ScalarEvolution.cpp revision a653fc5f6bdfa016ba703c9b6d520b697c987517
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the const SCEV *
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Analysis/ConstantFolding.h"
70#include "llvm/Analysis/Dominators.h"
71#include "llvm/Analysis/LoopInfo.h"
72#include "llvm/Analysis/ValueTracking.h"
73#include "llvm/Assembly/Writer.h"
74#include "llvm/Target/TargetData.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/ErrorHandling.h"
79#include "llvm/Support/GetElementPtrTypeIterator.h"
80#include "llvm/Support/InstIterator.h"
81#include "llvm/Support/MathExtras.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/ADT/Statistic.h"
84#include "llvm/ADT/STLExtras.h"
85#include "llvm/ADT/SmallPtrSet.h"
86#include <algorithm>
87using namespace llvm;
88
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98static cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant "
102                                 "derived loop"),
103                        cl::init(100));
104
105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116
117SCEV::~SCEV() {}
118
119void SCEV::dump() const {
120  print(errs());
121  errs() << '\n';
122}
123
124void SCEV::print(std::ostream &o) const {
125  raw_os_ostream OS(o);
126  print(OS);
127}
128
129bool SCEV::isZero() const {
130  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131    return SC->getValue()->isZero();
132  return false;
133}
134
135bool SCEV::isOne() const {
136  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137    return SC->getValue()->isOne();
138  return false;
139}
140
141bool SCEV::isAllOnesValue() const {
142  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
143    return SC->getValue()->isAllOnesValue();
144  return false;
145}
146
147SCEVCouldNotCompute::SCEVCouldNotCompute() :
148  SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
149
150bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
151  LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!");
152  return false;
153}
154
155const Type *SCEVCouldNotCompute::getType() const {
156  LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!");
157  return 0;
158}
159
160bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
161  LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!");
162  return false;
163}
164
165const SCEV *
166SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
167                                                    const SCEV *Sym,
168                                                    const SCEV *Conc,
169                                                    ScalarEvolution &SE) const {
170  return this;
171}
172
173void SCEVCouldNotCompute::print(raw_ostream &OS) const {
174  OS << "***COULDNOTCOMPUTE***";
175}
176
177bool SCEVCouldNotCompute::classof(const SCEV *S) {
178  return S->getSCEVType() == scCouldNotCompute;
179}
180
181const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
182  FoldingSetNodeID ID;
183  ID.AddInteger(scConstant);
184  ID.AddPointer(V);
185  void *IP = 0;
186  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
187  SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
188  new (S) SCEVConstant(ID, V);
189  UniqueSCEVs.InsertNode(S, IP);
190  return S;
191}
192
193const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
194  return getConstant(ConstantInt::get(Val));
195}
196
197const SCEV *
198ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
199  return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
200}
201
202const Type *SCEVConstant::getType() const { return V->getType(); }
203
204void SCEVConstant::print(raw_ostream &OS) const {
205  WriteAsOperand(OS, V, false);
206}
207
208SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
209                           unsigned SCEVTy, const SCEV *op, const Type *ty)
210  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
211
212bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
213  return Op->dominates(BB, DT);
214}
215
216SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
217                                   const SCEV *op, const Type *ty)
218  : SCEVCastExpr(ID, scTruncate, op, ty) {
219  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
220         (Ty->isInteger() || isa<PointerType>(Ty)) &&
221         "Cannot truncate non-integer value!");
222}
223
224void SCEVTruncateExpr::print(raw_ostream &OS) const {
225  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
226}
227
228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
229                                       const SCEV *op, const Type *ty)
230  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
231  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
232         (Ty->isInteger() || isa<PointerType>(Ty)) &&
233         "Cannot zero extend non-integer value!");
234}
235
236void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
237  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
238}
239
240SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
241                                       const SCEV *op, const Type *ty)
242  : SCEVCastExpr(ID, scSignExtend, op, ty) {
243  assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
244         (Ty->isInteger() || isa<PointerType>(Ty)) &&
245         "Cannot sign extend non-integer value!");
246}
247
248void SCEVSignExtendExpr::print(raw_ostream &OS) const {
249  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
250}
251
252void SCEVCommutativeExpr::print(raw_ostream &OS) const {
253  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
254  const char *OpStr = getOperationStr();
255  OS << "(" << *Operands[0];
256  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
257    OS << OpStr << *Operands[i];
258  OS << ")";
259}
260
261const SCEV *
262SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
263                                                    const SCEV *Sym,
264                                                    const SCEV *Conc,
265                                                    ScalarEvolution &SE) const {
266  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
267    const SCEV *H =
268      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
269    if (H != getOperand(i)) {
270      SmallVector<const SCEV *, 8> NewOps;
271      NewOps.reserve(getNumOperands());
272      for (unsigned j = 0; j != i; ++j)
273        NewOps.push_back(getOperand(j));
274      NewOps.push_back(H);
275      for (++i; i != e; ++i)
276        NewOps.push_back(getOperand(i)->
277                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
278
279      if (isa<SCEVAddExpr>(this))
280        return SE.getAddExpr(NewOps);
281      else if (isa<SCEVMulExpr>(this))
282        return SE.getMulExpr(NewOps);
283      else if (isa<SCEVSMaxExpr>(this))
284        return SE.getSMaxExpr(NewOps);
285      else if (isa<SCEVUMaxExpr>(this))
286        return SE.getUMaxExpr(NewOps);
287      else
288        LLVM_UNREACHABLE("Unknown commutative expr!");
289    }
290  }
291  return this;
292}
293
294bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
295  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
296    if (!getOperand(i)->dominates(BB, DT))
297      return false;
298  }
299  return true;
300}
301
302bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
303  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
304}
305
306void SCEVUDivExpr::print(raw_ostream &OS) const {
307  OS << "(" << *LHS << " /u " << *RHS << ")";
308}
309
310const Type *SCEVUDivExpr::getType() const {
311  // In most cases the types of LHS and RHS will be the same, but in some
312  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
313  // depend on the type for correctness, but handling types carefully can
314  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
315  // a pointer type than the RHS, so use the RHS' type here.
