHS = getSignedRange(RHS).getSignedMin();
6378    APInt MinValue = APInt::getSignedMinValue(BitWidth);
6379    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6380                               .getSignedMax();
6381
6382    // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6383    return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6384  }
6385
6386  APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6387  APInt MinValue = APInt::getMinValue(BitWidth);
6388  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6389                            .getUnsignedMax();
6390
6391  // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6392  return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6393}
6394
6395// Compute the backedge taken count knowing the interval difference, the
6396// stride and presence of the equality in the comparison.
6397const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6398                                            bool Equality) {
6399  const SCEV *One = getConstant(Step->getType(), 1);
6400  Delta = Equality ? getAddExpr(Delta, Step)
6401                   : getAddExpr(Delta, getMinusSCEV(Step, One));
6402  return getUDivExpr(Delta, Step);
6403}
6404
6405/// HowManyLessThans - Return the number of times a backedge containing the
6406/// specified less-than comparison will execute.  If not computable, return
6407/// CouldNotCompute.
6408///
6409/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6410/// control the branch. In this case, we can only compute an iteration count for
6411/// a subexpression that cannot overflow before evaluating true.
6412ScalarEvolution::ExitLimit
6413ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6414                                  const Loop *L, bool IsSigned,
6415                                  bool IsSubExpr) {
6416  // We handle only IV < Invariant
6417  if (!isLoopInvariant(RHS, L))
6418    return getCouldNotCompute();
6419
6420  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6421
6422  // Avoid weird loops
6423  if (!IV || IV->getLoop() != L || !IV->isAffine())
6424    return getCouldNotCompute();
6425
6426  bool NoWrap = !IsSubExpr &&
6427                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6428
6429  const SCEV *Stride = IV->getStepRecurrence(*this);
6430
6431  // Avoid negative or zero stride values
6432  if (!isKnownPositive(Stride))
6433    return getCouldNotCompute();
6434
6435  // Avoid proven overflow cases: this will ensure that the backedge taken count
6436  // will not generate any unsigned overflow. Relaxed no-overflow conditions
6437  // exploit NoWrapFlags, allowing to optimize in presence of undefined
6438  // behaviors like the case of C language.
6439  if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6440    return getCouldNotCompute();
6441
6442  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6443                                      : ICmpInst::ICMP_ULT;
6444  const SCEV *Start = IV->getStart();
6445  const SCEV *End = RHS;
6446  if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6447    End = IsSigned ? getSMaxExpr(RHS, Start)
6448                   : getUMaxExpr(RHS, Start);
6449
6450  const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
6451
6452  APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6453                            : getUnsignedRange(Start).getUnsignedMin();
6454
6455  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6456                             : getUnsignedRange(Stride).getUnsignedMin();
6457
6458  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6459  APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6460                         : APInt::getMaxValue(BitWidth) - (MinStride - 1);
6461
6462  // Although End can be a MAX expression we estimate MaxEnd considering only
6463  // the case End = RHS. This is safe because in the other case (End - Start)
6464  // is zero, leading to a zero maximum backedge taken count.
6465  APInt MaxEnd =
6466    IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6467             : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6468
6469  const SCEV *MaxBECount = getCouldNotCompute();
6470  if (isa<SCEVConstant>(BECount))
6471    MaxBECount = BECount;
6472  else
6473    MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6474                                getConstant(MinStride), false);
6475
6476  if (isa<SCEVCouldNotCompute>(MaxBECount))
6477    MaxBECount = BECount;
6478
6479  return ExitLimit(BECount, MaxBECount);
6480}
6481
6482ScalarEvolution::ExitLimit
6483ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6484                                     const Loop *L, bool IsSigned,
6485                                     bool IsSubExpr) {
6486  // We handle only IV > Invariant
6487  if (!isLoopInvariant(RHS, L))
6488    return getCouldNotCompute();
6489
6490  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6491
6492  // Avoid weird loops
6493  if (!IV || IV->getLoop() != L || !IV->isAffine())
6494    return getCouldNotCompute();
6495
6496  bool NoWrap = !IsSubExpr &&
6497                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6498
6499  const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6500
6501  // Avoid negative or zero stride values
6502  if (!isKnownPositive(Stride))
6503    return getCouldNotCompute();
6504
6505  // Avoid proven overflow cases: this will ensure that the backedge taken count
6506  // will not generate any unsigned overflow. Relaxed no-overflow conditions
6507  // exploit NoWrapFlags, allowing to optimize in presence of undefined
6508  // behaviors like the case of C language.
6509  if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6510    return getCouldNotCompute();
6511
6512  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6513                                      : ICmpInst::ICMP_UGT;
6514
6515  const SCEV *Start = IV->getStart();
6516  const SCEV *End = RHS;
6517  if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6518    End = IsSigned ? getSMinExpr(RHS, Start)
6519                   : getUMinExpr(RHS, Start);
6520
6521  const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6522
6523  APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6524                            : getUnsignedRange(Start).getUnsignedMax();
6525
6526  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6527                             : getUnsignedRange(Stride).getUnsignedMin();
6528
6529  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6530  APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6531                         : APInt::getMinValue(BitWidth) + (MinStride - 1);
6532
6533  // Although End can be a MIN expression we estimate MinEnd considering only
6534  // the case End = RHS. This is safe because in the other case (Start - End)
6535  // is zero, leading to a zero maximum backedge taken count.
