ScalarEvolution.cpp revision 9a2f93121b31bf6345d1552bdc43037f89714d86
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104namespace {
105  RegisterPass<ScalarEvolution>
106  R("scalar-evolution", "Scalar Evolution Analysis");
107}
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117SCEV::~SCEV() {}
118void SCEV::dump() const {
119  print(cerr);
120}
121
122/// getValueRange - Return the tightest constant bounds that this value is
123/// known to have.  This method is only valid on integer SCEV objects.
124ConstantRange SCEV::getValueRange() const {
125  const Type *Ty = getType();
126  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
127  // Default to a full range if no better information is available.
128  return ConstantRange(getBitWidth());
129}
130
131uint32_t SCEV::getBitWidth() const {
132  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
133    return ITy->getBitWidth();
134  return 0;
135}
136
137
138SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
139
140bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
141  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
142  return false;
143}
144
145const Type *SCEVCouldNotCompute::getType() const {
146  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
147  return 0;
148}
149
150bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
151  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
152  return false;
153}
154
155SCEVHandle SCEVCouldNotCompute::
156replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
157                                  const SCEVHandle &Conc) const {
158  return this;
159}
160
161void SCEVCouldNotCompute::print(std::ostream &OS) const {
162  OS << "***COULDNOTCOMPUTE***";
163}
164
165bool SCEVCouldNotCompute::classof(const SCEV *S) {
166  return S->getSCEVType() == scCouldNotCompute;
167}
168
169
170// SCEVConstants - Only allow the creation of one SCEVConstant for any
171// particular value.  Don't use a SCEVHandle here, or else the object will
172// never be deleted!
173static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
174
175
176SCEVConstant::~SCEVConstant() {
177  SCEVConstants->erase(V);
178}
179
180SCEVHandle SCEVConstant::get(ConstantInt *V) {
181  SCEVConstant *&R = (*SCEVConstants)[V];
182  if (R == 0) R = new SCEVConstant(V);
183  return R;
184}
185
186SCEVHandle SCEVConstant::get(const APInt& Val) {
187  return get(ConstantInt::get(Val));
188}
189
190ConstantRange SCEVConstant::getValueRange() const {
191  return ConstantRange(V->getValue());
192}
193
194const Type *SCEVConstant::getType() const { return V->getType(); }
195
196void SCEVConstant::print(std::ostream &OS) const {
197  WriteAsOperand(OS, V, false);
198}
199
200// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
201// particular input.  Don't use a SCEVHandle here, or else the object will
202// never be deleted!
203static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
204                     SCEVTruncateExpr*> > SCEVTruncates;
205
206SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
207  : SCEV(scTruncate), Op(op), Ty(ty) {
208  assert(Op->getType()->isInteger() && Ty->isInteger() &&
209         "Cannot truncate non-integer value!");
210  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
211         && "This is not a truncating conversion!");
212}
213
214SCEVTruncateExpr::~SCEVTruncateExpr() {
215  SCEVTruncates->erase(std::make_pair(Op, Ty));
216}
217
218ConstantRange SCEVTruncateExpr::getValueRange() const {
219  return getOperand()->getValueRange().truncate(getBitWidth());
220}
221
222void SCEVTruncateExpr::print(std::ostream &OS) const {
223  OS << "(truncate " << *Op << " to " << *Ty << ")";
224}
225
226// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
227// particular input.  Don't use a SCEVHandle here, or else the object will never
228// be deleted!
229static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
230                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
231
232SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
233  : SCEV(scZeroExtend), Op(op), Ty(ty) {
234  assert(Op->getType()->isInteger() && Ty->isInteger() &&
235         "Cannot zero extend non-integer value!");
236  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
237         && "This is not an extending conversion!");
238}
239
240SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
241  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
242}
243
244ConstantRange SCEVZeroExtendExpr::getValueRange() const {
245  return getOperand()->getValueRange().zeroExtend(getBitWidth());
246}
247
248void SCEVZeroExtendExpr::print(std::ostream &OS) const {
249  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
250}
251
252// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
253// particular input.  Don't use a SCEVHandle here, or else the object will never
254// be deleted!
255static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
256                     SCEVSignExtendExpr*> > SCEVSignExtends;
257
258SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
259  : SCEV(scSignExtend), Op(op), Ty(ty) {
260  assert(Op->getType()->isInteger() && Ty->isInteger() &&
261         "Cannot sign extend non-integer value!");
262  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
263         && "This is not an extending conversion!");
264}
265
266SCEVSignExtendExpr::~SCEVSignExtendExpr() {
267  SCEVSignExtends->erase(std::make_pair(Op, Ty));
268}
269
270ConstantRange SCEVSignExtendExpr::getValueRange() const {
271  return getOperand()->getValueRange().signExtend(getBitWidth());
272}
273
274void SCEVSignExtendExpr::print(std::ostream &OS) const {
275  OS << "(signextend " << *Op << " to " << *Ty << ")";
276}
277
278// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
279// particular input.  Don't use a SCEVHandle here, or else the object will never
280// be deleted!
281static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
282                     SCEVCommutativeExpr*> > SCEVCommExprs;
283
284SCEVCommutativeExpr::~SCEVCommutativeExpr() {
285  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
286                                      std::vector<SCEV*>(Operands.begin(),
287                                                         Operands.end())));
288}
289
290void SCEVCommutativeExpr::print(std::ostream &OS) const {
291  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
292  const char *OpStr = getOperationStr();
293  OS << "(" << *Operands[0];
294  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
295    OS << OpStr << *Operands[i];
296  OS << ")";
297}
298
299SCEVHandle SCEVCommutativeExpr::
300replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
301                                  const SCEVHandle &Conc) const {
302  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
303    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
304    if (H != getOperand(i)) {
305      std::vector<SCEVHandle> NewOps;
306      NewOps.reserve(getNumOperands());
307      for (unsigned j = 0; j != i; ++j)
308        NewOps.push_back(getOperand(j));
309      NewOps.push_back(H);
310      for (++i; i != e; ++i)
311        NewOps.push_back(getOperand(i)->
312                         replaceSymbolicValuesWithConcrete(Sym, Conc));
313
314      if (isa<SCEVAddExpr>(this))
315        return SCEVAddExpr::get(NewOps);
316      else if (isa<SCEVMulExpr>(this))
317        return SCEVMulExpr::get(NewOps);
318      else
319        assert(0 && "Unknown commutative expr!");
320    }
321  }
322  return this;
323}
324
325
326// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
327// input.  Don't use a SCEVHandle here, or else the object will never be
328// deleted!
329static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
330                     SCEVSDivExpr*> > SCEVSDivs;
331
332SCEVSDivExpr::~SCEVSDivExpr() {
333  SCEVSDivs->erase(std::make_pair(LHS, RHS));
334}
335
336void SCEVSDivExpr::print(std::ostream &OS) const {
337  OS << "(" << *LHS << " /s " << *RHS << ")";
338}
339
340const Type *SCEVSDivExpr::getType() const {
341  return LHS->getType();
342}
343
344// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
345// particular input.  Don't use a SCEVHandle here, or else the object will never
346// be deleted!
347static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
348                     SCEVAddRecExpr*> > SCEVAddRecExprs;
349
350SCEVAddRecExpr::~SCEVAddRecExpr() {
351  SCEVAddRecExprs->erase(std::make_pair(L,
352                                        std::vector<SCEV*>(Operands.begin(),
353                                                           Operands.end())));
354}
355
356SCEVHandle SCEVAddRecExpr::
357replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
358                                  const SCEVHandle &Conc) const {
359  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
360    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
361    if (H != getOperand(i)) {
362      std::vector<SCEVHandle> NewOps;
363      NewOps.reserve(getNumOperands());
364      for (unsigned j = 0; j != i; ++j)
365        NewOps.push_back(getOperand(j));
366      NewOps.push_back(H);
367      for (++i; i != e; ++i)
368        NewOps.push_back(getOperand(i)->
369                         replaceSymbolicValuesWithConcrete(Sym, Conc));
370
371      return get(NewOps, L);
372    }
373  }
374  return this;
375}
376
377
378bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
379  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
380  // contain L and if the start is invariant.
381  return !QueryLoop->contains(L->getHeader()) &&
382         getOperand(0)->isLoopInvariant(QueryLoop);
383}
384
385
386void SCEVAddRecExpr::print(std::ostream &OS) const {
387  OS << "{" << *Operands[0];
388  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
389    OS << ",+," << *Operands[i];
390  OS << "}<" << L->getHeader()->getName() + ">";
391}
392
393// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
394// value.  Don't use a SCEVHandle here, or else the object will never be
395// deleted!
396static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
397
398SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
399
400bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
401  // All non-instruction values are loop invariant.  All instructions are loop
402  // invariant if they are not contained in the specified loop.
403  if (Instruction *I = dyn_cast<Instruction>(V))
404    return !L->contains(I->getParent());
405  return true;
406}
407
408const Type *SCEVUnknown::getType() const {
409  return V->getType();
410}
411
412void SCEVUnknown::print(std::ostream &OS) const {
413  WriteAsOperand(OS, V, false);
414}
415
416//===----------------------------------------------------------------------===//
417//                               SCEV Utilities
418//===----------------------------------------------------------------------===//
419
420namespace {
421  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
422  /// than the complexity of the RHS.  This comparator is used to canonicalize
423  /// expressions.
424  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
425    bool operator()(SCEV *LHS, SCEV *RHS) {
426      return LHS->getSCEVType() < RHS->getSCEVType();
427    }
428  };
429}
430
431/// GroupByComplexity - Given a list of SCEV objects, order them by their
432/// complexity, and group objects of the same complexity together by value.
433/// When this routine is finished, we know that any duplicates in the vector are
434/// consecutive and that complexity is monotonically increasing.
435///
436/// Note that we go take special precautions to ensure that we get determinstic
437/// results from this routine.  In other words, we don't want the results of
438/// this to depend on where the addresses of various SCEV objects happened to
439/// land in memory.
440///
441static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
442  if (Ops.size() < 2) return;  // Noop
443  if (Ops.size() == 2) {
444    // This is the common case, which also happens to be trivially simple.
445    // Special case it.