316  return RHS->getType();
317}
318
319const SCEV *
320SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
321                                                  const SCEV *Conc,
322                                                  ScalarEvolution &SE) const {
323  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
324    const SCEV *H =
325      getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
326    if (H != getOperand(i)) {
327      SmallVector<const SCEV *, 8> NewOps;
328      NewOps.reserve(getNumOperands());
329      for (unsigned j = 0; j != i; ++j)
330        NewOps.push_back(getOperand(j));
331      NewOps.push_back(H);
332      for (++i; i != e; ++i)
333        NewOps.push_back(getOperand(i)->
334                         replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
335
336      return SE.getAddRecExpr(NewOps, L);
337    }
338  }
339  return this;
340}
341
342
343bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
344  // Add recurrences are never invariant in the function-body (null loop).
345  if (!QueryLoop)
346    return false;
347
348  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
349  if (QueryLoop->contains(L->getHeader()))
350    return false;
351
352  // This recurrence is variant w.r.t. QueryLoop if any of its operands
353  // are variant.
354  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
355    if (!getOperand(i)->isLoopInvariant(QueryLoop))
356      return false;
357
358  // Otherwise it's loop-invariant.
359  return true;
360}
361
362void SCEVAddRecExpr::print(raw_ostream &OS) const {
363  OS << "{" << *Operands[0];
364  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
365    OS << ",+," << *Operands[i];
366  OS << "}<" << L->getHeader()->getName() + ">";
367}
368
369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370  // All non-instruction values are loop invariant.  All instructions are loop
371  // invariant if they are not contained in the specified loop.
372  // Instructions are never considered invariant in the function body
373  // (null loop) because they are defined within the "loop".
374  if (Instruction *I = dyn_cast<Instruction>(V))
375    return L && !L->contains(I->getParent());
376  return true;
377}
378
379bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
380  if (Instruction *I = dyn_cast<Instruction>(getValue()))
381    return DT->dominates(I->getParent(), BB);
382  return true;
383}
384
385const Type *SCEVUnknown::getType() const {
386  return V->getType();
387}
388
389void SCEVUnknown::print(raw_ostream &OS) const {
390  WriteAsOperand(OS, V, false);
391}
392
393//===----------------------------------------------------------------------===//
394//                               SCEV Utilities
395//===----------------------------------------------------------------------===//
396
397namespace {
398  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
399  /// than the complexity of the RHS.  This comparator is used to canonicalize
400  /// expressions.
401  class VISIBILITY_HIDDEN SCEVComplexityCompare {
402    LoopInfo *LI;
403  public:
404    explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
405
406    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
407      // Primarily, sort the SCEVs by their getSCEVType().
408      if (LHS->getSCEVType() != RHS->getSCEVType())
409        return LHS->getSCEVType() < RHS->getSCEVType();
410
411      // Aside from the getSCEVType() ordering, the particular ordering
412      // isn't very important except that it's beneficial to be consistent,
413      // so that (a + b) and (b + a) don't end up as different expressions.
414
415      // Sort SCEVUnknown values with some loose heuristics. TODO: This is
416      // not as complete as it could be.
417      if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
418        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
419
420        // Order pointer values after integer values. This helps SCEVExpander
421        // form GEPs.
422        if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
423          return false;
424        if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
425          return true;
426
427        // Compare getValueID values.
428        if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
429          return LU->getValue()->getValueID() < RU->getValue()->getValueID();
430
431        // Sort arguments by their position.
432        if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
433          const Argument *RA = cast<Argument>(RU->getValue());
434          return LA->getArgNo() < RA->getArgNo();
435        }
436
437        // For instructions, compare their loop depth, and their opcode.
438        // This is pretty loose.
439        if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
440          Instruction *RV = cast<Instruction>(RU->getValue());
441
442          // Compare loop depths.
443          if (LI->getLoopDepth(LV->getParent()) !=
444              LI->getLoopDepth(RV->getParent()))
445            return LI->getLoopDepth(LV->getParent()) <
446                   LI->getLoopDepth(RV->getParent());
447
448          // Compare opcodes.
449          if (LV->getOpcode() != RV->getOpcode())
450            return LV->getOpcode() < RV->getOpcode();
451
452          // Compare the number of operands.
453          if (LV->getNumOperands() != RV->getNumOperands())
454            return LV->getNumOperands() < RV->getNumOperands();
455        }
456
457        return false;
458      }
459
460      // Compare constant values.
461      if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
462        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
463        if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
464          return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
465        return LC->getValue()->getValue().ult(RC->getValue()->getValue());
466      }
467
468      // Compare addrec loop depths.
469      if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
470        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
471        if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
472          return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
473      }
474
475      // Lexicographically compare n-ary expressions.
476      if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
477        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
478        for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
479          if (i >= RC->getNumOperands())
480            return false;
481          if (operator()(LC->getOperand(i), RC->getOperand(i)))
482            return true;
483          if (operator()(RC->getOperand(i), LC->getOperand(i)))
484            return false;
485        }
486        return LC->getNumOperands() < RC->getNumOperands();
487      }
488
489      // Lexicographically compare udiv expressions.
490      if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
491        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
492        if (operator()(LC->getLHS(), RC->getLHS()))
493          return true;
494        if (operator()(RC->getLHS(), LC->getLHS()))
495          return false;
496        if (operator()(LC->getRHS(), RC->getRHS()))
497          return true;
498        if (operator()(RC->getRHS(), LC->getRHS()))
499          return false;
500        return false;
501      }
502
503      // Compare cast expressions by operand.
504      if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
505        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
506        return operator()(LC->getOperand(), RC->getOperand());
507      }
508
509      LLVM_UNREACHABLE("Unknown SCEV kind!");
510      return false;
511    }
512  };
513}
514
515/// GroupByComplexity - Given a list of SCEV objects, order them by their
516/// complexity, and group objects of the same complexity together by value.
517/// When this routine is finished, we know that any duplicates in the vector are
518/// consecutive and that complexity is monotonically increasing.