6536  APInt MinEnd =
6537    IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6538             : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6539
6540
6541  const SCEV *MaxBECount = getCouldNotCompute();
6542  if (isa<SCEVConstant>(BECount))
6543    MaxBECount = BECount;
6544  else
6545    MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6546                                getConstant(MinStride), false);
6547
6548  if (isa<SCEVCouldNotCompute>(MaxBECount))
6549    MaxBECount = BECount;
6550
6551  return ExitLimit(BECount, MaxBECount);
6552}
6553
6554/// getNumIterationsInRange - Return the number of iterations of this loop that
6555/// produce values in the specified constant range.  Another way of looking at
6556/// this is that it returns the first iteration number where the value is not in
6557/// the condition, thus computing the exit count. If the iteration count can't
6558/// be computed, an instance of SCEVCouldNotCompute is returned.
6559const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6560                                                    ScalarEvolution &SE) const {
6561  if (Range.isFullSet())  // Infinite loop.
6562    return SE.getCouldNotCompute();
6563
6564  // If the start is a non-zero constant, shift the range to simplify things.
6565  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6566    if (!SC->getValue()->isZero()) {
6567      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6568      Operands[0] = SE.getConstant(SC->getType(), 0);
6569      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6570                                             getNoWrapFlags(FlagNW));
6571      if (const SCEVAddRecExpr *ShiftedAddRec =
6572            dyn_cast<SCEVAddRecExpr>(Shifted))
6573        return ShiftedAddRec->getNumIterationsInRange(
6574                           Range.subtract(SC->getValue()->getValue()), SE);
6575      // This is strange and shouldn't happen.
6576      return SE.getCouldNotCompute();
6577    }
6578
6579  // The only time we can solve this is when we have all constant indices.
6580  // Otherwise, we cannot determine the overflow conditions.
6581  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6582    if (!isa<SCEVConstant>(getOperand(i)))
6583      return SE.getCouldNotCompute();
6584
6585
6586  // Okay at this point we know that all elements of the chrec are constants and
6587  // that the start element is zero.
6588
6589  // First check to see if the range contains zero.  If not, the first
6590  // iteration exits.
6591  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6592  if (!Range.contains(APInt(BitWidth, 0)))
6593    return SE.getConstant(getType(), 0);
6594
6595  if (isAffine()) {
6596    // If this is an affine expression then we have this situation:
6597    //   Solve {0,+,A} in Range  ===  Ax in Range
6598
6599    // We know that zero is in the range.  If A is positive then we know that
6600    // the upper value of the range must be the first possible exit value.
6601    // If A is negative then the lower of the range is the last possible loop
6602    // value.  Also note that we already checked for a full range.
6603    APInt One(BitWidth,1);
6604    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6605    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6606
6607    // The exit value should be (End+A)/A.
6608    APInt ExitVal = (End + A).udiv(A);
6609    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6610
6611    // Evaluate at the exit value.  If we really did fall out of the valid
6612    // range, then we computed our trip count, otherwise wrap around or other
6613    // things must have happened.
6614    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6615    if (Range.contains(Val->getValue()))
6616      return SE.getCouldNotCompute();  // Something strange happened
6617
6618    // Ensure that the previous value is in the range.  This is a sanity check.
6619    assert(Range.contains(
6620           EvaluateConstantChrecAtConstant(this,
6621           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6622           "Linear scev computation is off in a bad way!");
6623    return SE.getConstant(ExitValue);
6624  } else if (isQuadratic()) {
6625    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6626    // quadratic equation to solve it.  To do this, we must frame our problem in
6627    // terms of figuring out when zero is crossed, instead of when
6628    // Range.getUpper() is crossed.
6629    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6630    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6631    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6632                                             // getNoWrapFlags(FlagNW)
6633                                             FlagAnyWrap);
6634
6635    // Next, solve the constructed addrec
6636    std::pair<const SCEV *,const SCEV *> Roots =
6637      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6638    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6639    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6640    if (R1) {
6641      // Pick the smallest positive root value.
6642      if (ConstantInt *CB =
6643          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6644                         R1->getValue(), R2->getValue()))) {
6645        if (CB->getZExtValue() == false)
6646          std::swap(R1, R2);   // R1 is the minimum root now.
6647
6648        // Make sure the root is not off by one.  The returned iteration should
6649        // not be in the range, but the previous one should be.  When solving
6650        // for "X*X < 5", for example, we should not return a root of 2.
6651        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6652                                                             R1->getValue(),
6653                                                             SE);
6654        if (Range.contains(R1Val->getValue())) {
6655          // The next iteration must be out of the range...
6656          ConstantInt *NextVal =
6657                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6658
6659          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6660          if (!Range.contains(R1Val->getValue()))
6661            return SE.getConstant(NextVal);
6662          return SE.getCouldNotCompute();  // Something strange happened
6663        }
6664
6665        // If R1 was not in the range, then it is a good return value.  Make
6666        // sure that R1-1 WAS in the range though, just in case.
