ScalarEvolution.cpp revision 66a7e857aa5843da3a7d0f52aa09a5935cf565dc
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/Dominators.h"
70#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
72#include "llvm/Target/TargetData.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/GetElementPtrTypeIterator.h"
77#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include "llvm/ADT/Statistic.h"
82#include "llvm/ADT/STLExtras.h"
83#include <ostream>
84#include <algorithm>
85using namespace llvm;
86
87STATISTIC(NumArrayLenItCounts,
88          "Number of trip counts computed with array length");
89STATISTIC(NumTripCountsComputed,
90          "Number of loops with predictable loop counts");
91STATISTIC(NumTripCountsNotComputed,
92          "Number of loops without predictable loop counts");
93STATISTIC(NumBruteForceTripCountsComputed,
94          "Number of loops with trip counts computed by force");
95
96static cl::opt<unsigned>
97MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
98                        cl::desc("Maximum number of iterations SCEV will "
99                                 "symbolically execute a constant derived loop"),
100                        cl::init(100));
101
102static RegisterPass<ScalarEvolution>
103R("scalar-evolution", "Scalar Evolution Analysis", false, true);
104char ScalarEvolution::ID = 0;
105
106//===----------------------------------------------------------------------===//
107//                           SCEV class definitions
108//===----------------------------------------------------------------------===//
109
110//===----------------------------------------------------------------------===//
111// Implementation of the SCEV class.
112//
113SCEV::~SCEV() {}
114void SCEV::dump() const {
115  print(errs());
116  errs() << '\n';
117}
118
119void SCEV::print(std::ostream &o) const {
120  raw_os_ostream OS(o);
121  print(OS);
122}
123
124bool SCEV::isZero() const {
125  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
126    return SC->getValue()->isZero();
127  return false;
128}
129
130
131SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
132SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
133
134bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
135  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
136  return false;
137}
138
139const Type *SCEVCouldNotCompute::getType() const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return 0;
142}
143
144bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return false;
147}
148
149SCEVHandle SCEVCouldNotCompute::
150replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
151                                  const SCEVHandle &Conc,
152                                  ScalarEvolution &SE) const {
153  return this;
154}
155
156void SCEVCouldNotCompute::print(raw_ostream &OS) const {
157  OS << "***COULDNOTCOMPUTE***";
158}
159
160bool SCEVCouldNotCompute::classof(const SCEV *S) {
161  return S->getSCEVType() == scCouldNotCompute;
162}
163
164
165// SCEVConstants - Only allow the creation of one SCEVConstant for any
166// particular value.  Don't use a SCEVHandle here, or else the object will
167// never be deleted!
168static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
169
170
171SCEVConstant::~SCEVConstant() {
172  SCEVConstants->erase(V);
173}
174
175SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
176  SCEVConstant *&R = (*SCEVConstants)[V];
177  if (R == 0) R = new SCEVConstant(V);
178  return R;
179}
180
181SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
182  return getConstant(ConstantInt::get(Val));
183}
184
185const Type *SCEVConstant::getType() const { return V->getType(); }
186
187void SCEVConstant::print(raw_ostream &OS) const {
188  WriteAsOperand(OS, V, false);
189}
190
191SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
192                           const SCEVHandle &op, const Type *ty)
193  : SCEV(SCEVTy), Op(op), Ty(ty) {}
194
195SCEVCastExpr::~SCEVCastExpr() {}
196
197bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
198  return Op->dominates(BB, DT);
199}
200
201// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
202// particular input.  Don't use a SCEVHandle here, or else the object will
203// never be deleted!
204static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
205                     SCEVTruncateExpr*> > SCEVTruncates;
206
207SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
208  : SCEVCastExpr(scTruncate, op, ty) {
209  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
210         (Ty->isInteger() || isa<PointerType>(Ty)) &&
211         "Cannot truncate non-integer value!");
212}
213
214SCEVTruncateExpr::~SCEVTruncateExpr() {
215  SCEVTruncates->erase(std::make_pair(Op, Ty));
216}
217
218void SCEVTruncateExpr::print(raw_ostream &OS) const {
219  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
220}
221
222// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
223// particular input.  Don't use a SCEVHandle here, or else the object will never
224// be deleted!
225static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
226                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
229  : SCEVCastExpr(scZeroExtend, op, ty) {
230  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231         (Ty->isInteger() || isa<PointerType>(Ty)) &&
232         "Cannot zero extend non-integer value!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237}
238
239void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
240  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
241}
242
243// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
244// particular input.  Don't use a SCEVHandle here, or else the object will never
245// be deleted!
246static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
247                     SCEVSignExtendExpr*> > SCEVSignExtends;
248
249SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
250  : SCEVCastExpr(scSignExtend, op, ty) {
251  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
252         (Ty->isInteger() || isa<PointerType>(Ty)) &&
253         "Cannot sign extend non-integer value!");
254}
255
256SCEVSignExtendExpr::~SCEVSignExtendExpr() {
257  SCEVSignExtends->erase(std::make_pair(Op, Ty));
258}
259
260void SCEVSignExtendExpr::print(raw_ostream &OS) const {
261  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
262}
263
264// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
265// particular input.  Don't use a SCEVHandle here, or else the object will never
266// be deleted!
267static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
268                     SCEVCommutativeExpr*> > SCEVCommExprs;
269
270SCEVCommutativeExpr::~SCEVCommutativeExpr() {
271  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
272  SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
273}
274
275void SCEVCommutativeExpr::print(raw_ostream &OS) const {
276  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
277  const char *OpStr = getOperationStr();
278  OS << "(" << *Operands[0];
279  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
280    OS << OpStr << *Operands[i];
281  OS << ")";
282}
283
284SCEVHandle SCEVCommutativeExpr::
285replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
286                                  const SCEVHandle &Conc,
287                                  ScalarEvolution &SE) const {
288  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
289    SCEVHandle H =
290      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
291    if (H != getOperand(i)) {
292      std::vector<SCEVHandle> NewOps;
293      NewOps.reserve(getNumOperands());
294      for (unsigned j = 0; j != i; ++j)
295        NewOps.push_back(getOperand(j));
296      NewOps.push_back(H);
297      for (++i; i != e; ++i)
298        NewOps.push_back(getOperand(i)->
299                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
300
301      if (isa<SCEVAddExpr>(this))
302        return SE.getAddExpr(NewOps);
303      else if (isa<SCEVMulExpr>(this))
304        return SE.getMulExpr(NewOps);
305      else if (isa<SCEVSMaxExpr>(this))
306        return SE.getSMaxExpr(NewOps);
307      else if (isa<SCEVUMaxExpr>(this))
308        return SE.getUMaxExpr(NewOps);
309      else
310        assert(0 && "Unknown commutative expr!");
311    }
312  }
313  return this;
314}
315
316bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
317  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
318    if (!getOperand(i)->dominates(BB, DT))
319      return false;
320  }
321  return true;
322}
323
324
325// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
326// input.  Don't use a SCEVHandle here, or else the object will never be
327// deleted!
328static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
329                     SCEVUDivExpr*> > SCEVUDivs;
330
331SCEVUDivExpr::~SCEVUDivExpr() {
332  SCEVUDivs->erase(std::make_pair(LHS, RHS));
333}
334
335bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
336  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
337}
338
339void SCEVUDivExpr::print(raw_ostream &OS) const {
340  OS << "(" << *LHS << " /u " << *RHS << ")";
341}
342
343const Type *SCEVUDivExpr::getType() const {
344  return LHS->getType();
345}
346
347// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
348// particular input.  Don't use a SCEVHandle here, or else the object will never
349// be deleted!
350static ManagedStatic<std::map<std::pair<const Loop *,
351                                        std::vector<const SCEV*> >,
352                     SCEVAddRecExpr*> > SCEVAddRecExprs;
353
354SCEVAddRecExpr::~SCEVAddRecExpr() {
355  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
356  SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
357}
358
359SCEVHandle SCEVAddRecExpr::
360replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
361                                  const SCEVHandle &Conc,
362                                  ScalarEvolution &SE) const {
363  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
364    SCEVHandle H =
365      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
366    if (H != getOperand(i)) {
367      std::vector<SCEVHandle> NewOps;
368      NewOps.reserve(getNumOperands());
369      for (unsigned j = 0; j != i; ++j)
370        NewOps.push_back(getOperand(j));
371      NewOps.push_back(H);
372      for (++i; i != e; ++i)
373        NewOps.push_back(getOperand(i)->
374                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
375
376      return SE.getAddRecExpr(NewOps, L);
377    }
378  }
379  return this;
380}
381
382
383bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
384  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
385  // contain L and if the start is invariant.
386  return !QueryLoop->contains(L->getHeader()) &&
387         getOperand(0)->isLoopInvariant(QueryLoop);
388}
389
390
391void SCEVAddRecExpr::print(raw_ostream &OS) const {
392  OS << "{" << *Operands[0];
393  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
394    OS << ",+," << *Operands[i];
395  OS << "}<" << L->getHeader()->getName() + ">";
396}
397
398// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
399// value.  Don't use a SCEVHandle here, or else the object will never be
400// deleted!
401static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
402
403SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
404
405bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
406  // All non-instruction values are loop invariant.  All instructions are loop
407  // invariant if they are not contained in the specified loop.
408  if (Instruction *I = dyn_cast<Instruction>(V))
409    return !L->contains(I->getParent());
410  return true;
411}
412
413bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
414  if (Instruction *I = dyn_cast<Instruction>(getValue()))
415    return DT->dominates(I->getParent(), BB);
416  return true;
417}
418
419const Type *SCEVUnknown::getType() const {
420  return V->getType();
421}
422
423void SCEVUnknown::print(raw_ostream &OS) const {
424  WriteAsOperand(OS, V, false);
425}
426
427//===----------------------------------------------------------------------===//
428//                               SCEV Utilities
429//===----------------------------------------------------------------------===//
430
431namespace {
432  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
433  /// than the complexity of the RHS.  This comparator is used to canonicalize
434  /// expressions.
435  class VISIBILITY_HIDDEN SCEVComplexityCompare {
436    LoopInfo *LI;
437  public:
438    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
439
440    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
441      // Primarily, sort the SCEVs by their getSCEVType().
442      if (LHS->getSCEVType() != RHS->getSCEVType())
443        return LHS->getSCEVType() < RHS->getSCEVType();
444
445      // Aside from the getSCEVType() ordering, the particular ordering
446      // isn't very important except that it's beneficial to be consistent,
447      // so that (a + b) and (b + a) don't end up as different expressions.
448
449      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
450      // not as complete as it could be.
451      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
452        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
453
454        // Compare getValueID values.
455        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
456          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
457
458        // Sort arguments by their position.
459        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
460          const Argument *RA = cast<Argument>(RU->getValue());
461          return LA->getArgNo() < RA->getArgNo();
462        }
463
464        // For instructions, compare their loop depth, and their opcode.
465        // This is pretty loose.
466        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
467          Instruction *RV = cast<Instruction>(RU->getValue());
468
469          // Compare loop depths.
470          if (LI->getLoopDepth(LV->getParent()) !=
471              LI->getLoopDepth(RV->getParent()))
472            return LI->getLoopDepth(LV->getParent()) <
473                   LI->getLoopDepth(RV->getParent());
474
475          // Compare opcodes.
476          if (LV->getOpcode() != RV->getOpcode())
477            return LV->getOpcode() < RV->getOpcode();
478
479          // Compare the number of operands.
480          if (LV->getNumOperands() != RV->getNumOperands())
481            return LV->getNumOperands() < RV->getNumOperands();
482        }
483
484        return false;
485      }
486
487      // Constant sorting doesn't matter since they'll be folded.
488      if (isa<SCEVConstant>(LHS))
489        return false;
490
491      // Lexicographically compare n-ary expressions.
492      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
493        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
494        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
495          if (i >= RC->getNumOperands())
496            return false;
497          if (operator()(LC->getOperand(i), RC->getOperand(i)))
498            return true;
499          if (operator()(RC->getOperand(i), LC->getOperand(i)))
500            return false;
501        }
502        return LC->getNumOperands() < RC->getNumOperands();
503      }
504
505      // Lexicographically compare udiv expressions.
506      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
507        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
508        if (operator()(LC->getLHS(), RC->getLHS()))
509          return true;
510        if (operator()(RC->getLHS(), LC->getLHS()))
511          return false;
512        if (operator()(LC->getRHS(), RC->getRHS()))
513          return true;
514        if (operator()(RC->getRHS(), LC->getRHS()))
515          return false;
516        return false;
517      }
518
519      // Compare cast expressions by operand.
520      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
521        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
522        return operator()(LC->getOperand(), RC->getOperand());
523      }
524
525      assert(0 && "Unknown SCEV kind!");
526      return false;
527    }
528  };
529}
530
531/// GroupByComplexity - Given a list of SCEV objects, order them by their
532/// complexity, and group objects of the same complexity together by value.
533/// When this routine is finished, we know that any duplicates in the vector are
534/// consecutive and that complexity is monotonically increasing.
535///
536/// Note that we go take special precautions to ensure that we get determinstic
537/// results from this routine.  In other words, we don't want the results of
538/// this to depend on where the addresses of various SCEV objects happened to
539/// land in memory.
540///
541static void GroupByComplexity(std::vector<SCEVHandle> &Ops,
542                              LoopInfo *LI) {
543  if (Ops.size() < 2) return;  // Noop
544  if (Ops.size() == 2) {
545    // This is the common case, which also happens to be trivially simple.
546    // Special case it.
547    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
548      std::swap(Ops[0], Ops[1]);
549    return;
550  }
551
552  // Do the rough sort by complexity.
553  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
554
555  // Now that we are sorted by complexity, group elements of the same
556  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
557  // be extremely short in practice.  Note that we take this approach because we
558  // do not want to depend on the addresses of the objects we are grouping.
559  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
560    const SCEV *S = Ops[i];
561    unsigned Complexity = S->getSCEVType();
562
563    // If there are any objects of the same complexity and same value as this
564    // one, group them.
565    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
566      if (Ops[j] == S) { // Found a duplicate.