519///
520/// Note that we go take special precautions to ensure that we get determinstic
521/// results from this routine.  In other words, we don't want the results of
522/// this to depend on where the addresses of various SCEV objects happened to
523/// land in memory.
524///
525static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
526                              LoopInfo *LI) {
527  if (Ops.size() < 2) return;  // Noop
528  if (Ops.size() == 2) {
529    // This is the common case, which also happens to be trivially simple.
530    // Special case it.
531    if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
532      std::swap(Ops[0], Ops[1]);
533    return;
534  }
535
536  // Do the rough sort by complexity.
537  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
538
539  // Now that we are sorted by complexity, group elements of the same
540  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
541  // be extremely short in practice.  Note that we take this approach because we
542  // do not want to depend on the addresses of the objects we are grouping.
543  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
544    const SCEV *S = Ops[i];
545    unsigned Complexity = S->getSCEVType();
546
547    // If there are any objects of the same complexity and same value as this
548    // one, group them.
549    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
550      if (Ops[j] == S) { // Found a duplicate.
551        // Move it to immediately after i'th element.
552        std::swap(Ops[i+1], Ops[j]);
553        ++i;   // no need to rescan it.
554        if (i == e-2) return;  // Done!
555      }
556    }
557  }
558}
559
560
561
562//===----------------------------------------------------------------------===//
563//                      Simple SCEV method implementations
564//===----------------------------------------------------------------------===//
565
566/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
567/// Assume, K > 0.
568static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
569                                      ScalarEvolution &SE,
570                                      const Type* ResultTy) {
571  // Handle the simplest case efficiently.
572  if (K == 1)
573    return SE.getTruncateOrZeroExtend(It, ResultTy);
574
575  // We are using the following formula for BC(It, K):
576  //
577  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
578  //
579  // Suppose, W is the bitwidth of the return value.  We must be prepared for
580  // overflow.  Hence, we must assure that the result of our computation is
581  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
582  // safe in modular arithmetic.
583  //
584  // However, this code doesn't use exactly that formula; the formula it uses
585  // is something like the following, where T is the number of factors of 2 in
586  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
587  // exponentiation:
588  //
589  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
590  //
591  // This formula is trivially equivalent to the previous formula.  However,
592  // this formula can be implemented much more efficiently.  The trick is that
593  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
594  // arithmetic.  To do exact division in modular arithmetic, all we have
595  // to do is multiply by the inverse.  Therefore, this step can be done at
596  // width W.
597  //
598  // The next issue is how to safely do the division by 2^T.  The way this
599  // is done is by doing the multiplication step at a width of at least W + T
600  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
601  // when we perform the division by 2^T (which is equivalent to a right shift
602  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
603  // truncated out after the division by 2^T.
604  //
605  // In comparison to just directly using the first formula, this technique
606  // is much more efficient; using the first formula requires W * K bits,
607  // but this formula less than W + K bits. Also, the first formula requires
608  // a division step, whereas this formula only requires multiplies and shifts.
609  //
610  // It doesn't matter whether the subtraction step is done in the calculation
611  // width or the input iteration count's width; if the subtraction overflows,
612  // the result must be zero anyway.  We prefer here to do it in the width of
613  // the induction variable because it helps a lot for certain cases; CodeGen
614  // isn't smart enough to ignore the overflow, which leads to much less
615  // efficient code if the width of the subtraction is wider than the native
616  // register width.
617  //
618  // (It's possible to not widen at all by pulling out factors of 2 before
619  // the multiplication; for example, K=2 can be calculated as
620  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
621  // extra arithmetic, so it's not an obvious win, and it gets
622  // much more complicated for K > 3.)
623
624  // Protection from insane SCEVs; this bound is conservative,
625  // but it probably doesn't matter.
626  if (K > 1000)
627    return SE.getCouldNotCompute();
628
629  unsigned W = SE.getTypeSizeInBits(ResultTy);
630
631  // Calculate K! / 2^T and T; we divide out the factors of two before
632  // multiplying for calculating K! / 2^T to avoid overflow.
633  // Other overflow doesn't matter because we only care about the bottom
634  // W bits of the result.
635  APInt OddFactorial(W, 1);
636  unsigned T = 1;
637  for (unsigned i = 3; i <= K; ++i) {
638    APInt Mult(W, i);
639    unsigned TwoFactors = Mult.countTrailingZeros();
640    T += TwoFactors;
641    Mult = Mult.lshr(TwoFactors);
642    OddFactorial *= Mult;
643  }
644
645  // We need at least W + T bits for the multiplication step
646  unsigned CalculationBits = W + T;
647
648  // Calcuate 2^T, at width T+W.
649  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
650
651  // Calculate the multiplicative inverse of K! / 2^T;
652  // this multiplication factor will perform the exact division by
653  // K! / 2^T.
654  APInt Mod = APInt::getSignedMinValue(W+1);
655  APInt MultiplyFactor = OddFactorial.zext(W+1);
656  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
657  MultiplyFactor = MultiplyFactor.trunc(W);
658
659  // Calculate the product, at width T+W
660  const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
661  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
662  for (unsigned i = 1; i != K; ++i) {
663    const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
664    Dividend = SE.getMulExpr(Dividend,
665                             SE.getTruncateOrZeroExtend(S, CalculationTy));
666  }
667
668  // Divide by 2^T
669  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
670
671  // Truncate the result, and divide by K! / 2^T.
672
673  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
674                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
675}
676
677/// evaluateAtIteration - Return the value of this chain of recurrences at
678/// the specified iteration number.  We can evaluate this recurrence by
679/// multiplying each element in the chain by the binomial coefficient
680/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
681///
682///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
683///
684/// where BC(It, k) stands for binomial coefficient.
685///
686const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
687                                               ScalarEvolution &SE) const {
688  const SCEV *Result = getStart();
689  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
690    // The computation is correct in the face of overflow provided that the
691    // multiplication is performed _after_ the evaluation of the binomial
692    // coefficient.