6667        ConstantInt *NextVal =
6668               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6669        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6670        if (Range.contains(R1Val->getValue()))
6671          return R1;
6672        return SE.getCouldNotCompute();  // Something strange happened
6673      }
6674    }
6675  }
6676
6677  return SE.getCouldNotCompute();
6678}
6679
6680static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
6681  APInt A = C1->getValue()->getValue().abs();
6682  APInt B = C2->getValue()->getValue().abs();
6683  uint32_t ABW = A.getBitWidth();
6684  uint32_t BBW = B.getBitWidth();
6685
6686  if (ABW > BBW)
6687    B.zext(ABW);
6688  else if (ABW < BBW)
6689    A.zext(BBW);
6690
6691  return APIntOps::GreatestCommonDivisor(A, B);
6692}
6693
6694static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6695  APInt A = C1->getValue()->getValue();
6696  APInt B = C2->getValue()->getValue();
6697  uint32_t ABW = A.getBitWidth();
6698  uint32_t BBW = B.getBitWidth();
6699
6700  if (ABW > BBW)
6701    B.sext(ABW);
6702  else if (ABW < BBW)
6703    A.sext(BBW);
6704
6705  return APIntOps::srem(A, B);
6706}
6707
6708static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
6709  APInt A = C1->getValue()->getValue();
6710  APInt B = C2->getValue()->getValue();
6711  uint32_t ABW = A.getBitWidth();
6712  uint32_t BBW = B.getBitWidth();
6713
6714  if (ABW > BBW)
6715    B.sext(ABW);
6716  else if (ABW < BBW)
6717    A.sext(BBW);
6718
6719  return APIntOps::sdiv(A, B);
6720}
6721
6722namespace {
6723struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> {
6724public:
6725  // Pattern match Step into Start. When Step is a multiply expression, find
6726  // the largest subexpression of Step that appears in Start. When Start is an
6727  // add expression, try to match Step in the subexpressions of Start, non
6728  // matching subexpressions are returned under Remainder.
6729  static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start,
6730                             const SCEV *Step, const SCEV **Remainder) {
6731    assert(Remainder && "Remainder should not be NULL");
6732    SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0));
6733    const SCEV *Res = R.visit(Start);
6734    *Remainder = R.Remainder;
6735    return Res;
6736  }
6737
6738  SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R)
6739      : SE(S), GCD(G), Remainder(R) {
6740    Zero = SE.getConstant(GCD->getType(), 0);
6741    One = SE.getConstant(GCD->getType(), 1);
6742  }
6743
6744  const SCEV *visitConstant(const SCEVConstant *Constant) {
6745    if (GCD == Constant || Constant == Zero)
6746      return GCD;
6747
6748    if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) {
6749      const SCEV *Res = SE.getConstant(gcd(Constant, CGCD));
6750      if (Res != One)
6751        return Res;
6752
6753      Remainder = SE.getConstant(srem(Constant, CGCD));
6754      Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder));
6755      Res = SE.getConstant(gcd(Constant, CGCD));
6756      return Res;
6757    }
6758
6759    // When GCD is not a constant, it could be that the GCD is an Add, Mul,
6760    // AddRec, etc., in which case we want to find out how many times the
6761    // Constant divides the GCD: we then return that as the new GCD.
6762    const SCEV *Rem = Zero;
6763    const SCEV *Res = findGCD(SE, GCD, Constant, &Rem);
6764
6765    if (Res == One || Rem != Zero) {
6766      Remainder = Constant;
6767      return One;
6768    }
6769
6770    assert(isa<SCEVConstant>(Res) && "Res should be a constant");
6771    Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res)));
6772    return Res;
6773  }
6774
6775  const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6776    if (GCD != Expr)
6777      Remainder = Expr;
6778    return GCD;
6779  }
6780
6781  const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6782    if (GCD != Expr)
6783      Remainder = Expr;
6784    return GCD;
6785  }
6786
6787  const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6788    if (GCD != Expr)
6789      Remainder = Expr;
6790    return GCD;
6791  }
6792
6793  const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6794    if (GCD == Expr)
6795      return GCD;
6796
6797    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6798      const SCEV *Rem = Zero;
6799      const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem);
6800
6801      // FIXME: There may be ambiguous situations: for instance,
6802      // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m).
6803      // The order in which the AddExpr is traversed computes a different GCD
6804      // and Remainder.
6805      if (Res != One)
6806        GCD = Res;
6807      if (Rem != Zero)
6808        Remainder = SE.getAddExpr(Remainder, Rem);
6809    }
6810
6811    return GCD;
6812  }
6813
6814  const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6815    if (GCD == Expr)
6816      return GCD;
6817
6818    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6819      if (Expr->getOperand(i) == GCD)
6820        return GCD;
6821    }
6822
6823    // If we have not returned yet, it means that GCD is not part of Expr.
6824    const SCEV *PartialGCD = One;
6825    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6826      const SCEV *Rem = Zero;
6827      const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem);
6828      if (Rem != Zero)
6829        // GCD does not divide Expr->getOperand(i).
6830        continue;
6831
6832      if (Res == GCD)
6833        return GCD;
6834      PartialGCD = SE.getMulExpr(PartialGCD, Res);
6835      if (PartialGCD == GCD)
6836        return GCD;
6837    }
6838
6839    if (PartialGCD != One)
6840      return PartialGCD;
6841
6842    Remainder = Expr;
6843    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD);
6844    if (!Mul)
6845      return PartialGCD;
6846
6847    // When the GCD is a multiply expression, try to decompose it:
6848    // this occurs when Step does not divide the Start expression
6849    // as in: {(-4 + (3 * %m)),+,(2 * %m)}
6850    for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) {
6851      const SCEV *Rem = Zero;
6852      const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem);
6853      if (Rem == Zero) {
6854        Remainder = Rem;
6855        return Res;
6856      }
6857    }
6858
6859    return PartialGCD;
6860  }
6861
6862  const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
6863    if (GCD != Expr)
6864      Remainder = Expr;
6865    return GCD;
6866  }
6867
6868  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
6869    if (GCD == Expr)
6870      return GCD;
6871
6872    if (!Expr->isAffine()) {
6873      Remainder = Expr;
6874      return GCD;
6875    }
6876
6877    const SCEV *Rem = Zero;
6878    const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem);
6879    if (Rem != Zero)
6880      Remainder = SE.getAddExpr(Remainder, Rem);
6881
6882    Rem = Zero;
6883    Res = findGCD(SE, Expr->getOperand(1), Res, &Rem);
6884    if (Rem != Zero) {
6885      Remainder = Expr;
6886      return GCD;
6887    }
6888
6889    return Res;
6890  }
6891
6892  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
6893    if (GCD != Expr)
6894      Remainder = Expr;
6895    return GCD;
6896  }
6897
6898  const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
6899    if (GCD != Expr)
6900      Remainder = Expr;
6901    return GCD;
6902  }
6903
6904  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
6905    if (GCD != Expr)
6906      Remainder = Expr;
6907    return GCD;
6908  }
6909
6910  const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
6911    return One;
6912  }
6913
6914private:
6915  ScalarEvolution &SE;
6916  const SCEV *GCD, *Remainder, *Zero, *One;
6917};
6918
6919struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> {
6920public:
6921  // Remove from Start all multiples of Step.
6922  static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start,
6923                            const SCEV *Step) {
6924    SCEVDivision D(SE, Step);
6925    const SCEV *Rem = D.Zero;
6926    (void)Rem;
6927    // The division is guaranteed to succeed: Step should divide Start with no
6928    // remainder.
6929    assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero &&
6930           "Step should divide Start with no remainder.");
6931    return D.visit(Start);
6932  }
6933
6934  SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) {
6935    Zero = SE.getConstant(GCD->getType(), 0);
6936    One = SE.getConstant(GCD->getType(), 1);
6937  }
6938
6939  const SCEV *visitConstant(const SCEVConstant *Constant) {
6940    if (GCD == Constant)
6941      return One;
6942
6943    if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD))
6944      return SE.getConstant(sdiv(Constant, CGCD));
6945    return Constant;
6946  }
6947
6948  const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6949    if (GCD == Expr)
6950      return One;
6951    return Expr;
6952  }
6953
6954  const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6955    if (GCD == Expr)
6956      return One;
6957    return Expr;
6958  }
6959
6960  const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6961    if (GCD == Expr)
6962      return One;
6963    return Expr;
6964  }
6965
6966  const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6967    if (GCD == Expr)
6968      return One;
6969
6970    SmallVector<const SCEV *, 2> Operands;
6971    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
6972      Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
6973
6974    if (Operands.size() == 1)
6975      return Operands[0];
6976    return SE.getAddExpr(Operands);
6977  }
6978
6979  const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6980    if (GCD == Expr)
6981      return One;
6982
6983    bool FoundGCDTerm = false;
6984    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
6985      if (Expr->getOperand(i) == GCD)
6986        FoundGCDTerm = true;
6987
6988    SmallVector<const SCEV *, 2> Operands;
6989    if (FoundGCDTerm) {
6990      FoundGCDTerm = false;
6991      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6992        if (FoundGCDTerm)
6993          Operands.push_back(Expr->getOperand(i));
6994        else if (Expr->getOperand(i) == GCD)
6995          FoundGCDTerm = true;
6996        else
6997          Operands.push_back(Expr->getOperand(i));
6998      }
6999    } else {
7000      FoundGCDTerm = false;
7001      const SCEV *PartialGCD = One;
7002      for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
7003        if (PartialGCD == GCD) {
7004          Operands.push_back(Expr->getOperand(i));
7005          continue;
7006        }
7007
7008        const SCEV *Rem = Zero;
7009        const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem);
7010        if (Rem == Zero) {
7011          PartialGCD = SE.getMulExpr(PartialGCD, Res);
7012          Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
7013        } else {
7014          Operands.push_back(Expr->getOperand(i));
7015        }
7016      }
7017    }
7018
7019    if (Operands.size() == 1)
7020      return Operands[0];
7021    return SE.getMulExpr(Operands);
7022  }
7023
7024  const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
7025    if (GCD == Expr)
7026      return One;
7027    return Expr;
7028  }
7029
7030  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
7031    if (GCD == Expr)
7032      return One;
7033
7034    assert(Expr->isAffine() && "Expr should be affine");
7035
7036    const SCEV *Start = divide(SE, Expr->getStart(), GCD);
7037    const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD);
7038
7039    return SE.getAddRecExpr(Start, Step, Expr->getLoop(),
7040                            Expr->getNoWrapFlags());
7041  }
7042
7043  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
7044    if (GCD == Expr)
7045      return One;
7046    return Expr;
7047  }
7048
7049  const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
7050    if (GCD == Expr)
7051      return One;
7052    return Expr;
7053  }
7054
7055  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
7056    if (GCD == Expr)
7057      return One;
7058    return Expr;
7059  }
7060
7061  const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
7062    return Expr;
7063  }
7064
7065private:
7066  ScalarEvolution &SE;
7067  const SCEV *GCD, *Zero, *One;
7068};
7069}
7070
7071/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7072/// sizes of an array access. Returns the remainder of the delinearization that
7073/// is the offset start of the array. For example
7074/// delinearize ({(((-4 + (3 * %m)))),+,(%m)}<%for.i>) {
7075///   IV: {0,+,1}<%for.i>
7076///   Start: -4 + (3 * %m)
7077///   Step: %m
7078///   SCEVUDiv (Start, Step) = 3 remainder -4
7079///   rem = delinearize (3) = 3
7080///   Subscripts.push_back(IV + rem)
7081///   Sizes.push_back(Step)
7082///   return remainder -4
7083/// }
7084/// When delinearize fails, it returns the SCEV unchanged.
7085const SCEV *
7086SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7087                            SmallVectorImpl<const SCEV *> &Subscripts,
7088                            SmallVectorImpl<const SCEV *> &Sizes) const {
7089  if (!this->isAffine())
7090    return this;
7091
7092  const SCEV *Start = this->getStart();
7093  const SCEV *Step = this->getStepRecurrence(SE);
7094  const SCEV *Zero = SE.getConstant(this->getType(), 0);
7095  const SCEV *One = SE.getConstant(this->getType(), 1);
7096  const SCEV *IV =
7097      SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags());
7098
7099  DEBUG(dbgs() << "(delinearize: " << *this << "\n");
7100
7101  if (Step == One) {
7102    DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
7103    return this;
7104  }
7105
7106  const SCEV *Remainder = NULL;
7107  const SCEV *GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
7108
7109  DEBUG(dbgs() << "GCD: " << *GCD << "\n");
7110  DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
7111
7112  if (GCD == One) {
7113    DEBUG(dbgs() << "failed to delinearize " << *this << "\n)\n");
7114    return this;
7115  }
7116
7117  const SCEV *Quotient =
7118      SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
7119  DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
7120
7121  const SCEV *Rem;
7122  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
7123    Rem = AR->delinearize(SE, Subscripts, Sizes);
7124  else
7125    Rem = Quotient;
7126
7127  if (Step != GCD) {
7128    Step = SCEVDivision::divide(SE, Step, GCD);
7129    IV = SE.getMulExpr(IV, Step);
7130  }
7131  const SCEV *Index = SE.getAddExpr(IV, Rem);
7132
7133  Subscripts.push_back(Index);
7134  Sizes.push_back(GCD);
7135
7136#ifndef NDEBUG
7137  int Size = Sizes.size();
7138  DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n");
7139  DEBUG(dbgs() << "ArrayDecl[UnknownSize]");
7140  for (int i = 0; i < Size - 1; i++)
7141    DEBUG(dbgs() << "[" << *Sizes[i] << "]");
7142  DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n");
7143
7144  DEBUG(dbgs() << "ArrayRef");
7145  for (int i = 0; i < Size; i++)
7146    DEBUG(dbgs() << "[" << *Subscripts[i] << "]");
7147  DEBUG(dbgs() << "\n)\n");
7148#endif
7149
7150  return Remainder;
7151}
7152
7153//===----------------------------------------------------------------------===//
7154//                   SCEVCallbackVH Class Implementation
7155//===----------------------------------------------------------------------===//
7156
7157void ScalarEvolution::SCEVCallbackVH::deleted() {
7158  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7159  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7160    SE->ConstantEvolutionLoopExitValue.erase(PN);
7161  SE->ValueExprMap.erase(getValPtr());
7162  // this now dangles!
7163}
7164
7165void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7166  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7167
7168  // Forget all the expressions associated with users of the old value,
7169  // so that future queries will recompute the expressions using the new
7170  // value.
7171  Value *Old = getValPtr();
7172  SmallVector<User *, 16> Worklist;
7173  SmallPtrSet<User *, 8> Visited;
7174  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
7175       UI != UE; ++UI)
7176    Worklist.push_back(*UI);
7177  while (!Worklist.empty()) {
7178    User *U = Worklist.pop_back_val();
7179    // Deleting the Old value will cause this to dangle. Postpone
7180    // that until everything else is done.
7181    if (U == Old)
7182      continue;
7183    if (!Visited.insert(U))
7184      continue;
7185    if (PHINode *PN = dyn_cast<PHINode>(U))
7186      SE->ConstantEvolutionLoopExitValue.erase(PN);
7187    SE->ValueExprMap.erase(U);
7188    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
7189         UI != UE; ++UI)
7190      Worklist.push_back(*UI);
7191  }
7192  // Delete the Old value.
7193  if (PHINode *PN = dyn_cast<PHINode>(Old))
7194    SE->ConstantEvolutionLoopExitValue.erase(PN);
7195  SE->ValueExprMap.erase(Old);
7196  // this now dangles!
7197}
7198
7199ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7200  : CallbackVH(V), SE(se) {}
7201
7202//===----------------------------------------------------------------------===//
7203//                   ScalarEvolution Class Implementation
7204//===----------------------------------------------------------------------===//
7205
7206ScalarEvolution::ScalarEvolution()
7207  : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) {
7208  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7209}
7210
7211bool ScalarEvolution::runOnFunction(Function &F) {
7212  this->F = &F;
7213  LI = &getAnalysis<LoopInfo>();
7214  TD = getAnalysisIfAvailable<DataLayout>();
7215  TLI = &getAnalysis<TargetLibraryInfo>();
7216  DT = &getAnalysis<DominatorTree>();
7217  return false;
7218}
7219
7220void ScalarEvolution::releaseMemory() {
7221  // Iterate through all the SCEVUnknown instances and call their
7222  // destructors, so that they release their references to their values.
7223  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7224    U->~SCEVUnknown();
7225  FirstUnknown = 0;
7226
7227  ValueExprMap.clear();
7228
7229  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7230  // that a loop had multiple computable exits.
7231  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7232         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7233       I != E; ++I) {
7234    I->second.clear();
7235  }
7236
7237  assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7238
7239  BackedgeTakenCounts.clear();
7240  ConstantEvolutionLoopExitValue.clear();
7241  ValuesAtScopes.clear();
7242  LoopDispositions.clear();
7243  BlockDispositions.clear();
7244  UnsignedRanges.clear();
7245  SignedRanges.clear();
7246  UniqueSCEVs.clear();
7247  SCEVAllocator.Reset();
7248}
7249
7250void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7251  AU.setPreservesAll();
7252  AU.addRequiredTransitive<LoopInfo>();
7253  AU.addRequiredTransitive<DominatorTree>();
7254  AU.addRequired<TargetLibraryInfo>();
7255}
7256
7257bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
7258  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
7259}
7260
7261static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
7262                          const Loop *L) {
7263  // Print all inner loops first
7264  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7265    PrintLoopInfo(OS, SE, *I);
7266
7267  OS << "Loop ";
7268  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
7269  OS << ": ";
7270
7271  SmallVector<BasicBlock *, 8> ExitBlocks;
7272  L->getExitBlocks(ExitBlocks);
7273  if (ExitBlocks.size() != 1)
7274    OS << "<multiple exits> ";
7275
7276  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7277    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
7278  } else {
7279    OS << "Unpredictable backedge-taken count. ";
7280  }
7281
7282  OS << "\n"
7283        "Loop ";
7284  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
7285  OS << ": ";
7286
7287  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7288    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7289  } else {
7290    OS << "Unpredictable max backedge-taken count. ";
7291  }
7292
7293  OS << "\n";
7294}
7295
7296void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
7297  // ScalarEvolution's implementation of the print method is to print
7298  // out SCEV values of all instructions that are interesting. Doing
7299  // this potentially causes it to create new SCEV objects though,
7300  // which technically conflicts with the const qualifier. This isn't
7301  // observable from outside the class though, so casting away the
7302  // const isn't dangerous.
7303  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7304
7305  OS << "Classifying expressions for: ";
7306  WriteAsOperand(OS, F, /*PrintType=*/false);
7307  OS << "\n";
7308  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
7309    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
7310      OS << *I << '\n';
7311      OS << "  -->  ";
7312      const SCEV *SV = SE.getSCEV(&*I);
7313      SV->print(OS);
7314
7315      const Loop *L = LI->getLoopFor((*I).getParent());
7316
7317      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
7318      if (AtUse != SV) {
7319        OS << "  -->  ";
7320        AtUse->print(OS);
7321      }
7322
7323      if (L) {
7324        OS << "\t\t" "Exits: ";
7325        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
7326        if (!SE.isLoopInvariant(ExitValue, L)) {
7327          OS << "<<Unknown>>";
7328        } else {
7329          OS << *ExitValue;
7330        }
7331      }
7332
7333      OS << "\n";
7334    }
7335
7336  OS << "Determining loop execution counts for: ";
7337  WriteAsOperand(OS, F, /*PrintType=*/false);
7338  OS << "\n";
7339  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7340    PrintLoopInfo(OS, &SE, *I);
7341}
7342
7343ScalarEvolution::LoopDisposition
7344ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
7345  SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7346  for (unsigned u = 0; u < Values.size(); u++) {
7347    if (Values[u].first == L)
7348      return Values[u].second;
7349  }
7350  Values.push_back(std::make_pair(L, LoopVariant));
7351  LoopDisposition D = computeLoopDisposition(S, L);
7352  SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7353  for (unsigned u = Values2.size(); u > 0; u--) {
7354    if (Values2[u - 1].first == L) {
7355      Values2[u - 1].second = D;
7356      break;
7357    }
7358  }
7359  return D;
7360}
7361
7362ScalarEvolution::LoopDisposition
7363ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
7364  switch (S->getSCEVType()) {
7365  case scConstant:
7366    return LoopInvariant;
7367  case scTruncate:
7368  case scZeroExtend:
7369  case scSignExtend:
7370    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
7371  case scAddRecExpr: {
7372    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7373
7374    // If L is the addrec's loop, it's computable.
7375    if (AR->getLoop() == L)
7376      return LoopComputable;
7377
7378    // Add recurrences are never invariant in the function-body (null loop).
7379    if (!L)
7380      return LoopVariant;
7381
7382    // This recurrence is variant w.r.t. L if L contains AR's loop.
7383    if (L->contains(AR->getLoop()))
7384      return LoopVariant;
7385
7386    // This recurrence is invariant w.r.t. L if AR's loop contains L.
7387    if (AR->getLoop()->contains(L))
7388      return LoopInvariant;
7389
7390    // This recurrence is variant w.r.t. L if any of its operands
7391    // are variant.
7392    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7393         I != E; ++I)
7394      if (!isLoopInvariant(*I, L))
7395        return LoopVariant;
7396
7397    // Otherwise it's loop-invariant.
7398    return LoopInvariant;
7399  }
7400  case scAddExpr:
7401  case scMulExpr:
7402  case scUMaxExpr:
7403  case scSMaxExpr: {
7404    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7405    bool HasVarying = false;
7406    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7407         I != E; ++I) {
7408      LoopDisposition D = getLoopDisposition(*I, L);
7409      if (D == LoopVariant)
7410        return LoopVariant;
7411      if (D == LoopComputable)
7412        HasVarying = true;
7413    }
7414    return HasVarying ? LoopComputable : LoopInvariant;
7415  }
7416  case scUDivExpr: {
7417    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7418    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7419    if (LD == LoopVariant)
7420      return LoopVariant;
7421    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7422    if (RD == LoopVariant)
7423      return LoopVariant;
7424    return (LD == LoopInvariant && RD == LoopInvariant) ?
7425           LoopInvariant : LoopComputable;
7426  }
7427  case scUnknown:
7428    // All non-instruction values are loop invariant.  All instructions are loop
7429    // invariant if they are not contained in the specified loop.
7430    // Instructions are never considered invariant in the function body
7431    // (null loop) because they are defined within the "loop".
7432    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7433      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7434    return LoopInvariant;
7435  case scCouldNotCompute:
7436    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7437  default: llvm_unreachable("Unknown SCEV kind!");
7438  }
7439}
7440
7441bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7442  return getLoopDisposition(S, L) == LoopInvariant;
7443}
7444
7445bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7446  return getLoopDisposition(S, L) == LoopComputable;
7447}
7448
7449ScalarEvolution::BlockDisposition
7450ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7451  SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7452  for (unsigned u = 0; u < Values.size(); u++) {
7453    if (Values[u].first == BB)
7454      return Values[u].second;
7455  }
7456  Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
7457  BlockDisposition D = computeBlockDisposition(S, BB);
7458  SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7459  for (unsigned u = Values2.size(); u > 0; u--) {
7460    if (Values2[u - 1].first == BB) {
7461      Values2[u - 1].second = D;
7462      break;
7463    }
7464  }
7465  return D;
7466}
7467
7468ScalarEvolution::BlockDisposition
7469ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7470  switch (S->getSCEVType()) {
7471  case scConstant:
7472    return ProperlyDominatesBlock;
7473  case scTruncate:
7474  case scZeroExtend:
7475  case scSignExtend:
7476    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
7477  case scAddRecExpr: {
7478    // This uses a "dominates" query instead of "properly dominates" query
7479    // to test for proper dominance too, because the instruction which
7480    // produces the addrec's value is a PHI, and a PHI effectively properly
7481    // dominates its entire containing block.
7482    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7483    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
7484      return DoesNotDominateBlock;
7485  }
7486  // FALL THROUGH into SCEVNAryExpr handling.
7487  case scAddExpr:
7488  case scMulExpr:
7489  case scUMaxExpr:
7490  case scSMaxExpr: {
7491    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7492    bool Proper = true;
7493    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7494         I != E; ++I) {
7495      BlockDisposition D = getBlockDisposition(*I, BB);
7496      if (D == DoesNotDominateBlock)
7497        return DoesNotDominateBlock;
7498      if (D == DominatesBlock)
7499        Proper = false;
7500    }
7501    return Proper ? ProperlyDominatesBlock : DominatesBlock;
7502  }
7503  case scUDivExpr: {
7504    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7505    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7506    BlockDisposition LD = getBlockDisposition(LHS, BB);
7507    if (LD == DoesNotDominateBlock)
7508      return DoesNotDominateBlock;
7509    BlockDisposition RD = getBlockDisposition(RHS, BB);
7510    if (RD == DoesNotDominateBlock)
7511      return DoesNotDominateBlock;
7512    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7513      ProperlyDominatesBlock : DominatesBlock;
7514  }
7515  case scUnknown:
7516    if (Instruction *I =
7517          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7518      if (I->getParent() == BB)
7519        return DominatesBlock;
7520      if (DT->properlyDominates(I->getParent(), BB))
7521        return ProperlyDominatesBlock;
7522      return DoesNotDominateBlock;
7523    }
7524    return ProperlyDominatesBlock;
7525  case scCouldNotCompute:
7526    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7527  default:
7528    llvm_unreachable("Unknown SCEV kind!");
7529  }
7530}
7531
7532bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7533  return getBlockDisposition(S, BB) >= DominatesBlock;
7534}
7535
7536bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7537  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
7538}
7539
7540namespace {
7541// Search for a SCEV expression node within an expression tree.
7542// Implements SCEVTraversal::Visitor.
7543struct SCEVSearch {
7544  const SCEV *Node;
7545  bool IsFound;
7546
7547  SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7548
7549  bool follow(const SCEV *S) {
7550    IsFound |= (S == Node);
7551    return !IsFound;
7552  }
7553  bool isDone() const { return IsFound; }
7554};
7555}
7556
7557bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
7558  SCEVSearch Search(Op);
7559  visitAll(S, Search);
7560  return Search.IsFound;
7561}
7562
7563void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7564  ValuesAtScopes.erase(S);
7565  LoopDispositions.erase(S);
7566  BlockDispositions.erase(S);
7567  UnsignedRanges.erase(S);
7568  SignedRanges.erase(S);
7569
7570  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7571         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7572    BackedgeTakenInfo &BEInfo = I->second;
7573    if (BEInfo.hasOperand(S, this)) {
7574      BEInfo.clear();
7575      BackedgeTakenCounts.erase(I++);
7576    }
7577    else
7578      ++I;
7579  }
7580}
7581
7582typedef DenseMap<const Loop *, std::string> VerifyMap;
7583
7584/// replaceSubString - Replaces all occurences of From in Str with To.
7585static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7586  size_t Pos = 0;
7587  while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7588    Str.replace(Pos, From.size(), To.data(), To.size());
7589    Pos += To.size();
7590  }
7591}
7592
7593/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7594static void
7595getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7596  for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7597    getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7598
7599    std::string &S = Map[L];
7600    if (S.empty()) {
7601      raw_string_ostream OS(S);
7602      SE.getBackedgeTakenCount(L)->print(OS);
7603
7604      // false and 0 are semantically equivalent. This can happen in dead loops.
7605      replaceSubString(OS.str(), "false", "0");
7606      // Remove wrap flags, their use in SCEV is highly fragile.
7607      // FIXME: Remove this when SCEV gets smarter about them.
7608      replaceSubString(OS.str(), "<nw>", "");
7609      replaceSubString(OS.str(), "<nsw>", "");
7610      replaceSubString(OS.str(), "<nuw>", "");
7611    }
7612  }
7613}
7614
7615void ScalarEvolution::verifyAnalysis() const {
7616  if (!VerifySCEV)
7617    return;
7618
7619  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7620
7621  // Gather stringified backedge taken counts for all loops using SCEV's caches.
7622  // FIXME: It would be much better to store actual values instead of strings,
7623  //        but SCEV pointers will change if we drop the caches.
7624  VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7625  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7626    getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7627
7628  // Gather stringified backedge taken counts for all loops without using
7629  // SCEV's caches.
7630  SE.releaseMemory();
7631  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7632    getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7633
7634  // Now compare whether they're the same with and without caches. This allows
7635  // verifying that no pass changed the cache.
7636  assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7637         "New loops suddenly appeared!");
7638
7639  for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7640                           OldE = BackedgeDumpsOld.end(),
7641                           NewI = BackedgeDumpsNew.begin();
7642       OldI != OldE; ++OldI, ++NewI) {
7643    assert(OldI->first == NewI->first && "Loop order changed!");
7644
7645    // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7646    // changes.
7647    // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
7648    // means that a pass is buggy or SCEV has to learn a new pattern but is
7649    // usually not harmful.
7650    if (OldI->second != NewI->second &&
7651        OldI->second.find("undef") == std::string::npos &&
7652        NewI->second.find("undef") == std::string::npos &&
7653        OldI->second != "***COULDNOTCOMPUTE***" &&
7654        NewI->second != "***COULDNOTCOMPUTE***") {
7655      dbgs() << "SCEVValidator: SCEV for loop '"
7656             << OldI->first->getHeader()->getName()
7657             << "' changed from '" << OldI->second
7658             << "' to '" << NewI->second << "'!\n";
7659      std::abort();
7660    }
7661  }
7662
7663  // TODO: Verify more things.
7664}
7665