ScalarEvolution.cpp revision 605c14fb115e89a2bad97761ae57b55e8c28ffff
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262    if (!getOperand(i)->dominates(BB, DT))
263      return false;
264  }
265  return true;
266}
267
268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270    if (!getOperand(i)->properlyDominates(BB, DT))
271      return false;
272  }
273  return true;
274}
275
276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
284void SCEVUDivExpr::print(raw_ostream &OS) const {
285  OS << "(" << *LHS << " /u " << *RHS << ")";
286}
287
288const Type *SCEVUDivExpr::getType() const {
289  // In most cases the types of LHS and RHS will be the same, but in some
290  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291  // depend on the type for correctness, but handling types carefully can
292  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293  // a pointer type than the RHS, so use the RHS' type here.
294  return RHS->getType();
295}
296
297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
298  // Add recurrences are never invariant in the function-body (null loop).
299  if (!QueryLoop)
300    return false;
301
302  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
303  if (QueryLoop->contains(L))
304    return false;
305
306  // This recurrence is variant w.r.t. QueryLoop if any of its operands
307  // are variant.
308  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309    if (!getOperand(i)->isLoopInvariant(QueryLoop))
310      return false;
311
312  // Otherwise it's loop-invariant.
313  return true;
314}
315
316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318  return DT->dominates(L->getHeader(), BB) &&
319         SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324  // This uses a "dominates" query instead of "properly dominates" query because
325  // the instruction which produces the addrec's value is a PHI, and a PHI
326  // effectively properly dominates its entire containing block.
327  return DT->dominates(L->getHeader(), BB) &&
328         SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
331void SCEVAddRecExpr::print(raw_ostream &OS) const {
332  OS << "{" << *Operands[0];
333  for (unsigned i = 1, e = NumOperands; i != e; ++i)
334    OS << ",+," << *Operands[i];
335  OS << "}<";
336  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337  OS << ">";
338}
339
340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341  // All non-instruction values are loop invariant.  All instructions are loop
342  // invariant if they are not contained in the specified loop.
343  // Instructions are never considered invariant in the function body
344  // (null loop) because they are defined within the "loop".
345  if (Instruction *I = dyn_cast<Instruction>(V))
346    return L && !L->contains(I);
347  return true;
348}
349
350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351  if (Instruction *I = dyn_cast<Instruction>(getValue()))
352    return DT->dominates(I->getParent(), BB);
353  return true;
354}
355
356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357  if (Instruction *I = dyn_cast<Instruction>(getValue()))
358    return DT->properlyDominates(I->getParent(), BB);
359  return true;
360}
361
362const Type *SCEVUnknown::getType() const {
363  return V->getType();
364}
365
366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368    if (VCE->getOpcode() == Instruction::PtrToInt)
369      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
370        if (CE->getOpcode() == Instruction::GetElementPtr &&
371            CE->getOperand(0)->isNullValue() &&
372            CE->getNumOperands() == 2)
373          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374            if (CI->isOne()) {
375              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376                                 ->getElementType();
377              return true;
378            }
379
380  return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385    if (VCE->getOpcode() == Instruction::PtrToInt)
386      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
387        if (CE->getOpcode() == Instruction::GetElementPtr &&
388            CE->getOperand(0)->isNullValue()) {
389          const Type *Ty =
390            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391          if (const StructType *STy = dyn_cast<StructType>(Ty))
392            if (!STy->isPacked() &&
393                CE->getNumOperands() == 3 &&
394                CE->getOperand(1)->isNullValue()) {
395              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396                if (CI->isOne() &&
397                    STy->getNumElements() == 2 &&
398                    STy->getElementType(0)->isIntegerTy(1)) {
399                  AllocTy = STy->getElementType(1);
400                  return true;
401                }
402            }
403        }
404
405  return false;
406}
407
408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410    if (VCE->getOpcode() == Instruction::PtrToInt)
411      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412        if (CE->getOpcode() == Instruction::GetElementPtr &&
413            CE->getNumOperands() == 3 &&
414            CE->getOperand(0)->isNullValue() &&
415            CE->getOperand(1)->isNullValue()) {
416          const Type *Ty =
417            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418          // Ignore vector types here so that ScalarEvolutionExpander doesn't
419          // emit getelementptrs that index into vectors.
420          if (Ty->isStructTy() || Ty->isArrayTy()) {
421            CTy = Ty;
422            FieldNo = CE->getOperand(2);
423            return true;
424          }
425        }
426
427  return false;
428}
429
430void SCEVUnknown::print(raw_ostream &OS) const {
431  const Type *AllocTy;
432  if (isSizeOf(AllocTy)) {
433    OS << "sizeof(" << *AllocTy << ")";
434    return;
435  }
436  if (isAlignOf(AllocTy)) {
437    OS << "alignof(" << *AllocTy << ")";
438    return;
439  }
440
441  const Type *CTy;
442  Constant *FieldNo;
443  if (isOffsetOf(CTy, FieldNo)) {
444    OS << "offsetof(" << *CTy << ", ";
445    WriteAsOperand(OS, FieldNo, false);
446    OS << ")";
447    return;
448  }
449
450  // Otherwise just print it normally.
451  WriteAsOperand(OS, V, false);
452}
453
454//===----------------------------------------------------------------------===//
455//                               SCEV Utilities
456//===----------------------------------------------------------------------===//
457
458static bool CompareTypes(const Type *A, const Type *B) {
459  if (A->getTypeID() != B->getTypeID())
460    return A->getTypeID() < B->getTypeID();
461  if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462    const IntegerType *BI = cast<IntegerType>(B);
463    return AI->getBitWidth() < BI->getBitWidth();
464  }
465  if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466    const PointerType *BI = cast<PointerType>(B);
467    return CompareTypes(AI->getElementType(), BI->getElementType());
468  }
469  if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470    const ArrayType *BI = cast<ArrayType>(B);
471    if (AI->getNumElements() != BI->getNumElements())
472      return AI->getNumElements() < BI->getNumElements();
473    return CompareTypes(AI->getElementType(), BI->getElementType());
474  }
475  if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476    const VectorType *BI = cast<VectorType>(B);
477    if (AI->getNumElements() != BI->getNumElements())
478      return AI->getNumElements() < BI->getNumElements();
479    return CompareTypes(AI->getElementType(), BI->getElementType());
480  }
481  if (const StructType *AI = dyn_cast<StructType>(A)) {
482    const StructType *BI = cast<StructType>(B);
483    if (AI->getNumElements() != BI->getNumElements())
484      return AI->getNumElements() < BI->getNumElements();
485    for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486      if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487          CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488        return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489  }
490  return false;
491}
492
493namespace {
494  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495  /// than the complexity of the RHS.  This comparator is used to canonicalize
496  /// expressions.
497  class SCEVComplexityCompare {
498    LoopInfo *LI;
499  public:
500    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
502    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
503      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504      if (LHS == RHS)
505        return false;
506
507      // Primarily, sort the SCEVs by their getSCEVType().
508      if (LHS->getSCEVType() != RHS->getSCEVType())
509        return LHS->getSCEVType() < RHS->getSCEVType();
510
511      // Aside from the getSCEVType() ordering, the particular ordering
512      // isn't very important except that it's beneficial to be consistent,
513      // so that (a + b) and (b + a) don't end up as different expressions.
514
515      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516      // not as complete as it could be.
517      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520        // Order pointer values after integer values. This helps SCEVExpander
521        // form GEPs.
522        if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523          return false;
524        if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525          return true;
526
527        // Compare getValueID values.
528        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531        // Sort arguments by their position.
532        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533          const Argument *RA = cast<Argument>(RU->getValue());
534          return LA->getArgNo() < RA->getArgNo();
535        }
536
537        // For instructions, compare their loop depth, and their opcode.
538        // This is pretty loose.
539        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540          Instruction *RV = cast<Instruction>(RU->getValue());
541
542          // Compare loop depths.
543          if (LI->getLoopDepth(LV->getParent()) !=
544              LI->getLoopDepth(RV->getParent()))
545            return LI->getLoopDepth(LV->getParent()) <
546                   LI->getLoopDepth(RV->getParent());
547
548          // Compare opcodes.
549          if (LV->getOpcode() != RV->getOpcode())
550            return LV->getOpcode() < RV->getOpcode();
551
552          // Compare the number of operands.
553          if (LV->getNumOperands() != RV->getNumOperands())
554            return LV->getNumOperands() < RV->getNumOperands();
555        }
556
557        return false;
558      }
559
560      // Compare constant values.
561      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566      }
567
568      // Compare addrec loop depths.
569      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573      }
574
575      // Lexicographically compare n-ary expressions.
576      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579          if (i >= RC->getNumOperands())
580            return false;
581          if (operator()(LC->getOperand(i), RC->getOperand(i)))
582            return true;
583          if (operator()(RC->getOperand(i), LC->getOperand(i)))
584            return false;
585        }
586        return LC->getNumOperands() < RC->getNumOperands();
587      }
588
589      // Lexicographically compare udiv expressions.
590      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592        if (operator()(LC->getLHS(), RC->getLHS()))
593          return true;
594        if (operator()(RC->getLHS(), LC->getLHS()))
595          return false;
596        if (operator()(LC->getRHS(), RC->getRHS()))
597          return true;
598        if (operator()(RC->getRHS(), LC->getRHS()))
599          return false;
600        return false;
601      }
602
603      // Compare cast expressions by operand.
604      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606        return operator()(LC->getOperand(), RC->getOperand());
607      }
608
609      llvm_unreachable("Unknown SCEV kind!");
610      return false;
611    }
612  };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
620/// Note that we go take special precautions to ensure that we get deterministic
621/// results from this routine.  In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
626                              LoopInfo *LI) {
627  if (Ops.size() < 2) return;  // Noop
628  if (Ops.size() == 2) {
629    // This is the common case, which also happens to be trivially simple.
630    // Special case it.
631    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
632      std::swap(Ops[0], Ops[1]);
633    return;
634  }
635
636  // Do the rough sort by complexity.
637  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639  // Now that we are sorted by complexity, group elements of the same
640  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
641  // be extremely short in practice.  Note that we take this approach because we
642  // do not want to depend on the addresses of the objects we are grouping.
643  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644    const SCEV *S = Ops[i];
645    unsigned Complexity = S->getSCEVType();
646
647    // If there are any objects of the same complexity and same value as this
648    // one, group them.
649    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650      if (Ops[j] == S) { // Found a duplicate.
651        // Move it to immediately after i'th element.
652        std::swap(Ops[i+1], Ops[j]);
653        ++i;   // no need to rescan it.
654        if (i == e-2) return;  // Done!
655      }
656    }
657  }
658}
659
660
661
662//===----------------------------------------------------------------------===//
663//                      Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
666/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
667/// Assume, K > 0.
668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
669                                       ScalarEvolution &SE,
670                                       const Type* ResultTy) {
671  // Handle the simplest case efficiently.
672  if (K == 1)
673    return SE.getTruncateOrZeroExtend(It, ResultTy);
674
675  // We are using the following formula for BC(It, K):
676  //
677  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678  //
679  // Suppose, W is the bitwidth of the return value.  We must be prepared for
680  // overflow.  Hence, we must assure that the result of our computation is
681  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
682  // safe in modular arithmetic.
683  //
684  // However, this code doesn't use exactly that formula; the formula it uses
685  // is something like the following, where T is the number of factors of 2 in
686  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687  // exponentiation:
688  //
689  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
690  //
691  // This formula is trivially equivalent to the previous formula.  However,
692  // this formula can be implemented much more efficiently.  The trick is that
693  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694  // arithmetic.  To do exact division in modular arithmetic, all we have
695  // to do is multiply by the inverse.  Therefore, this step can be done at
696  // width W.
697  //
698  // The next issue is how to safely do the division by 2^T.  The way this
699  // is done is by doing the multiplication step at a width of at least W + T
700  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
701  // when we perform the division by 2^T (which is equivalent to a right shift
702  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
703  // truncated out after the division by 2^T.
704  //
705  // In comparison to just directly using the first formula, this technique
706  // is much more efficient; using the first formula requires W * K bits,
707  // but this formula less than W + K bits. Also, the first formula requires
708  // a division step, whereas this formula only requires multiplies and shifts.
709  //
710  // It doesn't matter whether the subtraction step is done in the calculation
711  // width or the input iteration count's width; if the subtraction overflows,
712  // the result must be zero anyway.  We prefer here to do it in the width of
713  // the induction variable because it helps a lot for certain cases; CodeGen
714  // isn't smart enough to ignore the overflow, which leads to much less
715  // efficient code if the width of the subtraction is wider than the native
716  // register width.
717  //
718  // (It's possible to not widen at all by pulling out factors of 2 before
719  // the multiplication; for example, K=2 can be calculated as
720  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721  // extra arithmetic, so it's not an obvious win, and it gets
722  // much more complicated for K > 3.)
723
724  // Protection from insane SCEVs; this bound is conservative,
725  // but it probably doesn't matter.
726  if (K > 1000)
727    return SE.getCouldNotCompute();
728
729  unsigned W = SE.getTypeSizeInBits(ResultTy);
730
731  // Calculate K! / 2^T and T; we divide out the factors of two before
732  // multiplying for calculating K! / 2^T to avoid overflow.
733  // Other overflow doesn't matter because we only care about the bottom
734  // W bits of the result.
735  APInt OddFactorial(W, 1);
736  unsigned T = 1;
737  for (unsigned i = 3; i <= K; ++i) {
738    APInt Mult(W, i);
739    unsigned TwoFactors = Mult.countTrailingZeros();
740    T += TwoFactors;
741    Mult = Mult.lshr(TwoFactors);
742    OddFactorial *= Mult;
743  }
744
745  // We need at least W + T bits for the multiplication step
746  unsigned CalculationBits = W + T;
747
748  // Calculate 2^T, at width T+W.
749  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751  // Calculate the multiplicative inverse of K! / 2^T;
752  // this multiplication factor will perform the exact division by
753  // K! / 2^T.
754  APInt Mod = APInt::getSignedMinValue(W+1);
755  APInt MultiplyFactor = OddFactorial.zext(W+1);
756  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757  MultiplyFactor = MultiplyFactor.trunc(W);
758
759  // Calculate the product, at width T+W
760  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761                                                      CalculationBits);
762  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
763  for (unsigned i = 1; i != K; ++i) {
764    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
765    Dividend = SE.getMulExpr(Dividend,
766                             SE.getTruncateOrZeroExtend(S, CalculationTy));
767  }
768
769  // Divide by 2^T
770  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
771
772  // Truncate the result, and divide by K! / 2^T.
773
774  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
776}
777
778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number.  We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
783///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
784///
785/// where BC(It, k) stands for binomial coefficient.
786///
787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
788                                                ScalarEvolution &SE) const {
789  const SCEV *Result = getStart();
790  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
791    // The computation is correct in the face of overflow provided that the
792    // multiplication is performed _after_ the evaluation of the binomial
793    // coefficient.
794    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
795    if (isa<SCEVCouldNotCompute>(Coeff))
796      return Coeff;
797
798    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
799  }
800  return Result;
801}
802
803//===----------------------------------------------------------------------===//
804//                    SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
808                                             const Type *Ty) {
809  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
810         "This is not a truncating conversion!");
811  assert(isSCEVable(Ty) &&
812         "This is not a conversion to a SCEVable type!");
813  Ty = getEffectiveSCEVType(Ty);
814
815  FoldingSetNodeID ID;
816  ID.AddInteger(scTruncate);
817  ID.AddPointer(Op);
818  ID.AddPointer(Ty);
819  void *IP = 0;
820  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
822  // Fold if the operand is constant.
823  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
824    return getConstant(
825      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
826
827  // trunc(trunc(x)) --> trunc(x)
828  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
829    return getTruncateExpr(ST->getOperand(), Ty);
830
831  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
832  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
833    return getTruncateOrSignExtend(SS->getOperand(), Ty);
834
835  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
836  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
837    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
838
839  // If the input value is a chrec scev, truncate the chrec's operands.
840  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
841    SmallVector<const SCEV *, 4> Operands;
842    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
843      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
844    return getAddRecExpr(Operands, AddRec->getLoop());
845  }
846
847  // The cast wasn't folded; create an explicit cast node.
848  // Recompute the insert position, as it may have been invalidated.
849  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
850  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
851                                                 Op, Ty);
852  UniqueSCEVs.InsertNode(S, IP);
853  return S;
854}
855
856const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
857                                               const Type *Ty) {
858  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
859         "This is not an extending conversion!");
860  assert(isSCEVable(Ty) &&
861         "This is not a conversion to a SCEVable type!");
862  Ty = getEffectiveSCEVType(Ty);
863
864  // Fold if the operand is constant.
865  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
866    const Type *IntTy = getEffectiveSCEVType(Ty);
867    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
868    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
869    return getConstant(cast<ConstantInt>(C));
870  }
871
872  // zext(zext(x)) --> zext(x)
873  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
874    return getZeroExtendExpr(SZ->getOperand(), Ty);
875
876  // Before doing any expensive analysis, check to see if we've already
877  // computed a SCEV for this Op and Ty.
878  FoldingSetNodeID ID;
879  ID.AddInteger(scZeroExtend);
880  ID.AddPointer(Op);
881  ID.AddPointer(Ty);
882  void *IP = 0;
883  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
884
885  // If the input value is a chrec scev, and we can prove that the value
886  // did not overflow the old, smaller, value, we can zero extend all of the
887  // operands (often constants).  This allows analysis of something like
888  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
889  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
890    if (AR->isAffine()) {
891      const SCEV *Start = AR->getStart();
892      const SCEV *Step = AR->getStepRecurrence(*this);
893      unsigned BitWidth = getTypeSizeInBits(AR->getType());
894      const Loop *L = AR->getLoop();
895
896      // If we have special knowledge that this addrec won't overflow,
897      // we don't need to do any further analysis.
898      if (AR->hasNoUnsignedWrap())
899        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
900                             getZeroExtendExpr(Step, Ty),
901                             L);
902
903      // Check whether the backedge-taken count is SCEVCouldNotCompute.
904      // Note that this serves two purposes: It filters out loops that are
905      // simply not analyzable, and it covers the case where this code is
906      // being called from within backedge-taken count analysis, such that
907      // attempting to ask for the backedge-taken count would likely result
908      // in infinite recursion. In the later case, the analysis code will
909      // cope with a conservative value, and it will take care to purge
910      // that value once it has finished.
911      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
912      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
913        // Manually compute the final value for AR, checking for
914        // overflow.
915
916        // Check whether the backedge-taken count can be losslessly casted to
917        // the addrec's type. The count is always unsigned.
918        const SCEV *CastedMaxBECount =
919          getTruncateOrZeroExtend(MaxBECount, Start->getType());
920        const SCEV *RecastedMaxBECount =
921          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
922        if (MaxBECount == RecastedMaxBECount) {
923          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
924          // Check whether Start+Step*MaxBECount has no unsigned overflow.
925          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
926          const SCEV *Add = getAddExpr(Start, ZMul);
927          const SCEV *OperandExtendedAdd =
928            getAddExpr(getZeroExtendExpr(Start, WideTy),
929                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
930                                  getZeroExtendExpr(Step, WideTy)));
931          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
932            // Return the expression with the addrec on the outside.
933            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
934                                 getZeroExtendExpr(Step, Ty),
935                                 L);
936
937          // Similar to above, only this time treat the step value as signed.
938          // This covers loops that count down.
939          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
940          Add = getAddExpr(Start, SMul);
941          OperandExtendedAdd =
942            getAddExpr(getZeroExtendExpr(Start, WideTy),
943                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
944                                  getSignExtendExpr(Step, WideTy)));
945          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
946            // Return the expression with the addrec on the outside.
947            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
948                                 getSignExtendExpr(Step, Ty),
949                                 L);
950        }
951
952        // If the backedge is guarded by a comparison with the pre-inc value
953        // the addrec is safe. Also, if the entry is guarded by a comparison
954        // with the start value and the backedge is guarded by a comparison
955        // with the post-inc value, the addrec is safe.
956        if (isKnownPositive(Step)) {
957          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
958                                      getUnsignedRange(Step).getUnsignedMax());
959          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
960              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
961               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
962                                           AR->getPostIncExpr(*this), N)))
963            // Return the expression with the addrec on the outside.
964            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
965                                 getZeroExtendExpr(Step, Ty),
966                                 L);
967        } else if (isKnownNegative(Step)) {
968          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
969                                      getSignedRange(Step).getSignedMin());
970          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
971              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
972               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
973                                           AR->getPostIncExpr(*this), N)))
974            // Return the expression with the addrec on the outside.
975            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
976                                 getSignExtendExpr(Step, Ty),
977                                 L);
978        }
979      }
980    }
981
982  // The cast wasn't folded; create an explicit cast node.
983  // Recompute the insert position, as it may have been invalidated.
984  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
985  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
986                                                   Op, Ty);
987  UniqueSCEVs.InsertNode(S, IP);
988  return S;
989}
990
991const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
992                                               const Type *Ty) {
993  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
994         "This is not an extending conversion!");
995  assert(isSCEVable(Ty) &&
996         "This is not a conversion to a SCEVable type!");
997  Ty = getEffectiveSCEVType(Ty);
998
999  // Fold if the operand is constant.
1000  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
1001    const Type *IntTy = getEffectiveSCEVType(Ty);
1002    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
1003    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
1004    return getConstant(cast<ConstantInt>(C));
1005  }
1006
1007  // sext(sext(x)) --> sext(x)
1008  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1009    return getSignExtendExpr(SS->getOperand(), Ty);
1010
1011  // Before doing any expensive analysis, check to see if we've already
1012  // computed a SCEV for this Op and Ty.
1013  FoldingSetNodeID ID;
1014  ID.AddInteger(scSignExtend);
1015  ID.AddPointer(Op);
1016  ID.AddPointer(Ty);
1017  void *IP = 0;
1018  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1019
1020  // If the input value is a chrec scev, and we can prove that the value
1021  // did not overflow the old, smaller, value, we can sign extend all of the
1022  // operands (often constants).  This allows analysis of something like
1023  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1024  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1025    if (AR->isAffine()) {
1026      const SCEV *Start = AR->getStart();
1027      const SCEV *Step = AR->getStepRecurrence(*this);
1028      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1029      const Loop *L = AR->getLoop();
1030
1031      // If we have special knowledge that this addrec won't overflow,
1032      // we don't need to do any further analysis.
1033      if (AR->hasNoSignedWrap())
1034        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1035                             getSignExtendExpr(Step, Ty),
1036                             L);
1037
1038      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1039      // Note that this serves two purposes: It filters out loops that are
1040      // simply not analyzable, and it covers the case where this code is
1041      // being called from within backedge-taken count analysis, such that
1042      // attempting to ask for the backedge-taken count would likely result
1043      // in infinite recursion. In the later case, the analysis code will
1044      // cope with a conservative value, and it will take care to purge
1045      // that value once it has finished.
1046      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1047      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1048        // Manually compute the final value for AR, checking for
1049        // overflow.
1050
1051        // Check whether the backedge-taken count can be losslessly casted to
1052        // the addrec's type. The count is always unsigned.
1053        const SCEV *CastedMaxBECount =
1054          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1055        const SCEV *RecastedMaxBECount =
1056          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1057        if (MaxBECount == RecastedMaxBECount) {
1058          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1059          // Check whether Start+Step*MaxBECount has no signed overflow.
1060          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1061          const SCEV *Add = getAddExpr(Start, SMul);
1062          const SCEV *OperandExtendedAdd =
1063            getAddExpr(getSignExtendExpr(Start, WideTy),
1064                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065                                  getSignExtendExpr(Step, WideTy)));
1066          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1067            // Return the expression with the addrec on the outside.
1068            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069                                 getSignExtendExpr(Step, Ty),
1070                                 L);
1071
1072          // Similar to above, only this time treat the step value as unsigned.
1073          // This covers loops that count up with an unsigned step.
1074          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1075          Add = getAddExpr(Start, UMul);
1076          OperandExtendedAdd =
1077            getAddExpr(getSignExtendExpr(Start, WideTy),
1078                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079                                  getZeroExtendExpr(Step, WideTy)));
1080          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1081            // Return the expression with the addrec on the outside.
1082            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083                                 getZeroExtendExpr(Step, Ty),
1084                                 L);
1085        }
1086
1087        // If the backedge is guarded by a comparison with the pre-inc value
1088        // the addrec is safe. Also, if the entry is guarded by a comparison
1089        // with the start value and the backedge is guarded by a comparison
1090        // with the post-inc value, the addrec is safe.
1091        if (isKnownPositive(Step)) {
1092          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1093                                      getSignedRange(Step).getSignedMax());
1094          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1095              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1096               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1097                                           AR->getPostIncExpr(*this), N)))
1098            // Return the expression with the addrec on the outside.
1099            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1100                                 getSignExtendExpr(Step, Ty),
1101                                 L);
1102        } else if (isKnownNegative(Step)) {
1103          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1104                                      getSignedRange(Step).getSignedMin());
1105          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1106              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1107               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1108                                           AR->getPostIncExpr(*this), N)))
1109            // Return the expression with the addrec on the outside.
1110            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1111                                 getSignExtendExpr(Step, Ty),
1112                                 L);
1113        }
1114      }
1115    }
1116
1117  // The cast wasn't folded; create an explicit cast node.
1118  // Recompute the insert position, as it may have been invalidated.
1119  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1120  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1121                                                   Op, Ty);
1122  UniqueSCEVs.InsertNode(S, IP);
1123  return S;
1124}
1125
1126/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1127/// unspecified bits out to the given type.
1128///
1129const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1130                                              const Type *Ty) {
1131  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1132         "This is not an extending conversion!");
1133  assert(isSCEVable(Ty) &&
1134         "This is not a conversion to a SCEVable type!");
1135  Ty = getEffectiveSCEVType(Ty);
1136
1137  // Sign-extend negative constants.
1138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1139    if (SC->getValue()->getValue().isNegative())
1140      return getSignExtendExpr(Op, Ty);
1141
1142  // Peel off a truncate cast.
1143  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1144    const SCEV *NewOp = T->getOperand();
1145    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1146      return getAnyExtendExpr(NewOp, Ty);
1147    return getTruncateOrNoop(NewOp, Ty);
1148  }
1149
1150  // Next try a zext cast. If the cast is folded, use it.
1151  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1152  if (!isa<SCEVZeroExtendExpr>(ZExt))
1153    return ZExt;
1154
1155  // Next try a sext cast. If the cast is folded, use it.
1156  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1157  if (!isa<SCEVSignExtendExpr>(SExt))
1158    return SExt;
1159
1160  // Force the cast to be folded into the operands of an addrec.
1161  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1162    SmallVector<const SCEV *, 4> Ops;
1163    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1164         I != E; ++I)
1165      Ops.push_back(getAnyExtendExpr(*I, Ty));
1166    return getAddRecExpr(Ops, AR->getLoop());
1167  }
1168
1169  // If the expression is obviously signed, use the sext cast value.
1170  if (isa<SCEVSMaxExpr>(Op))
1171    return SExt;
1172
1173  // Absent any other information, use the zext cast value.
1174  return ZExt;
1175}
1176
1177/// CollectAddOperandsWithScales - Process the given Ops list, which is
1178/// a list of operands to be added under the given scale, update the given
1179/// map. This is a helper function for getAddRecExpr. As an example of
1180/// what it does, given a sequence of operands that would form an add
1181/// expression like this:
1182///
1183///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1184///
1185/// where A and B are constants, update the map with these values:
1186///
1187///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1188///
1189/// and add 13 + A*B*29 to AccumulatedConstant.
1190/// This will allow getAddRecExpr to produce this:
1191///
1192///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1193///
1194/// This form often exposes folding opportunities that are hidden in
1195/// the original operand list.
1196///
1197/// Return true iff it appears that any interesting folding opportunities
1198/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1199/// the common case where no interesting opportunities are present, and
1200/// is also used as a check to avoid infinite recursion.
1201///
1202static bool
1203CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1204                             SmallVector<const SCEV *, 8> &NewOps,
1205                             APInt &AccumulatedConstant,
1206                             const SCEV *const *Ops, size_t NumOperands,
1207                             const APInt &Scale,
1208                             ScalarEvolution &SE) {
1209  bool Interesting = false;
1210
1211  // Iterate over the add operands. They are sorted, with constants first.
1212  unsigned i = 0;
1213  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1214    ++i;
1215    // Pull a buried constant out to the outside.
1216    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1217      Interesting = true;
1218    AccumulatedConstant += Scale * C->getValue()->getValue();
1219  }
1220
1221  // Next comes everything else. We're especially interested in multiplies
1222  // here, but they're in the middle, so just visit the rest with one loop.
1223  for (; i != NumOperands; ++i) {
1224    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1225    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1226      APInt NewScale =
1227        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1228      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1229        // A multiplication of a constant with another add; recurse.
1230        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1231        Interesting |=
1232          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1233                                       Add->op_begin(), Add->getNumOperands(),
1234                                       NewScale, SE);
1235      } else {
1236        // A multiplication of a constant with some other value. Update
1237        // the map.
1238        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1239        const SCEV *Key = SE.getMulExpr(MulOps);
1240        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1241          M.insert(std::make_pair(Key, NewScale));
1242        if (Pair.second) {
1243          NewOps.push_back(Pair.first->first);
1244        } else {
1245          Pair.first->second += NewScale;
1246          // The map already had an entry for this value, which may indicate
1247          // a folding opportunity.
1248          Interesting = true;
1249        }
1250      }
1251    } else {
1252      // An ordinary operand. Update the map.
1253      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1254        M.insert(std::make_pair(Ops[i], Scale));
1255      if (Pair.second) {
1256        NewOps.push_back(Pair.first->first);
1257      } else {
1258        Pair.first->second += Scale;
1259        // The map already had an entry for this value, which may indicate
1260        // a folding opportunity.
1261        Interesting = true;
1262      }
1263    }
1264  }
1265
1266  return Interesting;
1267}
1268
1269namespace {
1270  struct APIntCompare {
1271    bool operator()(const APInt &LHS, const APInt &RHS) const {
1272      return LHS.ult(RHS);
1273    }
1274  };
1275}
1276
1277/// getAddExpr - Get a canonical add expression, or something simpler if
1278/// possible.
1279const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1280                                        bool HasNUW, bool HasNSW) {
1281  assert(!Ops.empty() && "Cannot get empty add!");
1282  if (Ops.size() == 1) return Ops[0];
1283#ifndef NDEBUG
1284  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1285  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1286    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1287           "SCEVAddExpr operand types don't match!");
1288#endif
1289
1290  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1291  if (!HasNUW && HasNSW) {
1292    bool All = true;
1293    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1294      if (!isKnownNonNegative(Ops[i])) {
1295        All = false;
1296        break;
1297      }
1298    if (All) HasNUW = true;
1299  }
1300
1301  // Sort by complexity, this groups all similar expression types together.
1302  GroupByComplexity(Ops, LI);
1303
1304  // If there are any constants, fold them together.
1305  unsigned Idx = 0;
1306  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1307    ++Idx;
1308    assert(Idx < Ops.size());
1309    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1310      // We found two constants, fold them together!
1311      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1312                           RHSC->getValue()->getValue());
1313      if (Ops.size() == 2) return Ops[0];
1314      Ops.erase(Ops.begin()+1);  // Erase the folded element
1315      LHSC = cast<SCEVConstant>(Ops[0]);
1316    }
1317
1318    // If we are left with a constant zero being added, strip it off.
1319    if (LHSC->getValue()->isZero()) {
1320      Ops.erase(Ops.begin());
1321      --Idx;
1322    }
1323
1324    if (Ops.size() == 1) return Ops[0];
1325  }
1326
1327  // Okay, check to see if the same value occurs in the operand list twice.  If
1328  // so, merge them together into an multiply expression.  Since we sorted the
1329  // list, these values are required to be adjacent.
1330  const Type *Ty = Ops[0]->getType();
1331  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1332    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1333      // Found a match, merge the two values into a multiply, and add any
1334      // remaining values to the result.
1335      const SCEV *Two = getConstant(Ty, 2);
1336      const SCEV *Mul = getMulExpr(Ops[i], Two);
1337      if (Ops.size() == 2)
1338        return Mul;
1339      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1340      Ops.push_back(Mul);
1341      return getAddExpr(Ops, HasNUW, HasNSW);
1342    }
1343
1344  // Check for truncates. If all the operands are truncated from the same
1345  // type, see if factoring out the truncate would permit the result to be
1346  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1347  // if the contents of the resulting outer trunc fold to something simple.
1348  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1349    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1350    const Type *DstType = Trunc->getType();
1351    const Type *SrcType = Trunc->getOperand()->getType();
1352    SmallVector<const SCEV *, 8> LargeOps;
1353    bool Ok = true;
1354    // Check all the operands to see if they can be represented in the
1355    // source type of the truncate.
1356    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1357      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1358        if (T->getOperand()->getType() != SrcType) {
1359          Ok = false;
1360          break;
1361        }
1362        LargeOps.push_back(T->getOperand());
1363      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1364        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1365      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1366        SmallVector<const SCEV *, 8> LargeMulOps;
1367        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1368          if (const SCEVTruncateExpr *T =
1369                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1370            if (T->getOperand()->getType() != SrcType) {
1371              Ok = false;
1372              break;
1373            }
1374            LargeMulOps.push_back(T->getOperand());
1375          } else if (const SCEVConstant *C =
1376                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1377            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1378          } else {
1379            Ok = false;
1380            break;
1381          }
1382        }
1383        if (Ok)
1384          LargeOps.push_back(getMulExpr(LargeMulOps));
1385      } else {
1386        Ok = false;
1387        break;
1388      }
1389    }
1390    if (Ok) {
1391      // Evaluate the expression in the larger type.
1392      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1393      // If it folds to something simple, use it. Otherwise, don't.
1394      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1395        return getTruncateExpr(Fold, DstType);
1396    }
1397  }
1398
1399  // Skip past any other cast SCEVs.
1400  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1401    ++Idx;
1402
1403  // If there are add operands they would be next.
1404  if (Idx < Ops.size()) {
1405    bool DeletedAdd = false;
1406    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1407      // If we have an add, expand the add operands onto the end of the operands
1408      // list.
1409      Ops.erase(Ops.begin()+Idx);
1410      Ops.append(Add->op_begin(), Add->op_end());
1411      DeletedAdd = true;
1412    }
1413
1414    // If we deleted at least one add, we added operands to the end of the list,
1415    // and they are not necessarily sorted.  Recurse to resort and resimplify
1416    // any operands we just acquired.
1417    if (DeletedAdd)
1418      return getAddExpr(Ops);
1419  }
1420
1421  // Skip over the add expression until we get to a multiply.
1422  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1423    ++Idx;
1424
1425  // Check to see if there are any folding opportunities present with
1426  // operands multiplied by constant values.
1427  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1428    uint64_t BitWidth = getTypeSizeInBits(Ty);
1429    DenseMap<const SCEV *, APInt> M;
1430    SmallVector<const SCEV *, 8> NewOps;
1431    APInt AccumulatedConstant(BitWidth, 0);
1432    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1433                                     Ops.data(), Ops.size(),
1434                                     APInt(BitWidth, 1), *this)) {
1435      // Some interesting folding opportunity is present, so its worthwhile to
1436      // re-generate the operands list. Group the operands by constant scale,
1437      // to avoid multiplying by the same constant scale multiple times.
1438      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1439      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1440           E = NewOps.end(); I != E; ++I)
1441        MulOpLists[M.find(*I)->second].push_back(*I);
1442      // Re-generate the operands list.
1443      Ops.clear();
1444      if (AccumulatedConstant != 0)
1445        Ops.push_back(getConstant(AccumulatedConstant));
1446      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1447           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1448        if (I->first != 0)
1449          Ops.push_back(getMulExpr(getConstant(I->first),
1450                                   getAddExpr(I->second)));
1451      if (Ops.empty())
1452        return getConstant(Ty, 0);
1453      if (Ops.size() == 1)
1454        return Ops[0];
1455      return getAddExpr(Ops);
1456    }
1457  }
1458
1459  // If we are adding something to a multiply expression, make sure the
1460  // something is not already an operand of the multiply.  If so, merge it into
1461  // the multiply.
1462  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1463    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1464    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1465      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1466      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1467        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1468          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1469          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1470          if (Mul->getNumOperands() != 2) {
1471            // If the multiply has more than two operands, we must get the
1472            // Y*Z term.
1473            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1474            MulOps.erase(MulOps.begin()+MulOp);
1475            InnerMul = getMulExpr(MulOps);
1476          }
1477          const SCEV *One = getConstant(Ty, 1);
1478          const SCEV *AddOne = getAddExpr(InnerMul, One);
1479          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1480          if (Ops.size() == 2) return OuterMul;
1481          if (AddOp < Idx) {
1482            Ops.erase(Ops.begin()+AddOp);
1483            Ops.erase(Ops.begin()+Idx-1);
1484          } else {
1485            Ops.erase(Ops.begin()+Idx);
1486            Ops.erase(Ops.begin()+AddOp-1);
1487          }
1488          Ops.push_back(OuterMul);
1489          return getAddExpr(Ops);
1490        }
1491
1492      // Check this multiply against other multiplies being added together.
1493      for (unsigned OtherMulIdx = Idx+1;
1494           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1495           ++OtherMulIdx) {
1496        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1497        // If MulOp occurs in OtherMul, we can fold the two multiplies
1498        // together.
1499        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1500             OMulOp != e; ++OMulOp)
1501          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1502            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1503            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1504            if (Mul->getNumOperands() != 2) {
1505              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1506                                                  Mul->op_end());
1507              MulOps.erase(MulOps.begin()+MulOp);
1508              InnerMul1 = getMulExpr(MulOps);
1509            }
1510            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1511            if (OtherMul->getNumOperands() != 2) {
1512              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1513                                                  OtherMul->op_end());
1514              MulOps.erase(MulOps.begin()+OMulOp);
1515              InnerMul2 = getMulExpr(MulOps);
1516            }
1517            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1518            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1519            if (Ops.size() == 2) return OuterMul;
1520            Ops.erase(Ops.begin()+Idx);
1521            Ops.erase(Ops.begin()+OtherMulIdx-1);
1522            Ops.push_back(OuterMul);
1523            return getAddExpr(Ops);
1524          }
1525      }
1526    }
1527  }
1528
1529  // If there are any add recurrences in the operands list, see if any other
1530  // added values are loop invariant.  If so, we can fold them into the
1531  // recurrence.
1532  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1533    ++Idx;
1534
1535  // Scan over all recurrences, trying to fold loop invariants into them.
1536  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1537    // Scan all of the other operands to this add and add them to the vector if
1538    // they are loop invariant w.r.t. the recurrence.
1539    SmallVector<const SCEV *, 8> LIOps;
1540    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1541    const Loop *AddRecLoop = AddRec->getLoop();
1542    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1543      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1544        LIOps.push_back(Ops[i]);
1545        Ops.erase(Ops.begin()+i);
1546        --i; --e;
1547      }
1548
1549    // If we found some loop invariants, fold them into the recurrence.
1550    if (!LIOps.empty()) {
1551      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1552      LIOps.push_back(AddRec->getStart());
1553
1554      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1555                                             AddRec->op_end());
1556      AddRecOps[0] = getAddExpr(LIOps);
1557
1558      // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
1559      // is not associative so this isn't necessarily safe.
1560      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
1561
1562      // If all of the other operands were loop invariant, we are done.
1563      if (Ops.size() == 1) return NewRec;
1564
1565      // Otherwise, add the folded AddRec by the non-liv parts.
1566      for (unsigned i = 0;; ++i)
1567        if (Ops[i] == AddRec) {
1568          Ops[i] = NewRec;
1569          break;
1570        }
1571      return getAddExpr(Ops);
1572    }
1573
1574    // Okay, if there weren't any loop invariants to be folded, check to see if
1575    // there are multiple AddRec's with the same loop induction variable being
1576    // added together.  If so, we can fold them.
1577    for (unsigned OtherIdx = Idx+1;
1578         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1579      if (OtherIdx != Idx) {
1580        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1581        if (AddRecLoop == OtherAddRec->getLoop()) {
1582          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1583          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1584                                              AddRec->op_end());
1585          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1586            if (i >= NewOps.size()) {
1587              NewOps.append(OtherAddRec->op_begin()+i,
1588                            OtherAddRec->op_end());
1589              break;
1590            }
1591            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1592          }
1593          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
1594
1595          if (Ops.size() == 2) return NewAddRec;
1596
1597          Ops.erase(Ops.begin()+Idx);
1598          Ops.erase(Ops.begin()+OtherIdx-1);
1599          Ops.push_back(NewAddRec);
1600          return getAddExpr(Ops);
1601        }
1602      }
1603
1604    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1605    // next one.
1606  }
1607
1608  // Okay, it looks like we really DO need an add expr.  Check to see if we
1609  // already have one, otherwise create a new one.
1610  FoldingSetNodeID ID;
1611  ID.AddInteger(scAddExpr);
1612  ID.AddInteger(Ops.size());
1613  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1614    ID.AddPointer(Ops[i]);
1615  void *IP = 0;
1616  SCEVAddExpr *S =
1617    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1618  if (!S) {
1619    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1620    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1621    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1622                                        O, Ops.size());
1623    UniqueSCEVs.InsertNode(S, IP);
1624  }
1625  if (HasNUW) S->setHasNoUnsignedWrap(true);
1626  if (HasNSW) S->setHasNoSignedWrap(true);
1627  return S;
1628}
1629
1630/// getMulExpr - Get a canonical multiply expression, or something simpler if
1631/// possible.
1632const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1633                                        bool HasNUW, bool HasNSW) {
1634  assert(!Ops.empty() && "Cannot get empty mul!");
1635  if (Ops.size() == 1) return Ops[0];
1636#ifndef NDEBUG
1637  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1638    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1639           getEffectiveSCEVType(Ops[0]->getType()) &&
1640           "SCEVMulExpr operand types don't match!");
1641#endif
1642
1643  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1644  if (!HasNUW && HasNSW) {
1645    bool All = true;
1646    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1647      if (!isKnownNonNegative(Ops[i])) {
1648        All = false;
1649        break;
1650      }
1651    if (All) HasNUW = true;
1652  }
1653
1654  // Sort by complexity, this groups all similar expression types together.
1655  GroupByComplexity(Ops, LI);
1656
1657  // If there are any constants, fold them together.
1658  unsigned Idx = 0;
1659  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1660
1661    // C1*(C2+V) -> C1*C2 + C1*V
1662    if (Ops.size() == 2)
1663      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1664        if (Add->getNumOperands() == 2 &&
1665            isa<SCEVConstant>(Add->getOperand(0)))
1666          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1667                            getMulExpr(LHSC, Add->getOperand(1)));
1668
1669    ++Idx;
1670    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1671      // We found two constants, fold them together!
1672      ConstantInt *Fold = ConstantInt::get(getContext(),
1673                                           LHSC->getValue()->getValue() *
1674                                           RHSC->getValue()->getValue());
1675      Ops[0] = getConstant(Fold);
1676      Ops.erase(Ops.begin()+1);  // Erase the folded element
1677      if (Ops.size() == 1) return Ops[0];
1678      LHSC = cast<SCEVConstant>(Ops[0]);
1679    }
1680
1681    // If we are left with a constant one being multiplied, strip it off.
1682    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1683      Ops.erase(Ops.begin());
1684      --Idx;
1685    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1686      // If we have a multiply of zero, it will always be zero.
1687      return Ops[0];
1688    } else if (Ops[0]->isAllOnesValue()) {
1689      // If we have a mul by -1 of an add, try distributing the -1 among the
1690      // add operands.
1691      if (Ops.size() == 2)
1692        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1693          SmallVector<const SCEV *, 4> NewOps;
1694          bool AnyFolded = false;
1695          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1696               I != E; ++I) {
1697            const SCEV *Mul = getMulExpr(Ops[0], *I);
1698            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1699            NewOps.push_back(Mul);
1700          }
1701          if (AnyFolded)
1702            return getAddExpr(NewOps);
1703        }
1704    }
1705
1706    if (Ops.size() == 1)
1707      return Ops[0];
1708  }
1709
1710  // Skip over the add expression until we get to a multiply.
1711  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1712    ++Idx;
1713
1714  // If there are mul operands inline them all into this expression.
1715  if (Idx < Ops.size()) {
1716    bool DeletedMul = false;
1717    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1718      // If we have an mul, expand the mul operands onto the end of the operands
1719      // list.
1720      Ops.erase(Ops.begin()+Idx);
1721      Ops.append(Mul->op_begin(), Mul->op_end());
1722      DeletedMul = true;
1723    }
1724
1725    // If we deleted at least one mul, we added operands to the end of the list,
1726    // and they are not necessarily sorted.  Recurse to resort and resimplify
1727    // any operands we just acquired.
1728    if (DeletedMul)
1729      return getMulExpr(Ops);
1730  }
1731
1732  // If there are any add recurrences in the operands list, see if any other
1733  // added values are loop invariant.  If so, we can fold them into the
1734  // recurrence.
1735  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1736    ++Idx;
1737
1738  // Scan over all recurrences, trying to fold loop invariants into them.
1739  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1740    // Scan all of the other operands to this mul and add them to the vector if
1741    // they are loop invariant w.r.t. the recurrence.
1742    SmallVector<const SCEV *, 8> LIOps;
1743    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1744    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1745      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1746        LIOps.push_back(Ops[i]);
1747        Ops.erase(Ops.begin()+i);
1748        --i; --e;
1749      }
1750
1751    // If we found some loop invariants, fold them into the recurrence.
1752    if (!LIOps.empty()) {
1753      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1754      SmallVector<const SCEV *, 4> NewOps;
1755      NewOps.reserve(AddRec->getNumOperands());
1756      const SCEV *Scale = getMulExpr(LIOps);
1757      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1758        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1759
1760      // It's tempting to propagate the NSW flag here, but nsw multiplication
1761      // is not associative so this isn't necessarily safe.
1762      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1763                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1764                                         /*HasNSW=*/false);
1765
1766      // If all of the other operands were loop invariant, we are done.
1767      if (Ops.size() == 1) return NewRec;
1768
1769      // Otherwise, multiply the folded AddRec by the non-liv parts.
1770      for (unsigned i = 0;; ++i)
1771        if (Ops[i] == AddRec) {
1772          Ops[i] = NewRec;
1773          break;
1774        }
1775      return getMulExpr(Ops);
1776    }
1777
1778    // Okay, if there weren't any loop invariants to be folded, check to see if
1779    // there are multiple AddRec's with the same loop induction variable being
1780    // multiplied together.  If so, we can fold them.
1781    for (unsigned OtherIdx = Idx+1;
1782         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1783      if (OtherIdx != Idx) {
1784        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1785        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1786          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1787          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1788          const SCEV *NewStart = getMulExpr(F->getStart(),
1789                                                 G->getStart());
1790          const SCEV *B = F->getStepRecurrence(*this);
1791          const SCEV *D = G->getStepRecurrence(*this);
1792          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1793                                          getMulExpr(G, B),
1794                                          getMulExpr(B, D));
1795          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1796                                               F->getLoop());
1797          if (Ops.size() == 2) return NewAddRec;
1798
1799          Ops.erase(Ops.begin()+Idx);
1800          Ops.erase(Ops.begin()+OtherIdx-1);
1801          Ops.push_back(NewAddRec);
1802          return getMulExpr(Ops);
1803        }
1804      }
1805
1806    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1807    // next one.
1808  }
1809
1810  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1811  // already have one, otherwise create a new one.
1812  FoldingSetNodeID ID;
1813  ID.AddInteger(scMulExpr);
1814  ID.AddInteger(Ops.size());
1815  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1816    ID.AddPointer(Ops[i]);
1817  void *IP = 0;
1818  SCEVMulExpr *S =
1819    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1820  if (!S) {
1821    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1822    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1823    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1824                                        O, Ops.size());
1825    UniqueSCEVs.InsertNode(S, IP);
1826  }
1827  if (HasNUW) S->setHasNoUnsignedWrap(true);
1828  if (HasNSW) S->setHasNoSignedWrap(true);
1829  return S;
1830}
1831
1832/// getUDivExpr - Get a canonical unsigned division expression, or something
1833/// simpler if possible.
1834const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1835                                         const SCEV *RHS) {
1836  assert(getEffectiveSCEVType(LHS->getType()) ==
1837         getEffectiveSCEVType(RHS->getType()) &&
1838         "SCEVUDivExpr operand types don't match!");
1839
1840  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1841    if (RHSC->getValue()->equalsInt(1))
1842      return LHS;                               // X udiv 1 --> x
1843    // If the denominator is zero, the result of the udiv is undefined. Don't
1844    // try to analyze it, because the resolution chosen here may differ from
1845    // the resolution chosen in other parts of the compiler.
1846    if (!RHSC->getValue()->isZero()) {
1847      // Determine if the division can be folded into the operands of
1848      // its operands.
1849      // TODO: Generalize this to non-constants by using known-bits information.
1850      const Type *Ty = LHS->getType();
1851      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1852      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1853      // For non-power-of-two values, effectively round the value up to the
1854      // nearest power of two.
1855      if (!RHSC->getValue()->getValue().isPowerOf2())
1856        ++MaxShiftAmt;
1857      const IntegerType *ExtTy =
1858        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1859      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1860      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1861        if (const SCEVConstant *Step =
1862              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1863          if (!Step->getValue()->getValue()
1864                .urem(RHSC->getValue()->getValue()) &&
1865              getZeroExtendExpr(AR, ExtTy) ==
1866              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1867                            getZeroExtendExpr(Step, ExtTy),
1868                            AR->getLoop())) {
1869            SmallVector<const SCEV *, 4> Operands;
1870            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1871              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1872            return getAddRecExpr(Operands, AR->getLoop());
1873          }
1874      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1875      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1876        SmallVector<const SCEV *, 4> Operands;
1877        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1878          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1879        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1880          // Find an operand that's safely divisible.
1881          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1882            const SCEV *Op = M->getOperand(i);
1883            const SCEV *Div = getUDivExpr(Op, RHSC);
1884            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1885              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1886                                                      M->op_end());
1887              Operands[i] = Div;
1888              return getMulExpr(Operands);
1889            }
1890          }
1891      }
1892      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1893      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1894        SmallVector<const SCEV *, 4> Operands;
1895        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1896          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1897        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1898          Operands.clear();
1899          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1900            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1901            if (isa<SCEVUDivExpr>(Op) ||
1902                getMulExpr(Op, RHS) != A->getOperand(i))
1903              break;
1904            Operands.push_back(Op);
1905          }
1906          if (Operands.size() == A->getNumOperands())
1907            return getAddExpr(Operands);
1908        }
1909      }
1910
1911      // Fold if both operands are constant.
1912      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1913        Constant *LHSCV = LHSC->getValue();
1914        Constant *RHSCV = RHSC->getValue();
1915        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1916                                                                   RHSCV)));
1917      }
1918    }
1919  }
1920
1921  FoldingSetNodeID ID;
1922  ID.AddInteger(scUDivExpr);
1923  ID.AddPointer(LHS);
1924  ID.AddPointer(RHS);
1925  void *IP = 0;
1926  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1927  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1928                                             LHS, RHS);
1929  UniqueSCEVs.InsertNode(S, IP);
1930  return S;
1931}
1932
1933
1934/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1935/// Simplify the expression as much as possible.
1936const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1937                                           const SCEV *Step, const Loop *L,
1938                                           bool HasNUW, bool HasNSW) {
1939  SmallVector<const SCEV *, 4> Operands;
1940  Operands.push_back(Start);
1941  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1942    if (StepChrec->getLoop() == L) {
1943      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
1944      return getAddRecExpr(Operands, L);
1945    }
1946
1947  Operands.push_back(Step);
1948  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1949}
1950
1951/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1952/// Simplify the expression as much as possible.
1953const SCEV *
1954ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1955                               const Loop *L,
1956                               bool HasNUW, bool HasNSW) {
1957  if (Operands.size() == 1) return Operands[0];
1958#ifndef NDEBUG
1959  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1960    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1961           getEffectiveSCEVType(Operands[0]->getType()) &&
1962           "SCEVAddRecExpr operand types don't match!");
1963#endif
1964
1965  if (Operands.back()->isZero()) {
1966    Operands.pop_back();
1967    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
1968  }
1969
1970  // It's tempting to want to call getMaxBackedgeTakenCount count here and
1971  // use that information to infer NUW and NSW flags. However, computing a
1972  // BE count requires calling getAddRecExpr, so we may not yet have a
1973  // meaningful BE count at this point (and if we don't, we'd be stuck
1974  // with a SCEVCouldNotCompute as the cached BE count).
1975
1976  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1977  if (!HasNUW && HasNSW) {
1978    bool All = true;
1979    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1980      if (!isKnownNonNegative(Operands[i])) {
1981        All = false;
1982        break;
1983      }
1984    if (All) HasNUW = true;
1985  }
1986
1987  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1988  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1989    const Loop *NestedLoop = NestedAR->getLoop();
1990    if (L->contains(NestedLoop->getHeader()) ?
1991        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1992        (!NestedLoop->contains(L->getHeader()) &&
1993         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
1994      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1995                                                  NestedAR->op_end());
1996      Operands[0] = NestedAR->getStart();
1997      // AddRecs require their operands be loop-invariant with respect to their
1998      // loops. Don't perform this transformation if it would break this
1999      // requirement.
2000      bool AllInvariant = true;
2001      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2002        if (!Operands[i]->isLoopInvariant(L)) {
2003          AllInvariant = false;
2004          break;
2005        }
2006      if (AllInvariant) {
2007        NestedOperands[0] = getAddRecExpr(Operands, L);
2008        AllInvariant = true;
2009        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2010          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2011            AllInvariant = false;
2012            break;
2013          }
2014        if (AllInvariant)
2015          // Ok, both add recurrences are valid after the transformation.
2016          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2017      }
2018      // Reset Operands to its original state.
2019      Operands[0] = NestedAR;
2020    }
2021  }
2022
2023  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2024  // already have one, otherwise create a new one.
2025  FoldingSetNodeID ID;
2026  ID.AddInteger(scAddRecExpr);
2027  ID.AddInteger(Operands.size());
2028  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2029    ID.AddPointer(Operands[i]);
2030  ID.AddPointer(L);
2031  void *IP = 0;
2032  SCEVAddRecExpr *S =
2033    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2034  if (!S) {
2035    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2036    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2037    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2038                                           O, Operands.size(), L);
2039    UniqueSCEVs.InsertNode(S, IP);
2040  }
2041  if (HasNUW) S->setHasNoUnsignedWrap(true);
2042  if (HasNSW) S->setHasNoSignedWrap(true);
2043  return S;
2044}
2045
2046const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2047                                         const SCEV *RHS) {
2048  SmallVector<const SCEV *, 2> Ops;
2049  Ops.push_back(LHS);
2050  Ops.push_back(RHS);
2051  return getSMaxExpr(Ops);
2052}
2053
2054const SCEV *
2055ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2056  assert(!Ops.empty() && "Cannot get empty smax!");
2057  if (Ops.size() == 1) return Ops[0];
2058#ifndef NDEBUG
2059  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2060    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2061           getEffectiveSCEVType(Ops[0]->getType()) &&
2062           "SCEVSMaxExpr operand types don't match!");
2063#endif
2064
2065  // Sort by complexity, this groups all similar expression types together.
2066  GroupByComplexity(Ops, LI);
2067
2068  // If there are any constants, fold them together.
2069  unsigned Idx = 0;
2070  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2071    ++Idx;
2072    assert(Idx < Ops.size());
2073    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2074      // We found two constants, fold them together!
2075      ConstantInt *Fold = ConstantInt::get(getContext(),
2076                              APIntOps::smax(LHSC->getValue()->getValue(),
2077                                             RHSC->getValue()->getValue()));
2078      Ops[0] = getConstant(Fold);
2079      Ops.erase(Ops.begin()+1);  // Erase the folded element
2080      if (Ops.size() == 1) return Ops[0];
2081      LHSC = cast<SCEVConstant>(Ops[0]);
2082    }
2083
2084    // If we are left with a constant minimum-int, strip it off.
2085    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2086      Ops.erase(Ops.begin());
2087      --Idx;
2088    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2089      // If we have an smax with a constant maximum-int, it will always be
2090      // maximum-int.
2091      return Ops[0];
2092    }
2093
2094    if (Ops.size() == 1) return Ops[0];
2095  }
2096
2097  // Find the first SMax
2098  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2099    ++Idx;
2100
2101  // Check to see if one of the operands is an SMax. If so, expand its operands
2102  // onto our operand list, and recurse to simplify.
2103  if (Idx < Ops.size()) {
2104    bool DeletedSMax = false;
2105    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2106      Ops.erase(Ops.begin()+Idx);
2107      Ops.append(SMax->op_begin(), SMax->op_end());
2108      DeletedSMax = true;
2109    }
2110
2111    if (DeletedSMax)
2112      return getSMaxExpr(Ops);
2113  }
2114
2115  // Okay, check to see if the same value occurs in the operand list twice.  If
2116  // so, delete one.  Since we sorted the list, these values are required to
2117  // be adjacent.
2118  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2119    //  X smax Y smax Y  -->  X smax Y
2120    //  X smax Y         -->  X, if X is always greater than Y
2121    if (Ops[i] == Ops[i+1] ||
2122        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2123      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2124      --i; --e;
2125    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2126      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2127      --i; --e;
2128    }
2129
2130  if (Ops.size() == 1) return Ops[0];
2131
2132  assert(!Ops.empty() && "Reduced smax down to nothing!");
2133
2134  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2135  // already have one, otherwise create a new one.
2136  FoldingSetNodeID ID;
2137  ID.AddInteger(scSMaxExpr);
2138  ID.AddInteger(Ops.size());
2139  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2140    ID.AddPointer(Ops[i]);
2141  void *IP = 0;
2142  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2143  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2144  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2145  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2146                                             O, Ops.size());
2147  UniqueSCEVs.InsertNode(S, IP);
2148  return S;
2149}
2150
2151const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2152                                         const SCEV *RHS) {
2153  SmallVector<const SCEV *, 2> Ops;
2154  Ops.push_back(LHS);
2155  Ops.push_back(RHS);
2156  return getUMaxExpr(Ops);
2157}
2158
2159const SCEV *
2160ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2161  assert(!Ops.empty() && "Cannot get empty umax!");
2162  if (Ops.size() == 1) return Ops[0];
2163#ifndef NDEBUG
2164  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2165    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2166           getEffectiveSCEVType(Ops[0]->getType()) &&
2167           "SCEVUMaxExpr operand types don't match!");
2168#endif
2169
2170  // Sort by complexity, this groups all similar expression types together.
2171  GroupByComplexity(Ops, LI);
2172
2173  // If there are any constants, fold them together.
2174  unsigned Idx = 0;
2175  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2176    ++Idx;
2177    assert(Idx < Ops.size());
2178    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2179      // We found two constants, fold them together!
2180      ConstantInt *Fold = ConstantInt::get(getContext(),
2181                              APIntOps::umax(LHSC->getValue()->getValue(),
2182                                             RHSC->getValue()->getValue()));
2183      Ops[0] = getConstant(Fold);
2184      Ops.erase(Ops.begin()+1);  // Erase the folded element
2185      if (Ops.size() == 1) return Ops[0];
2186      LHSC = cast<SCEVConstant>(Ops[0]);
2187    }
2188
2189    // If we are left with a constant minimum-int, strip it off.
2190    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2191      Ops.erase(Ops.begin());
2192      --Idx;
2193    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2194      // If we have an umax with a constant maximum-int, it will always be
2195      // maximum-int.
2196      return Ops[0];
2197    }
2198
2199    if (Ops.size() == 1) return Ops[0];
2200  }
2201
2202  // Find the first UMax
2203  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2204    ++Idx;
2205
2206  // Check to see if one of the operands is a UMax. If so, expand its operands
2207  // onto our operand list, and recurse to simplify.
2208  if (Idx < Ops.size()) {
2209    bool DeletedUMax = false;
2210    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2211      Ops.erase(Ops.begin()+Idx);
2212      Ops.append(UMax->op_begin(), UMax->op_end());
2213      DeletedUMax = true;
2214    }
2215
2216    if (DeletedUMax)
2217      return getUMaxExpr(Ops);
2218  }
2219
2220  // Okay, check to see if the same value occurs in the operand list twice.  If
2221  // so, delete one.  Since we sorted the list, these values are required to
2222  // be adjacent.
2223  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2224    //  X umax Y umax Y  -->  X umax Y
2225    //  X umax Y         -->  X, if X is always greater than Y
2226    if (Ops[i] == Ops[i+1] ||
2227        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2228      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2229      --i; --e;
2230    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2231      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2232      --i; --e;
2233    }
2234
2235  if (Ops.size() == 1) return Ops[0];
2236
2237  assert(!Ops.empty() && "Reduced umax down to nothing!");
2238
2239  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2240  // already have one, otherwise create a new one.
2241  FoldingSetNodeID ID;
2242  ID.AddInteger(scUMaxExpr);
2243  ID.AddInteger(Ops.size());
2244  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2245    ID.AddPointer(Ops[i]);
2246  void *IP = 0;
2247  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2248  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2249  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2250  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2251                                             O, Ops.size());
2252  UniqueSCEVs.InsertNode(S, IP);
2253  return S;
2254}
2255
2256const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2257                                         const SCEV *RHS) {
2258  // ~smax(~x, ~y) == smin(x, y).
2259  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2260}
2261
2262const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2263                                         const SCEV *RHS) {
2264  // ~umax(~x, ~y) == umin(x, y)
2265  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2266}
2267
2268const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2269  // If we have TargetData, we can bypass creating a target-independent
2270  // constant expression and then folding it back into a ConstantInt.
2271  // This is just a compile-time optimization.
2272  if (TD)
2273    return getConstant(TD->getIntPtrType(getContext()),
2274                       TD->getTypeAllocSize(AllocTy));
2275
2276  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2277  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2278    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2279      C = Folded;
2280  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2281  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2282}
2283
2284const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2285  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2286  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2287    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2288      C = Folded;
2289  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2290  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2291}
2292
2293const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2294                                             unsigned FieldNo) {
2295  // If we have TargetData, we can bypass creating a target-independent
2296  // constant expression and then folding it back into a ConstantInt.
2297  // This is just a compile-time optimization.
2298  if (TD)
2299    return getConstant(TD->getIntPtrType(getContext()),
2300                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2301
2302  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2303  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2304    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2305      C = Folded;
2306  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2307  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2308}
2309
2310const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2311                                             Constant *FieldNo) {
2312  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2313  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2314    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2315      C = Folded;
2316  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2317  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2318}
2319
2320const SCEV *ScalarEvolution::getUnknown(Value *V) {
2321  // Don't attempt to do anything other than create a SCEVUnknown object
2322  // here.  createSCEV only calls getUnknown after checking for all other
2323  // interesting possibilities, and any other code that calls getUnknown
2324  // is doing so in order to hide a value from SCEV canonicalization.
2325
2326  FoldingSetNodeID ID;
2327  ID.AddInteger(scUnknown);
2328  ID.AddPointer(V);
2329  void *IP = 0;
2330  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2331  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
2332  UniqueSCEVs.InsertNode(S, IP);
2333  return S;
2334}
2335
2336//===----------------------------------------------------------------------===//
2337//            Basic SCEV Analysis and PHI Idiom Recognition Code
2338//
2339
2340/// isSCEVable - Test if values of the given type are analyzable within
2341/// the SCEV framework. This primarily includes integer types, and it
2342/// can optionally include pointer types if the ScalarEvolution class
2343/// has access to target-specific information.
2344bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2345  // Integers and pointers are always SCEVable.
2346  return Ty->isIntegerTy() || Ty->isPointerTy();
2347}
2348
2349/// getTypeSizeInBits - Return the size in bits of the specified type,
2350/// for which isSCEVable must return true.
2351uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2352  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2353
2354  // If we have a TargetData, use it!
2355  if (TD)
2356    return TD->getTypeSizeInBits(Ty);
2357
2358  // Integer types have fixed sizes.
2359  if (Ty->isIntegerTy())
2360    return Ty->getPrimitiveSizeInBits();
2361
2362  // The only other support type is pointer. Without TargetData, conservatively
2363  // assume pointers are 64-bit.
2364  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2365  return 64;
2366}
2367
2368/// getEffectiveSCEVType - Return a type with the same bitwidth as
2369/// the given type and which represents how SCEV will treat the given
2370/// type, for which isSCEVable must return true. For pointer types,
2371/// this is the pointer-sized integer type.
2372const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2373  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2374
2375  if (Ty->isIntegerTy())
2376    return Ty;
2377
2378  // The only other support type is pointer.
2379  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2380  if (TD) return TD->getIntPtrType(getContext());
2381
2382  // Without TargetData, conservatively assume pointers are 64-bit.
2383  return Type::getInt64Ty(getContext());
2384}
2385
2386const SCEV *ScalarEvolution::getCouldNotCompute() {
2387  return &CouldNotCompute;
2388}
2389
2390/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2391/// expression and create a new one.
2392const SCEV *ScalarEvolution::getSCEV(Value *V) {
2393  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2394
2395  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2396  if (I != Scalars.end()) return I->second;
2397  const SCEV *S = createSCEV(V);
2398  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2399  return S;
2400}
2401
2402/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2403///
2404const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2405  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2406    return getConstant(
2407               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2408
2409  const Type *Ty = V->getType();
2410  Ty = getEffectiveSCEVType(Ty);
2411  return getMulExpr(V,
2412                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2413}
2414
2415/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2416const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2417  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2418    return getConstant(
2419                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2420
2421  const Type *Ty = V->getType();
2422  Ty = getEffectiveSCEVType(Ty);
2423  const SCEV *AllOnes =
2424                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2425  return getMinusSCEV(AllOnes, V);
2426}
2427
2428/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2429///
2430const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2431                                          const SCEV *RHS) {
2432  // X - Y --> X + -Y
2433  return getAddExpr(LHS, getNegativeSCEV(RHS));
2434}
2435
2436/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2437/// input value to the specified type.  If the type must be extended, it is zero
2438/// extended.
2439const SCEV *
2440ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2441                                         const Type *Ty) {
2442  const Type *SrcTy = V->getType();
2443  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2444         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2445         "Cannot truncate or zero extend with non-integer arguments!");
2446  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2447    return V;  // No conversion
2448  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2449    return getTruncateExpr(V, Ty);
2450  return getZeroExtendExpr(V, Ty);
2451}
2452
2453/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2454/// input value to the specified type.  If the type must be extended, it is sign
2455/// extended.
2456const SCEV *
2457ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2458                                         const Type *Ty) {
2459  const Type *SrcTy = V->getType();
2460  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2461         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2462         "Cannot truncate or zero extend with non-integer arguments!");
2463  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2464    return V;  // No conversion
2465  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2466    return getTruncateExpr(V, Ty);
2467  return getSignExtendExpr(V, Ty);
2468}
2469
2470/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2471/// input value to the specified type.  If the type must be extended, it is zero
2472/// extended.  The conversion must not be narrowing.
2473const SCEV *
2474ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2475  const Type *SrcTy = V->getType();
2476  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2477         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2478         "Cannot noop or zero extend with non-integer arguments!");
2479  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2480         "getNoopOrZeroExtend cannot truncate!");
2481  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2482    return V;  // No conversion
2483  return getZeroExtendExpr(V, Ty);
2484}
2485
2486/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2487/// input value to the specified type.  If the type must be extended, it is sign
2488/// extended.  The conversion must not be narrowing.
2489const SCEV *
2490ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2491  const Type *SrcTy = V->getType();
2492  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2493         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2494         "Cannot noop or sign extend with non-integer arguments!");
2495  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2496         "getNoopOrSignExtend cannot truncate!");
2497  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2498    return V;  // No conversion
2499  return getSignExtendExpr(V, Ty);
2500}
2501
2502/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2503/// the input value to the specified type. If the type must be extended,
2504/// it is extended with unspecified bits. The conversion must not be
2505/// narrowing.
2506const SCEV *
2507ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2508  const Type *SrcTy = V->getType();
2509  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2510         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2511         "Cannot noop or any extend with non-integer arguments!");
2512  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2513         "getNoopOrAnyExtend cannot truncate!");
2514  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2515    return V;  // No conversion
2516  return getAnyExtendExpr(V, Ty);
2517}
2518
2519/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2520/// input value to the specified type.  The conversion must not be widening.
2521const SCEV *
2522ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2523  const Type *SrcTy = V->getType();
2524  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2525         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2526         "Cannot truncate or noop with non-integer arguments!");
2527  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2528         "getTruncateOrNoop cannot extend!");
2529  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2530    return V;  // No conversion
2531  return getTruncateExpr(V, Ty);
2532}
2533
2534/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2535/// the types using zero-extension, and then perform a umax operation
2536/// with them.
2537const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2538                                                        const SCEV *RHS) {
2539  const SCEV *PromotedLHS = LHS;
2540  const SCEV *PromotedRHS = RHS;
2541
2542  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2543    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2544  else
2545    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2546
2547  return getUMaxExpr(PromotedLHS, PromotedRHS);
2548}
2549
2550/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2551/// the types using zero-extension, and then perform a umin operation
2552/// with them.
2553const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2554                                                        const SCEV *RHS) {
2555  const SCEV *PromotedLHS = LHS;
2556  const SCEV *PromotedRHS = RHS;
2557
2558  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2559    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2560  else
2561    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2562
2563  return getUMinExpr(PromotedLHS, PromotedRHS);
2564}
2565
2566/// PushDefUseChildren - Push users of the given Instruction
2567/// onto the given Worklist.
2568static void
2569PushDefUseChildren(Instruction *I,
2570                   SmallVectorImpl<Instruction *> &Worklist) {
2571  // Push the def-use children onto the Worklist stack.
2572  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2573       UI != UE; ++UI)
2574    Worklist.push_back(cast<Instruction>(UI));
2575}
2576
2577/// ForgetSymbolicValue - This looks up computed SCEV values for all
2578/// instructions that depend on the given instruction and removes them from
2579/// the Scalars map if they reference SymName. This is used during PHI
2580/// resolution.
2581void
2582ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2583  SmallVector<Instruction *, 16> Worklist;
2584  PushDefUseChildren(PN, Worklist);
2585
2586  SmallPtrSet<Instruction *, 8> Visited;
2587  Visited.insert(PN);
2588  while (!Worklist.empty()) {
2589    Instruction *I = Worklist.pop_back_val();
2590    if (!Visited.insert(I)) continue;
2591
2592    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
2593      Scalars.find(static_cast<Value *>(I));
2594    if (It != Scalars.end()) {
2595      // Short-circuit the def-use traversal if the symbolic name
2596      // ceases to appear in expressions.
2597      if (It->second != SymName && !It->second->hasOperand(SymName))
2598        continue;
2599
2600      // SCEVUnknown for a PHI either means that it has an unrecognized
2601      // structure, it's a PHI that's in the progress of being computed
2602      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2603      // additional loop trip count information isn't going to change anything.
2604      // In the second case, createNodeForPHI will perform the necessary
2605      // updates on its own when it gets to that point. In the third, we do
2606      // want to forget the SCEVUnknown.
2607      if (!isa<PHINode>(I) ||
2608          !isa<SCEVUnknown>(It->second) ||
2609          (I != PN && It->second == SymName)) {
2610        ValuesAtScopes.erase(It->second);
2611        Scalars.erase(It);
2612      }
2613    }
2614
2615    PushDefUseChildren(I, Worklist);
2616  }
2617}
2618
2619/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2620/// a loop header, making it a potential recurrence, or it doesn't.
2621///
2622const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2623  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2624    if (L->getHeader() == PN->getParent()) {
2625      // The loop may have multiple entrances or multiple exits; we can analyze
2626      // this phi as an addrec if it has a unique entry value and a unique
2627      // backedge value.
2628      Value *BEValueV = 0, *StartValueV = 0;
2629      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2630        Value *V = PN->getIncomingValue(i);
2631        if (L->contains(PN->getIncomingBlock(i))) {
2632          if (!BEValueV) {
2633            BEValueV = V;
2634          } else if (BEValueV != V) {
2635            BEValueV = 0;
2636            break;
2637          }
2638        } else if (!StartValueV) {
2639          StartValueV = V;
2640        } else if (StartValueV != V) {
2641          StartValueV = 0;
2642          break;
2643        }
2644      }
2645      if (BEValueV && StartValueV) {
2646        // While we are analyzing this PHI node, handle its value symbolically.
2647        const SCEV *SymbolicName = getUnknown(PN);
2648        assert(Scalars.find(PN) == Scalars.end() &&
2649               "PHI node already processed?");
2650        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2651
2652        // Using this symbolic name for the PHI, analyze the value coming around
2653        // the back-edge.
2654        const SCEV *BEValue = getSCEV(BEValueV);
2655
2656        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2657        // has a special value for the first iteration of the loop.
2658
2659        // If the value coming around the backedge is an add with the symbolic
2660        // value we just inserted, then we found a simple induction variable!
2661        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2662          // If there is a single occurrence of the symbolic value, replace it
2663          // with a recurrence.
2664          unsigned FoundIndex = Add->getNumOperands();
2665          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2666            if (Add->getOperand(i) == SymbolicName)
2667              if (FoundIndex == e) {
2668                FoundIndex = i;
2669                break;
2670              }
2671
2672          if (FoundIndex != Add->getNumOperands()) {
2673            // Create an add with everything but the specified operand.
2674            SmallVector<const SCEV *, 8> Ops;
2675            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2676              if (i != FoundIndex)
2677                Ops.push_back(Add->getOperand(i));
2678            const SCEV *Accum = getAddExpr(Ops);
2679
2680            // This is not a valid addrec if the step amount is varying each
2681            // loop iteration, but is not itself an addrec in this loop.
2682            if (Accum->isLoopInvariant(L) ||
2683                (isa<SCEVAddRecExpr>(Accum) &&
2684                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2685              bool HasNUW = false;
2686              bool HasNSW = false;
2687
2688              // If the increment doesn't overflow, then neither the addrec nor
2689              // the post-increment will overflow.
2690              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2691                if (OBO->hasNoUnsignedWrap())
2692                  HasNUW = true;
2693                if (OBO->hasNoSignedWrap())
2694                  HasNSW = true;
2695              }
2696
2697              const SCEV *StartVal = getSCEV(StartValueV);
2698              const SCEV *PHISCEV =
2699                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2700
2701              // Since the no-wrap flags are on the increment, they apply to the
2702              // post-incremented value as well.
2703              if (Accum->isLoopInvariant(L))
2704                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2705                                    Accum, L, HasNUW, HasNSW);
2706
2707              // Okay, for the entire analysis of this edge we assumed the PHI
2708              // to be symbolic.  We now need to go back and purge all of the
2709              // entries for the scalars that use the symbolic expression.
2710              ForgetSymbolicName(PN, SymbolicName);
2711              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2712              return PHISCEV;
2713            }
2714          }
2715        } else if (const SCEVAddRecExpr *AddRec =
2716                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2717          // Otherwise, this could be a loop like this:
2718          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2719          // In this case, j = {1,+,1}  and BEValue is j.
2720          // Because the other in-value of i (0) fits the evolution of BEValue
2721          // i really is an addrec evolution.
2722          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2723            const SCEV *StartVal = getSCEV(StartValueV);
2724
2725            // If StartVal = j.start - j.stride, we can use StartVal as the
2726            // initial step of the addrec evolution.
2727            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2728                                         AddRec->getOperand(1))) {
2729              const SCEV *PHISCEV =
2730                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2731
2732              // Okay, for the entire analysis of this edge we assumed the PHI
2733              // to be symbolic.  We now need to go back and purge all of the
2734              // entries for the scalars that use the symbolic expression.
2735              ForgetSymbolicName(PN, SymbolicName);
2736              Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
2737              return PHISCEV;
2738            }
2739          }
2740        }
2741      }
2742    }
2743
2744  // If the PHI has a single incoming value, follow that value, unless the
2745  // PHI's incoming blocks are in a different loop, in which case doing so
2746  // risks breaking LCSSA form. Instcombine would normally zap these, but
2747  // it doesn't have DominatorTree information, so it may miss cases.
2748  if (Value *V = PN->hasConstantValue(DT)) {
2749    bool AllSameLoop = true;
2750    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2751    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2752      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2753        AllSameLoop = false;
2754        break;
2755      }
2756    if (AllSameLoop)
2757      return getSCEV(V);
2758  }
2759
2760  // If it's not a loop phi, we can't handle it yet.
2761  return getUnknown(PN);
2762}
2763
2764/// createNodeForGEP - Expand GEP instructions into add and multiply
2765/// operations. This allows them to be analyzed by regular SCEV code.
2766///
2767const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2768
2769  bool InBounds = GEP->isInBounds();
2770  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2771  Value *Base = GEP->getOperand(0);
2772  // Don't attempt to analyze GEPs over unsized objects.
2773  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2774    return getUnknown(GEP);
2775  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2776  gep_type_iterator GTI = gep_type_begin(GEP);
2777  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2778                                      E = GEP->op_end();
2779       I != E; ++I) {
2780    Value *Index = *I;
2781    // Compute the (potentially symbolic) offset in bytes for this index.
2782    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2783      // For a struct, add the member offset.
2784      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2785      TotalOffset = getAddExpr(TotalOffset,
2786                               getOffsetOfExpr(STy, FieldNo),
2787                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2788    } else {
2789      // For an array, add the element offset, explicitly scaled.
2790      const SCEV *LocalOffset = getSCEV(Index);
2791      // Getelementptr indices are signed.
2792      LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2793      // Lower "inbounds" GEPs to NSW arithmetic.
2794      LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
2795                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2796      TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2797                               /*HasNUW=*/false, /*HasNSW=*/InBounds);
2798    }
2799  }
2800  return getAddExpr(getSCEV(Base), TotalOffset,
2801                    /*HasNUW=*/false, /*HasNSW=*/InBounds);
2802}
2803
2804/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2805/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2806/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2807/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2808uint32_t
2809ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2810  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2811    return C->getValue()->getValue().countTrailingZeros();
2812
2813  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2814    return std::min(GetMinTrailingZeros(T->getOperand()),
2815                    (uint32_t)getTypeSizeInBits(T->getType()));
2816
2817  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2818    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2819    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2820             getTypeSizeInBits(E->getType()) : OpRes;
2821  }
2822
2823  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2824    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2825    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2826             getTypeSizeInBits(E->getType()) : OpRes;
2827  }
2828
2829  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2830    // The result is the min of all operands results.
2831    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2832    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2833      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2834    return MinOpRes;
2835  }
2836
2837  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2838    // The result is the sum of all operands results.
2839    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2840    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2841    for (unsigned i = 1, e = M->getNumOperands();
2842         SumOpRes != BitWidth && i != e; ++i)
2843      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2844                          BitWidth);
2845    return SumOpRes;
2846  }
2847
2848  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2849    // The result is the min of all operands results.
2850    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2851    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2852      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2853    return MinOpRes;
2854  }
2855
2856  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2857    // The result is the min of all operands results.
2858    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2859    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2860      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2861    return MinOpRes;
2862  }
2863
2864  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2865    // The result is the min of all operands results.
2866    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2867    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2868      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2869    return MinOpRes;
2870  }
2871
2872  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2873    // For a SCEVUnknown, ask ValueTracking.
2874    unsigned BitWidth = getTypeSizeInBits(U->getType());
2875    APInt Mask = APInt::getAllOnesValue(BitWidth);
2876    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2877    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2878    return Zeros.countTrailingOnes();
2879  }
2880
2881  // SCEVUDivExpr
2882  return 0;
2883}
2884
2885/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2886///
2887ConstantRange
2888ScalarEvolution::getUnsignedRange(const SCEV *S) {
2889
2890  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2891    return ConstantRange(C->getValue()->getValue());
2892
2893  unsigned BitWidth = getTypeSizeInBits(S->getType());
2894  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2895
2896  // If the value has known zeros, the maximum unsigned value will have those
2897  // known zeros as well.
2898  uint32_t TZ = GetMinTrailingZeros(S);
2899  if (TZ != 0)
2900    ConservativeResult =
2901      ConstantRange(APInt::getMinValue(BitWidth),
2902                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2903
2904  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2905    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2906    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2907      X = X.add(getUnsignedRange(Add->getOperand(i)));
2908    return ConservativeResult.intersectWith(X);
2909  }
2910
2911  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2912    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2913    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2914      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2915    return ConservativeResult.intersectWith(X);
2916  }
2917
2918  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2919    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2920    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2921      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2922    return ConservativeResult.intersectWith(X);
2923  }
2924
2925  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2926    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2927    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2928      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2929    return ConservativeResult.intersectWith(X);
2930  }
2931
2932  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2933    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2934    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2935    return ConservativeResult.intersectWith(X.udiv(Y));
2936  }
2937
2938  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2939    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2940    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
2941  }
2942
2943  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2944    ConstantRange X = getUnsignedRange(SExt->getOperand());
2945    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
2946  }
2947
2948  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2949    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2950    return ConservativeResult.intersectWith(X.truncate(BitWidth));
2951  }
2952
2953  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2954    // If there's no unsigned wrap, the value will never be less than its
2955    // initial value.
2956    if (AddRec->hasNoUnsignedWrap())
2957      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
2958        if (!C->getValue()->isZero())
2959          ConservativeResult =
2960            ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
2961
2962    // TODO: non-affine addrec
2963    if (AddRec->isAffine()) {
2964      const Type *Ty = AddRec->getType();
2965      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2966      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2967          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
2968        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2969
2970        const SCEV *Start = AddRec->getStart();
2971        const SCEV *Step = AddRec->getStepRecurrence(*this);
2972
2973        ConstantRange StartRange = getUnsignedRange(Start);
2974        ConstantRange StepRange = getSignedRange(Step);
2975        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2976        ConstantRange EndRange =
2977          StartRange.add(MaxBECountRange.multiply(StepRange));
2978
2979        // Check for overflow. This must be done with ConstantRange arithmetic
2980        // because we could be called from within the ScalarEvolution overflow
2981        // checking code.
2982        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2983        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2984        ConstantRange ExtMaxBECountRange =
2985          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2986        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2987        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2988            ExtEndRange)
2989          return ConservativeResult;
2990
2991        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2992                                   EndRange.getUnsignedMin());
2993        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2994                                   EndRange.getUnsignedMax());
2995        if (Min.isMinValue() && Max.isMaxValue())
2996          return ConservativeResult;
2997        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
2998      }
2999    }
3000
3001    return ConservativeResult;
3002  }
3003
3004  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3005    // For a SCEVUnknown, ask ValueTracking.
3006    APInt Mask = APInt::getAllOnesValue(BitWidth);
3007    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3008    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3009    if (Ones == ~Zeros + 1)
3010      return ConservativeResult;
3011    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3012  }
3013
3014  return ConservativeResult;
3015}
3016
3017/// getSignedRange - Determine the signed range for a particular SCEV.
3018///
3019ConstantRange
3020ScalarEvolution::getSignedRange(const SCEV *S) {
3021
3022  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3023    return ConstantRange(C->getValue()->getValue());
3024
3025  unsigned BitWidth = getTypeSizeInBits(S->getType());
3026  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3027
3028  // If the value has known zeros, the maximum signed value will have those
3029  // known zeros as well.
3030  uint32_t TZ = GetMinTrailingZeros(S);
3031  if (TZ != 0)
3032    ConservativeResult =
3033      ConstantRange(APInt::getSignedMinValue(BitWidth),
3034                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3035
3036  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3037    ConstantRange X = getSignedRange(Add->getOperand(0));
3038    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3039      X = X.add(getSignedRange(Add->getOperand(i)));
3040    return ConservativeResult.intersectWith(X);
3041  }
3042
3043  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3044    ConstantRange X = getSignedRange(Mul->getOperand(0));
3045    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3046      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3047    return ConservativeResult.intersectWith(X);
3048  }
3049
3050  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3051    ConstantRange X = getSignedRange(SMax->getOperand(0));
3052    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3053      X = X.smax(getSignedRange(SMax->getOperand(i)));
3054    return ConservativeResult.intersectWith(X);
3055  }
3056
3057  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3058    ConstantRange X = getSignedRange(UMax->getOperand(0));
3059    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3060      X = X.umax(getSignedRange(UMax->getOperand(i)));
3061    return ConservativeResult.intersectWith(X);
3062  }
3063
3064  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3065    ConstantRange X = getSignedRange(UDiv->getLHS());
3066    ConstantRange Y = getSignedRange(UDiv->getRHS());
3067    return ConservativeResult.intersectWith(X.udiv(Y));
3068  }
3069
3070  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3071    ConstantRange X = getSignedRange(ZExt->getOperand());
3072    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3073  }
3074
3075  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3076    ConstantRange X = getSignedRange(SExt->getOperand());
3077    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3078  }
3079
3080  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3081    ConstantRange X = getSignedRange(Trunc->getOperand());
3082    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3083  }
3084
3085  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3086    // If there's no signed wrap, and all the operands have the same sign or
3087    // zero, the value won't ever change sign.
3088    if (AddRec->hasNoSignedWrap()) {
3089      bool AllNonNeg = true;
3090      bool AllNonPos = true;
3091      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3092        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3093        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3094      }
3095      if (AllNonNeg)
3096        ConservativeResult = ConservativeResult.intersectWith(
3097          ConstantRange(APInt(BitWidth, 0),
3098                        APInt::getSignedMinValue(BitWidth)));
3099      else if (AllNonPos)
3100        ConservativeResult = ConservativeResult.intersectWith(
3101          ConstantRange(APInt::getSignedMinValue(BitWidth),
3102                        APInt(BitWidth, 1)));
3103    }
3104
3105    // TODO: non-affine addrec
3106    if (AddRec->isAffine()) {
3107      const Type *Ty = AddRec->getType();
3108      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3109      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3110          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3111        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3112
3113        const SCEV *Start = AddRec->getStart();
3114        const SCEV *Step = AddRec->getStepRecurrence(*this);
3115
3116        ConstantRange StartRange = getSignedRange(Start);
3117        ConstantRange StepRange = getSignedRange(Step);
3118        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3119        ConstantRange EndRange =
3120          StartRange.add(MaxBECountRange.multiply(StepRange));
3121
3122        // Check for overflow. This must be done with ConstantRange arithmetic
3123        // because we could be called from within the ScalarEvolution overflow
3124        // checking code.
3125        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3126        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3127        ConstantRange ExtMaxBECountRange =
3128          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3129        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3130        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3131            ExtEndRange)
3132          return ConservativeResult;
3133
3134        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3135                                   EndRange.getSignedMin());
3136        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3137                                   EndRange.getSignedMax());
3138        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3139          return ConservativeResult;
3140        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3141      }
3142    }
3143
3144    return ConservativeResult;
3145  }
3146
3147  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3148    // For a SCEVUnknown, ask ValueTracking.
3149    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3150      return ConservativeResult;
3151    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3152    if (NS == 1)
3153      return ConservativeResult;
3154    return ConservativeResult.intersectWith(
3155      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3156                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3157  }
3158
3159  return ConservativeResult;
3160}
3161
3162/// createSCEV - We know that there is no SCEV for the specified value.
3163/// Analyze the expression.
3164///
3165const SCEV *ScalarEvolution::createSCEV(Value *V) {
3166  if (!isSCEVable(V->getType()))
3167    return getUnknown(V);
3168
3169  unsigned Opcode = Instruction::UserOp1;
3170  if (Instruction *I = dyn_cast<Instruction>(V)) {
3171    Opcode = I->getOpcode();
3172
3173    // Don't attempt to analyze instructions in blocks that aren't
3174    // reachable. Such instructions don't matter, and they aren't required
3175    // to obey basic rules for definitions dominating uses which this
3176    // analysis depends on.
3177    if (!DT->isReachableFromEntry(I->getParent()))
3178      return getUnknown(V);
3179  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3180    Opcode = CE->getOpcode();
3181  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3182    return getConstant(CI);
3183  else if (isa<ConstantPointerNull>(V))
3184    return getConstant(V->getType(), 0);
3185  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3186    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3187  else
3188    return getUnknown(V);
3189
3190  Operator *U = cast<Operator>(V);
3191  switch (Opcode) {
3192  case Instruction::Add:
3193    // Don't transfer the NSW and NUW bits from the Add instruction to the
3194    // Add expression, because the Instruction may be guarded by control
3195    // flow and the no-overflow bits may not be valid for the expression in
3196    // any context.
3197    return getAddExpr(getSCEV(U->getOperand(0)),
3198                      getSCEV(U->getOperand(1)));
3199  case Instruction::Mul:
3200    // Don't transfer the NSW and NUW bits from the Mul instruction to the
3201    // Mul expression, as with Add.
3202    return getMulExpr(getSCEV(U->getOperand(0)),
3203                      getSCEV(U->getOperand(1)));
3204  case Instruction::UDiv:
3205    return getUDivExpr(getSCEV(U->getOperand(0)),
3206                       getSCEV(U->getOperand(1)));
3207  case Instruction::Sub:
3208    return getMinusSCEV(getSCEV(U->getOperand(0)),
3209                        getSCEV(U->getOperand(1)));
3210  case Instruction::And:
3211    // For an expression like x&255 that merely masks off the high bits,
3212    // use zext(trunc(x)) as the SCEV expression.
3213    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3214      if (CI->isNullValue())
3215        return getSCEV(U->getOperand(1));
3216      if (CI->isAllOnesValue())
3217        return getSCEV(U->getOperand(0));
3218      const APInt &A = CI->getValue();
3219
3220      // Instcombine's ShrinkDemandedConstant may strip bits out of
3221      // constants, obscuring what would otherwise be a low-bits mask.
3222      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3223      // knew about to reconstruct a low-bits mask value.
3224      unsigned LZ = A.countLeadingZeros();
3225      unsigned BitWidth = A.getBitWidth();
3226      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3227      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3228      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3229
3230      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3231
3232      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3233        return
3234          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3235                                IntegerType::get(getContext(), BitWidth - LZ)),
3236                            U->getType());
3237    }
3238    break;
3239
3240  case Instruction::Or:
3241    // If the RHS of the Or is a constant, we may have something like:
3242    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3243    // optimizations will transparently handle this case.
3244    //
3245    // In order for this transformation to be safe, the LHS must be of the
3246    // form X*(2^n) and the Or constant must be less than 2^n.
3247    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3248      const SCEV *LHS = getSCEV(U->getOperand(0));
3249      const APInt &CIVal = CI->getValue();
3250      if (GetMinTrailingZeros(LHS) >=
3251          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3252        // Build a plain add SCEV.
3253        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3254        // If the LHS of the add was an addrec and it has no-wrap flags,
3255        // transfer the no-wrap flags, since an or won't introduce a wrap.
3256        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3257          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3258          if (OldAR->hasNoUnsignedWrap())
3259            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3260          if (OldAR->hasNoSignedWrap())
3261            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3262        }
3263        return S;
3264      }
3265    }
3266    break;
3267  case Instruction::Xor:
3268    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3269      // If the RHS of the xor is a signbit, then this is just an add.
3270      // Instcombine turns add of signbit into xor as a strength reduction step.
3271      if (CI->getValue().isSignBit())
3272        return getAddExpr(getSCEV(U->getOperand(0)),
3273                          getSCEV(U->getOperand(1)));
3274
3275      // If the RHS of xor is -1, then this is a not operation.
3276      if (CI->isAllOnesValue())
3277        return getNotSCEV(getSCEV(U->getOperand(0)));
3278
3279      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3280      // This is a variant of the check for xor with -1, and it handles
3281      // the case where instcombine has trimmed non-demanded bits out
3282      // of an xor with -1.
3283      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3284        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3285          if (BO->getOpcode() == Instruction::And &&
3286              LCI->getValue() == CI->getValue())
3287            if (const SCEVZeroExtendExpr *Z =
3288                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3289              const Type *UTy = U->getType();
3290              const SCEV *Z0 = Z->getOperand();
3291              const Type *Z0Ty = Z0->getType();
3292              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3293
3294              // If C is a low-bits mask, the zero extend is serving to
3295              // mask off the high bits. Complement the operand and
3296              // re-apply the zext.
3297              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3298                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3299
3300              // If C is a single bit, it may be in the sign-bit position
3301              // before the zero-extend. In this case, represent the xor
3302              // using an add, which is equivalent, and re-apply the zext.
3303              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3304              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3305                  Trunc.isSignBit())
3306                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3307                                         UTy);
3308            }
3309    }
3310    break;
3311
3312  case Instruction::Shl:
3313    // Turn shift left of a constant amount into a multiply.
3314    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3315      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3316
3317      // If the shift count is not less than the bitwidth, the result of
3318      // the shift is undefined. Don't try to analyze it, because the
3319      // resolution chosen here may differ from the resolution chosen in
3320      // other parts of the compiler.
3321      if (SA->getValue().uge(BitWidth))
3322        break;
3323
3324      Constant *X = ConstantInt::get(getContext(),
3325        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3326      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3327    }
3328    break;
3329
3330  case Instruction::LShr:
3331    // Turn logical shift right of a constant into a unsigned divide.
3332    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3333      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3334
3335      // If the shift count is not less than the bitwidth, the result of
3336      // the shift is undefined. Don't try to analyze it, because the
3337      // resolution chosen here may differ from the resolution chosen in
3338      // other parts of the compiler.
3339      if (SA->getValue().uge(BitWidth))
3340        break;
3341
3342      Constant *X = ConstantInt::get(getContext(),
3343        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3344      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3345    }
3346    break;
3347
3348  case Instruction::AShr:
3349    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3350    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3351      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3352        if (L->getOpcode() == Instruction::Shl &&
3353            L->getOperand(1) == U->getOperand(1)) {
3354          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3355
3356          // If the shift count is not less than the bitwidth, the result of
3357          // the shift is undefined. Don't try to analyze it, because the
3358          // resolution chosen here may differ from the resolution chosen in
3359          // other parts of the compiler.
3360          if (CI->getValue().uge(BitWidth))
3361            break;
3362
3363          uint64_t Amt = BitWidth - CI->getZExtValue();
3364          if (Amt == BitWidth)
3365            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3366          return
3367            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3368                                              IntegerType::get(getContext(),
3369                                                               Amt)),
3370                              U->getType());
3371        }
3372    break;
3373
3374  case Instruction::Trunc:
3375    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3376
3377  case Instruction::ZExt:
3378    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3379
3380  case Instruction::SExt:
3381    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3382
3383  case Instruction::BitCast:
3384    // BitCasts are no-op casts so we just eliminate the cast.
3385    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3386      return getSCEV(U->getOperand(0));
3387    break;
3388
3389  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3390  // lead to pointer expressions which cannot safely be expanded to GEPs,
3391  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3392  // simplifying integer expressions.
3393
3394  case Instruction::GetElementPtr:
3395    return createNodeForGEP(cast<GEPOperator>(U));
3396
3397  case Instruction::PHI:
3398    return createNodeForPHI(cast<PHINode>(U));
3399
3400  case Instruction::Select:
3401    // This could be a smax or umax that was lowered earlier.
3402    // Try to recover it.
3403    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3404      Value *LHS = ICI->getOperand(0);
3405      Value *RHS = ICI->getOperand(1);
3406      switch (ICI->getPredicate()) {
3407      case ICmpInst::ICMP_SLT:
3408      case ICmpInst::ICMP_SLE:
3409        std::swap(LHS, RHS);
3410        // fall through
3411      case ICmpInst::ICMP_SGT:
3412      case ICmpInst::ICMP_SGE:
3413        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3414        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3415        if (LHS->getType() == U->getType()) {
3416          const SCEV *LS = getSCEV(LHS);
3417          const SCEV *RS = getSCEV(RHS);
3418          const SCEV *LA = getSCEV(U->getOperand(1));
3419          const SCEV *RA = getSCEV(U->getOperand(2));
3420          const SCEV *LDiff = getMinusSCEV(LA, LS);
3421          const SCEV *RDiff = getMinusSCEV(RA, RS);
3422          if (LDiff == RDiff)
3423            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3424          LDiff = getMinusSCEV(LA, RS);
3425          RDiff = getMinusSCEV(RA, LS);
3426          if (LDiff == RDiff)
3427            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3428        }
3429        break;
3430      case ICmpInst::ICMP_ULT:
3431      case ICmpInst::ICMP_ULE:
3432        std::swap(LHS, RHS);
3433        // fall through
3434      case ICmpInst::ICMP_UGT:
3435      case ICmpInst::ICMP_UGE:
3436        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3437        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3438        if (LHS->getType() == U->getType()) {
3439          const SCEV *LS = getSCEV(LHS);
3440          const SCEV *RS = getSCEV(RHS);
3441          const SCEV *LA = getSCEV(U->getOperand(1));
3442          const SCEV *RA = getSCEV(U->getOperand(2));
3443          const SCEV *LDiff = getMinusSCEV(LA, LS);
3444          const SCEV *RDiff = getMinusSCEV(RA, RS);
3445          if (LDiff == RDiff)
3446            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3447          LDiff = getMinusSCEV(LA, RS);
3448          RDiff = getMinusSCEV(RA, LS);
3449          if (LDiff == RDiff)
3450            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3451        }
3452        break;
3453      case ICmpInst::ICMP_NE:
3454        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3455        if (LHS->getType() == U->getType() &&
3456            isa<ConstantInt>(RHS) &&
3457            cast<ConstantInt>(RHS)->isZero()) {
3458          const SCEV *One = getConstant(LHS->getType(), 1);
3459          const SCEV *LS = getSCEV(LHS);
3460          const SCEV *LA = getSCEV(U->getOperand(1));
3461          const SCEV *RA = getSCEV(U->getOperand(2));
3462          const SCEV *LDiff = getMinusSCEV(LA, LS);
3463          const SCEV *RDiff = getMinusSCEV(RA, One);
3464          if (LDiff == RDiff)
3465            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3466        }
3467        break;
3468      case ICmpInst::ICMP_EQ:
3469        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3470        if (LHS->getType() == U->getType() &&
3471            isa<ConstantInt>(RHS) &&
3472            cast<ConstantInt>(RHS)->isZero()) {
3473          const SCEV *One = getConstant(LHS->getType(), 1);
3474          const SCEV *LS = getSCEV(LHS);
3475          const SCEV *LA = getSCEV(U->getOperand(1));
3476          const SCEV *RA = getSCEV(U->getOperand(2));
3477          const SCEV *LDiff = getMinusSCEV(LA, One);
3478          const SCEV *RDiff = getMinusSCEV(RA, LS);
3479          if (LDiff == RDiff)
3480            return getAddExpr(getUMaxExpr(LS, One), LDiff);
3481        }
3482        break;
3483      default:
3484        break;
3485      }
3486    }
3487
3488  default: // We cannot analyze this expression.
3489    break;
3490  }
3491
3492  return getUnknown(V);
3493}
3494
3495
3496
3497//===----------------------------------------------------------------------===//
3498//                   Iteration Count Computation Code
3499//
3500
3501/// getBackedgeTakenCount - If the specified loop has a predictable
3502/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3503/// object. The backedge-taken count is the number of times the loop header
3504/// will be branched to from within the loop. This is one less than the
3505/// trip count of the loop, since it doesn't count the first iteration,
3506/// when the header is branched to from outside the loop.
3507///
3508/// Note that it is not valid to call this method on a loop without a
3509/// loop-invariant backedge-taken count (see
3510/// hasLoopInvariantBackedgeTakenCount).
3511///
3512const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3513  return getBackedgeTakenInfo(L).Exact;
3514}
3515
3516/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3517/// return the least SCEV value that is known never to be less than the
3518/// actual backedge taken count.
3519const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3520  return getBackedgeTakenInfo(L).Max;
3521}
3522
3523/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3524/// onto the given Worklist.
3525static void
3526PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3527  BasicBlock *Header = L->getHeader();
3528
3529  // Push all Loop-header PHIs onto the Worklist stack.
3530  for (BasicBlock::iterator I = Header->begin();
3531       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3532    Worklist.push_back(PN);
3533}
3534
3535const ScalarEvolution::BackedgeTakenInfo &
3536ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3537  // Initially insert a CouldNotCompute for this loop. If the insertion
3538  // succeeds, proceed to actually compute a backedge-taken count and
3539  // update the value. The temporary CouldNotCompute value tells SCEV
3540  // code elsewhere that it shouldn't attempt to request a new
3541  // backedge-taken count, which could result in infinite recursion.
3542  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3543    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3544  if (Pair.second) {
3545    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3546    if (BECount.Exact != getCouldNotCompute()) {
3547      assert(BECount.Exact->isLoopInvariant(L) &&
3548             BECount.Max->isLoopInvariant(L) &&
3549             "Computed backedge-taken count isn't loop invariant for loop!");
3550      ++NumTripCountsComputed;
3551
3552      // Update the value in the map.
3553      Pair.first->second = BECount;
3554    } else {
3555      if (BECount.Max != getCouldNotCompute())
3556        // Update the value in the map.
3557        Pair.first->second = BECount;
3558      if (isa<PHINode>(L->getHeader()->begin()))
3559        // Only count loops that have phi nodes as not being computable.
3560        ++NumTripCountsNotComputed;
3561    }
3562
3563    // Now that we know more about the trip count for this loop, forget any
3564    // existing SCEV values for PHI nodes in this loop since they are only
3565    // conservative estimates made without the benefit of trip count
3566    // information. This is similar to the code in forgetLoop, except that
3567    // it handles SCEVUnknown PHI nodes specially.
3568    if (BECount.hasAnyInfo()) {
3569      SmallVector<Instruction *, 16> Worklist;
3570      PushLoopPHIs(L, Worklist);
3571
3572      SmallPtrSet<Instruction *, 8> Visited;
3573      while (!Worklist.empty()) {
3574        Instruction *I = Worklist.pop_back_val();
3575        if (!Visited.insert(I)) continue;
3576
3577        std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3578          Scalars.find(static_cast<Value *>(I));
3579        if (It != Scalars.end()) {
3580          // SCEVUnknown for a PHI either means that it has an unrecognized
3581          // structure, or it's a PHI that's in the progress of being computed
3582          // by createNodeForPHI.  In the former case, additional loop trip
3583          // count information isn't going to change anything. In the later
3584          // case, createNodeForPHI will perform the necessary updates on its
3585          // own when it gets to that point.
3586          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3587            ValuesAtScopes.erase(It->second);
3588            Scalars.erase(It);
3589          }
3590          if (PHINode *PN = dyn_cast<PHINode>(I))
3591            ConstantEvolutionLoopExitValue.erase(PN);
3592        }
3593
3594        PushDefUseChildren(I, Worklist);
3595      }
3596    }
3597  }
3598  return Pair.first->second;
3599}
3600
3601/// forgetLoop - This method should be called by the client when it has
3602/// changed a loop in a way that may effect ScalarEvolution's ability to
3603/// compute a trip count, or if the loop is deleted.
3604void ScalarEvolution::forgetLoop(const Loop *L) {
3605  // Drop any stored trip count value.
3606  BackedgeTakenCounts.erase(L);
3607
3608  // Drop information about expressions based on loop-header PHIs.
3609  SmallVector<Instruction *, 16> Worklist;
3610  PushLoopPHIs(L, Worklist);
3611
3612  SmallPtrSet<Instruction *, 8> Visited;
3613  while (!Worklist.empty()) {
3614    Instruction *I = Worklist.pop_back_val();
3615    if (!Visited.insert(I)) continue;
3616
3617    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3618      Scalars.find(static_cast<Value *>(I));
3619    if (It != Scalars.end()) {
3620      ValuesAtScopes.erase(It->second);
3621      Scalars.erase(It);
3622      if (PHINode *PN = dyn_cast<PHINode>(I))
3623        ConstantEvolutionLoopExitValue.erase(PN);
3624    }
3625
3626    PushDefUseChildren(I, Worklist);
3627  }
3628}
3629
3630/// forgetValue - This method should be called by the client when it has
3631/// changed a value in a way that may effect its value, or which may
3632/// disconnect it from a def-use chain linking it to a loop.
3633void ScalarEvolution::forgetValue(Value *V) {
3634  Instruction *I = dyn_cast<Instruction>(V);
3635  if (!I) return;
3636
3637  // Drop information about expressions based on loop-header PHIs.
3638  SmallVector<Instruction *, 16> Worklist;
3639  Worklist.push_back(I);
3640
3641  SmallPtrSet<Instruction *, 8> Visited;
3642  while (!Worklist.empty()) {
3643    I = Worklist.pop_back_val();
3644    if (!Visited.insert(I)) continue;
3645
3646    std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3647      Scalars.find(static_cast<Value *>(I));
3648    if (It != Scalars.end()) {
3649      ValuesAtScopes.erase(It->second);
3650      Scalars.erase(It);
3651      if (PHINode *PN = dyn_cast<PHINode>(I))
3652        ConstantEvolutionLoopExitValue.erase(PN);
3653    }
3654
3655    PushDefUseChildren(I, Worklist);
3656  }
3657}
3658
3659/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3660/// of the specified loop will execute.
3661ScalarEvolution::BackedgeTakenInfo
3662ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3663  SmallVector<BasicBlock *, 8> ExitingBlocks;
3664  L->getExitingBlocks(ExitingBlocks);
3665
3666  // Examine all exits and pick the most conservative values.
3667  const SCEV *BECount = getCouldNotCompute();
3668  const SCEV *MaxBECount = getCouldNotCompute();
3669  bool CouldNotComputeBECount = false;
3670  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3671    BackedgeTakenInfo NewBTI =
3672      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3673
3674    if (NewBTI.Exact == getCouldNotCompute()) {
3675      // We couldn't compute an exact value for this exit, so
3676      // we won't be able to compute an exact value for the loop.
3677      CouldNotComputeBECount = true;
3678      BECount = getCouldNotCompute();
3679    } else if (!CouldNotComputeBECount) {
3680      if (BECount == getCouldNotCompute())
3681        BECount = NewBTI.Exact;
3682      else
3683        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3684    }
3685    if (MaxBECount == getCouldNotCompute())
3686      MaxBECount = NewBTI.Max;
3687    else if (NewBTI.Max != getCouldNotCompute())
3688      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3689  }
3690
3691  return BackedgeTakenInfo(BECount, MaxBECount);
3692}
3693
3694/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3695/// of the specified loop will execute if it exits via the specified block.
3696ScalarEvolution::BackedgeTakenInfo
3697ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3698                                                   BasicBlock *ExitingBlock) {
3699
3700  // Okay, we've chosen an exiting block.  See what condition causes us to
3701  // exit at this block.
3702  //
3703  // FIXME: we should be able to handle switch instructions (with a single exit)
3704  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3705  if (ExitBr == 0) return getCouldNotCompute();
3706  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3707
3708  // At this point, we know we have a conditional branch that determines whether
3709  // the loop is exited.  However, we don't know if the branch is executed each
3710  // time through the loop.  If not, then the execution count of the branch will
3711  // not be equal to the trip count of the loop.
3712  //
3713  // Currently we check for this by checking to see if the Exit branch goes to
3714  // the loop header.  If so, we know it will always execute the same number of
3715  // times as the loop.  We also handle the case where the exit block *is* the
3716  // loop header.  This is common for un-rotated loops.
3717  //
3718  // If both of those tests fail, walk up the unique predecessor chain to the
3719  // header, stopping if there is an edge that doesn't exit the loop. If the
3720  // header is reached, the execution count of the branch will be equal to the
3721  // trip count of the loop.
3722  //
3723  //  More extensive analysis could be done to handle more cases here.
3724  //
3725  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3726      ExitBr->getSuccessor(1) != L->getHeader() &&
3727      ExitBr->getParent() != L->getHeader()) {
3728    // The simple checks failed, try climbing the unique predecessor chain
3729    // up to the header.
3730    bool Ok = false;
3731    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3732      BasicBlock *Pred = BB->getUniquePredecessor();
3733      if (!Pred)
3734        return getCouldNotCompute();
3735      TerminatorInst *PredTerm = Pred->getTerminator();
3736      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3737        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3738        if (PredSucc == BB)
3739          continue;
3740        // If the predecessor has a successor that isn't BB and isn't
3741        // outside the loop, assume the worst.
3742        if (L->contains(PredSucc))
3743          return getCouldNotCompute();
3744      }
3745      if (Pred == L->getHeader()) {
3746        Ok = true;
3747        break;
3748      }
3749      BB = Pred;
3750    }
3751    if (!Ok)
3752      return getCouldNotCompute();
3753  }
3754
3755  // Proceed to the next level to examine the exit condition expression.
3756  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3757                                               ExitBr->getSuccessor(0),
3758                                               ExitBr->getSuccessor(1));
3759}
3760
3761/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3762/// backedge of the specified loop will execute if its exit condition
3763/// were a conditional branch of ExitCond, TBB, and FBB.
3764ScalarEvolution::BackedgeTakenInfo
3765ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3766                                                       Value *ExitCond,
3767                                                       BasicBlock *TBB,
3768                                                       BasicBlock *FBB) {
3769  // Check if the controlling expression for this loop is an And or Or.
3770  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3771    if (BO->getOpcode() == Instruction::And) {
3772      // Recurse on the operands of the and.
3773      BackedgeTakenInfo BTI0 =
3774        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3775      BackedgeTakenInfo BTI1 =
3776        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3777      const SCEV *BECount = getCouldNotCompute();
3778      const SCEV *MaxBECount = getCouldNotCompute();
3779      if (L->contains(TBB)) {
3780        // Both conditions must be true for the loop to continue executing.
3781        // Choose the less conservative count.
3782        if (BTI0.Exact == getCouldNotCompute() ||
3783            BTI1.Exact == getCouldNotCompute())
3784          BECount = getCouldNotCompute();
3785        else
3786          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3787        if (BTI0.Max == getCouldNotCompute())
3788          MaxBECount = BTI1.Max;
3789        else if (BTI1.Max == getCouldNotCompute())
3790          MaxBECount = BTI0.Max;
3791        else
3792          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3793      } else {
3794        // Both conditions must be true for the loop to exit.
3795        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3796        if (BTI0.Exact != getCouldNotCompute() &&
3797            BTI1.Exact != getCouldNotCompute())
3798          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3799        if (BTI0.Max != getCouldNotCompute() &&
3800            BTI1.Max != getCouldNotCompute())
3801          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3802      }
3803
3804      return BackedgeTakenInfo(BECount, MaxBECount);
3805    }
3806    if (BO->getOpcode() == Instruction::Or) {
3807      // Recurse on the operands of the or.
3808      BackedgeTakenInfo BTI0 =
3809        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3810      BackedgeTakenInfo BTI1 =
3811        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3812      const SCEV *BECount = getCouldNotCompute();
3813      const SCEV *MaxBECount = getCouldNotCompute();
3814      if (L->contains(FBB)) {
3815        // Both conditions must be false for the loop to continue executing.
3816        // Choose the less conservative count.
3817        if (BTI0.Exact == getCouldNotCompute() ||
3818            BTI1.Exact == getCouldNotCompute())
3819          BECount = getCouldNotCompute();
3820        else
3821          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3822        if (BTI0.Max == getCouldNotCompute())
3823          MaxBECount = BTI1.Max;
3824        else if (BTI1.Max == getCouldNotCompute())
3825          MaxBECount = BTI0.Max;
3826        else
3827          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3828      } else {
3829        // Both conditions must be false for the loop to exit.
3830        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3831        if (BTI0.Exact != getCouldNotCompute() &&
3832            BTI1.Exact != getCouldNotCompute())
3833          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3834        if (BTI0.Max != getCouldNotCompute() &&
3835            BTI1.Max != getCouldNotCompute())
3836          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3837      }
3838
3839      return BackedgeTakenInfo(BECount, MaxBECount);
3840    }
3841  }
3842
3843  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3844  // Proceed to the next level to examine the icmp.
3845  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3846    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3847
3848  // Check for a constant condition. These are normally stripped out by
3849  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3850  // preserve the CFG and is temporarily leaving constant conditions
3851  // in place.
3852  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3853    if (L->contains(FBB) == !CI->getZExtValue())
3854      // The backedge is always taken.
3855      return getCouldNotCompute();
3856    else
3857      // The backedge is never taken.
3858      return getConstant(CI->getType(), 0);
3859  }
3860
3861  // If it's not an integer or pointer comparison then compute it the hard way.
3862  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3863}
3864
3865/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3866/// backedge of the specified loop will execute if its exit condition
3867/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3868ScalarEvolution::BackedgeTakenInfo
3869ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3870                                                           ICmpInst *ExitCond,
3871                                                           BasicBlock *TBB,
3872                                                           BasicBlock *FBB) {
3873
3874  // If the condition was exit on true, convert the condition to exit on false
3875  ICmpInst::Predicate Cond;
3876  if (!L->contains(FBB))
3877    Cond = ExitCond->getPredicate();
3878  else
3879    Cond = ExitCond->getInversePredicate();
3880
3881  // Handle common loops like: for (X = "string"; *X; ++X)
3882  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3883    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3884      BackedgeTakenInfo ItCnt =
3885        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3886      if (ItCnt.hasAnyInfo())
3887        return ItCnt;
3888    }
3889
3890  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3891  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3892
3893  // Try to evaluate any dependencies out of the loop.
3894  LHS = getSCEVAtScope(LHS, L);
3895  RHS = getSCEVAtScope(RHS, L);
3896
3897  // At this point, we would like to compute how many iterations of the
3898  // loop the predicate will return true for these inputs.
3899  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3900    // If there is a loop-invariant, force it into the RHS.
3901    std::swap(LHS, RHS);
3902    Cond = ICmpInst::getSwappedPredicate(Cond);
3903  }
3904
3905  // Simplify the operands before analyzing them.
3906  (void)SimplifyICmpOperands(Cond, LHS, RHS);
3907
3908  // If we have a comparison of a chrec against a constant, try to use value
3909  // ranges to answer this query.
3910  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3911    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3912      if (AddRec->getLoop() == L) {
3913        // Form the constant range.
3914        ConstantRange CompRange(
3915            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3916
3917        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3918        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3919      }
3920
3921  switch (Cond) {
3922  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3923    // Convert to: while (X-Y != 0)
3924    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3925    if (BTI.hasAnyInfo()) return BTI;
3926    break;
3927  }
3928  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
3929    // Convert to: while (X-Y == 0)
3930    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3931    if (BTI.hasAnyInfo()) return BTI;
3932    break;
3933  }
3934  case ICmpInst::ICMP_SLT: {
3935    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3936    if (BTI.hasAnyInfo()) return BTI;
3937    break;
3938  }
3939  case ICmpInst::ICMP_SGT: {
3940    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3941                                             getNotSCEV(RHS), L, true);
3942    if (BTI.hasAnyInfo()) return BTI;
3943    break;
3944  }
3945  case ICmpInst::ICMP_ULT: {
3946    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3947    if (BTI.hasAnyInfo()) return BTI;
3948    break;
3949  }
3950  case ICmpInst::ICMP_UGT: {
3951    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3952                                             getNotSCEV(RHS), L, false);
3953    if (BTI.hasAnyInfo()) return BTI;
3954    break;
3955  }
3956  default:
3957#if 0
3958    dbgs() << "ComputeBackedgeTakenCount ";
3959    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3960      dbgs() << "[unsigned] ";
3961    dbgs() << *LHS << "   "
3962         << Instruction::getOpcodeName(Instruction::ICmp)
3963         << "   " << *RHS << "\n";
3964#endif
3965    break;
3966  }
3967  return
3968    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3969}
3970
3971static ConstantInt *
3972EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3973                                ScalarEvolution &SE) {
3974  const SCEV *InVal = SE.getConstant(C);
3975  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3976  assert(isa<SCEVConstant>(Val) &&
3977         "Evaluation of SCEV at constant didn't fold correctly?");
3978  return cast<SCEVConstant>(Val)->getValue();
3979}
3980
3981/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3982/// and a GEP expression (missing the pointer index) indexing into it, return
3983/// the addressed element of the initializer or null if the index expression is
3984/// invalid.
3985static Constant *
3986GetAddressedElementFromGlobal(GlobalVariable *GV,
3987                              const std::vector<ConstantInt*> &Indices) {
3988  Constant *Init = GV->getInitializer();
3989  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3990    uint64_t Idx = Indices[i]->getZExtValue();
3991    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3992      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3993      Init = cast<Constant>(CS->getOperand(Idx));
3994    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3995      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3996      Init = cast<Constant>(CA->getOperand(Idx));
3997    } else if (isa<ConstantAggregateZero>(Init)) {
3998      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3999        assert(Idx < STy->getNumElements() && "Bad struct index!");
4000        Init = Constant::getNullValue(STy->getElementType(Idx));
4001      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4002        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4003        Init = Constant::getNullValue(ATy->getElementType());
4004      } else {
4005        llvm_unreachable("Unknown constant aggregate type!");
4006      }
4007      return 0;
4008    } else {
4009      return 0; // Unknown initializer type
4010    }
4011  }
4012  return Init;
4013}
4014
4015/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4016/// 'icmp op load X, cst', try to see if we can compute the backedge
4017/// execution count.
4018ScalarEvolution::BackedgeTakenInfo
4019ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4020                                                LoadInst *LI,
4021                                                Constant *RHS,
4022                                                const Loop *L,
4023                                                ICmpInst::Predicate predicate) {
4024  if (LI->isVolatile()) return getCouldNotCompute();
4025
4026  // Check to see if the loaded pointer is a getelementptr of a global.
4027  // TODO: Use SCEV instead of manually grubbing with GEPs.
4028  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4029  if (!GEP) return getCouldNotCompute();
4030
4031  // Make sure that it is really a constant global we are gepping, with an
4032  // initializer, and make sure the first IDX is really 0.
4033  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4034  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4035      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4036      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4037    return getCouldNotCompute();
4038
4039  // Okay, we allow one non-constant index into the GEP instruction.
4040  Value *VarIdx = 0;
4041  std::vector<ConstantInt*> Indexes;
4042  unsigned VarIdxNum = 0;
4043  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4044    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4045      Indexes.push_back(CI);
4046    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4047      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4048      VarIdx = GEP->getOperand(i);
4049      VarIdxNum = i-2;
4050      Indexes.push_back(0);
4051    }
4052
4053  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4054  // Check to see if X is a loop variant variable value now.
4055  const SCEV *Idx = getSCEV(VarIdx);
4056  Idx = getSCEVAtScope(Idx, L);
4057
4058  // We can only recognize very limited forms of loop index expressions, in
4059  // particular, only affine AddRec's like {C1,+,C2}.
4060  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4061  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4062      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4063      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4064    return getCouldNotCompute();
4065
4066  unsigned MaxSteps = MaxBruteForceIterations;
4067  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4068    ConstantInt *ItCst = ConstantInt::get(
4069                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4070    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4071
4072    // Form the GEP offset.
4073    Indexes[VarIdxNum] = Val;
4074
4075    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4076    if (Result == 0) break;  // Cannot compute!
4077
4078    // Evaluate the condition for this iteration.
4079    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4080    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4081    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4082#if 0
4083      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4084             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4085             << "***\n";
4086#endif
4087      ++NumArrayLenItCounts;
4088      return getConstant(ItCst);   // Found terminating iteration!
4089    }
4090  }
4091  return getCouldNotCompute();
4092}
4093
4094
4095/// CanConstantFold - Return true if we can constant fold an instruction of the
4096/// specified type, assuming that all operands were constants.
4097static bool CanConstantFold(const Instruction *I) {
4098  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4099      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4100    return true;
4101
4102  if (const CallInst *CI = dyn_cast<CallInst>(I))
4103    if (const Function *F = CI->getCalledFunction())
4104      return canConstantFoldCallTo(F);
4105  return false;
4106}
4107
4108/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4109/// in the loop that V is derived from.  We allow arbitrary operations along the
4110/// way, but the operands of an operation must either be constants or a value
4111/// derived from a constant PHI.  If this expression does not fit with these
4112/// constraints, return null.
4113static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4114  // If this is not an instruction, or if this is an instruction outside of the
4115  // loop, it can't be derived from a loop PHI.
4116  Instruction *I = dyn_cast<Instruction>(V);
4117  if (I == 0 || !L->contains(I)) return 0;
4118
4119  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4120    if (L->getHeader() == I->getParent())
4121      return PN;
4122    else
4123      // We don't currently keep track of the control flow needed to evaluate
4124      // PHIs, so we cannot handle PHIs inside of loops.
4125      return 0;
4126  }
4127
4128  // If we won't be able to constant fold this expression even if the operands
4129  // are constants, return early.
4130  if (!CanConstantFold(I)) return 0;
4131
4132  // Otherwise, we can evaluate this instruction if all of its operands are
4133  // constant or derived from a PHI node themselves.
4134  PHINode *PHI = 0;
4135  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4136    if (!isa<Constant>(I->getOperand(Op))) {
4137      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4138      if (P == 0) return 0;  // Not evolving from PHI
4139      if (PHI == 0)
4140        PHI = P;
4141      else if (PHI != P)
4142        return 0;  // Evolving from multiple different PHIs.
4143    }
4144
4145  // This is a expression evolving from a constant PHI!
4146  return PHI;
4147}
4148
4149/// EvaluateExpression - Given an expression that passes the
4150/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4151/// in the loop has the value PHIVal.  If we can't fold this expression for some
4152/// reason, return null.
4153static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4154                                    const TargetData *TD) {
4155  if (isa<PHINode>(V)) return PHIVal;
4156  if (Constant *C = dyn_cast<Constant>(V)) return C;
4157  Instruction *I = cast<Instruction>(V);
4158
4159  std::vector<Constant*> Operands(I->getNumOperands());
4160
4161  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4162    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4163    if (Operands[i] == 0) return 0;
4164  }
4165
4166  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4167    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4168                                           Operands[1], TD);
4169  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4170                                  &Operands[0], Operands.size(), TD);
4171}
4172
4173/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4174/// in the header of its containing loop, we know the loop executes a
4175/// constant number of times, and the PHI node is just a recurrence
4176/// involving constants, fold it.
4177Constant *
4178ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4179                                                   const APInt &BEs,
4180                                                   const Loop *L) {
4181  std::map<PHINode*, Constant*>::iterator I =
4182    ConstantEvolutionLoopExitValue.find(PN);
4183  if (I != ConstantEvolutionLoopExitValue.end())
4184    return I->second;
4185
4186  if (BEs.ugt(MaxBruteForceIterations))
4187    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4188
4189  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4190
4191  // Since the loop is canonicalized, the PHI node must have two entries.  One
4192  // entry must be a constant (coming in from outside of the loop), and the
4193  // second must be derived from the same PHI.
4194  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4195  Constant *StartCST =
4196    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4197  if (StartCST == 0)
4198    return RetVal = 0;  // Must be a constant.
4199
4200  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4201  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4202      !isa<Constant>(BEValue))
4203    return RetVal = 0;  // Not derived from same PHI.
4204
4205  // Execute the loop symbolically to determine the exit value.
4206  if (BEs.getActiveBits() >= 32)
4207    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4208
4209  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4210  unsigned IterationNum = 0;
4211  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4212    if (IterationNum == NumIterations)
4213      return RetVal = PHIVal;  // Got exit value!
4214
4215    // Compute the value of the PHI node for the next iteration.
4216    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4217    if (NextPHI == PHIVal)
4218      return RetVal = NextPHI;  // Stopped evolving!
4219    if (NextPHI == 0)
4220      return 0;        // Couldn't evaluate!
4221    PHIVal = NextPHI;
4222  }
4223}
4224
4225/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4226/// constant number of times (the condition evolves only from constants),
4227/// try to evaluate a few iterations of the loop until we get the exit
4228/// condition gets a value of ExitWhen (true or false).  If we cannot
4229/// evaluate the trip count of the loop, return getCouldNotCompute().
4230const SCEV *
4231ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4232                                                       Value *Cond,
4233                                                       bool ExitWhen) {
4234  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4235  if (PN == 0) return getCouldNotCompute();
4236
4237  // If the loop is canonicalized, the PHI will have exactly two entries.
4238  // That's the only form we support here.
4239  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4240
4241  // One entry must be a constant (coming in from outside of the loop), and the
4242  // second must be derived from the same PHI.
4243  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4244  Constant *StartCST =
4245    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4246  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4247
4248  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4249  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4250      !isa<Constant>(BEValue))
4251    return getCouldNotCompute();  // Not derived from same PHI.
4252
4253  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4254  // the loop symbolically to determine when the condition gets a value of
4255  // "ExitWhen".
4256  unsigned IterationNum = 0;
4257  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4258  for (Constant *PHIVal = StartCST;
4259       IterationNum != MaxIterations; ++IterationNum) {
4260    ConstantInt *CondVal =
4261      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4262
4263    // Couldn't symbolically evaluate.
4264    if (!CondVal) return getCouldNotCompute();
4265
4266    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4267      ++NumBruteForceTripCountsComputed;
4268      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4269    }
4270
4271    // Compute the value of the PHI node for the next iteration.
4272    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4273    if (NextPHI == 0 || NextPHI == PHIVal)
4274      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4275    PHIVal = NextPHI;
4276  }
4277
4278  // Too many iterations were needed to evaluate.
4279  return getCouldNotCompute();
4280}
4281
4282/// getSCEVAtScope - Return a SCEV expression for the specified value
4283/// at the specified scope in the program.  The L value specifies a loop
4284/// nest to evaluate the expression at, where null is the top-level or a
4285/// specified loop is immediately inside of the loop.
4286///
4287/// This method can be used to compute the exit value for a variable defined
4288/// in a loop by querying what the value will hold in the parent loop.
4289///
4290/// In the case that a relevant loop exit value cannot be computed, the
4291/// original value V is returned.
4292const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4293  // Check to see if we've folded this expression at this loop before.
4294  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4295  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4296    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4297  if (!Pair.second)
4298    return Pair.first->second ? Pair.first->second : V;
4299
4300  // Otherwise compute it.
4301  const SCEV *C = computeSCEVAtScope(V, L);
4302  ValuesAtScopes[V][L] = C;
4303  return C;
4304}
4305
4306const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4307  if (isa<SCEVConstant>(V)) return V;
4308
4309  // If this instruction is evolved from a constant-evolving PHI, compute the
4310  // exit value from the loop without using SCEVs.
4311  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4312    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4313      const Loop *LI = (*this->LI)[I->getParent()];
4314      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4315        if (PHINode *PN = dyn_cast<PHINode>(I))
4316          if (PN->getParent() == LI->getHeader()) {
4317            // Okay, there is no closed form solution for the PHI node.  Check
4318            // to see if the loop that contains it has a known backedge-taken
4319            // count.  If so, we may be able to force computation of the exit
4320            // value.
4321            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4322            if (const SCEVConstant *BTCC =
4323                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4324              // Okay, we know how many times the containing loop executes.  If
4325              // this is a constant evolving PHI node, get the final value at
4326              // the specified iteration number.
4327              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4328                                                   BTCC->getValue()->getValue(),
4329                                                               LI);
4330              if (RV) return getSCEV(RV);
4331            }
4332          }
4333
4334      // Okay, this is an expression that we cannot symbolically evaluate
4335      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4336      // the arguments into constants, and if so, try to constant propagate the
4337      // result.  This is particularly useful for computing loop exit values.
4338      if (CanConstantFold(I)) {
4339        std::vector<Constant*> Operands;
4340        Operands.reserve(I->getNumOperands());
4341        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4342          Value *Op = I->getOperand(i);
4343          if (Constant *C = dyn_cast<Constant>(Op)) {
4344            Operands.push_back(C);
4345          } else {
4346            // If any of the operands is non-constant and if they are
4347            // non-integer and non-pointer, don't even try to analyze them
4348            // with scev techniques.
4349            if (!isSCEVable(Op->getType()))
4350              return V;
4351
4352            const SCEV *OpV = getSCEVAtScope(Op, L);
4353            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
4354              Constant *C = SC->getValue();
4355              if (C->getType() != Op->getType())
4356                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4357                                                                  Op->getType(),
4358                                                                  false),
4359                                          C, Op->getType());
4360              Operands.push_back(C);
4361            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
4362              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4363                if (C->getType() != Op->getType())
4364                  C =
4365                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4366                                                                  Op->getType(),
4367                                                                  false),
4368                                          C, Op->getType());
4369                Operands.push_back(C);
4370              } else
4371                return V;
4372            } else {
4373              return V;
4374            }
4375          }
4376        }
4377
4378        Constant *C = 0;
4379        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4380          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4381                                              Operands[0], Operands[1], TD);
4382        else
4383          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4384                                       &Operands[0], Operands.size(), TD);
4385        if (C)
4386          return getSCEV(C);
4387      }
4388    }
4389
4390    // This is some other type of SCEVUnknown, just return it.
4391    return V;
4392  }
4393
4394  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4395    // Avoid performing the look-up in the common case where the specified
4396    // expression has no loop-variant portions.
4397    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4398      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4399      if (OpAtScope != Comm->getOperand(i)) {
4400        // Okay, at least one of these operands is loop variant but might be
4401        // foldable.  Build a new instance of the folded commutative expression.
4402        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4403                                            Comm->op_begin()+i);
4404        NewOps.push_back(OpAtScope);
4405
4406        for (++i; i != e; ++i) {
4407          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4408          NewOps.push_back(OpAtScope);
4409        }
4410        if (isa<SCEVAddExpr>(Comm))
4411          return getAddExpr(NewOps);
4412        if (isa<SCEVMulExpr>(Comm))
4413          return getMulExpr(NewOps);
4414        if (isa<SCEVSMaxExpr>(Comm))
4415          return getSMaxExpr(NewOps);
4416        if (isa<SCEVUMaxExpr>(Comm))
4417          return getUMaxExpr(NewOps);
4418        llvm_unreachable("Unknown commutative SCEV type!");
4419      }
4420    }
4421    // If we got here, all operands are loop invariant.
4422    return Comm;
4423  }
4424
4425  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4426    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4427    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4428    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4429      return Div;   // must be loop invariant
4430    return getUDivExpr(LHS, RHS);
4431  }
4432
4433  // If this is a loop recurrence for a loop that does not contain L, then we
4434  // are dealing with the final value computed by the loop.
4435  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4436    if (!L || !AddRec->getLoop()->contains(L)) {
4437      // To evaluate this recurrence, we need to know how many times the AddRec
4438      // loop iterates.  Compute this now.
4439      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4440      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4441
4442      // Then, evaluate the AddRec.
4443      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4444    }
4445    return AddRec;
4446  }
4447
4448  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4449    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4450    if (Op == Cast->getOperand())
4451      return Cast;  // must be loop invariant
4452    return getZeroExtendExpr(Op, Cast->getType());
4453  }
4454
4455  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4456    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4457    if (Op == Cast->getOperand())
4458      return Cast;  // must be loop invariant
4459    return getSignExtendExpr(Op, Cast->getType());
4460  }
4461
4462  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4463    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4464    if (Op == Cast->getOperand())
4465      return Cast;  // must be loop invariant
4466    return getTruncateExpr(Op, Cast->getType());
4467  }
4468
4469  llvm_unreachable("Unknown SCEV type!");
4470  return 0;
4471}
4472
4473/// getSCEVAtScope - This is a convenience function which does
4474/// getSCEVAtScope(getSCEV(V), L).
4475const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4476  return getSCEVAtScope(getSCEV(V), L);
4477}
4478
4479/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4480/// following equation:
4481///
4482///     A * X = B (mod N)
4483///
4484/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4485/// A and B isn't important.
4486///
4487/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4488static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4489                                               ScalarEvolution &SE) {
4490  uint32_t BW = A.getBitWidth();
4491  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4492  assert(A != 0 && "A must be non-zero.");
4493
4494  // 1. D = gcd(A, N)
4495  //
4496  // The gcd of A and N may have only one prime factor: 2. The number of
4497  // trailing zeros in A is its multiplicity
4498  uint32_t Mult2 = A.countTrailingZeros();
4499  // D = 2^Mult2
4500
4501  // 2. Check if B is divisible by D.
4502  //
4503  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4504  // is not less than multiplicity of this prime factor for D.
4505  if (B.countTrailingZeros() < Mult2)
4506    return SE.getCouldNotCompute();
4507
4508  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4509  // modulo (N / D).
4510  //
4511  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4512  // bit width during computations.
4513  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4514  APInt Mod(BW + 1, 0);
4515  Mod.set(BW - Mult2);  // Mod = N / D
4516  APInt I = AD.multiplicativeInverse(Mod);
4517
4518  // 4. Compute the minimum unsigned root of the equation:
4519  // I * (B / D) mod (N / D)
4520  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4521
4522  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4523  // bits.
4524  return SE.getConstant(Result.trunc(BW));
4525}
4526
4527/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4528/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4529/// might be the same) or two SCEVCouldNotCompute objects.
4530///
4531static std::pair<const SCEV *,const SCEV *>
4532SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4533  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4534  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4535  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4536  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4537
4538  // We currently can only solve this if the coefficients are constants.
4539  if (!LC || !MC || !NC) {
4540    const SCEV *CNC = SE.getCouldNotCompute();
4541    return std::make_pair(CNC, CNC);
4542  }
4543
4544  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4545  const APInt &L = LC->getValue()->getValue();
4546  const APInt &M = MC->getValue()->getValue();
4547  const APInt &N = NC->getValue()->getValue();
4548  APInt Two(BitWidth, 2);
4549  APInt Four(BitWidth, 4);
4550
4551  {
4552    using namespace APIntOps;
4553    const APInt& C = L;
4554    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4555    // The B coefficient is M-N/2
4556    APInt B(M);
4557    B -= sdiv(N,Two);
4558
4559    // The A coefficient is N/2
4560    APInt A(N.sdiv(Two));
4561
4562    // Compute the B^2-4ac term.
4563    APInt SqrtTerm(B);
4564    SqrtTerm *= B;
4565    SqrtTerm -= Four * (A * C);
4566
4567    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4568    // integer value or else APInt::sqrt() will assert.
4569    APInt SqrtVal(SqrtTerm.sqrt());
4570
4571    // Compute the two solutions for the quadratic formula.
4572    // The divisions must be performed as signed divisions.
4573    APInt NegB(-B);
4574    APInt TwoA( A << 1 );
4575    if (TwoA.isMinValue()) {
4576      const SCEV *CNC = SE.getCouldNotCompute();
4577      return std::make_pair(CNC, CNC);
4578    }
4579
4580    LLVMContext &Context = SE.getContext();
4581
4582    ConstantInt *Solution1 =
4583      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4584    ConstantInt *Solution2 =
4585      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4586
4587    return std::make_pair(SE.getConstant(Solution1),
4588                          SE.getConstant(Solution2));
4589    } // end APIntOps namespace
4590}
4591
4592/// HowFarToZero - Return the number of times a backedge comparing the specified
4593/// value to zero will execute.  If not computable, return CouldNotCompute.
4594ScalarEvolution::BackedgeTakenInfo
4595ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4596  // If the value is a constant
4597  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4598    // If the value is already zero, the branch will execute zero times.
4599    if (C->getValue()->isZero()) return C;
4600    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4601  }
4602
4603  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4604  if (!AddRec || AddRec->getLoop() != L)
4605    return getCouldNotCompute();
4606
4607  if (AddRec->isAffine()) {
4608    // If this is an affine expression, the execution count of this branch is
4609    // the minimum unsigned root of the following equation:
4610    //
4611    //     Start + Step*N = 0 (mod 2^BW)
4612    //
4613    // equivalent to:
4614    //
4615    //             Step*N = -Start (mod 2^BW)
4616    //
4617    // where BW is the common bit width of Start and Step.
4618
4619    // Get the initial value for the loop.
4620    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4621                                       L->getParentLoop());
4622    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4623                                      L->getParentLoop());
4624
4625    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4626      // For now we handle only constant steps.
4627
4628      // First, handle unitary steps.
4629      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4630        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4631      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4632        return Start;                           //    N = Start (as unsigned)
4633
4634      // Then, try to solve the above equation provided that Start is constant.
4635      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4636        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4637                                            -StartC->getValue()->getValue(),
4638                                            *this);
4639    }
4640  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4641    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4642    // the quadratic equation to solve it.
4643    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4644                                                                    *this);
4645    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4646    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4647    if (R1) {
4648#if 0
4649      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4650             << "  sol#2: " << *R2 << "\n";
4651#endif
4652      // Pick the smallest positive root value.
4653      if (ConstantInt *CB =
4654          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4655                                   R1->getValue(), R2->getValue()))) {
4656        if (CB->getZExtValue() == false)
4657          std::swap(R1, R2);   // R1 is the minimum root now.
4658
4659        // We can only use this value if the chrec ends up with an exact zero
4660        // value at this index.  When solving for "X*X != 5", for example, we
4661        // should not accept a root of 2.
4662        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4663        if (Val->isZero())
4664          return R1;  // We found a quadratic root!
4665      }
4666    }
4667  }
4668
4669  return getCouldNotCompute();
4670}
4671
4672/// HowFarToNonZero - Return the number of times a backedge checking the
4673/// specified value for nonzero will execute.  If not computable, return
4674/// CouldNotCompute
4675ScalarEvolution::BackedgeTakenInfo
4676ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4677  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4678  // handle them yet except for the trivial case.  This could be expanded in the
4679  // future as needed.
4680
4681  // If the value is a constant, check to see if it is known to be non-zero
4682  // already.  If so, the backedge will execute zero times.
4683  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4684    if (!C->getValue()->isNullValue())
4685      return getConstant(C->getType(), 0);
4686    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4687  }
4688
4689  // We could implement others, but I really doubt anyone writes loops like
4690  // this, and if they did, they would already be constant folded.
4691  return getCouldNotCompute();
4692}
4693
4694/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4695/// (which may not be an immediate predecessor) which has exactly one
4696/// successor from which BB is reachable, or null if no such block is
4697/// found.
4698///
4699std::pair<BasicBlock *, BasicBlock *>
4700ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4701  // If the block has a unique predecessor, then there is no path from the
4702  // predecessor to the block that does not go through the direct edge
4703  // from the predecessor to the block.
4704  if (BasicBlock *Pred = BB->getSinglePredecessor())
4705    return std::make_pair(Pred, BB);
4706
4707  // A loop's header is defined to be a block that dominates the loop.
4708  // If the header has a unique predecessor outside the loop, it must be
4709  // a block that has exactly one successor that can reach the loop.
4710  if (Loop *L = LI->getLoopFor(BB))
4711    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4712
4713  return std::pair<BasicBlock *, BasicBlock *>();
4714}
4715
4716/// HasSameValue - SCEV structural equivalence is usually sufficient for
4717/// testing whether two expressions are equal, however for the purposes of
4718/// looking for a condition guarding a loop, it can be useful to be a little
4719/// more general, since a front-end may have replicated the controlling
4720/// expression.
4721///
4722static bool HasSameValue(const SCEV *A, const SCEV *B) {
4723  // Quick check to see if they are the same SCEV.
4724  if (A == B) return true;
4725
4726  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4727  // two different instructions with the same value. Check for this case.
4728  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4729    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4730      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4731        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4732          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4733            return true;
4734
4735  // Otherwise assume they may have a different value.
4736  return false;
4737}
4738
4739/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4740/// predicate Pred. Return true iff any changes were made.
4741///
4742bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4743                                           const SCEV *&LHS, const SCEV *&RHS) {
4744  bool Changed = false;
4745
4746  // Canonicalize a constant to the right side.
4747  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4748    // Check for both operands constant.
4749    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4750      if (ConstantExpr::getICmp(Pred,
4751                                LHSC->getValue(),
4752                                RHSC->getValue())->isNullValue())
4753        goto trivially_false;
4754      else
4755        goto trivially_true;
4756    }
4757    // Otherwise swap the operands to put the constant on the right.
4758    std::swap(LHS, RHS);
4759    Pred = ICmpInst::getSwappedPredicate(Pred);
4760    Changed = true;
4761  }
4762
4763  // If we're comparing an addrec with a value which is loop-invariant in the
4764  // addrec's loop, put the addrec on the left. Also make a dominance check,
4765  // as both operands could be addrecs loop-invariant in each other's loop.
4766  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4767    const Loop *L = AR->getLoop();
4768    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4769      std::swap(LHS, RHS);
4770      Pred = ICmpInst::getSwappedPredicate(Pred);
4771      Changed = true;
4772    }
4773  }
4774
4775  // If there's a constant operand, canonicalize comparisons with boundary
4776  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4777  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4778    const APInt &RA = RC->getValue()->getValue();
4779    switch (Pred) {
4780    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4781    case ICmpInst::ICMP_EQ:
4782    case ICmpInst::ICMP_NE:
4783      break;
4784    case ICmpInst::ICMP_UGE:
4785      if ((RA - 1).isMinValue()) {
4786        Pred = ICmpInst::ICMP_NE;
4787        RHS = getConstant(RA - 1);
4788        Changed = true;
4789        break;
4790      }
4791      if (RA.isMaxValue()) {
4792        Pred = ICmpInst::ICMP_EQ;
4793        Changed = true;
4794        break;
4795      }
4796      if (RA.isMinValue()) goto trivially_true;
4797
4798      Pred = ICmpInst::ICMP_UGT;
4799      RHS = getConstant(RA - 1);
4800      Changed = true;
4801      break;
4802    case ICmpInst::ICMP_ULE:
4803      if ((RA + 1).isMaxValue()) {
4804        Pred = ICmpInst::ICMP_NE;
4805        RHS = getConstant(RA + 1);
4806        Changed = true;
4807        break;
4808      }
4809      if (RA.isMinValue()) {
4810        Pred = ICmpInst::ICMP_EQ;
4811        Changed = true;
4812        break;
4813      }
4814      if (RA.isMaxValue()) goto trivially_true;
4815
4816      Pred = ICmpInst::ICMP_ULT;
4817      RHS = getConstant(RA + 1);
4818      Changed = true;
4819      break;
4820    case ICmpInst::ICMP_SGE:
4821      if ((RA - 1).isMinSignedValue()) {
4822        Pred = ICmpInst::ICMP_NE;
4823        RHS = getConstant(RA - 1);
4824        Changed = true;
4825        break;
4826      }
4827      if (RA.isMaxSignedValue()) {
4828        Pred = ICmpInst::ICMP_EQ;
4829        Changed = true;
4830        break;
4831      }
4832      if (RA.isMinSignedValue()) goto trivially_true;
4833
4834      Pred = ICmpInst::ICMP_SGT;
4835      RHS = getConstant(RA - 1);
4836      Changed = true;
4837      break;
4838    case ICmpInst::ICMP_SLE:
4839      if ((RA + 1).isMaxSignedValue()) {
4840        Pred = ICmpInst::ICMP_NE;
4841        RHS = getConstant(RA + 1);
4842        Changed = true;
4843        break;
4844      }
4845      if (RA.isMinSignedValue()) {
4846        Pred = ICmpInst::ICMP_EQ;
4847        Changed = true;
4848        break;
4849      }
4850      if (RA.isMaxSignedValue()) goto trivially_true;
4851
4852      Pred = ICmpInst::ICMP_SLT;
4853      RHS = getConstant(RA + 1);
4854      Changed = true;
4855      break;
4856    case ICmpInst::ICMP_UGT:
4857      if (RA.isMinValue()) {
4858        Pred = ICmpInst::ICMP_NE;
4859        Changed = true;
4860        break;
4861      }
4862      if ((RA + 1).isMaxValue()) {
4863        Pred = ICmpInst::ICMP_EQ;
4864        RHS = getConstant(RA + 1);
4865        Changed = true;
4866        break;
4867      }
4868      if (RA.isMaxValue()) goto trivially_false;
4869      break;
4870    case ICmpInst::ICMP_ULT:
4871      if (RA.isMaxValue()) {
4872        Pred = ICmpInst::ICMP_NE;
4873        Changed = true;
4874        break;
4875      }
4876      if ((RA - 1).isMinValue()) {
4877        Pred = ICmpInst::ICMP_EQ;
4878        RHS = getConstant(RA - 1);
4879        Changed = true;
4880        break;
4881      }
4882      if (RA.isMinValue()) goto trivially_false;
4883      break;
4884    case ICmpInst::ICMP_SGT:
4885      if (RA.isMinSignedValue()) {
4886        Pred = ICmpInst::ICMP_NE;
4887        Changed = true;
4888        break;
4889      }
4890      if ((RA + 1).isMaxSignedValue()) {
4891        Pred = ICmpInst::ICMP_EQ;
4892        RHS = getConstant(RA + 1);
4893        Changed = true;
4894        break;
4895      }
4896      if (RA.isMaxSignedValue()) goto trivially_false;
4897      break;
4898    case ICmpInst::ICMP_SLT:
4899      if (RA.isMaxSignedValue()) {
4900        Pred = ICmpInst::ICMP_NE;
4901        Changed = true;
4902        break;
4903      }
4904      if ((RA - 1).isMinSignedValue()) {
4905       Pred = ICmpInst::ICMP_EQ;
4906       RHS = getConstant(RA - 1);
4907        Changed = true;
4908       break;
4909      }
4910      if (RA.isMinSignedValue()) goto trivially_false;
4911      break;
4912    }
4913  }
4914
4915  // Check for obvious equality.
4916  if (HasSameValue(LHS, RHS)) {
4917    if (ICmpInst::isTrueWhenEqual(Pred))
4918      goto trivially_true;
4919    if (ICmpInst::isFalseWhenEqual(Pred))
4920      goto trivially_false;
4921  }
4922
4923  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4924  // adding or subtracting 1 from one of the operands.
4925  switch (Pred) {
4926  case ICmpInst::ICMP_SLE:
4927    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4928      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4929                       /*HasNUW=*/false, /*HasNSW=*/true);
4930      Pred = ICmpInst::ICMP_SLT;
4931      Changed = true;
4932    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
4933      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
4934                       /*HasNUW=*/false, /*HasNSW=*/true);
4935      Pred = ICmpInst::ICMP_SLT;
4936      Changed = true;
4937    }
4938    break;
4939  case ICmpInst::ICMP_SGE:
4940    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
4941      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
4942                       /*HasNUW=*/false, /*HasNSW=*/true);
4943      Pred = ICmpInst::ICMP_SGT;
4944      Changed = true;
4945    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4946      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4947                       /*HasNUW=*/false, /*HasNSW=*/true);
4948      Pred = ICmpInst::ICMP_SGT;
4949      Changed = true;
4950    }
4951    break;
4952  case ICmpInst::ICMP_ULE:
4953    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
4954      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4955                       /*HasNUW=*/true, /*HasNSW=*/false);
4956      Pred = ICmpInst::ICMP_ULT;
4957      Changed = true;
4958    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
4959      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
4960                       /*HasNUW=*/true, /*HasNSW=*/false);
4961      Pred = ICmpInst::ICMP_ULT;
4962      Changed = true;
4963    }
4964    break;
4965  case ICmpInst::ICMP_UGE:
4966    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
4967      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
4968                       /*HasNUW=*/true, /*HasNSW=*/false);
4969      Pred = ICmpInst::ICMP_UGT;
4970      Changed = true;
4971    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
4972      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4973                       /*HasNUW=*/true, /*HasNSW=*/false);
4974      Pred = ICmpInst::ICMP_UGT;
4975      Changed = true;
4976    }
4977    break;
4978  default:
4979    break;
4980  }
4981
4982  // TODO: More simplifications are possible here.
4983
4984  return Changed;
4985
4986trivially_true:
4987  // Return 0 == 0.
4988  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4989  Pred = ICmpInst::ICMP_EQ;
4990  return true;
4991
4992trivially_false:
4993  // Return 0 != 0.
4994  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4995  Pred = ICmpInst::ICMP_NE;
4996  return true;
4997}
4998
4999bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5000  return getSignedRange(S).getSignedMax().isNegative();
5001}
5002
5003bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5004  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5005}
5006
5007bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5008  return !getSignedRange(S).getSignedMin().isNegative();
5009}
5010
5011bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5012  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5013}
5014
5015bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5016  return isKnownNegative(S) || isKnownPositive(S);
5017}
5018
5019bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5020                                       const SCEV *LHS, const SCEV *RHS) {
5021  // Canonicalize the inputs first.
5022  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5023
5024  // If LHS or RHS is an addrec, check to see if the condition is true in
5025  // every iteration of the loop.
5026  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5027    if (isLoopEntryGuardedByCond(
5028          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5029        isLoopBackedgeGuardedByCond(
5030          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5031      return true;
5032  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5033    if (isLoopEntryGuardedByCond(
5034          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5035        isLoopBackedgeGuardedByCond(
5036          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5037      return true;
5038
5039  // Otherwise see what can be done with known constant ranges.
5040  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5041}
5042
5043bool
5044ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5045                                            const SCEV *LHS, const SCEV *RHS) {
5046  if (HasSameValue(LHS, RHS))
5047    return ICmpInst::isTrueWhenEqual(Pred);
5048
5049  // This code is split out from isKnownPredicate because it is called from
5050  // within isLoopEntryGuardedByCond.
5051  switch (Pred) {
5052  default:
5053    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5054    break;
5055  case ICmpInst::ICMP_SGT:
5056    Pred = ICmpInst::ICMP_SLT;
5057    std::swap(LHS, RHS);
5058  case ICmpInst::ICMP_SLT: {
5059    ConstantRange LHSRange = getSignedRange(LHS);
5060    ConstantRange RHSRange = getSignedRange(RHS);
5061    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5062      return true;
5063    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5064      return false;
5065    break;
5066  }
5067  case ICmpInst::ICMP_SGE:
5068    Pred = ICmpInst::ICMP_SLE;
5069    std::swap(LHS, RHS);
5070  case ICmpInst::ICMP_SLE: {
5071    ConstantRange LHSRange = getSignedRange(LHS);
5072    ConstantRange RHSRange = getSignedRange(RHS);
5073    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5074      return true;
5075    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5076      return false;
5077    break;
5078  }
5079  case ICmpInst::ICMP_UGT:
5080    Pred = ICmpInst::ICMP_ULT;
5081    std::swap(LHS, RHS);
5082  case ICmpInst::ICMP_ULT: {
5083    ConstantRange LHSRange = getUnsignedRange(LHS);
5084    ConstantRange RHSRange = getUnsignedRange(RHS);
5085    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5086      return true;
5087    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5088      return false;
5089    break;
5090  }
5091  case ICmpInst::ICMP_UGE:
5092    Pred = ICmpInst::ICMP_ULE;
5093    std::swap(LHS, RHS);
5094  case ICmpInst::ICMP_ULE: {
5095    ConstantRange LHSRange = getUnsignedRange(LHS);
5096    ConstantRange RHSRange = getUnsignedRange(RHS);
5097    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5098      return true;
5099    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5100      return false;
5101    break;
5102  }
5103  case ICmpInst::ICMP_NE: {
5104    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5105      return true;
5106    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5107      return true;
5108
5109    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5110    if (isKnownNonZero(Diff))
5111      return true;
5112    break;
5113  }
5114  case ICmpInst::ICMP_EQ:
5115    // The check at the top of the function catches the case where
5116    // the values are known to be equal.
5117    break;
5118  }
5119  return false;
5120}
5121
5122/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5123/// protected by a conditional between LHS and RHS.  This is used to
5124/// to eliminate casts.
5125bool
5126ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5127                                             ICmpInst::Predicate Pred,
5128                                             const SCEV *LHS, const SCEV *RHS) {
5129  // Interpret a null as meaning no loop, where there is obviously no guard
5130  // (interprocedural conditions notwithstanding).
5131  if (!L) return true;
5132
5133  BasicBlock *Latch = L->getLoopLatch();
5134  if (!Latch)
5135    return false;
5136
5137  BranchInst *LoopContinuePredicate =
5138    dyn_cast<BranchInst>(Latch->getTerminator());
5139  if (!LoopContinuePredicate ||
5140      LoopContinuePredicate->isUnconditional())
5141    return false;
5142
5143  return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5144                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5145}
5146
5147/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5148/// by a conditional between LHS and RHS.  This is used to help avoid max
5149/// expressions in loop trip counts, and to eliminate casts.
5150bool
5151ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5152                                          ICmpInst::Predicate Pred,
5153                                          const SCEV *LHS, const SCEV *RHS) {
5154  // Interpret a null as meaning no loop, where there is obviously no guard
5155  // (interprocedural conditions notwithstanding).
5156  if (!L) return false;
5157
5158  // Starting at the loop predecessor, climb up the predecessor chain, as long
5159  // as there are predecessors that can be found that have unique successors
5160  // leading to the original header.
5161  for (std::pair<BasicBlock *, BasicBlock *>
5162         Pair(L->getLoopPredecessor(), L->getHeader());
5163       Pair.first;
5164       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5165
5166    BranchInst *LoopEntryPredicate =
5167      dyn_cast<BranchInst>(Pair.first->getTerminator());
5168    if (!LoopEntryPredicate ||
5169        LoopEntryPredicate->isUnconditional())
5170      continue;
5171
5172    if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
5173                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5174      return true;
5175  }
5176
5177  return false;
5178}
5179
5180/// isImpliedCond - Test whether the condition described by Pred, LHS,
5181/// and RHS is true whenever the given Cond value evaluates to true.
5182bool ScalarEvolution::isImpliedCond(Value *CondValue,
5183                                    ICmpInst::Predicate Pred,
5184                                    const SCEV *LHS, const SCEV *RHS,
5185                                    bool Inverse) {
5186  // Recursively handle And and Or conditions.
5187  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5188    if (BO->getOpcode() == Instruction::And) {
5189      if (!Inverse)
5190        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5191               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5192    } else if (BO->getOpcode() == Instruction::Or) {
5193      if (Inverse)
5194        return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5195               isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
5196    }
5197  }
5198
5199  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5200  if (!ICI) return false;
5201
5202  // Bail if the ICmp's operands' types are wider than the needed type
5203  // before attempting to call getSCEV on them. This avoids infinite
5204  // recursion, since the analysis of widening casts can require loop
5205  // exit condition information for overflow checking, which would
5206  // lead back here.
5207  if (getTypeSizeInBits(LHS->getType()) <
5208      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5209    return false;
5210
5211  // Now that we found a conditional branch that dominates the loop, check to
5212  // see if it is the comparison we are looking for.
5213  ICmpInst::Predicate FoundPred;
5214  if (Inverse)
5215    FoundPred = ICI->getInversePredicate();
5216  else
5217    FoundPred = ICI->getPredicate();
5218
5219  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5220  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5221
5222  // Balance the types. The case where FoundLHS' type is wider than
5223  // LHS' type is checked for above.
5224  if (getTypeSizeInBits(LHS->getType()) >
5225      getTypeSizeInBits(FoundLHS->getType())) {
5226    if (CmpInst::isSigned(Pred)) {
5227      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5228      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5229    } else {
5230      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5231      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5232    }
5233  }
5234
5235  // Canonicalize the query to match the way instcombine will have
5236  // canonicalized the comparison.
5237  if (SimplifyICmpOperands(Pred, LHS, RHS))
5238    if (LHS == RHS)
5239      return CmpInst::isTrueWhenEqual(Pred);
5240  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5241    if (FoundLHS == FoundRHS)
5242      return CmpInst::isFalseWhenEqual(Pred);
5243
5244  // Check to see if we can make the LHS or RHS match.
5245  if (LHS == FoundRHS || RHS == FoundLHS) {
5246    if (isa<SCEVConstant>(RHS)) {
5247      std::swap(FoundLHS, FoundRHS);
5248      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5249    } else {
5250      std::swap(LHS, RHS);
5251      Pred = ICmpInst::getSwappedPredicate(Pred);
5252    }
5253  }
5254
5255  // Check whether the found predicate is the same as the desired predicate.
5256  if (FoundPred == Pred)
5257    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5258
5259  // Check whether swapping the found predicate makes it the same as the
5260  // desired predicate.
5261  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5262    if (isa<SCEVConstant>(RHS))
5263      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5264    else
5265      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5266                                   RHS, LHS, FoundLHS, FoundRHS);
5267  }
5268
5269  // Check whether the actual condition is beyond sufficient.
5270  if (FoundPred == ICmpInst::ICMP_EQ)
5271    if (ICmpInst::isTrueWhenEqual(Pred))
5272      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5273        return true;
5274  if (Pred == ICmpInst::ICMP_NE)
5275    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5276      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5277        return true;
5278
5279  // Otherwise assume the worst.
5280  return false;
5281}
5282
5283/// isImpliedCondOperands - Test whether the condition described by Pred,
5284/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5285/// and FoundRHS is true.
5286bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5287                                            const SCEV *LHS, const SCEV *RHS,
5288                                            const SCEV *FoundLHS,
5289                                            const SCEV *FoundRHS) {
5290  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5291                                     FoundLHS, FoundRHS) ||
5292         // ~x < ~y --> x > y
5293         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5294                                     getNotSCEV(FoundRHS),
5295                                     getNotSCEV(FoundLHS));
5296}
5297
5298/// isImpliedCondOperandsHelper - Test whether the condition described by
5299/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5300/// FoundLHS, and FoundRHS is true.
5301bool
5302ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5303                                             const SCEV *LHS, const SCEV *RHS,
5304                                             const SCEV *FoundLHS,
5305                                             const SCEV *FoundRHS) {
5306  switch (Pred) {
5307  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5308  case ICmpInst::ICMP_EQ:
5309  case ICmpInst::ICMP_NE:
5310    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5311      return true;
5312    break;
5313  case ICmpInst::ICMP_SLT:
5314  case ICmpInst::ICMP_SLE:
5315    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5316        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5317      return true;
5318    break;
5319  case ICmpInst::ICMP_SGT:
5320  case ICmpInst::ICMP_SGE:
5321    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5322        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5323      return true;
5324    break;
5325  case ICmpInst::ICMP_ULT:
5326  case ICmpInst::ICMP_ULE:
5327    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5328        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5329      return true;
5330    break;
5331  case ICmpInst::ICMP_UGT:
5332  case ICmpInst::ICMP_UGE:
5333    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5334        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5335      return true;
5336    break;
5337  }
5338
5339  return false;
5340}
5341
5342/// getBECount - Subtract the end and start values and divide by the step,
5343/// rounding up, to get the number of times the backedge is executed. Return
5344/// CouldNotCompute if an intermediate computation overflows.
5345const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5346                                        const SCEV *End,
5347                                        const SCEV *Step,
5348                                        bool NoWrap) {
5349  assert(!isKnownNegative(Step) &&
5350         "This code doesn't handle negative strides yet!");
5351
5352  const Type *Ty = Start->getType();
5353  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5354  const SCEV *Diff = getMinusSCEV(End, Start);
5355  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5356
5357  // Add an adjustment to the difference between End and Start so that
5358  // the division will effectively round up.
5359  const SCEV *Add = getAddExpr(Diff, RoundUp);
5360
5361  if (!NoWrap) {
5362    // Check Add for unsigned overflow.
5363    // TODO: More sophisticated things could be done here.
5364    const Type *WideTy = IntegerType::get(getContext(),
5365                                          getTypeSizeInBits(Ty) + 1);
5366    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5367    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5368    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5369    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5370      return getCouldNotCompute();
5371  }
5372
5373  return getUDivExpr(Add, Step);
5374}
5375
5376/// HowManyLessThans - Return the number of times a backedge containing the
5377/// specified less-than comparison will execute.  If not computable, return
5378/// CouldNotCompute.
5379ScalarEvolution::BackedgeTakenInfo
5380ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5381                                  const Loop *L, bool isSigned) {
5382  // Only handle:  "ADDREC < LoopInvariant".
5383  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5384
5385  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5386  if (!AddRec || AddRec->getLoop() != L)
5387    return getCouldNotCompute();
5388
5389  // Check to see if we have a flag which makes analysis easy.
5390  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5391                           AddRec->hasNoUnsignedWrap();
5392
5393  if (AddRec->isAffine()) {
5394    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5395    const SCEV *Step = AddRec->getStepRecurrence(*this);
5396
5397    if (Step->isZero())
5398      return getCouldNotCompute();
5399    if (Step->isOne()) {
5400      // With unit stride, the iteration never steps past the limit value.
5401    } else if (isKnownPositive(Step)) {
5402      // Test whether a positive iteration can step past the limit
5403      // value and past the maximum value for its type in a single step.
5404      // Note that it's not sufficient to check NoWrap here, because even
5405      // though the value after a wrap is undefined, it's not undefined
5406      // behavior, so if wrap does occur, the loop could either terminate or
5407      // loop infinitely, but in either case, the loop is guaranteed to
5408      // iterate at least until the iteration where the wrapping occurs.
5409      const SCEV *One = getConstant(Step->getType(), 1);
5410      if (isSigned) {
5411        APInt Max = APInt::getSignedMaxValue(BitWidth);
5412        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5413              .slt(getSignedRange(RHS).getSignedMax()))
5414          return getCouldNotCompute();
5415      } else {
5416        APInt Max = APInt::getMaxValue(BitWidth);
5417        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5418              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5419          return getCouldNotCompute();
5420      }
5421    } else
5422      // TODO: Handle negative strides here and below.
5423      return getCouldNotCompute();
5424
5425    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5426    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5427    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5428    // treat m-n as signed nor unsigned due to overflow possibility.
5429
5430    // First, we get the value of the LHS in the first iteration: n
5431    const SCEV *Start = AddRec->getOperand(0);
5432
5433    // Determine the minimum constant start value.
5434    const SCEV *MinStart = getConstant(isSigned ?
5435      getSignedRange(Start).getSignedMin() :
5436      getUnsignedRange(Start).getUnsignedMin());
5437
5438    // If we know that the condition is true in order to enter the loop,
5439    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5440    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5441    // the division must round up.
5442    const SCEV *End = RHS;
5443    if (!isLoopEntryGuardedByCond(L,
5444                                  isSigned ? ICmpInst::ICMP_SLT :
5445                                             ICmpInst::ICMP_ULT,
5446                                  getMinusSCEV(Start, Step), RHS))
5447      End = isSigned ? getSMaxExpr(RHS, Start)
5448                     : getUMaxExpr(RHS, Start);
5449
5450    // Determine the maximum constant end value.
5451    const SCEV *MaxEnd = getConstant(isSigned ?
5452      getSignedRange(End).getSignedMax() :
5453      getUnsignedRange(End).getUnsignedMax());
5454
5455    // If MaxEnd is within a step of the maximum integer value in its type,
5456    // adjust it down to the minimum value which would produce the same effect.
5457    // This allows the subsequent ceiling division of (N+(step-1))/step to
5458    // compute the correct value.
5459    const SCEV *StepMinusOne = getMinusSCEV(Step,
5460                                            getConstant(Step->getType(), 1));
5461    MaxEnd = isSigned ?
5462      getSMinExpr(MaxEnd,
5463                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5464                               StepMinusOne)) :
5465      getUMinExpr(MaxEnd,
5466                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5467                               StepMinusOne));
5468
5469    // Finally, we subtract these two values and divide, rounding up, to get
5470    // the number of times the backedge is executed.
5471    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5472
5473    // The maximum backedge count is similar, except using the minimum start
5474    // value and the maximum end value.
5475    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5476
5477    return BackedgeTakenInfo(BECount, MaxBECount);
5478  }
5479
5480  return getCouldNotCompute();
5481}
5482
5483/// getNumIterationsInRange - Return the number of iterations of this loop that
5484/// produce values in the specified constant range.  Another way of looking at
5485/// this is that it returns the first iteration number where the value is not in
5486/// the condition, thus computing the exit count. If the iteration count can't
5487/// be computed, an instance of SCEVCouldNotCompute is returned.
5488const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5489                                                    ScalarEvolution &SE) const {
5490  if (Range.isFullSet())  // Infinite loop.
5491    return SE.getCouldNotCompute();
5492
5493  // If the start is a non-zero constant, shift the range to simplify things.
5494  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5495    if (!SC->getValue()->isZero()) {
5496      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5497      Operands[0] = SE.getConstant(SC->getType(), 0);
5498      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5499      if (const SCEVAddRecExpr *ShiftedAddRec =
5500            dyn_cast<SCEVAddRecExpr>(Shifted))
5501        return ShiftedAddRec->getNumIterationsInRange(
5502                           Range.subtract(SC->getValue()->getValue()), SE);
5503      // This is strange and shouldn't happen.
5504      return SE.getCouldNotCompute();
5505    }
5506
5507  // The only time we can solve this is when we have all constant indices.
5508  // Otherwise, we cannot determine the overflow conditions.
5509  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5510    if (!isa<SCEVConstant>(getOperand(i)))
5511      return SE.getCouldNotCompute();
5512
5513
5514  // Okay at this point we know that all elements of the chrec are constants and
5515  // that the start element is zero.
5516
5517  // First check to see if the range contains zero.  If not, the first
5518  // iteration exits.
5519  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5520  if (!Range.contains(APInt(BitWidth, 0)))
5521    return SE.getConstant(getType(), 0);
5522
5523  if (isAffine()) {
5524    // If this is an affine expression then we have this situation:
5525    //   Solve {0,+,A} in Range  ===  Ax in Range
5526
5527    // We know that zero is in the range.  If A is positive then we know that
5528    // the upper value of the range must be the first possible exit value.
5529    // If A is negative then the lower of the range is the last possible loop
5530    // value.  Also note that we already checked for a full range.
5531    APInt One(BitWidth,1);
5532    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5533    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5534
5535    // The exit value should be (End+A)/A.
5536    APInt ExitVal = (End + A).udiv(A);
5537    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5538
5539    // Evaluate at the exit value.  If we really did fall out of the valid
5540    // range, then we computed our trip count, otherwise wrap around or other
5541    // things must have happened.
5542    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5543    if (Range.contains(Val->getValue()))
5544      return SE.getCouldNotCompute();  // Something strange happened
5545
5546    // Ensure that the previous value is in the range.  This is a sanity check.
5547    assert(Range.contains(
5548           EvaluateConstantChrecAtConstant(this,
5549           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5550           "Linear scev computation is off in a bad way!");
5551    return SE.getConstant(ExitValue);
5552  } else if (isQuadratic()) {
5553    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5554    // quadratic equation to solve it.  To do this, we must frame our problem in
5555    // terms of figuring out when zero is crossed, instead of when
5556    // Range.getUpper() is crossed.
5557    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5558    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5559    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5560
5561    // Next, solve the constructed addrec
5562    std::pair<const SCEV *,const SCEV *> Roots =
5563      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5564    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5565    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5566    if (R1) {
5567      // Pick the smallest positive root value.
5568      if (ConstantInt *CB =
5569          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5570                         R1->getValue(), R2->getValue()))) {
5571        if (CB->getZExtValue() == false)
5572          std::swap(R1, R2);   // R1 is the minimum root now.
5573
5574        // Make sure the root is not off by one.  The returned iteration should
5575        // not be in the range, but the previous one should be.  When solving
5576        // for "X*X < 5", for example, we should not return a root of 2.
5577        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5578                                                             R1->getValue(),
5579                                                             SE);
5580        if (Range.contains(R1Val->getValue())) {
5581          // The next iteration must be out of the range...
5582          ConstantInt *NextVal =
5583                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5584
5585          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5586          if (!Range.contains(R1Val->getValue()))
5587            return SE.getConstant(NextVal);
5588          return SE.getCouldNotCompute();  // Something strange happened
5589        }
5590
5591        // If R1 was not in the range, then it is a good return value.  Make
5592        // sure that R1-1 WAS in the range though, just in case.
5593        ConstantInt *NextVal =
5594               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5595        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5596        if (Range.contains(R1Val->getValue()))
5597          return R1;
5598        return SE.getCouldNotCompute();  // Something strange happened
5599      }
5600    }
5601  }
5602
5603  return SE.getCouldNotCompute();
5604}
5605
5606
5607
5608//===----------------------------------------------------------------------===//
5609//                   SCEVCallbackVH Class Implementation
5610//===----------------------------------------------------------------------===//
5611
5612void ScalarEvolution::SCEVCallbackVH::deleted() {
5613  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5614  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5615    SE->ConstantEvolutionLoopExitValue.erase(PN);
5616  SE->Scalars.erase(getValPtr());
5617  // this now dangles!
5618}
5619
5620void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
5621  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5622
5623  // Forget all the expressions associated with users of the old value,
5624  // so that future queries will recompute the expressions using the new
5625  // value.
5626  SmallVector<User *, 16> Worklist;
5627  SmallPtrSet<User *, 8> Visited;
5628  Value *Old = getValPtr();
5629  bool DeleteOld = false;
5630  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5631       UI != UE; ++UI)
5632    Worklist.push_back(*UI);
5633  while (!Worklist.empty()) {
5634    User *U = Worklist.pop_back_val();
5635    // Deleting the Old value will cause this to dangle. Postpone
5636    // that until everything else is done.
5637    if (U == Old) {
5638      DeleteOld = true;
5639      continue;
5640    }
5641    if (!Visited.insert(U))
5642      continue;
5643    if (PHINode *PN = dyn_cast<PHINode>(U))
5644      SE->ConstantEvolutionLoopExitValue.erase(PN);
5645    SE->Scalars.erase(U);
5646    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5647         UI != UE; ++UI)
5648      Worklist.push_back(*UI);
5649  }
5650  // Delete the Old value if it (indirectly) references itself.
5651  if (DeleteOld) {
5652    if (PHINode *PN = dyn_cast<PHINode>(Old))
5653      SE->ConstantEvolutionLoopExitValue.erase(PN);
5654    SE->Scalars.erase(Old);
5655    // this now dangles!
5656  }
5657  // this may dangle!
5658}
5659
5660ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5661  : CallbackVH(V), SE(se) {}
5662
5663//===----------------------------------------------------------------------===//
5664//                   ScalarEvolution Class Implementation
5665//===----------------------------------------------------------------------===//
5666
5667ScalarEvolution::ScalarEvolution()
5668  : FunctionPass(&ID) {
5669}
5670
5671bool ScalarEvolution::runOnFunction(Function &F) {
5672  this->F = &F;
5673  LI = &getAnalysis<LoopInfo>();
5674  TD = getAnalysisIfAvailable<TargetData>();
5675  DT = &getAnalysis<DominatorTree>();
5676  return false;
5677}
5678
5679void ScalarEvolution::releaseMemory() {
5680  Scalars.clear();
5681  BackedgeTakenCounts.clear();
5682  ConstantEvolutionLoopExitValue.clear();
5683  ValuesAtScopes.clear();
5684  UniqueSCEVs.clear();
5685  SCEVAllocator.Reset();
5686}
5687
5688void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5689  AU.setPreservesAll();
5690  AU.addRequiredTransitive<LoopInfo>();
5691  AU.addRequiredTransitive<DominatorTree>();
5692}
5693
5694bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5695  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5696}
5697
5698static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5699                          const Loop *L) {
5700  // Print all inner loops first
5701  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5702    PrintLoopInfo(OS, SE, *I);
5703
5704  OS << "Loop ";
5705  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5706  OS << ": ";
5707
5708  SmallVector<BasicBlock *, 8> ExitBlocks;
5709  L->getExitBlocks(ExitBlocks);
5710  if (ExitBlocks.size() != 1)
5711    OS << "<multiple exits> ";
5712
5713  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5714    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5715  } else {
5716    OS << "Unpredictable backedge-taken count. ";
5717  }
5718
5719  OS << "\n"
5720        "Loop ";
5721  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5722  OS << ": ";
5723
5724  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5725    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5726  } else {
5727    OS << "Unpredictable max backedge-taken count. ";
5728  }
5729
5730  OS << "\n";
5731}
5732
5733void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5734  // ScalarEvolution's implementation of the print method is to print
5735  // out SCEV values of all instructions that are interesting. Doing
5736  // this potentially causes it to create new SCEV objects though,
5737  // which technically conflicts with the const qualifier. This isn't
5738  // observable from outside the class though, so casting away the
5739  // const isn't dangerous.
5740  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5741
5742  OS << "Classifying expressions for: ";
5743  WriteAsOperand(OS, F, /*PrintType=*/false);
5744  OS << "\n";
5745  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5746    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5747      OS << *I << '\n';
5748      OS << "  -->  ";
5749      const SCEV *SV = SE.getSCEV(&*I);
5750      SV->print(OS);
5751
5752      const Loop *L = LI->getLoopFor((*I).getParent());
5753
5754      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5755      if (AtUse != SV) {
5756        OS << "  -->  ";
5757        AtUse->print(OS);
5758      }
5759
5760      if (L) {
5761        OS << "\t\t" "Exits: ";
5762        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5763        if (!ExitValue->isLoopInvariant(L)) {
5764          OS << "<<Unknown>>";
5765        } else {
5766          OS << *ExitValue;
5767        }
5768      }
5769
5770      OS << "\n";
5771    }
5772
5773  OS << "Determining loop execution counts for: ";
5774  WriteAsOperand(OS, F, /*PrintType=*/false);
5775  OS << "\n";
5776  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5777    PrintLoopInfo(OS, &SE, *I);
5778}
5779
5780