ScalarEvolution.cpp revision 70ff4cf1baf8cce04b38752ea485425782fb07b8
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98static cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104static RegisterPass<ScalarEvolution>
105R("scalar-evolution", "Scalar Evolution Analysis", false, true);
106char ScalarEvolution::ID = 0;
107
108//===----------------------------------------------------------------------===//
109//                           SCEV class definitions
110//===----------------------------------------------------------------------===//
111
112//===----------------------------------------------------------------------===//
113// Implementation of the SCEV class.
114//
115SCEV::~SCEV() {}
116void SCEV::dump() const {
117  print(cerr);
118}
119
120uint32_t SCEV::getBitWidth() const {
121  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
122    return ITy->getBitWidth();
123  return 0;
124}
125
126bool SCEV::isZero() const {
127  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
128    return SC->getValue()->isZero();
129  return false;
130}
131
132
133SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
134
135bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
136  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
137  return false;
138}
139
140const Type *SCEVCouldNotCompute::getType() const {
141  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142  return 0;
143}
144
145bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
146  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147  return false;
148}
149
150SCEVHandle SCEVCouldNotCompute::
151replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
152                                  const SCEVHandle &Conc,
153                                  ScalarEvolution &SE) const {
154  return this;
155}
156
157void SCEVCouldNotCompute::print(std::ostream &OS) const {
158  OS << "***COULDNOTCOMPUTE***";
159}
160
161bool SCEVCouldNotCompute::classof(const SCEV *S) {
162  return S->getSCEVType() == scCouldNotCompute;
163}
164
165
166// SCEVConstants - Only allow the creation of one SCEVConstant for any
167// particular value.  Don't use a SCEVHandle here, or else the object will
168// never be deleted!
169static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
170
171
172SCEVConstant::~SCEVConstant() {
173  SCEVConstants->erase(V);
174}
175
176SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
177  SCEVConstant *&R = (*SCEVConstants)[V];
178  if (R == 0) R = new SCEVConstant(V);
179  return R;
180}
181
182SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
183  return getConstant(ConstantInt::get(Val));
184}
185
186const Type *SCEVConstant::getType() const { return V->getType(); }
187
188void SCEVConstant::print(std::ostream &OS) const {
189  WriteAsOperand(OS, V, false);
190}
191
192// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
193// particular input.  Don't use a SCEVHandle here, or else the object will
194// never be deleted!
195static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
196                     SCEVTruncateExpr*> > SCEVTruncates;
197
198SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
199  : SCEV(scTruncate), Op(op), Ty(ty) {
200  assert(Op->getType()->isInteger() && Ty->isInteger() &&
201         "Cannot truncate non-integer value!");
202  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
203         && "This is not a truncating conversion!");
204}
205
206SCEVTruncateExpr::~SCEVTruncateExpr() {
207  SCEVTruncates->erase(std::make_pair(Op, Ty));
208}
209
210void SCEVTruncateExpr::print(std::ostream &OS) const {
211  OS << "(truncate " << *Op << " to " << *Ty << ")";
212}
213
214// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
215// particular input.  Don't use a SCEVHandle here, or else the object will never
216// be deleted!
217static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
218                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
219
220SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
221  : SCEV(scZeroExtend), Op(op), Ty(ty) {
222  assert(Op->getType()->isInteger() && Ty->isInteger() &&
223         "Cannot zero extend non-integer value!");
224  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
225         && "This is not an extending conversion!");
226}
227
228SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
229  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
230}
231
232void SCEVZeroExtendExpr::print(std::ostream &OS) const {
233  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
234}
235
236// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
237// particular input.  Don't use a SCEVHandle here, or else the object will never
238// be deleted!
239static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
240                     SCEVSignExtendExpr*> > SCEVSignExtends;
241
242SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
243  : SCEV(scSignExtend), Op(op), Ty(ty) {
244  assert(Op->getType()->isInteger() && Ty->isInteger() &&
245         "Cannot sign extend non-integer value!");
246  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
247         && "This is not an extending conversion!");
248}
249
250SCEVSignExtendExpr::~SCEVSignExtendExpr() {
251  SCEVSignExtends->erase(std::make_pair(Op, Ty));
252}
253
254void SCEVSignExtendExpr::print(std::ostream &OS) const {
255  OS << "(signextend " << *Op << " to " << *Ty << ")";
256}
257
258// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
259// particular input.  Don't use a SCEVHandle here, or else the object will never
260// be deleted!
261static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
262                     SCEVCommutativeExpr*> > SCEVCommExprs;
263
264SCEVCommutativeExpr::~SCEVCommutativeExpr() {
265  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
266                                      std::vector<SCEV*>(Operands.begin(),
267                                                         Operands.end())));
268}
269
270void SCEVCommutativeExpr::print(std::ostream &OS) const {
271  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
272  const char *OpStr = getOperationStr();
273  OS << "(" << *Operands[0];
274  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
275    OS << OpStr << *Operands[i];
276  OS << ")";
277}
278
279SCEVHandle SCEVCommutativeExpr::
280replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
281                                  const SCEVHandle &Conc,
282                                  ScalarEvolution &SE) const {
283  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
284    SCEVHandle H =
285      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
286    if (H != getOperand(i)) {
287      std::vector<SCEVHandle> NewOps;
288      NewOps.reserve(getNumOperands());
289      for (unsigned j = 0; j != i; ++j)
290        NewOps.push_back(getOperand(j));
291      NewOps.push_back(H);
292      for (++i; i != e; ++i)
293        NewOps.push_back(getOperand(i)->
294                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
295
296      if (isa<SCEVAddExpr>(this))
297        return SE.getAddExpr(NewOps);
298      else if (isa<SCEVMulExpr>(this))
299        return SE.getMulExpr(NewOps);
300      else if (isa<SCEVSMaxExpr>(this))
301        return SE.getSMaxExpr(NewOps);
302      else if (isa<SCEVUMaxExpr>(this))
303        return SE.getUMaxExpr(NewOps);
304      else
305        assert(0 && "Unknown commutative expr!");
306    }
307  }
308  return this;
309}
310
311
312// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
313// input.  Don't use a SCEVHandle here, or else the object will never be
314// deleted!
315static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
316                     SCEVUDivExpr*> > SCEVUDivs;
317
318SCEVUDivExpr::~SCEVUDivExpr() {
319  SCEVUDivs->erase(std::make_pair(LHS, RHS));
320}
321
322void SCEVUDivExpr::print(std::ostream &OS) const {
323  OS << "(" << *LHS << " /u " << *RHS << ")";
324}
325
326const Type *SCEVUDivExpr::getType() const {
327  return LHS->getType();
328}
329
330// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
331// particular input.  Don't use a SCEVHandle here, or else the object will never
332// be deleted!
333static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
334                     SCEVAddRecExpr*> > SCEVAddRecExprs;
335
336SCEVAddRecExpr::~SCEVAddRecExpr() {
337  SCEVAddRecExprs->erase(std::make_pair(L,
338                                        std::vector<SCEV*>(Operands.begin(),
339                                                           Operands.end())));
340}
341
342SCEVHandle SCEVAddRecExpr::
343replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
344                                  const SCEVHandle &Conc,
345                                  ScalarEvolution &SE) const {
346  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
347    SCEVHandle H =
348      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
349    if (H != getOperand(i)) {
350      std::vector<SCEVHandle> NewOps;
351      NewOps.reserve(getNumOperands());
352      for (unsigned j = 0; j != i; ++j)
353        NewOps.push_back(getOperand(j));
354      NewOps.push_back(H);
355      for (++i; i != e; ++i)
356        NewOps.push_back(getOperand(i)->
357                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
358
359      return SE.getAddRecExpr(NewOps, L);
360    }
361  }
362  return this;
363}
364
365
366bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
367  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
368  // contain L and if the start is invariant.
369  return !QueryLoop->contains(L->getHeader()) &&
370         getOperand(0)->isLoopInvariant(QueryLoop);
371}
372
373
374void SCEVAddRecExpr::print(std::ostream &OS) const {
375  OS << "{" << *Operands[0];
376  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
377    OS << ",+," << *Operands[i];
378  OS << "}<" << L->getHeader()->getName() + ">";
379}
380
381// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
382// value.  Don't use a SCEVHandle here, or else the object will never be
383// deleted!
384static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
385
386SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
387
388bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
389  // All non-instruction values are loop invariant.  All instructions are loop
390  // invariant if they are not contained in the specified loop.
391  if (Instruction *I = dyn_cast<Instruction>(V))
392    return !L->contains(I->getParent());
393  return true;
394}
395
396const Type *SCEVUnknown::getType() const {
397  return V->getType();
398}
399
400void SCEVUnknown::print(std::ostream &OS) const {
401  WriteAsOperand(OS, V, false);
402}
403
404//===----------------------------------------------------------------------===//
405//                               SCEV Utilities
406//===----------------------------------------------------------------------===//
407
408namespace {
409  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
410  /// than the complexity of the RHS.  This comparator is used to canonicalize
411  /// expressions.
412  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
413    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
414      return LHS->getSCEVType() < RHS->getSCEVType();
415    }
416  };
417}
418
419/// GroupByComplexity - Given a list of SCEV objects, order them by their
420/// complexity, and group objects of the same complexity together by value.
421/// When this routine is finished, we know that any duplicates in the vector are
422/// consecutive and that complexity is monotonically increasing.
423///
424/// Note that we go take special precautions to ensure that we get determinstic
425/// results from this routine.  In other words, we don't want the results of
426/// this to depend on where the addresses of various SCEV objects happened to
427/// land in memory.
428///
429static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
430  if (Ops.size() < 2) return;  // Noop
431  if (Ops.size() == 2) {
432    // This is the common case, which also happens to be trivially simple.
433    // Special case it.
434    if (SCEVComplexityCompare()(Ops[1], Ops[0]))
435      std::swap(Ops[0], Ops[1]);
436    return;
437  }
438
439  // Do the rough sort by complexity.
440  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
441
442  // Now that we are sorted by complexity, group elements of the same
443  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
444  // be extremely short in practice.  Note that we take this approach because we
445  // do not want to depend on the addresses of the objects we are grouping.
446  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
447    SCEV *S = Ops[i];
448    unsigned Complexity = S->getSCEVType();
449
450    // If there are any objects of the same complexity and same value as this
451    // one, group them.
452    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
453      if (Ops[j] == S) { // Found a duplicate.
454        // Move it to immediately after i'th element.
455        std::swap(Ops[i+1], Ops[j]);
456        ++i;   // no need to rescan it.
457        if (i == e-2) return;  // Done!
458      }
459    }
460  }
461}
462
463
464
465//===----------------------------------------------------------------------===//
466//                      Simple SCEV method implementations
467//===----------------------------------------------------------------------===//
468
469/// getIntegerSCEV - Given an integer or FP type, create a constant for the
470/// specified signed integer value and return a SCEV for the constant.
471SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
472  Constant *C;
473  if (Val == 0)
474    C = Constant::getNullValue(Ty);
475  else if (Ty->isFloatingPoint())
476    C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
477                                APFloat::IEEEdouble, Val));
478  else
479    C = ConstantInt::get(Ty, Val);
480  return getUnknown(C);
481}
482
483/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
484///
485SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
486  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
487    return getUnknown(ConstantExpr::getNeg(VC->getValue()));
488
489  return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(V->getType())));
490}
491
492/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
493SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
494  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
495    return getUnknown(ConstantExpr::getNot(VC->getValue()));
496
497  SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(V->getType()));
498  return getMinusSCEV(AllOnes, V);
499}
500
501/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
502///
503SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
504                                         const SCEVHandle &RHS) {
505  // X - Y --> X + -Y
506  return getAddExpr(LHS, getNegativeSCEV(RHS));
507}
508
509
510/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
511// Assume, K > 0.
512static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
513                                      ScalarEvolution &SE,
514                                      const IntegerType* ResultTy) {
515  // Handle the simplest case efficiently.