567        // Move it to immediately after i'th element.
568        std::swap(Ops[i+1], Ops[j]);
569        ++i;   // no need to rescan it.
570        if (i == e-2) return;  // Done!
571      }
572    }
573  }
574}
575
576
577
578//===----------------------------------------------------------------------===//
579//                      Simple SCEV method implementations
580//===----------------------------------------------------------------------===//
581
582/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
583// Assume, K > 0.
584static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
585                                      ScalarEvolution &SE,
586                                      const Type* ResultTy) {
587  // Handle the simplest case efficiently.
588  if (K == 1)
589    return SE.getTruncateOrZeroExtend(It, ResultTy);
590
591  // We are using the following formula for BC(It, K):
592  //
593  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
594  //
595  // Suppose, W is the bitwidth of the return value.  We must be prepared for
596  // overflow.  Hence, we must assure that the result of our computation is
597  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
598  // safe in modular arithmetic.
599  //
600  // However, this code doesn't use exactly that formula; the formula it uses
601  // is something like the following, where T is the number of factors of 2 in
602  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
603  // exponentiation:
604  //
605  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
606  //
607  // This formula is trivially equivalent to the previous formula.  However,
608  // this formula can be implemented much more efficiently.  The trick is that
609  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
610  // arithmetic.  To do exact division in modular arithmetic, all we have
611  // to do is multiply by the inverse.  Therefore, this step can be done at
612  // width W.
613  //
614  // The next issue is how to safely do the division by 2^T.  The way this
615  // is done is by doing the multiplication step at a width of at least W + T
616  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
617  // when we perform the division by 2^T (which is equivalent to a right shift
618  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
619  // truncated out after the division by 2^T.
620  //
621  // In comparison to just directly using the first formula, this technique
622  // is much more efficient; using the first formula requires W * K bits,
623  // but this formula less than W + K bits. Also, the first formula requires
624  // a division step, whereas this formula only requires multiplies and shifts.
625  //
626  // It doesn't matter whether the subtraction step is done in the calculation
627  // width or the input iteration count's width; if the subtraction overflows,
628  // the result must be zero anyway.  We prefer here to do it in the width of
629  // the induction variable because it helps a lot for certain cases; CodeGen
630  // isn't smart enough to ignore the overflow, which leads to much less
631  // efficient code if the width of the subtraction is wider than the native
632  // register width.
633  //
634  // (It's possible to not widen at all by pulling out factors of 2 before
635  // the multiplication; for example, K=2 can be calculated as
636  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
637  // extra arithmetic, so it's not an obvious win, and it gets
638  // much more complicated for K > 3.)
639
640  // Protection from insane SCEVs; this bound is conservative,
641  // but it probably doesn't matter.
642  if (K > 1000)
643    return SE.getCouldNotCompute();
644
645  unsigned W = SE.getTypeSizeInBits(ResultTy);
646
647  // Calculate K! / 2^T and T; we divide out the factors of two before
648  // multiplying for calculating K! / 2^T to avoid overflow.
649  // Other overflow doesn't matter because we only care about the bottom
650  // W bits of the result.
651  APInt OddFactorial(W, 1);
652  unsigned T = 1;
653  for (unsigned i = 3; i <= K; ++i) {
654    APInt Mult(W, i);
655    unsigned TwoFactors = Mult.countTrailingZeros();
656    T += TwoFactors;
657    Mult = Mult.lshr(TwoFactors);
658    OddFactorial *= Mult;
659  }
660
661  // We need at least W + T bits for the multiplication step
662  unsigned CalculationBits = W + T;
663
664  // Calcuate 2^T, at width T+W.
665  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
666
667  // Calculate the multiplicative inverse of K! / 2^T;
668  // this multiplication factor will perform the exact division by
669  // K! / 2^T.
670  APInt Mod = APInt::getSignedMinValue(W+1);
671  APInt MultiplyFactor = OddFactorial.zext(W+1);
672  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
673  MultiplyFactor = MultiplyFactor.trunc(W);
674
675  // Calculate the product, at width T+W
676  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
677  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
678  for (unsigned i = 1; i != K; ++i) {
679    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
680    Dividend = SE.getMulExpr(Dividend,
681                             SE.getTruncateOrZeroExtend(S, CalculationTy));
682  }
683
684  // Divide by 2^T
685  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
686
687  // Truncate the result, and divide by K! / 2^T.
688
689  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
690                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
691}
692
693/// evaluateAtIteration - Return the value of this chain of recurrences at
694/// the specified iteration number.  We can evaluate this recurrence by
695/// multiplying each element in the chain by the binomial coefficient
696/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
697///
698///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
699///
700/// where BC(It, k) stands for binomial coefficient.
701///
702SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
703                                               ScalarEvolution &SE) const {
704  SCEVHandle Result = getStart();
705  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
706    // The computation is correct in the face of overflow provided that the
707    // multiplication is performed _after_ the evaluation of the binomial
708    // coefficient.
709    SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
710    if (isa<SCEVCouldNotCompute>(Coeff))
711      return Coeff;
712
713    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
714  }
715  return Result;
716}
717
718//===----------------------------------------------------------------------===//
719//                    SCEV Expression folder implementations
720//===----------------------------------------------------------------------===//
721
722SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
723                                            const Type *Ty) {
724  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
725         "This is not a truncating conversion!");
726  assert(isSCEVable(Ty) &&
727         "This is not a conversion to a SCEVable type!");
728  Ty = getEffectiveSCEVType(Ty);
729
730  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
731    return getUnknown(
732        ConstantExpr::getTrunc(SC->getValue(), Ty));
733
734  // trunc(trunc(x)) --> trunc(x)
735  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
736    return getTruncateExpr(ST->getOperand(), Ty);
737
738  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
739  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
740    return getTruncateOrSignExtend(SS->getOperand(), Ty);
741
742  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
743  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
744    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
745
746  // If the input value is a chrec scev made out of constants, truncate
747  // all of the constants.
748  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
749    std::vector<SCEVHandle> Operands;
750    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
751      // FIXME: This should allow truncation of other expression types!
752      if (isa<SCEVConstant>(AddRec->getOperand(i)))
753        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
754      else
755        break;
756    if (Operands.size() == AddRec->getNumOperands())
757      return getAddRecExpr(Operands, AddRec->getLoop());
758  }
759
760  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
761  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
762  return Result;
763}
764
765SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
766                                              const Type *Ty) {
767  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
768         "This is not an extending conversion!");
769  assert(isSCEVable(Ty) &&
770         "This is not a conversion to a SCEVable type!");
771  Ty = getEffectiveSCEVType(Ty);
772
773  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
774    const Type *IntTy = getEffectiveSCEVType(Ty);
775    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
776    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
777    return getUnknown(C);
778  }
779
780  // zext(zext(x)) --> zext(x)
781  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
782    return getZeroExtendExpr(SZ->getOperand(), Ty);
783
784  // If the input value is a chrec scev, and we can prove that the value
785  // did not overflow the old, smaller, value, we can zero extend all of the
786  // operands (often constants).  This allows analysis of something like
787  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
788  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
789    if (AR->isAffine()) {
790      // Check whether the backedge-taken count is SCEVCouldNotCompute.
791      // Note that this serves two purposes: It filters out loops that are
792      // simply not analyzable, and it covers the case where this code is
793      // being called from within backedge-taken count analysis, such that
794      // attempting to ask for the backedge-taken count would likely result
795      // in infinite recursion. In the later case, the analysis code will
796      // cope with a conservative value, and it will take care to purge
797      // that value once it has finished.
798      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
799      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
800        // Manually compute the final value for AR, checking for
801        // overflow.
802        SCEVHandle Start = AR->getStart();
803        SCEVHandle Step = AR->getStepRecurrence(*this);
804
805        // Check whether the backedge-taken count can be losslessly casted to
806        // the addrec's type. The count is always unsigned.
807        SCEVHandle CastedMaxBECount =
808          getTruncateOrZeroExtend(MaxBECount, Start->getType());
809        if (MaxBECount ==
810            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
811          const Type *WideTy =
812            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
813          // Check whether Start+Step*MaxBECount has no unsigned overflow.
814          SCEVHandle ZMul =
815            getMulExpr(CastedMaxBECount,
816                       getTruncateOrZeroExtend(Step, Start->getType()));
817          SCEVHandle Add = getAddExpr(Start, ZMul);
818          if (getZeroExtendExpr(Add, WideTy) ==
819              getAddExpr(getZeroExtendExpr(Start, WideTy),
820                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
821                                    getZeroExtendExpr(Step, WideTy))))
822            // Return the expression with the addrec on the outside.
823            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
824                                 getZeroExtendExpr(Step, Ty),
825                                 AR->getLoop());
826
827          // Similar to above, only this time treat the step value as signed.
828          // This covers loops that count down.
829          SCEVHandle SMul =
830            getMulExpr(CastedMaxBECount,
831                       getTruncateOrSignExtend(Step, Start->getType()));
832          Add = getAddExpr(Start, SMul);
833          if (getZeroExtendExpr(Add, WideTy) ==
834              getAddExpr(getZeroExtendExpr(Start, WideTy),
835                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
836                                    getSignExtendExpr(Step, WideTy))))
837            // Return the expression with the addrec on the outside.
838            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
839                                 getSignExtendExpr(Step, Ty),
840                                 AR->getLoop());
841        }
842      }
843    }
844
845  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
846  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
847  return Result;
848}
849
850SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
851                                              const Type *Ty) {
852  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
853         "This is not an extending conversion!");
854  assert(isSCEVable(Ty) &&
855         "This is not a conversion to a SCEVable type!");
856  Ty = getEffectiveSCEVType(Ty);
857
858  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
859    const Type *IntTy = getEffectiveSCEVType(Ty);
860    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
861    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
862    return getUnknown(C);
863  }
864
865  // sext(sext(x)) --> sext(x)
866  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
867    return getSignExtendExpr(SS->getOperand(), Ty);
868
869  // If the input value is a chrec scev, and we can prove that the value
870  // did not overflow the old, smaller, value, we can sign extend all of the
871  // operands (often constants).  This allows analysis of something like
872  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
873  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
874    if (AR->isAffine()) {
875      // Check whether the backedge-taken count is SCEVCouldNotCompute.
876      // Note that this serves two purposes: It filters out loops that are
877      // simply not analyzable, and it covers the case where this code is
878      // being called from within backedge-taken count analysis, such that
879      // attempting to ask for the backedge-taken count would likely result
880      // in infinite recursion. In the later case, the analysis code will
881      // cope with a conservative value, and it will take care to purge
882      // that value once it has finished.
883      SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
884      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
885        // Manually compute the final value for AR, checking for
886        // overflow.
887        SCEVHandle Start = AR->getStart();
888        SCEVHandle Step = AR->getStepRecurrence(*this);
889
890        // Check whether the backedge-taken count can be losslessly casted to
891        // the addrec's type. The count is always unsigned.
892        SCEVHandle CastedMaxBECount =
893          getTruncateOrZeroExtend(MaxBECount, Start->getType());
894        if (MaxBECount ==
895            getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) {
896          const Type *WideTy =
897            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
898          // Check whether Start+Step*MaxBECount has no signed overflow.
899          SCEVHandle SMul =
900            getMulExpr(CastedMaxBECount,
901                       getTruncateOrSignExtend(Step, Start->getType()));
902          SCEVHandle Add = getAddExpr(Start, SMul);
903          if (getSignExtendExpr(Add, WideTy) ==
904              getAddExpr(getSignExtendExpr(Start, WideTy),
905                         getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
906                                    getSignExtendExpr(Step, WideTy))))
907            // Return the expression with the addrec on the outside.
908            return getAddRecExpr(getSignExtendExpr(Start, Ty),
909                                 getSignExtendExpr(Step, Ty),
910                                 AR->getLoop());
911        }
912      }
913    }
914
915  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
916  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
917  return Result;
918}
919
920// get - Get a canonical add expression, or something simpler if possible.
921SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
922  assert(!Ops.empty() && "Cannot get empty add!");
923  if (Ops.size() == 1) return Ops[0];
924
925  // Sort by complexity, this groups all similar expression types together.
926  GroupByComplexity(Ops, LI);
927
928  // If there are any constants, fold them together.
929  unsigned Idx = 0;
930  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
931    ++Idx;
932    assert(Idx < Ops.size());
933    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
934      // We found two constants, fold them together!
935      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
936                                           RHSC->getValue()->getValue());
937      Ops[0] = getConstant(Fold);
938      Ops.erase(Ops.begin()+1);  // Erase the folded element
939      if (Ops.size() == 1) return Ops[0];
940      LHSC = cast<SCEVConstant>(Ops[0]);
941    }
942
943    // If we are left with a constant zero being added, strip it off.
944    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
945      Ops.erase(Ops.begin());
946      --Idx;
947    }
948  }
949
950  if (Ops.size() == 1) return Ops[0];
951
952  // Okay, check to see if the same value occurs in the operand list twice.  If
953  // so, merge them together into an multiply expression.  Since we sorted the
954  // list, these values are required to be adjacent.
955  const Type *Ty = Ops[0]->getType();
956  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
957    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
958      // Found a match, merge the two values into a multiply, and add any
959      // remaining values to the result.
960      SCEVHandle Two = getIntegerSCEV(2, Ty);
961      SCEVHandle Mul = getMulExpr(Ops[i], Two);
962      if (Ops.size() == 2)
963        return Mul;
964      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
965      Ops.push_back(Mul);
966      return getAddExpr(Ops);
967    }
968
969  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
970  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
971    ++Idx;
972
973  // If there are add operands they would be next.
974  if (Idx < Ops.size()) {
975    bool DeletedAdd = false;
976    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
977      // If we have an add, expand the add operands onto the end of the operands
978      // list.
979      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
980      Ops.erase(Ops.begin()+Idx);
981      DeletedAdd = true;
982    }
983
984    // If we deleted at least one add, we added operands to the end of the list,
985    // and they are not necessarily sorted.  Recurse to resort and resimplify
986    // any operands we just aquired.
987    if (DeletedAdd)
988      return getAddExpr(Ops);
989  }
990
991  // Skip over the add expression until we get to a multiply.
992  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
993    ++Idx;
994
995  // If we are adding something to a multiply expression, make sure the
996  // something is not already an operand of the multiply.  If so, merge it into
997  // the multiply.
998  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
999    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1000    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1001      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1002      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1003        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
1004          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1005          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1006          if (Mul->getNumOperands() != 2) {
1007            // If the multiply has more than two operands, we must get the
1008            // Y*Z term.
1009            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1010            MulOps.erase(MulOps.begin()+MulOp);
1011            InnerMul = getMulExpr(MulOps);
1012          }
1013          SCEVHandle One = getIntegerSCEV(1, Ty);
1014          SCEVHandle AddOne = getAddExpr(InnerMul, One);
1015          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1016          if (Ops.size() == 2) return OuterMul;
1017          if (AddOp < Idx) {
1018            Ops.erase(Ops.begin()+AddOp);
1019            Ops.erase(Ops.begin()+Idx-1);
1020          } else {
1021            Ops.erase(Ops.begin()+Idx);
1022            Ops.erase(Ops.begin()+AddOp-1);
1023          }
1024          Ops.push_back(OuterMul);
1025          return getAddExpr(Ops);
1026        }
1027
1028      // Check this multiply against other multiplies being added together.
1029      for (unsigned OtherMulIdx = Idx+1;
1030           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1031           ++OtherMulIdx) {
1032        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1033        // If MulOp occurs in OtherMul, we can fold the two multiplies
1034        // together.
1035        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1036             OMulOp != e; ++OMulOp)
1037          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1038            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1039            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1040            if (Mul->getNumOperands() != 2) {
1041              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
1042              MulOps.erase(MulOps.begin()+MulOp);
1043              InnerMul1 = getMulExpr(MulOps);
1044            }
1045            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1046            if (OtherMul->getNumOperands() != 2) {
1047              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
1048                                             OtherMul->op_end());
1049              MulOps.erase(MulOps.begin()+OMulOp);
1050              InnerMul2 = getMulExpr(MulOps);
1051            }
1052            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1053            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1054            if (Ops.size() == 2) return OuterMul;
1055            Ops.erase(Ops.begin()+Idx);
1056            Ops.erase(Ops.begin()+OtherMulIdx-1);
1057            Ops.push_back(OuterMul);
1058            return getAddExpr(Ops);
1059          }
1060      }
1061    }
1062  }
1063
1064  // If there are any add recurrences in the operands list, see if any other
1065  // added values are loop invariant.  If so, we can fold them into the
1066  // recurrence.
1067  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1068    ++Idx;
1069
1070  // Scan over all recurrences, trying to fold loop invariants into them.
1071  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1072    // Scan all of the other operands to this add and add them to the vector if
1073    // they are loop invariant w.r.t. the recurrence.
1074    std::vector<SCEVHandle> LIOps;
1075    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1076    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1077      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1078        LIOps.push_back(Ops[i]);
1079        Ops.erase(Ops.begin()+i);
1080        --i; --e;
1081      }
1082
1083    // If we found some loop invariants, fold them into the recurrence.
1084    if (!LIOps.empty()) {
1085      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1086      LIOps.push_back(AddRec->getStart());
1087
1088      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
1089      AddRecOps[0] = getAddExpr(LIOps);
1090
1091      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1092      // If all of the other operands were loop invariant, we are done.
1093      if (Ops.size() == 1) return NewRec;
1094
1095      // Otherwise, add the folded AddRec by the non-liv parts.
1096      for (unsigned i = 0;; ++i)
1097        if (Ops[i] == AddRec) {
1098          Ops[i] = NewRec;
1099          break;
1100        }
1101      return getAddExpr(Ops);
1102    }
1103
1104    // Okay, if there weren't any loop invariants to be folded, check to see if
1105    // there are multiple AddRec's with the same loop induction variable being
1106    // added together.  If so, we can fold them.
1107    for (unsigned OtherIdx = Idx+1;
1108         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1109      if (OtherIdx != Idx) {
1110        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1111        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1112          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1113          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1114          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1115            if (i >= NewOps.size()) {
1116              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1117                            OtherAddRec->op_end());
1118              break;
1119            }
1120            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1121          }
1122          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1123
1124          if (Ops.size() == 2) return NewAddRec;
1125
1126          Ops.erase(Ops.begin()+Idx);
1127          Ops.erase(Ops.begin()+OtherIdx-1);
1128          Ops.push_back(NewAddRec);
1129          return getAddExpr(Ops);
1130        }
1131      }
1132
1133    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1134    // next one.
1135  }
1136
1137  // Okay, it looks like we really DO need an add expr.  Check to see if we
1138  // already have one, otherwise create a new one.
1139  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1140  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1141                                                                 SCEVOps)];
1142  if (Result == 0) Result = new SCEVAddExpr(Ops);
1143  return Result;
1144}
1145
1146
1147SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
1148  assert(!Ops.empty() && "Cannot get empty mul!");
1149
1150  // Sort by complexity, this groups all similar expression types together.
1151  GroupByComplexity(Ops, LI);
1152
1153  // If there are any constants, fold them together.
1154  unsigned Idx = 0;
1155  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1156
1157    // C1*(C2+V) -> C1*C2 + C1*V
1158    if (Ops.size() == 2)
1159      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1160        if (Add->getNumOperands() == 2 &&
1161            isa<SCEVConstant>(Add->getOperand(0)))
1162          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1163                            getMulExpr(LHSC, Add->getOperand(1)));
1164
1165
1166    ++Idx;
1167    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1168      // We found two constants, fold them together!
1169      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1170                                           RHSC->getValue()->getValue());
1171      Ops[0] = getConstant(Fold);
1172      Ops.erase(Ops.begin()+1);  // Erase the folded element
1173      if (Ops.size() == 1) return Ops[0];
1174      LHSC = cast<SCEVConstant>(Ops[0]);
1175    }
1176
1177    // If we are left with a constant one being multiplied, strip it off.
1178    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1179      Ops.erase(Ops.begin());
1180      --Idx;
1181    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1182      // If we have a multiply of zero, it will always be zero.
1183      return Ops[0];
1184    }
1185  }
1186
1187  // Skip over the add expression until we get to a multiply.
1188  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1189    ++Idx;
1190
1191  if (Ops.size() == 1)
1192    return Ops[0];
1193
1194  // If there are mul operands inline them all into this expression.
1195  if (Idx < Ops.size()) {
1196    bool DeletedMul = false;
1197    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1198      // If we have an mul, expand the mul operands onto the end of the operands
1199      // list.
1200      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1201      Ops.erase(Ops.begin()+Idx);
1202      DeletedMul = true;
1203    }
1204
1205    // If we deleted at least one mul, we added operands to the end of the list,
1206    // and they are not necessarily sorted.  Recurse to resort and resimplify
1207    // any operands we just aquired.
1208    if (DeletedMul)
1209      return getMulExpr(Ops);
1210  }
1211
1212  // If there are any add recurrences in the operands list, see if any other
1213  // added values are loop invariant.  If so, we can fold them into the
1214  // recurrence.
1215  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1216    ++Idx;
1217
1218  // Scan over all recurrences, trying to fold loop invariants into them.
1219  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1220    // Scan all of the other operands to this mul and add them to the vector if
1221    // they are loop invariant w.r.t. the recurrence.
1222    std::vector<SCEVHandle> LIOps;
1223    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1224    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1225      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1226        LIOps.push_back(Ops[i]);
1227        Ops.erase(Ops.begin()+i);
1228        --i; --e;
1229      }
1230
1231    // If we found some loop invariants, fold them into the recurrence.
1232    if (!LIOps.empty()) {
1233      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1234      std::vector<SCEVHandle> NewOps;
1235      NewOps.reserve(AddRec->getNumOperands());
1236      if (LIOps.size() == 1) {
1237        const SCEV *Scale = LIOps[0];
1238        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1239          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1240      } else {
1241        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1242          std::vector<SCEVHandle> MulOps(LIOps);
1243          MulOps.push_back(AddRec->getOperand(i));
1244          NewOps.push_back(getMulExpr(MulOps));
1245        }
1246      }
1247
1248      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1249
1250      // If all of the other operands were loop invariant, we are done.
1251      if (Ops.size() == 1) return NewRec;
1252
1253      // Otherwise, multiply the folded AddRec by the non-liv parts.
1254      for (unsigned i = 0;; ++i)
1255        if (Ops[i] == AddRec) {
1256          Ops[i] = NewRec;
1257          break;
1258        }
1259      return getMulExpr(Ops);
1260    }
1261
1262    // Okay, if there weren't any loop invariants to be folded, check to see if
1263    // there are multiple AddRec's with the same loop induction variable being
1264    // multiplied together.  If so, we can fold them.
1265    for (unsigned OtherIdx = Idx+1;
1266         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1267      if (OtherIdx != Idx) {
1268        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1269        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1270          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1271          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1272          SCEVHandle NewStart = getMulExpr(F->getStart(),
1273                                                 G->getStart());
1274          SCEVHandle B = F->getStepRecurrence(*this);
1275          SCEVHandle D = G->getStepRecurrence(*this);
1276          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1277                                          getMulExpr(G, B),
1278                                          getMulExpr(B, D));
1279          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1280                                               F->getLoop());
1281          if (Ops.size() == 2) return NewAddRec;
1282
1283          Ops.erase(Ops.begin()+Idx);
1284          Ops.erase(Ops.begin()+OtherIdx-1);
1285          Ops.push_back(NewAddRec);
1286          return getMulExpr(Ops);
1287        }
1288      }
1289
1290    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1291    // next one.
1292  }
1293
1294  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1295  // already have one, otherwise create a new one.
1296  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1297  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1298                                                                 SCEVOps)];
1299  if (Result == 0)
1300    Result = new SCEVMulExpr(Ops);
1301  return Result;
1302}
1303
1304SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1305                                        const SCEVHandle &RHS) {
1306  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1307    if (RHSC->getValue()->equalsInt(1))
1308      return LHS;                            // X udiv 1 --> x
1309    if (RHSC->isZero())
1310      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1311
1312    // Determine if the division can be folded into the operands of
1313    // its operands.
1314    // TODO: Generalize this to non-constants by using known-bits information.
1315    const Type *Ty = LHS->getType();
1316    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1317    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1318    // For non-power-of-two values, effectively round the value up to the
1319    // nearest power of two.
1320    if (!RHSC->getValue()->getValue().isPowerOf2())
1321      ++MaxShiftAmt;
1322    const IntegerType *ExtTy =
1323      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1324    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1325    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1326      if (const SCEVConstant *Step =
1327            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1328        if (!Step->getValue()->getValue()
1329              .urem(RHSC->getValue()->getValue()) &&
1330            getTruncateExpr(getZeroExtendExpr(AR, ExtTy), Ty) == AR) {
1331          std::vector<SCEVHandle> Operands;
1332          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1333            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1334          return getAddRecExpr(Operands, AR->getLoop());
1335        }
1336    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1337    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS))
1338      if (getTruncateExpr(getZeroExtendExpr(M, ExtTy), Ty) == M)
1339        // Find an operand that's safely divisible.
1340        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1341          SCEVHandle Op = M->getOperand(i);
1342          SCEVHandle Div = getUDivExpr(Op, RHSC);
1343          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1344            std::vector<SCEVHandle> Operands = M->getOperands();
1345            Operands[i] = Div;
1346            return getMulExpr(Operands);
1347          }
1348        }
1349    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1350    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS))
1351      if (getTruncateExpr(getZeroExtendExpr(A, ExtTy), Ty) == A) {
1352        std::vector<SCEVHandle> Operands;
1353        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1354          SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1355          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1356            break;
1357          Operands.push_back(Op);
1358        }
1359        if (Operands.size() == A->getNumOperands())
1360          return getAddExpr(Operands);
1361      }
1362
1363    // Fold if both operands are constant.
1364    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1365      Constant *LHSCV = LHSC->getValue();
1366      Constant *RHSCV = RHSC->getValue();
1367      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1368    }
1369  }
1370
1371  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1372  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1373  return Result;
1374}
1375
1376
1377/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1378/// specified loop.  Simplify the expression as much as possible.
1379SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1380                               const SCEVHandle &Step, const Loop *L) {
1381  std::vector<SCEVHandle> Operands;
1382  Operands.push_back(Start);
1383  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1384    if (StepChrec->getLoop() == L) {
1385      Operands.insert(Operands.end(), StepChrec->op_begin(),
1386                      StepChrec->op_end());
1387      return getAddRecExpr(Operands, L);
1388    }
1389
1390  Operands.push_back(Step);
1391  return getAddRecExpr(Operands, L);
1392}
1393
1394/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1395/// specified loop.  Simplify the expression as much as possible.
1396SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1397                                          const Loop *L) {
1398  if (Operands.size() == 1) return Operands[0];
1399
1400  if (Operands.back()->isZero()) {
1401    Operands.pop_back();
1402    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1403  }
1404
1405  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1406  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1407    const Loop* NestedLoop = NestedAR->getLoop();
1408    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1409      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1410                                             NestedAR->op_end());
1411      SCEVHandle NestedARHandle(NestedAR);
1412      Operands[0] = NestedAR->getStart();
1413      NestedOperands[0] = getAddRecExpr(Operands, L);
1414      return getAddRecExpr(NestedOperands, NestedLoop);
1415    }
1416  }
1417
1418  std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1419  SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
1420  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1421  return Result;
1422}
1423
1424SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1425                                        const SCEVHandle &RHS) {
1426  std::vector<SCEVHandle> Ops;
1427  Ops.push_back(LHS);
1428  Ops.push_back(RHS);
1429  return getSMaxExpr(Ops);
1430}
1431
1432SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1433  assert(!Ops.empty() && "Cannot get empty smax!");
1434  if (Ops.size() == 1) return Ops[0];
1435
1436  // Sort by complexity, this groups all similar expression types together.
1437  GroupByComplexity(Ops, LI);
1438
1439  // If there are any constants, fold them together.
1440  unsigned Idx = 0;
1441  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1442    ++Idx;
1443    assert(Idx < Ops.size());
1444    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1445      // We found two constants, fold them together!
1446      ConstantInt *Fold = ConstantInt::get(
1447                              APIntOps::smax(LHSC->getValue()->getValue(),
1448                                             RHSC->getValue()->getValue()));
1449      Ops[0] = getConstant(Fold);
1450      Ops.erase(Ops.begin()+1);  // Erase the folded element
1451      if (Ops.size() == 1) return Ops[0];
1452      LHSC = cast<SCEVConstant>(Ops[0]);
1453    }
1454
1455    // If we are left with a constant -inf, strip it off.
1456    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1457      Ops.erase(Ops.begin());
1458      --Idx;
1459    }
1460  }
1461
1462  if (Ops.size() == 1) return Ops[0];
1463
1464  // Find the first SMax
1465  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1466    ++Idx;
1467
1468  // Check to see if one of the operands is an SMax. If so, expand its operands
1469  // onto our operand list, and recurse to simplify.
1470  if (Idx < Ops.size()) {
1471    bool DeletedSMax = false;
1472    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1473      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1474      Ops.erase(Ops.begin()+Idx);
1475      DeletedSMax = true;
1476    }
1477
1478    if (DeletedSMax)
1479      return getSMaxExpr(Ops);
1480  }
1481
1482  // Okay, check to see if the same value occurs in the operand list twice.  If
1483  // so, delete one.  Since we sorted the list, these values are required to
1484  // be adjacent.
1485  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1486    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1487      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1488      --i; --e;
1489    }
1490
1491  if (Ops.size() == 1) return Ops[0];
1492
1493  assert(!Ops.empty() && "Reduced smax down to nothing!");
1494
1495  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1496  // already have one, otherwise create a new one.
1497  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1498  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1499                                                                 SCEVOps)];
1500  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1501  return Result;
1502}
1503
1504SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1505                                        const SCEVHandle &RHS) {
1506  std::vector<SCEVHandle> Ops;
1507  Ops.push_back(LHS);
1508  Ops.push_back(RHS);
1509  return getUMaxExpr(Ops);
1510}
1511
1512SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1513  assert(!Ops.empty() && "Cannot get empty umax!");
1514  if (Ops.size() == 1) return Ops[0];
1515
1516  // Sort by complexity, this groups all similar expression types together.
1517  GroupByComplexity(Ops, LI);
1518
1519  // If there are any constants, fold them together.
1520  unsigned Idx = 0;
1521  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1522    ++Idx;
1523    assert(Idx < Ops.size());
1524    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1525      // We found two constants, fold them together!
1526      ConstantInt *Fold = ConstantInt::get(
1527                              APIntOps::umax(LHSC->getValue()->getValue(),
1528                                             RHSC->getValue()->getValue()));
1529      Ops[0] = getConstant(Fold);
1530      Ops.erase(Ops.begin()+1);  // Erase the folded element
1531      if (Ops.size() == 1) return Ops[0];
1532      LHSC = cast<SCEVConstant>(Ops[0]);
1533    }
1534
1535    // If we are left with a constant zero, strip it off.
1536    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1537      Ops.erase(Ops.begin());
1538      --Idx;
1539    }
1540  }
1541
1542  if (Ops.size() == 1) return Ops[0];
1543
1544  // Find the first UMax
1545  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1546    ++Idx;
1547
1548  // Check to see if one of the operands is a UMax. If so, expand its operands
1549  // onto our operand list, and recurse to simplify.
1550  if (Idx < Ops.size()) {
1551    bool DeletedUMax = false;
1552    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1553      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1554      Ops.erase(Ops.begin()+Idx);
1555      DeletedUMax = true;
1556    }
1557
1558    if (DeletedUMax)
1559      return getUMaxExpr(Ops);
1560  }
1561
1562  // Okay, check to see if the same value occurs in the operand list twice.  If
1563  // so, delete one.  Since we sorted the list, these values are required to
1564  // be adjacent.
1565  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1566    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1567      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1568      --i; --e;
1569    }
1570
1571  if (Ops.size() == 1) return Ops[0];
1572
1573  assert(!Ops.empty() && "Reduced umax down to nothing!");
1574
1575  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1576  // already have one, otherwise create a new one.
1577  std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
1578  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1579                                                                 SCEVOps)];
1580  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1581  return Result;
1582}
1583
1584SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1585  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1586    return getConstant(CI);
1587  if (isa<ConstantPointerNull>(V))
1588    return getIntegerSCEV(0, V->getType());
1589  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1590  if (Result == 0) Result = new SCEVUnknown(V);
1591  return Result;
1592}
1593
1594//===----------------------------------------------------------------------===//
1595//            Basic SCEV Analysis and PHI Idiom Recognition Code
1596//
1597
1598/// isSCEVable - Test if values of the given type are analyzable within
1599/// the SCEV framework. This primarily includes integer types, and it
1600/// can optionally include pointer types if the ScalarEvolution class
1601/// has access to target-specific information.
1602bool ScalarEvolution::isSCEVable(const Type *Ty) const {
1603  // Integers are always SCEVable.
1604  if (Ty->isInteger())
1605    return true;
1606
1607  // Pointers are SCEVable if TargetData information is available
1608  // to provide pointer size information.
1609  if (isa<PointerType>(Ty))
1610    return TD != NULL;
1611
1612  // Otherwise it's not SCEVable.
1613  return false;
1614}
1615
1616/// getTypeSizeInBits - Return the size in bits of the specified type,
1617/// for which isSCEVable must return true.
1618uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
1619  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1620
1621  // If we have a TargetData, use it!
1622  if (TD)
1623    return TD->getTypeSizeInBits(Ty);
1624
1625  // Otherwise, we support only integer types.
1626  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1627  return Ty->getPrimitiveSizeInBits();
1628}
1629
1630/// getEffectiveSCEVType - Return a type with the same bitwidth as
1631/// the given type and which represents how SCEV will treat the given
1632/// type, for which isSCEVable must return true. For pointer types,
1633/// this is the pointer-sized integer type.
1634const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
1635  assert(isSCEVable(Ty) && "Type is not SCEVable!");
1636
1637  if (Ty->isInteger())
1638    return Ty;
1639
1640  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1641  return TD->getIntPtrType();
1642}
1643
1644SCEVHandle ScalarEvolution::getCouldNotCompute() {
1645  return UnknownValue;
1646}
1647
1648/// hasSCEV - Return true if the SCEV for this value has already been
1649/// computed.
1650bool ScalarEvolution::hasSCEV(Value *V) const {
1651  return Scalars.count(V);
1652}
1653
1654/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1655/// expression and create a new one.
1656SCEVHandle ScalarEvolution::getSCEV(Value *V) {
1657  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
1658
1659  std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
1660  if (I != Scalars.end()) return I->second;
1661  SCEVHandle S = createSCEV(V);
1662  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
1663  return S;
1664}
1665
1666/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1667/// specified signed integer value and return a SCEV for the constant.
1668SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1669  Ty = getEffectiveSCEVType(Ty);
1670  Constant *C;
1671  if (Val == 0)
1672    C = Constant::getNullValue(Ty);
1673  else if (Ty->isFloatingPoint())
1674    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1675                                APFloat::IEEEdouble, Val));
1676  else
1677    C = ConstantInt::get(Ty, Val);
1678  return getUnknown(C);
1679}
1680
1681/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1682///
1683SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
1684  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1685    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
1686
1687  const Type *Ty = V->getType();
1688  Ty = getEffectiveSCEVType(Ty);
1689  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
1690}
1691
1692/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
1693SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
1694  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
1695    return getUnknown(ConstantExpr::getNot(VC->getValue()));
1696
1697  const Type *Ty = V->getType();
1698  Ty = getEffectiveSCEVType(Ty);
1699  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
1700  return getMinusSCEV(AllOnes, V);
1701}
1702
1703/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1704///
1705SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
1706                                         const SCEVHandle &RHS) {
1707  // X - Y --> X + -Y
1708  return getAddExpr(LHS, getNegativeSCEV(RHS));
1709}
1710
1711/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1712/// input value to the specified type.  If the type must be extended, it is zero
1713/// extended.
1714SCEVHandle
1715ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
1716                                         const Type *Ty) {
1717  const Type *SrcTy = V->getType();
1718  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1719         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1720         "Cannot truncate or zero extend with non-integer arguments!");
1721  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1722    return V;  // No conversion
1723  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1724    return getTruncateExpr(V, Ty);
1725  return getZeroExtendExpr(V, Ty);
1726}
1727
1728/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1729/// input value to the specified type.  If the type must be extended, it is sign
1730/// extended.
1731SCEVHandle
1732ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
1733                                         const Type *Ty) {
1734  const Type *SrcTy = V->getType();
1735  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1736         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1737         "Cannot truncate or zero extend with non-integer arguments!");
1738  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1739    return V;  // No conversion
1740  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
1741    return getTruncateExpr(V, Ty);
1742  return getSignExtendExpr(V, Ty);
1743}
1744
1745/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1746/// the specified instruction and replaces any references to the symbolic value
1747/// SymName with the specified value.  This is used during PHI resolution.
1748void ScalarEvolution::
1749ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1750                                 const SCEVHandle &NewVal) {
1751  std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1752    Scalars.find(SCEVCallbackVH(I, this));
1753  if (SI == Scalars.end()) return;
1754
1755  SCEVHandle NV =
1756    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
1757  if (NV == SI->second) return;  // No change.
1758
1759  SI->second = NV;       // Update the scalars map!
1760
1761  // Any instruction values that use this instruction might also need to be
1762  // updated!
1763  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1764       UI != E; ++UI)
1765    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1766}
1767
1768/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1769/// a loop header, making it a potential recurrence, or it doesn't.
1770///
1771SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
1772  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1773    if (const Loop *L = LI->getLoopFor(PN->getParent()))
1774      if (L->getHeader() == PN->getParent()) {
1775        // If it lives in the loop header, it has two incoming values, one
1776        // from outside the loop, and one from inside.
1777        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1778        unsigned BackEdge     = IncomingEdge^1;
1779
1780        // While we are analyzing this PHI node, handle its value symbolically.
1781        SCEVHandle SymbolicName = getUnknown(PN);
1782        assert(Scalars.find(PN) == Scalars.end() &&
1783               "PHI node already processed?");
1784        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
1785
1786        // Using this symbolic name for the PHI, analyze the value coming around
1787        // the back-edge.
1788        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1789
1790        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1791        // has a special value for the first iteration of the loop.
1792
1793        // If the value coming around the backedge is an add with the symbolic
1794        // value we just inserted, then we found a simple induction variable!
1795        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1796          // If there is a single occurrence of the symbolic value, replace it
1797          // with a recurrence.
1798          unsigned FoundIndex = Add->getNumOperands();
1799          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1800            if (Add->getOperand(i) == SymbolicName)
1801              if (FoundIndex == e) {
1802                FoundIndex = i;
1803                break;
1804              }
1805
1806          if (FoundIndex != Add->getNumOperands()) {
1807            // Create an add with everything but the specified operand.
1808            std::vector<SCEVHandle> Ops;
1809            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1810              if (i != FoundIndex)
1811                Ops.push_back(Add->getOperand(i));
1812            SCEVHandle Accum = getAddExpr(Ops);
1813
1814            // This is not a valid addrec if the step amount is varying each
1815            // loop iteration, but is not itself an addrec in this loop.
1816            if (Accum->isLoopInvariant(L) ||
1817                (isa<SCEVAddRecExpr>(Accum) &&
1818                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1819              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1820              SCEVHandle PHISCEV  = getAddRecExpr(StartVal, Accum, L);
1821
1822              // Okay, for the entire analysis of this edge we assumed the PHI
1823              // to be symbolic.  We now need to go back and update all of the
1824              // entries for the scalars that use the PHI (except for the PHI
1825              // itself) to use the new analyzed value instead of the "symbolic"
1826              // value.
1827              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1828              return PHISCEV;
1829            }
1830          }
1831        } else if (const SCEVAddRecExpr *AddRec =
1832                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
1833          // Otherwise, this could be a loop like this:
1834          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1835          // In this case, j = {1,+,1}  and BEValue is j.
1836          // Because the other in-value of i (0) fits the evolution of BEValue
1837          // i really is an addrec evolution.
1838          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1839            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1840
1841            // If StartVal = j.start - j.stride, we can use StartVal as the
1842            // initial step of the addrec evolution.
1843            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
1844                                            AddRec->getOperand(1))) {
1845              SCEVHandle PHISCEV =
1846                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1847
1848              // Okay, for the entire analysis of this edge we assumed the PHI
1849              // to be symbolic.  We now need to go back and update all of the
1850              // entries for the scalars that use the PHI (except for the PHI
1851              // itself) to use the new analyzed value instead of the "symbolic"
1852              // value.
1853              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1854              return PHISCEV;
1855            }
1856          }
1857        }
1858
1859        return SymbolicName;
1860      }
1861
1862  // If it's not a loop phi, we can't handle it yet.
1863  return getUnknown(PN);
1864}
1865
1866/// createNodeForGEP - Expand GEP instructions into add and multiply
1867/// operations. This allows them to be analyzed by regular SCEV code.
1868///
1869SCEVHandle ScalarEvolution::createNodeForGEP(GetElementPtrInst *GEP) {
1870
1871  const Type *IntPtrTy = TD->getIntPtrType();
1872  Value *Base = GEP->getOperand(0);
1873  SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
1874  gep_type_iterator GTI = gep_type_begin(GEP);
1875  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
1876                                      E = GEP->op_end();
1877       I != E; ++I) {
1878    Value *Index = *I;
1879    // Compute the (potentially symbolic) offset in bytes for this index.
1880    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1881      // For a struct, add the member offset.
1882      const StructLayout &SL = *TD->getStructLayout(STy);
1883      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1884      uint64_t Offset = SL.getElementOffset(FieldNo);
1885      TotalOffset = getAddExpr(TotalOffset,
1886                                  getIntegerSCEV(Offset, IntPtrTy));
1887    } else {
1888      // For an array, add the element offset, explicitly scaled.
1889      SCEVHandle LocalOffset = getSCEV(Index);
1890      if (!isa<PointerType>(LocalOffset->getType()))
1891        // Getelementptr indicies are signed.
1892        LocalOffset = getTruncateOrSignExtend(LocalOffset,
1893                                              IntPtrTy);
1894      LocalOffset =
1895        getMulExpr(LocalOffset,
1896                   getIntegerSCEV(TD->getTypePaddedSize(*GTI),
1897                                  IntPtrTy));
1898      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
1899    }
1900  }
1901  return getAddExpr(getSCEV(Base), TotalOffset);
1902}
1903
1904/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1905/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1906/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1907/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1908static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
1909  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1910    return C->getValue()->getValue().countTrailingZeros();
1911
1912  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1913    return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1914                    (uint32_t)SE.getTypeSizeInBits(T->getType()));
1915
1916  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1917    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1918    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1919             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1920  }
1921
1922  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1923    uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1924    return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1925             SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
1926  }
1927
1928  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1929    // The result is the min of all operands results.
1930    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1931    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1932      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1933    return MinOpRes;
1934  }
1935
1936  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1937    // The result is the sum of all operands results.
1938    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1939    uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
1940    for (unsigned i = 1, e = M->getNumOperands();
1941         SumOpRes != BitWidth && i != e; ++i)
1942      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
1943                          BitWidth);
1944    return SumOpRes;
1945  }
1946
1947  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1948    // The result is the min of all operands results.
1949    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
1950    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1951      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
1952    return MinOpRes;
1953  }
1954
1955  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1956    // The result is the min of all operands results.
1957    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1958    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1959      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1960    return MinOpRes;
1961  }
1962
1963  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1964    // The result is the min of all operands results.
1965    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1966    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1967      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
1968    return MinOpRes;
1969  }
1970
1971  // SCEVUDivExpr, SCEVUnknown
1972  return 0;
1973}
1974
1975/// createSCEV - We know that there is no SCEV for the specified value.
1976/// Analyze the expression.
1977///
1978SCEVHandle ScalarEvolution::createSCEV(Value *V) {
1979  if (!isSCEVable(V->getType()))
1980    return getUnknown(V);
1981
1982  unsigned Opcode = Instruction::UserOp1;
1983  if (Instruction *I = dyn_cast<Instruction>(V))
1984    Opcode = I->getOpcode();
1985  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1986    Opcode = CE->getOpcode();
1987  else
1988    return getUnknown(V);
1989
1990  User *U = cast<User>(V);
1991  switch (Opcode) {
1992  case Instruction::Add:
1993    return getAddExpr(getSCEV(U->getOperand(0)),
1994                      getSCEV(U->getOperand(1)));
1995  case Instruction::Mul:
1996    return getMulExpr(getSCEV(U->getOperand(0)),
1997                      getSCEV(U->getOperand(1)));
1998  case Instruction::UDiv:
1999    return getUDivExpr(getSCEV(U->getOperand(0)),
2000                       getSCEV(U->getOperand(1)));
2001  case Instruction::Sub:
2002    return getMinusSCEV(getSCEV(U->getOperand(0)),
2003                        getSCEV(U->getOperand(1)));
2004  case Instruction::And:
2005    // For an expression like x&255 that merely masks off the high bits,
2006    // use zext(trunc(x)) as the SCEV expression.
2007    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2008      if (CI->isNullValue())
2009        return getSCEV(U->getOperand(1));
2010      if (CI->isAllOnesValue())
2011        return getSCEV(U->getOperand(0));
2012      const APInt &A = CI->getValue();
2013      unsigned Ones = A.countTrailingOnes();
2014      if (APIntOps::isMask(Ones, A))
2015        return
2016          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2017                                            IntegerType::get(Ones)),
2018                            U->getType());
2019    }
2020    break;
2021  case Instruction::Or:
2022    // If the RHS of the Or is a constant, we may have something like:
2023    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2024    // optimizations will transparently handle this case.
2025    //
2026    // In order for this transformation to be safe, the LHS must be of the
2027    // form X*(2^n) and the Or constant must be less than 2^n.
2028    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2029      SCEVHandle LHS = getSCEV(U->getOperand(0));
2030      const APInt &CIVal = CI->getValue();
2031      if (GetMinTrailingZeros(LHS, *this) >=
2032          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2033        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2034    }
2035    break;
2036  case Instruction::Xor:
2037    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2038      // If the RHS of the xor is a signbit, then this is just an add.
2039      // Instcombine turns add of signbit into xor as a strength reduction step.
2040      if (CI->getValue().isSignBit())
2041        return getAddExpr(getSCEV(U->getOperand(0)),
2042                          getSCEV(U->getOperand(1)));
2043
2044      // If the RHS of xor is -1, then this is a not operation.
2045      else if (CI->isAllOnesValue())
2046        return getNotSCEV(getSCEV(U->getOperand(0)));
2047    }
2048    break;
2049
2050  case Instruction::Shl:
2051    // Turn shift left of a constant amount into a multiply.
2052    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2053      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2054      Constant *X = ConstantInt::get(
2055        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2056      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2057    }
2058    break;
2059
2060  case Instruction::LShr:
2061    // Turn logical shift right of a constant into a unsigned divide.
2062    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2063      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2064      Constant *X = ConstantInt::get(
2065        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2066      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2067    }
2068    break;
2069
2070  case Instruction::AShr:
2071    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2072    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2073      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2074        if (L->getOpcode() == Instruction::Shl &&
2075            L->getOperand(1) == U->getOperand(1)) {
2076          unsigned BitWidth = getTypeSizeInBits(U->getType());
2077          uint64_t Amt = BitWidth - CI->getZExtValue();
2078          if (Amt == BitWidth)
2079            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2080          if (Amt > BitWidth)
2081            return getIntegerSCEV(0, U->getType()); // value is undefined
2082          return
2083            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2084                                                      IntegerType::get(Amt)),
2085                                 U->getType());
2086        }
2087    break;
2088
2089  case Instruction::Trunc:
2090    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2091
2092  case Instruction::ZExt:
2093    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2094
2095  case Instruction::SExt:
2096    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2097
2098  case Instruction::BitCast:
2099    // BitCasts are no-op casts so we just eliminate the cast.
2100    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2101      return getSCEV(U->getOperand(0));
2102    break;
2103
2104  case Instruction::IntToPtr:
2105    if (!TD) break; // Without TD we can't analyze pointers.
2106    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2107                                   TD->getIntPtrType());
2108
2109  case Instruction::PtrToInt:
2110    if (!TD) break; // Without TD we can't analyze pointers.
2111    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2112                                   U->getType());
2113
2114  case Instruction::GetElementPtr:
2115    if (!TD) break; // Without TD we can't analyze pointers.
2116    return createNodeForGEP(cast<GetElementPtrInst>(U));
2117
2118  case Instruction::PHI:
2119    return createNodeForPHI(cast<PHINode>(U));
2120
2121  case Instruction::Select:
2122    // This could be a smax or umax that was lowered earlier.
2123    // Try to recover it.
2124    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2125      Value *LHS = ICI->getOperand(0);
2126      Value *RHS = ICI->getOperand(1);
2127      switch (ICI->getPredicate()) {
2128      case ICmpInst::ICMP_SLT:
2129      case ICmpInst::ICMP_SLE:
2130        std::swap(LHS, RHS);
2131        // fall through
2132      case ICmpInst::ICMP_SGT:
2133      case ICmpInst::ICMP_SGE:
2134        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2135          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2136        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2137          // ~smax(~x, ~y) == smin(x, y).
2138          return getNotSCEV(getSMaxExpr(
2139                                   getNotSCEV(getSCEV(LHS)),
2140                                   getNotSCEV(getSCEV(RHS))));
2141        break;
2142      case ICmpInst::ICMP_ULT:
2143      case ICmpInst::ICMP_ULE:
2144        std::swap(LHS, RHS);
2145        // fall through
2146      case ICmpInst::ICMP_UGT:
2147      case ICmpInst::ICMP_UGE:
2148        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2149          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2150        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2151          // ~umax(~x, ~y) == umin(x, y)
2152          return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2153                                        getNotSCEV(getSCEV(RHS))));
2154        break;
2155      default:
2156        break;
2157      }
2158    }
2159
2160  default: // We cannot analyze this expression.
2161    break;
2162  }
2163
2164  return getUnknown(V);
2165}
2166
2167
2168
2169//===----------------------------------------------------------------------===//
2170//                   Iteration Count Computation Code
2171//
2172
2173/// getBackedgeTakenCount - If the specified loop has a predictable
2174/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2175/// object. The backedge-taken count is the number of times the loop header
2176/// will be branched to from within the loop. This is one less than the
2177/// trip count of the loop, since it doesn't count the first iteration,
2178/// when the header is branched to from outside the loop.
2179///
2180/// Note that it is not valid to call this method on a loop without a
2181/// loop-invariant backedge-taken count (see
2182/// hasLoopInvariantBackedgeTakenCount).
2183///
2184SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
2185  return getBackedgeTakenInfo(L).Exact;
2186}
2187
2188/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2189/// return the least SCEV value that is known never to be less than the
2190/// actual backedge taken count.
2191SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2192  return getBackedgeTakenInfo(L).Max;
2193}
2194
2195const ScalarEvolution::BackedgeTakenInfo &
2196ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
2197  // Initially insert a CouldNotCompute for this loop. If the insertion
2198  // succeeds, procede to actually compute a backedge-taken count and
2199  // update the value. The temporary CouldNotCompute value tells SCEV
2200  // code elsewhere that it shouldn't attempt to request a new
2201  // backedge-taken count, which could result in infinite recursion.
2202  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
2203    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2204  if (Pair.second) {
2205    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
2206    if (ItCount.Exact != UnknownValue) {
2207      assert(ItCount.Exact->isLoopInvariant(L) &&
2208             ItCount.Max->isLoopInvariant(L) &&
2209             "Computed trip count isn't loop invariant for loop!");
2210      ++NumTripCountsComputed;
2211
2212      // Update the value in the map.
2213      Pair.first->second = ItCount;
2214    } else if (isa<PHINode>(L->getHeader()->begin())) {
2215      // Only count loops that have phi nodes as not being computable.
2216      ++NumTripCountsNotComputed;
2217    }
2218
2219    // Now that we know more about the trip count for this loop, forget any
2220    // existing SCEV values for PHI nodes in this loop since they are only
2221    // conservative estimates made without the benefit
2222    // of trip count information.
2223    if (ItCount.hasAnyInfo())
2224      forgetLoopPHIs(L);
2225  }
2226  return Pair.first->second;
2227}
2228
2229/// forgetLoopBackedgeTakenCount - This method should be called by the
2230/// client when it has changed a loop in a way that may effect
2231/// ScalarEvolution's ability to compute a trip count, or if the loop
2232/// is deleted.
2233void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
2234  BackedgeTakenCounts.erase(L);
2235  forgetLoopPHIs(L);
2236}
2237
2238/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2239/// PHI nodes in the given loop. This is used when the trip count of
2240/// the loop may have changed.
2241void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
2242  BasicBlock *Header = L->getHeader();
2243
2244  SmallVector<Instruction *, 16> Worklist;
2245  for (BasicBlock::iterator I = Header->begin();
2246       PHINode *PN = dyn_cast<PHINode>(I); ++I)
2247    Worklist.push_back(PN);
2248
2249  while (!Worklist.empty()) {
2250    Instruction *I = Worklist.pop_back_val();
2251    if (Scalars.erase(I))
2252      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2253           UI != UE; ++UI)
2254        Worklist.push_back(cast<Instruction>(UI));
2255  }
2256}
2257
2258/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2259/// of the specified loop will execute.
2260ScalarEvolution::BackedgeTakenInfo
2261ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
2262  // If the loop has a non-one exit block count, we can't analyze it.
2263  SmallVector<BasicBlock*, 8> ExitBlocks;
2264  L->getExitBlocks(ExitBlocks);
2265  if (ExitBlocks.size() != 1) return UnknownValue;
2266
2267  // Okay, there is one exit block.  Try to find the condition that causes the
2268  // loop to be exited.
2269  BasicBlock *ExitBlock = ExitBlocks[0];
2270
2271  BasicBlock *ExitingBlock = 0;
2272  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2273       PI != E; ++PI)
2274    if (L->contains(*PI)) {
2275      if (ExitingBlock == 0)
2276        ExitingBlock = *PI;
2277      else
2278        return UnknownValue;   // More than one block exiting!
2279    }
2280  assert(ExitingBlock && "No exits from loop, something is broken!");
2281
2282  // Okay, we've computed the exiting block.  See what condition causes us to
2283  // exit.
2284  //
2285  // FIXME: we should be able to handle switch instructions (with a single exit)
2286  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2287  if (ExitBr == 0) return UnknownValue;
2288  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2289
2290  // At this point, we know we have a conditional branch that determines whether
2291  // the loop is exited.  However, we don't know if the branch is executed each
2292  // time through the loop.  If not, then the execution count of the branch will
2293  // not be equal to the trip count of the loop.
2294  //
2295  // Currently we check for this by checking to see if the Exit branch goes to
2296  // the loop header.  If so, we know it will always execute the same number of
2297  // times as the loop.  We also handle the case where the exit block *is* the
2298  // loop header.  This is common for un-rotated loops.  More extensive analysis
2299  // could be done to handle more cases here.
2300  if (ExitBr->getSuccessor(0) != L->getHeader() &&
2301      ExitBr->getSuccessor(1) != L->getHeader() &&
2302      ExitBr->getParent() != L->getHeader())
2303    return UnknownValue;
2304
2305  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2306
2307  // If it's not an integer comparison then compute it the hard way.
2308  // Note that ICmpInst deals with pointer comparisons too so we must check
2309  // the type of the operand.
2310  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
2311    return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
2312                                          ExitBr->getSuccessor(0) == ExitBlock);
2313
2314  // If the condition was exit on true, convert the condition to exit on false
2315  ICmpInst::Predicate Cond;
2316  if (ExitBr->getSuccessor(1) == ExitBlock)
2317    Cond = ExitCond->getPredicate();
2318  else
2319    Cond = ExitCond->getInversePredicate();
2320
2321  // Handle common loops like: for (X = "string"; *X; ++X)
2322  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2323    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2324      SCEVHandle ItCnt =
2325        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
2326      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2327    }
2328
2329  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2330  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2331
2332  // Try to evaluate any dependencies out of the loop.
2333  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2334  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2335  Tmp = getSCEVAtScope(RHS, L);
2336  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2337
2338  // At this point, we would like to compute how many iterations of the
2339  // loop the predicate will return true for these inputs.
2340  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2341    // If there is a loop-invariant, force it into the RHS.
2342    std::swap(LHS, RHS);
2343    Cond = ICmpInst::getSwappedPredicate(Cond);
2344  }
2345
2346  // If we have a comparison of a chrec against a constant, try to use value
2347  // ranges to answer this query.
2348  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2349    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2350      if (AddRec->getLoop() == L) {
2351        // Form the comparison range using the constant of the correct type so
2352        // that the ConstantRange class knows to do a signed or unsigned
2353        // comparison.
2354        ConstantInt *CompVal = RHSC->getValue();
2355        const Type *RealTy = ExitCond->getOperand(0)->getType();
2356        CompVal = dyn_cast<ConstantInt>(
2357          ConstantExpr::getBitCast(CompVal, RealTy));
2358        if (CompVal) {
2359          // Form the constant range.
2360          ConstantRange CompRange(
2361              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2362
2363          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2364          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2365        }
2366      }
2367
2368  switch (Cond) {
2369  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2370    // Convert to: while (X-Y != 0)
2371    SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
2372    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2373    break;
2374  }
2375  case ICmpInst::ICMP_EQ: {
2376    // Convert to: while (X-Y == 0)           // while (X == Y)
2377    SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
2378    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2379    break;
2380  }
2381  case ICmpInst::ICMP_SLT: {
2382    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2383    if (BTI.hasAnyInfo()) return BTI;
2384    break;
2385  }
2386  case ICmpInst::ICMP_SGT: {
2387    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2388                                             getNotSCEV(RHS), L, true);
2389    if (BTI.hasAnyInfo()) return BTI;
2390    break;
2391  }
2392  case ICmpInst::ICMP_ULT: {
2393    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2394    if (BTI.hasAnyInfo()) return BTI;
2395    break;
2396  }
2397  case ICmpInst::ICMP_UGT: {
2398    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2399                                             getNotSCEV(RHS), L, false);
2400    if (BTI.hasAnyInfo()) return BTI;
2401    break;
2402  }
2403  default:
2404#if 0
2405    errs() << "ComputeBackedgeTakenCount ";
2406    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2407      errs() << "[unsigned] ";
2408    errs() << *LHS << "   "
2409         << Instruction::getOpcodeName(Instruction::ICmp)
2410         << "   " << *RHS << "\n";
2411#endif
2412    break;
2413  }
2414  return
2415    ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2416                                          ExitBr->getSuccessor(0) == ExitBlock);
2417}
2418
2419static ConstantInt *
2420EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2421                                ScalarEvolution &SE) {
2422  SCEVHandle InVal = SE.getConstant(C);
2423  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2424  assert(isa<SCEVConstant>(Val) &&
2425         "Evaluation of SCEV at constant didn't fold correctly?");
2426  return cast<SCEVConstant>(Val)->getValue();
2427}
2428
2429/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2430/// and a GEP expression (missing the pointer index) indexing into it, return
2431/// the addressed element of the initializer or null if the index expression is
2432/// invalid.
2433static Constant *
2434GetAddressedElementFromGlobal(GlobalVariable *GV,
2435                              const std::vector<ConstantInt*> &Indices) {
2436  Constant *Init = GV->getInitializer();
2437  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2438    uint64_t Idx = Indices[i]->getZExtValue();
2439    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2440      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2441      Init = cast<Constant>(CS->getOperand(Idx));
2442    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2443      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2444      Init = cast<Constant>(CA->getOperand(Idx));
2445    } else if (isa<ConstantAggregateZero>(Init)) {
2446      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2447        assert(Idx < STy->getNumElements() && "Bad struct index!");
2448        Init = Constant::getNullValue(STy->getElementType(Idx));
2449      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2450        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2451        Init = Constant::getNullValue(ATy->getElementType());
2452      } else {
2453        assert(0 && "Unknown constant aggregate type!");
2454      }
2455      return 0;
2456    } else {
2457      return 0; // Unknown initializer type
2458    }
2459  }
2460  return Init;
2461}
2462
2463/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2464/// 'icmp op load X, cst', try to see if we can compute the backedge
2465/// execution count.
2466SCEVHandle ScalarEvolution::
2467ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2468                                             const Loop *L,
2469                                             ICmpInst::Predicate predicate) {
2470  if (LI->isVolatile()) return UnknownValue;
2471
2472  // Check to see if the loaded pointer is a getelementptr of a global.
2473  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2474  if (!GEP) return UnknownValue;
2475
2476  // Make sure that it is really a constant global we are gepping, with an
2477  // initializer, and make sure the first IDX is really 0.
2478  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2479  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2480      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2481      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2482    return UnknownValue;
2483
2484  // Okay, we allow one non-constant index into the GEP instruction.
2485  Value *VarIdx = 0;
2486  std::vector<ConstantInt*> Indexes;
2487  unsigned VarIdxNum = 0;
2488  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2489    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2490      Indexes.push_back(CI);
2491    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2492      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2493      VarIdx = GEP->getOperand(i);
2494      VarIdxNum = i-2;
2495      Indexes.push_back(0);
2496    }
2497
2498  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2499  // Check to see if X is a loop variant variable value now.
2500  SCEVHandle Idx = getSCEV(VarIdx);
2501  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2502  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2503
2504  // We can only recognize very limited forms of loop index expressions, in
2505  // particular, only affine AddRec's like {C1,+,C2}.
2506  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2507  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2508      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2509      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2510    return UnknownValue;
2511
2512  unsigned MaxSteps = MaxBruteForceIterations;
2513  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2514    ConstantInt *ItCst =
2515      ConstantInt::get(IdxExpr->getType(), IterationNum);
2516    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
2517
2518    // Form the GEP offset.
2519    Indexes[VarIdxNum] = Val;
2520
2521    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2522    if (Result == 0) break;  // Cannot compute!
2523
2524    // Evaluate the condition for this iteration.
2525    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2526    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2527    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2528#if 0
2529      errs() << "\n***\n*** Computed loop count " << *ItCst
2530             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2531             << "***\n";
2532#endif
2533      ++NumArrayLenItCounts;
2534      return getConstant(ItCst);   // Found terminating iteration!
2535    }
2536  }
2537  return UnknownValue;
2538}
2539
2540
2541/// CanConstantFold - Return true if we can constant fold an instruction of the
2542/// specified type, assuming that all operands were constants.
2543static bool CanConstantFold(const Instruction *I) {
2544  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2545      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2546    return true;
2547
2548  if (const CallInst *CI = dyn_cast<CallInst>(I))
2549    if (const Function *F = CI->getCalledFunction())
2550      return canConstantFoldCallTo(F);
2551  return false;
2552}
2553
2554/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2555/// in the loop that V is derived from.  We allow arbitrary operations along the
2556/// way, but the operands of an operation must either be constants or a value
2557/// derived from a constant PHI.  If this expression does not fit with these
2558/// constraints, return null.
2559static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2560  // If this is not an instruction, or if this is an instruction outside of the
2561  // loop, it can't be derived from a loop PHI.
2562  Instruction *I = dyn_cast<Instruction>(V);
2563  if (I == 0 || !L->contains(I->getParent())) return 0;
2564
2565  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2566    if (L->getHeader() == I->getParent())
2567      return PN;
2568    else
2569      // We don't currently keep track of the control flow needed to evaluate
2570      // PHIs, so we cannot handle PHIs inside of loops.
2571      return 0;
2572  }
2573
2574  // If we won't be able to constant fold this expression even if the operands
2575  // are constants, return early.
2576  if (!CanConstantFold(I)) return 0;
2577
2578  // Otherwise, we can evaluate this instruction if all of its operands are
2579  // constant or derived from a PHI node themselves.
2580  PHINode *PHI = 0;
2581  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2582    if (!(isa<Constant>(I->getOperand(Op)) ||
2583          isa<GlobalValue>(I->getOperand(Op)))) {
2584      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2585      if (P == 0) return 0;  // Not evolving from PHI
2586      if (PHI == 0)
2587        PHI = P;
2588      else if (PHI != P)
2589        return 0;  // Evolving from multiple different PHIs.
2590    }
2591
2592  // This is a expression evolving from a constant PHI!
2593  return PHI;
2594}
2595
2596/// EvaluateExpression - Given an expression that passes the
2597/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2598/// in the loop has the value PHIVal.  If we can't fold this expression for some
2599/// reason, return null.
2600static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2601  if (isa<PHINode>(V)) return PHIVal;
2602  if (Constant *C = dyn_cast<Constant>(V)) return C;
2603  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
2604  Instruction *I = cast<Instruction>(V);
2605
2606  std::vector<Constant*> Operands;
2607  Operands.resize(I->getNumOperands());
2608
2609  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2610    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2611    if (Operands[i] == 0) return 0;
2612  }
2613
2614  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2615    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2616                                           &Operands[0], Operands.size());
2617  else
2618    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2619                                    &Operands[0], Operands.size());
2620}
2621
2622/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2623/// in the header of its containing loop, we know the loop executes a
2624/// constant number of times, and the PHI node is just a recurrence
2625/// involving constants, fold it.
2626Constant *ScalarEvolution::
2627getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
2628  std::map<PHINode*, Constant*>::iterator I =
2629    ConstantEvolutionLoopExitValue.find(PN);
2630  if (I != ConstantEvolutionLoopExitValue.end())
2631    return I->second;
2632
2633  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
2634    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2635
2636  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2637
2638  // Since the loop is canonicalized, the PHI node must have two entries.  One
2639  // entry must be a constant (coming in from outside of the loop), and the
2640  // second must be derived from the same PHI.
2641  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2642  Constant *StartCST =
2643    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2644  if (StartCST == 0)
2645    return RetVal = 0;  // Must be a constant.
2646
2647  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2648  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2649  if (PN2 != PN)
2650    return RetVal = 0;  // Not derived from same PHI.
2651
2652  // Execute the loop symbolically to determine the exit value.
2653  if (BEs.getActiveBits() >= 32)
2654    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2655
2656  unsigned NumIterations = BEs.getZExtValue(); // must be in range
2657  unsigned IterationNum = 0;
2658  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2659    if (IterationNum == NumIterations)
2660      return RetVal = PHIVal;  // Got exit value!
2661
2662    // Compute the value of the PHI node for the next iteration.
2663    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2664    if (NextPHI == PHIVal)
2665      return RetVal = NextPHI;  // Stopped evolving!
2666    if (NextPHI == 0)
2667      return 0;        // Couldn't evaluate!
2668    PHIVal = NextPHI;
2669  }
2670}
2671
2672/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
2673/// constant number of times (the condition evolves only from constants),
2674/// try to evaluate a few iterations of the loop until we get the exit
2675/// condition gets a value of ExitWhen (true or false).  If we cannot
2676/// evaluate the trip count of the loop, return UnknownValue.
2677SCEVHandle ScalarEvolution::
2678ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2679  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2680  if (PN == 0) return UnknownValue;
2681
2682  // Since the loop is canonicalized, the PHI node must have two entries.  One
2683  // entry must be a constant (coming in from outside of the loop), and the
2684  // second must be derived from the same PHI.
2685  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2686  Constant *StartCST =
2687    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2688  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2689
2690  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2691  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2692  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2693
2694  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2695  // the loop symbolically to determine when the condition gets a value of
2696  // "ExitWhen".
2697  unsigned IterationNum = 0;
2698  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2699  for (Constant *PHIVal = StartCST;
2700       IterationNum != MaxIterations; ++IterationNum) {
2701    ConstantInt *CondVal =
2702      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2703
2704    // Couldn't symbolically evaluate.
2705    if (!CondVal) return UnknownValue;
2706
2707    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2708      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2709      ++NumBruteForceTripCountsComputed;
2710      return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2711    }
2712
2713    // Compute the value of the PHI node for the next iteration.
2714    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2715    if (NextPHI == 0 || NextPHI == PHIVal)
2716      return UnknownValue;  // Couldn't evaluate or not making progress...
2717    PHIVal = NextPHI;
2718  }
2719
2720  // Too many iterations were needed to evaluate.
2721  return UnknownValue;
2722}
2723
2724/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2725/// at the specified scope in the program.  The L value specifies a loop
2726/// nest to evaluate the expression at, where null is the top-level or a
2727/// specified loop is immediately inside of the loop.
2728///
2729/// This method can be used to compute the exit value for a variable defined
2730/// in a loop by querying what the value will hold in the parent loop.
2731///
2732/// If this value is not computable at this scope, a SCEVCouldNotCompute
2733/// object is returned.
2734SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
2735  // FIXME: this should be turned into a virtual method on SCEV!
2736
2737  if (isa<SCEVConstant>(V)) return V;
2738
2739  // If this instruction is evolved from a constant-evolving PHI, compute the
2740  // exit value from the loop without using SCEVs.
2741  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2742    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2743      const Loop *LI = (*this->LI)[I->getParent()];
2744      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2745        if (PHINode *PN = dyn_cast<PHINode>(I))
2746          if (PN->getParent() == LI->getHeader()) {
2747            // Okay, there is no closed form solution for the PHI node.  Check
2748            // to see if the loop that contains it has a known backedge-taken
2749            // count.  If so, we may be able to force computation of the exit
2750            // value.
2751            SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2752            if (const SCEVConstant *BTCC =
2753                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
2754              // Okay, we know how many times the containing loop executes.  If
2755              // this is a constant evolving PHI node, get the final value at
2756              // the specified iteration number.
2757              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2758                                                   BTCC->getValue()->getValue(),
2759                                                               LI);
2760              if (RV) return getUnknown(RV);
2761            }
2762          }
2763
2764      // Okay, this is an expression that we cannot symbolically evaluate
2765      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2766      // the arguments into constants, and if so, try to constant propagate the
2767      // result.  This is particularly useful for computing loop exit values.
2768      if (CanConstantFold(I)) {
2769        std::vector<Constant*> Operands;
2770        Operands.reserve(I->getNumOperands());
2771        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2772          Value *Op = I->getOperand(i);
2773          if (Constant *C = dyn_cast<Constant>(Op)) {
2774            Operands.push_back(C);
2775          } else {
2776            // If any of the operands is non-constant and if they are
2777            // non-integer and non-pointer, don't even try to analyze them
2778            // with scev techniques.
2779            if (!isSCEVable(Op->getType()))
2780              return V;
2781
2782            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2783            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
2784              Constant *C = SC->getValue();
2785              if (C->getType() != Op->getType())
2786                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2787                                                                  Op->getType(),
2788                                                                  false),
2789                                          C, Op->getType());
2790              Operands.push_back(C);
2791            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2792              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
2793                if (C->getType() != Op->getType())
2794                  C =
2795                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
2796                                                                  Op->getType(),
2797                                                                  false),
2798                                          C, Op->getType());
2799                Operands.push_back(C);
2800              } else
2801                return V;
2802            } else {
2803              return V;
2804            }
2805          }
2806        }
2807
2808        Constant *C;
2809        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2810          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2811                                              &Operands[0], Operands.size());
2812        else
2813          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2814                                       &Operands[0], Operands.size());
2815        return getUnknown(C);
2816      }
2817    }
2818
2819    // This is some other type of SCEVUnknown, just return it.
2820    return V;
2821  }
2822
2823  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2824    // Avoid performing the look-up in the common case where the specified
2825    // expression has no loop-variant portions.
2826    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2827      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2828      if (OpAtScope != Comm->getOperand(i)) {
2829        if (OpAtScope == UnknownValue) return UnknownValue;
2830        // Okay, at least one of these operands is loop variant but might be
2831        // foldable.  Build a new instance of the folded commutative expression.
2832        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2833        NewOps.push_back(OpAtScope);
2834
2835        for (++i; i != e; ++i) {
2836          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2837          if (OpAtScope == UnknownValue) return UnknownValue;
2838          NewOps.push_back(OpAtScope);
2839        }
2840        if (isa<SCEVAddExpr>(Comm))
2841          return getAddExpr(NewOps);
2842        if (isa<SCEVMulExpr>(Comm))
2843          return getMulExpr(NewOps);
2844        if (isa<SCEVSMaxExpr>(Comm))
2845          return getSMaxExpr(NewOps);
2846        if (isa<SCEVUMaxExpr>(Comm))
2847          return getUMaxExpr(NewOps);
2848        assert(0 && "Unknown commutative SCEV type!");
2849      }
2850    }
2851    // If we got here, all operands are loop invariant.
2852    return Comm;
2853  }
2854
2855  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2856    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2857    if (LHS == UnknownValue) return LHS;
2858    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2859    if (RHS == UnknownValue) return RHS;
2860    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2861      return Div;   // must be loop invariant
2862    return getUDivExpr(LHS, RHS);
2863  }
2864
2865  // If this is a loop recurrence for a loop that does not contain L, then we
2866  // are dealing with the final value computed by the loop.
2867  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2868    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2869      // To evaluate this recurrence, we need to know how many times the AddRec
2870      // loop iterates.  Compute this now.
2871      SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2872      if (BackedgeTakenCount == UnknownValue) return UnknownValue;
2873
2874      // Then, evaluate the AddRec.
2875      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
2876    }
2877    return UnknownValue;
2878  }
2879
2880  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
2881    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2882    if (Op == UnknownValue) return Op;
2883    if (Op == Cast->getOperand())
2884      return Cast;  // must be loop invariant
2885    return getZeroExtendExpr(Op, Cast->getType());
2886  }
2887
2888  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
2889    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2890    if (Op == UnknownValue) return Op;
2891    if (Op == Cast->getOperand())
2892      return Cast;  // must be loop invariant
2893    return getSignExtendExpr(Op, Cast->getType());
2894  }
2895
2896  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
2897    SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
2898    if (Op == UnknownValue) return Op;
2899    if (Op == Cast->getOperand())
2900      return Cast;  // must be loop invariant
2901    return getTruncateExpr(Op, Cast->getType());
2902  }
2903
2904  assert(0 && "Unknown SCEV type!");
2905}
2906
2907/// getSCEVAtScope - This is a convenience function which does
2908/// getSCEVAtScope(getSCEV(V), L).
2909SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2910  return getSCEVAtScope(getSCEV(V), L);
2911}
2912
2913/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2914/// following equation:
2915///
2916///     A * X = B (mod N)
2917///
2918/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2919/// A and B isn't important.
2920///
2921/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2922static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2923                                               ScalarEvolution &SE) {
2924  uint32_t BW = A.getBitWidth();
2925  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2926  assert(A != 0 && "A must be non-zero.");
2927
2928  // 1. D = gcd(A, N)
2929  //
2930  // The gcd of A and N may have only one prime factor: 2. The number of
2931  // trailing zeros in A is its multiplicity
2932  uint32_t Mult2 = A.countTrailingZeros();
2933  // D = 2^Mult2
2934
2935  // 2. Check if B is divisible by D.
2936  //
2937  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2938  // is not less than multiplicity of this prime factor for D.
2939  if (B.countTrailingZeros() < Mult2)
2940    return SE.getCouldNotCompute();
2941
2942  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2943  // modulo (N / D).
2944  //
2945  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2946  // bit width during computations.
2947  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2948  APInt Mod(BW + 1, 0);
2949  Mod.set(BW - Mult2);  // Mod = N / D
2950  APInt I = AD.multiplicativeInverse(Mod);
2951
2952  // 4. Compute the minimum unsigned root of the equation:
2953  // I * (B / D) mod (N / D)
2954  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2955
2956  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2957  // bits.
2958  return SE.getConstant(Result.trunc(BW));
2959}
2960
2961/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2962/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2963/// might be the same) or two SCEVCouldNotCompute objects.
2964///
2965static std::pair<SCEVHandle,SCEVHandle>
2966SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2967  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2968  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2969  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2970  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2971
2972  // We currently can only solve this if the coefficients are constants.
2973  if (!LC || !MC || !NC) {
2974    const SCEV *CNC = SE.getCouldNotCompute();
2975    return std::make_pair(CNC, CNC);
2976  }
2977
2978  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2979  const APInt &L = LC->getValue()->getValue();
2980  const APInt &M = MC->getValue()->getValue();
2981  const APInt &N = NC->getValue()->getValue();
2982  APInt Two(BitWidth, 2);
2983  APInt Four(BitWidth, 4);
2984
2985  {
2986    using namespace APIntOps;
2987    const APInt& C = L;
2988    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2989    // The B coefficient is M-N/2
2990    APInt B(M);
2991    B -= sdiv(N,Two);
2992
2993    // The A coefficient is N/2
2994    APInt A(N.sdiv(Two));
2995
2996    // Compute the B^2-4ac term.
2997    APInt SqrtTerm(B);
2998    SqrtTerm *= B;
2999    SqrtTerm -= Four * (A * C);
3000
3001    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3002    // integer value or else APInt::sqrt() will assert.
3003    APInt SqrtVal(SqrtTerm.sqrt());
3004
3005    // Compute the two solutions for the quadratic formula.
3006    // The divisions must be performed as signed divisions.
3007    APInt NegB(-B);
3008    APInt TwoA( A << 1 );
3009    if (TwoA.isMinValue()) {
3010      const SCEV *CNC = SE.getCouldNotCompute();
3011      return std::make_pair(CNC, CNC);
3012    }
3013
3014    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3015    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3016
3017    return std::make_pair(SE.getConstant(Solution1),
3018                          SE.getConstant(Solution2));
3019    } // end APIntOps namespace
3020}
3021
3022/// HowFarToZero - Return the number of times a backedge comparing the specified
3023/// value to zero will execute.  If not computable, return UnknownValue
3024SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
3025  // If the value is a constant
3026  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3027    // If the value is already zero, the branch will execute zero times.
3028    if (C->getValue()->isZero()) return C;
3029    return UnknownValue;  // Otherwise it will loop infinitely.
3030  }
3031
3032  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
3033  if (!AddRec || AddRec->getLoop() != L)
3034    return UnknownValue;
3035
3036  if (AddRec->isAffine()) {
3037    // If this is an affine expression, the execution count of this branch is
3038    // the minimum unsigned root of the following equation:
3039    //
3040    //     Start + Step*N = 0 (mod 2^BW)
3041    //
3042    // equivalent to:
3043    //
3044    //             Step*N = -Start (mod 2^BW)
3045    //
3046    // where BW is the common bit width of Start and Step.
3047
3048    // Get the initial value for the loop.
3049    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3050    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
3051
3052    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
3053
3054    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
3055      // For now we handle only constant steps.
3056
3057      // First, handle unitary steps.
3058      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
3059        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
3060      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
3061        return Start;                           //    N = Start (as unsigned)
3062
3063      // Then, try to solve the above equation provided that Start is constant.
3064      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
3065        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
3066                                            -StartC->getValue()->getValue(),
3067                                            *this);
3068    }
3069  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3070    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3071    // the quadratic equation to solve it.
3072    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3073                                                                    *this);
3074    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3075    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3076    if (R1) {
3077#if 0
3078      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3079             << "  sol#2: " << *R2 << "\n";
3080#endif
3081      // Pick the smallest positive root value.
3082      if (ConstantInt *CB =
3083          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3084                                   R1->getValue(), R2->getValue()))) {
3085        if (CB->getZExtValue() == false)
3086          std::swap(R1, R2);   // R1 is the minimum root now.
3087
3088        // We can only use this value if the chrec ends up with an exact zero
3089        // value at this index.  When solving for "X*X != 5", for example, we
3090        // should not accept a root of 2.
3091        SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
3092        if (Val->isZero())
3093          return R1;  // We found a quadratic root!
3094      }
3095    }
3096  }
3097
3098  return UnknownValue;
3099}
3100
3101/// HowFarToNonZero - Return the number of times a backedge checking the
3102/// specified value for nonzero will execute.  If not computable, return
3103/// UnknownValue
3104SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
3105  // Loops that look like: while (X == 0) are very strange indeed.  We don't
3106  // handle them yet except for the trivial case.  This could be expanded in the
3107  // future as needed.
3108
3109  // If the value is a constant, check to see if it is known to be non-zero
3110  // already.  If so, the backedge will execute zero times.
3111  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
3112    if (!C->getValue()->isNullValue())
3113      return getIntegerSCEV(0, C->getType());
3114    return UnknownValue;  // Otherwise it will loop infinitely.
3115  }
3116
3117  // We could implement others, but I really doubt anyone writes loops like
3118  // this, and if they did, they would already be constant folded.
3119  return UnknownValue;
3120}
3121
3122/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3123/// (which may not be an immediate predecessor) which has exactly one
3124/// successor from which BB is reachable, or null if no such block is
3125/// found.
3126///
3127BasicBlock *
3128ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
3129  // If the block has a unique predecessor, then there is no path from the
3130  // predecessor to the block that does not go through the direct edge
3131  // from the predecessor to the block.
3132  if (BasicBlock *Pred = BB->getSinglePredecessor())
3133    return Pred;
3134
3135  // A loop's header is defined to be a block that dominates the loop.
3136  // If the loop has a preheader, it must be a block that has exactly
3137  // one successor that can reach BB. This is slightly more strict
3138  // than necessary, but works if critical edges are split.
3139  if (Loop *L = LI->getLoopFor(BB))
3140    return L->getLoopPreheader();
3141
3142  return 0;
3143}
3144
3145/// isLoopGuardedByCond - Test whether entry to the loop is protected by
3146/// a conditional between LHS and RHS.  This is used to help avoid max
3147/// expressions in loop trip counts.
3148bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
3149                                          ICmpInst::Predicate Pred,
3150                                          const SCEV *LHS, const SCEV *RHS) {
3151  BasicBlock *Preheader = L->getLoopPreheader();
3152  BasicBlock *PreheaderDest = L->getHeader();
3153
3154  // Starting at the preheader, climb up the predecessor chain, as long as
3155  // there are predecessors that can be found that have unique successors
3156  // leading to the original header.
3157  for (; Preheader;
3158       PreheaderDest = Preheader,
3159       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
3160
3161    BranchInst *LoopEntryPredicate =
3162      dyn_cast<BranchInst>(Preheader->getTerminator());
3163    if (!LoopEntryPredicate ||
3164        LoopEntryPredicate->isUnconditional())
3165      continue;
3166
3167    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3168    if (!ICI) continue;
3169
3170    // Now that we found a conditional branch that dominates the loop, check to
3171    // see if it is the comparison we are looking for.
3172    Value *PreCondLHS = ICI->getOperand(0);
3173    Value *PreCondRHS = ICI->getOperand(1);
3174    ICmpInst::Predicate Cond;
3175    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
3176      Cond = ICI->getPredicate();
3177    else
3178      Cond = ICI->getInversePredicate();
3179
3180    if (Cond == Pred)
3181      ; // An exact match.
3182    else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3183      ; // The actual condition is beyond sufficient.
3184    else
3185      // Check a few special cases.
3186      switch (Cond) {
3187      case ICmpInst::ICMP_UGT:
3188        if (Pred == ICmpInst::ICMP_ULT) {
3189          std::swap(PreCondLHS, PreCondRHS);
3190          Cond = ICmpInst::ICMP_ULT;
3191          break;
3192        }
3193        continue;
3194      case ICmpInst::ICMP_SGT:
3195        if (Pred == ICmpInst::ICMP_SLT) {
3196          std::swap(PreCondLHS, PreCondRHS);
3197          Cond = ICmpInst::ICMP_SLT;
3198          break;
3199        }
3200        continue;
3201      case ICmpInst::ICMP_NE:
3202        // Expressions like (x >u 0) are often canonicalized to (x != 0),
3203        // so check for this case by checking if the NE is comparing against
3204        // a minimum or maximum constant.