693    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
694    if (isa<SCEVCouldNotCompute>(Coeff))
695      return Coeff;
696
697    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
698  }
699  return Result;
700}
701
702//===----------------------------------------------------------------------===//
703//                    SCEV Expression folder implementations
704//===----------------------------------------------------------------------===//
705
706const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
707                                             const Type *Ty) {
708  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
709         "This is not a truncating conversion!");
710  assert(isSCEVable(Ty) &&
711         "This is not a conversion to a SCEVable type!");
712  Ty = getEffectiveSCEVType(Ty);
713
714  FoldingSetNodeID ID;
715  ID.AddInteger(scTruncate);
716  ID.AddPointer(Op);
717  ID.AddPointer(Ty);
718  void *IP = 0;
719  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
720
721  // Fold if the operand is constant.
722  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
723    return getConstant(
724      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
725
726  // trunc(trunc(x)) --> trunc(x)
727  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
728    return getTruncateExpr(ST->getOperand(), Ty);
729
730  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
731  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
732    return getTruncateOrSignExtend(SS->getOperand(), Ty);
733
734  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
735  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
736    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
737
738  // If the input value is a chrec scev, truncate the chrec's operands.
739  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
740    SmallVector<const SCEV *, 4> Operands;
741    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
742      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
743    return getAddRecExpr(Operands, AddRec->getLoop());
744  }
745
746  // The cast wasn't folded; create an explicit cast node.
747  // Recompute the insert position, as it may have been invalidated.
748  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
749  SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
750  new (S) SCEVTruncateExpr(ID, Op, Ty);
751  UniqueSCEVs.InsertNode(S, IP);
752  return S;
753}
754
755const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
756                                               const Type *Ty) {
757  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
758         "This is not an extending conversion!");
759  assert(isSCEVable(Ty) &&
760         "This is not a conversion to a SCEVable type!");
761  Ty = getEffectiveSCEVType(Ty);
762
763  // Fold if the operand is constant.
764  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
765    const Type *IntTy = getEffectiveSCEVType(Ty);
766    Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
767    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
768    return getConstant(cast<ConstantInt>(C));
769  }
770
771  // zext(zext(x)) --> zext(x)
772  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
773    return getZeroExtendExpr(SZ->getOperand(), Ty);
774
775  // Before doing any expensive analysis, check to see if we've already
776  // computed a SCEV for this Op and Ty.
777  FoldingSetNodeID ID;
778  ID.AddInteger(scZeroExtend);
779  ID.AddPointer(Op);
780  ID.AddPointer(Ty);
781  void *IP = 0;
782  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
783
784  // If the input value is a chrec scev, and we can prove that the value
785  // did not overflow the old, smaller, value, we can zero extend all of the
786  // operands (often constants).  This allows analysis of something like
787  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
788  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
789    if (AR->isAffine()) {
790      const SCEV *Start = AR->getStart();
791      const SCEV *Step = AR->getStepRecurrence(*this);
792      unsigned BitWidth = getTypeSizeInBits(AR->getType());
793      const Loop *L = AR->getLoop();
794
795      // Check whether the backedge-taken count is SCEVCouldNotCompute.
796      // Note that this serves two purposes: It filters out loops that are
797      // simply not analyzable, and it covers the case where this code is
798      // being called from within backedge-taken count analysis, such that
799      // attempting to ask for the backedge-taken count would likely result
800      // in infinite recursion. In the later case, the analysis code will
801      // cope with a conservative value, and it will take care to purge
802      // that value once it has finished.
803      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
804      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
805        // Manually compute the final value for AR, checking for
806        // overflow.
807
808        // Check whether the backedge-taken count can be losslessly casted to
809        // the addrec's type. The count is always unsigned.
810        const SCEV *CastedMaxBECount =
811          getTruncateOrZeroExtend(MaxBECount, Start->getType());
812        const SCEV *RecastedMaxBECount =
813          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
814        if (MaxBECount == RecastedMaxBECount) {
815          const Type *WideTy = IntegerType::get(BitWidth * 2);
816          // Check whether Start+Step*MaxBECount has no unsigned overflow.
817          const SCEV *ZMul =
818            getMulExpr(CastedMaxBECount,
819                       getTruncateOrZeroExtend(Step, Start->getType()));
820          const SCEV *Add = getAddExpr(Start, ZMul);
821          const SCEV *OperandExtendedAdd =
822            getAddExpr(getZeroExtendExpr(Start, WideTy),
823                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
824                                  getZeroExtendExpr(Step, WideTy)));
825          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
826            // Return the expression with the addrec on the outside.
827            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
828                                 getZeroExtendExpr(Step, Ty),
829                                 L);
830
831          // Similar to above, only this time treat the step value as signed.
832          // This covers loops that count down.
833          const SCEV *SMul =
834            getMulExpr(CastedMaxBECount,
835                       getTruncateOrSignExtend(Step, Start->getType()));
836          Add = getAddExpr(Start, SMul);
837          OperandExtendedAdd =
838            getAddExpr(getZeroExtendExpr(Start, WideTy),
839                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
840                                  getSignExtendExpr(Step, WideTy)));
841          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
842            // Return the expression with the addrec on the outside.
843            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
844                                 getSignExtendExpr(Step, Ty),
845                                 L);
846        }
847
848        // If the backedge is guarded by a comparison with the pre-inc value
849        // the addrec is safe. Also, if the entry is guarded by a comparison
850        // with the start value and the backedge is guarded by a comparison
851        // with the post-inc value, the addrec is safe.
852        if (isKnownPositive(Step)) {
853          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
854                                      getUnsignedRange(Step).getUnsignedMax());
855          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
856              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
857               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
858                                           AR->getPostIncExpr(*this), N)))
859            // Return the expression with the addrec on the outside.
860            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
861                                 getZeroExtendExpr(Step, Ty),
862                                 L);
863        } else if (isKnownNegative(Step)) {
864          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
865                                      getSignedRange(Step).getSignedMin());
866          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
867              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
868               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
869                                           AR->getPostIncExpr(*this), N)))
870            // Return the expression with the addrec on the outside.