446    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
447      std::swap(Ops[0], Ops[1]);
448    return;
449  }
450
451  // Do the rough sort by complexity.
452  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
453
454  // Now that we are sorted by complexity, group elements of the same
455  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
456  // be extremely short in practice.  Note that we take this approach because we
457  // do not want to depend on the addresses of the objects we are grouping.
458  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
459    SCEV *S = Ops[i];
460    unsigned Complexity = S->getSCEVType();
461
462    // If there are any objects of the same complexity and same value as this
463    // one, group them.
464    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
465      if (Ops[j] == S) { // Found a duplicate.
466        // Move it to immediately after i'th element.
467        std::swap(Ops[i+1], Ops[j]);
468        ++i;   // no need to rescan it.
469        if (i == e-2) return;  // Done!
470      }
471    }
472  }
473}
474
475
476
477//===----------------------------------------------------------------------===//
478//                      Simple SCEV method implementations
479//===----------------------------------------------------------------------===//
480
481/// getIntegerSCEV - Given an integer or FP type, create a constant for the
482/// specified signed integer value and return a SCEV for the constant.
483SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
484  Constant *C;
485  if (Val == 0)
486    C = Constant::getNullValue(Ty);
487  else if (Ty->isFloatingPoint())
488    C = ConstantFP::get(Ty, APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
489                            APFloat::IEEEdouble, Val));
490  else
491    C = ConstantInt::get(Ty, Val);
492  return SCEVUnknown::get(C);
493}
494
495/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
496/// input value to the specified type.  If the type must be extended, it is zero
497/// extended.
498static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
499  const Type *SrcTy = V->getType();
500  assert(SrcTy->isInteger() && Ty->isInteger() &&
501         "Cannot truncate or zero extend with non-integer arguments!");
502  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
503    return V;  // No conversion
504  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
505    return SCEVTruncateExpr::get(V, Ty);
506  return SCEVZeroExtendExpr::get(V, Ty);
507}
508
509/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
510///
511SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
512  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
513    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
514
515  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
516}
517
518/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
519///
520SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
521  // X - Y --> X + -Y
522  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
523}
524
525
526/// PartialFact - Compute V!/(V-NumSteps)!
527static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
528  // Handle this case efficiently, it is common to have constant iteration
529  // counts while computing loop exit values.
530  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
531    const APInt& Val = SC->getValue()->getValue();
532    APInt Result(Val.getBitWidth(), 1);
533    for (; NumSteps; --NumSteps)
534      Result *= Val-(NumSteps-1);
535    return SCEVConstant::get(Result);
536  }
537
538  const Type *Ty = V->getType();
539  if (NumSteps == 0)
540    return SCEVUnknown::getIntegerSCEV(1, Ty);
541
542  SCEVHandle Result = V;
543  for (unsigned i = 1; i != NumSteps; ++i)
544    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
545                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
546  return Result;
547}
548
549
550/// evaluateAtIteration - Return the value of this chain of recurrences at
551/// the specified iteration number.  We can evaluate this recurrence by
552/// multiplying each element in the chain by the binomial coefficient
553/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
554///
555///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
556///
557/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
558/// Is the binomial equation safe using modular arithmetic??
559///
560SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
561  SCEVHandle Result = getStart();
562  int Divisor = 1;
563  const Type *Ty = It->getType();
564  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
565    SCEVHandle BC = PartialFact(It, i);
566    Divisor *= i;
567    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
568                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
569    Result = SCEVAddExpr::get(Result, Val);
570  }
571  return Result;
572}
573
574
575//===----------------------------------------------------------------------===//
576//                    SCEV Expression folder implementations
577//===----------------------------------------------------------------------===//
578
579SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
580  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
581    return SCEVUnknown::get(
582        ConstantExpr::getTrunc(SC->getValue(), Ty));
583
584  // If the input value is a chrec scev made out of constants, truncate
585  // all of the constants.
586  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
587    std::vector<SCEVHandle> Operands;
588    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
589      // FIXME: This should allow truncation of other expression types!
590      if (isa<SCEVConstant>(AddRec->getOperand(i)))
591        Operands.push_back(get(AddRec->getOperand(i), Ty));
592      else
593        break;
594    if (Operands.size() == AddRec->getNumOperands())
595      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
596  }
597
598  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
599  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
600  return Result;
601}
602
603SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
604  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
605    return SCEVUnknown::get(
606        ConstantExpr::getZExt(SC->getValue(), Ty));
607
608  // FIXME: If the input value is a chrec scev, and we can prove that the value
609  // did not overflow the old, smaller, value, we can zero extend all of the
610  // operands (often constants).  This would allow analysis of something like
611  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
612
613  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
614  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
615  return Result;
616}
617
618SCEVHandle SCEVSignExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
619  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
620    return SCEVUnknown::get(
621        ConstantExpr::getSExt(SC->getValue(), Ty));
622
623  // FIXME: If the input value is a chrec scev, and we can prove that the value
624  // did not overflow the old, smaller, value, we can sign extend all of the
625  // operands (often constants).  This would allow analysis of something like
626  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
627
628  SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
629  if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
630  return Result;
631}
632
633// get - Get a canonical add expression, or something simpler if possible.
634SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
635  assert(!Ops.empty() && "Cannot get empty add!");
636  if (Ops.size() == 1) return Ops[0];
637
638  // Sort by complexity, this groups all similar expression types together.
639  GroupByComplexity(Ops);
640
641  // If there are any constants, fold them together.
642  unsigned Idx = 0;
643  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
644    ++Idx;
645    assert(Idx < Ops.size());
646    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
647      // We found two constants, fold them together!
648      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
649                                        RHSC->getValue()->getValue());
650      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
651        Ops[0] = SCEVConstant::get(CI);
652        Ops.erase(Ops.begin()+1);  // Erase the folded element
653        if (Ops.size() == 1) return Ops[0];
654        LHSC = cast<SCEVConstant>(Ops[0]);
655      } else {
656        // If we couldn't fold the expression, move to the next constant.  Note
657        // that this is impossible to happen in practice because we always
658        // constant fold constant ints to constant ints.
659        ++Idx;
660      }
661    }
662
663    // If we are left with a constant zero being added, strip it off.
664    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
665      Ops.erase(Ops.begin());
666      --Idx;
667    }
668  }
669
670  if (Ops.size() == 1) return Ops[0];
671
672  // Okay, check to see if the same value occurs in the operand list twice.  If
673  // so, merge them together into an multiply expression.  Since we sorted the
674  // list, these values are required to be adjacent.
675  const Type *Ty = Ops[0]->getType();
676  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
677    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
678      // Found a match, merge the two values into a multiply, and add any
679      // remaining values to the result.
680      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
681      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
682      if (Ops.size() == 2)
683        return Mul;
684      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
685      Ops.push_back(Mul);
686      return SCEVAddExpr::get(Ops);
687    }
688
689  // Now we know the first non-constant operand.  Skip past any cast SCEVs.
690  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
691    ++Idx;
692
693  // If there are add operands they would be next.
694  if (Idx < Ops.size()) {
695    bool DeletedAdd = false;
696    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
697      // If we have an add, expand the add operands onto the end of the operands
698      // list.
699      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
700      Ops.erase(Ops.begin()+Idx);
701      DeletedAdd = true;
702    }
703
704    // If we deleted at least one add, we added operands to the end of the list,
705    // and they are not necessarily sorted.  Recurse to resort and resimplify
706    // any operands we just aquired.
707    if (DeletedAdd)
708      return get(Ops);
709  }
710
711  // Skip over the add expression until we get to a multiply.
712  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
713    ++Idx;
714
715  // If we are adding something to a multiply expression, make sure the
716  // something is not already an operand of the multiply.  If so, merge it into
717  // the multiply.
718  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
719    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
720    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
721      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
722      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
723        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
724          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
725          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
726          if (Mul->getNumOperands() != 2) {
727            // If the multiply has more than two operands, we must get the
728            // Y*Z term.
729            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
730            MulOps.erase(MulOps.begin()+MulOp);
731            InnerMul = SCEVMulExpr::get(MulOps);
732          }
733          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
734          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
735          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
736          if (Ops.size() == 2) return OuterMul;
737          if (AddOp < Idx) {
738            Ops.erase(Ops.begin()+AddOp);
739            Ops.erase(Ops.begin()+Idx-1);
740          } else {
741            Ops.erase(Ops.begin()+Idx);
742            Ops.erase(Ops.begin()+AddOp-1);
743          }
744          Ops.push_back(OuterMul);
745          return SCEVAddExpr::get(Ops);
746        }
747
748      // Check this multiply against other multiplies being added together.
749      for (unsigned OtherMulIdx = Idx+1;
750           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
751           ++OtherMulIdx) {
752        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
753        // If MulOp occurs in OtherMul, we can fold the two multiplies
754        // together.
755        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
756             OMulOp != e; ++OMulOp)
757          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
758            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
759            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
760            if (Mul->getNumOperands() != 2) {
761              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
762              MulOps.erase(MulOps.begin()+MulOp);
763              InnerMul1 = SCEVMulExpr::get(MulOps);
764            }
765            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
766            if (OtherMul->getNumOperands() != 2) {
767              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
768                                             OtherMul->op_end());
769              MulOps.erase(MulOps.begin()+OMulOp);
770              InnerMul2 = SCEVMulExpr::get(MulOps);
771            }
772            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
773            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
774            if (Ops.size() == 2) return OuterMul;
775            Ops.erase(Ops.begin()+Idx);
776            Ops.erase(Ops.begin()+OtherMulIdx-1);
777            Ops.push_back(OuterMul);
778            return SCEVAddExpr::get(Ops);
779          }
780      }
781    }
782  }
783
784  // If there are any add recurrences in the operands list, see if any other
785  // added values are loop invariant.  If so, we can fold them into the
786  // recurrence.
787  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
788    ++Idx;
789
790  // Scan over all recurrences, trying to fold loop invariants into them.
791  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
792    // Scan all of the other operands to this add and add them to the vector if
793    // they are loop invariant w.r.t. the recurrence.