3205        if (!ICmpInst::isTrueWhenEqual(Pred))
3206          if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3207            const APInt &A = CI->getValue();
3208            switch (Pred) {
3209            case ICmpInst::ICMP_SLT:
3210              if (A.isMaxSignedValue()) break;
3211              continue;
3212            case ICmpInst::ICMP_SGT:
3213              if (A.isMinSignedValue()) break;
3214              continue;
3215            case ICmpInst::ICMP_ULT:
3216              if (A.isMaxValue()) break;
3217              continue;
3218            case ICmpInst::ICMP_UGT:
3219              if (A.isMinValue()) break;
3220              continue;
3221            default:
3222              continue;
3223            }
3224            Cond = ICmpInst::ICMP_NE;
3225            // NE is symmetric but the original comparison may not be. Swap
3226            // the operands if necessary so that they match below.
3227            if (isa<SCEVConstant>(LHS))
3228              std::swap(PreCondLHS, PreCondRHS);
3229            break;
3230          }
3231        continue;
3232      default:
3233        // We weren't able to reconcile the condition.
3234        continue;
3235      }
3236
3237    if (!PreCondLHS->getType()->isInteger()) continue;
3238
3239    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3240    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3241    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
3242        (LHS == getNotSCEV(PreCondRHSSCEV) &&
3243         RHS == getNotSCEV(PreCondLHSSCEV)))
3244      return true;
3245  }
3246
3247  return false;
3248}
3249
3250/// HowManyLessThans - Return the number of times a backedge containing the
3251/// specified less-than comparison will execute.  If not computable, return
3252/// UnknownValue.
3253ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
3254HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3255                 const Loop *L, bool isSigned) {
3256  // Only handle:  "ADDREC < LoopInvariant".
3257  if (!RHS->isLoopInvariant(L)) return UnknownValue;
3258
3259  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3260  if (!AddRec || AddRec->getLoop() != L)
3261    return UnknownValue;
3262
3263  if (AddRec->isAffine()) {
3264    // FORNOW: We only support unit strides.
3265    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3266    SCEVHandle Step = AddRec->getStepRecurrence(*this);
3267    SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3268
3269    // TODO: handle non-constant strides.
3270    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3271    if (!CStep || CStep->isZero())
3272      return UnknownValue;
3273    if (CStep->getValue()->getValue() == 1) {
3274      // With unit stride, the iteration never steps past the limit value.
3275    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3276      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3277        // Test whether a positive iteration iteration can step past the limit
3278        // value and past the maximum value for its type in a single step.
3279        if (isSigned) {
3280          APInt Max = APInt::getSignedMaxValue(BitWidth);
3281          if ((Max - CStep->getValue()->getValue())
3282                .slt(CLimit->getValue()->getValue()))
3283            return UnknownValue;
3284        } else {
3285          APInt Max = APInt::getMaxValue(BitWidth);
3286          if ((Max - CStep->getValue()->getValue())
3287                .ult(CLimit->getValue()->getValue()))
3288            return UnknownValue;
3289        }
3290      } else
3291        // TODO: handle non-constant limit values below.
3292        return UnknownValue;
3293    } else
3294      // TODO: handle negative strides below.
3295      return UnknownValue;
3296
3297    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3298    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
3299    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
3300    // treat m-n as signed nor unsigned due to overflow possibility.
3301
3302    // First, we get the value of the LHS in the first iteration: n
3303    SCEVHandle Start = AddRec->getOperand(0);
3304
3305    // Determine the minimum constant start value.
3306    SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3307      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3308                             APInt::getMinValue(BitWidth));
3309
3310    // If we know that the condition is true in order to enter the loop,
3311    // then we know that it will run exactly (m-n)/s times. Otherwise, we
3312    // only know if will execute (max(m,n)-n)/s times. In both cases, the
3313    // division must round up.
3314    SCEVHandle End = RHS;
3315    if (!isLoopGuardedByCond(L,
3316                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3317                             getMinusSCEV(Start, Step), RHS))
3318      End = isSigned ? getSMaxExpr(RHS, Start)
3319                     : getUMaxExpr(RHS, Start);
3320
3321    // Determine the maximum constant end value.
3322    SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3323      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3324                             APInt::getMaxValue(BitWidth));
3325
3326    // Finally, we subtract these two values and divide, rounding up, to get
3327    // the number of times the backedge is executed.
3328    SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3329                                                getAddExpr(Step, NegOne)),
3330                                     Step);
3331
3332    // The maximum backedge count is similar, except using the minimum start
3333    // value and the maximum end value.
3334    SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3335                                                                MinStart),
3336                                                   getAddExpr(Step, NegOne)),
3337                                        Step);
3338
3339    return BackedgeTakenInfo(BECount, MaxBECount);
3340  }
3341
3342  return UnknownValue;
3343}
3344
3345/// getNumIterationsInRange - Return the number of iterations of this loop that
3346/// produce values in the specified constant range.  Another way of looking at
3347/// this is that it returns the first iteration number where the value is not in
3348/// the condition, thus computing the exit count. If the iteration count can't
3349/// be computed, an instance of SCEVCouldNotCompute is returned.
3350SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3351                                                   ScalarEvolution &SE) const {
3352  if (Range.isFullSet())  // Infinite loop.
3353    return SE.getCouldNotCompute();
3354
3355  // If the start is a non-zero constant, shift the range to simplify things.
3356  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3357    if (!SC->getValue()->isZero()) {
3358      std::vector<SCEVHandle> Operands(op_begin(), op_end());
3359      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3360      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
3361      if (const SCEVAddRecExpr *ShiftedAddRec =
3362            dyn_cast<SCEVAddRecExpr>(Shifted))
3363        return ShiftedAddRec->getNumIterationsInRange(
3364                           Range.subtract(SC->getValue()->getValue()), SE);
3365      // This is strange and shouldn't happen.
3366      return SE.getCouldNotCompute();
3367    }
3368
3369  // The only time we can solve this is when we have all constant indices.
3370  // Otherwise, we cannot determine the overflow conditions.
3371  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3372    if (!isa<SCEVConstant>(getOperand(i)))
3373      return SE.getCouldNotCompute();
3374
3375
3376  // Okay at this point we know that all elements of the chrec are constants and
3377  // that the start element is zero.
3378
3379  // First check to see if the range contains zero.  If not, the first
3380  // iteration exits.
3381  unsigned BitWidth = SE.getTypeSizeInBits(getType());
3382  if (!Range.contains(APInt(BitWidth, 0)))
3383    return SE.getConstant(ConstantInt::get(getType(),0));
3384
3385  if (isAffine()) {
3386    // If this is an affine expression then we have this situation:
3387    //   Solve {0,+,A} in Range  ===  Ax in Range
3388
3389    // We know that zero is in the range.  If A is positive then we know that
3390    // the upper value of the range must be the first possible exit value.
3391    // If A is negative then the lower of the range is the last possible loop
3392    // value.  Also note that we already checked for a full range.
3393    APInt One(BitWidth,1);
3394    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3395    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3396
3397    // The exit value should be (End+A)/A.
3398    APInt ExitVal = (End + A).udiv(A);
3399    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3400
3401    // Evaluate at the exit value.  If we really did fall out of the valid
3402    // range, then we computed our trip count, otherwise wrap around or other
3403    // things must have happened.
3404    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
3405    if (Range.contains(Val->getValue()))
3406      return SE.getCouldNotCompute();  // Something strange happened
3407
3408    // Ensure that the previous value is in the range.  This is a sanity check.
3409    assert(Range.contains(
3410           EvaluateConstantChrecAtConstant(this,
3411           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
3412           "Linear scev computation is off in a bad way!");
3413    return SE.getConstant(ExitValue);
3414  } else if (isQuadratic()) {
3415    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3416    // quadratic equation to solve it.  To do this, we must frame our problem in
3417    // terms of figuring out when zero is crossed, instead of when
3418    // Range.getUpper() is crossed.
3419    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
3420    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3421    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
3422
3423    // Next, solve the constructed addrec
3424    std::pair<SCEVHandle,SCEVHandle> Roots =
3425      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
3426    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3427    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3428    if (R1) {
3429      // Pick the smallest positive root value.
3430      if (ConstantInt *CB =
3431          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3432                                   R1->getValue(), R2->getValue()))) {
3433        if (CB->getZExtValue() == false)
3434          std::swap(R1, R2);   // R1 is the minimum root now.
3435
3436        // Make sure the root is not off by one.  The returned iteration should
3437        // not be in the range, but the previous one should be.  When solving
3438        // for "X*X < 5", for example, we should not return a root of 2.
3439        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
3440                                                             R1->getValue(),
3441                                                             SE);
3442        if (Range.contains(R1Val->getValue())) {
3443          // The next iteration must be out of the range...
3444          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3445
3446          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3447          if (!Range.contains(R1Val->getValue()))
3448            return SE.getConstant(NextVal);
3449          return SE.getCouldNotCompute();  // Something strange happened
3450        }
3451
3452        // If R1 was not in the range, then it is a good return value.  Make
3453        // sure that R1-1 WAS in the range though, just in case.
3454        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
3455        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
3456        if (Range.contains(R1Val->getValue()))
3457          return R1;
3458        return SE.getCouldNotCompute();  // Something strange happened
3459      }
3460    }
3461  }
3462
3463  return SE.getCouldNotCompute();
3464}
3465
3466
3467
3468//===----------------------------------------------------------------------===//
3469//                   SCEVCallbackVH Class Implementation
3470//===----------------------------------------------------------------------===//
3471
3472void SCEVCallbackVH::deleted() {
3473  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3474  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3475    SE->ConstantEvolutionLoopExitValue.erase(PN);
3476  SE->Scalars.erase(getValPtr());
3477  // this now dangles!
3478}
3479
3480void SCEVCallbackVH::allUsesReplacedWith(Value *) {
3481  assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3482
3483  // Forget all the expressions associated with users of the old value,
3484  // so that future queries will recompute the expressions using the new
3485  // value.
3486  SmallVector<User *, 16> Worklist;
3487  Value *Old = getValPtr();
3488  bool DeleteOld = false;
3489  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3490       UI != UE; ++UI)
3491    Worklist.push_back(*UI);
3492  while (!Worklist.empty()) {
3493    User *U = Worklist.pop_back_val();
3494    // Deleting the Old value will cause this to dangle. Postpone
3495    // that until everything else is done.
3496    if (U == Old) {
3497      DeleteOld = true;
3498      continue;
3499    }
3500    if (PHINode *PN = dyn_cast<PHINode>(U))
3501      SE->ConstantEvolutionLoopExitValue.erase(PN);
3502    if (SE->Scalars.erase(U))
3503      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3504           UI != UE; ++UI)
3505        Worklist.push_back(*UI);
3506  }
3507  if (DeleteOld) {
3508    if (PHINode *PN = dyn_cast<PHINode>(Old))
3509      SE->ConstantEvolutionLoopExitValue.erase(PN);
3510    SE->Scalars.erase(Old);
3511    // this now dangles!
3512  }
3513  // this may dangle!
3514}
3515
3516SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
3517  : CallbackVH(V), SE(se) {}
3518
3519//===----------------------------------------------------------------------===//
3520//                   ScalarEvolution Class Implementation
3521//===----------------------------------------------------------------------===//
3522
3523ScalarEvolution::ScalarEvolution()
3524  : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3525}
3526
3527bool ScalarEvolution::runOnFunction(Function &F) {
3528  this->F = &F;
3529  LI = &getAnalysis<LoopInfo>();
3530  TD = getAnalysisIfAvailable<TargetData>();
3531  return false;
3532}
3533
3534void ScalarEvolution::releaseMemory() {
3535  Scalars.clear();
3536  BackedgeTakenCounts.clear();
3537  ConstantEvolutionLoopExitValue.clear();
3538}
3539
3540void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3541  AU.setPreservesAll();
3542  AU.addRequiredTransitive<LoopInfo>();
3543}
3544
3545bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
3546  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
3547}
3548
3549static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
3550                          const Loop *L) {
3551  // Print all inner loops first
3552  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3553    PrintLoopInfo(OS, SE, *I);
3554
3555  OS << "Loop " << L->getHeader()->getName() << ": ";
3556
3557  SmallVector<BasicBlock*, 8> ExitBlocks;
3558  L->getExitBlocks(ExitBlocks);
3559  if (ExitBlocks.size() != 1)
3560    OS << "<multiple exits> ";
3561
3562  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3563    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
3564  } else {
3565    OS << "Unpredictable backedge-taken count. ";
3566  }
3567
3568  OS << "\n";
3569}
3570
3571void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
3572  // ScalarEvolution's implementaiton of the print method is to print
3573  // out SCEV values of all instructions that are interesting. Doing
3574  // this potentially causes it to create new SCEV objects though,
3575  // which technically conflicts with the const qualifier. This isn't
3576  // observable from outside the class though (the hasSCEV function
3577  // notwithstanding), so casting away the const isn't dangerous.
3578  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
3579
3580  OS << "Classifying expressions for: " << F->getName() << "\n";
3581  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3582    if (isSCEVable(I->getType())) {
3583      OS << *I;
3584      OS << "  -->  ";
3585      SCEVHandle SV = SE.getSCEV(&*I);
3586      SV->print(OS);
3587      OS << "\t\t";
3588
3589      if (const Loop *L = LI->getLoopFor((*I).getParent())) {
3590        OS << "Exits: ";
3591        SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
3592        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3593          OS << "<<Unknown>>";
3594        } else {
3595          OS << *ExitValue;
3596        }
3597      }
3598
3599
3600      OS << "\n";
3601    }
3602
3603  OS << "Determining loop execution counts for: " << F->getName() << "\n";
3604  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3605    PrintLoopInfo(OS, &SE, *I);
3606}
3607
3608void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3609  raw_os_ostream OS(o);
3610  print(OS, M);
3611}
3612