871            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
872                                 getSignExtendExpr(Step, Ty),
873                                 L);
874        }
875      }
876    }
877
878  // The cast wasn't folded; create an explicit cast node.
879  // Recompute the insert position, as it may have been invalidated.
880  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
881  SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
882  new (S) SCEVZeroExtendExpr(ID, Op, Ty);
883  UniqueSCEVs.InsertNode(S, IP);
884  return S;
885}
886
887const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
888                                               const Type *Ty) {
889  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
890         "This is not an extending conversion!");
891  assert(isSCEVable(Ty) &&
892         "This is not a conversion to a SCEVable type!");
893  Ty = getEffectiveSCEVType(Ty);
894
895  // Fold if the operand is constant.
896  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
897    const Type *IntTy = getEffectiveSCEVType(Ty);
898    Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
899    if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
900    return getConstant(cast<ConstantInt>(C));
901  }
902
903  // sext(sext(x)) --> sext(x)
904  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
905    return getSignExtendExpr(SS->getOperand(), Ty);
906
907  // Before doing any expensive analysis, check to see if we've already
908  // computed a SCEV for this Op and Ty.
909  FoldingSetNodeID ID;
910  ID.AddInteger(scSignExtend);
911  ID.AddPointer(Op);
912  ID.AddPointer(Ty);
913  void *IP = 0;
914  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
915
916  // If the input value is a chrec scev, and we can prove that the value
917  // did not overflow the old, smaller, value, we can sign extend all of the
918  // operands (often constants).  This allows analysis of something like
919  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
920  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
921    if (AR->isAffine()) {
922      const SCEV *Start = AR->getStart();
923      const SCEV *Step = AR->getStepRecurrence(*this);
924      unsigned BitWidth = getTypeSizeInBits(AR->getType());
925      const Loop *L = AR->getLoop();
926
927      // Check whether the backedge-taken count is SCEVCouldNotCompute.
928      // Note that this serves two purposes: It filters out loops that are
929      // simply not analyzable, and it covers the case where this code is
930      // being called from within backedge-taken count analysis, such that
931      // attempting to ask for the backedge-taken count would likely result
932      // in infinite recursion. In the later case, the analysis code will
933      // cope with a conservative value, and it will take care to purge
934      // that value once it has finished.
935      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
936      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
937        // Manually compute the final value for AR, checking for
938        // overflow.
939
940        // Check whether the backedge-taken count can be losslessly casted to
941        // the addrec's type. The count is always unsigned.
942        const SCEV *CastedMaxBECount =
943          getTruncateOrZeroExtend(MaxBECount, Start->getType());
944        const SCEV *RecastedMaxBECount =
945          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
946        if (MaxBECount == RecastedMaxBECount) {
947          const Type *WideTy = IntegerType::get(BitWidth * 2);
948          // Check whether Start+Step*MaxBECount has no signed overflow.
949          const SCEV *SMul =
950            getMulExpr(CastedMaxBECount,
951                       getTruncateOrSignExtend(Step, Start->getType()));
952          const SCEV *Add = getAddExpr(Start, SMul);
953          const SCEV *OperandExtendedAdd =
954            getAddExpr(getSignExtendExpr(Start, WideTy),
955                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
956                                  getSignExtendExpr(Step, WideTy)));
957          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
958            // Return the expression with the addrec on the outside.
959            return getAddRecExpr(getSignExtendExpr(Start, Ty),
960                                 getSignExtendExpr(Step, Ty),
961                                 L);
962        }
963
964        // If the backedge is guarded by a comparison with the pre-inc value
965        // the addrec is safe. Also, if the entry is guarded by a comparison
966        // with the start value and the backedge is guarded by a comparison
967        // with the post-inc value, the addrec is safe.
968        if (isKnownPositive(Step)) {
969          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
970                                      getSignedRange(Step).getSignedMax());
971          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
972              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
973               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
974                                           AR->getPostIncExpr(*this), N)))
975            // Return the expression with the addrec on the outside.
976            return getAddRecExpr(getSignExtendExpr(Start, Ty),
977                                 getSignExtendExpr(Step, Ty),
978                                 L);
979        } else if (isKnownNegative(Step)) {
980          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
981                                      getSignedRange(Step).getSignedMin());
982          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
983              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
984               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
985                                           AR->getPostIncExpr(*this), N)))
986            // Return the expression with the addrec on the outside.
987            return getAddRecExpr(getSignExtendExpr(Start, Ty),
988                                 getSignExtendExpr(Step, Ty),
989                                 L);
990        }
991      }
992    }
993
994  // The cast wasn't folded; create an explicit cast node.
995  // Recompute the insert position, as it may have been invalidated.
996  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
997  SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
998  new (S) SCEVSignExtendExpr(ID, Op, Ty);
999  UniqueSCEVs.InsertNode(S, IP);
1000  return S;
1001}
1002
1003/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1004/// unspecified bits out to the given type.
1005///
1006const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1007                                             const Type *Ty) {
1008  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1009         "This is not an extending conversion!");
1010  assert(isSCEVable(Ty) &&
1011         "This is not a conversion to a SCEVable type!");
1012  Ty = getEffectiveSCEVType(Ty);
1013
1014  // Sign-extend negative constants.
1015  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1016    if (SC->getValue()->getValue().isNegative())
1017      return getSignExtendExpr(Op, Ty);
1018
1019  // Peel off a truncate cast.
1020  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1021    const SCEV *NewOp = T->getOperand();
1022    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1023      return getAnyExtendExpr(NewOp, Ty);
1024    return getTruncateOrNoop(NewOp, Ty);
1025  }
1026
1027  // Next try a zext cast. If the cast is folded, use it.
1028  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1029  if (!isa<SCEVZeroExtendExpr>(ZExt))
1030    return ZExt;
1031
1032  // Next try a sext cast. If the cast is folded, use it.
1033  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1034  if (!isa<SCEVSignExtendExpr>(SExt))
1035    return SExt;
1036
1037  // If the expression is obviously signed, use the sext cast value.
1038  if (isa<SCEVSMaxExpr>(Op))
1039    return SExt;
1040
1041  // Absent any other information, use the zext cast value.