516  if (K == 1)
517    return SE.getTruncateOrZeroExtend(It, ResultTy);
518
519  // We are using the following formula for BC(It, K):
520  //
521  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
522  //
523  // Suppose, W is the bitwidth of the return value.  We must be prepared for
524  // overflow.  Hence, we must assure that the result of our computation is
525  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
526  // safe in modular arithmetic.
527  //
528  // However, this code doesn't use exactly that formula; the formula it uses
529  // is something like the following, where T is the number of factors of 2 in
530  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
531  // exponentiation:
532  //
533  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
534  //
535  // This formula is trivially equivalent to the previous formula.  However,
536  // this formula can be implemented much more efficiently.  The trick is that
537  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
538  // arithmetic.  To do exact division in modular arithmetic, all we have
539  // to do is multiply by the inverse.  Therefore, this step can be done at
540  // width W.
541  //
542  // The next issue is how to safely do the division by 2^T.  The way this
543  // is done is by doing the multiplication step at a width of at least W + T
544  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
545  // when we perform the division by 2^T (which is equivalent to a right shift
546  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
547  // truncated out after the division by 2^T.
548  //
549  // In comparison to just directly using the first formula, this technique
550  // is much more efficient; using the first formula requires W * K bits,
551  // but this formula less than W + K bits. Also, the first formula requires
552  // a division step, whereas this formula only requires multiplies and shifts.
553  //
554  // It doesn't matter whether the subtraction step is done in the calculation
555  // width or the input iteration count's width; if the subtraction overflows,
556  // the result must be zero anyway.  We prefer here to do it in the width of
557  // the induction variable because it helps a lot for certain cases; CodeGen
558  // isn't smart enough to ignore the overflow, which leads to much less
559  // efficient code if the width of the subtraction is wider than the native
560  // register width.
561  //
562  // (It's possible to not widen at all by pulling out factors of 2 before
563  // the multiplication; for example, K=2 can be calculated as
564  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
565  // extra arithmetic, so it's not an obvious win, and it gets
566  // much more complicated for K > 3.)
567
568  // Protection from insane SCEVs; this bound is conservative,
569  // but it probably doesn't matter.
570  if (K > 1000)
571    return new SCEVCouldNotCompute();
572
573  unsigned W = ResultTy->getBitWidth();
574
575  // Calculate K! / 2^T and T; we divide out the factors of two before
576  // multiplying for calculating K! / 2^T to avoid overflow.
577  // Other overflow doesn't matter because we only care about the bottom
578  // W bits of the result.
579  APInt OddFactorial(W, 1);
580  unsigned T = 1;
581  for (unsigned i = 3; i <= K; ++i) {
582    APInt Mult(W, i);
583    unsigned TwoFactors = Mult.countTrailingZeros();
584    T += TwoFactors;
585    Mult = Mult.lshr(TwoFactors);
586    OddFactorial *= Mult;
587  }
588
589  // We need at least W + T bits for the multiplication step
590  // FIXME: A temporary hack; we round up the bitwidths
591  // to the nearest power of 2 to be nice to the code generator.
592  unsigned CalculationBits = 1U << Log2_32_Ceil(W + T);
593  // FIXME: Temporary hack to avoid generating integers that are too wide.
594  // Although, it's not completely clear how to determine how much
595  // widening is safe; for example, on X86, we can't really widen
596  // beyond 64 because we need to be able to do multiplication
597  // that's CalculationBits wide, but on X86-64, we can safely widen up to
598  // 128 bits.
599  if (CalculationBits > 64)
600    return new SCEVCouldNotCompute();
601
602  // Calcuate 2^T, at width T+W.
603  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
604
605  // Calculate the multiplicative inverse of K! / 2^T;
606  // this multiplication factor will perform the exact division by
607  // K! / 2^T.
608  APInt Mod = APInt::getSignedMinValue(W+1);
609  APInt MultiplyFactor = OddFactorial.zext(W+1);
610  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
611  MultiplyFactor = MultiplyFactor.trunc(W);
612
613  // Calculate the product, at width T+W
614  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
615  SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
616  for (unsigned i = 1; i != K; ++i) {
617    SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
618    Dividend = SE.getMulExpr(Dividend,
619                             SE.getTruncateOrZeroExtend(S, CalculationTy));
620  }
621
622  // Divide by 2^T
623  SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
624
625  // Truncate the result, and divide by K! / 2^T.
626
627  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
628                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
629}
630
631/// evaluateAtIteration - Return the value of this chain of recurrences at
632/// the specified iteration number.  We can evaluate this recurrence by
633/// multiplying each element in the chain by the binomial coefficient
634/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
635///
636///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
637///
638/// where BC(It, k) stands for binomial coefficient.
639///
640SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
641                                               ScalarEvolution &SE) const {
642  SCEVHandle Result = getStart();
643  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
644    // The computation is correct in the face of overflow provided that the
645    // multiplication is performed _after_ the evaluation of the binomial
646    // coefficient.
647    SCEVHandle Val =
648      SE.getMulExpr(getOperand(i),
649                    BinomialCoefficient(It, i, SE,
650                                        cast<IntegerType>(getType())));
651    Result = SE.getAddExpr(Result, Val);
652  }
653  return Result;
654}
655
656//===----------------------------------------------------------------------===//
657//                    SCEV Expression folder implementations
658//===----------------------------------------------------------------------===//
659
660SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
661  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
662    return getUnknown(
663        ConstantExpr::getTrunc(SC->getValue(), Ty));
664
665  // If the input value is a chrec scev made out of constants, truncate
666  // all of the constants.
667  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
668    std::vector<SCEVHandle> Operands;
669    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
670      // FIXME: This should allow truncation of other expression types!
671      if (isa<SCEVConstant>(AddRec->getOperand(i)))
672        Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
673      else
674        break;
675    if (Operands.size() == AddRec->getNumOperands())
676      return getAddRecExpr(Operands, AddRec->getLoop());
677  }
678
679  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
680  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
681  return Result;
682}
683
684SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) {
685  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
686    return getUnknown(
687        ConstantExpr::getZExt(SC->getValue(), Ty));
688
689  // FIXME: If the input value is a chrec scev, and we can prove that the value
690  // did not overflow the old, smaller, value, we can zero extend all of the
691  // operands (often constants).  This would allow analysis of something like
692  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
693
694  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
695  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
696  return Result;
697}
698
699SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) {
700  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
701    return getUnknown(
702        ConstantExpr::getSExt(SC->getValue(), Ty));
703
704  // FIXME: If the input value is a chrec scev, and we can prove that the value
705  // did not overflow the old, smaller, value, we can sign extend all of the
706  // operands (often constants).  This would allow analysis of something like
707  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
708
709  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
710  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
711  return Result;
712}
713
714/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
715/// of the input value to the specified type.  If the type must be
716/// extended, it is zero extended.
717SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
718                                                    const Type *Ty) {
719  const Type *SrcTy = V->getType();
720  assert(SrcTy->isInteger() && Ty->isInteger() &&
721         "Cannot truncate or zero extend with non-integer arguments!");
722  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
723    return V;  // No conversion
724  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
725    return getTruncateExpr(V, Ty);
726  return getZeroExtendExpr(V, Ty);
727}
728
729// get - Get a canonical add expression, or something simpler if possible.
730SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
731  assert(!Ops.empty() && "Cannot get empty add!");
732  if (Ops.size() == 1) return Ops[0];
733
734  // Sort by complexity, this groups all similar expression types together.
735  GroupByComplexity(Ops);
736
737  // If there are any constants, fold them together.
738  unsigned Idx = 0;
739  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
740    ++Idx;
741    assert(Idx < Ops.size());
742    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
743      // We found two constants, fold them together!
744      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
745                                           RHSC->getValue()->getValue());
746      Ops[0] = getConstant(Fold);
747      Ops.erase(Ops.begin()+1);  // Erase the folded element
748      if (Ops.size() == 1) return Ops[0];
749      LHSC = cast<SCEVConstant>(Ops[0]);
750    }
751
752    // If we are left with a constant zero being added, strip it off.
753    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
754      Ops.erase(Ops.begin());
755      --Idx;
756    }
757  }
758
759  if (Ops.size() == 1) return Ops[0];
760
761  // Okay, check to see if the same value occurs in the operand list twice.  If
762  // so, merge them together into an multiply expression.  Since we sorted the
763  // list, these values are required to be adjacent.
764  const Type *Ty = Ops[0]->getType();
765  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
766    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
767      // Found a match, merge the two values into a multiply, and add any
768      // remaining values to the result.
769      SCEVHandle Two = getIntegerSCEV(2, Ty);
770      SCEVHandle Mul = getMulExpr(Ops[i], Two);
771      if (Ops.size() == 2)
772        return Mul;
773      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
774      Ops.push_back(Mul);
775      return getAddExpr(Ops);
776    }
777
778  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
779  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
780    ++Idx;
781
782  // If there are add operands they would be next.
783  if (Idx < Ops.size()) {
784    bool DeletedAdd = false;
785    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
786      // If we have an add, expand the add operands onto the end of the operands
787      // list.
788      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
789      Ops.erase(Ops.begin()+Idx);
790      DeletedAdd = true;
791    }
792
793    // If we deleted at least one add, we added operands to the end of the list,
794    // and they are not necessarily sorted.  Recurse to resort and resimplify
795    // any operands we just aquired.
796    if (DeletedAdd)
797      return getAddExpr(Ops);
798  }
799
800  // Skip over the add expression until we get to a multiply.
801  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
802    ++Idx;
803
804  // If we are adding something to a multiply expression, make sure the
805  // something is not already an operand of the multiply.  If so, merge it into
806  // the multiply.
807  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
808    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
809    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
810      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
811      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
812        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
813          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
814          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
815          if (Mul->getNumOperands() != 2) {
816            // If the multiply has more than two operands, we must get the
817            // Y*Z term.
818            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
819            MulOps.erase(MulOps.begin()+MulOp);
820            InnerMul = getMulExpr(MulOps);
821          }
822          SCEVHandle One = getIntegerSCEV(1, Ty);
823          SCEVHandle AddOne = getAddExpr(InnerMul, One);
824          SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
825          if (Ops.size() == 2) return OuterMul;
826          if (AddOp < Idx) {
827            Ops.erase(Ops.begin()+AddOp);
828            Ops.erase(Ops.begin()+Idx-1);
829          } else {
830            Ops.erase(Ops.begin()+Idx);
831            Ops.erase(Ops.begin()+AddOp-1);
832          }
833          Ops.push_back(OuterMul);
834          return getAddExpr(Ops);
835        }
836
837      // Check this multiply against other multiplies being added together.
838      for (unsigned OtherMulIdx = Idx+1;
839           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
840           ++OtherMulIdx) {
841        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
842        // If MulOp occurs in OtherMul, we can fold the two multiplies
843        // together.
844        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
845             OMulOp != e; ++OMulOp)
846          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
847            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
848            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
849            if (Mul->getNumOperands() != 2) {
850              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
851              MulOps.erase(MulOps.begin()+MulOp);
852              InnerMul1 = getMulExpr(MulOps);
853            }
854            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
855            if (OtherMul->getNumOperands() != 2) {
856              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
857                                             OtherMul->op_end());
858              MulOps.erase(MulOps.begin()+OMulOp);
859              InnerMul2 = getMulExpr(MulOps);
860            }
861            SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
862            SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
863            if (Ops.size() == 2) return OuterMul;
864            Ops.erase(Ops.begin()+Idx);
865            Ops.erase(Ops.begin()+OtherMulIdx-1);
866            Ops.push_back(OuterMul);
867            return getAddExpr(Ops);
868          }
869      }
870    }
871  }
872
873  // If there are any add recurrences in the operands list, see if any other
874  // added values are loop invariant.  If so, we can fold them into the
875  // recurrence.
876  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
877    ++Idx;
878
879  // Scan over all recurrences, trying to fold loop invariants into them.
880  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
881    // Scan all of the other operands to this add and add them to the vector if
882    // they are loop invariant w.r.t. the recurrence.
883    std::vector<SCEVHandle> LIOps;
884    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
885    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
886      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
887        LIOps.push_back(Ops[i]);
888        Ops.erase(Ops.begin()+i);
889        --i; --e;
890      }
891
892    // If we found some loop invariants, fold them into the recurrence.
893    if (!LIOps.empty()) {
894      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
895      LIOps.push_back(AddRec->getStart());
896
897      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
898      AddRecOps[0] = getAddExpr(LIOps);
899
900      SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
901      // If all of the other operands were loop invariant, we are done.
902      if (Ops.size() == 1) return NewRec;
903
904      // Otherwise, add the folded AddRec by the non-liv parts.
905      for (unsigned i = 0;; ++i)
906        if (Ops[i] == AddRec) {
907          Ops[i] = NewRec;
908          break;
909        }
910      return getAddExpr(Ops);
911    }
912
913    // Okay, if there weren't any loop invariants to be folded, check to see if
914    // there are multiple AddRec's with the same loop induction variable being
915    // added together.  If so, we can fold them.
916    for (unsigned OtherIdx = Idx+1;
917         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
918      if (OtherIdx != Idx) {
919        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
920        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
921          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
922          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
923          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
924            if (i >= NewOps.size()) {
925              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
926                            OtherAddRec->op_end());
927              break;
928            }
929            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
930          }
931          SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
932
933          if (Ops.size() == 2) return NewAddRec;
934
935          Ops.erase(Ops.begin()+Idx);
936          Ops.erase(Ops.begin()+OtherIdx-1);
937          Ops.push_back(NewAddRec);
938          return getAddExpr(Ops);
939        }
940      }
941
942    // Otherwise couldn't fold anything into this recurrence.  Move onto the
943    // next one.
944  }
945
946  // Okay, it looks like we really DO need an add expr.  Check to see if we
947  // already have one, otherwise create a new one.
948  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
949  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
950                                                                 SCEVOps)];
951  if (Result == 0) Result = new SCEVAddExpr(Ops);
952  return Result;
953}
954
955
956SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
957  assert(!Ops.empty() && "Cannot get empty mul!");
958
959  // Sort by complexity, this groups all similar expression types together.
960  GroupByComplexity(Ops);
961
962  // If there are any constants, fold them together.
963  unsigned Idx = 0;
964  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
965
966    // C1*(C2+V) -> C1*C2 + C1*V
967    if (Ops.size() == 2)
968      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
969        if (Add->getNumOperands() == 2 &&
970            isa<SCEVConstant>(Add->getOperand(0)))
971          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
972                            getMulExpr(LHSC, Add->getOperand(1)));
973
974
975    ++Idx;
976    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
977      // We found two constants, fold them together!
978      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
979                                           RHSC->getValue()->getValue());
980      Ops[0] = getConstant(Fold);
981      Ops.erase(Ops.begin()+1);  // Erase the folded element
982      if (Ops.size() == 1) return Ops[0];
983      LHSC = cast<SCEVConstant>(Ops[0]);
984    }
985
986    // If we are left with a constant one being multiplied, strip it off.
987    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
988      Ops.erase(Ops.begin());
989      --Idx;
990    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
991      // If we have a multiply of zero, it will always be zero.
992      return Ops[0];
993    }
994  }
995
996  // Skip over the add expression until we get to a multiply.
997  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
998    ++Idx;
999
1000  if (Ops.size() == 1)
1001    return Ops[0];
1002
1003  // If there are mul operands inline them all into this expression.
1004  if (Idx < Ops.size()) {
1005    bool DeletedMul = false;
1006    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1007      // If we have an mul, expand the mul operands onto the end of the operands
1008      // list.
1009      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1010      Ops.erase(Ops.begin()+Idx);
1011      DeletedMul = true;
1012    }
1013
1014    // If we deleted at least one mul, we added operands to the end of the list,
1015    // and they are not necessarily sorted.  Recurse to resort and resimplify
1016    // any operands we just aquired.
1017    if (DeletedMul)
1018      return getMulExpr(Ops);
1019  }
1020
1021  // If there are any add recurrences in the operands list, see if any other
1022  // added values are loop invariant.  If so, we can fold them into the
1023  // recurrence.
1024  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1025    ++Idx;
1026
1027  // Scan over all recurrences, trying to fold loop invariants into them.
1028  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1029    // Scan all of the other operands to this mul and add them to the vector if
1030    // they are loop invariant w.r.t. the recurrence.
1031    std::vector<SCEVHandle> LIOps;
1032    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1033    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1034      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1035        LIOps.push_back(Ops[i]);
1036        Ops.erase(Ops.begin()+i);
1037        --i; --e;
1038      }
1039
1040    // If we found some loop invariants, fold them into the recurrence.
1041    if (!LIOps.empty()) {
1042      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1043      std::vector<SCEVHandle> NewOps;
1044      NewOps.reserve(AddRec->getNumOperands());
1045      if (LIOps.size() == 1) {
1046        SCEV *Scale = LIOps[0];
1047        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1048          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1049      } else {
1050        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1051          std::vector<SCEVHandle> MulOps(LIOps);
1052          MulOps.push_back(AddRec->getOperand(i));
1053          NewOps.push_back(getMulExpr(MulOps));
1054        }
1055      }
1056
1057      SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1058
1059      // If all of the other operands were loop invariant, we are done.
1060      if (Ops.size() == 1) return NewRec;
1061
1062      // Otherwise, multiply the folded AddRec by the non-liv parts.
1063      for (unsigned i = 0;; ++i)
1064        if (Ops[i] == AddRec) {
1065          Ops[i] = NewRec;
1066          break;
1067        }
1068      return getMulExpr(Ops);
1069    }
1070
1071    // Okay, if there weren't any loop invariants to be folded, check to see if
1072    // there are multiple AddRec's with the same loop induction variable being
1073    // multiplied together.  If so, we can fold them.
1074    for (unsigned OtherIdx = Idx+1;
1075         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1076      if (OtherIdx != Idx) {
1077        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1078        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1079          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1080          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1081          SCEVHandle NewStart = getMulExpr(F->getStart(),
1082                                                 G->getStart());
1083          SCEVHandle B = F->getStepRecurrence(*this);
1084          SCEVHandle D = G->getStepRecurrence(*this);
1085          SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1086                                          getMulExpr(G, B),
1087                                          getMulExpr(B, D));
1088          SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1089                                               F->getLoop());
1090          if (Ops.size() == 2) return NewAddRec;
1091
1092          Ops.erase(Ops.begin()+Idx);
1093          Ops.erase(Ops.begin()+OtherIdx-1);
1094          Ops.push_back(NewAddRec);
1095          return getMulExpr(Ops);
1096        }
1097      }
1098
1099    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1100    // next one.
1101  }
1102
1103  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1104  // already have one, otherwise create a new one.
1105  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1106  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1107                                                                 SCEVOps)];
1108  if (Result == 0)
1109    Result = new SCEVMulExpr(Ops);
1110  return Result;
1111}
1112
1113SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1114  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1115    if (RHSC->getValue()->equalsInt(1))
1116      return LHS;                            // X udiv 1 --> x
1117
1118    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1119      Constant *LHSCV = LHSC->getValue();
1120      Constant *RHSCV = RHSC->getValue();
1121      return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
1122    }
1123  }
1124
1125  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1126
1127  SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1128  if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
1129  return Result;
1130}
1131
1132
1133/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1134/// specified loop.  Simplify the expression as much as possible.
1135SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
1136                               const SCEVHandle &Step, const Loop *L) {
1137  std::vector<SCEVHandle> Operands;
1138  Operands.push_back(Start);
1139  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1140    if (StepChrec->getLoop() == L) {
1141      Operands.insert(Operands.end(), StepChrec->op_begin(),
1142                      StepChrec->op_end());
1143      return getAddRecExpr(Operands, L);
1144    }
1145
1146  Operands.push_back(Step);
1147  return getAddRecExpr(Operands, L);
1148}
1149
1150/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1151/// specified loop.  Simplify the expression as much as possible.
1152SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
1153                               const Loop *L) {
1154  if (Operands.size() == 1) return Operands[0];
1155
1156  if (Operands.back()->isZero()) {
1157    Operands.pop_back();
1158    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1159  }
1160
1161  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1162  if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1163    const Loop* NestedLoop = NestedAR->getLoop();
1164    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1165      std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1166                                             NestedAR->op_end());
1167      SCEVHandle NestedARHandle(NestedAR);
1168      Operands[0] = NestedAR->getStart();
1169      NestedOperands[0] = getAddRecExpr(Operands, L);
1170      return getAddRecExpr(NestedOperands, NestedLoop);
1171    }
1172  }
1173
1174  SCEVAddRecExpr *&Result =
1175    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1176                                                            Operands.end()))];
1177  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1178  return Result;
1179}
1180
1181SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1182                                        const SCEVHandle &RHS) {
1183  std::vector<SCEVHandle> Ops;
1184  Ops.push_back(LHS);
1185  Ops.push_back(RHS);
1186  return getSMaxExpr(Ops);
1187}
1188
1189SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1190  assert(!Ops.empty() && "Cannot get empty smax!");
1191  if (Ops.size() == 1) return Ops[0];
1192
1193  // Sort by complexity, this groups all similar expression types together.
1194  GroupByComplexity(Ops);
1195
1196  // If there are any constants, fold them together.
1197  unsigned Idx = 0;
1198  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1199    ++Idx;
1200    assert(Idx < Ops.size());
1201    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1202      // We found two constants, fold them together!
1203      ConstantInt *Fold = ConstantInt::get(
1204                              APIntOps::smax(LHSC->getValue()->getValue(),
1205                                             RHSC->getValue()->getValue()));
1206      Ops[0] = getConstant(Fold);
1207      Ops.erase(Ops.begin()+1);  // Erase the folded element
1208      if (Ops.size() == 1) return Ops[0];
1209      LHSC = cast<SCEVConstant>(Ops[0]);
1210    }
1211
1212    // If we are left with a constant -inf, strip it off.
1213    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1214      Ops.erase(Ops.begin());
1215      --Idx;
1216    }
1217  }
1218
1219  if (Ops.size() == 1) return Ops[0];
1220
1221  // Find the first SMax
1222  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1223    ++Idx;
1224
1225  // Check to see if one of the operands is an SMax. If so, expand its operands
1226  // onto our operand list, and recurse to simplify.
1227  if (Idx < Ops.size()) {
1228    bool DeletedSMax = false;
1229    while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1230      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1231      Ops.erase(Ops.begin()+Idx);
1232      DeletedSMax = true;
1233    }
1234
1235    if (DeletedSMax)
1236      return getSMaxExpr(Ops);
1237  }
1238
1239  // Okay, check to see if the same value occurs in the operand list twice.  If
1240  // so, delete one.  Since we sorted the list, these values are required to
1241  // be adjacent.
1242  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1243    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1244      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1245      --i; --e;
1246    }
1247
1248  if (Ops.size() == 1) return Ops[0];
1249
1250  assert(!Ops.empty() && "Reduced smax down to nothing!");
1251
1252  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1253  // already have one, otherwise create a new one.
1254  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1255  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1256                                                                 SCEVOps)];
1257  if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1258  return Result;
1259}
1260
1261SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1262                                        const SCEVHandle &RHS) {
1263  std::vector<SCEVHandle> Ops;
1264  Ops.push_back(LHS);
1265  Ops.push_back(RHS);
1266  return getUMaxExpr(Ops);
1267}
1268
1269SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1270  assert(!Ops.empty() && "Cannot get empty umax!");
1271  if (Ops.size() == 1) return Ops[0];
1272
1273  // Sort by complexity, this groups all similar expression types together.
1274  GroupByComplexity(Ops);
1275
1276  // If there are any constants, fold them together.
1277  unsigned Idx = 0;
1278  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1279    ++Idx;
1280    assert(Idx < Ops.size());
1281    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1282      // We found two constants, fold them together!
1283      ConstantInt *Fold = ConstantInt::get(
1284                              APIntOps::umax(LHSC->getValue()->getValue(),
1285                                             RHSC->getValue()->getValue()));
1286      Ops[0] = getConstant(Fold);
1287      Ops.erase(Ops.begin()+1);  // Erase the folded element
1288      if (Ops.size() == 1) return Ops[0];
1289      LHSC = cast<SCEVConstant>(Ops[0]);
1290    }
1291
1292    // If we are left with a constant zero, strip it off.
1293    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1294      Ops.erase(Ops.begin());
1295      --Idx;
1296    }
1297  }
1298
1299  if (Ops.size() == 1) return Ops[0];
1300
1301  // Find the first UMax
1302  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1303    ++Idx;
1304
1305  // Check to see if one of the operands is a UMax. If so, expand its operands
1306  // onto our operand list, and recurse to simplify.
1307  if (Idx < Ops.size()) {
1308    bool DeletedUMax = false;
1309    while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1310      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1311      Ops.erase(Ops.begin()+Idx);
1312      DeletedUMax = true;
1313    }
1314
1315    if (DeletedUMax)
1316      return getUMaxExpr(Ops);
1317  }
1318
1319  // Okay, check to see if the same value occurs in the operand list twice.  If
1320  // so, delete one.  Since we sorted the list, these values are required to
1321  // be adjacent.
1322  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1323    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1324      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1325      --i; --e;
1326    }
1327
1328  if (Ops.size() == 1) return Ops[0];
1329
1330  assert(!Ops.empty() && "Reduced umax down to nothing!");
1331
1332  // Okay, it looks like we really DO need a umax expr.  Check to see if we
1333  // already have one, otherwise create a new one.
1334  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1335  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1336                                                                 SCEVOps)];
1337  if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1338  return Result;
1339}
1340
1341SCEVHandle ScalarEvolution::getUnknown(Value *V) {
1342  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1343    return getConstant(CI);
1344  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1345  if (Result == 0) Result = new SCEVUnknown(V);
1346  return Result;
1347}
1348
1349
1350//===----------------------------------------------------------------------===//
1351//             ScalarEvolutionsImpl Definition and Implementation
1352//===----------------------------------------------------------------------===//
1353//
1354/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1355/// evolution code.
1356///
1357namespace {
1358  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1359    /// SE - A reference to the public ScalarEvolution object.
1360    ScalarEvolution &SE;
1361
1362    /// F - The function we are analyzing.
1363    ///
1364    Function &F;
1365
1366    /// LI - The loop information for the function we are currently analyzing.
1367    ///
1368    LoopInfo &LI;
1369
1370    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1371    /// things.
1372    SCEVHandle UnknownValue;
1373
1374    /// Scalars - This is a cache of the scalars we have analyzed so far.
1375    ///
1376    std::map<Value*, SCEVHandle> Scalars;
1377
1378    /// IterationCounts - Cache the iteration count of the loops for this
1379    /// function as they are computed.
1380    std::map<const Loop*, SCEVHandle> IterationCounts;
1381
1382    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1383    /// the PHI instructions that we attempt to compute constant evolutions for.
1384    /// This allows us to avoid potentially expensive recomputation of these
1385    /// properties.  An instruction maps to null if we are unable to compute its
1386    /// exit value.
1387    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1388
1389  public:
1390    ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li)
1391      : SE(se), F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1392
1393    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1394    /// expression and create a new one.
1395    SCEVHandle getSCEV(Value *V);
1396
1397    /// hasSCEV - Return true if the SCEV for this value has already been
1398    /// computed.
1399    bool hasSCEV(Value *V) const {
1400      return Scalars.count(V);
1401    }
1402
1403    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1404    /// the specified value.
1405    void setSCEV(Value *V, const SCEVHandle &H) {
1406      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1407      assert(isNew && "This entry already existed!");
1408    }
1409
1410
1411    /// getSCEVAtScope - Compute the value of the specified expression within
1412    /// the indicated loop (which may be null to indicate in no loop).  If the
1413    /// expression cannot be evaluated, return UnknownValue itself.
1414    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1415
1416
1417    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1418    /// an analyzable loop-invariant iteration count.
1419    bool hasLoopInvariantIterationCount(const Loop *L);
1420
1421    /// getIterationCount - If the specified loop has a predictable iteration
1422    /// count, return it.  Note that it is not valid to call this method on a
1423    /// loop without a loop-invariant iteration count.
1424    SCEVHandle getIterationCount(const Loop *L);
1425
1426    /// deleteValueFromRecords - This method should be called by the
1427    /// client before it removes a value from the program, to make sure
1428    /// that no dangling references are left around.
1429    void deleteValueFromRecords(Value *V);
1430
1431  private:
1432    /// createSCEV - We know that there is no SCEV for the specified value.
1433    /// Analyze the expression.
1434    SCEVHandle createSCEV(Value *V);
1435
1436    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1437    /// SCEVs.
1438    SCEVHandle createNodeForPHI(PHINode *PN);
1439
1440    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1441    /// for the specified instruction and replaces any references to the
1442    /// symbolic value SymName with the specified value.  This is used during
1443    /// PHI resolution.
1444    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1445                                          const SCEVHandle &SymName,
1446                                          const SCEVHandle &NewVal);
1447
1448    /// ComputeIterationCount - Compute the number of times the specified loop
1449    /// will iterate.
1450    SCEVHandle ComputeIterationCount(const Loop *L);
1451
1452    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1453    /// 'icmp op load X, cst', try to see if we can compute the trip count.
1454    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1455                                                        Constant *RHS,
1456                                                        const Loop *L,
1457                                                        ICmpInst::Predicate p);
1458
1459    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1460    /// constant number of times (the condition evolves only from constants),
1461    /// try to evaluate a few iterations of the loop until we get the exit
1462    /// condition gets a value of ExitWhen (true or false).  If we cannot
1463    /// evaluate the trip count of the loop, return UnknownValue.
1464    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1465                                                 bool ExitWhen);
1466
1467    /// HowFarToZero - Return the number of times a backedge comparing the
1468    /// specified value to zero will execute.  If not computable, return
1469    /// UnknownValue.
1470    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1471
1472    /// HowFarToNonZero - Return the number of times a backedge checking the
1473    /// specified value for nonzero will execute.  If not computable, return
1474    /// UnknownValue.
1475    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1476
1477    /// HowManyLessThans - Return the number of times a backedge containing the
1478    /// specified less-than comparison will execute.  If not computable, return
1479    /// UnknownValue. isSigned specifies whether the less-than is signed.
1480    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1481                                bool isSigned);
1482
1483    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
1484    /// (which may not be an immediate predecessor) which has exactly one
1485    /// successor from which BB is reachable, or null if no such block is
1486    /// found.
1487    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
1488
1489    /// executesAtLeastOnce - Test whether entry to the loop is protected by
1490    /// a conditional between LHS and RHS.
1491    bool executesAtLeastOnce(const Loop *L, bool isSigned, SCEV *LHS, SCEV *RHS);
1492
1493    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1494    /// in the header of its containing loop, we know the loop executes a
1495    /// constant number of times, and the PHI node is just a recurrence
1496    /// involving constants, fold it.
1497    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1498                                                const Loop *L);
1499  };
1500}
1501
1502//===----------------------------------------------------------------------===//
1503//            Basic SCEV Analysis and PHI Idiom Recognition Code
1504//
1505
1506/// deleteValueFromRecords - This method should be called by the
1507/// client before it removes an instruction from the program, to make sure
1508/// that no dangling references are left around.
1509void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1510  SmallVector<Value *, 16> Worklist;
1511
1512  if (Scalars.erase(V)) {
1513    if (PHINode *PN = dyn_cast<PHINode>(V))
1514      ConstantEvolutionLoopExitValue.erase(PN);
1515    Worklist.push_back(V);
1516  }
1517
1518  while (!Worklist.empty()) {
1519    Value *VV = Worklist.back();
1520    Worklist.pop_back();
1521
1522    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1523         UI != UE; ++UI) {
1524      Instruction *Inst = cast<Instruction>(*UI);
1525      if (Scalars.erase(Inst)) {
1526        if (PHINode *PN = dyn_cast<PHINode>(VV))
1527          ConstantEvolutionLoopExitValue.erase(PN);
1528        Worklist.push_back(Inst);
1529      }
1530    }
1531  }
1532}
1533
1534
1535/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1536/// expression and create a new one.
1537SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1538  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1539
1540  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1541  if (I != Scalars.end()) return I->second;
1542  SCEVHandle S = createSCEV(V);
1543  Scalars.insert(std::make_pair(V, S));
1544  return S;
1545}
1546
1547/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1548/// the specified instruction and replaces any references to the symbolic value
1549/// SymName with the specified value.  This is used during PHI resolution.
1550void ScalarEvolutionsImpl::
1551ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1552                                 const SCEVHandle &NewVal) {
1553  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1554  if (SI == Scalars.end()) return;
1555
1556  SCEVHandle NV =
1557    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE);
1558  if (NV == SI->second) return;  // No change.
1559
1560  SI->second = NV;       // Update the scalars map!
1561
1562  // Any instruction values that use this instruction might also need to be
1563  // updated!
1564  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1565       UI != E; ++UI)
1566    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1567}
1568
1569/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1570/// a loop header, making it a potential recurrence, or it doesn't.
1571///
1572SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1573  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1574    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1575      if (L->getHeader() == PN->getParent()) {
1576        // If it lives in the loop header, it has two incoming values, one
1577        // from outside the loop, and one from inside.
1578        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1579        unsigned BackEdge     = IncomingEdge^1;
1580
1581        // While we are analyzing this PHI node, handle its value symbolically.
1582        SCEVHandle SymbolicName = SE.getUnknown(PN);
1583        assert(Scalars.find(PN) == Scalars.end() &&
1584               "PHI node already processed?");
1585        Scalars.insert(std::make_pair(PN, SymbolicName));
1586
1587        // Using this symbolic name for the PHI, analyze the value coming around
1588        // the back-edge.
1589        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1590
1591        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1592        // has a special value for the first iteration of the loop.
1593
1594        // If the value coming around the backedge is an add with the symbolic
1595        // value we just inserted, then we found a simple induction variable!
1596        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1597          // If there is a single occurrence of the symbolic value, replace it
1598          // with a recurrence.
1599          unsigned FoundIndex = Add->getNumOperands();
1600          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1601            if (Add->getOperand(i) == SymbolicName)
1602              if (FoundIndex == e) {
1603                FoundIndex = i;
1604                break;
1605              }
1606
1607          if (FoundIndex != Add->getNumOperands()) {
1608            // Create an add with everything but the specified operand.
1609            std::vector<SCEVHandle> Ops;
1610            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1611              if (i != FoundIndex)
1612                Ops.push_back(Add->getOperand(i));
1613            SCEVHandle Accum = SE.getAddExpr(Ops);
1614
1615            // This is not a valid addrec if the step amount is varying each
1616            // loop iteration, but is not itself an addrec in this loop.
1617            if (Accum->isLoopInvariant(L) ||
1618                (isa<SCEVAddRecExpr>(Accum) &&
1619                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1620              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1621              SCEVHandle PHISCEV  = SE.getAddRecExpr(StartVal, Accum, L);
1622
1623              // Okay, for the entire analysis of this edge we assumed the PHI
1624              // to be symbolic.  We now need to go back and update all of the
1625              // entries for the scalars that use the PHI (except for the PHI
1626              // itself) to use the new analyzed value instead of the "symbolic"
1627              // value.
1628              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1629              return PHISCEV;
1630            }
1631          }
1632        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1633          // Otherwise, this could be a loop like this:
1634          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1635          // In this case, j = {1,+,1}  and BEValue is j.
1636          // Because the other in-value of i (0) fits the evolution of BEValue
1637          // i really is an addrec evolution.
1638          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1639            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1640
1641            // If StartVal = j.start - j.stride, we can use StartVal as the
1642            // initial step of the addrec evolution.
1643            if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0),
1644                                            AddRec->getOperand(1))) {
1645              SCEVHandle PHISCEV =
1646                 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L);
1647
1648              // Okay, for the entire analysis of this edge we assumed the PHI
1649              // to be symbolic.  We now need to go back and update all of the
1650              // entries for the scalars that use the PHI (except for the PHI
1651              // itself) to use the new analyzed value instead of the "symbolic"
1652              // value.
1653              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1654              return PHISCEV;
1655            }
1656          }
1657        }
1658
1659        return SymbolicName;
1660      }
1661
1662  // If it's not a loop phi, we can't handle it yet.
1663  return SE.getUnknown(PN);
1664}
1665
1666/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1667/// guaranteed to end in (at every loop iteration).  It is, at the same time,
1668/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
1669/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
1670static uint32_t GetMinTrailingZeros(SCEVHandle S) {
1671  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
1672    return C->getValue()->getValue().countTrailingZeros();
1673
1674  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1675    return std::min(GetMinTrailingZeros(T->getOperand()), T->getBitWidth());
1676
1677  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
1678    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1679    return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1680  }
1681
1682  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
1683    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
1684    return OpRes == E->getOperand()->getBitWidth() ? E->getBitWidth() : OpRes;
1685  }
1686
1687  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1688    // The result is the min of all operands results.
1689    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1690    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1691      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1692    return MinOpRes;
1693  }
1694
1695  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1696    // The result is the sum of all operands results.
1697    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
1698    uint32_t BitWidth = M->getBitWidth();
1699    for (unsigned i = 1, e = M->getNumOperands();
1700         SumOpRes != BitWidth && i != e; ++i)
1701      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
1702                          BitWidth);
1703    return SumOpRes;
1704  }
1705
1706  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1707    // The result is the min of all operands results.
1708    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
1709    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
1710      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
1711    return MinOpRes;
1712  }
1713
1714  if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1715    // The result is the min of all operands results.
1716    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1717    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1718      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1719    return MinOpRes;
1720  }
1721
1722  if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1723    // The result is the min of all operands results.
1724    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
1725    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
1726      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
1727    return MinOpRes;
1728  }
1729
1730  // SCEVUDivExpr, SCEVUnknown
1731  return 0;
1732}
1733
1734/// createSCEV - We know that there is no SCEV for the specified value.
1735/// Analyze the expression.
1736///
1737SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1738  if (!isa<IntegerType>(V->getType()))
1739    return SE.getUnknown(V);
1740
1741  unsigned Opcode = Instruction::UserOp1;
1742  if (Instruction *I = dyn_cast<Instruction>(V))
1743    Opcode = I->getOpcode();
1744  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1745    Opcode = CE->getOpcode();
1746  else
1747    return SE.getUnknown(V);
1748
1749  User *U = cast<User>(V);
1750  switch (Opcode) {
1751  case Instruction::Add:
1752    return SE.getAddExpr(getSCEV(U->getOperand(0)),
1753                         getSCEV(U->getOperand(1)));
1754  case Instruction::Mul:
1755    return SE.getMulExpr(getSCEV(U->getOperand(0)),
1756                         getSCEV(U->getOperand(1)));
1757  case Instruction::UDiv:
1758    return SE.getUDivExpr(getSCEV(U->getOperand(0)),
1759                          getSCEV(U->getOperand(1)));
1760  case Instruction::Sub:
1761    return SE.getMinusSCEV(getSCEV(U->getOperand(0)),
1762                           getSCEV(U->getOperand(1)));
1763  case Instruction::Or:
1764    // If the RHS of the Or is a constant, we may have something like:
1765    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
1766    // optimizations will transparently handle this case.
1767    //
1768    // In order for this transformation to be safe, the LHS must be of the
1769    // form X*(2^n) and the Or constant must be less than 2^n.
1770    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1771      SCEVHandle LHS = getSCEV(U->getOperand(0));
1772      const APInt &CIVal = CI->getValue();
1773      if (GetMinTrailingZeros(LHS) >=
1774          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
1775        return SE.getAddExpr(LHS, getSCEV(U->getOperand(1)));
1776    }
1777    break;
1778  case Instruction::Xor:
1779    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1780      // If the RHS of the xor is a signbit, then this is just an add.
1781      // Instcombine turns add of signbit into xor as a strength reduction step.
1782      if (CI->getValue().isSignBit())
1783        return SE.getAddExpr(getSCEV(U->getOperand(0)),
1784                             getSCEV(U->getOperand(1)));
1785
1786      // If the RHS of xor is -1, then this is a not operation.
1787      else if (CI->isAllOnesValue())
1788        return SE.getNotSCEV(getSCEV(U->getOperand(0)));
1789    }
1790    break;
1791
1792  case Instruction::Shl:
1793    // Turn shift left of a constant amount into a multiply.
1794    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1795      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1796      Constant *X = ConstantInt::get(
1797        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1798      return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1799    }
1800    break;
1801
1802  case Instruction::LShr:
1803    // Turn logical shift right of a constant into a unsigned divide.
1804    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1805      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1806      Constant *X = ConstantInt::get(
1807        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1808      return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
1809    }
1810    break;
1811
1812  case Instruction::Trunc:
1813    return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
1814
1815  case Instruction::ZExt:
1816    return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1817
1818  case Instruction::SExt:
1819    return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
1820
1821  case Instruction::BitCast:
1822    // BitCasts are no-op casts so we just eliminate the cast.
1823    if (U->getType()->isInteger() &&
1824        U->getOperand(0)->getType()->isInteger())
1825      return getSCEV(U->getOperand(0));
1826    break;
1827
1828  case Instruction::PHI:
1829    return createNodeForPHI(cast<PHINode>(U));
1830
1831  case Instruction::Select:
1832    // This could be a smax or umax that was lowered earlier.
1833    // Try to recover it.
1834    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
1835      Value *LHS = ICI->getOperand(0);
1836      Value *RHS = ICI->getOperand(1);
1837      switch (ICI->getPredicate()) {
1838      case ICmpInst::ICMP_SLT:
1839      case ICmpInst::ICMP_SLE:
1840        std::swap(LHS, RHS);
1841        // fall through
1842      case ICmpInst::ICMP_SGT:
1843      case ICmpInst::ICMP_SGE:
1844        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1845          return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
1846        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1847          // ~smax(~x, ~y) == smin(x, y).
1848          return SE.getNotSCEV(SE.getSMaxExpr(
1849                                   SE.getNotSCEV(getSCEV(LHS)),
1850                                   SE.getNotSCEV(getSCEV(RHS))));
1851        break;
1852      case ICmpInst::ICMP_ULT:
1853      case ICmpInst::ICMP_ULE:
1854        std::swap(LHS, RHS);
1855        // fall through
1856      case ICmpInst::ICMP_UGT:
1857      case ICmpInst::ICMP_UGE:
1858        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
1859          return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
1860        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
1861          // ~umax(~x, ~y) == umin(x, y)
1862          return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)),
1863                                              SE.getNotSCEV(getSCEV(RHS))));
1864        break;
1865      default:
1866        break;
1867      }
1868    }
1869
1870  default: // We cannot analyze this expression.
1871    break;
1872  }
1873
1874  return SE.getUnknown(V);
1875}
1876
1877
1878
1879//===----------------------------------------------------------------------===//
1880//                   Iteration Count Computation Code
1881//
1882
1883/// getIterationCount - If the specified loop has a predictable iteration
1884/// count, return it.  Note that it is not valid to call this method on a
1885/// loop without a loop-invariant iteration count.
1886SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1887  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1888  if (I == IterationCounts.end()) {
1889    SCEVHandle ItCount = ComputeIterationCount(L);
1890    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1891    if (ItCount != UnknownValue) {
1892      assert(ItCount->isLoopInvariant(L) &&
1893             "Computed trip count isn't loop invariant for loop!");
1894      ++NumTripCountsComputed;
1895    } else if (isa<PHINode>(L->getHeader()->begin())) {
1896      // Only count loops that have phi nodes as not being computable.
1897      ++NumTripCountsNotComputed;
1898    }
1899  }
1900  return I->second;
1901}
1902
1903/// ComputeIterationCount - Compute the number of times the specified loop
1904/// will iterate.
1905SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1906  // If the loop has a non-one exit block count, we can't analyze it.
1907  SmallVector<BasicBlock*, 8> ExitBlocks;
1908  L->getExitBlocks(ExitBlocks);
1909  if (ExitBlocks.size() != 1) return UnknownValue;
1910
1911  // Okay, there is one exit block.  Try to find the condition that causes the
1912  // loop to be exited.
1913  BasicBlock *ExitBlock = ExitBlocks[0];
1914
1915  BasicBlock *ExitingBlock = 0;
1916  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1917       PI != E; ++PI)
1918    if (L->contains(*PI)) {
1919      if (ExitingBlock == 0)
1920        ExitingBlock = *PI;
1921      else
1922        return UnknownValue;   // More than one block exiting!
1923    }
1924  assert(ExitingBlock && "No exits from loop, something is broken!");
1925
1926  // Okay, we've computed the exiting block.  See what condition causes us to
1927  // exit.
1928  //
1929  // FIXME: we should be able to handle switch instructions (with a single exit)
1930  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1931  if (ExitBr == 0) return UnknownValue;
1932  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1933
1934  // At this point, we know we have a conditional branch that determines whether
1935  // the loop is exited.  However, we don't know if the branch is executed each
1936  // time through the loop.  If not, then the execution count of the branch will
1937  // not be equal to the trip count of the loop.
1938  //
1939  // Currently we check for this by checking to see if the Exit branch goes to
1940  // the loop header.  If so, we know it will always execute the same number of
1941  // times as the loop.  We also handle the case where the exit block *is* the
1942  // loop header.  This is common for un-rotated loops.  More extensive analysis
1943  // could be done to handle more cases here.
1944  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1945      ExitBr->getSuccessor(1) != L->getHeader() &&
1946      ExitBr->getParent() != L->getHeader())
1947    return UnknownValue;
1948
1949  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1950
1951  // If it's not an integer comparison then compute it the hard way.
1952  // Note that ICmpInst deals with pointer comparisons too so we must check
1953  // the type of the operand.
1954  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1955    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1956                                          ExitBr->getSuccessor(0) == ExitBlock);
1957
1958  // If the condition was exit on true, convert the condition to exit on false
1959  ICmpInst::Predicate Cond;
1960  if (ExitBr->getSuccessor(1) == ExitBlock)
1961    Cond = ExitCond->getPredicate();
1962  else
1963    Cond = ExitCond->getInversePredicate();
1964
1965  // Handle common loops like: for (X = "string"; *X; ++X)
1966  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1967    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1968      SCEVHandle ItCnt =
1969        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1970      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1971    }
1972
1973  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1974  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1975
1976  // Try to evaluate any dependencies out of the loop.
1977  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1978  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1979  Tmp = getSCEVAtScope(RHS, L);
1980  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1981
1982  // At this point, we would like to compute how many iterations of the
1983  // loop the predicate will return true for these inputs.
1984  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
1985    // If there is a loop-invariant, force it into the RHS.
1986    std::swap(LHS, RHS);
1987    Cond = ICmpInst::getSwappedPredicate(Cond);
1988  }
1989
1990  // FIXME: think about handling pointer comparisons!  i.e.:
1991  // while (P != P+100) ++P;
1992
1993  // If we have a comparison of a chrec against a constant, try to use value
1994  // ranges to answer this query.
1995  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1996    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1997      if (AddRec->getLoop() == L) {
1998        // Form the comparison range using the constant of the correct type so
1999        // that the ConstantRange class knows to do a signed or unsigned
2000        // comparison.
2001        ConstantInt *CompVal = RHSC->getValue();
2002        const Type *RealTy = ExitCond->getOperand(0)->getType();
2003        CompVal = dyn_cast<ConstantInt>(
2004          ConstantExpr::getBitCast(CompVal, RealTy));
2005        if (CompVal) {
2006          // Form the constant range.
2007          ConstantRange CompRange(
2008              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2009
2010          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE);
2011          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2012        }
2013      }
2014
2015  switch (Cond) {
2016  case ICmpInst::ICMP_NE: {                     // while (X != Y)
2017    // Convert to: while (X-Y != 0)
2018    SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L);
2019    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2020    break;
2021  }
2022  case ICmpInst::ICMP_EQ: {
2023    // Convert to: while (X-Y == 0)           // while (X == Y)
2024    SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L);
2025    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2026    break;
2027  }
2028  case ICmpInst::ICMP_SLT: {
2029    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
2030    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2031    break;
2032  }
2033  case ICmpInst::ICMP_SGT: {
2034    SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
2035                                     SE.getNotSCEV(RHS), L, true);
2036    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2037    break;
2038  }
2039  case ICmpInst::ICMP_ULT: {
2040    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
2041    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2042    break;
2043  }
2044  case ICmpInst::ICMP_UGT: {
2045    SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS),
2046                                     SE.getNotSCEV(RHS), L, false);
2047    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2048    break;
2049  }
2050  default:
2051#if 0
2052    cerr << "ComputeIterationCount ";
2053    if (ExitCond->getOperand(0)->getType()->isUnsigned())
2054      cerr << "[unsigned] ";
2055    cerr << *LHS << "   "
2056         << Instruction::getOpcodeName(Instruction::ICmp)
2057         << "   " << *RHS << "\n";
2058#endif
2059    break;
2060  }
2061  return ComputeIterationCountExhaustively(L, ExitCond,
2062                                       ExitBr->getSuccessor(0) == ExitBlock);
2063}
2064
2065static ConstantInt *
2066EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2067                                ScalarEvolution &SE) {
2068  SCEVHandle InVal = SE.getConstant(C);
2069  SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
2070  assert(isa<SCEVConstant>(Val) &&
2071         "Evaluation of SCEV at constant didn't fold correctly?");
2072  return cast<SCEVConstant>(Val)->getValue();
2073}
2074
2075/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2076/// and a GEP expression (missing the pointer index) indexing into it, return
2077/// the addressed element of the initializer or null if the index expression is
2078/// invalid.
2079static Constant *
2080GetAddressedElementFromGlobal(GlobalVariable *GV,
2081                              const std::vector<ConstantInt*> &Indices) {
2082  Constant *Init = GV->getInitializer();
2083  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2084    uint64_t Idx = Indices[i]->getZExtValue();
2085    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2086      assert(Idx < CS->getNumOperands() && "Bad struct index!");
2087      Init = cast<Constant>(CS->getOperand(Idx));
2088    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2089      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
2090      Init = cast<Constant>(CA->getOperand(Idx));
2091    } else if (isa<ConstantAggregateZero>(Init)) {
2092      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2093        assert(Idx < STy->getNumElements() && "Bad struct index!");
2094        Init = Constant::getNullValue(STy->getElementType(Idx));
2095      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2096        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
2097        Init = Constant::getNullValue(ATy->getElementType());
2098      } else {
2099        assert(0 && "Unknown constant aggregate type!");
2100      }
2101      return 0;
2102    } else {
2103      return 0; // Unknown initializer type
2104    }
2105  }
2106  return Init;
2107}
2108
2109/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
2110/// 'icmp op load X, cst', try to see if we can compute the trip count.
2111SCEVHandle ScalarEvolutionsImpl::
2112ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
2113                                         const Loop *L,
2114                                         ICmpInst::Predicate predicate) {
2115  if (LI->isVolatile()) return UnknownValue;
2116
2117  // Check to see if the loaded pointer is a getelementptr of a global.
2118  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2119  if (!GEP) return UnknownValue;
2120
2121  // Make sure that it is really a constant global we are gepping, with an
2122  // initializer, and make sure the first IDX is really 0.
2123  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2124  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2125      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2126      !cast<Constant>(GEP->getOperand(1))->isNullValue())
2127    return UnknownValue;
2128
2129  // Okay, we allow one non-constant index into the GEP instruction.
2130  Value *VarIdx = 0;
2131  std::vector<ConstantInt*> Indexes;
2132  unsigned VarIdxNum = 0;
2133  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2134    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2135      Indexes.push_back(CI);
2136    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2137      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
2138      VarIdx = GEP->getOperand(i);
2139      VarIdxNum = i-2;
2140      Indexes.push_back(0);
2141    }
2142
2143  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2144  // Check to see if X is a loop variant variable value now.
2145  SCEVHandle Idx = getSCEV(VarIdx);
2146  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2147  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2148
2149  // We can only recognize very limited forms of loop index expressions, in
2150  // particular, only affine AddRec's like {C1,+,C2}.
2151  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2152  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2153      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2154      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2155    return UnknownValue;
2156
2157  unsigned MaxSteps = MaxBruteForceIterations;
2158  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2159    ConstantInt *ItCst =
2160      ConstantInt::get(IdxExpr->getType(), IterationNum);
2161    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE);
2162
2163    // Form the GEP offset.
2164    Indexes[VarIdxNum] = Val;
2165
2166    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2167    if (Result == 0) break;  // Cannot compute!
2168
2169    // Evaluate the condition for this iteration.
2170    Result = ConstantExpr::getICmp(predicate, Result, RHS);
2171    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
2172    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2173#if 0
2174      cerr << "\n***\n*** Computed loop count " << *ItCst
2175           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2176           << "***\n";
2177#endif
2178      ++NumArrayLenItCounts;
2179      return SE.getConstant(ItCst);   // Found terminating iteration!
2180    }
2181  }
2182  return UnknownValue;
2183}
2184
2185
2186/// CanConstantFold - Return true if we can constant fold an instruction of the
2187/// specified type, assuming that all operands were constants.
2188static bool CanConstantFold(const Instruction *I) {
2189  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2190      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2191    return true;
2192
2193  if (const CallInst *CI = dyn_cast<CallInst>(I))
2194    if (const Function *F = CI->getCalledFunction())
2195      return canConstantFoldCallTo(F);
2196  return false;
2197}
2198
2199/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2200/// in the loop that V is derived from.  We allow arbitrary operations along the
2201/// way, but the operands of an operation must either be constants or a value
2202/// derived from a constant PHI.  If this expression does not fit with these
2203/// constraints, return null.
2204static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2205  // If this is not an instruction, or if this is an instruction outside of the
2206  // loop, it can't be derived from a loop PHI.
2207  Instruction *I = dyn_cast<Instruction>(V);
2208  if (I == 0 || !L->contains(I->getParent())) return 0;
2209
2210  if (PHINode *PN = dyn_cast<PHINode>(I)) {
2211    if (L->getHeader() == I->getParent())
2212      return PN;
2213    else
2214      // We don't currently keep track of the control flow needed to evaluate
2215      // PHIs, so we cannot handle PHIs inside of loops.
2216      return 0;
2217  }
2218
2219  // If we won't be able to constant fold this expression even if the operands
2220  // are constants, return early.
2221  if (!CanConstantFold(I)) return 0;
2222
2223  // Otherwise, we can evaluate this instruction if all of its operands are
2224  // constant or derived from a PHI node themselves.
2225  PHINode *PHI = 0;
2226  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2227    if (!(isa<Constant>(I->getOperand(Op)) ||
2228          isa<GlobalValue>(I->getOperand(Op)))) {
2229      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2230      if (P == 0) return 0;  // Not evolving from PHI
2231      if (PHI == 0)
2232        PHI = P;
2233      else if (PHI != P)
2234        return 0;  // Evolving from multiple different PHIs.
2235    }
2236
2237  // This is a expression evolving from a constant PHI!
2238  return PHI;
2239}
2240
2241/// EvaluateExpression - Given an expression that passes the
2242/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2243/// in the loop has the value PHIVal.  If we can't fold this expression for some
2244/// reason, return null.
2245static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2246  if (isa<PHINode>(V)) return PHIVal;
2247  if (Constant *C = dyn_cast<Constant>(V)) return C;
2248  Instruction *I = cast<Instruction>(V);
2249
2250  std::vector<Constant*> Operands;
2251  Operands.resize(I->getNumOperands());
2252
2253  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2254    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2255    if (Operands[i] == 0) return 0;
2256  }
2257
2258  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2259    return ConstantFoldCompareInstOperands(CI->getPredicate(),
2260                                           &Operands[0], Operands.size());
2261  else
2262    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2263                                    &Operands[0], Operands.size());
2264}
2265
2266/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2267/// in the header of its containing loop, we know the loop executes a
2268/// constant number of times, and the PHI node is just a recurrence
2269/// involving constants, fold it.
2270Constant *ScalarEvolutionsImpl::
2271getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
2272  std::map<PHINode*, Constant*>::iterator I =
2273    ConstantEvolutionLoopExitValue.find(PN);
2274  if (I != ConstantEvolutionLoopExitValue.end())
2275    return I->second;
2276
2277  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
2278    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
2279
2280  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2281
2282  // Since the loop is canonicalized, the PHI node must have two entries.  One
2283  // entry must be a constant (coming in from outside of the loop), and the
2284  // second must be derived from the same PHI.
2285  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2286  Constant *StartCST =
2287    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2288  if (StartCST == 0)
2289    return RetVal = 0;  // Must be a constant.
2290
2291  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2292  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2293  if (PN2 != PN)
2294    return RetVal = 0;  // Not derived from same PHI.
2295
2296  // Execute the loop symbolically to determine the exit value.
2297  if (Its.getActiveBits() >= 32)
2298    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2299
2300  unsigned NumIterations = Its.getZExtValue(); // must be in range
2301  unsigned IterationNum = 0;
2302  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2303    if (IterationNum == NumIterations)
2304      return RetVal = PHIVal;  // Got exit value!
2305
2306    // Compute the value of the PHI node for the next iteration.
2307    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2308    if (NextPHI == PHIVal)
2309      return RetVal = NextPHI;  // Stopped evolving!
2310    if (NextPHI == 0)
2311      return 0;        // Couldn't evaluate!
2312    PHIVal = NextPHI;
2313  }
2314}
2315
2316/// ComputeIterationCountExhaustively - If the trip is known to execute a
2317/// constant number of times (the condition evolves only from constants),
2318/// try to evaluate a few iterations of the loop until we get the exit
2319/// condition gets a value of ExitWhen (true or false).  If we cannot
2320/// evaluate the trip count of the loop, return UnknownValue.
2321SCEVHandle ScalarEvolutionsImpl::
2322ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
2323  PHINode *PN = getConstantEvolvingPHI(Cond, L);
2324  if (PN == 0) return UnknownValue;
2325
2326  // Since the loop is canonicalized, the PHI node must have two entries.  One
2327  // entry must be a constant (coming in from outside of the loop), and the
2328  // second must be derived from the same PHI.
2329  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2330  Constant *StartCST =
2331    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2332  if (StartCST == 0) return UnknownValue;  // Must be a constant.
2333
2334  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2335  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2336  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
2337
2338  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2339  // the loop symbolically to determine when the condition gets a value of
2340  // "ExitWhen".
2341  unsigned IterationNum = 0;
2342  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2343  for (Constant *PHIVal = StartCST;
2344       IterationNum != MaxIterations; ++IterationNum) {
2345    ConstantInt *CondVal =
2346      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2347
2348    // Couldn't symbolically evaluate.
2349    if (!CondVal) return UnknownValue;
2350
2351    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2352      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2353      ++NumBruteForceTripCountsComputed;
2354      return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
2355    }
2356
2357    // Compute the value of the PHI node for the next iteration.
2358    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2359    if (NextPHI == 0 || NextPHI == PHIVal)
2360      return UnknownValue;  // Couldn't evaluate or not making progress...
2361    PHIVal = NextPHI;
2362  }
2363
2364  // Too many iterations were needed to evaluate.
2365  return UnknownValue;
2366}
2367
2368/// getSCEVAtScope - Compute the value of the specified expression within the
2369/// indicated loop (which may be null to indicate in no loop).  If the
2370/// expression cannot be evaluated, return UnknownValue.
2371SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2372  // FIXME: this should be turned into a virtual method on SCEV!
2373
2374  if (isa<SCEVConstant>(V)) return V;
2375
2376  // If this instruction is evolved from a constant-evolving PHI, compute the
2377  // exit value from the loop without using SCEVs.
2378  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2379    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2380      const Loop *LI = this->LI[I->getParent()];
2381      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2382        if (PHINode *PN = dyn_cast<PHINode>(I))
2383          if (PN->getParent() == LI->getHeader()) {
2384            // Okay, there is no closed form solution for the PHI node.  Check
2385            // to see if the loop that contains it has a known iteration count.
2386            // If so, we may be able to force computation of the exit value.
2387            SCEVHandle IterationCount = getIterationCount(LI);
2388            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2389              // Okay, we know how many times the containing loop executes.  If
2390              // this is a constant evolving PHI node, get the final value at
2391              // the specified iteration number.
2392              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2393                                                    ICC->getValue()->getValue(),
2394                                                               LI);
2395              if (RV) return SE.getUnknown(RV);
2396            }
2397          }
2398
2399      // Okay, this is an expression that we cannot symbolically evaluate
2400      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2401      // the arguments into constants, and if so, try to constant propagate the
2402      // result.  This is particularly useful for computing loop exit values.
2403      if (CanConstantFold(I)) {
2404        std::vector<Constant*> Operands;
2405        Operands.reserve(I->getNumOperands());
2406        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2407          Value *Op = I->getOperand(i);
2408          if (Constant *C = dyn_cast<Constant>(Op)) {
2409            Operands.push_back(C);
2410          } else {
2411            // If any of the operands is non-constant and if they are
2412            // non-integer, don't even try to analyze them with scev techniques.
2413            if (!isa<IntegerType>(Op->getType()))
2414              return V;
2415
2416            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2417            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2418              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2419                                                              Op->getType(),
2420                                                              false));
2421            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2422              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2423                Operands.push_back(ConstantExpr::getIntegerCast(C,
2424                                                                Op->getType(),
2425                                                                false));
2426              else
2427                return V;
2428            } else {
2429              return V;
2430            }
2431          }
2432        }
2433
2434        Constant *C;
2435        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2436          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2437                                              &Operands[0], Operands.size());
2438        else
2439          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2440                                       &Operands[0], Operands.size());
2441        return SE.getUnknown(C);
2442      }
2443    }
2444
2445    // This is some other type of SCEVUnknown, just return it.
2446    return V;
2447  }
2448
2449  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2450    // Avoid performing the look-up in the common case where the specified
2451    // expression has no loop-variant portions.
2452    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2453      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2454      if (OpAtScope != Comm->getOperand(i)) {
2455        if (OpAtScope == UnknownValue) return UnknownValue;
2456        // Okay, at least one of these operands is loop variant but might be
2457        // foldable.  Build a new instance of the folded commutative expression.
2458        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2459        NewOps.push_back(OpAtScope);
2460
2461        for (++i; i != e; ++i) {
2462          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2463          if (OpAtScope == UnknownValue) return UnknownValue;
2464          NewOps.push_back(OpAtScope);
2465        }
2466        if (isa<SCEVAddExpr>(Comm))
2467          return SE.getAddExpr(NewOps);
2468        if (isa<SCEVMulExpr>(Comm))
2469          return SE.getMulExpr(NewOps);
2470        if (isa<SCEVSMaxExpr>(Comm))
2471          return SE.getSMaxExpr(NewOps);
2472        if (isa<SCEVUMaxExpr>(Comm))
2473          return SE.getUMaxExpr(NewOps);
2474        assert(0 && "Unknown commutative SCEV type!");
2475      }
2476    }
2477    // If we got here, all operands are loop invariant.
2478    return Comm;
2479  }
2480
2481  if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2482    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2483    if (LHS == UnknownValue) return LHS;
2484    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2485    if (RHS == UnknownValue) return RHS;
2486    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2487      return Div;   // must be loop invariant
2488    return SE.getUDivExpr(LHS, RHS);
2489  }
2490
2491  // If this is a loop recurrence for a loop that does not contain L, then we
2492  // are dealing with the final value computed by the loop.
2493  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2494    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2495      // To evaluate this recurrence, we need to know how many times the AddRec
2496      // loop iterates.  Compute this now.
2497      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2498      if (IterationCount == UnknownValue) return UnknownValue;
2499
2500      // Then, evaluate the AddRec.
2501      return AddRec->evaluateAtIteration(IterationCount, SE);
2502    }
2503    return UnknownValue;
2504  }
2505
2506  //assert(0 && "Unknown SCEV type!");
2507  return UnknownValue;
2508}
2509
2510/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2511/// following equation:
2512///
2513///     A * X = B (mod N)
2514///
2515/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2516/// A and B isn't important.
2517///
2518/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2519static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2520                                               ScalarEvolution &SE) {
2521  uint32_t BW = A.getBitWidth();
2522  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2523  assert(A != 0 && "A must be non-zero.");
2524
2525  // 1. D = gcd(A, N)
2526  //
2527  // The gcd of A and N may have only one prime factor: 2. The number of
2528  // trailing zeros in A is its multiplicity
2529  uint32_t Mult2 = A.countTrailingZeros();
2530  // D = 2^Mult2
2531
2532  // 2. Check if B is divisible by D.
2533  //
2534  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2535  // is not less than multiplicity of this prime factor for D.
2536  if (B.countTrailingZeros() < Mult2)
2537    return new SCEVCouldNotCompute();
2538
2539  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2540  // modulo (N / D).
2541  //
2542  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
2543  // bit width during computations.
2544  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
2545  APInt Mod(BW + 1, 0);
2546  Mod.set(BW - Mult2);  // Mod = N / D
2547  APInt I = AD.multiplicativeInverse(Mod);
2548
2549  // 4. Compute the minimum unsigned root of the equation:
2550  // I * (B / D) mod (N / D)
2551  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2552
2553  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2554  // bits.
2555  return SE.getConstant(Result.trunc(BW));
2556}
2557
2558/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2559/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2560/// might be the same) or two SCEVCouldNotCompute objects.
2561///
2562static std::pair<SCEVHandle,SCEVHandle>
2563SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
2564  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2565  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2566  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2567  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2568
2569  // We currently can only solve this if the coefficients are constants.
2570  if (!LC || !MC || !NC) {
2571    SCEV *CNC = new SCEVCouldNotCompute();
2572    return std::make_pair(CNC, CNC);
2573  }
2574
2575  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2576  const APInt &L = LC->getValue()->getValue();
2577  const APInt &M = MC->getValue()->getValue();
2578  const APInt &N = NC->getValue()->getValue();
2579  APInt Two(BitWidth, 2);
2580  APInt Four(BitWidth, 4);
2581
2582  {
2583    using namespace APIntOps;
2584    const APInt& C = L;
2585    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2586    // The B coefficient is M-N/2
2587    APInt B(M);
2588    B -= sdiv(N,Two);
2589
2590    // The A coefficient is N/2
2591    APInt A(N.sdiv(Two));
2592
2593    // Compute the B^2-4ac term.
2594    APInt SqrtTerm(B);
2595    SqrtTerm *= B;
2596    SqrtTerm -= Four * (A * C);
2597
2598    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2599    // integer value or else APInt::sqrt() will assert.
2600    APInt SqrtVal(SqrtTerm.sqrt());
2601
2602    // Compute the two solutions for the quadratic formula.
2603    // The divisions must be performed as signed divisions.
2604    APInt NegB(-B);
2605    APInt TwoA( A << 1 );
2606    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2607    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2608
2609    return std::make_pair(SE.getConstant(Solution1),
2610                          SE.getConstant(Solution2));
2611    } // end APIntOps namespace
2612}
2613
2614/// HowFarToZero - Return the number of times a backedge comparing the specified
2615/// value to zero will execute.  If not computable, return UnknownValue
2616SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2617  // If the value is a constant
2618  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2619    // If the value is already zero, the branch will execute zero times.
2620    if (C->getValue()->isZero()) return C;
2621    return UnknownValue;  // Otherwise it will loop infinitely.
2622  }
2623
2624  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2625  if (!AddRec || AddRec->getLoop() != L)
2626    return UnknownValue;
2627
2628  if (AddRec->isAffine()) {
2629    // If this is an affine expression, the execution count of this branch is
2630    // the minimum unsigned root of the following equation:
2631    //
2632    //     Start + Step*N = 0 (mod 2^BW)
2633    //
2634    // equivalent to:
2635    //
2636    //             Step*N = -Start (mod 2^BW)
2637    //
2638    // where BW is the common bit width of Start and Step.
2639
2640    // Get the initial value for the loop.
2641    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2642    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2643
2644    SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
2645
2646    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2647      // For now we handle only constant steps.
2648
2649      // First, handle unitary steps.
2650      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
2651        return SE.getNegativeSCEV(Start);       //   N = -Start (as unsigned)
2652      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
2653        return Start;                           //    N = Start (as unsigned)
2654
2655      // Then, try to solve the above equation provided that Start is constant.
2656      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2657        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
2658                                            -StartC->getValue()->getValue(),SE);
2659    }
2660  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2661    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2662    // the quadratic equation to solve it.
2663    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE);
2664    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2665    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2666    if (R1) {
2667#if 0
2668      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2669           << "  sol#2: " << *R2 << "\n";
2670#endif
2671      // Pick the smallest positive root value.
2672      if (ConstantInt *CB =
2673          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2674                                   R1->getValue(), R2->getValue()))) {
2675        if (CB->getZExtValue() == false)
2676          std::swap(R1, R2);   // R1 is the minimum root now.
2677
2678        // We can only use this value if the chrec ends up with an exact zero
2679        // value at this index.  When solving for "X*X != 5", for example, we
2680        // should not accept a root of 2.
2681        SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE);
2682        if (Val->isZero())
2683          return R1;  // We found a quadratic root!
2684      }
2685    }
2686  }
2687
2688  return UnknownValue;
2689}
2690
2691/// HowFarToNonZero - Return the number of times a backedge checking the
2692/// specified value for nonzero will execute.  If not computable, return
2693/// UnknownValue
2694SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2695  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2696  // handle them yet except for the trivial case.  This could be expanded in the
2697  // future as needed.
2698
2699  // If the value is a constant, check to see if it is known to be non-zero
2700  // already.  If so, the backedge will execute zero times.
2701  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2702    if (!C->getValue()->isNullValue())
2703      return SE.getIntegerSCEV(0, C->getType());
2704    return UnknownValue;  // Otherwise it will loop infinitely.
2705  }
2706
2707  // We could implement others, but I really doubt anyone writes loops like
2708  // this, and if they did, they would already be constant folded.
2709  return UnknownValue;
2710}
2711
2712/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2713/// (which may not be an immediate predecessor) which has exactly one
2714/// successor from which BB is reachable, or null if no such block is
2715/// found.
2716///
2717BasicBlock *
2718ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
2719  // If the block has a unique predecessor, the predecessor must have
2720  // no other successors from which BB is reachable.
2721  if (BasicBlock *Pred = BB->getSinglePredecessor())
2722    return Pred;
2723
2724  // A loop's header is defined to be a block that dominates the loop.
2725  // If the loop has a preheader, it must be a block that has exactly
2726  // one successor that can reach BB. This is slightly more strict
2727  // than necessary, but works if critical edges are split.
2728  if (Loop *L = LI.getLoopFor(BB))
2729    return L->getLoopPreheader();
2730
2731  return 0;
2732}
2733
2734/// executesAtLeastOnce - Test whether entry to the loop is protected by
2735/// a conditional between LHS and RHS.
2736bool ScalarEvolutionsImpl::executesAtLeastOnce(const Loop *L, bool isSigned,
2737                                               SCEV *LHS, SCEV *RHS) {
2738  BasicBlock *Preheader = L->getLoopPreheader();
2739  BasicBlock *PreheaderDest = L->getHeader();
2740
2741  // Starting at the preheader, climb up the predecessor chain, as long as
2742  // there are predecessors that can be found that have unique successors
2743  // leading to the original header.
2744  for (; Preheader;
2745       PreheaderDest = Preheader,
2746       Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
2747
2748    BranchInst *LoopEntryPredicate =
2749      dyn_cast<BranchInst>(Preheader->getTerminator());
2750    if (!LoopEntryPredicate ||
2751        LoopEntryPredicate->isUnconditional())
2752      continue;
2753
2754    ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2755    if (!ICI) continue;
2756
2757    // Now that we found a conditional branch that dominates the loop, check to
2758    // see if it is the comparison we are looking for.
2759    Value *PreCondLHS = ICI->getOperand(0);
2760    Value *PreCondRHS = ICI->getOperand(1);
2761    ICmpInst::Predicate Cond;
2762    if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2763      Cond = ICI->getPredicate();
2764    else
2765      Cond = ICI->getInversePredicate();
2766
2767    switch (Cond) {
2768    case ICmpInst::ICMP_UGT:
2769      if (isSigned) continue;
2770      std::swap(PreCondLHS, PreCondRHS);
2771      Cond = ICmpInst::ICMP_ULT;
2772      break;
2773    case ICmpInst::ICMP_SGT:
2774      if (!isSigned) continue;
2775      std::swap(PreCondLHS, PreCondRHS);
2776      Cond = ICmpInst::ICMP_SLT;
2777      break;
2778    case ICmpInst::ICMP_ULT:
2779      if (isSigned) continue;
2780      break;
2781    case ICmpInst::ICMP_SLT:
2782      if (!isSigned) continue;
2783      break;
2784    default:
2785      continue;
2786    }
2787
2788    if (!PreCondLHS->getType()->isInteger()) continue;
2789
2790    SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
2791    SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
2792    if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
2793        (LHS == SE.getNotSCEV(PreCondRHSSCEV) &&
2794         RHS == SE.getNotSCEV(PreCondLHSSCEV)))
2795      return true;
2796  }
2797
2798  return false;
2799}
2800
2801/// HowManyLessThans - Return the number of times a backedge containing the
2802/// specified less-than comparison will execute.  If not computable, return
2803/// UnknownValue.
2804SCEVHandle ScalarEvolutionsImpl::
2805HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
2806  // Only handle:  "ADDREC < LoopInvariant".
2807  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2808
2809  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2810  if (!AddRec || AddRec->getLoop() != L)
2811    return UnknownValue;
2812
2813  if (AddRec->isAffine()) {
2814    // FORNOW: We only support unit strides.
2815    SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType());
2816    if (AddRec->getOperand(1) != One)
2817      return UnknownValue;
2818
2819    // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
2820    // m.  So, we count the number of iterations in which {n,+,1} < m is true.
2821    // Note that we cannot simply return max(m-n,0) because it's not safe to
2822    // treat m-n as signed nor unsigned due to overflow possibility.
2823
2824    // First, we get the value of the LHS in the first iteration: n
2825    SCEVHandle Start = AddRec->getOperand(0);
2826
2827    if (executesAtLeastOnce(L, isSigned,
2828                            SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
2829      // Since we know that the condition is true in order to enter the loop,
2830      // we know that it will run exactly m-n times.
2831      return SE.getMinusSCEV(RHS, Start);
2832    } else {
2833      // Then, we get the value of the LHS in the first iteration in which the
2834      // above condition doesn't hold.  This equals to max(m,n).
2835      SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start)
2836                                : SE.getUMaxExpr(RHS, Start);
2837
2838      // Finally, we subtract these two values to get the number of times the
2839      // backedge is executed: max(m,n)-n.
2840      return SE.getMinusSCEV(End, Start);
2841    }
2842  }
2843
2844  return UnknownValue;
2845}
2846
2847/// getNumIterationsInRange - Return the number of iterations of this loop that
2848/// produce values in the specified constant range.  Another way of looking at
2849/// this is that it returns the first iteration number where the value is not in
2850/// the condition, thus computing the exit count. If the iteration count can't
2851/// be computed, an instance of SCEVCouldNotCompute is returned.
2852SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2853                                                   ScalarEvolution &SE) const {
2854  if (Range.isFullSet())  // Infinite loop.
2855    return new SCEVCouldNotCompute();
2856
2857  // If the start is a non-zero constant, shift the range to simplify things.
2858  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2859    if (!SC->getValue()->isZero()) {
2860      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2861      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
2862      SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
2863      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2864        return ShiftedAddRec->getNumIterationsInRange(
2865                           Range.subtract(SC->getValue()->getValue()), SE);
2866      // This is strange and shouldn't happen.
2867      return new SCEVCouldNotCompute();
2868    }
2869
2870  // The only time we can solve this is when we have all constant indices.
2871  // Otherwise, we cannot determine the overflow conditions.
2872  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2873    if (!isa<SCEVConstant>(getOperand(i)))
2874      return new SCEVCouldNotCompute();
2875
2876
2877  // Okay at this point we know that all elements of the chrec are constants and
2878  // that the start element is zero.
2879
2880  // First check to see if the range contains zero.  If not, the first
2881  // iteration exits.
2882  if (!Range.contains(APInt(getBitWidth(),0)))
2883    return SE.getConstant(ConstantInt::get(getType(),0));
2884
2885  if (isAffine()) {
2886    // If this is an affine expression then we have this situation:
2887    //   Solve {0,+,A} in Range  ===  Ax in Range
2888
2889    // We know that zero is in the range.  If A is positive then we know that
2890    // the upper value of the range must be the first possible exit value.
2891    // If A is negative then the lower of the range is the last possible loop
2892    // value.  Also note that we already checked for a full range.
2893    APInt One(getBitWidth(),1);
2894    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2895    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
2896
2897    // The exit value should be (End+A)/A.
2898    APInt ExitVal = (End + A).udiv(A);
2899    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2900
2901    // Evaluate at the exit value.  If we really did fall out of the valid
2902    // range, then we computed our trip count, otherwise wrap around or other
2903    // things must have happened.
2904    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
2905    if (Range.contains(Val->getValue()))
2906      return new SCEVCouldNotCompute();  // Something strange happened
2907
2908    // Ensure that the previous value is in the range.  This is a sanity check.
2909    assert(Range.contains(
2910           EvaluateConstantChrecAtConstant(this,
2911           ConstantInt::get(ExitVal - One), SE)->getValue()) &&
2912           "Linear scev computation is off in a bad way!");
2913    return SE.getConstant(ExitValue);
2914  } else if (isQuadratic()) {
2915    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2916    // quadratic equation to solve it.  To do this, we must frame our problem in
2917    // terms of figuring out when zero is crossed, instead of when
2918    // Range.getUpper() is crossed.
2919    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2920    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
2921    SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
2922
2923    // Next, solve the constructed addrec
2924    std::pair<SCEVHandle,SCEVHandle> Roots =
2925      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
2926    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2927    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2928    if (R1) {
2929      // Pick the smallest positive root value.
2930      if (ConstantInt *CB =
2931          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2932                                   R1->getValue(), R2->getValue()))) {
2933        if (CB->getZExtValue() == false)
2934          std::swap(R1, R2);   // R1 is the minimum root now.
2935
2936        // Make sure the root is not off by one.  The returned iteration should
2937        // not be in the range, but the previous one should be.  When solving
2938        // for "X*X < 5", for example, we should not return a root of 2.
2939        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2940                                                             R1->getValue(),
2941                                                             SE);
2942        if (Range.contains(R1Val->getValue())) {
2943          // The next iteration must be out of the range...
2944          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2945
2946          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
2947          if (!Range.contains(R1Val->getValue()))
2948            return SE.getConstant(NextVal);
2949          return new SCEVCouldNotCompute();  // Something strange happened
2950        }
2951
2952        // If R1 was not in the range, then it is a good return value.  Make
2953        // sure that R1-1 WAS in the range though, just in case.
2954        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
2955        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
2956        if (Range.contains(R1Val->getValue()))
2957          return R1;
2958        return new SCEVCouldNotCompute();  // Something strange happened
2959      }
2960    }
2961  }
2962
2963  // Fallback, if this is a general polynomial, figure out the progression
2964  // through brute force: evaluate until we find an iteration that fails the
2965  // test.  This is likely to be slow, but getting an accurate trip count is
2966  // incredibly important, we will be able to simplify the exit test a lot, and
2967  // we are almost guaranteed to get a trip count in this case.
2968  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2969  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2970  do {
2971    ++NumBruteForceEvaluations;
2972    SCEVHandle Val = evaluateAtIteration(SE.getConstant(TestVal), SE);
2973    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2974      return new SCEVCouldNotCompute();
2975
2976    // Check to see if we found the value!
2977    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
2978      return SE.getConstant(TestVal);
2979
2980    // Increment to test the next index.
2981    TestVal = ConstantInt::get(TestVal->getValue()+1);
2982  } while (TestVal != EndVal);
2983
2984  return new SCEVCouldNotCompute();
2985}
2986
2987
2988
2989//===----------------------------------------------------------------------===//
2990//                   ScalarEvolution Class Implementation
2991//===----------------------------------------------------------------------===//
2992
2993bool ScalarEvolution::runOnFunction(Function &F) {
2994  Impl = new ScalarEvolutionsImpl(*this, F, getAnalysis<LoopInfo>());
2995  return false;
2996}
2997
2998void ScalarEvolution::releaseMemory() {
2999  delete (ScalarEvolutionsImpl*)Impl;
3000  Impl = 0;
3001}
3002
3003void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3004  AU.setPreservesAll();
3005  AU.addRequiredTransitive<LoopInfo>();
3006}
3007
3008SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
3009  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
3010}
3011
3012/// hasSCEV - Return true if the SCEV for this value has already been
3013/// computed.
3014bool ScalarEvolution::hasSCEV(Value *V) const {
3015  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
3016}
3017
3018
3019/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
3020/// the specified value.
3021void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
3022  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
3023}
3024
3025
3026SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
3027  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
3028}
3029
3030bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
3031  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
3032}
3033
3034SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
3035  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
3036}
3037
3038void ScalarEvolution::deleteValueFromRecords(Value *V) const {
3039  return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
3040}
3041
3042static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
3043                          const Loop *L) {
3044  // Print all inner loops first
3045  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3046    PrintLoopInfo(OS, SE, *I);
3047
3048  OS << "Loop " << L->getHeader()->getName() << ": ";
3049
3050  SmallVector<BasicBlock*, 8> ExitBlocks;
3051  L->getExitBlocks(ExitBlocks);
3052  if (ExitBlocks.size() != 1)
3053    OS << "<multiple exits> ";
3054
3055  if (SE->hasLoopInvariantIterationCount(L)) {
3056    OS << *SE->getIterationCount(L) << " iterations! ";
3057  } else {
3058    OS << "Unpredictable iteration count. ";
3059  }
3060
3061  OS << "\n";
3062}
3063
3064void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
3065  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
3066  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
3067
3068  OS << "Classifying expressions for: " << F.getName() << "\n";
3069  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3070    if (I->getType()->isInteger()) {
3071      OS << *I;
3072      OS << "  -->  ";
3073      SCEVHandle SV = getSCEV(&*I);
3074      SV->print(OS);
3075      OS << "\t\t";
3076
3077      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
3078        OS << "Exits: ";
3079        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
3080        if (isa<SCEVCouldNotCompute>(ExitValue)) {
3081          OS << "<<Unknown>>";
3082        } else {
3083          OS << *ExitValue;
3084        }
3085      }
3086
3087
3088      OS << "\n";
3089    }
3090
3091  OS << "Determining loop execution counts for: " << F.getName() << "\n";
3092  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
3093    PrintLoopInfo(OS, this, *I);
3094}
3095