794    std::vector<SCEVHandle> LIOps;
795    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
796    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
797      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
798        LIOps.push_back(Ops[i]);
799        Ops.erase(Ops.begin()+i);
800        --i; --e;
801      }
802
803    // If we found some loop invariants, fold them into the recurrence.
804    if (!LIOps.empty()) {
805      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
806      LIOps.push_back(AddRec->getStart());
807
808      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
809      AddRecOps[0] = SCEVAddExpr::get(LIOps);
810
811      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
812      // If all of the other operands were loop invariant, we are done.
813      if (Ops.size() == 1) return NewRec;
814
815      // Otherwise, add the folded AddRec by the non-liv parts.
816      for (unsigned i = 0;; ++i)
817        if (Ops[i] == AddRec) {
818          Ops[i] = NewRec;
819          break;
820        }
821      return SCEVAddExpr::get(Ops);
822    }
823
824    // Okay, if there weren't any loop invariants to be folded, check to see if
825    // there are multiple AddRec's with the same loop induction variable being
826    // added together.  If so, we can fold them.
827    for (unsigned OtherIdx = Idx+1;
828         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
829      if (OtherIdx != Idx) {
830        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
831        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
832          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
833          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
834          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
835            if (i >= NewOps.size()) {
836              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
837                            OtherAddRec->op_end());
838              break;
839            }
840            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
841          }
842          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
843
844          if (Ops.size() == 2) return NewAddRec;
845
846          Ops.erase(Ops.begin()+Idx);
847          Ops.erase(Ops.begin()+OtherIdx-1);
848          Ops.push_back(NewAddRec);
849          return SCEVAddExpr::get(Ops);
850        }
851      }
852
853    // Otherwise couldn't fold anything into this recurrence.  Move onto the
854    // next one.
855  }
856
857  // Okay, it looks like we really DO need an add expr.  Check to see if we
858  // already have one, otherwise create a new one.
859  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
860  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
861                                                                 SCEVOps)];
862  if (Result == 0) Result = new SCEVAddExpr(Ops);
863  return Result;
864}
865
866
867SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
868  assert(!Ops.empty() && "Cannot get empty mul!");
869
870  // Sort by complexity, this groups all similar expression types together.
871  GroupByComplexity(Ops);
872
873  // If there are any constants, fold them together.
874  unsigned Idx = 0;
875  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
876
877    // C1*(C2+V) -> C1*C2 + C1*V
878    if (Ops.size() == 2)
879      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
880        if (Add->getNumOperands() == 2 &&
881            isa<SCEVConstant>(Add->getOperand(0)))
882          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
883                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
884
885
886    ++Idx;
887    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
888      // We found two constants, fold them together!
889      Constant *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
890                                        RHSC->getValue()->getValue());
891      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
892        Ops[0] = SCEVConstant::get(CI);
893        Ops.erase(Ops.begin()+1);  // Erase the folded element
894        if (Ops.size() == 1) return Ops[0];
895        LHSC = cast<SCEVConstant>(Ops[0]);
896      } else {
897        // If we couldn't fold the expression, move to the next constant.  Note
898        // that this is impossible to happen in practice because we always
899        // constant fold constant ints to constant ints.
900        ++Idx;
901      }
902    }
903
904    // If we are left with a constant one being multiplied, strip it off.
905    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
906      Ops.erase(Ops.begin());
907      --Idx;
908    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
909      // If we have a multiply of zero, it will always be zero.
910      return Ops[0];
911    }
912  }
913
914  // Skip over the add expression until we get to a multiply.
915  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
916    ++Idx;
917
918  if (Ops.size() == 1)
919    return Ops[0];
920
921  // If there are mul operands inline them all into this expression.
922  if (Idx < Ops.size()) {
923    bool DeletedMul = false;
924    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
925      // If we have an mul, expand the mul operands onto the end of the operands
926      // list.
927      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
928      Ops.erase(Ops.begin()+Idx);
929      DeletedMul = true;
930    }
931
932    // If we deleted at least one mul, we added operands to the end of the list,
933    // and they are not necessarily sorted.  Recurse to resort and resimplify
934    // any operands we just aquired.
935    if (DeletedMul)
936      return get(Ops);
937  }
938
939  // If there are any add recurrences in the operands list, see if any other
940  // added values are loop invariant.  If so, we can fold them into the
941  // recurrence.
942  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
943    ++Idx;
944
945  // Scan over all recurrences, trying to fold loop invariants into them.
946  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
947    // Scan all of the other operands to this mul and add them to the vector if
948    // they are loop invariant w.r.t. the recurrence.
949    std::vector<SCEVHandle> LIOps;
950    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
951    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
952      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
953        LIOps.push_back(Ops[i]);
954        Ops.erase(Ops.begin()+i);
955        --i; --e;
956      }
957
958    // If we found some loop invariants, fold them into the recurrence.
959    if (!LIOps.empty()) {
960      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
961      std::vector<SCEVHandle> NewOps;
962      NewOps.reserve(AddRec->getNumOperands());
963      if (LIOps.size() == 1) {
964        SCEV *Scale = LIOps[0];
965        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
966          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
967      } else {
968        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
969          std::vector<SCEVHandle> MulOps(LIOps);
970          MulOps.push_back(AddRec->getOperand(i));
971          NewOps.push_back(SCEVMulExpr::get(MulOps));
972        }
973      }
974
975      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
976
977      // If all of the other operands were loop invariant, we are done.
978      if (Ops.size() == 1) return NewRec;
979
980      // Otherwise, multiply the folded AddRec by the non-liv parts.
981      for (unsigned i = 0;; ++i)
982        if (Ops[i] == AddRec) {
983          Ops[i] = NewRec;
984          break;
985        }
986      return SCEVMulExpr::get(Ops);
987    }
988
989    // Okay, if there weren't any loop invariants to be folded, check to see if
990    // there are multiple AddRec's with the same loop induction variable being
991    // multiplied together.  If so, we can fold them.
992    for (unsigned OtherIdx = Idx+1;
993         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
994      if (OtherIdx != Idx) {
995        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
996        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
997          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
998          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
999          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
1000                                                 G->getStart());
1001          SCEVHandle B = F->getStepRecurrence();
1002          SCEVHandle D = G->getStepRecurrence();
1003          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
1004                                                SCEVMulExpr::get(G, B),
1005                                                SCEVMulExpr::get(B, D));
1006          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
1007                                                     F->getLoop());
1008          if (Ops.size() == 2) return NewAddRec;
1009
1010          Ops.erase(Ops.begin()+Idx);
1011          Ops.erase(Ops.begin()+OtherIdx-1);
1012          Ops.push_back(NewAddRec);
1013          return SCEVMulExpr::get(Ops);
1014        }
1015      }
1016
1017    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1018    // next one.
1019  }
1020
1021  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1022  // already have one, otherwise create a new one.
1023  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1024  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1025                                                                 SCEVOps)];
1026  if (Result == 0)
1027    Result = new SCEVMulExpr(Ops);
1028  return Result;
1029}
1030
1031SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1032  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1033    if (RHSC->getValue()->equalsInt(1))
1034      return LHS;                            // X sdiv 1 --> x
1035    if (RHSC->getValue()->isAllOnesValue())
1036      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
1037
1038    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1039      Constant *LHSCV = LHSC->getValue();
1040      Constant *RHSCV = RHSC->getValue();
1041      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
1042    }
1043  }
1044
1045  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1046
1047  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
1048  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
1049  return Result;
1050}
1051
1052
1053/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1054/// specified loop.  Simplify the expression as much as possible.
1055SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1056                               const SCEVHandle &Step, const Loop *L) {
1057  std::vector<SCEVHandle> Operands;
1058  Operands.push_back(Start);
1059  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1060    if (StepChrec->getLoop() == L) {
1061      Operands.insert(Operands.end(), StepChrec->op_begin(),
1062                      StepChrec->op_end());
1063      return get(Operands, L);
1064    }
1065
1066  Operands.push_back(Step);
1067  return get(Operands, L);
1068}
1069
1070/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1071/// specified loop.  Simplify the expression as much as possible.
1072SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1073                               const Loop *L) {
1074  if (Operands.size() == 1) return Operands[0];
1075
1076  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1077    if (StepC->getValue()->isZero()) {
1078      Operands.pop_back();
1079      return get(Operands, L);             // { X,+,0 }  -->  X
1080    }
1081
1082  SCEVAddRecExpr *&Result =
1083    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1084                                                            Operands.end()))];
1085  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1086  return Result;
1087}
1088
1089SCEVHandle SCEVUnknown::get(Value *V) {
1090  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1091    return SCEVConstant::get(CI);
1092  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1093  if (Result == 0) Result = new SCEVUnknown(V);
1094  return Result;
1095}
1096
1097
1098//===----------------------------------------------------------------------===//
1099//             ScalarEvolutionsImpl Definition and Implementation
1100//===----------------------------------------------------------------------===//
1101//
1102/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1103/// evolution code.
1104///
1105namespace {
1106  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1107    /// F - The function we are analyzing.
1108    ///
1109    Function &F;
1110
1111    /// LI - The loop information for the function we are currently analyzing.
1112    ///
1113    LoopInfo &LI;
1114
1115    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1116    /// things.
1117    SCEVHandle UnknownValue;
1118
1119    /// Scalars - This is a cache of the scalars we have analyzed so far.
1120    ///
1121    std::map<Value*, SCEVHandle> Scalars;
1122
1123    /// IterationCounts - Cache the iteration count of the loops for this
1124    /// function as they are computed.
1125    std::map<const Loop*, SCEVHandle> IterationCounts;
1126
1127    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1128    /// the PHI instructions that we attempt to compute constant evolutions for.
1129    /// This allows us to avoid potentially expensive recomputation of these
1130    /// properties.  An instruction maps to null if we are unable to compute its
1131    /// exit value.
1132    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1133
1134  public:
1135    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1136      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1137
1138    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1139    /// expression and create a new one.
1140    SCEVHandle getSCEV(Value *V);
1141
1142    /// hasSCEV - Return true if the SCEV for this value has already been
1143    /// computed.
1144    bool hasSCEV(Value *V) const {
1145      return Scalars.count(V);
1146    }
1147
1148    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1149    /// the specified value.
1150    void setSCEV(Value *V, const SCEVHandle &H) {
1151      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1152      assert(isNew && "This entry already existed!");
1153    }
1154
1155
1156    /// getSCEVAtScope - Compute the value of the specified expression within
1157    /// the indicated loop (which may be null to indicate in no loop).  If the
1158    /// expression cannot be evaluated, return UnknownValue itself.
1159    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1160
1161
1162    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1163    /// an analyzable loop-invariant iteration count.
1164    bool hasLoopInvariantIterationCount(const Loop *L);
1165
1166    /// getIterationCount - If the specified loop has a predictable iteration
1167    /// count, return it.  Note that it is not valid to call this method on a
1168    /// loop without a loop-invariant iteration count.
1169    SCEVHandle getIterationCount(const Loop *L);
1170
1171    /// deleteValueFromRecords - This method should be called by the
1172    /// client before it removes a value from the program, to make sure
1173    /// that no dangling references are left around.
1174    void deleteValueFromRecords(Value *V);
1175
1176  private:
1177    /// createSCEV - We know that there is no SCEV for the specified value.
1178    /// Analyze the expression.
1179    SCEVHandle createSCEV(Value *V);
1180
1181    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1182    /// SCEVs.
1183    SCEVHandle createNodeForPHI(PHINode *PN);
1184
1185    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1186    /// for the specified instruction and replaces any references to the
1187    /// symbolic value SymName with the specified value.  This is used during
1188    /// PHI resolution.
1189    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1190                                          const SCEVHandle &SymName,
1191                                          const SCEVHandle &NewVal);
1192
1193    /// ComputeIterationCount - Compute the number of times the specified loop
1194    /// will iterate.
1195    SCEVHandle ComputeIterationCount(const Loop *L);
1196
1197    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1198    /// 'setcc load X, cst', try to see if we can compute the trip count.
1199    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1200                                                        Constant *RHS,
1201                                                        const Loop *L,
1202                                                        ICmpInst::Predicate p);
1203
1204    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1205    /// constant number of times (the condition evolves only from constants),
1206    /// try to evaluate a few iterations of the loop until we get the exit
1207    /// condition gets a value of ExitWhen (true or false).  If we cannot
1208    /// evaluate the trip count of the loop, return UnknownValue.
1209    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1210                                                 bool ExitWhen);
1211
1212    /// HowFarToZero - Return the number of times a backedge comparing the
1213    /// specified value to zero will execute.  If not computable, return
1214    /// UnknownValue.
1215    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1216
1217    /// HowFarToNonZero - Return the number of times a backedge checking the
1218    /// specified value for nonzero will execute.  If not computable, return
1219    /// UnknownValue.
1220    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1221
1222    /// HowManyLessThans - Return the number of times a backedge containing the
1223    /// specified less-than comparison will execute.  If not computable, return
1224    /// UnknownValue. isSigned specifies whether the less-than is signed.
1225    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L,
1226                                bool isSigned);
1227
1228    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1229    /// in the header of its containing loop, we know the loop executes a
1230    /// constant number of times, and the PHI node is just a recurrence
1231    /// involving constants, fold it.
1232    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its,
1233                                                const Loop *L);
1234  };
1235}
1236
1237//===----------------------------------------------------------------------===//
1238//            Basic SCEV Analysis and PHI Idiom Recognition Code
1239//
1240
1241/// deleteValueFromRecords - This method should be called by the
1242/// client before it removes an instruction from the program, to make sure
1243/// that no dangling references are left around.
1244void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) {
1245  SmallVector<Value *, 16> Worklist;
1246
1247  if (Scalars.erase(V)) {
1248    if (PHINode *PN = dyn_cast<PHINode>(V))
1249      ConstantEvolutionLoopExitValue.erase(PN);
1250    Worklist.push_back(V);
1251  }
1252
1253  while (!Worklist.empty()) {
1254    Value *VV = Worklist.back();
1255    Worklist.pop_back();
1256
1257    for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1258         UI != UE; ++UI) {
1259      Instruction *Inst = cast<Instruction>(*UI);
1260      if (Scalars.erase(Inst)) {
1261        if (PHINode *PN = dyn_cast<PHINode>(VV))
1262          ConstantEvolutionLoopExitValue.erase(PN);
1263        Worklist.push_back(Inst);
1264      }
1265    }
1266  }
1267}
1268
1269
1270/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1271/// expression and create a new one.
1272SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1273  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1274
1275  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1276  if (I != Scalars.end()) return I->second;
1277  SCEVHandle S = createSCEV(V);
1278  Scalars.insert(std::make_pair(V, S));
1279  return S;
1280}
1281
1282/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1283/// the specified instruction and replaces any references to the symbolic value
1284/// SymName with the specified value.  This is used during PHI resolution.
1285void ScalarEvolutionsImpl::
1286ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1287                                 const SCEVHandle &NewVal) {
1288  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1289  if (SI == Scalars.end()) return;
1290
1291  SCEVHandle NV =
1292    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1293  if (NV == SI->second) return;  // No change.
1294
1295  SI->second = NV;       // Update the scalars map!
1296
1297  // Any instruction values that use this instruction might also need to be
1298  // updated!
1299  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1300       UI != E; ++UI)
1301    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1302}
1303
1304/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1305/// a loop header, making it a potential recurrence, or it doesn't.
1306///
1307SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1308  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1309    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1310      if (L->getHeader() == PN->getParent()) {
1311        // If it lives in the loop header, it has two incoming values, one
1312        // from outside the loop, and one from inside.
1313        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1314        unsigned BackEdge     = IncomingEdge^1;
1315
1316        // While we are analyzing this PHI node, handle its value symbolically.
1317        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1318        assert(Scalars.find(PN) == Scalars.end() &&
1319               "PHI node already processed?");
1320        Scalars.insert(std::make_pair(PN, SymbolicName));
1321
1322        // Using this symbolic name for the PHI, analyze the value coming around
1323        // the back-edge.
1324        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1325
1326        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1327        // has a special value for the first iteration of the loop.
1328
1329        // If the value coming around the backedge is an add with the symbolic
1330        // value we just inserted, then we found a simple induction variable!
1331        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1332          // If there is a single occurrence of the symbolic value, replace it
1333          // with a recurrence.
1334          unsigned FoundIndex = Add->getNumOperands();
1335          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1336            if (Add->getOperand(i) == SymbolicName)
1337              if (FoundIndex == e) {
1338                FoundIndex = i;
1339                break;
1340              }
1341
1342          if (FoundIndex != Add->getNumOperands()) {
1343            // Create an add with everything but the specified operand.
1344            std::vector<SCEVHandle> Ops;
1345            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1346              if (i != FoundIndex)
1347                Ops.push_back(Add->getOperand(i));
1348            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1349
1350            // This is not a valid addrec if the step amount is varying each
1351            // loop iteration, but is not itself an addrec in this loop.
1352            if (Accum->isLoopInvariant(L) ||
1353                (isa<SCEVAddRecExpr>(Accum) &&
1354                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1355              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1356              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1357
1358              // Okay, for the entire analysis of this edge we assumed the PHI
1359              // to be symbolic.  We now need to go back and update all of the
1360              // entries for the scalars that use the PHI (except for the PHI
1361              // itself) to use the new analyzed value instead of the "symbolic"
1362              // value.
1363              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1364              return PHISCEV;
1365            }
1366          }
1367        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1368          // Otherwise, this could be a loop like this:
1369          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1370          // In this case, j = {1,+,1}  and BEValue is j.
1371          // Because the other in-value of i (0) fits the evolution of BEValue
1372          // i really is an addrec evolution.
1373          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1374            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1375
1376            // If StartVal = j.start - j.stride, we can use StartVal as the
1377            // initial step of the addrec evolution.
1378            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1379                                               AddRec->getOperand(1))) {
1380              SCEVHandle PHISCEV =
1381                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1382
1383              // Okay, for the entire analysis of this edge we assumed the PHI
1384              // to be symbolic.  We now need to go back and update all of the
1385              // entries for the scalars that use the PHI (except for the PHI
1386              // itself) to use the new analyzed value instead of the "symbolic"
1387              // value.
1388              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1389              return PHISCEV;
1390            }
1391          }
1392        }
1393
1394        return SymbolicName;
1395      }
1396
1397  // If it's not a loop phi, we can't handle it yet.
1398  return SCEVUnknown::get(PN);
1399}
1400
1401/// GetConstantFactor - Determine the largest constant factor that S has.  For
1402/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1403static APInt GetConstantFactor(SCEVHandle S) {
1404  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1405    const APInt& V = C->getValue()->getValue();
1406    if (!V.isMinValue())
1407      return V;
1408    else   // Zero is a multiple of everything.
1409      return APInt(C->getBitWidth(), 1).shl(C->getBitWidth()-1);
1410  }
1411
1412  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) {
1413    return GetConstantFactor(T->getOperand()).trunc(
1414                               cast<IntegerType>(T->getType())->getBitWidth());
1415  }
1416  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1417    return GetConstantFactor(E->getOperand()).zext(
1418                               cast<IntegerType>(E->getType())->getBitWidth());
1419  if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S))
1420    return GetConstantFactor(E->getOperand()).sext(
1421                               cast<IntegerType>(E->getType())->getBitWidth());
1422
1423  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1424    // The result is the min of all operands.
1425    APInt Res(GetConstantFactor(A->getOperand(0)));
1426    for (unsigned i = 1, e = A->getNumOperands();
1427         i != e && Res.ugt(APInt(Res.getBitWidth(),1)); ++i) {
1428      APInt Tmp(GetConstantFactor(A->getOperand(i)));
1429      Res = APIntOps::umin(Res, Tmp);
1430    }
1431    return Res;
1432  }
1433
1434  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1435    // The result is the product of all the operands.
1436    APInt Res(GetConstantFactor(M->getOperand(0)));
1437    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i) {
1438      APInt Tmp(GetConstantFactor(M->getOperand(i)));
1439      Res *= Tmp;
1440    }
1441    return Res;
1442  }
1443
1444  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1445    // For now, we just handle linear expressions.
1446    if (A->getNumOperands() == 2) {
1447      // We want the GCD between the start and the stride value.
1448      APInt Start(GetConstantFactor(A->getOperand(0)));
1449      if (Start == 1)
1450        return Start;
1451      APInt Stride(GetConstantFactor(A->getOperand(1)));
1452      return APIntOps::GreatestCommonDivisor(Start, Stride);
1453    }
1454  }
1455
1456  // SCEVSDivExpr, SCEVUnknown.
1457  return APInt(S->getBitWidth(), 1);
1458}
1459
1460/// createSCEV - We know that there is no SCEV for the specified value.
1461/// Analyze the expression.
1462///
1463SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1464  if (Instruction *I = dyn_cast<Instruction>(V)) {
1465    switch (I->getOpcode()) {
1466    case Instruction::Add:
1467      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1468                              getSCEV(I->getOperand(1)));
1469    case Instruction::Mul:
1470      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1471                              getSCEV(I->getOperand(1)));
1472    case Instruction::SDiv:
1473      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1474                              getSCEV(I->getOperand(1)));
1475      break;
1476
1477    case Instruction::Sub:
1478      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1479                                getSCEV(I->getOperand(1)));
1480    case Instruction::Or:
1481      // If the RHS of the Or is a constant, we may have something like:
1482      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1483      // optimizations will transparently handle this case.
1484      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1485        SCEVHandle LHS = getSCEV(I->getOperand(0));
1486        APInt CommonFact(GetConstantFactor(LHS));
1487        assert(!CommonFact.isMinValue() &&
1488               "Common factor should at least be 1!");
1489        if (CommonFact.ugt(CI->getValue())) {
1490          // If the LHS is a multiple that is larger than the RHS, use +.
1491          return SCEVAddExpr::get(LHS,
1492                                  getSCEV(I->getOperand(1)));
1493        }
1494      }
1495      break;
1496    case Instruction::Xor:
1497      // If the RHS of the xor is a signbit, then this is just an add.
1498      // Instcombine turns add of signbit into xor as a strength reduction step.
1499      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1500        if (CI->getValue().isSignBit())
1501          return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1502                                  getSCEV(I->getOperand(1)));
1503      }
1504      break;
1505
1506    case Instruction::Shl:
1507      // Turn shift left of a constant amount into a multiply.
1508      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1509        uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1510        Constant *X = ConstantInt::get(
1511          APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
1512        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1513      }
1514      break;
1515
1516    case Instruction::Trunc:
1517      return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
1518
1519    case Instruction::ZExt:
1520      return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1521
1522    case Instruction::SExt:
1523      return SCEVSignExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1524
1525    case Instruction::BitCast:
1526      // BitCasts are no-op casts so we just eliminate the cast.
1527      if (I->getType()->isInteger() &&
1528          I->getOperand(0)->getType()->isInteger())
1529        return getSCEV(I->getOperand(0));
1530      break;
1531
1532    case Instruction::PHI:
1533      return createNodeForPHI(cast<PHINode>(I));
1534
1535    default: // We cannot analyze this expression.
1536      break;
1537    }
1538  }
1539
1540  return SCEVUnknown::get(V);
1541}
1542
1543
1544
1545//===----------------------------------------------------------------------===//
1546//                   Iteration Count Computation Code
1547//
1548
1549/// getIterationCount - If the specified loop has a predictable iteration
1550/// count, return it.  Note that it is not valid to call this method on a
1551/// loop without a loop-invariant iteration count.
1552SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1553  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1554  if (I == IterationCounts.end()) {
1555    SCEVHandle ItCount = ComputeIterationCount(L);
1556    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1557    if (ItCount != UnknownValue) {
1558      assert(ItCount->isLoopInvariant(L) &&
1559             "Computed trip count isn't loop invariant for loop!");
1560      ++NumTripCountsComputed;
1561    } else if (isa<PHINode>(L->getHeader()->begin())) {
1562      // Only count loops that have phi nodes as not being computable.
1563      ++NumTripCountsNotComputed;
1564    }
1565  }
1566  return I->second;
1567}
1568
1569/// ComputeIterationCount - Compute the number of times the specified loop
1570/// will iterate.
1571SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1572  // If the loop has a non-one exit block count, we can't analyze it.
1573  SmallVector<BasicBlock*, 8> ExitBlocks;
1574  L->getExitBlocks(ExitBlocks);
1575  if (ExitBlocks.size() != 1) return UnknownValue;
1576
1577  // Okay, there is one exit block.  Try to find the condition that causes the
1578  // loop to be exited.
1579  BasicBlock *ExitBlock = ExitBlocks[0];
1580
1581  BasicBlock *ExitingBlock = 0;
1582  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1583       PI != E; ++PI)
1584    if (L->contains(*PI)) {
1585      if (ExitingBlock == 0)
1586        ExitingBlock = *PI;
1587      else
1588        return UnknownValue;   // More than one block exiting!
1589    }
1590  assert(ExitingBlock && "No exits from loop, something is broken!");
1591
1592  // Okay, we've computed the exiting block.  See what condition causes us to
1593  // exit.
1594  //
1595  // FIXME: we should be able to handle switch instructions (with a single exit)
1596  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1597  if (ExitBr == 0) return UnknownValue;
1598  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1599
1600  // At this point, we know we have a conditional branch that determines whether
1601  // the loop is exited.  However, we don't know if the branch is executed each
1602  // time through the loop.  If not, then the execution count of the branch will
1603  // not be equal to the trip count of the loop.
1604  //
1605  // Currently we check for this by checking to see if the Exit branch goes to
1606  // the loop header.  If so, we know it will always execute the same number of
1607  // times as the loop.  We also handle the case where the exit block *is* the
1608  // loop header.  This is common for un-rotated loops.  More extensive analysis
1609  // could be done to handle more cases here.
1610  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1611      ExitBr->getSuccessor(1) != L->getHeader() &&
1612      ExitBr->getParent() != L->getHeader())
1613    return UnknownValue;
1614
1615  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1616
1617  // If its not an integer comparison then compute it the hard way.
1618  // Note that ICmpInst deals with pointer comparisons too so we must check
1619  // the type of the operand.
1620  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1621    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1622                                          ExitBr->getSuccessor(0) == ExitBlock);
1623
1624  // If the condition was exit on true, convert the condition to exit on false
1625  ICmpInst::Predicate Cond;
1626  if (ExitBr->getSuccessor(1) == ExitBlock)
1627    Cond = ExitCond->getPredicate();
1628  else
1629    Cond = ExitCond->getInversePredicate();
1630
1631  // Handle common loops like: for (X = "string"; *X; ++X)
1632  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1633    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1634      SCEVHandle ItCnt =
1635        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1636      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1637    }
1638
1639  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1640  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1641
1642  // Try to evaluate any dependencies out of the loop.
1643  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1644  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1645  Tmp = getSCEVAtScope(RHS, L);
1646  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1647
1648  // At this point, we would like to compute how many iterations of the
1649  // loop the predicate will return true for these inputs.
1650  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1651    // If there is a constant, force it into the RHS.
1652    std::swap(LHS, RHS);
1653    Cond = ICmpInst::getSwappedPredicate(Cond);
1654  }
1655
1656  // FIXME: think about handling pointer comparisons!  i.e.:
1657  // while (P != P+100) ++P;
1658
1659  // If we have a comparison of a chrec against a constant, try to use value
1660  // ranges to answer this query.
1661  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1662    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1663      if (AddRec->getLoop() == L) {
1664        // Form the comparison range using the constant of the correct type so
1665        // that the ConstantRange class knows to do a signed or unsigned
1666        // comparison.
1667        ConstantInt *CompVal = RHSC->getValue();
1668        const Type *RealTy = ExitCond->getOperand(0)->getType();
1669        CompVal = dyn_cast<ConstantInt>(
1670          ConstantExpr::getBitCast(CompVal, RealTy));
1671        if (CompVal) {
1672          // Form the constant range.
1673          ConstantRange CompRange(
1674              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1675
1676          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
1677          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1678        }
1679      }
1680
1681  switch (Cond) {
1682  case ICmpInst::ICMP_NE: {                     // while (X != Y)
1683    // Convert to: while (X-Y != 0)
1684    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1685    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1686    break;
1687  }
1688  case ICmpInst::ICMP_EQ: {
1689    // Convert to: while (X-Y == 0)           // while (X == Y)
1690    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1691    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1692    break;
1693  }
1694  case ICmpInst::ICMP_SLT: {
1695    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
1696    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1697    break;
1698  }
1699  case ICmpInst::ICMP_SGT: {
1700    SCEVHandle TC = HowManyLessThans(SCEV::getNegativeSCEV(LHS),
1701                                     SCEV::getNegativeSCEV(RHS), L, true);
1702    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1703    break;
1704  }
1705  case ICmpInst::ICMP_ULT: {
1706    SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
1707    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1708    break;
1709  }
1710  case ICmpInst::ICMP_UGT: {
1711    SCEVHandle TC = HowManyLessThans(SCEV::getNegativeSCEV(LHS),
1712                                     SCEV::getNegativeSCEV(RHS), L, false);
1713    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1714    break;
1715  }
1716  default:
1717#if 0
1718    cerr << "ComputeIterationCount ";
1719    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1720      cerr << "[unsigned] ";
1721    cerr << *LHS << "   "
1722         << Instruction::getOpcodeName(Instruction::ICmp)
1723         << "   " << *RHS << "\n";
1724#endif
1725    break;
1726  }
1727  return ComputeIterationCountExhaustively(L, ExitCond,
1728                                       ExitBr->getSuccessor(0) == ExitBlock);
1729}
1730
1731static ConstantInt *
1732EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C) {
1733  SCEVHandle InVal = SCEVConstant::get(C);
1734  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1735  assert(isa<SCEVConstant>(Val) &&
1736         "Evaluation of SCEV at constant didn't fold correctly?");
1737  return cast<SCEVConstant>(Val)->getValue();
1738}
1739
1740/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1741/// and a GEP expression (missing the pointer index) indexing into it, return
1742/// the addressed element of the initializer or null if the index expression is
1743/// invalid.
1744static Constant *
1745GetAddressedElementFromGlobal(GlobalVariable *GV,
1746                              const std::vector<ConstantInt*> &Indices) {
1747  Constant *Init = GV->getInitializer();
1748  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1749    uint64_t Idx = Indices[i]->getZExtValue();
1750    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1751      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1752      Init = cast<Constant>(CS->getOperand(Idx));
1753    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1754      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1755      Init = cast<Constant>(CA->getOperand(Idx));
1756    } else if (isa<ConstantAggregateZero>(Init)) {
1757      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1758        assert(Idx < STy->getNumElements() && "Bad struct index!");
1759        Init = Constant::getNullValue(STy->getElementType(Idx));
1760      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1761        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1762        Init = Constant::getNullValue(ATy->getElementType());
1763      } else {
1764        assert(0 && "Unknown constant aggregate type!");
1765      }
1766      return 0;
1767    } else {
1768      return 0; // Unknown initializer type
1769    }
1770  }
1771  return Init;
1772}
1773
1774/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1775/// 'setcc load X, cst', try to se if we can compute the trip count.
1776SCEVHandle ScalarEvolutionsImpl::
1777ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1778                                         const Loop *L,
1779                                         ICmpInst::Predicate predicate) {
1780  if (LI->isVolatile()) return UnknownValue;
1781
1782  // Check to see if the loaded pointer is a getelementptr of a global.
1783  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1784  if (!GEP) return UnknownValue;
1785
1786  // Make sure that it is really a constant global we are gepping, with an
1787  // initializer, and make sure the first IDX is really 0.
1788  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1789  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1790      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1791      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1792    return UnknownValue;
1793
1794  // Okay, we allow one non-constant index into the GEP instruction.
1795  Value *VarIdx = 0;
1796  std::vector<ConstantInt*> Indexes;
1797  unsigned VarIdxNum = 0;
1798  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1799    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1800      Indexes.push_back(CI);
1801    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1802      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1803      VarIdx = GEP->getOperand(i);
1804      VarIdxNum = i-2;
1805      Indexes.push_back(0);
1806    }
1807
1808  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1809  // Check to see if X is a loop variant variable value now.
1810  SCEVHandle Idx = getSCEV(VarIdx);
1811  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1812  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1813
1814  // We can only recognize very limited forms of loop index expressions, in
1815  // particular, only affine AddRec's like {C1,+,C2}.
1816  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1817  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1818      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1819      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1820    return UnknownValue;
1821
1822  unsigned MaxSteps = MaxBruteForceIterations;
1823  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1824    ConstantInt *ItCst =
1825      ConstantInt::get(IdxExpr->getType(), IterationNum);
1826    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1827
1828    // Form the GEP offset.
1829    Indexes[VarIdxNum] = Val;
1830
1831    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1832    if (Result == 0) break;  // Cannot compute!
1833
1834    // Evaluate the condition for this iteration.
1835    Result = ConstantExpr::getICmp(predicate, Result, RHS);
1836    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
1837    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
1838#if 0
1839      cerr << "\n***\n*** Computed loop count " << *ItCst
1840           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1841           << "***\n";
1842#endif
1843      ++NumArrayLenItCounts;
1844      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1845    }
1846  }
1847  return UnknownValue;
1848}
1849
1850
1851/// CanConstantFold - Return true if we can constant fold an instruction of the
1852/// specified type, assuming that all operands were constants.
1853static bool CanConstantFold(const Instruction *I) {
1854  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1855      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1856    return true;
1857
1858  if (const CallInst *CI = dyn_cast<CallInst>(I))
1859    if (const Function *F = CI->getCalledFunction())
1860      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1861  return false;
1862}
1863
1864/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1865/// in the loop that V is derived from.  We allow arbitrary operations along the
1866/// way, but the operands of an operation must either be constants or a value
1867/// derived from a constant PHI.  If this expression does not fit with these
1868/// constraints, return null.
1869static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1870  // If this is not an instruction, or if this is an instruction outside of the
1871  // loop, it can't be derived from a loop PHI.
1872  Instruction *I = dyn_cast<Instruction>(V);
1873  if (I == 0 || !L->contains(I->getParent())) return 0;
1874
1875  if (PHINode *PN = dyn_cast<PHINode>(I))
1876    if (L->getHeader() == I->getParent())
1877      return PN;
1878    else
1879      // We don't currently keep track of the control flow needed to evaluate
1880      // PHIs, so we cannot handle PHIs inside of loops.
1881      return 0;
1882
1883  // If we won't be able to constant fold this expression even if the operands
1884  // are constants, return early.
1885  if (!CanConstantFold(I)) return 0;
1886
1887  // Otherwise, we can evaluate this instruction if all of its operands are
1888  // constant or derived from a PHI node themselves.
1889  PHINode *PHI = 0;
1890  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1891    if (!(isa<Constant>(I->getOperand(Op)) ||
1892          isa<GlobalValue>(I->getOperand(Op)))) {
1893      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1894      if (P == 0) return 0;  // Not evolving from PHI
1895      if (PHI == 0)
1896        PHI = P;
1897      else if (PHI != P)
1898        return 0;  // Evolving from multiple different PHIs.
1899    }
1900
1901  // This is a expression evolving from a constant PHI!
1902  return PHI;
1903}
1904
1905/// EvaluateExpression - Given an expression that passes the
1906/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1907/// in the loop has the value PHIVal.  If we can't fold this expression for some
1908/// reason, return null.
1909static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1910  if (isa<PHINode>(V)) return PHIVal;
1911  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1912    return GV;
1913  if (Constant *C = dyn_cast<Constant>(V)) return C;
1914  Instruction *I = cast<Instruction>(V);
1915
1916  std::vector<Constant*> Operands;
1917  Operands.resize(I->getNumOperands());
1918
1919  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1920    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1921    if (Operands[i] == 0) return 0;
1922  }
1923
1924  return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1925}
1926
1927/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1928/// in the header of its containing loop, we know the loop executes a
1929/// constant number of times, and the PHI node is just a recurrence
1930/// involving constants, fold it.
1931Constant *ScalarEvolutionsImpl::
1932getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& Its, const Loop *L){
1933  std::map<PHINode*, Constant*>::iterator I =
1934    ConstantEvolutionLoopExitValue.find(PN);
1935  if (I != ConstantEvolutionLoopExitValue.end())
1936    return I->second;
1937
1938  if (Its.ugt(APInt(Its.getBitWidth(),MaxBruteForceIterations)))
1939    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1940
1941  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1942
1943  // Since the loop is canonicalized, the PHI node must have two entries.  One
1944  // entry must be a constant (coming in from outside of the loop), and the
1945  // second must be derived from the same PHI.
1946  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1947  Constant *StartCST =
1948    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1949  if (StartCST == 0)
1950    return RetVal = 0;  // Must be a constant.
1951
1952  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1953  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1954  if (PN2 != PN)
1955    return RetVal = 0;  // Not derived from same PHI.
1956
1957  // Execute the loop symbolically to determine the exit value.
1958  if (Its.getActiveBits() >= 32)
1959    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
1960
1961  unsigned NumIterations = Its.getZExtValue(); // must be in range
1962  unsigned IterationNum = 0;
1963  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1964    if (IterationNum == NumIterations)
1965      return RetVal = PHIVal;  // Got exit value!
1966
1967    // Compute the value of the PHI node for the next iteration.
1968    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1969    if (NextPHI == PHIVal)
1970      return RetVal = NextPHI;  // Stopped evolving!
1971    if (NextPHI == 0)
1972      return 0;        // Couldn't evaluate!
1973    PHIVal = NextPHI;
1974  }
1975}
1976
1977/// ComputeIterationCountExhaustively - If the trip is known to execute a
1978/// constant number of times (the condition evolves only from constants),
1979/// try to evaluate a few iterations of the loop until we get the exit
1980/// condition gets a value of ExitWhen (true or false).  If we cannot
1981/// evaluate the trip count of the loop, return UnknownValue.
1982SCEVHandle ScalarEvolutionsImpl::
1983ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1984  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1985  if (PN == 0) return UnknownValue;
1986
1987  // Since the loop is canonicalized, the PHI node must have two entries.  One
1988  // entry must be a constant (coming in from outside of the loop), and the
1989  // second must be derived from the same PHI.
1990  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1991  Constant *StartCST =
1992    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1993  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1994
1995  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1996  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1997  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1998
1999  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
2000  // the loop symbolically to determine when the condition gets a value of
2001  // "ExitWhen".
2002  unsigned IterationNum = 0;
2003  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
2004  for (Constant *PHIVal = StartCST;
2005       IterationNum != MaxIterations; ++IterationNum) {
2006    ConstantInt *CondVal =
2007      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2008
2009    // Couldn't symbolically evaluate.
2010    if (!CondVal) return UnknownValue;
2011
2012    if (CondVal->getValue() == uint64_t(ExitWhen)) {
2013      ConstantEvolutionLoopExitValue[PN] = PHIVal;
2014      ++NumBruteForceTripCountsComputed;
2015      return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
2016    }
2017
2018    // Compute the value of the PHI node for the next iteration.
2019    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2020    if (NextPHI == 0 || NextPHI == PHIVal)
2021      return UnknownValue;  // Couldn't evaluate or not making progress...
2022    PHIVal = NextPHI;
2023  }
2024
2025  // Too many iterations were needed to evaluate.
2026  return UnknownValue;
2027}
2028
2029/// getSCEVAtScope - Compute the value of the specified expression within the
2030/// indicated loop (which may be null to indicate in no loop).  If the
2031/// expression cannot be evaluated, return UnknownValue.
2032SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
2033  // FIXME: this should be turned into a virtual method on SCEV!
2034
2035  if (isa<SCEVConstant>(V)) return V;
2036
2037  // If this instruction is evolves from a constant-evolving PHI, compute the
2038  // exit value from the loop without using SCEVs.
2039  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2040    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
2041      const Loop *LI = this->LI[I->getParent()];
2042      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
2043        if (PHINode *PN = dyn_cast<PHINode>(I))
2044          if (PN->getParent() == LI->getHeader()) {
2045            // Okay, there is no closed form solution for the PHI node.  Check
2046            // to see if the loop that contains it has a known iteration count.
2047            // If so, we may be able to force computation of the exit value.
2048            SCEVHandle IterationCount = getIterationCount(LI);
2049            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
2050              // Okay, we know how many times the containing loop executes.  If
2051              // this is a constant evolving PHI node, get the final value at
2052              // the specified iteration number.
2053              Constant *RV = getConstantEvolutionLoopExitValue(PN,
2054                                                    ICC->getValue()->getValue(),
2055                                                               LI);
2056              if (RV) return SCEVUnknown::get(RV);
2057            }
2058          }
2059
2060      // Okay, this is an expression that we cannot symbolically evaluate
2061      // into a SCEV.  Check to see if it's possible to symbolically evaluate
2062      // the arguments into constants, and if so, try to constant propagate the
2063      // result.  This is particularly useful for computing loop exit values.
2064      if (CanConstantFold(I)) {
2065        std::vector<Constant*> Operands;
2066        Operands.reserve(I->getNumOperands());
2067        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2068          Value *Op = I->getOperand(i);
2069          if (Constant *C = dyn_cast<Constant>(Op)) {
2070            Operands.push_back(C);
2071          } else {
2072            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2073            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2074              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2075                                                              Op->getType(),
2076                                                              false));
2077            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2078              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2079                Operands.push_back(ConstantExpr::getIntegerCast(C,
2080                                                                Op->getType(),
2081                                                                false));
2082              else
2083                return V;
2084            } else {
2085              return V;
2086            }
2087          }
2088        }
2089        Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
2090        return SCEVUnknown::get(C);
2091      }
2092    }
2093
2094    // This is some other type of SCEVUnknown, just return it.
2095    return V;
2096  }
2097
2098  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2099    // Avoid performing the look-up in the common case where the specified
2100    // expression has no loop-variant portions.
2101    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2102      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2103      if (OpAtScope != Comm->getOperand(i)) {
2104        if (OpAtScope == UnknownValue) return UnknownValue;
2105        // Okay, at least one of these operands is loop variant but might be
2106        // foldable.  Build a new instance of the folded commutative expression.
2107        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2108        NewOps.push_back(OpAtScope);
2109
2110        for (++i; i != e; ++i) {
2111          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2112          if (OpAtScope == UnknownValue) return UnknownValue;
2113          NewOps.push_back(OpAtScope);
2114        }
2115        if (isa<SCEVAddExpr>(Comm))
2116          return SCEVAddExpr::get(NewOps);
2117        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2118        return SCEVMulExpr::get(NewOps);
2119      }
2120    }
2121    // If we got here, all operands are loop invariant.
2122    return Comm;
2123  }
2124
2125  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2126    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2127    if (LHS == UnknownValue) return LHS;
2128    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2129    if (RHS == UnknownValue) return RHS;
2130    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2131      return Div;   // must be loop invariant
2132    return SCEVSDivExpr::get(LHS, RHS);
2133  }
2134
2135  // If this is a loop recurrence for a loop that does not contain L, then we
2136  // are dealing with the final value computed by the loop.
2137  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2138    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2139      // To evaluate this recurrence, we need to know how many times the AddRec
2140      // loop iterates.  Compute this now.
2141      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2142      if (IterationCount == UnknownValue) return UnknownValue;
2143      IterationCount = getTruncateOrZeroExtend(IterationCount,
2144                                               AddRec->getType());
2145
2146      // If the value is affine, simplify the expression evaluation to just
2147      // Start + Step*IterationCount.
2148      if (AddRec->isAffine())
2149        return SCEVAddExpr::get(AddRec->getStart(),
2150                                SCEVMulExpr::get(IterationCount,
2151                                                 AddRec->getOperand(1)));
2152
2153      // Otherwise, evaluate it the hard way.
2154      return AddRec->evaluateAtIteration(IterationCount);
2155    }
2156    return UnknownValue;
2157  }
2158
2159  //assert(0 && "Unknown SCEV type!");
2160  return UnknownValue;
2161}
2162
2163
2164/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2165/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2166/// might be the same) or two SCEVCouldNotCompute objects.
2167///
2168static std::pair<SCEVHandle,SCEVHandle>
2169SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2170  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2171  SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2172  SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2173  SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2174
2175  // We currently can only solve this if the coefficients are constants.
2176  if (!LC || !MC || !NC) {
2177    SCEV *CNC = new SCEVCouldNotCompute();
2178    return std::make_pair(CNC, CNC);
2179  }
2180
2181  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2182  const APInt &L = LC->getValue()->getValue();
2183  const APInt &M = MC->getValue()->getValue();
2184  const APInt &N = NC->getValue()->getValue();
2185  APInt Two(BitWidth, 2);
2186  APInt Four(BitWidth, 4);
2187
2188  {
2189    using namespace APIntOps;
2190    const APInt& C = L;
2191    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2192    // The B coefficient is M-N/2
2193    APInt B(M);
2194    B -= sdiv(N,Two);
2195
2196    // The A coefficient is N/2
2197    APInt A(N.sdiv(Two));
2198
2199    // Compute the B^2-4ac term.
2200    APInt SqrtTerm(B);
2201    SqrtTerm *= B;
2202    SqrtTerm -= Four * (A * C);
2203
2204    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2205    // integer value or else APInt::sqrt() will assert.
2206    APInt SqrtVal(SqrtTerm.sqrt());
2207
2208    // Compute the two solutions for the quadratic formula.
2209    // The divisions must be performed as signed divisions.
2210    APInt NegB(-B);
2211    APInt TwoA( A << 1 );
2212    ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2213    ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2214
2215    return std::make_pair(SCEVConstant::get(Solution1),
2216                          SCEVConstant::get(Solution2));
2217    } // end APIntOps namespace
2218}
2219
2220/// HowFarToZero - Return the number of times a backedge comparing the specified
2221/// value to zero will execute.  If not computable, return UnknownValue
2222SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2223  // If the value is a constant
2224  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2225    // If the value is already zero, the branch will execute zero times.
2226    if (C->getValue()->isZero()) return C;
2227    return UnknownValue;  // Otherwise it will loop infinitely.
2228  }
2229
2230  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2231  if (!AddRec || AddRec->getLoop() != L)
2232    return UnknownValue;
2233
2234  if (AddRec->isAffine()) {
2235    // If this is an affine expression the execution count of this branch is
2236    // equal to:
2237    //
2238    //     (0 - Start/Step)    iff   Start % Step == 0
2239    //
2240    // Get the initial value for the loop.
2241    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2242    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2243    SCEVHandle Step = AddRec->getOperand(1);
2244
2245    Step = getSCEVAtScope(Step, L->getParentLoop());
2246
2247    // Figure out if Start % Step == 0.
2248    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2249    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2250      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2251        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2252      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2253        return Start;                   // 0 - Start/-1 == Start
2254
2255      // Check to see if Start is divisible by SC with no remainder.
2256      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2257        ConstantInt *StartCC = StartC->getValue();
2258        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2259        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2260        if (Rem->isNullValue()) {
2261          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2262          return SCEVUnknown::get(Result);
2263        }
2264      }
2265    }
2266  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2267    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2268    // the quadratic equation to solve it.
2269    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2270    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2271    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2272    if (R1) {
2273#if 0
2274      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2275           << "  sol#2: " << *R2 << "\n";
2276#endif
2277      // Pick the smallest positive root value.
2278      if (ConstantInt *CB =
2279          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2280                                   R1->getValue(), R2->getValue()))) {
2281        if (CB->getZExtValue() == false)
2282          std::swap(R1, R2);   // R1 is the minimum root now.
2283
2284        // We can only use this value if the chrec ends up with an exact zero
2285        // value at this index.  When solving for "X*X != 5", for example, we
2286        // should not accept a root of 2.
2287        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2288        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2289          if (EvalVal->getValue()->isZero())
2290            return R1;  // We found a quadratic root!
2291      }
2292    }
2293  }
2294
2295  return UnknownValue;
2296}
2297
2298/// HowFarToNonZero - Return the number of times a backedge checking the
2299/// specified value for nonzero will execute.  If not computable, return
2300/// UnknownValue
2301SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2302  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2303  // handle them yet except for the trivial case.  This could be expanded in the
2304  // future as needed.
2305
2306  // If the value is a constant, check to see if it is known to be non-zero
2307  // already.  If so, the backedge will execute zero times.
2308  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2309    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2310    Constant *NonZero =
2311      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2312    if (NonZero == ConstantInt::getTrue())
2313      return getSCEV(Zero);
2314    return UnknownValue;  // Otherwise it will loop infinitely.
2315  }
2316
2317  // We could implement others, but I really doubt anyone writes loops like
2318  // this, and if they did, they would already be constant folded.
2319  return UnknownValue;
2320}
2321
2322/// HowManyLessThans - Return the number of times a backedge containing the
2323/// specified less-than comparison will execute.  If not computable, return
2324/// UnknownValue.
2325SCEVHandle ScalarEvolutionsImpl::
2326HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
2327  // Only handle:  "ADDREC < LoopInvariant".
2328  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2329
2330  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2331  if (!AddRec || AddRec->getLoop() != L)
2332    return UnknownValue;
2333
2334  if (AddRec->isAffine()) {
2335    // FORNOW: We only support unit strides.
2336    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2337    if (AddRec->getOperand(1) != One)
2338      return UnknownValue;
2339
2340    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2341    // know that m is >= n on input to the loop.  If it is, the condition return
2342    // true zero times.  What we really should return, for full generality, is
2343    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2344    // canonical loop form: most do-loops will have a check that dominates the
2345    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2346    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2347
2348    // Search for the check.
2349    BasicBlock *Preheader = L->getLoopPreheader();
2350    BasicBlock *PreheaderDest = L->getHeader();
2351    if (Preheader == 0) return UnknownValue;
2352
2353    BranchInst *LoopEntryPredicate =
2354      dyn_cast<BranchInst>(Preheader->getTerminator());
2355    if (!LoopEntryPredicate) return UnknownValue;
2356
2357    // This might be a critical edge broken out.  If the loop preheader ends in
2358    // an unconditional branch to the loop, check to see if the preheader has a
2359    // single predecessor, and if so, look for its terminator.
2360    while (LoopEntryPredicate->isUnconditional()) {
2361      PreheaderDest = Preheader;
2362      Preheader = Preheader->getSinglePredecessor();
2363      if (!Preheader) return UnknownValue;  // Multiple preds.
2364
2365      LoopEntryPredicate =
2366        dyn_cast<BranchInst>(Preheader->getTerminator());
2367      if (!LoopEntryPredicate) return UnknownValue;
2368    }
2369
2370    // Now that we found a conditional branch that dominates the loop, check to
2371    // see if it is the comparison we are looking for.
2372    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2373      Value *PreCondLHS = ICI->getOperand(0);
2374      Value *PreCondRHS = ICI->getOperand(1);
2375      ICmpInst::Predicate Cond;
2376      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2377        Cond = ICI->getPredicate();
2378      else
2379        Cond = ICI->getInversePredicate();
2380
2381      switch (Cond) {
2382      case ICmpInst::ICMP_UGT:
2383        if (isSigned) return UnknownValue;
2384        std::swap(PreCondLHS, PreCondRHS);
2385        Cond = ICmpInst::ICMP_ULT;
2386        break;
2387      case ICmpInst::ICMP_SGT:
2388        if (!isSigned) return UnknownValue;
2389        std::swap(PreCondLHS, PreCondRHS);
2390        Cond = ICmpInst::ICMP_SLT;
2391        break;
2392      case ICmpInst::ICMP_ULT:
2393        if (isSigned) return UnknownValue;
2394        break;
2395      case ICmpInst::ICMP_SLT:
2396        if (!isSigned) return UnknownValue;
2397        break;
2398      default:
2399        return UnknownValue;
2400      }
2401
2402      if (PreCondLHS->getType()->isInteger()) {
2403        if (RHS != getSCEV(PreCondRHS))
2404          return UnknownValue;  // Not a comparison against 'm'.
2405
2406        if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2407                    != getSCEV(PreCondLHS))
2408          return UnknownValue;  // Not a comparison against 'n-1'.
2409      }
2410      else return UnknownValue;
2411
2412      // cerr << "Computed Loop Trip Count as: "
2413      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2414      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2415    }
2416    else
2417      return UnknownValue;
2418  }
2419
2420  return UnknownValue;
2421}
2422
2423/// getNumIterationsInRange - Return the number of iterations of this loop that
2424/// produce values in the specified constant range.  Another way of looking at
2425/// this is that it returns the first iteration number where the value is not in
2426/// the condition, thus computing the exit count. If the iteration count can't
2427/// be computed, an instance of SCEVCouldNotCompute is returned.
2428SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
2429  if (Range.isFullSet())  // Infinite loop.
2430    return new SCEVCouldNotCompute();
2431
2432  // If the start is a non-zero constant, shift the range to simplify things.
2433  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2434    if (!SC->getValue()->isZero()) {
2435      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2436      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2437      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2438      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2439        return ShiftedAddRec->getNumIterationsInRange(
2440                           Range.subtract(SC->getValue()->getValue()));
2441      // This is strange and shouldn't happen.
2442      return new SCEVCouldNotCompute();
2443    }
2444
2445  // The only time we can solve this is when we have all constant indices.
2446  // Otherwise, we cannot determine the overflow conditions.
2447  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2448    if (!isa<SCEVConstant>(getOperand(i)))
2449      return new SCEVCouldNotCompute();
2450
2451
2452  // Okay at this point we know that all elements of the chrec are constants and
2453  // that the start element is zero.
2454
2455  // First check to see if the range contains zero.  If not, the first
2456  // iteration exits.
2457  if (!Range.contains(APInt(getBitWidth(),0)))
2458    return SCEVConstant::get(ConstantInt::get(getType(),0));
2459
2460  if (isAffine()) {
2461    // If this is an affine expression then we have this situation:
2462    //   Solve {0,+,A} in Range  ===  Ax in Range
2463
2464    // We know that zero is in the range.  If A is positive then we know that
2465    // the upper value of the range must be the first possible exit value.
2466    // If A is negative then the lower of the range is the last possible loop
2467    // value.  Also note that we already checked for a full range.
2468    APInt One(getBitWidth(),1);
2469    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2470    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
2471
2472    // The exit value should be (End+A)/A.
2473    APInt ExitVal = (End + A).udiv(A);
2474    ConstantInt *ExitValue = ConstantInt::get(ExitVal);
2475
2476    // Evaluate at the exit value.  If we really did fall out of the valid
2477    // range, then we computed our trip count, otherwise wrap around or other
2478    // things must have happened.
2479    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2480    if (Range.contains(Val->getValue()))
2481      return new SCEVCouldNotCompute();  // Something strange happened
2482
2483    // Ensure that the previous value is in the range.  This is a sanity check.
2484    assert(Range.contains(
2485           EvaluateConstantChrecAtConstant(this,
2486           ConstantInt::get(ExitVal - One))->getValue()) &&
2487           "Linear scev computation is off in a bad way!");
2488    return SCEVConstant::get(ExitValue);
2489  } else if (isQuadratic()) {
2490    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2491    // quadratic equation to solve it.  To do this, we must frame our problem in
2492    // terms of figuring out when zero is crossed, instead of when
2493    // Range.getUpper() is crossed.
2494    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2495    NewOps[0] = SCEV::getNegativeSCEV(SCEVConstant::get(Range.getUpper()));
2496    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2497
2498    // Next, solve the constructed addrec
2499    std::pair<SCEVHandle,SCEVHandle> Roots =
2500      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2501    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2502    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2503    if (R1) {
2504      // Pick the smallest positive root value.
2505      if (ConstantInt *CB =
2506          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2507                                   R1->getValue(), R2->getValue()))) {
2508        if (CB->getZExtValue() == false)
2509          std::swap(R1, R2);   // R1 is the minimum root now.
2510
2511        // Make sure the root is not off by one.  The returned iteration should
2512        // not be in the range, but the previous one should be.  When solving
2513        // for "X*X < 5", for example, we should not return a root of 2.
2514        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2515                                                             R1->getValue());
2516        if (Range.contains(R1Val->getValue())) {
2517          // The next iteration must be out of the range...
2518          ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
2519
2520          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2521          if (!Range.contains(R1Val->getValue()))
2522            return SCEVConstant::get(NextVal);
2523          return new SCEVCouldNotCompute();  // Something strange happened
2524        }
2525
2526        // If R1 was not in the range, then it is a good return value.  Make
2527        // sure that R1-1 WAS in the range though, just in case.
2528        ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
2529        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2530        if (Range.contains(R1Val->getValue()))
2531          return R1;
2532        return new SCEVCouldNotCompute();  // Something strange happened
2533      }
2534    }
2535  }
2536
2537  // Fallback, if this is a general polynomial, figure out the progression
2538  // through brute force: evaluate until we find an iteration that fails the
2539  // test.  This is likely to be slow, but getting an accurate trip count is
2540  // incredibly important, we will be able to simplify the exit test a lot, and
2541  // we are almost guaranteed to get a trip count in this case.
2542  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2543  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2544  do {
2545    ++NumBruteForceEvaluations;
2546    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2547    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2548      return new SCEVCouldNotCompute();
2549
2550    // Check to see if we found the value!
2551    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue()))
2552      return SCEVConstant::get(TestVal);
2553
2554    // Increment to test the next index.
2555    TestVal = ConstantInt::get(TestVal->getValue()+1);
2556  } while (TestVal != EndVal);
2557
2558  return new SCEVCouldNotCompute();
2559}
2560
2561
2562
2563//===----------------------------------------------------------------------===//
2564//                   ScalarEvolution Class Implementation
2565//===----------------------------------------------------------------------===//
2566
2567bool ScalarEvolution::runOnFunction(Function &F) {
2568  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2569  return false;
2570}
2571
2572void ScalarEvolution::releaseMemory() {
2573  delete (ScalarEvolutionsImpl*)Impl;
2574  Impl = 0;
2575}
2576
2577void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2578  AU.setPreservesAll();
2579  AU.addRequiredTransitive<LoopInfo>();
2580}
2581
2582SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2583  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2584}
2585
2586/// hasSCEV - Return true if the SCEV for this value has already been
2587/// computed.
2588bool ScalarEvolution::hasSCEV(Value *V) const {
2589  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2590}
2591
2592
2593/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2594/// the specified value.
2595void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2596  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2597}
2598
2599
2600SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2601  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2602}
2603
2604bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2605  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2606}
2607
2608SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2609  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2610}
2611
2612void ScalarEvolution::deleteValueFromRecords(Value *V) const {
2613  return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V);
2614}
2615
2616static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2617                          const Loop *L) {
2618  // Print all inner loops first
2619  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2620    PrintLoopInfo(OS, SE, *I);
2621
2622  cerr << "Loop " << L->getHeader()->getName() << ": ";
2623
2624  SmallVector<BasicBlock*, 8> ExitBlocks;
2625  L->getExitBlocks(ExitBlocks);
2626  if (ExitBlocks.size() != 1)
2627    cerr << "<multiple exits> ";
2628
2629  if (SE->hasLoopInvariantIterationCount(L)) {
2630    cerr << *SE->getIterationCount(L) << " iterations! ";
2631  } else {
2632    cerr << "Unpredictable iteration count. ";
2633  }
2634
2635  cerr << "\n";
2636}
2637
2638void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2639  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2640  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2641
2642  OS << "Classifying expressions for: " << F.getName() << "\n";
2643  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2644    if (I->getType()->isInteger()) {
2645      OS << *I;
2646      OS << "  --> ";
2647      SCEVHandle SV = getSCEV(&*I);
2648      SV->print(OS);
2649      OS << "\t\t";
2650
2651      if ((*I).getType()->isInteger()) {
2652        ConstantRange Bounds = SV->getValueRange();
2653        if (!Bounds.isFullSet())
2654          OS << "Bounds: " << Bounds << " ";
2655      }
2656
2657      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2658        OS << "Exits: ";
2659        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2660        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2661          OS << "<<Unknown>>";
2662        } else {
2663          OS << *ExitValue;
2664        }
2665      }
2666
2667
2668      OS << "\n";
2669    }
2670
2671  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2672  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2673    PrintLoopInfo(OS, this, *I);
2674}
2675
2676