1042  return ZExt;
1043}
1044
1045/// CollectAddOperandsWithScales - Process the given Ops list, which is
1046/// a list of operands to be added under the given scale, update the given
1047/// map. This is a helper function for getAddRecExpr. As an example of
1048/// what it does, given a sequence of operands that would form an add
1049/// expression like this:
1050///
1051///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1052///
1053/// where A and B are constants, update the map with these values:
1054///
1055///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1056///
1057/// and add 13 + A*B*29 to AccumulatedConstant.
1058/// This will allow getAddRecExpr to produce this:
1059///
1060///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1061///
1062/// This form often exposes folding opportunities that are hidden in
1063/// the original operand list.
1064///
1065/// Return true iff it appears that any interesting folding opportunities
1066/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1067/// the common case where no interesting opportunities are present, and
1068/// is also used as a check to avoid infinite recursion.
1069///
1070static bool
1071CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1072                             SmallVector<const SCEV *, 8> &NewOps,
1073                             APInt &AccumulatedConstant,
1074                             const SmallVectorImpl<const SCEV *> &Ops,
1075                             const APInt &Scale,
1076                             ScalarEvolution &SE) {
1077  bool Interesting = false;
1078
1079  // Iterate over the add operands.
1080  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1081    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1082    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1083      APInt NewScale =
1084        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1085      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1086        // A multiplication of a constant with another add; recurse.
1087        Interesting |=
1088          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1089                                       cast<SCEVAddExpr>(Mul->getOperand(1))
1090                                         ->getOperands(),
1091                                       NewScale, SE);
1092      } else {
1093        // A multiplication of a constant with some other value. Update
1094        // the map.
1095        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1096        const SCEV *Key = SE.getMulExpr(MulOps);
1097        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1098          M.insert(std::make_pair(Key, NewScale));
1099        if (Pair.second) {
1100          NewOps.push_back(Pair.first->first);
1101        } else {
1102          Pair.first->second += NewScale;
1103          // The map already had an entry for this value, which may indicate
1104          // a folding opportunity.
1105          Interesting = true;
1106        }
1107      }
1108    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1109      // Pull a buried constant out to the outside.
1110      if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1111        Interesting = true;
1112      AccumulatedConstant += Scale * C->getValue()->getValue();
1113    } else {
1114      // An ordinary operand. Update the map.
1115      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1116        M.insert(std::make_pair(Ops[i], Scale));
1117      if (Pair.second) {
1118        NewOps.push_back(Pair.first->first);
1119      } else {
1120        Pair.first->second += Scale;
1121        // The map already had an entry for this value, which may indicate
1122        // a folding opportunity.
1123        Interesting = true;
1124      }
1125    }
1126  }
1127
1128  return Interesting;
1129}
1130
1131namespace {
1132  struct APIntCompare {
1133    bool operator()(const APInt &LHS, const APInt &RHS) const {
1134      return LHS.ult(RHS);
1135    }
1136  };
1137}
1138
1139/// getAddExpr - Get a canonical add expression, or something simpler if
1140/// possible.
1141const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
1142  assert(!Ops.empty() && "Cannot get empty add!");
1143  if (Ops.size() == 1) return Ops[0];
1144#ifndef NDEBUG
1145  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1146    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1147           getEffectiveSCEVType(Ops[0]->getType()) &&
1148           "SCEVAddExpr operand types don't match!");
1149#endif
1150
1151  // Sort by complexity, this groups all similar expression types together.
1152  GroupByComplexity(Ops, LI);
1153
1154  // If there are any constants, fold them together.
1155  unsigned Idx = 0;
1156  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1157    ++Idx;
1158    assert(Idx < Ops.size());
1159    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1160      // We found two constants, fold them together!
1161      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1162                           RHSC->getValue()->getValue());
1163      if (Ops.size() == 2) return Ops[0];
1164      Ops.erase(Ops.begin()+1);  // Erase the folded element
1165      LHSC = cast<SCEVConstant>(Ops[0]);
1166    }
1167
1168    // If we are left with a constant zero being added, strip it off.
1169    if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1170      Ops.erase(Ops.begin());
1171      --Idx;
1172    }
1173  }
1174
1175  if (Ops.size() == 1) return Ops[0];
1176
1177  // Okay, check to see if the same value occurs in the operand list twice.  If
1178  // so, merge them together into an multiply expression.  Since we sorted the
1179  // list, these values are required to be adjacent.
1180  const Type *Ty = Ops[0]->getType();
1181  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1182    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1183      // Found a match, merge the two values into a multiply, and add any
1184      // remaining values to the result.
1185      const SCEV *Two = getIntegerSCEV(2, Ty);
1186      const SCEV *Mul = getMulExpr(Ops[i], Two);
1187      if (Ops.size() == 2)
1188        return Mul;
1189      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1190      Ops.push_back(Mul);
1191      return getAddExpr(Ops);
1192    }
1193
1194  // Check for truncates. If all the operands are truncated from the same
1195  // type, see if factoring out the truncate would permit the result to be
1196  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1197  // if the contents of the resulting outer trunc fold to something simple.
1198  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1199    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1200    const Type *DstType = Trunc->getType();
1201    const Type *SrcType = Trunc->getOperand()->getType();
1202    SmallVector<const SCEV *, 8> LargeOps;
1203    bool Ok = true;
1204    // Check all the operands to see if they can be represented in the
1205    // source type of the truncate.
1206    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1207      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1208        if (T->getOperand()->getType() != SrcType) {
1209          Ok = false;
1210          break;
1211        }
1212        LargeOps.push_back(T->getOperand());
1213      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1214        // This could be either sign or zero extension, but sign extension
1215        // is much more likely to be foldable here.
1216        LargeOps.push_back(getSignExtendExpr(C, SrcType));
1217      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1218        SmallVector<const SCEV *, 8> LargeMulOps;
1219        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1220          if (const SCEVTruncateExpr *T =
1221                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1222            if (T->getOperand()->getType() != SrcType) {
1223              Ok = false;
1224              break;
1225            }
1226            LargeMulOps.push_back(T->getOperand());
1227          } else if (const SCEVConstant *C =
1228                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1229            // This could be either sign or zero extension, but sign extension
1230            // is much more likely to be foldable here.
1231            LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1232          } else {
1233            Ok = false;
1234            break;
1235          }
1236        }
1237        if (Ok)
1238          LargeOps.push_back(getMulExpr(LargeMulOps));
1239      } else {
1240        Ok = false;
1241        break;
1242      }
1243    }
1244    if (Ok) {
1245      // Evaluate the expression in the larger type.
1246      const SCEV *Fold = getAddExpr(LargeOps);
1247      // If it folds to something simple, use it. Otherwise, don't.
1248      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1249        return getTruncateExpr(Fold, DstType);
1250    }
1251  }
1252
1253  // Skip past any other cast SCEVs.
1254  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1255    ++Idx;
1256
1257  // If there are add operands they would be next.
1258  if (Idx < Ops.size()) {
1259    bool DeletedAdd = false;
1260    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1261      // If we have an add, expand the add operands onto the end of the operands
1262      // list.
1263      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1264      Ops.erase(Ops.begin()+Idx);
1265      DeletedAdd = true;
1266    }
1267
1268    // If we deleted at least one add, we added operands to the end of the list,
1269    // and they are not necessarily sorted.  Recurse to resort and resimplify
1270    // any operands we just aquired.
1271    if (DeletedAdd)
1272      return getAddExpr(Ops);
1273  }
1274
1275  // Skip over the add expression until we get to a multiply.
1276  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1277    ++Idx;
1278
1279  // Check to see if there are any folding opportunities present with
1280  // operands multiplied by constant values.
1281  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1282    uint64_t BitWidth = getTypeSizeInBits(Ty);
1283    DenseMap<const SCEV *, APInt> M;
1284    SmallVector<const SCEV *, 8> NewOps;
1285    APInt AccumulatedConstant(BitWidth, 0);
1286    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1287                                     Ops, APInt(BitWidth, 1), *this)) {
1288      // Some interesting folding opportunity is present, so its worthwhile to
1289      // re-generate the operands list. Group the operands by constant scale,
1290      // to avoid multiplying by the same constant scale multiple times.
1291      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1292      for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1293           E = NewOps.end(); I != E; ++I)
1294        MulOpLists[M.find(*I)->second].push_back(*I);
1295      // Re-generate the operands list.
1296      Ops.clear();
1297      if (AccumulatedConstant != 0)
1298        Ops.push_back(getConstant(AccumulatedConstant));
1299      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1300           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1301        if (I->first != 0)
1302          Ops.push_back(getMulExpr(getConstant(I->first),
1303                                   getAddExpr(I->second)));
1304      if (Ops.empty())
1305        return getIntegerSCEV(0, Ty);
1306      if (Ops.size() == 1)
1307        return Ops[0];
1308      return getAddExpr(Ops);
1309    }
1310  }
1311
1312  // If we are adding something to a multiply expression, make sure the
1313  // something is not already an operand of the multiply.  If so, merge it into
1314  // the multiply.
1315  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1316    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1317    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1318      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1319      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1320        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1321          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1322          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1323          if (Mul->getNumOperands() != 2) {
1324            // If the multiply has more than two operands, we must get the
1325            // Y*Z term.
1326            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1327            MulOps.erase(MulOps.begin()+MulOp);
1328            InnerMul = getMulExpr(MulOps);
1329          }
1330          const SCEV *One = getIntegerSCEV(1, Ty);
1331          const SCEV *AddOne = getAddExpr(InnerMul, One);
1332          const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1333          if (Ops.size() == 2) return OuterMul;
1334          if (AddOp < Idx) {
1335            Ops.erase(Ops.begin()+AddOp);
1336            Ops.erase(Ops.begin()+Idx-1);
1337          } else {
1338            Ops.erase(Ops.begin()+Idx);
1339            Ops.erase(Ops.begin()+AddOp-1);
1340          }
1341          Ops.push_back(OuterMul);
1342          return getAddExpr(Ops);
1343        }
1344
1345      // Check this multiply against other multiplies being added together.
1346      for (unsigned OtherMulIdx = Idx+1;
1347           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1348           ++OtherMulIdx) {
1349        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1350        // If MulOp occurs in OtherMul, we can fold the two multiplies
1351        // together.
1352        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1353             OMulOp != e; ++OMulOp)
1354          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1355            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1356            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1357            if (Mul->getNumOperands() != 2) {
1358              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1359                                                  Mul->op_end());
1360              MulOps.erase(MulOps.begin()+MulOp);
1361              InnerMul1 = getMulExpr(MulOps);
1362            }
1363            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1364            if (OtherMul->getNumOperands() != 2) {
1365              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1366                                                  OtherMul->op_end());
1367              MulOps.erase(MulOps.begin()+OMulOp);
1368              InnerMul2 = getMulExpr(MulOps);
1369            }
1370            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1371            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1372            if (Ops.size() == 2) return OuterMul;
1373            Ops.erase(Ops.begin()+Idx);
1374            Ops.erase(Ops.begin()+OtherMulIdx-1);
1375            Ops.push_back(OuterMul);
1376            return getAddExpr(Ops);
1377          }
1378      }
1379    }
1380  }
1381
1382  // If there are any add recurrences in the operands list, see if any other
1383  // added values are loop invariant.  If so, we can fold them into the
1384  // recurrence.
1385  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1386    ++Idx;
1387
1388  // Scan over all recurrences, trying to fold loop invariants into them.
1389  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1390    // Scan all of the other operands to this add and add them to the vector if
1391    // they are loop invariant w.r.t. the recurrence.
1392    SmallVector<const SCEV *, 8> LIOps;
1393    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1394    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1395      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1396        LIOps.push_back(Ops[i]);
1397        Ops.erase(Ops.begin()+i);
1398        --i; --e;
1399      }
1400
1401    // If we found some loop invariants, fold them into the recurrence.
1402    if (!LIOps.empty()) {
1403      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1404      LIOps.push_back(AddRec->getStart());
1405
1406      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1407                                           AddRec->op_end());
1408      AddRecOps[0] = getAddExpr(LIOps);
1409
1410      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1411      // If all of the other operands were loop invariant, we are done.
1412      if (Ops.size() == 1) return NewRec;
1413
1414      // Otherwise, add the folded AddRec by the non-liv parts.
1415      for (unsigned i = 0;; ++i)
1416        if (Ops[i] == AddRec) {
1417          Ops[i] = NewRec;
1418          break;
1419        }
1420      return getAddExpr(Ops);
1421    }
1422
1423    // Okay, if there weren't any loop invariants to be folded, check to see if
1424    // there are multiple AddRec's with the same loop induction variable being
1425    // added together.  If so, we can fold them.
1426    for (unsigned OtherIdx = Idx+1;
1427         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1428      if (OtherIdx != Idx) {
1429        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1430        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1431          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
1432          SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1433                                              AddRec->op_end());
1434          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1435            if (i >= NewOps.size()) {
1436              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1437                            OtherAddRec->op_end());
1438              break;
1439            }
1440            NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1441          }
1442          const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1443
1444          if (Ops.size() == 2) return NewAddRec;
1445
1446          Ops.erase(Ops.begin()+Idx);
1447          Ops.erase(Ops.begin()+OtherIdx-1);
1448          Ops.push_back(NewAddRec);
1449          return getAddExpr(Ops);
1450        }
1451      }
1452
1453    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1454    // next one.
1455  }
1456
1457  // Okay, it looks like we really DO need an add expr.  Check to see if we
1458  // already have one, otherwise create a new one.
1459  FoldingSetNodeID ID;
1460  ID.AddInteger(scAddExpr);
1461  ID.AddInteger(Ops.size());
1462  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1463    ID.AddPointer(Ops[i]);
1464  void *IP = 0;
1465  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1466  SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1467  new (S) SCEVAddExpr(ID, Ops);
1468  UniqueSCEVs.InsertNode(S, IP);
1469  return S;
1470}
1471
1472
1473/// getMulExpr - Get a canonical multiply expression, or something simpler if
1474/// possible.
1475const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
1476  assert(!Ops.empty() && "Cannot get empty mul!");
1477#ifndef NDEBUG
1478  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1479    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1480           getEffectiveSCEVType(Ops[0]->getType()) &&
1481           "SCEVMulExpr operand types don't match!");
1482#endif
1483
1484  // Sort by complexity, this groups all similar expression types together.
1485  GroupByComplexity(Ops, LI);
1486
1487  // If there are any constants, fold them together.
1488  unsigned Idx = 0;
1489  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1490
1491    // C1*(C2+V) -> C1*C2 + C1*V
1492    if (Ops.size() == 2)
1493      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1494        if (Add->getNumOperands() == 2 &&
1495            isa<SCEVConstant>(Add->getOperand(0)))
1496          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1497                            getMulExpr(LHSC, Add->getOperand(1)));
1498
1499
1500    ++Idx;
1501    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1502      // We found two constants, fold them together!
1503      ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1504                                           RHSC->getValue()->getValue());
1505      Ops[0] = getConstant(Fold);
1506      Ops.erase(Ops.begin()+1);  // Erase the folded element
1507      if (Ops.size() == 1) return Ops[0];
1508      LHSC = cast<SCEVConstant>(Ops[0]);
1509    }
1510
1511    // If we are left with a constant one being multiplied, strip it off.
1512    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1513      Ops.erase(Ops.begin());
1514      --Idx;
1515    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1516      // If we have a multiply of zero, it will always be zero.
1517      return Ops[0];
1518    }
1519  }
1520
1521  // Skip over the add expression until we get to a multiply.
1522  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1523    ++Idx;
1524
1525  if (Ops.size() == 1)
1526    return Ops[0];
1527
1528  // If there are mul operands inline them all into this expression.
1529  if (Idx < Ops.size()) {
1530    bool DeletedMul = false;
1531    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1532      // If we have an mul, expand the mul operands onto the end of the operands
1533      // list.
1534      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1535      Ops.erase(Ops.begin()+Idx);
1536      DeletedMul = true;
1537    }
1538
1539    // If we deleted at least one mul, we added operands to the end of the list,
1540    // and they are not necessarily sorted.  Recurse to resort and resimplify
1541    // any operands we just aquired.
1542    if (DeletedMul)
1543      return getMulExpr(Ops);
1544  }
1545
1546  // If there are any add recurrences in the operands list, see if any other
1547  // added values are loop invariant.  If so, we can fold them into the
1548  // recurrence.
1549  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1550    ++Idx;
1551
1552  // Scan over all recurrences, trying to fold loop invariants into them.
1553  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1554    // Scan all of the other operands to this mul and add them to the vector if
1555    // they are loop invariant w.r.t. the recurrence.
1556    SmallVector<const SCEV *, 8> LIOps;
1557    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1558    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1559      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1560        LIOps.push_back(Ops[i]);
1561        Ops.erase(Ops.begin()+i);
1562        --i; --e;
1563      }
1564
1565    // If we found some loop invariants, fold them into the recurrence.
1566    if (!LIOps.empty()) {
1567      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1568      SmallVector<const SCEV *, 4> NewOps;
1569      NewOps.reserve(AddRec->getNumOperands());
1570      if (LIOps.size() == 1) {
1571        const SCEV *Scale = LIOps[0];
1572        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1573          NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1574      } else {
1575        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1576          SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1577          MulOps.push_back(AddRec->getOperand(i));
1578          NewOps.push_back(getMulExpr(MulOps));
1579        }
1580      }
1581
1582      const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1583
1584      // If all of the other operands were loop invariant, we are done.
1585      if (Ops.size() == 1) return NewRec;
1586
1587      // Otherwise, multiply the folded AddRec by the non-liv parts.
1588      for (unsigned i = 0;; ++i)
1589        if (Ops[i] == AddRec) {
1590          Ops[i] = NewRec;
1591          break;
1592        }
1593      return getMulExpr(Ops);
1594    }
1595
1596    // