ScalarEvolution.cpp revision 5c6fc1cab774244fba2746b84f2b86d71b897733
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/ConstantRange.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/ErrorHandling.h"
81#include "llvm/Support/GetElementPtrTypeIterator.h"
82#include "llvm/Support/InstIterator.h"
83#include "llvm/Support/MathExtras.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/STLExtras.h"
87#include "llvm/ADT/SmallPtrSet.h"
88#include <algorithm>
89using namespace llvm;
90
91STATISTIC(NumArrayLenItCounts,
92          "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94          "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96          "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98          "Number of loops with trip counts computed by force");
99
100static cl::opt<unsigned>
101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102                        cl::desc("Maximum number of iterations SCEV will "
103                                 "symbolically execute a constant "
104                                 "derived loop"),
105                        cl::init(100));
106
107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108                "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112                "Scalar Evolution Analysis", false, true)
113char ScalarEvolution::ID = 0;
114
115//===----------------------------------------------------------------------===//
116//                           SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
122
123void SCEV::dump() const {
124  print(dbgs());
125  dbgs() << '\n';
126}
127
128void SCEV::print(raw_ostream &OS) const {
129  switch (getSCEVType()) {
130  case scConstant:
131    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132    return;
133  case scTruncate: {
134    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135    const SCEV *Op = Trunc->getOperand();
136    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137       << *Trunc->getType() << ")";
138    return;
139  }
140  case scZeroExtend: {
141    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142    const SCEV *Op = ZExt->getOperand();
143    OS << "(zext " << *Op->getType() << " " << *Op << " to "
144       << *ZExt->getType() << ")";
145    return;
146  }
147  case scSignExtend: {
148    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149    const SCEV *Op = SExt->getOperand();
150    OS << "(sext " << *Op->getType() << " " << *Op << " to "
151       << *SExt->getType() << ")";
152    return;
153  }
154  case scAddRecExpr: {
155    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156    OS << "{" << *AR->getOperand(0);
157    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158      OS << ",+," << *AR->getOperand(i);
159    OS << "}<";
160    if (AR->hasNoUnsignedWrap())
161      OS << "nuw><";
162    if (AR->hasNoSignedWrap())
163      OS << "nsw><";
164    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165    OS << ">";
166    return;
167  }
168  case scAddExpr:
169  case scMulExpr:
170  case scUMaxExpr:
171  case scSMaxExpr: {
172    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
173    const char *OpStr = 0;
174    switch (NAry->getSCEVType()) {
175    case scAddExpr: OpStr = " + "; break;
176    case scMulExpr: OpStr = " * "; break;
177    case scUMaxExpr: OpStr = " umax "; break;
178    case scSMaxExpr: OpStr = " smax "; break;
179    }
180    OS << "(";
181    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182         I != E; ++I) {
183      OS << **I;
184      if (llvm::next(I) != E)
185        OS << OpStr;
186    }
187    OS << ")";
188    return;
189  }
190  case scUDivExpr: {
191    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193    return;
194  }
195  case scUnknown: {
196    const SCEVUnknown *U = cast<SCEVUnknown>(this);
197    const Type *AllocTy;
198    if (U->isSizeOf(AllocTy)) {
199      OS << "sizeof(" << *AllocTy << ")";
200      return;
201    }
202    if (U->isAlignOf(AllocTy)) {
203      OS << "alignof(" << *AllocTy << ")";
204      return;
205    }
206
207    const Type *CTy;
208    Constant *FieldNo;
209    if (U->isOffsetOf(CTy, FieldNo)) {
210      OS << "offsetof(" << *CTy << ", ";
211      WriteAsOperand(OS, FieldNo, false);
212      OS << ")";
213      return;
214    }
215
216    // Otherwise just print it normally.
217    WriteAsOperand(OS, U->getValue(), false);
218    return;
219  }
220  case scCouldNotCompute:
221    OS << "***COULDNOTCOMPUTE***";
222    return;
223  default: break;
224  }
225  llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229  switch (getSCEVType()) {
230  case scConstant:
231    return cast<SCEVConstant>(this)->getType();
232  case scTruncate:
233  case scZeroExtend:
234  case scSignExtend:
235    return cast<SCEVCastExpr>(this)->getType();
236  case scAddRecExpr:
237  case scMulExpr:
238  case scUMaxExpr:
239  case scSMaxExpr:
240    return cast<SCEVNAryExpr>(this)->getType();
241  case scAddExpr:
242    return cast<SCEVAddExpr>(this)->getType();
243  case scUDivExpr:
244    return cast<SCEVUDivExpr>(this)->getType();
245  case scUnknown:
246    return cast<SCEVUnknown>(this)->getType();
247  case scCouldNotCompute:
248    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249    return 0;
250  default: break;
251  }
252  llvm_unreachable("Unknown SCEV kind!");
253  return 0;
254}
255
256bool SCEV::isZero() const {
257  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258    return SC->getValue()->isZero();
259  return false;
260}
261
262bool SCEV::isOne() const {
263  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264    return SC->getValue()->isOne();
265  return false;
266}
267
268bool SCEV::isAllOnesValue() const {
269  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270    return SC->getValue()->isAllOnesValue();
271  return false;
272}
273
274SCEVCouldNotCompute::SCEVCouldNotCompute() :
275  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
276
277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278  return S->getSCEVType() == scCouldNotCompute;
279}
280
281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
282  FoldingSetNodeID ID;
283  ID.AddInteger(scConstant);
284  ID.AddPointer(V);
285  void *IP = 0;
286  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
287  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
288  UniqueSCEVs.InsertNode(S, IP);
289  return S;
290}
291
292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
293  return getConstant(ConstantInt::get(getContext(), Val));
294}
295
296const SCEV *
297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
298  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299  return getConstant(ConstantInt::get(ITy, V, isSigned));
300}
301
302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
303                           unsigned SCEVTy, const SCEV *op, const Type *ty)
304  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
305
306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
307                                   const SCEV *op, const Type *ty)
308  : SCEVCastExpr(ID, scTruncate, op, ty) {
309  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
311         "Cannot truncate non-integer value!");
312}
313
314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
315                                       const SCEV *op, const Type *ty)
316  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
317  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
319         "Cannot zero extend non-integer value!");
320}
321
322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
323                                       const SCEV *op, const Type *ty)
324  : SCEVCastExpr(ID, scSignExtend, op, ty) {
325  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
327         "Cannot sign extend non-integer value!");
328}
329
330void SCEVUnknown::deleted() {
331  // Clear this SCEVUnknown from various maps.
332  SE->forgetMemoizedResults(this);
333
334  // Remove this SCEVUnknown from the uniquing map.
335  SE->UniqueSCEVs.RemoveNode(this);
336
337  // Release the value.
338  setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
342  // Clear this SCEVUnknown from various maps.
343  SE->forgetMemoizedResults(this);
344
345  // Remove this SCEVUnknown from the uniquing map.
346  SE->UniqueSCEVs.RemoveNode(this);
347
348  // Update this SCEVUnknown to point to the new value. This is needed
349  // because there may still be outstanding SCEVs which still point to
350  // this SCEVUnknown.
351  setValPtr(New);
352}
353
354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
355  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
356    if (VCE->getOpcode() == Instruction::PtrToInt)
357      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
358        if (CE->getOpcode() == Instruction::GetElementPtr &&
359            CE->getOperand(0)->isNullValue() &&
360            CE->getNumOperands() == 2)
361          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362            if (CI->isOne()) {
363              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364                                 ->getElementType();
365              return true;
366            }
367
368  return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
372  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
373    if (VCE->getOpcode() == Instruction::PtrToInt)
374      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
375        if (CE->getOpcode() == Instruction::GetElementPtr &&
376            CE->getOperand(0)->isNullValue()) {
377          const Type *Ty =
378            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379          if (const StructType *STy = dyn_cast<StructType>(Ty))
380            if (!STy->isPacked() &&
381                CE->getNumOperands() == 3 &&
382                CE->getOperand(1)->isNullValue()) {
383              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384                if (CI->isOne() &&
385                    STy->getNumElements() == 2 &&
386                    STy->getElementType(0)->isIntegerTy(1)) {
387                  AllocTy = STy->getElementType(1);
388                  return true;
389                }
390            }
391        }
392
393  return false;
394}
395
396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
397  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
398    if (VCE->getOpcode() == Instruction::PtrToInt)
399      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400        if (CE->getOpcode() == Instruction::GetElementPtr &&
401            CE->getNumOperands() == 3 &&
402            CE->getOperand(0)->isNullValue() &&
403            CE->getOperand(1)->isNullValue()) {
404          const Type *Ty =
405            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406          // Ignore vector types here so that ScalarEvolutionExpander doesn't
407          // emit getelementptrs that index into vectors.
408          if (Ty->isStructTy() || Ty->isArrayTy()) {
409            CTy = Ty;
410            FieldNo = CE->getOperand(2);
411            return true;
412          }
413        }
414
415  return false;
416}
417
418//===----------------------------------------------------------------------===//
419//                               SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424  /// than the complexity of the RHS.  This comparator is used to canonicalize
425  /// expressions.
426  class SCEVComplexityCompare {
427    const LoopInfo *const LI;
428  public:
429    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
430
431    // Return true or false if LHS is less than, or at least RHS, respectively.
432    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
433      return compare(LHS, RHS) < 0;
434    }
435
436    // Return negative, zero, or positive, if LHS is less than, equal to, or
437    // greater than RHS, respectively. A three-way result allows recursive
438    // comparisons to be more efficient.
439    int compare(const SCEV *LHS, const SCEV *RHS) const {
440      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441      if (LHS == RHS)
442        return 0;
443
444      // Primarily, sort the SCEVs by their getSCEVType().
445      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446      if (LType != RType)
447        return (int)LType - (int)RType;
448
449      // Aside from the getSCEVType() ordering, the particular ordering
450      // isn't very important except that it's beneficial to be consistent,
451      // so that (a + b) and (b + a) don't end up as different expressions.
452      switch (LType) {
453      case scUnknown: {
454        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
455        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
456
457        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458        // not as complete as it could be.
459        const Value *LV = LU->getValue(), *RV = RU->getValue();
460
461        // Order pointer values after integer values. This helps SCEVExpander
462        // form GEPs.
463        bool LIsPointer = LV->getType()->isPointerTy(),
464             RIsPointer = RV->getType()->isPointerTy();
465        if (LIsPointer != RIsPointer)
466          return (int)LIsPointer - (int)RIsPointer;
467
468        // Compare getValueID values.
469        unsigned LID = LV->getValueID(),
470                 RID = RV->getValueID();
471        if (LID != RID)
472          return (int)LID - (int)RID;
473
474        // Sort arguments by their position.
475        if (const Argument *LA = dyn_cast<Argument>(LV)) {
476          const Argument *RA = cast<Argument>(RV);
477          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478          return (int)LArgNo - (int)RArgNo;
479        }
480
481        // For instructions, compare their loop depth, and their operand
482        // count.  This is pretty loose.
483        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484          const Instruction *RInst = cast<Instruction>(RV);
485
486          // Compare loop depths.
487          const BasicBlock *LParent = LInst->getParent(),
488                           *RParent = RInst->getParent();
489          if (LParent != RParent) {
490            unsigned LDepth = LI->getLoopDepth(LParent),
491                     RDepth = LI->getLoopDepth(RParent);
492            if (LDepth != RDepth)
493              return (int)LDepth - (int)RDepth;
494          }
495
496          // Compare the number of operands.
497          unsigned LNumOps = LInst->getNumOperands(),
498                   RNumOps = RInst->getNumOperands();
499          return (int)LNumOps - (int)RNumOps;
500        }
501
502        return 0;
503      }
504
505      case scConstant: {
506        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
507        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
508
509        // Compare constant values.
510        const APInt &LA = LC->getValue()->getValue();
511        const APInt &RA = RC->getValue()->getValue();
512        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
513        if (LBitWidth != RBitWidth)
514          return (int)LBitWidth - (int)RBitWidth;
515        return LA.ult(RA) ? -1 : 1;
516      }
517
518      case scAddRecExpr: {
519        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
520        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
521
522        // Compare addrec loop depths.
523        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524        if (LLoop != RLoop) {
525          unsigned LDepth = LLoop->getLoopDepth(),
526                   RDepth = RLoop->getLoopDepth();
527          if (LDepth != RDepth)
528            return (int)LDepth - (int)RDepth;
529        }
530
531        // Addrec complexity grows with operand count.
532        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533        if (LNumOps != RNumOps)
534          return (int)LNumOps - (int)RNumOps;
535
536        // Lexicographically compare.
537        for (unsigned i = 0; i != LNumOps; ++i) {
538          long X = compare(LA->getOperand(i), RA->getOperand(i));
539          if (X != 0)
540            return X;
541        }
542
543        return 0;
544      }
545
546      case scAddExpr:
547      case scMulExpr:
548      case scSMaxExpr:
549      case scUMaxExpr: {
550        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
551        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
552
553        // Lexicographically compare n-ary expressions.
554        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555        for (unsigned i = 0; i != LNumOps; ++i) {
556          if (i >= RNumOps)
557            return 1;
558          long X = compare(LC->getOperand(i), RC->getOperand(i));
559          if (X != 0)
560            return X;
561        }
562        return (int)LNumOps - (int)RNumOps;
563      }
564
565      case scUDivExpr: {
566        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
567        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
568
569        // Lexicographically compare udiv expressions.
570        long X = compare(LC->getLHS(), RC->getLHS());
571        if (X != 0)
572          return X;
573        return compare(LC->getRHS(), RC->getRHS());
574      }
575
576      case scTruncate:
577      case scZeroExtend:
578      case scSignExtend: {
579        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
580        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
581
582        // Compare cast expressions by operand.
583        return compare(LC->getOperand(), RC->getOperand());
584      }
585
586      default:
587        break;
588      }
589
590      llvm_unreachable("Unknown SCEV kind!");
591      return 0;
592    }
593  };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
601/// Note that we go take special precautions to ensure that we get deterministic
602/// results from this routine.  In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
607                              LoopInfo *LI) {
608  if (Ops.size() < 2) return;  // Noop
609  if (Ops.size() == 2) {
610    // This is the common case, which also happens to be trivially simple.
611    // Special case it.
612    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613    if (SCEVComplexityCompare(LI)(RHS, LHS))
614      std::swap(LHS, RHS);
615    return;
616  }
617
618  // Do the rough sort by complexity.
619  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621  // Now that we are sorted by complexity, group elements of the same
622  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
623  // be extremely short in practice.  Note that we take this approach because we
624  // do not want to depend on the addresses of the objects we are grouping.
625  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626    const SCEV *S = Ops[i];
627    unsigned Complexity = S->getSCEVType();
628
629    // If there are any objects of the same complexity and same value as this
630    // one, group them.
631    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632      if (Ops[j] == S) { // Found a duplicate.
633        // Move it to immediately after i'th element.
634        std::swap(Ops[i+1], Ops[j]);
635        ++i;   // no need to rescan it.
636        if (i == e-2) return;  // Done!
637      }
638    }
639  }
640}
641
642
643
644//===----------------------------------------------------------------------===//
645//                      Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
648/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
649/// Assume, K > 0.
650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
651                                       ScalarEvolution &SE,
652                                       const Type* ResultTy) {
653  // Handle the simplest case efficiently.
654  if (K == 1)
655    return SE.getTruncateOrZeroExtend(It, ResultTy);
656
657  // We are using the following formula for BC(It, K):
658  //
659  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660  //
661  // Suppose, W is the bitwidth of the return value.  We must be prepared for
662  // overflow.  Hence, we must assure that the result of our computation is
663  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
664  // safe in modular arithmetic.
665  //
666  // However, this code doesn't use exactly that formula; the formula it uses
667  // is something like the following, where T is the number of factors of 2 in
668  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669  // exponentiation:
670  //
671  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
672  //
673  // This formula is trivially equivalent to the previous formula.  However,
674  // this formula can be implemented much more efficiently.  The trick is that
675  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676  // arithmetic.  To do exact division in modular arithmetic, all we have
677  // to do is multiply by the inverse.  Therefore, this step can be done at
678  // width W.
679  //
680  // The next issue is how to safely do the division by 2^T.  The way this
681  // is done is by doing the multiplication step at a width of at least W + T
682  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
683  // when we perform the division by 2^T (which is equivalent to a right shift
684  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
685  // truncated out after the division by 2^T.
686  //
687  // In comparison to just directly using the first formula, this technique
688  // is much more efficient; using the first formula requires W * K bits,
689  // but this formula less than W + K bits. Also, the first formula requires
690  // a division step, whereas this formula only requires multiplies and shifts.
691  //
692  // It doesn't matter whether the subtraction step is done in the calculation
693  // width or the input iteration count's width; if the subtraction overflows,
694  // the result must be zero anyway.  We prefer here to do it in the width of
695  // the induction variable because it helps a lot for certain cases; CodeGen
696  // isn't smart enough to ignore the overflow, which leads to much less
697  // efficient code if the width of the subtraction is wider than the native
698  // register width.
699  //
700  // (It's possible to not widen at all by pulling out factors of 2 before
701  // the multiplication; for example, K=2 can be calculated as
702  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703  // extra arithmetic, so it's not an obvious win, and it gets
704  // much more complicated for K > 3.)
705
706  // Protection from insane SCEVs; this bound is conservative,
707  // but it probably doesn't matter.
708  if (K > 1000)
709    return SE.getCouldNotCompute();
710
711  unsigned W = SE.getTypeSizeInBits(ResultTy);
712
713  // Calculate K! / 2^T and T; we divide out the factors of two before
714  // multiplying for calculating K! / 2^T to avoid overflow.
715  // Other overflow doesn't matter because we only care about the bottom
716  // W bits of the result.
717  APInt OddFactorial(W, 1);
718  unsigned T = 1;
719  for (unsigned i = 3; i <= K; ++i) {
720    APInt Mult(W, i);
721    unsigned TwoFactors = Mult.countTrailingZeros();
722    T += TwoFactors;
723    Mult = Mult.lshr(TwoFactors);
724    OddFactorial *= Mult;
725  }
726
727  // We need at least W + T bits for the multiplication step
728  unsigned CalculationBits = W + T;
729
730  // Calculate 2^T, at width T+W.
731  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733  // Calculate the multiplicative inverse of K! / 2^T;
734  // this multiplication factor will perform the exact division by
735  // K! / 2^T.
736  APInt Mod = APInt::getSignedMinValue(W+1);
737  APInt MultiplyFactor = OddFactorial.zext(W+1);
738  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739  MultiplyFactor = MultiplyFactor.trunc(W);
740
741  // Calculate the product, at width T+W
742  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743                                                      CalculationBits);
744  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
745  for (unsigned i = 1; i != K; ++i) {
746    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
747    Dividend = SE.getMulExpr(Dividend,
748                             SE.getTruncateOrZeroExtend(S, CalculationTy));
749  }
750
751  // Divide by 2^T
752  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
753
754  // Truncate the result, and divide by K! / 2^T.
755
756  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
758}
759
760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number.  We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
765///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
766///
767/// where BC(It, k) stands for binomial coefficient.
768///
769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
770                                                ScalarEvolution &SE) const {
771  const SCEV *Result = getStart();
772  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
773    // The computation is correct in the face of overflow provided that the
774    // multiplication is performed _after_ the evaluation of the binomial
775    // coefficient.
776    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
777    if (isa<SCEVCouldNotCompute>(Coeff))
778      return Coeff;
779
780    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
781  }
782  return Result;
783}
784
785//===----------------------------------------------------------------------===//
786//                    SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
790                                             const Type *Ty) {
791  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
792         "This is not a truncating conversion!");
793  assert(isSCEVable(Ty) &&
794         "This is not a conversion to a SCEVable type!");
795  Ty = getEffectiveSCEVType(Ty);
796
797  FoldingSetNodeID ID;
798  ID.AddInteger(scTruncate);
799  ID.AddPointer(Op);
800  ID.AddPointer(Ty);
801  void *IP = 0;
802  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
804  // Fold if the operand is constant.
805  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
806    return getConstant(
807      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808                                               getEffectiveSCEVType(Ty))));
809
810  // trunc(trunc(x)) --> trunc(x)
811  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
812    return getTruncateExpr(ST->getOperand(), Ty);
813
814  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
815  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
816    return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
819  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
820    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
822  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823  // eliminate all the truncates.
824  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825    SmallVector<const SCEV *, 4> Operands;
826    bool hasTrunc = false;
827    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829      hasTrunc = isa<SCEVTruncateExpr>(S);
830      Operands.push_back(S);
831    }
832    if (!hasTrunc)
833      return getAddExpr(Operands, false, false);
834  }
835
836  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
837  // eliminate all the truncates.
838  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
839    SmallVector<const SCEV *, 4> Operands;
840    bool hasTrunc = false;
841    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
842      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
843      hasTrunc = isa<SCEVTruncateExpr>(S);
844      Operands.push_back(S);
845    }
846    if (!hasTrunc)
847      return getMulExpr(Operands, false, false);
848  }
849
850  // If the input value is a chrec scev, truncate the chrec's operands.
851  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
852    SmallVector<const SCEV *, 4> Operands;
853    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
854      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855    return getAddRecExpr(Operands, AddRec->getLoop());
856  }
857
858  // As a special case, fold trunc(undef) to undef. We don't want to
859  // know too much about SCEVUnknowns, but this special case is handy
860  // and harmless.
861  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862    if (isa<UndefValue>(U->getValue()))
863      return getSCEV(UndefValue::get(Ty));
864
865  // The cast wasn't folded; create an explicit cast node. We can reuse
866  // the existing insert position since if we get here, we won't have
867  // made any changes which would invalidate it.
868  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869                                                 Op, Ty);
870  UniqueSCEVs.InsertNode(S, IP);
871  return S;
872}
873
874const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
875                                               const Type *Ty) {
876  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
877         "This is not an extending conversion!");
878  assert(isSCEVable(Ty) &&
879         "This is not a conversion to a SCEVable type!");
880  Ty = getEffectiveSCEVType(Ty);
881
882  // Fold if the operand is constant.
883  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884    return getConstant(
885      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886                                              getEffectiveSCEVType(Ty))));
887
888  // zext(zext(x)) --> zext(x)
889  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
890    return getZeroExtendExpr(SZ->getOperand(), Ty);
891
892  // Before doing any expensive analysis, check to see if we've already
893  // computed a SCEV for this Op and Ty.
894  FoldingSetNodeID ID;
895  ID.AddInteger(scZeroExtend);
896  ID.AddPointer(Op);
897  ID.AddPointer(Ty);
898  void *IP = 0;
899  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
900
901  // If the input value is a chrec scev, and we can prove that the value
902  // did not overflow the old, smaller, value, we can zero extend all of the
903  // operands (often constants).  This allows analysis of something like
904  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
905  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
906    if (AR->isAffine()) {
907      const SCEV *Start = AR->getStart();
908      const SCEV *Step = AR->getStepRecurrence(*this);
909      unsigned BitWidth = getTypeSizeInBits(AR->getType());
910      const Loop *L = AR->getLoop();
911
912      // If we have special knowledge that this addrec won't overflow,
913      // we don't need to do any further analysis.
914      if (AR->hasNoUnsignedWrap())
915        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
916                             getZeroExtendExpr(Step, Ty),
917                             L);
918
919      // Check whether the backedge-taken count is SCEVCouldNotCompute.
920      // Note that this serves two purposes: It filters out loops that are
921      // simply not analyzable, and it covers the case where this code is
922      // being called from within backedge-taken count analysis, such that
923      // attempting to ask for the backedge-taken count would likely result
924      // in infinite recursion. In the later case, the analysis code will
925      // cope with a conservative value, and it will take care to purge
926      // that value once it has finished.
927      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
928      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
929        // Manually compute the final value for AR, checking for
930        // overflow.
931
932        // Check whether the backedge-taken count can be losslessly casted to
933        // the addrec's type. The count is always unsigned.
934        const SCEV *CastedMaxBECount =
935          getTruncateOrZeroExtend(MaxBECount, Start->getType());
936        const SCEV *RecastedMaxBECount =
937          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
938        if (MaxBECount == RecastedMaxBECount) {
939          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
940          // Check whether Start+Step*MaxBECount has no unsigned overflow.
941          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
942          const SCEV *Add = getAddExpr(Start, ZMul);
943          const SCEV *OperandExtendedAdd =
944            getAddExpr(getZeroExtendExpr(Start, WideTy),
945                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
946                                  getZeroExtendExpr(Step, WideTy)));
947          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
948            // Return the expression with the addrec on the outside.
949            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
950                                 getZeroExtendExpr(Step, Ty),
951                                 L);
952
953          // Similar to above, only this time treat the step value as signed.
954          // This covers loops that count down.
955          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
956          Add = getAddExpr(Start, SMul);
957          OperandExtendedAdd =
958            getAddExpr(getZeroExtendExpr(Start, WideTy),
959                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
960                                  getSignExtendExpr(Step, WideTy)));
961          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
962            // Return the expression with the addrec on the outside.
963            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964                                 getSignExtendExpr(Step, Ty),
965                                 L);
966        }
967
968        // If the backedge is guarded by a comparison with the pre-inc value
969        // the addrec is safe. Also, if the entry is guarded by a comparison
970        // with the start value and the backedge is guarded by a comparison
971        // with the post-inc value, the addrec is safe.
972        if (isKnownPositive(Step)) {
973          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
974                                      getUnsignedRange(Step).getUnsignedMax());
975          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
976              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
977               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
978                                           AR->getPostIncExpr(*this), N)))
979            // Return the expression with the addrec on the outside.
980            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
981                                 getZeroExtendExpr(Step, Ty),
982                                 L);
983        } else if (isKnownNegative(Step)) {
984          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
985                                      getSignedRange(Step).getSignedMin());
986          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
987              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
988               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
989                                           AR->getPostIncExpr(*this), N)))
990            // Return the expression with the addrec on the outside.
991            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992                                 getSignExtendExpr(Step, Ty),
993                                 L);
994        }
995      }
996    }
997
998  // The cast wasn't folded; create an explicit cast node.
999  // Recompute the insert position, as it may have been invalidated.
1000  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1001  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1002                                                   Op, Ty);
1003  UniqueSCEVs.InsertNode(S, IP);
1004  return S;
1005}
1006
1007const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1008                                               const Type *Ty) {
1009  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1010         "This is not an extending conversion!");
1011  assert(isSCEVable(Ty) &&
1012         "This is not a conversion to a SCEVable type!");
1013  Ty = getEffectiveSCEVType(Ty);
1014
1015  // Fold if the operand is constant.
1016  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1017    return getConstant(
1018      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1019                                              getEffectiveSCEVType(Ty))));
1020
1021  // sext(sext(x)) --> sext(x)
1022  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1023    return getSignExtendExpr(SS->getOperand(), Ty);
1024
1025  // sext(zext(x)) --> zext(x)
1026  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1027    return getZeroExtendExpr(SZ->getOperand(), Ty);
1028
1029  // Before doing any expensive analysis, check to see if we've already
1030  // computed a SCEV for this Op and Ty.
1031  FoldingSetNodeID ID;
1032  ID.AddInteger(scSignExtend);
1033  ID.AddPointer(Op);
1034  ID.AddPointer(Ty);
1035  void *IP = 0;
1036  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1037
1038  // If the input value is a chrec scev, and we can prove that the value
1039  // did not overflow the old, smaller, value, we can sign extend all of the
1040  // operands (often constants).  This allows analysis of something like
1041  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1042  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1043    if (AR->isAffine()) {
1044      const SCEV *Start = AR->getStart();
1045      const SCEV *Step = AR->getStepRecurrence(*this);
1046      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1047      const Loop *L = AR->getLoop();
1048
1049      // If we have special knowledge that this addrec won't overflow,
1050      // we don't need to do any further analysis.
1051      if (AR->hasNoSignedWrap())
1052        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1053                             getSignExtendExpr(Step, Ty),
1054                             L);
1055
1056      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1057      // Note that this serves two purposes: It filters out loops that are
1058      // simply not analyzable, and it covers the case where this code is
1059      // being called from within backedge-taken count analysis, such that
1060      // attempting to ask for the backedge-taken count would likely result
1061      // in infinite recursion. In the later case, the analysis code will
1062      // cope with a conservative value, and it will take care to purge
1063      // that value once it has finished.
1064      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1065      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1066        // Manually compute the final value for AR, checking for
1067        // overflow.
1068
1069        // Check whether the backedge-taken count can be losslessly casted to
1070        // the addrec's type. The count is always unsigned.
1071        const SCEV *CastedMaxBECount =
1072          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1073        const SCEV *RecastedMaxBECount =
1074          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1075        if (MaxBECount == RecastedMaxBECount) {
1076          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1077          // Check whether Start+Step*MaxBECount has no signed overflow.
1078          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1079          const SCEV *Add = getAddExpr(Start, SMul);
1080          const SCEV *OperandExtendedAdd =
1081            getAddExpr(getSignExtendExpr(Start, WideTy),
1082                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1083                                  getSignExtendExpr(Step, WideTy)));
1084          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1085            // Return the expression with the addrec on the outside.
1086            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1087                                 getSignExtendExpr(Step, Ty),
1088                                 L);
1089
1090          // Similar to above, only this time treat the step value as unsigned.
1091          // This covers loops that count up with an unsigned step.
1092          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1093          Add = getAddExpr(Start, UMul);
1094          OperandExtendedAdd =
1095            getAddExpr(getSignExtendExpr(Start, WideTy),
1096                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1097                                  getZeroExtendExpr(Step, WideTy)));
1098          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1099            // Return the expression with the addrec on the outside.
1100            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1101                                 getZeroExtendExpr(Step, Ty),
1102                                 L);
1103        }
1104
1105        // If the backedge is guarded by a comparison with the pre-inc value
1106        // the addrec is safe. Also, if the entry is guarded by a comparison
1107        // with the start value and the backedge is guarded by a comparison
1108        // with the post-inc value, the addrec is safe.
1109        if (isKnownPositive(Step)) {
1110          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1111                                      getSignedRange(Step).getSignedMax());
1112          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1113              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1114               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1115                                           AR->getPostIncExpr(*this), N)))
1116            // Return the expression with the addrec on the outside.
1117            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1118                                 getSignExtendExpr(Step, Ty),
1119                                 L);
1120        } else if (isKnownNegative(Step)) {
1121          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1122                                      getSignedRange(Step).getSignedMin());
1123          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1124              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1125               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1126                                           AR->getPostIncExpr(*this), N)))
1127            // Return the expression with the addrec on the outside.
1128            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1129                                 getSignExtendExpr(Step, Ty),
1130                                 L);
1131        }
1132      }
1133    }
1134
1135  // The cast wasn't folded; create an explicit cast node.
1136  // Recompute the insert position, as it may have been invalidated.
1137  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1138  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1139                                                   Op, Ty);
1140  UniqueSCEVs.InsertNode(S, IP);
1141  return S;
1142}
1143
1144/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1145/// unspecified bits out to the given type.
1146///
1147const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1148                                              const Type *Ty) {
1149  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1150         "This is not an extending conversion!");
1151  assert(isSCEVable(Ty) &&
1152         "This is not a conversion to a SCEVable type!");
1153  Ty = getEffectiveSCEVType(Ty);
1154
1155  // Sign-extend negative constants.
1156  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1157    if (SC->getValue()->getValue().isNegative())
1158      return getSignExtendExpr(Op, Ty);
1159
1160  // Peel off a truncate cast.
1161  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1162    const SCEV *NewOp = T->getOperand();
1163    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1164      return getAnyExtendExpr(NewOp, Ty);
1165    return getTruncateOrNoop(NewOp, Ty);
1166  }
1167
1168  // Next try a zext cast. If the cast is folded, use it.
1169  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1170  if (!isa<SCEVZeroExtendExpr>(ZExt))
1171    return ZExt;
1172
1173  // Next try a sext cast. If the cast is folded, use it.
1174  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1175  if (!isa<SCEVSignExtendExpr>(SExt))
1176    return SExt;
1177
1178  // Force the cast to be folded into the operands of an addrec.
1179  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1180    SmallVector<const SCEV *, 4> Ops;
1181    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1182         I != E; ++I)
1183      Ops.push_back(getAnyExtendExpr(*I, Ty));
1184    return getAddRecExpr(Ops, AR->getLoop());
1185  }
1186
1187  // As a special case, fold anyext(undef) to undef. We don't want to
1188  // know too much about SCEVUnknowns, but this special case is handy
1189  // and harmless.
1190  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1191    if (isa<UndefValue>(U->getValue()))
1192      return getSCEV(UndefValue::get(Ty));
1193
1194  // If the expression is obviously signed, use the sext cast value.
1195  if (isa<SCEVSMaxExpr>(Op))
1196    return SExt;
1197
1198  // Absent any other information, use the zext cast value.
1199  return ZExt;
1200}
1201
1202/// CollectAddOperandsWithScales - Process the given Ops list, which is
1203/// a list of operands to be added under the given scale, update the given
1204/// map. This is a helper function for getAddRecExpr. As an example of
1205/// what it does, given a sequence of operands that would form an add
1206/// expression like this:
1207///
1208///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1209///
1210/// where A and B are constants, update the map with these values:
1211///
1212///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1213///
1214/// and add 13 + A*B*29 to AccumulatedConstant.
1215/// This will allow getAddRecExpr to produce this:
1216///
1217///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1218///
1219/// This form often exposes folding opportunities that are hidden in
1220/// the original operand list.
1221///
1222/// Return true iff it appears that any interesting folding opportunities
1223/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1224/// the common case where no interesting opportunities are present, and
1225/// is also used as a check to avoid infinite recursion.
1226///
1227static bool
1228CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1229                             SmallVector<const SCEV *, 8> &NewOps,
1230                             APInt &AccumulatedConstant,
1231                             const SCEV *const *Ops, size_t NumOperands,
1232                             const APInt &Scale,
1233                             ScalarEvolution &SE) {
1234  bool Interesting = false;
1235
1236  // Iterate over the add operands. They are sorted, with constants first.
1237  unsigned i = 0;
1238  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1239    ++i;
1240    // Pull a buried constant out to the outside.
1241    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1242      Interesting = true;
1243    AccumulatedConstant += Scale * C->getValue()->getValue();
1244  }
1245
1246  // Next comes everything else. We're especially interested in multiplies
1247  // here, but they're in the middle, so just visit the rest with one loop.
1248  for (; i != NumOperands; ++i) {
1249    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1250    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1251      APInt NewScale =
1252        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1253      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1254        // A multiplication of a constant with another add; recurse.
1255        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1256        Interesting |=
1257          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1258                                       Add->op_begin(), Add->getNumOperands(),
1259                                       NewScale, SE);
1260      } else {
1261        // A multiplication of a constant with some other value. Update
1262        // the map.
1263        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1264        const SCEV *Key = SE.getMulExpr(MulOps);
1265        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1266          M.insert(std::make_pair(Key, NewScale));
1267        if (Pair.second) {
1268          NewOps.push_back(Pair.first->first);
1269        } else {
1270          Pair.first->second += NewScale;
1271          // The map already had an entry for this value, which may indicate
1272          // a folding opportunity.
1273          Interesting = true;
1274        }
1275      }
1276    } else {
1277      // An ordinary operand. Update the map.
1278      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1279        M.insert(std::make_pair(Ops[i], Scale));
1280      if (Pair.second) {
1281        NewOps.push_back(Pair.first->first);
1282      } else {
1283        Pair.first->second += Scale;
1284        // The map already had an entry for this value, which may indicate
1285        // a folding opportunity.
1286        Interesting = true;
1287      }
1288    }
1289  }
1290
1291  return Interesting;
1292}
1293
1294namespace {
1295  struct APIntCompare {
1296    bool operator()(const APInt &LHS, const APInt &RHS) const {
1297      return LHS.ult(RHS);
1298    }
1299  };
1300}
1301
1302/// getAddExpr - Get a canonical add expression, or something simpler if
1303/// possible.
1304const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1305                                        bool HasNUW, bool HasNSW) {
1306  assert(!Ops.empty() && "Cannot get empty add!");
1307  if (Ops.size() == 1) return Ops[0];
1308#ifndef NDEBUG
1309  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1310  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1311    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1312           "SCEVAddExpr operand types don't match!");
1313#endif
1314
1315  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1316  if (!HasNUW && HasNSW) {
1317    bool All = true;
1318    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1319         E = Ops.end(); I != E; ++I)
1320      if (!isKnownNonNegative(*I)) {
1321        All = false;
1322        break;
1323      }
1324    if (All) HasNUW = true;
1325  }
1326
1327  // Sort by complexity, this groups all similar expression types together.
1328  GroupByComplexity(Ops, LI);
1329
1330  // If there are any constants, fold them together.
1331  unsigned Idx = 0;
1332  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1333    ++Idx;
1334    assert(Idx < Ops.size());
1335    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1336      // We found two constants, fold them together!
1337      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1338                           RHSC->getValue()->getValue());
1339      if (Ops.size() == 2) return Ops[0];
1340      Ops.erase(Ops.begin()+1);  // Erase the folded element
1341      LHSC = cast<SCEVConstant>(Ops[0]);
1342    }
1343
1344    // If we are left with a constant zero being added, strip it off.
1345    if (LHSC->getValue()->isZero()) {
1346      Ops.erase(Ops.begin());
1347      --Idx;
1348    }
1349
1350    if (Ops.size() == 1) return Ops[0];
1351  }
1352
1353  // Okay, check to see if the same value occurs in the operand list more than
1354  // once.  If so, merge them together into an multiply expression.  Since we
1355  // sorted the list, these values are required to be adjacent.
1356  const Type *Ty = Ops[0]->getType();
1357  bool FoundMatch = false;
1358  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1359    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1360      // Scan ahead to count how many equal operands there are.
1361      unsigned Count = 2;
1362      while (i+Count != e && Ops[i+Count] == Ops[i])
1363        ++Count;
1364      // Merge the values into a multiply.
1365      const SCEV *Scale = getConstant(Ty, Count);
1366      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1367      if (Ops.size() == Count)
1368        return Mul;
1369      Ops[i] = Mul;
1370      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1371      --i; e -= Count - 1;
1372      FoundMatch = true;
1373    }
1374  if (FoundMatch)
1375    return getAddExpr(Ops, HasNUW, HasNSW);
1376
1377  // Check for truncates. If all the operands are truncated from the same
1378  // type, see if factoring out the truncate would permit the result to be
1379  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1380  // if the contents of the resulting outer trunc fold to something simple.
1381  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1382    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1383    const Type *DstType = Trunc->getType();
1384    const Type *SrcType = Trunc->getOperand()->getType();
1385    SmallVector<const SCEV *, 8> LargeOps;
1386    bool Ok = true;
1387    // Check all the operands to see if they can be represented in the
1388    // source type of the truncate.
1389    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1390      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1391        if (T->getOperand()->getType() != SrcType) {
1392          Ok = false;
1393          break;
1394        }
1395        LargeOps.push_back(T->getOperand());
1396      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1397        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1398      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1399        SmallVector<const SCEV *, 8> LargeMulOps;
1400        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1401          if (const SCEVTruncateExpr *T =
1402                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1403            if (T->getOperand()->getType() != SrcType) {
1404              Ok = false;
1405              break;
1406            }
1407            LargeMulOps.push_back(T->getOperand());
1408          } else if (const SCEVConstant *C =
1409                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1410            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1411          } else {
1412            Ok = false;
1413            break;
1414          }
1415        }
1416        if (Ok)
1417          LargeOps.push_back(getMulExpr(LargeMulOps));
1418      } else {
1419        Ok = false;
1420        break;
1421      }
1422    }
1423    if (Ok) {
1424      // Evaluate the expression in the larger type.
1425      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1426      // If it folds to something simple, use it. Otherwise, don't.
1427      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1428        return getTruncateExpr(Fold, DstType);
1429    }
1430  }
1431
1432  // Skip past any other cast SCEVs.
1433  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1434    ++Idx;
1435
1436  // If there are add operands they would be next.
1437  if (Idx < Ops.size()) {
1438    bool DeletedAdd = false;
1439    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1440      // If we have an add, expand the add operands onto the end of the operands
1441      // list.
1442      Ops.erase(Ops.begin()+Idx);
1443      Ops.append(Add->op_begin(), Add->op_end());
1444      DeletedAdd = true;
1445    }
1446
1447    // If we deleted at least one add, we added operands to the end of the list,
1448    // and they are not necessarily sorted.  Recurse to resort and resimplify
1449    // any operands we just acquired.
1450    if (DeletedAdd)
1451      return getAddExpr(Ops);
1452  }
1453
1454  // Skip over the add expression until we get to a multiply.
1455  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1456    ++Idx;
1457
1458  // Check to see if there are any folding opportunities present with
1459  // operands multiplied by constant values.
1460  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1461    uint64_t BitWidth = getTypeSizeInBits(Ty);
1462    DenseMap<const SCEV *, APInt> M;
1463    SmallVector<const SCEV *, 8> NewOps;
1464    APInt AccumulatedConstant(BitWidth, 0);
1465    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1466                                     Ops.data(), Ops.size(),
1467                                     APInt(BitWidth, 1), *this)) {
1468      // Some interesting folding opportunity is present, so its worthwhile to
1469      // re-generate the operands list. Group the operands by constant scale,
1470      // to avoid multiplying by the same constant scale multiple times.
1471      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1472      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1473           E = NewOps.end(); I != E; ++I)
1474        MulOpLists[M.find(*I)->second].push_back(*I);
1475      // Re-generate the operands list.
1476      Ops.clear();
1477      if (AccumulatedConstant != 0)
1478        Ops.push_back(getConstant(AccumulatedConstant));
1479      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1480           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1481        if (I->first != 0)
1482          Ops.push_back(getMulExpr(getConstant(I->first),
1483                                   getAddExpr(I->second)));
1484      if (Ops.empty())
1485        return getConstant(Ty, 0);
1486      if (Ops.size() == 1)
1487        return Ops[0];
1488      return getAddExpr(Ops);
1489    }
1490  }
1491
1492  // If we are adding something to a multiply expression, make sure the
1493  // something is not already an operand of the multiply.  If so, merge it into
1494  // the multiply.
1495  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1496    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1497    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1498      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1499      if (isa<SCEVConstant>(MulOpSCEV))
1500        continue;
1501      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1502        if (MulOpSCEV == Ops[AddOp]) {
1503          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1504          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1505          if (Mul->getNumOperands() != 2) {
1506            // If the multiply has more than two operands, we must get the
1507            // Y*Z term.
1508            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1509                                                Mul->op_begin()+MulOp);
1510            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1511            InnerMul = getMulExpr(MulOps);
1512          }
1513          const SCEV *One = getConstant(Ty, 1);
1514          const SCEV *AddOne = getAddExpr(One, InnerMul);
1515          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1516          if (Ops.size() == 2) return OuterMul;
1517          if (AddOp < Idx) {
1518            Ops.erase(Ops.begin()+AddOp);
1519            Ops.erase(Ops.begin()+Idx-1);
1520          } else {
1521            Ops.erase(Ops.begin()+Idx);
1522            Ops.erase(Ops.begin()+AddOp-1);
1523          }
1524          Ops.push_back(OuterMul);
1525          return getAddExpr(Ops);
1526        }
1527
1528      // Check this multiply against other multiplies being added together.
1529      for (unsigned OtherMulIdx = Idx+1;
1530           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1531           ++OtherMulIdx) {
1532        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1533        // If MulOp occurs in OtherMul, we can fold the two multiplies
1534        // together.
1535        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1536             OMulOp != e; ++OMulOp)
1537          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1538            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1539            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1540            if (Mul->getNumOperands() != 2) {
1541              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1542                                                  Mul->op_begin()+MulOp);
1543              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1544              InnerMul1 = getMulExpr(MulOps);
1545            }
1546            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1547            if (OtherMul->getNumOperands() != 2) {
1548              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1549                                                  OtherMul->op_begin()+OMulOp);
1550              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1551              InnerMul2 = getMulExpr(MulOps);
1552            }
1553            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1554            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1555            if (Ops.size() == 2) return OuterMul;
1556            Ops.erase(Ops.begin()+Idx);
1557            Ops.erase(Ops.begin()+OtherMulIdx-1);
1558            Ops.push_back(OuterMul);
1559            return getAddExpr(Ops);
1560          }
1561      }
1562    }
1563  }
1564
1565  // If there are any add recurrences in the operands list, see if any other
1566  // added values are loop invariant.  If so, we can fold them into the
1567  // recurrence.
1568  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1569    ++Idx;
1570
1571  // Scan over all recurrences, trying to fold loop invariants into them.
1572  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1573    // Scan all of the other operands to this add and add them to the vector if
1574    // they are loop invariant w.r.t. the recurrence.
1575    SmallVector<const SCEV *, 8> LIOps;
1576    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1577    const Loop *AddRecLoop = AddRec->getLoop();
1578    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1579      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1580        LIOps.push_back(Ops[i]);
1581        Ops.erase(Ops.begin()+i);
1582        --i; --e;
1583      }
1584
1585    // If we found some loop invariants, fold them into the recurrence.
1586    if (!LIOps.empty()) {
1587      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1588      LIOps.push_back(AddRec->getStart());
1589
1590      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1591                                             AddRec->op_end());
1592      AddRecOps[0] = getAddExpr(LIOps);
1593
1594      // Build the new addrec. Propagate the NUW and NSW flags if both the
1595      // outer add and the inner addrec are guaranteed to have no overflow.
1596      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1597                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1598                                         HasNSW && AddRec->hasNoSignedWrap());
1599
1600      // If all of the other operands were loop invariant, we are done.
1601      if (Ops.size() == 1) return NewRec;
1602
1603      // Otherwise, add the folded AddRec by the non-liv parts.
1604      for (unsigned i = 0;; ++i)
1605        if (Ops[i] == AddRec) {
1606          Ops[i] = NewRec;
1607          break;
1608        }
1609      return getAddExpr(Ops);
1610    }
1611
1612    // Okay, if there weren't any loop invariants to be folded, check to see if
1613    // there are multiple AddRec's with the same loop induction variable being
1614    // added together.  If so, we can fold them.
1615    for (unsigned OtherIdx = Idx+1;
1616         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1617         ++OtherIdx)
1618      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1619        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1620        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1621                                               AddRec->op_end());
1622        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1623             ++OtherIdx)
1624          if (const SCEVAddRecExpr *OtherAddRec =
1625                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1626            if (OtherAddRec->getLoop() == AddRecLoop) {
1627              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1628                   i != e; ++i) {
1629                if (i >= AddRecOps.size()) {
1630                  AddRecOps.append(OtherAddRec->op_begin()+i,
1631                                   OtherAddRec->op_end());
1632                  break;
1633                }
1634                AddRecOps[i] = getAddExpr(AddRecOps[i],
1635                                          OtherAddRec->getOperand(i));
1636              }
1637              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1638            }
1639        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1640        return getAddExpr(Ops);
1641      }
1642
1643    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1644    // next one.
1645  }
1646
1647  // Okay, it looks like we really DO need an add expr.  Check to see if we
1648  // already have one, otherwise create a new one.
1649  FoldingSetNodeID ID;
1650  ID.AddInteger(scAddExpr);
1651  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1652    ID.AddPointer(Ops[i]);
1653  void *IP = 0;
1654  SCEVAddExpr *S =
1655    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1656  if (!S) {
1657    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1658    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1659    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1660                                        O, Ops.size());
1661    UniqueSCEVs.InsertNode(S, IP);
1662  }
1663  if (HasNUW) S->setHasNoUnsignedWrap(true);
1664  if (HasNSW) S->setHasNoSignedWrap(true);
1665  return S;
1666}
1667
1668/// getMulExpr - Get a canonical multiply expression, or something simpler if
1669/// possible.
1670const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1671                                        bool HasNUW, bool HasNSW) {
1672  assert(!Ops.empty() && "Cannot get empty mul!");
1673  if (Ops.size() == 1) return Ops[0];
1674#ifndef NDEBUG
1675  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1676  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1677    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1678           "SCEVMulExpr operand types don't match!");
1679#endif
1680
1681  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1682  if (!HasNUW && HasNSW) {
1683    bool All = true;
1684    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1685         E = Ops.end(); I != E; ++I)
1686      if (!isKnownNonNegative(*I)) {
1687        All = false;
1688        break;
1689      }
1690    if (All) HasNUW = true;
1691  }
1692
1693  // Sort by complexity, this groups all similar expression types together.
1694  GroupByComplexity(Ops, LI);
1695
1696  // If there are any constants, fold them together.
1697  unsigned Idx = 0;
1698  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1699
1700    // C1*(C2+V) -> C1*C2 + C1*V
1701    if (Ops.size() == 2)
1702      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1703        if (Add->getNumOperands() == 2 &&
1704            isa<SCEVConstant>(Add->getOperand(0)))
1705          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1706                            getMulExpr(LHSC, Add->getOperand(1)));
1707
1708    ++Idx;
1709    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1710      // We found two constants, fold them together!
1711      ConstantInt *Fold = ConstantInt::get(getContext(),
1712                                           LHSC->getValue()->getValue() *
1713                                           RHSC->getValue()->getValue());
1714      Ops[0] = getConstant(Fold);
1715      Ops.erase(Ops.begin()+1);  // Erase the folded element
1716      if (Ops.size() == 1) return Ops[0];
1717      LHSC = cast<SCEVConstant>(Ops[0]);
1718    }
1719
1720    // If we are left with a constant one being multiplied, strip it off.
1721    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1722      Ops.erase(Ops.begin());
1723      --Idx;
1724    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1725      // If we have a multiply of zero, it will always be zero.
1726      return Ops[0];
1727    } else if (Ops[0]->isAllOnesValue()) {
1728      // If we have a mul by -1 of an add, try distributing the -1 among the
1729      // add operands.
1730      if (Ops.size() == 2)
1731        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1732          SmallVector<const SCEV *, 4> NewOps;
1733          bool AnyFolded = false;
1734          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1735               I != E; ++I) {
1736            const SCEV *Mul = getMulExpr(Ops[0], *I);
1737            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1738            NewOps.push_back(Mul);
1739          }
1740          if (AnyFolded)
1741            return getAddExpr(NewOps);
1742        }
1743    }
1744
1745    if (Ops.size() == 1)
1746      return Ops[0];
1747  }
1748
1749  // Skip over the add expression until we get to a multiply.
1750  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1751    ++Idx;
1752
1753  // If there are mul operands inline them all into this expression.
1754  if (Idx < Ops.size()) {
1755    bool DeletedMul = false;
1756    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1757      // If we have an mul, expand the mul operands onto the end of the operands
1758      // list.
1759      Ops.erase(Ops.begin()+Idx);
1760      Ops.append(Mul->op_begin(), Mul->op_end());
1761      DeletedMul = true;
1762    }
1763
1764    // If we deleted at least one mul, we added operands to the end of the list,
1765    // and they are not necessarily sorted.  Recurse to resort and resimplify
1766    // any operands we just acquired.
1767    if (DeletedMul)
1768      return getMulExpr(Ops);
1769  }
1770
1771  // If there are any add recurrences in the operands list, see if any other
1772  // added values are loop invariant.  If so, we can fold them into the
1773  // recurrence.
1774  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1775    ++Idx;
1776
1777  // Scan over all recurrences, trying to fold loop invariants into them.
1778  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1779    // Scan all of the other operands to this mul and add them to the vector if
1780    // they are loop invariant w.r.t. the recurrence.
1781    SmallVector<const SCEV *, 8> LIOps;
1782    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1783    const Loop *AddRecLoop = AddRec->getLoop();
1784    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1785      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1786        LIOps.push_back(Ops[i]);
1787        Ops.erase(Ops.begin()+i);
1788        --i; --e;
1789      }
1790
1791    // If we found some loop invariants, fold them into the recurrence.
1792    if (!LIOps.empty()) {
1793      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1794      SmallVector<const SCEV *, 4> NewOps;
1795      NewOps.reserve(AddRec->getNumOperands());
1796      const SCEV *Scale = getMulExpr(LIOps);
1797      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1798        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1799
1800      // Build the new addrec. Propagate the NUW and NSW flags if both the
1801      // outer mul and the inner addrec are guaranteed to have no overflow.
1802      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1803                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1804                                         HasNSW && AddRec->hasNoSignedWrap());
1805
1806      // If all of the other operands were loop invariant, we are done.
1807      if (Ops.size() == 1) return NewRec;
1808
1809      // Otherwise, multiply the folded AddRec by the non-liv parts.
1810      for (unsigned i = 0;; ++i)
1811        if (Ops[i] == AddRec) {
1812          Ops[i] = NewRec;
1813          break;
1814        }
1815      return getMulExpr(Ops);
1816    }
1817
1818    // Okay, if there weren't any loop invariants to be folded, check to see if
1819    // there are multiple AddRec's with the same loop induction variable being
1820    // multiplied together.  If so, we can fold them.
1821    for (unsigned OtherIdx = Idx+1;
1822         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1823         ++OtherIdx)
1824      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1825        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1826        // {A*C,+,F*D + G*B + B*D}<L>
1827        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1828             ++OtherIdx)
1829          if (const SCEVAddRecExpr *OtherAddRec =
1830                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1831            if (OtherAddRec->getLoop() == AddRecLoop) {
1832              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1833              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1834              const SCEV *B = F->getStepRecurrence(*this);
1835              const SCEV *D = G->getStepRecurrence(*this);
1836              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1837                                               getMulExpr(G, B),
1838                                               getMulExpr(B, D));
1839              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1840                                                    F->getLoop());
1841              if (Ops.size() == 2) return NewAddRec;
1842              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1843              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1844            }
1845        return getMulExpr(Ops);
1846      }
1847
1848    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1849    // next one.
1850  }
1851
1852  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1853  // already have one, otherwise create a new one.
1854  FoldingSetNodeID ID;
1855  ID.AddInteger(scMulExpr);
1856  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1857    ID.AddPointer(Ops[i]);
1858  void *IP = 0;
1859  SCEVMulExpr *S =
1860    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1861  if (!S) {
1862    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1863    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1864    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1865                                        O, Ops.size());
1866    UniqueSCEVs.InsertNode(S, IP);
1867  }
1868  if (HasNUW) S->setHasNoUnsignedWrap(true);
1869  if (HasNSW) S->setHasNoSignedWrap(true);
1870  return S;
1871}
1872
1873/// getUDivExpr - Get a canonical unsigned division expression, or something
1874/// simpler if possible.
1875const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1876                                         const SCEV *RHS) {
1877  assert(getEffectiveSCEVType(LHS->getType()) ==
1878         getEffectiveSCEVType(RHS->getType()) &&
1879         "SCEVUDivExpr operand types don't match!");
1880
1881  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1882    if (RHSC->getValue()->equalsInt(1))
1883      return LHS;                               // X udiv 1 --> x
1884    // If the denominator is zero, the result of the udiv is undefined. Don't
1885    // try to analyze it, because the resolution chosen here may differ from
1886    // the resolution chosen in other parts of the compiler.
1887    if (!RHSC->getValue()->isZero()) {
1888      // Determine if the division can be folded into the operands of
1889      // its operands.
1890      // TODO: Generalize this to non-constants by using known-bits information.
1891      const Type *Ty = LHS->getType();
1892      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1893      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1894      // For non-power-of-two values, effectively round the value up to the
1895      // nearest power of two.
1896      if (!RHSC->getValue()->getValue().isPowerOf2())
1897        ++MaxShiftAmt;
1898      const IntegerType *ExtTy =
1899        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1900      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1901      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1902        if (const SCEVConstant *Step =
1903              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1904          if (!Step->getValue()->getValue()
1905                .urem(RHSC->getValue()->getValue()) &&
1906              getZeroExtendExpr(AR, ExtTy) ==
1907              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1908                            getZeroExtendExpr(Step, ExtTy),
1909                            AR->getLoop())) {
1910            SmallVector<const SCEV *, 4> Operands;
1911            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1912              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1913            return getAddRecExpr(Operands, AR->getLoop());
1914          }
1915      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1916      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1917        SmallVector<const SCEV *, 4> Operands;
1918        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1919          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1920        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1921          // Find an operand that's safely divisible.
1922          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1923            const SCEV *Op = M->getOperand(i);
1924            const SCEV *Div = getUDivExpr(Op, RHSC);
1925            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1926              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1927                                                      M->op_end());
1928              Operands[i] = Div;
1929              return getMulExpr(Operands);
1930            }
1931          }
1932      }
1933      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1934      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1935        SmallVector<const SCEV *, 4> Operands;
1936        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1937          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1938        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1939          Operands.clear();
1940          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1941            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1942            if (isa<SCEVUDivExpr>(Op) ||
1943                getMulExpr(Op, RHS) != A->getOperand(i))
1944              break;
1945            Operands.push_back(Op);
1946          }
1947          if (Operands.size() == A->getNumOperands())
1948            return getAddExpr(Operands);
1949        }
1950      }
1951
1952      // Fold if both operands are constant.
1953      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1954        Constant *LHSCV = LHSC->getValue();
1955        Constant *RHSCV = RHSC->getValue();
1956        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1957                                                                   RHSCV)));
1958      }
1959    }
1960  }
1961
1962  FoldingSetNodeID ID;
1963  ID.AddInteger(scUDivExpr);
1964  ID.AddPointer(LHS);
1965  ID.AddPointer(RHS);
1966  void *IP = 0;
1967  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1968  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1969                                             LHS, RHS);
1970  UniqueSCEVs.InsertNode(S, IP);
1971  return S;
1972}
1973
1974
1975/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1976/// Simplify the expression as much as possible.
1977const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1978                                           const SCEV *Step, const Loop *L,
1979                                           bool HasNUW, bool HasNSW) {
1980  SmallVector<const SCEV *, 4> Operands;
1981  Operands.push_back(Start);
1982  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1983    if (StepChrec->getLoop() == L) {
1984      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
1985      return getAddRecExpr(Operands, L);
1986    }
1987
1988  Operands.push_back(Step);
1989  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1990}
1991
1992/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1993/// Simplify the expression as much as possible.
1994const SCEV *
1995ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1996                               const Loop *L,
1997                               bool HasNUW, bool HasNSW) {
1998  if (Operands.size() == 1) return Operands[0];
1999#ifndef NDEBUG
2000  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2001  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2002    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2003           "SCEVAddRecExpr operand types don't match!");
2004  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2005    assert(isLoopInvariant(Operands[i], L) &&
2006           "SCEVAddRecExpr operand is not loop-invariant!");
2007#endif
2008
2009  if (Operands.back()->isZero()) {
2010    Operands.pop_back();
2011    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2012  }
2013
2014  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2015  // use that information to infer NUW and NSW flags. However, computing a
2016  // BE count requires calling getAddRecExpr, so we may not yet have a
2017  // meaningful BE count at this point (and if we don't, we'd be stuck
2018  // with a SCEVCouldNotCompute as the cached BE count).
2019
2020  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2021  if (!HasNUW && HasNSW) {
2022    bool All = true;
2023    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2024         E = Operands.end(); I != E; ++I)
2025      if (!isKnownNonNegative(*I)) {
2026        All = false;
2027        break;
2028      }
2029    if (All) HasNUW = true;
2030  }
2031
2032  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2033  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2034    const Loop *NestedLoop = NestedAR->getLoop();
2035    if (L->contains(NestedLoop) ?
2036        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2037        (!NestedLoop->contains(L) &&
2038         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2039      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2040                                                  NestedAR->op_end());
2041      Operands[0] = NestedAR->getStart();
2042      // AddRecs require their operands be loop-invariant with respect to their
2043      // loops. Don't perform this transformation if it would break this
2044      // requirement.
2045      bool AllInvariant = true;
2046      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2047        if (!isLoopInvariant(Operands[i], L)) {
2048          AllInvariant = false;
2049          break;
2050        }
2051      if (AllInvariant) {
2052        NestedOperands[0] = getAddRecExpr(Operands, L);
2053        AllInvariant = true;
2054        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2055          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2056            AllInvariant = false;
2057            break;
2058          }
2059        if (AllInvariant)
2060          // Ok, both add recurrences are valid after the transformation.
2061          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2062      }
2063      // Reset Operands to its original state.
2064      Operands[0] = NestedAR;
2065    }
2066  }
2067
2068  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2069  // already have one, otherwise create a new one.
2070  FoldingSetNodeID ID;
2071  ID.AddInteger(scAddRecExpr);
2072  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2073    ID.AddPointer(Operands[i]);
2074  ID.AddPointer(L);
2075  void *IP = 0;
2076  SCEVAddRecExpr *S =
2077    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2078  if (!S) {
2079    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2080    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2081    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2082                                           O, Operands.size(), L);
2083    UniqueSCEVs.InsertNode(S, IP);
2084  }
2085  if (HasNUW) S->setHasNoUnsignedWrap(true);
2086  if (HasNSW) S->setHasNoSignedWrap(true);
2087  return S;
2088}
2089
2090const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2091                                         const SCEV *RHS) {
2092  SmallVector<const SCEV *, 2> Ops;
2093  Ops.push_back(LHS);
2094  Ops.push_back(RHS);
2095  return getSMaxExpr(Ops);
2096}
2097
2098const SCEV *
2099ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2100  assert(!Ops.empty() && "Cannot get empty smax!");
2101  if (Ops.size() == 1) return Ops[0];
2102#ifndef NDEBUG
2103  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2104  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2105    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2106           "SCEVSMaxExpr operand types don't match!");
2107#endif
2108
2109  // Sort by complexity, this groups all similar expression types together.
2110  GroupByComplexity(Ops, LI);
2111
2112  // If there are any constants, fold them together.
2113  unsigned Idx = 0;
2114  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2115    ++Idx;
2116    assert(Idx < Ops.size());
2117    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2118      // We found two constants, fold them together!
2119      ConstantInt *Fold = ConstantInt::get(getContext(),
2120                              APIntOps::smax(LHSC->getValue()->getValue(),
2121                                             RHSC->getValue()->getValue()));
2122      Ops[0] = getConstant(Fold);
2123      Ops.erase(Ops.begin()+1);  // Erase the folded element
2124      if (Ops.size() == 1) return Ops[0];
2125      LHSC = cast<SCEVConstant>(Ops[0]);
2126    }
2127
2128    // If we are left with a constant minimum-int, strip it off.
2129    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2130      Ops.erase(Ops.begin());
2131      --Idx;
2132    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2133      // If we have an smax with a constant maximum-int, it will always be
2134      // maximum-int.
2135      return Ops[0];
2136    }
2137
2138    if (Ops.size() == 1) return Ops[0];
2139  }
2140
2141  // Find the first SMax
2142  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2143    ++Idx;
2144
2145  // Check to see if one of the operands is an SMax. If so, expand its operands
2146  // onto our operand list, and recurse to simplify.
2147  if (Idx < Ops.size()) {
2148    bool DeletedSMax = false;
2149    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2150      Ops.erase(Ops.begin()+Idx);
2151      Ops.append(SMax->op_begin(), SMax->op_end());
2152      DeletedSMax = true;
2153    }
2154
2155    if (DeletedSMax)
2156      return getSMaxExpr(Ops);
2157  }
2158
2159  // Okay, check to see if the same value occurs in the operand list twice.  If
2160  // so, delete one.  Since we sorted the list, these values are required to
2161  // be adjacent.
2162  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2163    //  X smax Y smax Y  -->  X smax Y
2164    //  X smax Y         -->  X, if X is always greater than Y
2165    if (Ops[i] == Ops[i+1] ||
2166        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2167      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2168      --i; --e;
2169    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2170      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2171      --i; --e;
2172    }
2173
2174  if (Ops.size() == 1) return Ops[0];
2175
2176  assert(!Ops.empty() && "Reduced smax down to nothing!");
2177
2178  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2179  // already have one, otherwise create a new one.
2180  FoldingSetNodeID ID;
2181  ID.AddInteger(scSMaxExpr);
2182  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2183    ID.AddPointer(Ops[i]);
2184  void *IP = 0;
2185  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2186  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2187  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2188  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2189                                             O, Ops.size());
2190  UniqueSCEVs.InsertNode(S, IP);
2191  return S;
2192}
2193
2194const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2195                                         const SCEV *RHS) {
2196  SmallVector<const SCEV *, 2> Ops;
2197  Ops.push_back(LHS);
2198  Ops.push_back(RHS);
2199  return getUMaxExpr(Ops);
2200}
2201
2202const SCEV *
2203ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2204  assert(!Ops.empty() && "Cannot get empty umax!");
2205  if (Ops.size() == 1) return Ops[0];
2206#ifndef NDEBUG
2207  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2208  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2209    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2210           "SCEVUMaxExpr operand types don't match!");
2211#endif
2212
2213  // Sort by complexity, this groups all similar expression types together.
2214  GroupByComplexity(Ops, LI);
2215
2216  // If there are any constants, fold them together.
2217  unsigned Idx = 0;
2218  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2219    ++Idx;
2220    assert(Idx < Ops.size());
2221    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2222      // We found two constants, fold them together!
2223      ConstantInt *Fold = ConstantInt::get(getContext(),
2224                              APIntOps::umax(LHSC->getValue()->getValue(),
2225                                             RHSC->getValue()->getValue()));
2226      Ops[0] = getConstant(Fold);
2227      Ops.erase(Ops.begin()+1);  // Erase the folded element
2228      if (Ops.size() == 1) return Ops[0];
2229      LHSC = cast<SCEVConstant>(Ops[0]);
2230    }
2231
2232    // If we are left with a constant minimum-int, strip it off.
2233    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2234      Ops.erase(Ops.begin());
2235      --Idx;
2236    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2237      // If we have an umax with a constant maximum-int, it will always be
2238      // maximum-int.
2239      return Ops[0];
2240    }
2241
2242    if (Ops.size() == 1) return Ops[0];
2243  }
2244
2245  // Find the first UMax
2246  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2247    ++Idx;
2248
2249  // Check to see if one of the operands is a UMax. If so, expand its operands
2250  // onto our operand list, and recurse to simplify.
2251  if (Idx < Ops.size()) {
2252    bool DeletedUMax = false;
2253    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2254      Ops.erase(Ops.begin()+Idx);
2255      Ops.append(UMax->op_begin(), UMax->op_end());
2256      DeletedUMax = true;
2257    }
2258
2259    if (DeletedUMax)
2260      return getUMaxExpr(Ops);
2261  }
2262
2263  // Okay, check to see if the same value occurs in the operand list twice.  If
2264  // so, delete one.  Since we sorted the list, these values are required to
2265  // be adjacent.
2266  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2267    //  X umax Y umax Y  -->  X umax Y
2268    //  X umax Y         -->  X, if X is always greater than Y
2269    if (Ops[i] == Ops[i+1] ||
2270        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2271      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2272      --i; --e;
2273    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2274      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2275      --i; --e;
2276    }
2277
2278  if (Ops.size() == 1) return Ops[0];
2279
2280  assert(!Ops.empty() && "Reduced umax down to nothing!");
2281
2282  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2283  // already have one, otherwise create a new one.
2284  FoldingSetNodeID ID;
2285  ID.AddInteger(scUMaxExpr);
2286  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2287    ID.AddPointer(Ops[i]);
2288  void *IP = 0;
2289  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2290  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2291  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2292  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2293                                             O, Ops.size());
2294  UniqueSCEVs.InsertNode(S, IP);
2295  return S;
2296}
2297
2298const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2299                                         const SCEV *RHS) {
2300  // ~smax(~x, ~y) == smin(x, y).
2301  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2302}
2303
2304const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2305                                         const SCEV *RHS) {
2306  // ~umax(~x, ~y) == umin(x, y)
2307  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2308}
2309
2310const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2311  // If we have TargetData, we can bypass creating a target-independent
2312  // constant expression and then folding it back into a ConstantInt.
2313  // This is just a compile-time optimization.
2314  if (TD)
2315    return getConstant(TD->getIntPtrType(getContext()),
2316                       TD->getTypeAllocSize(AllocTy));
2317
2318  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2319  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2320    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2321      C = Folded;
2322  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2323  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2324}
2325
2326const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2327  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2328  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2329    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2330      C = Folded;
2331  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2332  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2333}
2334
2335const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2336                                             unsigned FieldNo) {
2337  // If we have TargetData, we can bypass creating a target-independent
2338  // constant expression and then folding it back into a ConstantInt.
2339  // This is just a compile-time optimization.
2340  if (TD)
2341    return getConstant(TD->getIntPtrType(getContext()),
2342                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2343
2344  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2345  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2346    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2347      C = Folded;
2348  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2349  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2350}
2351
2352const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2353                                             Constant *FieldNo) {
2354  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2355  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2356    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2357      C = Folded;
2358  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2359  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2360}
2361
2362const SCEV *ScalarEvolution::getUnknown(Value *V) {
2363  // Don't attempt to do anything other than create a SCEVUnknown object
2364  // here.  createSCEV only calls getUnknown after checking for all other
2365  // interesting possibilities, and any other code that calls getUnknown
2366  // is doing so in order to hide a value from SCEV canonicalization.
2367
2368  FoldingSetNodeID ID;
2369  ID.AddInteger(scUnknown);
2370  ID.AddPointer(V);
2371  void *IP = 0;
2372  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2373    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2374           "Stale SCEVUnknown in uniquing map!");
2375    return S;
2376  }
2377  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2378                                            FirstUnknown);
2379  FirstUnknown = cast<SCEVUnknown>(S);
2380  UniqueSCEVs.InsertNode(S, IP);
2381  return S;
2382}
2383
2384//===----------------------------------------------------------------------===//
2385//            Basic SCEV Analysis and PHI Idiom Recognition Code
2386//
2387
2388/// isSCEVable - Test if values of the given type are analyzable within
2389/// the SCEV framework. This primarily includes integer types, and it
2390/// can optionally include pointer types if the ScalarEvolution class
2391/// has access to target-specific information.
2392bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2393  // Integers and pointers are always SCEVable.
2394  return Ty->isIntegerTy() || Ty->isPointerTy();
2395}
2396
2397/// getTypeSizeInBits - Return the size in bits of the specified type,
2398/// for which isSCEVable must return true.
2399uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2400  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2401
2402  // If we have a TargetData, use it!
2403  if (TD)
2404    return TD->getTypeSizeInBits(Ty);
2405
2406  // Integer types have fixed sizes.
2407  if (Ty->isIntegerTy())
2408    return Ty->getPrimitiveSizeInBits();
2409
2410  // The only other support type is pointer. Without TargetData, conservatively
2411  // assume pointers are 64-bit.
2412  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2413  return 64;
2414}
2415
2416/// getEffectiveSCEVType - Return a type with the same bitwidth as
2417/// the given type and which represents how SCEV will treat the given
2418/// type, for which isSCEVable must return true. For pointer types,
2419/// this is the pointer-sized integer type.
2420const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2421  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2422
2423  if (Ty->isIntegerTy())
2424    return Ty;
2425
2426  // The only other support type is pointer.
2427  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2428  if (TD) return TD->getIntPtrType(getContext());
2429
2430  // Without TargetData, conservatively assume pointers are 64-bit.
2431  return Type::getInt64Ty(getContext());
2432}
2433
2434const SCEV *ScalarEvolution::getCouldNotCompute() {
2435  return &CouldNotCompute;
2436}
2437
2438/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2439/// expression and create a new one.
2440const SCEV *ScalarEvolution::getSCEV(Value *V) {
2441  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2442
2443  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2444  if (I != ValueExprMap.end()) return I->second;
2445  const SCEV *S = createSCEV(V);
2446
2447  // The process of creating a SCEV for V may have caused other SCEVs
2448  // to have been created, so it's necessary to insert the new entry
2449  // from scratch, rather than trying to remember the insert position
2450  // above.
2451  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2452  return S;
2453}
2454
2455/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2456///
2457const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2458  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2459    return getConstant(
2460               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2461
2462  const Type *Ty = V->getType();
2463  Ty = getEffectiveSCEVType(Ty);
2464  return getMulExpr(V,
2465                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2466}
2467
2468/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2469const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2470  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2471    return getConstant(
2472                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2473
2474  const Type *Ty = V->getType();
2475  Ty = getEffectiveSCEVType(Ty);
2476  const SCEV *AllOnes =
2477                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2478  return getMinusSCEV(AllOnes, V);
2479}
2480
2481/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1,
2482/// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2483/// whether the sub would have overflowed.
2484const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2485                                          bool HasNUW, bool HasNSW) {
2486  // Fast path: X - X --> 0.
2487  if (LHS == RHS)
2488    return getConstant(LHS->getType(), 0);
2489
2490  // X - Y --> X + -Y
2491  return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
2492}
2493
2494/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2495/// input value to the specified type.  If the type must be extended, it is zero
2496/// extended.
2497const SCEV *
2498ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
2499  const Type *SrcTy = V->getType();
2500  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2501         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2502         "Cannot truncate or zero extend with non-integer arguments!");
2503  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2504    return V;  // No conversion
2505  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2506    return getTruncateExpr(V, Ty);
2507  return getZeroExtendExpr(V, Ty);
2508}
2509
2510/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2511/// input value to the specified type.  If the type must be extended, it is sign
2512/// extended.
2513const SCEV *
2514ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2515                                         const Type *Ty) {
2516  const Type *SrcTy = V->getType();
2517  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2518         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2519         "Cannot truncate or zero extend with non-integer arguments!");
2520  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2521    return V;  // No conversion
2522  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2523    return getTruncateExpr(V, Ty);
2524  return getSignExtendExpr(V, Ty);
2525}
2526
2527/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2528/// input value to the specified type.  If the type must be extended, it is zero
2529/// extended.  The conversion must not be narrowing.
2530const SCEV *
2531ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2532  const Type *SrcTy = V->getType();
2533  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2534         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2535         "Cannot noop or zero extend with non-integer arguments!");
2536  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2537         "getNoopOrZeroExtend cannot truncate!");
2538  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2539    return V;  // No conversion
2540  return getZeroExtendExpr(V, Ty);
2541}
2542
2543/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2544/// input value to the specified type.  If the type must be extended, it is sign
2545/// extended.  The conversion must not be narrowing.
2546const SCEV *
2547ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2548  const Type *SrcTy = V->getType();
2549  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2550         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2551         "Cannot noop or sign extend with non-integer arguments!");
2552  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2553         "getNoopOrSignExtend cannot truncate!");
2554  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2555    return V;  // No conversion
2556  return getSignExtendExpr(V, Ty);
2557}
2558
2559/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2560/// the input value to the specified type. If the type must be extended,
2561/// it is extended with unspecified bits. The conversion must not be
2562/// narrowing.
2563const SCEV *
2564ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2565  const Type *SrcTy = V->getType();
2566  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2567         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2568         "Cannot noop or any extend with non-integer arguments!");
2569  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2570         "getNoopOrAnyExtend cannot truncate!");
2571  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2572    return V;  // No conversion
2573  return getAnyExtendExpr(V, Ty);
2574}
2575
2576/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2577/// input value to the specified type.  The conversion must not be widening.
2578const SCEV *
2579ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2580  const Type *SrcTy = V->getType();
2581  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2583         "Cannot truncate or noop with non-integer arguments!");
2584  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2585         "getTruncateOrNoop cannot extend!");
2586  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2587    return V;  // No conversion
2588  return getTruncateExpr(V, Ty);
2589}
2590
2591/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2592/// the types using zero-extension, and then perform a umax operation
2593/// with them.
2594const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2595                                                        const SCEV *RHS) {
2596  const SCEV *PromotedLHS = LHS;
2597  const SCEV *PromotedRHS = RHS;
2598
2599  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2600    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2601  else
2602    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2603
2604  return getUMaxExpr(PromotedLHS, PromotedRHS);
2605}
2606
2607/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2608/// the types using zero-extension, and then perform a umin operation
2609/// with them.
2610const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2611                                                        const SCEV *RHS) {
2612  const SCEV *PromotedLHS = LHS;
2613  const SCEV *PromotedRHS = RHS;
2614
2615  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2616    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2617  else
2618    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2619
2620  return getUMinExpr(PromotedLHS, PromotedRHS);
2621}
2622
2623/// PushDefUseChildren - Push users of the given Instruction
2624/// onto the given Worklist.
2625static void
2626PushDefUseChildren(Instruction *I,
2627                   SmallVectorImpl<Instruction *> &Worklist) {
2628  // Push the def-use children onto the Worklist stack.
2629  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2630       UI != UE; ++UI)
2631    Worklist.push_back(cast<Instruction>(*UI));
2632}
2633
2634/// ForgetSymbolicValue - This looks up computed SCEV values for all
2635/// instructions that depend on the given instruction and removes them from
2636/// the ValueExprMapType map if they reference SymName. This is used during PHI
2637/// resolution.
2638void
2639ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2640  SmallVector<Instruction *, 16> Worklist;
2641  PushDefUseChildren(PN, Worklist);
2642
2643  SmallPtrSet<Instruction *, 8> Visited;
2644  Visited.insert(PN);
2645  while (!Worklist.empty()) {
2646    Instruction *I = Worklist.pop_back_val();
2647    if (!Visited.insert(I)) continue;
2648
2649    ValueExprMapType::iterator It =
2650      ValueExprMap.find(static_cast<Value *>(I));
2651    if (It != ValueExprMap.end()) {
2652      const SCEV *Old = It->second;
2653
2654      // Short-circuit the def-use traversal if the symbolic name
2655      // ceases to appear in expressions.
2656      if (Old != SymName && !hasOperand(Old, SymName))
2657        continue;
2658
2659      // SCEVUnknown for a PHI either means that it has an unrecognized
2660      // structure, it's a PHI that's in the progress of being computed
2661      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2662      // additional loop trip count information isn't going to change anything.
2663      // In the second case, createNodeForPHI will perform the necessary
2664      // updates on its own when it gets to that point. In the third, we do
2665      // want to forget the SCEVUnknown.
2666      if (!isa<PHINode>(I) ||
2667          !isa<SCEVUnknown>(Old) ||
2668          (I != PN && Old == SymName)) {
2669        forgetMemoizedResults(Old);
2670        ValueExprMap.erase(It);
2671      }
2672    }
2673
2674    PushDefUseChildren(I, Worklist);
2675  }
2676}
2677
2678/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2679/// a loop header, making it a potential recurrence, or it doesn't.
2680///
2681const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2682  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2683    if (L->getHeader() == PN->getParent()) {
2684      // The loop may have multiple entrances or multiple exits; we can analyze
2685      // this phi as an addrec if it has a unique entry value and a unique
2686      // backedge value.
2687      Value *BEValueV = 0, *StartValueV = 0;
2688      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2689        Value *V = PN->getIncomingValue(i);
2690        if (L->contains(PN->getIncomingBlock(i))) {
2691          if (!BEValueV) {
2692            BEValueV = V;
2693          } else if (BEValueV != V) {
2694            BEValueV = 0;
2695            break;
2696          }
2697        } else if (!StartValueV) {
2698          StartValueV = V;
2699        } else if (StartValueV != V) {
2700          StartValueV = 0;
2701          break;
2702        }
2703      }
2704      if (BEValueV && StartValueV) {
2705        // While we are analyzing this PHI node, handle its value symbolically.
2706        const SCEV *SymbolicName = getUnknown(PN);
2707        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2708               "PHI node already processed?");
2709        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2710
2711        // Using this symbolic name for the PHI, analyze the value coming around
2712        // the back-edge.
2713        const SCEV *BEValue = getSCEV(BEValueV);
2714
2715        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2716        // has a special value for the first iteration of the loop.
2717
2718        // If the value coming around the backedge is an add with the symbolic
2719        // value we just inserted, then we found a simple induction variable!
2720        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2721          // If there is a single occurrence of the symbolic value, replace it
2722          // with a recurrence.
2723          unsigned FoundIndex = Add->getNumOperands();
2724          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2725            if (Add->getOperand(i) == SymbolicName)
2726              if (FoundIndex == e) {
2727                FoundIndex = i;
2728                break;
2729              }
2730
2731          if (FoundIndex != Add->getNumOperands()) {
2732            // Create an add with everything but the specified operand.
2733            SmallVector<const SCEV *, 8> Ops;
2734            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2735              if (i != FoundIndex)
2736                Ops.push_back(Add->getOperand(i));
2737            const SCEV *Accum = getAddExpr(Ops);
2738
2739            // This is not a valid addrec if the step amount is varying each
2740            // loop iteration, but is not itself an addrec in this loop.
2741            if (isLoopInvariant(Accum, L) ||
2742                (isa<SCEVAddRecExpr>(Accum) &&
2743                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2744              bool HasNUW = false;
2745              bool HasNSW = false;
2746
2747              // If the increment doesn't overflow, then neither the addrec nor
2748              // the post-increment will overflow.
2749              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2750                if (OBO->hasNoUnsignedWrap())
2751                  HasNUW = true;
2752                if (OBO->hasNoSignedWrap())
2753                  HasNSW = true;
2754              } else if (const GEPOperator *GEP =
2755                            dyn_cast<GEPOperator>(BEValueV)) {
2756                // If the increment is a GEP, then we know it won't perform an
2757                // unsigned overflow, because the address space cannot be
2758                // wrapped around.
2759                HasNUW |= GEP->isInBounds();
2760              }
2761
2762              const SCEV *StartVal = getSCEV(StartValueV);
2763              const SCEV *PHISCEV =
2764                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2765
2766              // Since the no-wrap flags are on the increment, they apply to the
2767              // post-incremented value as well.
2768              if (isLoopInvariant(Accum, L))
2769                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2770                                    Accum, L, HasNUW, HasNSW);
2771
2772              // Okay, for the entire analysis of this edge we assumed the PHI
2773              // to be symbolic.  We now need to go back and purge all of the
2774              // entries for the scalars that use the symbolic expression.
2775              ForgetSymbolicName(PN, SymbolicName);
2776              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2777              return PHISCEV;
2778            }
2779          }
2780        } else if (const SCEVAddRecExpr *AddRec =
2781                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2782          // Otherwise, this could be a loop like this:
2783          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2784          // In this case, j = {1,+,1}  and BEValue is j.
2785          // Because the other in-value of i (0) fits the evolution of BEValue
2786          // i really is an addrec evolution.
2787          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2788            const SCEV *StartVal = getSCEV(StartValueV);
2789
2790            // If StartVal = j.start - j.stride, we can use StartVal as the
2791            // initial step of the addrec evolution.
2792            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2793                                         AddRec->getOperand(1))) {
2794              const SCEV *PHISCEV =
2795                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2796
2797              // Okay, for the entire analysis of this edge we assumed the PHI
2798              // to be symbolic.  We now need to go back and purge all of the
2799              // entries for the scalars that use the symbolic expression.
2800              ForgetSymbolicName(PN, SymbolicName);
2801              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2802              return PHISCEV;
2803            }
2804          }
2805        }
2806      }
2807    }
2808
2809  // If the PHI has a single incoming value, follow that value, unless the
2810  // PHI's incoming blocks are in a different loop, in which case doing so
2811  // risks breaking LCSSA form. Instcombine would normally zap these, but
2812  // it doesn't have DominatorTree information, so it may miss cases.
2813  if (Value *V = SimplifyInstruction(PN, TD, DT))
2814    if (LI->replacementPreservesLCSSAForm(PN, V))
2815      return getSCEV(V);
2816
2817  // If it's not a loop phi, we can't handle it yet.
2818  return getUnknown(PN);
2819}
2820
2821/// createNodeForGEP - Expand GEP instructions into add and multiply
2822/// operations. This allows them to be analyzed by regular SCEV code.
2823///
2824const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2825
2826  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2827  // Add expression, because the Instruction may be guarded by control flow
2828  // and the no-overflow bits may not be valid for the expression in any
2829  // context.
2830
2831  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2832  Value *Base = GEP->getOperand(0);
2833  // Don't attempt to analyze GEPs over unsized objects.
2834  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2835    return getUnknown(GEP);
2836  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2837  gep_type_iterator GTI = gep_type_begin(GEP);
2838  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2839                                      E = GEP->op_end();
2840       I != E; ++I) {
2841    Value *Index = *I;
2842    // Compute the (potentially symbolic) offset in bytes for this index.
2843    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2844      // For a struct, add the member offset.
2845      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2846      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2847
2848      // Add the field offset to the running total offset.
2849      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2850    } else {
2851      // For an array, add the element offset, explicitly scaled.
2852      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2853      const SCEV *IndexS = getSCEV(Index);
2854      // Getelementptr indices are signed.
2855      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2856
2857      // Multiply the index by the element size to compute the element offset.
2858      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2859
2860      // Add the element offset to the running total offset.
2861      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2862    }
2863  }
2864
2865  // Get the SCEV for the GEP base.
2866  const SCEV *BaseS = getSCEV(Base);
2867
2868  // Add the total offset from all the GEP indices to the base.
2869  return getAddExpr(BaseS, TotalOffset);
2870}
2871
2872/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2873/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2874/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2875/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2876uint32_t
2877ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2878  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2879    return C->getValue()->getValue().countTrailingZeros();
2880
2881  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2882    return std::min(GetMinTrailingZeros(T->getOperand()),
2883                    (uint32_t)getTypeSizeInBits(T->getType()));
2884
2885  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2886    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2887    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2888             getTypeSizeInBits(E->getType()) : OpRes;
2889  }
2890
2891  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2892    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2893    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2894             getTypeSizeInBits(E->getType()) : OpRes;
2895  }
2896
2897  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2898    // The result is the min of all operands results.
2899    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2900    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2901      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2902    return MinOpRes;
2903  }
2904
2905  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2906    // The result is the sum of all operands results.
2907    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2908    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2909    for (unsigned i = 1, e = M->getNumOperands();
2910         SumOpRes != BitWidth && i != e; ++i)
2911      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2912                          BitWidth);
2913    return SumOpRes;
2914  }
2915
2916  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2917    // The result is the min of all operands results.
2918    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2919    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2920      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2921    return MinOpRes;
2922  }
2923
2924  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2925    // The result is the min of all operands results.
2926    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2927    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2928      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2929    return MinOpRes;
2930  }
2931
2932  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2933    // The result is the min of all operands results.
2934    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2935    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2936      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2937    return MinOpRes;
2938  }
2939
2940  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2941    // For a SCEVUnknown, ask ValueTracking.
2942    unsigned BitWidth = getTypeSizeInBits(U->getType());
2943    APInt Mask = APInt::getAllOnesValue(BitWidth);
2944    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2945    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2946    return Zeros.countTrailingOnes();
2947  }
2948
2949  // SCEVUDivExpr
2950  return 0;
2951}
2952
2953/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2954///
2955ConstantRange
2956ScalarEvolution::getUnsignedRange(const SCEV *S) {
2957  // See if we've computed this range already.
2958  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2959  if (I != UnsignedRanges.end())
2960    return I->second;
2961
2962  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2963    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
2964
2965  unsigned BitWidth = getTypeSizeInBits(S->getType());
2966  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2967
2968  // If the value has known zeros, the maximum unsigned value will have those
2969  // known zeros as well.
2970  uint32_t TZ = GetMinTrailingZeros(S);
2971  if (TZ != 0)
2972    ConservativeResult =
2973      ConstantRange(APInt::getMinValue(BitWidth),
2974                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2975
2976  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2977    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2978    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2979      X = X.add(getUnsignedRange(Add->getOperand(i)));
2980    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
2981  }
2982
2983  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2984    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2985    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2986      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2987    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
2988  }
2989
2990  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2991    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2992    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2993      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2994    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
2995  }
2996
2997  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2998    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2999    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3000      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3001    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3002  }
3003
3004  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3005    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3006    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3007    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3008  }
3009
3010  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3011    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3012    return setUnsignedRange(ZExt,
3013      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3014  }
3015
3016  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3017    ConstantRange X = getUnsignedRange(SExt->getOperand());
3018    return setUnsignedRange(SExt,
3019      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3020  }
3021
3022  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3023    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3024    return setUnsignedRange(Trunc,
3025      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3026  }
3027
3028  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3029    // If there's no unsigned wrap, the value will never be less than its
3030    // initial value.
3031    if (AddRec->hasNoUnsignedWrap())
3032      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3033        if (!C->getValue()->isZero())
3034          ConservativeResult =
3035            ConservativeResult.intersectWith(
3036              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3037
3038    // TODO: non-affine addrec
3039    if (AddRec->isAffine()) {
3040      const Type *Ty = AddRec->getType();
3041      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3042      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3043          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3044        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3045
3046        const SCEV *Start = AddRec->getStart();
3047        const SCEV *Step = AddRec->getStepRecurrence(*this);
3048
3049        ConstantRange StartRange = getUnsignedRange(Start);
3050        ConstantRange StepRange = getSignedRange(Step);
3051        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3052        ConstantRange EndRange =
3053          StartRange.add(MaxBECountRange.multiply(StepRange));
3054
3055        // Check for overflow. This must be done with ConstantRange arithmetic
3056        // because we could be called from within the ScalarEvolution overflow
3057        // checking code.
3058        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3059        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3060        ConstantRange ExtMaxBECountRange =
3061          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3062        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3063        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3064            ExtEndRange)
3065          return setUnsignedRange(AddRec, ConservativeResult);
3066
3067        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3068                                   EndRange.getUnsignedMin());
3069        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3070                                   EndRange.getUnsignedMax());
3071        if (Min.isMinValue() && Max.isMaxValue())
3072          return setUnsignedRange(AddRec, ConservativeResult);
3073        return setUnsignedRange(AddRec,
3074          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3075      }
3076    }
3077
3078    return setUnsignedRange(AddRec, ConservativeResult);
3079  }
3080
3081  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3082    // For a SCEVUnknown, ask ValueTracking.
3083    APInt Mask = APInt::getAllOnesValue(BitWidth);
3084    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3085    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3086    if (Ones == ~Zeros + 1)
3087      return setUnsignedRange(U, ConservativeResult);
3088    return setUnsignedRange(U,
3089      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3090  }
3091
3092  return setUnsignedRange(S, ConservativeResult);
3093}
3094
3095/// getSignedRange - Determine the signed range for a particular SCEV.
3096///
3097ConstantRange
3098ScalarEvolution::getSignedRange(const SCEV *S) {
3099  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3100  if (I != SignedRanges.end())
3101    return I->second;
3102
3103  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3104    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3105
3106  unsigned BitWidth = getTypeSizeInBits(S->getType());
3107  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3108
3109  // If the value has known zeros, the maximum signed value will have those
3110  // known zeros as well.
3111  uint32_t TZ = GetMinTrailingZeros(S);
3112  if (TZ != 0)
3113    ConservativeResult =
3114      ConstantRange(APInt::getSignedMinValue(BitWidth),
3115                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3116
3117  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3118    ConstantRange X = getSignedRange(Add->getOperand(0));
3119    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3120      X = X.add(getSignedRange(Add->getOperand(i)));
3121    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3122  }
3123
3124  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3125    ConstantRange X = getSignedRange(Mul->getOperand(0));
3126    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3127      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3128    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3129  }
3130
3131  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3132    ConstantRange X = getSignedRange(SMax->getOperand(0));
3133    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3134      X = X.smax(getSignedRange(SMax->getOperand(i)));
3135    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3136  }
3137
3138  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3139    ConstantRange X = getSignedRange(UMax->getOperand(0));
3140    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3141      X = X.umax(getSignedRange(UMax->getOperand(i)));
3142    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3143  }
3144
3145  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3146    ConstantRange X = getSignedRange(UDiv->getLHS());
3147    ConstantRange Y = getSignedRange(UDiv->getRHS());
3148    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3149  }
3150
3151  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3152    ConstantRange X = getSignedRange(ZExt->getOperand());
3153    return setSignedRange(ZExt,
3154      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3155  }
3156
3157  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3158    ConstantRange X = getSignedRange(SExt->getOperand());
3159    return setSignedRange(SExt,
3160      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3161  }
3162
3163  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3164    ConstantRange X = getSignedRange(Trunc->getOperand());
3165    return setSignedRange(Trunc,
3166      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3167  }
3168
3169  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3170    // If there's no signed wrap, and all the operands have the same sign or
3171    // zero, the value won't ever change sign.
3172    if (AddRec->hasNoSignedWrap()) {
3173      bool AllNonNeg = true;
3174      bool AllNonPos = true;
3175      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3176        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3177        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3178      }
3179      if (AllNonNeg)
3180        ConservativeResult = ConservativeResult.intersectWith(
3181          ConstantRange(APInt(BitWidth, 0),
3182                        APInt::getSignedMinValue(BitWidth)));
3183      else if (AllNonPos)
3184        ConservativeResult = ConservativeResult.intersectWith(
3185          ConstantRange(APInt::getSignedMinValue(BitWidth),
3186                        APInt(BitWidth, 1)));
3187    }
3188
3189    // TODO: non-affine addrec
3190    if (AddRec->isAffine()) {
3191      const Type *Ty = AddRec->getType();
3192      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3193      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3194          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3195        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3196
3197        const SCEV *Start = AddRec->getStart();
3198        const SCEV *Step = AddRec->getStepRecurrence(*this);
3199
3200        ConstantRange StartRange = getSignedRange(Start);
3201        ConstantRange StepRange = getSignedRange(Step);
3202        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3203        ConstantRange EndRange =
3204          StartRange.add(MaxBECountRange.multiply(StepRange));
3205
3206        // Check for overflow. This must be done with ConstantRange arithmetic
3207        // because we could be called from within the ScalarEvolution overflow
3208        // checking code.
3209        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3210        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3211        ConstantRange ExtMaxBECountRange =
3212          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3213        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3214        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3215            ExtEndRange)
3216          return setSignedRange(AddRec, ConservativeResult);
3217
3218        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3219                                   EndRange.getSignedMin());
3220        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3221                                   EndRange.getSignedMax());
3222        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3223          return setSignedRange(AddRec, ConservativeResult);
3224        return setSignedRange(AddRec,
3225          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3226      }
3227    }
3228
3229    return setSignedRange(AddRec, ConservativeResult);
3230  }
3231
3232  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3233    // For a SCEVUnknown, ask ValueTracking.
3234    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3235      return setSignedRange(U, ConservativeResult);
3236    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3237    if (NS == 1)
3238      return setSignedRange(U, ConservativeResult);
3239    return setSignedRange(U, ConservativeResult.intersectWith(
3240      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3241                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3242  }
3243
3244  return setSignedRange(S, ConservativeResult);
3245}
3246
3247/// createSCEV - We know that there is no SCEV for the specified value.
3248/// Analyze the expression.
3249///
3250const SCEV *ScalarEvolution::createSCEV(Value *V) {
3251  if (!isSCEVable(V->getType()))
3252    return getUnknown(V);
3253
3254  unsigned Opcode = Instruction::UserOp1;
3255  if (Instruction *I = dyn_cast<Instruction>(V)) {
3256    Opcode = I->getOpcode();
3257
3258    // Don't attempt to analyze instructions in blocks that aren't
3259    // reachable. Such instructions don't matter, and they aren't required
3260    // to obey basic rules for definitions dominating uses which this
3261    // analysis depends on.
3262    if (!DT->isReachableFromEntry(I->getParent()))
3263      return getUnknown(V);
3264  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3265    Opcode = CE->getOpcode();
3266  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3267    return getConstant(CI);
3268  else if (isa<ConstantPointerNull>(V))
3269    return getConstant(V->getType(), 0);
3270  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3271    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3272  else
3273    return getUnknown(V);
3274
3275  Operator *U = cast<Operator>(V);
3276  switch (Opcode) {
3277  case Instruction::Add: {
3278    // The simple thing to do would be to just call getSCEV on both operands
3279    // and call getAddExpr with the result. However if we're looking at a
3280    // bunch of things all added together, this can be quite inefficient,
3281    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3282    // Instead, gather up all the operands and make a single getAddExpr call.
3283    // LLVM IR canonical form means we need only traverse the left operands.
3284    SmallVector<const SCEV *, 4> AddOps;
3285    AddOps.push_back(getSCEV(U->getOperand(1)));
3286    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3287      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3288      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3289        break;
3290      U = cast<Operator>(Op);
3291      const SCEV *Op1 = getSCEV(U->getOperand(1));
3292      if (Opcode == Instruction::Sub)
3293        AddOps.push_back(getNegativeSCEV(Op1));
3294      else
3295        AddOps.push_back(Op1);
3296    }
3297    AddOps.push_back(getSCEV(U->getOperand(0)));
3298    return getAddExpr(AddOps);
3299  }
3300  case Instruction::Mul: {
3301    // See the Add code above.
3302    SmallVector<const SCEV *, 4> MulOps;
3303    MulOps.push_back(getSCEV(U->getOperand(1)));
3304    for (Value *Op = U->getOperand(0);
3305         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3306         Op = U->getOperand(0)) {
3307      U = cast<Operator>(Op);
3308      MulOps.push_back(getSCEV(U->getOperand(1)));
3309    }
3310    MulOps.push_back(getSCEV(U->getOperand(0)));
3311    return getMulExpr(MulOps);
3312  }
3313  case Instruction::UDiv:
3314    return getUDivExpr(getSCEV(U->getOperand(0)),
3315                       getSCEV(U->getOperand(1)));
3316  case Instruction::Sub:
3317    return getMinusSCEV(getSCEV(U->getOperand(0)),
3318                        getSCEV(U->getOperand(1)));
3319  case Instruction::And:
3320    // For an expression like x&255 that merely masks off the high bits,
3321    // use zext(trunc(x)) as the SCEV expression.
3322    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3323      if (CI->isNullValue())
3324        return getSCEV(U->getOperand(1));
3325      if (CI->isAllOnesValue())
3326        return getSCEV(U->getOperand(0));
3327      const APInt &A = CI->getValue();
3328
3329      // Instcombine's ShrinkDemandedConstant may strip bits out of
3330      // constants, obscuring what would otherwise be a low-bits mask.
3331      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3332      // knew about to reconstruct a low-bits mask value.
3333      unsigned LZ = A.countLeadingZeros();
3334      unsigned BitWidth = A.getBitWidth();
3335      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3336      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3337      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3338
3339      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3340
3341      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3342        return
3343          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3344                                IntegerType::get(getContext(), BitWidth - LZ)),
3345                            U->getType());
3346    }
3347    break;
3348
3349  case Instruction::Or:
3350    // If the RHS of the Or is a constant, we may have something like:
3351    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3352    // optimizations will transparently handle this case.
3353    //
3354    // In order for this transformation to be safe, the LHS must be of the
3355    // form X*(2^n) and the Or constant must be less than 2^n.
3356    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3357      const SCEV *LHS = getSCEV(U->getOperand(0));
3358      const APInt &CIVal = CI->getValue();
3359      if (GetMinTrailingZeros(LHS) >=
3360          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3361        // Build a plain add SCEV.
3362        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3363        // If the LHS of the add was an addrec and it has no-wrap flags,
3364        // transfer the no-wrap flags, since an or won't introduce a wrap.
3365        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3366          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3367          if (OldAR->hasNoUnsignedWrap())
3368            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3369          if (OldAR->hasNoSignedWrap())
3370            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3371        }
3372        return S;
3373      }
3374    }
3375    break;
3376  case Instruction::Xor:
3377    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3378      // If the RHS of the xor is a signbit, then this is just an add.
3379      // Instcombine turns add of signbit into xor as a strength reduction step.
3380      if (CI->getValue().isSignBit())
3381        return getAddExpr(getSCEV(U->getOperand(0)),
3382                          getSCEV(U->getOperand(1)));
3383
3384      // If the RHS of xor is -1, then this is a not operation.
3385      if (CI->isAllOnesValue())
3386        return getNotSCEV(getSCEV(U->getOperand(0)));
3387
3388      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3389      // This is a variant of the check for xor with -1, and it handles
3390      // the case where instcombine has trimmed non-demanded bits out
3391      // of an xor with -1.
3392      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3393        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3394          if (BO->getOpcode() == Instruction::And &&
3395              LCI->getValue() == CI->getValue())
3396            if (const SCEVZeroExtendExpr *Z =
3397                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3398              const Type *UTy = U->getType();
3399              const SCEV *Z0 = Z->getOperand();
3400              const Type *Z0Ty = Z0->getType();
3401              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3402
3403              // If C is a low-bits mask, the zero extend is serving to
3404              // mask off the high bits. Complement the operand and
3405              // re-apply the zext.
3406              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3407                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3408
3409              // If C is a single bit, it may be in the sign-bit position
3410              // before the zero-extend. In this case, represent the xor
3411              // using an add, which is equivalent, and re-apply the zext.
3412              APInt Trunc = CI->getValue().trunc(Z0TySize);
3413              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3414                  Trunc.isSignBit())
3415                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3416                                         UTy);
3417            }
3418    }
3419    break;
3420
3421  case Instruction::Shl:
3422    // Turn shift left of a constant amount into a multiply.
3423    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3424      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3425
3426      // If the shift count is not less than the bitwidth, the result of
3427      // the shift is undefined. Don't try to analyze it, because the
3428      // resolution chosen here may differ from the resolution chosen in
3429      // other parts of the compiler.
3430      if (SA->getValue().uge(BitWidth))
3431        break;
3432
3433      Constant *X = ConstantInt::get(getContext(),
3434        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3435      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3436    }
3437    break;
3438
3439  case Instruction::LShr:
3440    // Turn logical shift right of a constant into a unsigned divide.
3441    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3442      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3443
3444      // If the shift count is not less than the bitwidth, the result of
3445      // the shift is undefined. Don't try to analyze it, because the
3446      // resolution chosen here may differ from the resolution chosen in
3447      // other parts of the compiler.
3448      if (SA->getValue().uge(BitWidth))
3449        break;
3450
3451      Constant *X = ConstantInt::get(getContext(),
3452        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3453      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3454    }
3455    break;
3456
3457  case Instruction::AShr:
3458    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3459    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3460      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3461        if (L->getOpcode() == Instruction::Shl &&
3462            L->getOperand(1) == U->getOperand(1)) {
3463          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3464
3465          // If the shift count is not less than the bitwidth, the result of
3466          // the shift is undefined. Don't try to analyze it, because the
3467          // resolution chosen here may differ from the resolution chosen in
3468          // other parts of the compiler.
3469          if (CI->getValue().uge(BitWidth))
3470            break;
3471
3472          uint64_t Amt = BitWidth - CI->getZExtValue();
3473          if (Amt == BitWidth)
3474            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3475          return
3476            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3477                                              IntegerType::get(getContext(),
3478                                                               Amt)),
3479                              U->getType());
3480        }
3481    break;
3482
3483  case Instruction::Trunc:
3484    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3485
3486  case Instruction::ZExt:
3487    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3488
3489  case Instruction::SExt:
3490    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3491
3492  case Instruction::BitCast:
3493    // BitCasts are no-op casts so we just eliminate the cast.
3494    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3495      return getSCEV(U->getOperand(0));
3496    break;
3497
3498  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3499  // lead to pointer expressions which cannot safely be expanded to GEPs,
3500  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3501  // simplifying integer expressions.
3502
3503  case Instruction::GetElementPtr:
3504    return createNodeForGEP(cast<GEPOperator>(U));
3505
3506  case Instruction::PHI:
3507    return createNodeForPHI(cast<PHINode>(U));
3508
3509  case Instruction::Select:
3510    // This could be a smax or umax that was lowered earlier.
3511    // Try to recover it.
3512    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3513      Value *LHS = ICI->getOperand(0);
3514      Value *RHS = ICI->getOperand(1);
3515      switch (ICI->getPredicate()) {
3516      case ICmpInst::ICMP_SLT:
3517      case ICmpInst::ICMP_SLE:
3518        std::swap(LHS, RHS);
3519        // fall through
3520      case ICmpInst::ICMP_SGT:
3521      case ICmpInst::ICMP_SGE:
3522        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3523        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3524        if (LHS->getType() == U->getType()) {
3525          const SCEV *LS = getSCEV(LHS);
3526          const SCEV *RS = getSCEV(RHS);
3527          const SCEV *LA = getSCEV(U->getOperand(1));
3528          const SCEV *RA = getSCEV(U->getOperand(2));
3529          const SCEV *LDiff = getMinusSCEV(LA, LS);
3530          const SCEV *RDiff = getMinusSCEV(RA, RS);
3531          if (LDiff == RDiff)
3532            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3533          LDiff = getMinusSCEV(LA, RS);
3534          RDiff = getMinusSCEV(RA, LS);
3535          if (LDiff == RDiff)
3536            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3537        }
3538        break;
3539      case ICmpInst::ICMP_ULT:
3540      case ICmpInst::ICMP_ULE:
3541        std::swap(LHS, RHS);
3542        // fall through
3543      case ICmpInst::ICMP_UGT:
3544      case ICmpInst::ICMP_UGE:
3545        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3546        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3547        if (LHS->getType() == U->getType()) {
3548          const SCEV *LS = getSCEV(LHS);
3549          const SCEV *RS = getSCEV(RHS);
3550          const SCEV *LA = getSCEV(U->getOperand(1));
3551          const SCEV *RA = getSCEV(U->getOperand(2));
3552          const SCEV *LDiff = getMinusSCEV(LA, LS);
3553          const SCEV *RDiff = getMinusSCEV(RA, RS);
3554          if (LDiff == RDiff)
3555            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3556          LDiff = getMinusSCEV(LA, RS);
3557          RDiff = getMinusSCEV(RA, LS);
3558          if (LDiff == RDiff)
3559            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3560        }
3561        break;
3562      case ICmpInst::ICMP_NE:
3563        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3564        if (LHS->getType() == U->getType() &&
3565            isa<ConstantInt>(RHS) &&
3566            cast<ConstantInt>(RHS)->isZero()) {
3567          const SCEV *One = getConstant(LHS->getType(), 1);
3568          const SCEV *LS = getSCEV(LHS);
3569          const SCEV *LA = getSCEV(U->getOperand(1));
3570          const SCEV *RA = getSCEV(U->getOperand(2));
3571          const SCEV *LDiff = getMinusSCEV(LA, LS);
3572          const SCEV *RDiff = getMinusSCEV(RA, One);
3573          if (LDiff == RDiff)
3574            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3575        }
3576        break;
3577      case ICmpInst::ICMP_EQ:
3578        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3579        if (LHS->getType() == U->getType() &&
3580            isa<ConstantInt>(RHS) &&
3581            cast<ConstantInt>(RHS)->isZero()) {
3582          const SCEV *One = getConstant(LHS->getType(), 1);
3583          const SCEV *LS = getSCEV(LHS);
3584          const SCEV *LA = getSCEV(U->getOperand(1));
3585          const SCEV *RA = getSCEV(U->getOperand(2));
3586          const SCEV *LDiff = getMinusSCEV(LA, One);
3587          const SCEV *RDiff = getMinusSCEV(RA, LS);
3588          if (LDiff == RDiff)
3589            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3590        }
3591        break;
3592      default:
3593        break;
3594      }
3595    }
3596
3597  default: // We cannot analyze this expression.
3598    break;
3599  }
3600
3601  return getUnknown(V);
3602}
3603
3604
3605
3606//===----------------------------------------------------------------------===//
3607//                   Iteration Count Computation Code
3608//
3609
3610/// getBackedgeTakenCount - If the specified loop has a predictable
3611/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3612/// object. The backedge-taken count is the number of times the loop header
3613/// will be branched to from within the loop. This is one less than the
3614/// trip count of the loop, since it doesn't count the first iteration,
3615/// when the header is branched to from outside the loop.
3616///
3617/// Note that it is not valid to call this method on a loop without a
3618/// loop-invariant backedge-taken count (see
3619/// hasLoopInvariantBackedgeTakenCount).
3620///
3621const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3622  return getBackedgeTakenInfo(L).Exact;
3623}
3624
3625/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3626/// return the least SCEV value that is known never to be less than the
3627/// actual backedge taken count.
3628const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3629  return getBackedgeTakenInfo(L).Max;
3630}
3631
3632/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3633/// onto the given Worklist.
3634static void
3635PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3636  BasicBlock *Header = L->getHeader();
3637
3638  // Push all Loop-header PHIs onto the Worklist stack.
3639  for (BasicBlock::iterator I = Header->begin();
3640       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3641    Worklist.push_back(PN);
3642}
3643
3644const ScalarEvolution::BackedgeTakenInfo &
3645ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3646  // Initially insert a CouldNotCompute for this loop. If the insertion
3647  // succeeds, proceed to actually compute a backedge-taken count and
3648  // update the value. The temporary CouldNotCompute value tells SCEV
3649  // code elsewhere that it shouldn't attempt to request a new
3650  // backedge-taken count, which could result in infinite recursion.
3651  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3652    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3653  if (!Pair.second)
3654    return Pair.first->second;
3655
3656  BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3657  if (BECount.Exact != getCouldNotCompute()) {
3658    assert(isLoopInvariant(BECount.Exact, L) &&
3659           isLoopInvariant(BECount.Max, L) &&
3660           "Computed backedge-taken count isn't loop invariant for loop!");
3661    ++NumTripCountsComputed;
3662
3663    // Update the value in the map.
3664    Pair.first->second = BECount;
3665  } else {
3666    if (BECount.Max != getCouldNotCompute())
3667      // Update the value in the map.
3668      Pair.first->second = BECount;
3669    if (isa<PHINode>(L->getHeader()->begin()))
3670      // Only count loops that have phi nodes as not being computable.
3671      ++NumTripCountsNotComputed;
3672  }
3673
3674  // Now that we know more about the trip count for this loop, forget any
3675  // existing SCEV values for PHI nodes in this loop since they are only
3676  // conservative estimates made without the benefit of trip count
3677  // information. This is similar to the code in forgetLoop, except that
3678  // it handles SCEVUnknown PHI nodes specially.
3679  if (BECount.hasAnyInfo()) {
3680    SmallVector<Instruction *, 16> Worklist;
3681    PushLoopPHIs(L, Worklist);
3682
3683    SmallPtrSet<Instruction *, 8> Visited;
3684    while (!Worklist.empty()) {
3685      Instruction *I = Worklist.pop_back_val();
3686      if (!Visited.insert(I)) continue;
3687
3688      ValueExprMapType::iterator It =
3689        ValueExprMap.find(static_cast<Value *>(I));
3690      if (It != ValueExprMap.end()) {
3691        const SCEV *Old = It->second;
3692
3693        // SCEVUnknown for a PHI either means that it has an unrecognized
3694        // structure, or it's a PHI that's in the progress of being computed
3695        // by createNodeForPHI.  In the former case, additional loop trip
3696        // count information isn't going to change anything. In the later
3697        // case, createNodeForPHI will perform the necessary updates on its
3698        // own when it gets to that point.
3699        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3700          forgetMemoizedResults(Old);
3701          ValueExprMap.erase(It);
3702        }
3703        if (PHINode *PN = dyn_cast<PHINode>(I))
3704          ConstantEvolutionLoopExitValue.erase(PN);
3705      }
3706
3707      PushDefUseChildren(I, Worklist);
3708    }
3709  }
3710  return Pair.first->second;
3711}
3712
3713/// forgetLoop - This method should be called by the client when it has
3714/// changed a loop in a way that may effect ScalarEvolution's ability to
3715/// compute a trip count, or if the loop is deleted.
3716void ScalarEvolution::forgetLoop(const Loop *L) {
3717  // Drop any stored trip count value.
3718  BackedgeTakenCounts.erase(L);
3719
3720  // Drop information about expressions based on loop-header PHIs.
3721  SmallVector<Instruction *, 16> Worklist;
3722  PushLoopPHIs(L, Worklist);
3723
3724  SmallPtrSet<Instruction *, 8> Visited;
3725  while (!Worklist.empty()) {
3726    Instruction *I = Worklist.pop_back_val();
3727    if (!Visited.insert(I)) continue;
3728
3729    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3730    if (It != ValueExprMap.end()) {
3731      forgetMemoizedResults(It->second);
3732      ValueExprMap.erase(It);
3733      if (PHINode *PN = dyn_cast<PHINode>(I))
3734        ConstantEvolutionLoopExitValue.erase(PN);
3735    }
3736
3737    PushDefUseChildren(I, Worklist);
3738  }
3739
3740  // Forget all contained loops too, to avoid dangling entries in the
3741  // ValuesAtScopes map.
3742  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3743    forgetLoop(*I);
3744}
3745
3746/// forgetValue - This method should be called by the client when it has
3747/// changed a value in a way that may effect its value, or which may
3748/// disconnect it from a def-use chain linking it to a loop.
3749void ScalarEvolution::forgetValue(Value *V) {
3750  Instruction *I = dyn_cast<Instruction>(V);
3751  if (!I) return;
3752
3753  // Drop information about expressions based on loop-header PHIs.
3754  SmallVector<Instruction *, 16> Worklist;
3755  Worklist.push_back(I);
3756
3757  SmallPtrSet<Instruction *, 8> Visited;
3758  while (!Worklist.empty()) {
3759    I = Worklist.pop_back_val();
3760    if (!Visited.insert(I)) continue;
3761
3762    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3763    if (It != ValueExprMap.end()) {
3764      forgetMemoizedResults(It->second);
3765      ValueExprMap.erase(It);
3766      if (PHINode *PN = dyn_cast<PHINode>(I))
3767        ConstantEvolutionLoopExitValue.erase(PN);
3768    }
3769
3770    PushDefUseChildren(I, Worklist);
3771  }
3772}
3773
3774/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3775/// of the specified loop will execute.
3776ScalarEvolution::BackedgeTakenInfo
3777ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3778  SmallVector<BasicBlock *, 8> ExitingBlocks;
3779  L->getExitingBlocks(ExitingBlocks);
3780
3781  // Examine all exits and pick the most conservative values.
3782  const SCEV *BECount = getCouldNotCompute();
3783  const SCEV *MaxBECount = getCouldNotCompute();
3784  bool CouldNotComputeBECount = false;
3785  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3786    BackedgeTakenInfo NewBTI =
3787      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3788
3789    if (NewBTI.Exact == getCouldNotCompute()) {
3790      // We couldn't compute an exact value for this exit, so
3791      // we won't be able to compute an exact value for the loop.
3792      CouldNotComputeBECount = true;
3793      BECount = getCouldNotCompute();
3794    } else if (!CouldNotComputeBECount) {
3795      if (BECount == getCouldNotCompute())
3796        BECount = NewBTI.Exact;
3797      else
3798        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3799    }
3800    if (MaxBECount == getCouldNotCompute())
3801      MaxBECount = NewBTI.Max;
3802    else if (NewBTI.Max != getCouldNotCompute())
3803      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3804  }
3805
3806  return BackedgeTakenInfo(BECount, MaxBECount);
3807}
3808
3809/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3810/// of the specified loop will execute if it exits via the specified block.
3811ScalarEvolution::BackedgeTakenInfo
3812ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3813                                                   BasicBlock *ExitingBlock) {
3814
3815  // Okay, we've chosen an exiting block.  See what condition causes us to
3816  // exit at this block.
3817  //
3818  // FIXME: we should be able to handle switch instructions (with a single exit)
3819  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3820  if (ExitBr == 0) return getCouldNotCompute();
3821  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3822
3823  // At this point, we know we have a conditional branch that determines whether
3824  // the loop is exited.  However, we don't know if the branch is executed each
3825  // time through the loop.  If not, then the execution count of the branch will
3826  // not be equal to the trip count of the loop.
3827  //
3828  // Currently we check for this by checking to see if the Exit branch goes to
3829  // the loop header.  If so, we know it will always execute the same number of
3830  // times as the loop.  We also handle the case where the exit block *is* the
3831  // loop header.  This is common for un-rotated loops.
3832  //
3833  // If both of those tests fail, walk up the unique predecessor chain to the
3834  // header, stopping if there is an edge that doesn't exit the loop. If the
3835  // header is reached, the execution count of the branch will be equal to the
3836  // trip count of the loop.
3837  //
3838  //  More extensive analysis could be done to handle more cases here.
3839  //
3840  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3841      ExitBr->getSuccessor(1) != L->getHeader() &&
3842      ExitBr->getParent() != L->getHeader()) {
3843    // The simple checks failed, try climbing the unique predecessor chain
3844    // up to the header.
3845    bool Ok = false;
3846    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3847      BasicBlock *Pred = BB->getUniquePredecessor();
3848      if (!Pred)
3849        return getCouldNotCompute();
3850      TerminatorInst *PredTerm = Pred->getTerminator();
3851      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3852        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3853        if (PredSucc == BB)
3854          continue;
3855        // If the predecessor has a successor that isn't BB and isn't
3856        // outside the loop, assume the worst.
3857        if (L->contains(PredSucc))
3858          return getCouldNotCompute();
3859      }
3860      if (Pred == L->getHeader()) {
3861        Ok = true;
3862        break;
3863      }
3864      BB = Pred;
3865    }
3866    if (!Ok)
3867      return getCouldNotCompute();
3868  }
3869
3870  // Proceed to the next level to examine the exit condition expression.
3871  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3872                                               ExitBr->getSuccessor(0),
3873                                               ExitBr->getSuccessor(1));
3874}
3875
3876/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3877/// backedge of the specified loop will execute if its exit condition
3878/// were a conditional branch of ExitCond, TBB, and FBB.
3879ScalarEvolution::BackedgeTakenInfo
3880ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3881                                                       Value *ExitCond,
3882                                                       BasicBlock *TBB,
3883                                                       BasicBlock *FBB) {
3884  // Check if the controlling expression for this loop is an And or Or.
3885  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3886    if (BO->getOpcode() == Instruction::And) {
3887      // Recurse on the operands of the and.
3888      BackedgeTakenInfo BTI0 =
3889        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3890      BackedgeTakenInfo BTI1 =
3891        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3892      const SCEV *BECount = getCouldNotCompute();
3893      const SCEV *MaxBECount = getCouldNotCompute();
3894      if (L->contains(TBB)) {
3895        // Both conditions must be true for the loop to continue executing.
3896        // Choose the less conservative count.
3897        if (BTI0.Exact == getCouldNotCompute() ||
3898            BTI1.Exact == getCouldNotCompute())
3899          BECount = getCouldNotCompute();
3900        else
3901          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3902        if (BTI0.Max == getCouldNotCompute())
3903          MaxBECount = BTI1.Max;
3904        else if (BTI1.Max == getCouldNotCompute())
3905          MaxBECount = BTI0.Max;
3906        else
3907          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3908      } else {
3909        // Both conditions must be true at the same time for the loop to exit.
3910        // For now, be conservative.
3911        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3912        if (BTI0.Max == BTI1.Max)
3913          MaxBECount = BTI0.Max;
3914        if (BTI0.Exact == BTI1.Exact)
3915          BECount = BTI0.Exact;
3916      }
3917
3918      return BackedgeTakenInfo(BECount, MaxBECount);
3919    }
3920    if (BO->getOpcode() == Instruction::Or) {
3921      // Recurse on the operands of the or.
3922      BackedgeTakenInfo BTI0 =
3923        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3924      BackedgeTakenInfo BTI1 =
3925        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3926      const SCEV *BECount = getCouldNotCompute();
3927      const SCEV *MaxBECount = getCouldNotCompute();
3928      if (L->contains(FBB)) {
3929        // Both conditions must be false for the loop to continue executing.
3930        // Choose the less conservative count.
3931        if (BTI0.Exact == getCouldNotCompute() ||
3932            BTI1.Exact == getCouldNotCompute())
3933          BECount = getCouldNotCompute();
3934        else
3935          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3936        if (BTI0.Max == getCouldNotCompute())
3937          MaxBECount = BTI1.Max;
3938        else if (BTI1.Max == getCouldNotCompute())
3939          MaxBECount = BTI0.Max;
3940        else
3941          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3942      } else {
3943        // Both conditions must be false at the same time for the loop to exit.
3944        // For now, be conservative.
3945        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3946        if (BTI0.Max == BTI1.Max)
3947          MaxBECount = BTI0.Max;
3948        if (BTI0.Exact == BTI1.Exact)
3949          BECount = BTI0.Exact;
3950      }
3951
3952      return BackedgeTakenInfo(BECount, MaxBECount);
3953    }
3954  }
3955
3956  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3957  // Proceed to the next level to examine the icmp.
3958  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3959    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3960
3961  // Check for a constant condition. These are normally stripped out by
3962  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3963  // preserve the CFG and is temporarily leaving constant conditions
3964  // in place.
3965  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3966    if (L->contains(FBB) == !CI->getZExtValue())
3967      // The backedge is always taken.
3968      return getCouldNotCompute();
3969    else
3970      // The backedge is never taken.
3971      return getConstant(CI->getType(), 0);
3972  }
3973
3974  // If it's not an integer or pointer comparison then compute it the hard way.
3975  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3976}
3977
3978static const SCEVAddRecExpr *
3979isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3980  const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3981
3982  // The SCEV must be an addrec of this loop.
3983  if (!SA || SA->getLoop() != L || !SA->isAffine())
3984    return 0;
3985
3986  // The SCEV must be known to not wrap in some way to be interesting.
3987  if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3988    return 0;
3989
3990  // The stride must be a constant so that we know if it is striding up or down.
3991  if (!isa<SCEVConstant>(SA->getOperand(1)))
3992    return 0;
3993  return SA;
3994}
3995
3996/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3997/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3998/// and this function returns the expression to use for x-y.  We know and take
3999/// advantage of the fact that this subtraction is only being used in a
4000/// comparison by zero context.
4001///
4002static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4003                                           const Loop *L, ScalarEvolution &SE) {
4004  // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4005  // wrap (either NSW or NUW), then we know that the value will either become
4006  // the other one (and thus the loop terminates), that the loop will terminate
4007  // through some other exit condition first, or that the loop has undefined
4008  // behavior.  This information is useful when the addrec has a stride that is
4009  // != 1 or -1, because it means we can't "miss" the exit value.
4010  //
4011  // In any of these three cases, it is safe to turn the exit condition into a
4012  // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4013  // but since we know that the "end cannot be missed" we can force the
4014  // resulting AddRec to be a NUW addrec.  Since it is counting down, this means
4015  // that the AddRec *cannot* pass zero.
4016
4017  // See if LHS and RHS are addrec's we can handle.
4018  const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4019  const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4020
4021  // If neither addrec is interesting, just return a minus.
4022  if (RHSA == 0 && LHSA == 0)
4023    return SE.getMinusSCEV(LHS, RHS);
4024
4025  // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4026  if (RHSA && LHSA == 0) {
4027    // Safe because a-b === b-a for comparisons against zero.
4028    std::swap(LHS, RHS);
4029    std::swap(LHSA, RHSA);
4030  }
4031
4032  // Handle the case when only one is advancing in a non-overflowing way.
4033  if (RHSA == 0) {
4034    // If RHS is loop varying, then we can't predict when LHS will cross it.
4035    if (!SE.isLoopInvariant(RHS, L))
4036      return SE.getMinusSCEV(LHS, RHS);
4037
4038    // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4039    // is counting up until it crosses RHS (which must be larger than LHS).  If
4040    // it is negative, we compute LHS-RHS because we're counting down to RHS.
4041    const ConstantInt *Stride =
4042      cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4043    if (Stride->getValue().isNegative())
4044      std::swap(LHS, RHS);
4045
4046    return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4047  }
4048
4049  // If both LHS and RHS are interesting, we have something like:
4050  //  a+i*4 != b+i*8.
4051  const ConstantInt *LHSStride =
4052    cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4053  const ConstantInt *RHSStride =
4054    cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4055
4056  // If the strides are equal, then this is just a (complex) loop invariant
4057  // comparison of a and b.
4058  if (LHSStride == RHSStride)
4059    return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4060
4061  // If the signs of the strides differ, then the negative stride is counting
4062  // down to the positive stride.
4063  if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4064    if (RHSStride->getValue().isNegative())
4065      std::swap(LHS, RHS);
4066  } else {
4067    // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4068    // "a" and "b" is RHS is counting up (catching up) to LHS.  This is true
4069    // whether the strides are positive or negative.
4070    if (RHSStride->getValue().slt(LHSStride->getValue()))
4071      std::swap(LHS, RHS);
4072  }
4073
4074  return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4075}
4076
4077/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4078/// backedge of the specified loop will execute if its exit condition
4079/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4080ScalarEvolution::BackedgeTakenInfo
4081ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4082                                                           ICmpInst *ExitCond,
4083                                                           BasicBlock *TBB,
4084                                                           BasicBlock *FBB) {
4085
4086  // If the condition was exit on true, convert the condition to exit on false
4087  ICmpInst::Predicate Cond;
4088  if (!L->contains(FBB))
4089    Cond = ExitCond->getPredicate();
4090  else
4091    Cond = ExitCond->getInversePredicate();
4092
4093  // Handle common loops like: for (X = "string"; *X; ++X)
4094  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4095    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4096      BackedgeTakenInfo ItCnt =
4097        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4098      if (ItCnt.hasAnyInfo())
4099        return ItCnt;
4100    }
4101
4102  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4103  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4104
4105  // Try to evaluate any dependencies out of the loop.
4106  LHS = getSCEVAtScope(LHS, L);
4107  RHS = getSCEVAtScope(RHS, L);
4108
4109  // At this point, we would like to compute how many iterations of the
4110  // loop the predicate will return true for these inputs.
4111  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4112    // If there is a loop-invariant, force it into the RHS.
4113    std::swap(LHS, RHS);
4114    Cond = ICmpInst::getSwappedPredicate(Cond);
4115  }
4116
4117  // Simplify the operands before analyzing them.
4118  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4119
4120  // If we have a comparison of a chrec against a constant, try to use value
4121  // ranges to answer this query.
4122  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4123    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4124      if (AddRec->getLoop() == L) {
4125        // Form the constant range.
4126        ConstantRange CompRange(
4127            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4128
4129        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4130        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4131      }
4132
4133  switch (Cond) {
4134  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4135    // Convert to: while (X-Y != 0)
4136    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4137                                                                 *this), L);
4138    if (BTI.hasAnyInfo()) return BTI;
4139    break;
4140  }
4141  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4142    // Convert to: while (X-Y == 0)
4143    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4144    if (BTI.hasAnyInfo()) return BTI;
4145    break;
4146  }
4147  case ICmpInst::ICMP_SLT: {
4148    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4149    if (BTI.hasAnyInfo()) return BTI;
4150    break;
4151  }
4152  case ICmpInst::ICMP_SGT: {
4153    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4154                                             getNotSCEV(RHS), L, true);
4155    if (BTI.hasAnyInfo()) return BTI;
4156    break;
4157  }
4158  case ICmpInst::ICMP_ULT: {
4159    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4160    if (BTI.hasAnyInfo()) return BTI;
4161    break;
4162  }
4163  case ICmpInst::ICMP_UGT: {
4164    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4165                                             getNotSCEV(RHS), L, false);
4166    if (BTI.hasAnyInfo()) return BTI;
4167    break;
4168  }
4169  default:
4170#if 0
4171    dbgs() << "ComputeBackedgeTakenCount ";
4172    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4173      dbgs() << "[unsigned] ";
4174    dbgs() << *LHS << "   "
4175         << Instruction::getOpcodeName(Instruction::ICmp)
4176         << "   " << *RHS << "\n";
4177#endif
4178    break;
4179  }
4180  return
4181    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4182}
4183
4184static ConstantInt *
4185EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4186                                ScalarEvolution &SE) {
4187  const SCEV *InVal = SE.getConstant(C);
4188  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4189  assert(isa<SCEVConstant>(Val) &&
4190         "Evaluation of SCEV at constant didn't fold correctly?");
4191  return cast<SCEVConstant>(Val)->getValue();
4192}
4193
4194/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4195/// and a GEP expression (missing the pointer index) indexing into it, return
4196/// the addressed element of the initializer or null if the index expression is
4197/// invalid.
4198static Constant *
4199GetAddressedElementFromGlobal(GlobalVariable *GV,
4200                              const std::vector<ConstantInt*> &Indices) {
4201  Constant *Init = GV->getInitializer();
4202  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4203    uint64_t Idx = Indices[i]->getZExtValue();
4204    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4205      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4206      Init = cast<Constant>(CS->getOperand(Idx));
4207    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4208      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4209      Init = cast<Constant>(CA->getOperand(Idx));
4210    } else if (isa<ConstantAggregateZero>(Init)) {
4211      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4212        assert(Idx < STy->getNumElements() && "Bad struct index!");
4213        Init = Constant::getNullValue(STy->getElementType(Idx));
4214      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4215        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4216        Init = Constant::getNullValue(ATy->getElementType());
4217      } else {
4218        llvm_unreachable("Unknown constant aggregate type!");
4219      }
4220      return 0;
4221    } else {
4222      return 0; // Unknown initializer type
4223    }
4224  }
4225  return Init;
4226}
4227
4228/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4229/// 'icmp op load X, cst', try to see if we can compute the backedge
4230/// execution count.
4231ScalarEvolution::BackedgeTakenInfo
4232ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4233                                                LoadInst *LI,
4234                                                Constant *RHS,
4235                                                const Loop *L,
4236                                                ICmpInst::Predicate predicate) {
4237  if (LI->isVolatile()) return getCouldNotCompute();
4238
4239  // Check to see if the loaded pointer is a getelementptr of a global.
4240  // TODO: Use SCEV instead of manually grubbing with GEPs.
4241  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4242  if (!GEP) return getCouldNotCompute();
4243
4244  // Make sure that it is really a constant global we are gepping, with an
4245  // initializer, and make sure the first IDX is really 0.
4246  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4247  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4248      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4249      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4250    return getCouldNotCompute();
4251
4252  // Okay, we allow one non-constant index into the GEP instruction.
4253  Value *VarIdx = 0;
4254  std::vector<ConstantInt*> Indexes;
4255  unsigned VarIdxNum = 0;
4256  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4257    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4258      Indexes.push_back(CI);
4259    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4260      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4261      VarIdx = GEP->getOperand(i);
4262      VarIdxNum = i-2;
4263      Indexes.push_back(0);
4264    }
4265
4266  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4267  // Check to see if X is a loop variant variable value now.
4268  const SCEV *Idx = getSCEV(VarIdx);
4269  Idx = getSCEVAtScope(Idx, L);
4270
4271  // We can only recognize very limited forms of loop index expressions, in
4272  // particular, only affine AddRec's like {C1,+,C2}.
4273  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4274  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4275      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4276      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4277    return getCouldNotCompute();
4278
4279  unsigned MaxSteps = MaxBruteForceIterations;
4280  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4281    ConstantInt *ItCst = ConstantInt::get(
4282                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4283    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4284
4285    // Form the GEP offset.
4286    Indexes[VarIdxNum] = Val;
4287
4288    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4289    if (Result == 0) break;  // Cannot compute!
4290
4291    // Evaluate the condition for this iteration.
4292    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4293    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4294    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4295#if 0
4296      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4297             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4298             << "***\n";
4299#endif
4300      ++NumArrayLenItCounts;
4301      return getConstant(ItCst);   // Found terminating iteration!
4302    }
4303  }
4304  return getCouldNotCompute();
4305}
4306
4307
4308/// CanConstantFold - Return true if we can constant fold an instruction of the
4309/// specified type, assuming that all operands were constants.
4310static bool CanConstantFold(const Instruction *I) {
4311  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4312      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4313    return true;
4314
4315  if (const CallInst *CI = dyn_cast<CallInst>(I))
4316    if (const Function *F = CI->getCalledFunction())
4317      return canConstantFoldCallTo(F);
4318  return false;
4319}
4320
4321/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4322/// in the loop that V is derived from.  We allow arbitrary operations along the
4323/// way, but the operands of an operation must either be constants or a value
4324/// derived from a constant PHI.  If this expression does not fit with these
4325/// constraints, return null.
4326static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4327  // If this is not an instruction, or if this is an instruction outside of the
4328  // loop, it can't be derived from a loop PHI.
4329  Instruction *I = dyn_cast<Instruction>(V);
4330  if (I == 0 || !L->contains(I)) return 0;
4331
4332  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4333    if (L->getHeader() == I->getParent())
4334      return PN;
4335    else
4336      // We don't currently keep track of the control flow needed to evaluate
4337      // PHIs, so we cannot handle PHIs inside of loops.
4338      return 0;
4339  }
4340
4341  // If we won't be able to constant fold this expression even if the operands
4342  // are constants, return early.
4343  if (!CanConstantFold(I)) return 0;
4344
4345  // Otherwise, we can evaluate this instruction if all of its operands are
4346  // constant or derived from a PHI node themselves.
4347  PHINode *PHI = 0;
4348  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4349    if (!isa<Constant>(I->getOperand(Op))) {
4350      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4351      if (P == 0) return 0;  // Not evolving from PHI
4352      if (PHI == 0)
4353        PHI = P;
4354      else if (PHI != P)
4355        return 0;  // Evolving from multiple different PHIs.
4356    }
4357
4358  // This is a expression evolving from a constant PHI!
4359  return PHI;
4360}
4361
4362/// EvaluateExpression - Given an expression that passes the
4363/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4364/// in the loop has the value PHIVal.  If we can't fold this expression for some
4365/// reason, return null.
4366static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4367                                    const TargetData *TD) {
4368  if (isa<PHINode>(V)) return PHIVal;
4369  if (Constant *C = dyn_cast<Constant>(V)) return C;
4370  Instruction *I = cast<Instruction>(V);
4371
4372  std::vector<Constant*> Operands(I->getNumOperands());
4373
4374  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4375    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4376    if (Operands[i] == 0) return 0;
4377  }
4378
4379  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4380    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4381                                           Operands[1], TD);
4382  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4383                                  &Operands[0], Operands.size(), TD);
4384}
4385
4386/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4387/// in the header of its containing loop, we know the loop executes a
4388/// constant number of times, and the PHI node is just a recurrence
4389/// involving constants, fold it.
4390Constant *
4391ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4392                                                   const APInt &BEs,
4393                                                   const Loop *L) {
4394  std::map<PHINode*, Constant*>::const_iterator I =
4395    ConstantEvolutionLoopExitValue.find(PN);
4396  if (I != ConstantEvolutionLoopExitValue.end())
4397    return I->second;
4398
4399  if (BEs.ugt(MaxBruteForceIterations))
4400    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4401
4402  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4403
4404  // Since the loop is canonicalized, the PHI node must have two entries.  One
4405  // entry must be a constant (coming in from outside of the loop), and the
4406  // second must be derived from the same PHI.
4407  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4408  Constant *StartCST =
4409    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4410  if (StartCST == 0)
4411    return RetVal = 0;  // Must be a constant.
4412
4413  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4414  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4415      !isa<Constant>(BEValue))
4416    return RetVal = 0;  // Not derived from same PHI.
4417
4418  // Execute the loop symbolically to determine the exit value.
4419  if (BEs.getActiveBits() >= 32)
4420    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4421
4422  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4423  unsigned IterationNum = 0;
4424  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4425    if (IterationNum == NumIterations)
4426      return RetVal = PHIVal;  // Got exit value!
4427
4428    // Compute the value of the PHI node for the next iteration.
4429    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4430    if (NextPHI == PHIVal)
4431      return RetVal = NextPHI;  // Stopped evolving!
4432    if (NextPHI == 0)
4433      return 0;        // Couldn't evaluate!
4434    PHIVal = NextPHI;
4435  }
4436}
4437
4438/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4439/// constant number of times (the condition evolves only from constants),
4440/// try to evaluate a few iterations of the loop until we get the exit
4441/// condition gets a value of ExitWhen (true or false).  If we cannot
4442/// evaluate the trip count of the loop, return getCouldNotCompute().
4443const SCEV *
4444ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4445                                                       Value *Cond,
4446                                                       bool ExitWhen) {
4447  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4448  if (PN == 0) return getCouldNotCompute();
4449
4450  // If the loop is canonicalized, the PHI will have exactly two entries.
4451  // That's the only form we support here.
4452  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4453
4454  // One entry must be a constant (coming in from outside of the loop), and the
4455  // second must be derived from the same PHI.
4456  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4457  Constant *StartCST =
4458    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4459  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4460
4461  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4462  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4463      !isa<Constant>(BEValue))
4464    return getCouldNotCompute();  // Not derived from same PHI.
4465
4466  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4467  // the loop symbolically to determine when the condition gets a value of
4468  // "ExitWhen".
4469  unsigned IterationNum = 0;
4470  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4471  for (Constant *PHIVal = StartCST;
4472       IterationNum != MaxIterations; ++IterationNum) {
4473    ConstantInt *CondVal =
4474      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4475
4476    // Couldn't symbolically evaluate.
4477    if (!CondVal) return getCouldNotCompute();
4478
4479    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4480      ++NumBruteForceTripCountsComputed;
4481      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4482    }
4483
4484    // Compute the value of the PHI node for the next iteration.
4485    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4486    if (NextPHI == 0 || NextPHI == PHIVal)
4487      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4488    PHIVal = NextPHI;
4489  }
4490
4491  // Too many iterations were needed to evaluate.
4492  return getCouldNotCompute();
4493}
4494
4495/// getSCEVAtScope - Return a SCEV expression for the specified value
4496/// at the specified scope in the program.  The L value specifies a loop
4497/// nest to evaluate the expression at, where null is the top-level or a
4498/// specified loop is immediately inside of the loop.
4499///
4500/// This method can be used to compute the exit value for a variable defined
4501/// in a loop by querying what the value will hold in the parent loop.
4502///
4503/// In the case that a relevant loop exit value cannot be computed, the
4504/// original value V is returned.
4505const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4506  // Check to see if we've folded this expression at this loop before.
4507  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4508  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4509    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4510  if (!Pair.second)
4511    return Pair.first->second ? Pair.first->second : V;
4512
4513  // Otherwise compute it.
4514  const SCEV *C = computeSCEVAtScope(V, L);
4515  ValuesAtScopes[V][L] = C;
4516  return C;
4517}
4518
4519const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4520  if (isa<SCEVConstant>(V)) return V;
4521
4522  // If this instruction is evolved from a constant-evolving PHI, compute the
4523  // exit value from the loop without using SCEVs.
4524  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4525    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4526      const Loop *LI = (*this->LI)[I->getParent()];
4527      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4528        if (PHINode *PN = dyn_cast<PHINode>(I))
4529          if (PN->getParent() == LI->getHeader()) {
4530            // Okay, there is no closed form solution for the PHI node.  Check
4531            // to see if the loop that contains it has a known backedge-taken
4532            // count.  If so, we may be able to force computation of the exit
4533            // value.
4534            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4535            if (const SCEVConstant *BTCC =
4536                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4537              // Okay, we know how many times the containing loop executes.  If
4538              // this is a constant evolving PHI node, get the final value at
4539              // the specified iteration number.
4540              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4541                                                   BTCC->getValue()->getValue(),
4542                                                               LI);
4543              if (RV) return getSCEV(RV);
4544            }
4545          }
4546
4547      // Okay, this is an expression that we cannot symbolically evaluate
4548      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4549      // the arguments into constants, and if so, try to constant propagate the
4550      // result.  This is particularly useful for computing loop exit values.
4551      if (CanConstantFold(I)) {
4552        SmallVector<Constant *, 4> Operands;
4553        bool MadeImprovement = false;
4554        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4555          Value *Op = I->getOperand(i);
4556          if (Constant *C = dyn_cast<Constant>(Op)) {
4557            Operands.push_back(C);
4558            continue;
4559          }
4560
4561          // If any of the operands is non-constant and if they are
4562          // non-integer and non-pointer, don't even try to analyze them
4563          // with scev techniques.
4564          if (!isSCEVable(Op->getType()))
4565            return V;
4566
4567          const SCEV *OrigV = getSCEV(Op);
4568          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4569          MadeImprovement |= OrigV != OpV;
4570
4571          Constant *C = 0;
4572          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4573            C = SC->getValue();
4574          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4575            C = dyn_cast<Constant>(SU->getValue());
4576          if (!C) return V;
4577          if (C->getType() != Op->getType())
4578            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4579                                                              Op->getType(),
4580                                                              false),
4581                                      C, Op->getType());
4582          Operands.push_back(C);
4583        }
4584
4585        // Check to see if getSCEVAtScope actually made an improvement.
4586        if (MadeImprovement) {
4587          Constant *C = 0;
4588          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4589            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4590                                                Operands[0], Operands[1], TD);
4591          else
4592            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4593                                         &Operands[0], Operands.size(), TD);
4594          if (!C) return V;
4595          return getSCEV(C);
4596        }
4597      }
4598    }
4599
4600    // This is some other type of SCEVUnknown, just return it.
4601    return V;
4602  }
4603
4604  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4605    // Avoid performing the look-up in the common case where the specified
4606    // expression has no loop-variant portions.
4607    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4608      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4609      if (OpAtScope != Comm->getOperand(i)) {
4610        // Okay, at least one of these operands is loop variant but might be
4611        // foldable.  Build a new instance of the folded commutative expression.
4612        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4613                                            Comm->op_begin()+i);
4614        NewOps.push_back(OpAtScope);
4615
4616        for (++i; i != e; ++i) {
4617          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4618          NewOps.push_back(OpAtScope);
4619        }
4620        if (isa<SCEVAddExpr>(Comm))
4621          return getAddExpr(NewOps);
4622        if (isa<SCEVMulExpr>(Comm))
4623          return getMulExpr(NewOps);
4624        if (isa<SCEVSMaxExpr>(Comm))
4625          return getSMaxExpr(NewOps);
4626        if (isa<SCEVUMaxExpr>(Comm))
4627          return getUMaxExpr(NewOps);
4628        llvm_unreachable("Unknown commutative SCEV type!");
4629      }
4630    }
4631    // If we got here, all operands are loop invariant.
4632    return Comm;
4633  }
4634
4635  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4636    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4637    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4638    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4639      return Div;   // must be loop invariant
4640    return getUDivExpr(LHS, RHS);
4641  }
4642
4643  // If this is a loop recurrence for a loop that does not contain L, then we
4644  // are dealing with the final value computed by the loop.
4645  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4646    // First, attempt to evaluate each operand.
4647    // Avoid performing the look-up in the common case where the specified
4648    // expression has no loop-variant portions.
4649    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4650      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4651      if (OpAtScope == AddRec->getOperand(i))
4652        continue;
4653
4654      // Okay, at least one of these operands is loop variant but might be
4655      // foldable.  Build a new instance of the folded commutative expression.
4656      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4657                                          AddRec->op_begin()+i);
4658      NewOps.push_back(OpAtScope);
4659      for (++i; i != e; ++i)
4660        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4661
4662      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4663      break;
4664    }
4665
4666    // If the scope is outside the addrec's loop, evaluate it by using the
4667    // loop exit value of the addrec.
4668    if (!AddRec->getLoop()->contains(L)) {
4669      // To evaluate this recurrence, we need to know how many times the AddRec
4670      // loop iterates.  Compute this now.
4671      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4672      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4673
4674      // Then, evaluate the AddRec.
4675      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4676    }
4677
4678    return AddRec;
4679  }
4680
4681  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4682    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4683    if (Op == Cast->getOperand())
4684      return Cast;  // must be loop invariant
4685    return getZeroExtendExpr(Op, Cast->getType());
4686  }
4687
4688  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4689    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4690    if (Op == Cast->getOperand())
4691      return Cast;  // must be loop invariant
4692    return getSignExtendExpr(Op, Cast->getType());
4693  }
4694
4695  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4696    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4697    if (Op == Cast->getOperand())
4698      return Cast;  // must be loop invariant
4699    return getTruncateExpr(Op, Cast->getType());
4700  }
4701
4702  llvm_unreachable("Unknown SCEV type!");
4703  return 0;
4704}
4705
4706/// getSCEVAtScope - This is a convenience function which does
4707/// getSCEVAtScope(getSCEV(V), L).
4708const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4709  return getSCEVAtScope(getSCEV(V), L);
4710}
4711
4712/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4713/// following equation:
4714///
4715///     A * X = B (mod N)
4716///
4717/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4718/// A and B isn't important.
4719///
4720/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4721static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4722                                               ScalarEvolution &SE) {
4723  uint32_t BW = A.getBitWidth();
4724  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4725  assert(A != 0 && "A must be non-zero.");
4726
4727  // 1. D = gcd(A, N)
4728  //
4729  // The gcd of A and N may have only one prime factor: 2. The number of
4730  // trailing zeros in A is its multiplicity
4731  uint32_t Mult2 = A.countTrailingZeros();
4732  // D = 2^Mult2
4733
4734  // 2. Check if B is divisible by D.
4735  //
4736  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4737  // is not less than multiplicity of this prime factor for D.
4738  if (B.countTrailingZeros() < Mult2)
4739    return SE.getCouldNotCompute();
4740
4741  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4742  // modulo (N / D).
4743  //
4744  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4745  // bit width during computations.
4746  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4747  APInt Mod(BW + 1, 0);
4748  Mod.setBit(BW - Mult2);  // Mod = N / D
4749  APInt I = AD.multiplicativeInverse(Mod);
4750
4751  // 4. Compute the minimum unsigned root of the equation:
4752  // I * (B / D) mod (N / D)
4753  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4754
4755  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4756  // bits.
4757  return SE.getConstant(Result.trunc(BW));
4758}
4759
4760/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4761/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4762/// might be the same) or two SCEVCouldNotCompute objects.
4763///
4764static std::pair<const SCEV *,const SCEV *>
4765SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4766  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4767  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4768  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4769  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4770
4771  // We currently can only solve this if the coefficients are constants.
4772  if (!LC || !MC || !NC) {
4773    const SCEV *CNC = SE.getCouldNotCompute();
4774    return std::make_pair(CNC, CNC);
4775  }
4776
4777  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4778  const APInt &L = LC->getValue()->getValue();
4779  const APInt &M = MC->getValue()->getValue();
4780  const APInt &N = NC->getValue()->getValue();
4781  APInt Two(BitWidth, 2);
4782  APInt Four(BitWidth, 4);
4783
4784  {
4785    using namespace APIntOps;
4786    const APInt& C = L;
4787    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4788    // The B coefficient is M-N/2
4789    APInt B(M);
4790    B -= sdiv(N,Two);
4791
4792    // The A coefficient is N/2
4793    APInt A(N.sdiv(Two));
4794
4795    // Compute the B^2-4ac term.
4796    APInt SqrtTerm(B);
4797    SqrtTerm *= B;
4798    SqrtTerm -= Four * (A * C);
4799
4800    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4801    // integer value or else APInt::sqrt() will assert.
4802    APInt SqrtVal(SqrtTerm.sqrt());
4803
4804    // Compute the two solutions for the quadratic formula.
4805    // The divisions must be performed as signed divisions.
4806    APInt NegB(-B);
4807    APInt TwoA( A << 1 );
4808    if (TwoA.isMinValue()) {
4809      const SCEV *CNC = SE.getCouldNotCompute();
4810      return std::make_pair(CNC, CNC);
4811    }
4812
4813    LLVMContext &Context = SE.getContext();
4814
4815    ConstantInt *Solution1 =
4816      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4817    ConstantInt *Solution2 =
4818      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4819
4820    return std::make_pair(SE.getConstant(Solution1),
4821                          SE.getConstant(Solution2));
4822    } // end APIntOps namespace
4823}
4824
4825/// HowFarToZero - Return the number of times a backedge comparing the specified
4826/// value to zero will execute.  If not computable, return CouldNotCompute.
4827ScalarEvolution::BackedgeTakenInfo
4828ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4829  // If the value is a constant
4830  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4831    // If the value is already zero, the branch will execute zero times.
4832    if (C->getValue()->isZero()) return C;
4833    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4834  }
4835
4836  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4837  if (!AddRec || AddRec->getLoop() != L)
4838    return getCouldNotCompute();
4839
4840  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4841  // the quadratic equation to solve it.
4842  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4843    std::pair<const SCEV *,const SCEV *> Roots =
4844      SolveQuadraticEquation(AddRec, *this);
4845    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4846    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4847    if (R1 && R2) {
4848#if 0
4849      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4850             << "  sol#2: " << *R2 << "\n";
4851#endif
4852      // Pick the smallest positive root value.
4853      if (ConstantInt *CB =
4854          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4855                                                      R1->getValue(),
4856                                                      R2->getValue()))) {
4857        if (CB->getZExtValue() == false)
4858          std::swap(R1, R2);   // R1 is the minimum root now.
4859
4860        // We can only use this value if the chrec ends up with an exact zero
4861        // value at this index.  When solving for "X*X != 5", for example, we
4862        // should not accept a root of 2.
4863        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4864        if (Val->isZero())
4865          return R1;  // We found a quadratic root!
4866      }
4867    }
4868    return getCouldNotCompute();
4869  }
4870
4871  // Otherwise we can only handle this if it is affine.
4872  if (!AddRec->isAffine())
4873    return getCouldNotCompute();
4874
4875  // If this is an affine expression, the execution count of this branch is
4876  // the minimum unsigned root of the following equation:
4877  //
4878  //     Start + Step*N = 0 (mod 2^BW)
4879  //
4880  // equivalent to:
4881  //
4882  //             Step*N = -Start (mod 2^BW)
4883  //
4884  // where BW is the common bit width of Start and Step.
4885
4886  // Get the initial value for the loop.
4887  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4888  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4889
4890  // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4891  // to wrap to 0, it must be counting down to equal 0.  Also, while counting
4892  // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4893  // the stride is.  As such, NUW addrec's will always become zero in
4894  // "start / -stride" steps, and we know that the division is exact.
4895  if (AddRec->hasNoUnsignedWrap())
4896    // FIXME: We really want an "isexact" bit for udiv.
4897    return getUDivExpr(Start, getNegativeSCEV(Step));
4898
4899  // For now we handle only constant steps.
4900  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4901  if (StepC == 0)
4902    return getCouldNotCompute();
4903
4904  // First, handle unitary steps.
4905  if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4906    return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4907
4908  if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4909    return Start;                           //    N = Start (as unsigned)
4910
4911  // Then, try to solve the above equation provided that Start is constant.
4912  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4913    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4914                                        -StartC->getValue()->getValue(),
4915                                        *this);
4916  return getCouldNotCompute();
4917}
4918
4919/// HowFarToNonZero - Return the number of times a backedge checking the
4920/// specified value for nonzero will execute.  If not computable, return
4921/// CouldNotCompute
4922ScalarEvolution::BackedgeTakenInfo
4923ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4924  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4925  // handle them yet except for the trivial case.  This could be expanded in the
4926  // future as needed.
4927
4928  // If the value is a constant, check to see if it is known to be non-zero
4929  // already.  If so, the backedge will execute zero times.
4930  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4931    if (!C->getValue()->isNullValue())
4932      return getConstant(C->getType(), 0);
4933    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4934  }
4935
4936  // We could implement others, but I really doubt anyone writes loops like
4937  // this, and if they did, they would already be constant folded.
4938  return getCouldNotCompute();
4939}
4940
4941/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4942/// (which may not be an immediate predecessor) which has exactly one
4943/// successor from which BB is reachable, or null if no such block is
4944/// found.
4945///
4946std::pair<BasicBlock *, BasicBlock *>
4947ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4948  // If the block has a unique predecessor, then there is no path from the
4949  // predecessor to the block that does not go through the direct edge
4950  // from the predecessor to the block.
4951  if (BasicBlock *Pred = BB->getSinglePredecessor())
4952    return std::make_pair(Pred, BB);
4953
4954  // A loop's header is defined to be a block that dominates the loop.
4955  // If the header has a unique predecessor outside the loop, it must be
4956  // a block that has exactly one successor that can reach the loop.
4957  if (Loop *L = LI->getLoopFor(BB))
4958    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4959
4960  return std::pair<BasicBlock *, BasicBlock *>();
4961}
4962
4963/// HasSameValue - SCEV structural equivalence is usually sufficient for
4964/// testing whether two expressions are equal, however for the purposes of
4965/// looking for a condition guarding a loop, it can be useful to be a little
4966/// more general, since a front-end may have replicated the controlling
4967/// expression.
4968///
4969static bool HasSameValue(const SCEV *A, const SCEV *B) {
4970  // Quick check to see if they are the same SCEV.
4971  if (A == B) return true;
4972
4973  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4974  // two different instructions with the same value. Check for this case.
4975  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4976    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4977      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4978        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4979          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4980            return true;
4981
4982  // Otherwise assume they may have a different value.
4983  return false;
4984}
4985
4986/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4987/// predicate Pred. Return true iff any changes were made.
4988///
4989bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4990                                           const SCEV *&LHS, const SCEV *&RHS) {
4991  bool Changed = false;
4992
4993  // Canonicalize a constant to the right side.
4994  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4995    // Check for both operands constant.
4996    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4997      if (ConstantExpr::getICmp(Pred,
4998                                LHSC->getValue(),
4999                                RHSC->getValue())->isNullValue())
5000        goto trivially_false;
5001      else
5002        goto trivially_true;
5003    }
5004    // Otherwise swap the operands to put the constant on the right.
5005    std::swap(LHS, RHS);
5006    Pred = ICmpInst::getSwappedPredicate(Pred);
5007    Changed = true;
5008  }
5009
5010  // If we're comparing an addrec with a value which is loop-invariant in the
5011  // addrec's loop, put the addrec on the left. Also make a dominance check,
5012  // as both operands could be addrecs loop-invariant in each other's loop.
5013  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5014    const Loop *L = AR->getLoop();
5015    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5016      std::swap(LHS, RHS);
5017      Pred = ICmpInst::getSwappedPredicate(Pred);
5018      Changed = true;
5019    }
5020  }
5021
5022  // If there's a constant operand, canonicalize comparisons with boundary
5023  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5024  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5025    const APInt &RA = RC->getValue()->getValue();
5026    switch (Pred) {
5027    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5028    case ICmpInst::ICMP_EQ:
5029    case ICmpInst::ICMP_NE:
5030      break;
5031    case ICmpInst::ICMP_UGE:
5032      if ((RA - 1).isMinValue()) {
5033        Pred = ICmpInst::ICMP_NE;
5034        RHS = getConstant(RA - 1);
5035        Changed = true;
5036        break;
5037      }
5038      if (RA.isMaxValue()) {
5039        Pred = ICmpInst::ICMP_EQ;
5040        Changed = true;
5041        break;
5042      }
5043      if (RA.isMinValue()) goto trivially_true;
5044
5045      Pred = ICmpInst::ICMP_UGT;
5046      RHS = getConstant(RA - 1);
5047      Changed = true;
5048      break;
5049    case ICmpInst::ICMP_ULE:
5050      if ((RA + 1).isMaxValue()) {
5051        Pred = ICmpInst::ICMP_NE;
5052        RHS = getConstant(RA + 1);
5053        Changed = true;
5054        break;
5055      }
5056      if (RA.isMinValue()) {
5057        Pred = ICmpInst::ICMP_EQ;
5058        Changed = true;
5059        break;
5060      }
5061      if (RA.isMaxValue()) goto trivially_true;
5062
5063      Pred = ICmpInst::ICMP_ULT;
5064      RHS = getConstant(RA + 1);
5065      Changed = true;
5066      break;
5067    case ICmpInst::ICMP_SGE:
5068      if ((RA - 1).isMinSignedValue()) {
5069        Pred = ICmpInst::ICMP_NE;
5070        RHS = getConstant(RA - 1);
5071        Changed = true;
5072        break;
5073      }
5074      if (RA.isMaxSignedValue()) {
5075        Pred = ICmpInst::ICMP_EQ;
5076        Changed = true;
5077        break;
5078      }
5079      if (RA.isMinSignedValue()) goto trivially_true;
5080
5081      Pred = ICmpInst::ICMP_SGT;
5082      RHS = getConstant(RA - 1);
5083      Changed = true;
5084      break;
5085    case ICmpInst::ICMP_SLE:
5086      if ((RA + 1).isMaxSignedValue()) {
5087        Pred = ICmpInst::ICMP_NE;
5088        RHS = getConstant(RA + 1);
5089        Changed = true;
5090        break;
5091      }
5092      if (RA.isMinSignedValue()) {
5093        Pred = ICmpInst::ICMP_EQ;
5094        Changed = true;
5095        break;
5096      }
5097      if (RA.isMaxSignedValue()) goto trivially_true;
5098
5099      Pred = ICmpInst::ICMP_SLT;
5100      RHS = getConstant(RA + 1);
5101      Changed = true;
5102      break;
5103    case ICmpInst::ICMP_UGT:
5104      if (RA.isMinValue()) {
5105        Pred = ICmpInst::ICMP_NE;
5106        Changed = true;
5107        break;
5108      }
5109      if ((RA + 1).isMaxValue()) {
5110        Pred = ICmpInst::ICMP_EQ;
5111        RHS = getConstant(RA + 1);
5112        Changed = true;
5113        break;
5114      }
5115      if (RA.isMaxValue()) goto trivially_false;
5116      break;
5117    case ICmpInst::ICMP_ULT:
5118      if (RA.isMaxValue()) {
5119        Pred = ICmpInst::ICMP_NE;
5120        Changed = true;
5121        break;
5122      }
5123      if ((RA - 1).isMinValue()) {
5124        Pred = ICmpInst::ICMP_EQ;
5125        RHS = getConstant(RA - 1);
5126        Changed = true;
5127        break;
5128      }
5129      if (RA.isMinValue()) goto trivially_false;
5130      break;
5131    case ICmpInst::ICMP_SGT:
5132      if (RA.isMinSignedValue()) {
5133        Pred = ICmpInst::ICMP_NE;
5134        Changed = true;
5135        break;
5136      }
5137      if ((RA + 1).isMaxSignedValue()) {
5138        Pred = ICmpInst::ICMP_EQ;
5139        RHS = getConstant(RA + 1);
5140        Changed = true;
5141        break;
5142      }
5143      if (RA.isMaxSignedValue()) goto trivially_false;
5144      break;
5145    case ICmpInst::ICMP_SLT:
5146      if (RA.isMaxSignedValue()) {
5147        Pred = ICmpInst::ICMP_NE;
5148        Changed = true;
5149        break;
5150      }
5151      if ((RA - 1).isMinSignedValue()) {
5152       Pred = ICmpInst::ICMP_EQ;
5153       RHS = getConstant(RA - 1);
5154        Changed = true;
5155       break;
5156      }
5157      if (RA.isMinSignedValue()) goto trivially_false;
5158      break;
5159    }
5160  }
5161
5162  // Check for obvious equality.
5163  if (HasSameValue(LHS, RHS)) {
5164    if (ICmpInst::isTrueWhenEqual(Pred))
5165      goto trivially_true;
5166    if (ICmpInst::isFalseWhenEqual(Pred))
5167      goto trivially_false;
5168  }
5169
5170  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5171  // adding or subtracting 1 from one of the operands.
5172  switch (Pred) {
5173  case ICmpInst::ICMP_SLE:
5174    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5175      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5176                       /*HasNUW=*/false, /*HasNSW=*/true);
5177      Pred = ICmpInst::ICMP_SLT;
5178      Changed = true;
5179    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5180      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5181                       /*HasNUW=*/false, /*HasNSW=*/true);
5182      Pred = ICmpInst::ICMP_SLT;
5183      Changed = true;
5184    }
5185    break;
5186  case ICmpInst::ICMP_SGE:
5187    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5188      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5189                       /*HasNUW=*/false, /*HasNSW=*/true);
5190      Pred = ICmpInst::ICMP_SGT;
5191      Changed = true;
5192    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5193      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5194                       /*HasNUW=*/false, /*HasNSW=*/true);
5195      Pred = ICmpInst::ICMP_SGT;
5196      Changed = true;
5197    }
5198    break;
5199  case ICmpInst::ICMP_ULE:
5200    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5201      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5202                       /*HasNUW=*/true, /*HasNSW=*/false);
5203      Pred = ICmpInst::ICMP_ULT;
5204      Changed = true;
5205    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5206      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5207                       /*HasNUW=*/true, /*HasNSW=*/false);
5208      Pred = ICmpInst::ICMP_ULT;
5209      Changed = true;
5210    }
5211    break;
5212  case ICmpInst::ICMP_UGE:
5213    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5214      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5215                       /*HasNUW=*/true, /*HasNSW=*/false);
5216      Pred = ICmpInst::ICMP_UGT;
5217      Changed = true;
5218    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5219      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5220                       /*HasNUW=*/true, /*HasNSW=*/false);
5221      Pred = ICmpInst::ICMP_UGT;
5222      Changed = true;
5223    }
5224    break;
5225  default:
5226    break;
5227  }
5228
5229  // TODO: More simplifications are possible here.
5230
5231  return Changed;
5232
5233trivially_true:
5234  // Return 0 == 0.
5235  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5236  Pred = ICmpInst::ICMP_EQ;
5237  return true;
5238
5239trivially_false:
5240  // Return 0 != 0.
5241  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5242  Pred = ICmpInst::ICMP_NE;
5243  return true;
5244}
5245
5246bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5247  return getSignedRange(S).getSignedMax().isNegative();
5248}
5249
5250bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5251  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5252}
5253
5254bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5255  return !getSignedRange(S).getSignedMin().isNegative();
5256}
5257
5258bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5259  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5260}
5261
5262bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5263  return isKnownNegative(S) || isKnownPositive(S);
5264}
5265
5266bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5267                                       const SCEV *LHS, const SCEV *RHS) {
5268  // Canonicalize the inputs first.
5269  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5270
5271  // If LHS or RHS is an addrec, check to see if the condition is true in
5272  // every iteration of the loop.
5273  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5274    if (isLoopEntryGuardedByCond(
5275          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5276        isLoopBackedgeGuardedByCond(
5277          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5278      return true;
5279  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5280    if (isLoopEntryGuardedByCond(
5281          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5282        isLoopBackedgeGuardedByCond(
5283          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5284      return true;
5285
5286  // Otherwise see what can be done with known constant ranges.
5287  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5288}
5289
5290bool
5291ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5292                                            const SCEV *LHS, const SCEV *RHS) {
5293  if (HasSameValue(LHS, RHS))
5294    return ICmpInst::isTrueWhenEqual(Pred);
5295
5296  // This code is split out from isKnownPredicate because it is called from
5297  // within isLoopEntryGuardedByCond.
5298  switch (Pred) {
5299  default:
5300    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5301    break;
5302  case ICmpInst::ICMP_SGT:
5303    Pred = ICmpInst::ICMP_SLT;
5304    std::swap(LHS, RHS);
5305  case ICmpInst::ICMP_SLT: {
5306    ConstantRange LHSRange = getSignedRange(LHS);
5307    ConstantRange RHSRange = getSignedRange(RHS);
5308    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5309      return true;
5310    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5311      return false;
5312    break;
5313  }
5314  case ICmpInst::ICMP_SGE:
5315    Pred = ICmpInst::ICMP_SLE;
5316    std::swap(LHS, RHS);
5317  case ICmpInst::ICMP_SLE: {
5318    ConstantRange LHSRange = getSignedRange(LHS);
5319    ConstantRange RHSRange = getSignedRange(RHS);
5320    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5321      return true;
5322    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5323      return false;
5324    break;
5325  }
5326  case ICmpInst::ICMP_UGT:
5327    Pred = ICmpInst::ICMP_ULT;
5328    std::swap(LHS, RHS);
5329  case ICmpInst::ICMP_ULT: {
5330    ConstantRange LHSRange = getUnsignedRange(LHS);
5331    ConstantRange RHSRange = getUnsignedRange(RHS);
5332    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5333      return true;
5334    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5335      return false;
5336    break;
5337  }
5338  case ICmpInst::ICMP_UGE:
5339    Pred = ICmpInst::ICMP_ULE;
5340    std::swap(LHS, RHS);
5341  case ICmpInst::ICMP_ULE: {
5342    ConstantRange LHSRange = getUnsignedRange(LHS);
5343    ConstantRange RHSRange = getUnsignedRange(RHS);
5344    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5345      return true;
5346    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5347      return false;
5348    break;
5349  }
5350  case ICmpInst::ICMP_NE: {
5351    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5352      return true;
5353    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5354      return true;
5355
5356    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5357    if (isKnownNonZero(Diff))
5358      return true;
5359    break;
5360  }
5361  case ICmpInst::ICMP_EQ:
5362    // The check at the top of the function catches the case where
5363    // the values are known to be equal.
5364    break;
5365  }
5366  return false;
5367}
5368
5369/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5370/// protected by a conditional between LHS and RHS.  This is used to
5371/// to eliminate casts.
5372bool
5373ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5374                                             ICmpInst::Predicate Pred,
5375                                             const SCEV *LHS, const SCEV *RHS) {
5376  // Interpret a null as meaning no loop, where there is obviously no guard
5377  // (interprocedural conditions notwithstanding).
5378  if (!L) return true;
5379
5380  BasicBlock *Latch = L->getLoopLatch();
5381  if (!Latch)
5382    return false;
5383
5384  BranchInst *LoopContinuePredicate =
5385    dyn_cast<BranchInst>(Latch->getTerminator());
5386  if (!LoopContinuePredicate ||
5387      LoopContinuePredicate->isUnconditional())
5388    return false;
5389
5390  return isImpliedCond(Pred, LHS, RHS,
5391                       LoopContinuePredicate->getCondition(),
5392                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5393}
5394
5395/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5396/// by a conditional between LHS and RHS.  This is used to help avoid max
5397/// expressions in loop trip counts, and to eliminate casts.
5398bool
5399ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5400                                          ICmpInst::Predicate Pred,
5401                                          const SCEV *LHS, const SCEV *RHS) {
5402  // Interpret a null as meaning no loop, where there is obviously no guard
5403  // (interprocedural conditions notwithstanding).
5404  if (!L) return false;
5405
5406  // Starting at the loop predecessor, climb up the predecessor chain, as long
5407  // as there are predecessors that can be found that have unique successors
5408  // leading to the original header.
5409  for (std::pair<BasicBlock *, BasicBlock *>
5410         Pair(L->getLoopPredecessor(), L->getHeader());
5411       Pair.first;
5412       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5413
5414    BranchInst *LoopEntryPredicate =
5415      dyn_cast<BranchInst>(Pair.first->getTerminator());
5416    if (!LoopEntryPredicate ||
5417        LoopEntryPredicate->isUnconditional())
5418      continue;
5419
5420    if (isImpliedCond(Pred, LHS, RHS,
5421                      LoopEntryPredicate->getCondition(),
5422                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5423      return true;
5424  }
5425
5426  return false;
5427}
5428
5429/// isImpliedCond - Test whether the condition described by Pred, LHS,
5430/// and RHS is true whenever the given Cond value evaluates to true.
5431bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5432                                    const SCEV *LHS, const SCEV *RHS,
5433                                    Value *FoundCondValue,
5434                                    bool Inverse) {
5435  // Recursively handle And and Or conditions.
5436  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5437    if (BO->getOpcode() == Instruction::And) {
5438      if (!Inverse)
5439        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5440               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5441    } else if (BO->getOpcode() == Instruction::Or) {
5442      if (Inverse)
5443        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5444               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5445    }
5446  }
5447
5448  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5449  if (!ICI) return false;
5450
5451  // Bail if the ICmp's operands' types are wider than the needed type
5452  // before attempting to call getSCEV on them. This avoids infinite
5453  // recursion, since the analysis of widening casts can require loop
5454  // exit condition information for overflow checking, which would
5455  // lead back here.
5456  if (getTypeSizeInBits(LHS->getType()) <
5457      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5458    return false;
5459
5460  // Now that we found a conditional branch that dominates the loop, check to
5461  // see if it is the comparison we are looking for.
5462  ICmpInst::Predicate FoundPred;
5463  if (Inverse)
5464    FoundPred = ICI->getInversePredicate();
5465  else
5466    FoundPred = ICI->getPredicate();
5467
5468  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5469  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5470
5471  // Balance the types. The case where FoundLHS' type is wider than
5472  // LHS' type is checked for above.
5473  if (getTypeSizeInBits(LHS->getType()) >
5474      getTypeSizeInBits(FoundLHS->getType())) {
5475    if (CmpInst::isSigned(Pred)) {
5476      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5477      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5478    } else {
5479      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5480      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5481    }
5482  }
5483
5484  // Canonicalize the query to match the way instcombine will have
5485  // canonicalized the comparison.
5486  if (SimplifyICmpOperands(Pred, LHS, RHS))
5487    if (LHS == RHS)
5488      return CmpInst::isTrueWhenEqual(Pred);
5489  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5490    if (FoundLHS == FoundRHS)
5491      return CmpInst::isFalseWhenEqual(Pred);
5492
5493  // Check to see if we can make the LHS or RHS match.
5494  if (LHS == FoundRHS || RHS == FoundLHS) {
5495    if (isa<SCEVConstant>(RHS)) {
5496      std::swap(FoundLHS, FoundRHS);
5497      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5498    } else {
5499      std::swap(LHS, RHS);
5500      Pred = ICmpInst::getSwappedPredicate(Pred);
5501    }
5502  }
5503
5504  // Check whether the found predicate is the same as the desired predicate.
5505  if (FoundPred == Pred)
5506    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5507
5508  // Check whether swapping the found predicate makes it the same as the
5509  // desired predicate.
5510  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5511    if (isa<SCEVConstant>(RHS))
5512      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5513    else
5514      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5515                                   RHS, LHS, FoundLHS, FoundRHS);
5516  }
5517
5518  // Check whether the actual condition is beyond sufficient.
5519  if (FoundPred == ICmpInst::ICMP_EQ)
5520    if (ICmpInst::isTrueWhenEqual(Pred))
5521      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5522        return true;
5523  if (Pred == ICmpInst::ICMP_NE)
5524    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5525      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5526        return true;
5527
5528  // Otherwise assume the worst.
5529  return false;
5530}
5531
5532/// isImpliedCondOperands - Test whether the condition described by Pred,
5533/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5534/// and FoundRHS is true.
5535bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5536                                            const SCEV *LHS, const SCEV *RHS,
5537                                            const SCEV *FoundLHS,
5538                                            const SCEV *FoundRHS) {
5539  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5540                                     FoundLHS, FoundRHS) ||
5541         // ~x < ~y --> x > y
5542         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5543                                     getNotSCEV(FoundRHS),
5544                                     getNotSCEV(FoundLHS));
5545}
5546
5547/// isImpliedCondOperandsHelper - Test whether the condition described by
5548/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5549/// FoundLHS, and FoundRHS is true.
5550bool
5551ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5552                                             const SCEV *LHS, const SCEV *RHS,
5553                                             const SCEV *FoundLHS,
5554                                             const SCEV *FoundRHS) {
5555  switch (Pred) {
5556  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5557  case ICmpInst::ICMP_EQ:
5558  case ICmpInst::ICMP_NE:
5559    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5560      return true;
5561    break;
5562  case ICmpInst::ICMP_SLT:
5563  case ICmpInst::ICMP_SLE:
5564    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5565        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5566      return true;
5567    break;
5568  case ICmpInst::ICMP_SGT:
5569  case ICmpInst::ICMP_SGE:
5570    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5571        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5572      return true;
5573    break;
5574  case ICmpInst::ICMP_ULT:
5575  case ICmpInst::ICMP_ULE:
5576    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5577        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5578      return true;
5579    break;
5580  case ICmpInst::ICMP_UGT:
5581  case ICmpInst::ICMP_UGE:
5582    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5583        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5584      return true;
5585    break;
5586  }
5587
5588  return false;
5589}
5590
5591/// getBECount - Subtract the end and start values and divide by the step,
5592/// rounding up, to get the number of times the backedge is executed. Return
5593/// CouldNotCompute if an intermediate computation overflows.
5594const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5595                                        const SCEV *End,
5596                                        const SCEV *Step,
5597                                        bool NoWrap) {
5598  assert(!isKnownNegative(Step) &&
5599         "This code doesn't handle negative strides yet!");
5600
5601  const Type *Ty = Start->getType();
5602  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5603  const SCEV *Diff = getMinusSCEV(End, Start);
5604  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5605
5606  // Add an adjustment to the difference between End and Start so that
5607  // the division will effectively round up.
5608  const SCEV *Add = getAddExpr(Diff, RoundUp);
5609
5610  if (!NoWrap) {
5611    // Check Add for unsigned overflow.
5612    // TODO: More sophisticated things could be done here.
5613    const Type *WideTy = IntegerType::get(getContext(),
5614                                          getTypeSizeInBits(Ty) + 1);
5615    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5616    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5617    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5618    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5619      return getCouldNotCompute();
5620  }
5621
5622  return getUDivExpr(Add, Step);
5623}
5624
5625/// HowManyLessThans - Return the number of times a backedge containing the
5626/// specified less-than comparison will execute.  If not computable, return
5627/// CouldNotCompute.
5628ScalarEvolution::BackedgeTakenInfo
5629ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5630                                  const Loop *L, bool isSigned) {
5631  // Only handle:  "ADDREC < LoopInvariant".
5632  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5633
5634  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5635  if (!AddRec || AddRec->getLoop() != L)
5636    return getCouldNotCompute();
5637
5638  // Check to see if we have a flag which makes analysis easy.
5639  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5640                           AddRec->hasNoUnsignedWrap();
5641
5642  if (AddRec->isAffine()) {
5643    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5644    const SCEV *Step = AddRec->getStepRecurrence(*this);
5645
5646    if (Step->isZero())
5647      return getCouldNotCompute();
5648    if (Step->isOne()) {
5649      // With unit stride, the iteration never steps past the limit value.
5650    } else if (isKnownPositive(Step)) {
5651      // Test whether a positive iteration can step past the limit
5652      // value and past the maximum value for its type in a single step.
5653      // Note that it's not sufficient to check NoWrap here, because even
5654      // though the value after a wrap is undefined, it's not undefined
5655      // behavior, so if wrap does occur, the loop could either terminate or
5656      // loop infinitely, but in either case, the loop is guaranteed to
5657      // iterate at least until the iteration where the wrapping occurs.
5658      const SCEV *One = getConstant(Step->getType(), 1);
5659      if (isSigned) {
5660        APInt Max = APInt::getSignedMaxValue(BitWidth);
5661        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5662              .slt(getSignedRange(RHS).getSignedMax()))
5663          return getCouldNotCompute();
5664      } else {
5665        APInt Max = APInt::getMaxValue(BitWidth);
5666        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5667              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5668          return getCouldNotCompute();
5669      }
5670    } else
5671      // TODO: Handle negative strides here and below.
5672      return getCouldNotCompute();
5673
5674    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5675    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5676    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5677    // treat m-n as signed nor unsigned due to overflow possibility.
5678
5679    // First, we get the value of the LHS in the first iteration: n
5680    const SCEV *Start = AddRec->getOperand(0);
5681
5682    // Determine the minimum constant start value.
5683    const SCEV *MinStart = getConstant(isSigned ?
5684      getSignedRange(Start).getSignedMin() :
5685      getUnsignedRange(Start).getUnsignedMin());
5686
5687    // If we know that the condition is true in order to enter the loop,
5688    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5689    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5690    // the division must round up.
5691    const SCEV *End = RHS;
5692    if (!isLoopEntryGuardedByCond(L,
5693                                  isSigned ? ICmpInst::ICMP_SLT :
5694                                             ICmpInst::ICMP_ULT,
5695                                  getMinusSCEV(Start, Step), RHS))
5696      End = isSigned ? getSMaxExpr(RHS, Start)
5697                     : getUMaxExpr(RHS, Start);
5698
5699    // Determine the maximum constant end value.
5700    const SCEV *MaxEnd = getConstant(isSigned ?
5701      getSignedRange(End).getSignedMax() :
5702      getUnsignedRange(End).getUnsignedMax());
5703
5704    // If MaxEnd is within a step of the maximum integer value in its type,
5705    // adjust it down to the minimum value which would produce the same effect.
5706    // This allows the subsequent ceiling division of (N+(step-1))/step to
5707    // compute the correct value.
5708    const SCEV *StepMinusOne = getMinusSCEV(Step,
5709                                            getConstant(Step->getType(), 1));
5710    MaxEnd = isSigned ?
5711      getSMinExpr(MaxEnd,
5712                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5713                               StepMinusOne)) :
5714      getUMinExpr(MaxEnd,
5715                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5716                               StepMinusOne));
5717
5718    // Finally, we subtract these two values and divide, rounding up, to get
5719    // the number of times the backedge is executed.
5720    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5721
5722    // The maximum backedge count is similar, except using the minimum start
5723    // value and the maximum end value.
5724    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5725
5726    return BackedgeTakenInfo(BECount, MaxBECount);
5727  }
5728
5729  return getCouldNotCompute();
5730}
5731
5732/// getNumIterationsInRange - Return the number of iterations of this loop that
5733/// produce values in the specified constant range.  Another way of looking at
5734/// this is that it returns the first iteration number where the value is not in
5735/// the condition, thus computing the exit count. If the iteration count can't
5736/// be computed, an instance of SCEVCouldNotCompute is returned.
5737const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5738                                                    ScalarEvolution &SE) const {
5739  if (Range.isFullSet())  // Infinite loop.
5740    return SE.getCouldNotCompute();
5741
5742  // If the start is a non-zero constant, shift the range to simplify things.
5743  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5744    if (!SC->getValue()->isZero()) {
5745      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5746      Operands[0] = SE.getConstant(SC->getType(), 0);
5747      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5748      if (const SCEVAddRecExpr *ShiftedAddRec =
5749            dyn_cast<SCEVAddRecExpr>(Shifted))
5750        return ShiftedAddRec->getNumIterationsInRange(
5751                           Range.subtract(SC->getValue()->getValue()), SE);
5752      // This is strange and shouldn't happen.
5753      return SE.getCouldNotCompute();
5754    }
5755
5756  // The only time we can solve this is when we have all constant indices.
5757  // Otherwise, we cannot determine the overflow conditions.
5758  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5759    if (!isa<SCEVConstant>(getOperand(i)))
5760      return SE.getCouldNotCompute();
5761
5762
5763  // Okay at this point we know that all elements of the chrec are constants and
5764  // that the start element is zero.
5765
5766  // First check to see if the range contains zero.  If not, the first
5767  // iteration exits.
5768  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5769  if (!Range.contains(APInt(BitWidth, 0)))
5770    return SE.getConstant(getType(), 0);
5771
5772  if (isAffine()) {
5773    // If this is an affine expression then we have this situation:
5774    //   Solve {0,+,A} in Range  ===  Ax in Range
5775
5776    // We know that zero is in the range.  If A is positive then we know that
5777    // the upper value of the range must be the first possible exit value.
5778    // If A is negative then the lower of the range is the last possible loop
5779    // value.  Also note that we already checked for a full range.
5780    APInt One(BitWidth,1);
5781    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5782    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5783
5784    // The exit value should be (End+A)/A.
5785    APInt ExitVal = (End + A).udiv(A);
5786    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5787
5788    // Evaluate at the exit value.  If we really did fall out of the valid
5789    // range, then we computed our trip count, otherwise wrap around or other
5790    // things must have happened.
5791    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5792    if (Range.contains(Val->getValue()))
5793      return SE.getCouldNotCompute();  // Something strange happened
5794
5795    // Ensure that the previous value is in the range.  This is a sanity check.
5796    assert(Range.contains(
5797           EvaluateConstantChrecAtConstant(this,
5798           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5799           "Linear scev computation is off in a bad way!");
5800    return SE.getConstant(ExitValue);
5801  } else if (isQuadratic()) {
5802    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5803    // quadratic equation to solve it.  To do this, we must frame our problem in
5804    // terms of figuring out when zero is crossed, instead of when
5805    // Range.getUpper() is crossed.
5806    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5807    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5808    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5809
5810    // Next, solve the constructed addrec
5811    std::pair<const SCEV *,const SCEV *> Roots =
5812      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5813    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5814    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5815    if (R1) {
5816      // Pick the smallest positive root value.
5817      if (ConstantInt *CB =
5818          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5819                         R1->getValue(), R2->getValue()))) {
5820        if (CB->getZExtValue() == false)
5821          std::swap(R1, R2);   // R1 is the minimum root now.
5822
5823        // Make sure the root is not off by one.  The returned iteration should
5824        // not be in the range, but the previous one should be.  When solving
5825        // for "X*X < 5", for example, we should not return a root of 2.
5826        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5827                                                             R1->getValue(),
5828                                                             SE);
5829        if (Range.contains(R1Val->getValue())) {
5830          // The next iteration must be out of the range...
5831          ConstantInt *NextVal =
5832                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5833
5834          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5835          if (!Range.contains(R1Val->getValue()))
5836            return SE.getConstant(NextVal);
5837          return SE.getCouldNotCompute();  // Something strange happened
5838        }
5839
5840        // If R1 was not in the range, then it is a good return value.  Make
5841        // sure that R1-1 WAS in the range though, just in case.
5842        ConstantInt *NextVal =
5843               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5844        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5845        if (Range.contains(R1Val->getValue()))
5846          return R1;
5847        return SE.getCouldNotCompute();  // Something strange happened
5848      }
5849    }
5850  }
5851
5852  return SE.getCouldNotCompute();
5853}
5854
5855
5856
5857//===----------------------------------------------------------------------===//
5858//                   SCEVCallbackVH Class Implementation
5859//===----------------------------------------------------------------------===//
5860
5861void ScalarEvolution::SCEVCallbackVH::deleted() {
5862  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5863  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5864    SE->ConstantEvolutionLoopExitValue.erase(PN);
5865  SE->ValueExprMap.erase(getValPtr());
5866  // this now dangles!
5867}
5868
5869void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5870  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5871
5872  // Forget all the expressions associated with users of the old value,
5873  // so that future queries will recompute the expressions using the new
5874  // value.
5875  Value *Old = getValPtr();
5876  SmallVector<User *, 16> Worklist;
5877  SmallPtrSet<User *, 8> Visited;
5878  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5879       UI != UE; ++UI)
5880    Worklist.push_back(*UI);
5881  while (!Worklist.empty()) {
5882    User *U = Worklist.pop_back_val();
5883    // Deleting the Old value will cause this to dangle. Postpone
5884    // that until everything else is done.
5885    if (U == Old)
5886      continue;
5887    if (!Visited.insert(U))
5888      continue;
5889    if (PHINode *PN = dyn_cast<PHINode>(U))
5890      SE->ConstantEvolutionLoopExitValue.erase(PN);
5891    SE->ValueExprMap.erase(U);
5892    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5893         UI != UE; ++UI)
5894      Worklist.push_back(*UI);
5895  }
5896  // Delete the Old value.
5897  if (PHINode *PN = dyn_cast<PHINode>(Old))
5898    SE->ConstantEvolutionLoopExitValue.erase(PN);
5899  SE->ValueExprMap.erase(Old);
5900  // this now dangles!
5901}
5902
5903ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5904  : CallbackVH(V), SE(se) {}
5905
5906//===----------------------------------------------------------------------===//
5907//                   ScalarEvolution Class Implementation
5908//===----------------------------------------------------------------------===//
5909
5910ScalarEvolution::ScalarEvolution()
5911  : FunctionPass(ID), FirstUnknown(0) {
5912  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5913}
5914
5915bool ScalarEvolution::runOnFunction(Function &F) {
5916  this->F = &F;
5917  LI = &getAnalysis<LoopInfo>();
5918  TD = getAnalysisIfAvailable<TargetData>();
5919  DT = &getAnalysis<DominatorTree>();
5920  return false;
5921}
5922
5923void ScalarEvolution::releaseMemory() {
5924  // Iterate through all the SCEVUnknown instances and call their
5925  // destructors, so that they release their references to their values.
5926  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5927    U->~SCEVUnknown();
5928  FirstUnknown = 0;
5929
5930  ValueExprMap.clear();
5931  BackedgeTakenCounts.clear();
5932  ConstantEvolutionLoopExitValue.clear();
5933  ValuesAtScopes.clear();
5934  LoopDispositions.clear();
5935  BlockDispositions.clear();
5936  UnsignedRanges.clear();
5937  SignedRanges.clear();
5938  UniqueSCEVs.clear();
5939  SCEVAllocator.Reset();
5940}
5941
5942void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5943  AU.setPreservesAll();
5944  AU.addRequiredTransitive<LoopInfo>();
5945  AU.addRequiredTransitive<DominatorTree>();
5946}
5947
5948bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5949  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5950}
5951
5952static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5953                          const Loop *L) {
5954  // Print all inner loops first
5955  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5956    PrintLoopInfo(OS, SE, *I);
5957
5958  OS << "Loop ";
5959  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5960  OS << ": ";
5961
5962  SmallVector<BasicBlock *, 8> ExitBlocks;
5963  L->getExitBlocks(ExitBlocks);
5964  if (ExitBlocks.size() != 1)
5965    OS << "<multiple exits> ";
5966
5967  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5968    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5969  } else {
5970    OS << "Unpredictable backedge-taken count. ";
5971  }
5972
5973  OS << "\n"
5974        "Loop ";
5975  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5976  OS << ": ";
5977
5978  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5979    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5980  } else {
5981    OS << "Unpredictable max backedge-taken count. ";
5982  }
5983
5984  OS << "\n";
5985}
5986
5987void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5988  // ScalarEvolution's implementation of the print method is to print
5989  // out SCEV values of all instructions that are interesting. Doing
5990  // this potentially causes it to create new SCEV objects though,
5991  // which technically conflicts with the const qualifier. This isn't
5992  // observable from outside the class though, so casting away the
5993  // const isn't dangerous.
5994  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5995
5996  OS << "Classifying expressions for: ";
5997  WriteAsOperand(OS, F, /*PrintType=*/false);
5998  OS << "\n";
5999  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6000    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6001      OS << *I << '\n';
6002      OS << "  -->  ";
6003      const SCEV *SV = SE.getSCEV(&*I);
6004      SV->print(OS);
6005
6006      const Loop *L = LI->getLoopFor((*I).getParent());
6007
6008      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6009      if (AtUse != SV) {
6010        OS << "  -->  ";
6011        AtUse->print(OS);
6012      }
6013
6014      if (L) {
6015        OS << "\t\t" "Exits: ";
6016        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6017        if (!SE.isLoopInvariant(ExitValue, L)) {
6018          OS << "<<Unknown>>";
6019        } else {
6020          OS << *ExitValue;
6021        }
6022      }
6023
6024      OS << "\n";
6025    }
6026
6027  OS << "Determining loop execution counts for: ";
6028  WriteAsOperand(OS, F, /*PrintType=*/false);
6029  OS << "\n";
6030  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6031    PrintLoopInfo(OS, &SE, *I);
6032}
6033
6034ScalarEvolution::LoopDisposition
6035ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6036  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6037  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6038    Values.insert(std::make_pair(L, LoopVariant));
6039  if (!Pair.second)
6040    return Pair.first->second;
6041
6042  LoopDisposition D = computeLoopDisposition(S, L);
6043  return LoopDispositions[S][L] = D;
6044}
6045
6046ScalarEvolution::LoopDisposition
6047ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6048  switch (S->getSCEVType()) {
6049  case scConstant:
6050    return LoopInvariant;
6051  case scTruncate:
6052  case scZeroExtend:
6053  case scSignExtend:
6054    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6055  case scAddRecExpr: {
6056    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6057
6058    // If L is the addrec's loop, it's computable.
6059    if (AR->getLoop() == L)
6060      return LoopComputable;
6061
6062    // Add recurrences are never invariant in the function-body (null loop).
6063    if (!L)
6064      return LoopVariant;
6065
6066    // This recurrence is variant w.r.t. L if L contains AR's loop.
6067    if (L->contains(AR->getLoop()))
6068      return LoopVariant;
6069
6070    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6071    if (AR->getLoop()->contains(L))
6072      return LoopInvariant;
6073
6074    // This recurrence is variant w.r.t. L if any of its operands
6075    // are variant.
6076    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6077         I != E; ++I)
6078      if (!isLoopInvariant(*I, L))
6079        return LoopVariant;
6080
6081    // Otherwise it's loop-invariant.
6082    return LoopInvariant;
6083  }
6084  case scAddExpr:
6085  case scMulExpr:
6086  case scUMaxExpr:
6087  case scSMaxExpr: {
6088    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6089    bool HasVarying = false;
6090    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6091         I != E; ++I) {
6092      LoopDisposition D = getLoopDisposition(*I, L);
6093      if (D == LoopVariant)
6094        return LoopVariant;
6095      if (D == LoopComputable)
6096        HasVarying = true;
6097    }
6098    return HasVarying ? LoopComputable : LoopInvariant;
6099  }
6100  case scUDivExpr: {
6101    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6102    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6103    if (LD == LoopVariant)
6104      return LoopVariant;
6105    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6106    if (RD == LoopVariant)
6107      return LoopVariant;
6108    return (LD == LoopInvariant && RD == LoopInvariant) ?
6109           LoopInvariant : LoopComputable;
6110  }
6111  case scUnknown:
6112    // All non-instruction values are loop invariant.  All instructions are loop
6113    // invariant if they are not contained in the specified loop.
6114    // Instructions are never considered invariant in the function body
6115    // (null loop) because they are defined within the "loop".
6116    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6117      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6118    return LoopInvariant;
6119  case scCouldNotCompute:
6120    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6121    return LoopVariant;
6122  default: break;
6123  }
6124  llvm_unreachable("Unknown SCEV kind!");
6125  return LoopVariant;
6126}
6127
6128bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6129  return getLoopDisposition(S, L) == LoopInvariant;
6130}
6131
6132bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6133  return getLoopDisposition(S, L) == LoopComputable;
6134}
6135
6136ScalarEvolution::BlockDisposition
6137ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6138  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6139  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6140    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6141  if (!Pair.second)
6142    return Pair.first->second;
6143
6144  BlockDisposition D = computeBlockDisposition(S, BB);
6145  return BlockDispositions[S][BB] = D;
6146}
6147
6148ScalarEvolution::BlockDisposition
6149ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6150  switch (S->getSCEVType()) {
6151  case scConstant:
6152    return ProperlyDominatesBlock;
6153  case scTruncate:
6154  case scZeroExtend:
6155  case scSignExtend:
6156    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6157  case scAddRecExpr: {
6158    // This uses a "dominates" query instead of "properly dominates" query
6159    // to test for proper dominance too, because the instruction which
6160    // produces the addrec's value is a PHI, and a PHI effectively properly
6161    // dominates its entire containing block.
6162    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6163    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6164      return DoesNotDominateBlock;
6165  }
6166  // FALL THROUGH into SCEVNAryExpr handling.
6167  case scAddExpr:
6168  case scMulExpr:
6169  case scUMaxExpr:
6170  case scSMaxExpr: {
6171    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6172    bool Proper = true;
6173    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6174         I != E; ++I) {
6175      BlockDisposition D = getBlockDisposition(*I, BB);
6176      if (D == DoesNotDominateBlock)
6177        return DoesNotDominateBlock;
6178      if (D == DominatesBlock)
6179        Proper = false;
6180    }
6181    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6182  }
6183  case scUDivExpr: {
6184    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6185    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6186    BlockDisposition LD = getBlockDisposition(LHS, BB);
6187    if (LD == DoesNotDominateBlock)
6188      return DoesNotDominateBlock;
6189    BlockDisposition RD = getBlockDisposition(RHS, BB);
6190    if (RD == DoesNotDominateBlock)
6191      return DoesNotDominateBlock;
6192    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6193      ProperlyDominatesBlock : DominatesBlock;
6194  }
6195  case scUnknown:
6196    if (Instruction *I =
6197          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6198      if (I->getParent() == BB)
6199        return DominatesBlock;
6200      if (DT->properlyDominates(I->getParent(), BB))
6201        return ProperlyDominatesBlock;
6202      return DoesNotDominateBlock;
6203    }
6204    return ProperlyDominatesBlock;
6205  case scCouldNotCompute:
6206    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6207    return DoesNotDominateBlock;
6208  default: break;
6209  }
6210  llvm_unreachable("Unknown SCEV kind!");
6211  return DoesNotDominateBlock;
6212}
6213
6214bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6215  return getBlockDisposition(S, BB) >= DominatesBlock;
6216}
6217
6218bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6219  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6220}
6221
6222bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6223  switch (S->getSCEVType()) {
6224  case scConstant:
6225    return false;
6226  case scTruncate:
6227  case scZeroExtend:
6228  case scSignExtend: {
6229    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6230    const SCEV *CastOp = Cast->getOperand();
6231    return Op == CastOp || hasOperand(CastOp, Op);
6232  }
6233  case scAddRecExpr:
6234  case scAddExpr:
6235  case scMulExpr:
6236  case scUMaxExpr:
6237  case scSMaxExpr: {
6238    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6239    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6240         I != E; ++I) {
6241      const SCEV *NAryOp = *I;
6242      if (NAryOp == Op || hasOperand(NAryOp, Op))
6243        return true;
6244    }
6245    return false;
6246  }
6247  case scUDivExpr: {
6248    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6249    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6250    return LHS == Op || hasOperand(LHS, Op) ||
6251           RHS == Op || hasOperand(RHS, Op);
6252  }
6253  case scUnknown:
6254    return false;
6255  case scCouldNotCompute:
6256    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6257    return false;
6258  default: break;
6259  }
6260  llvm_unreachable("Unknown SCEV kind!");
6261  return false;
6262}
6263
6264void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6265  ValuesAtScopes.erase(S);
6266  LoopDispositions.erase(S);
6267  BlockDispositions.erase(S);
6268  UnsignedRanges.erase(S);
6269  SignedRanges.erase(S);
6270}
6271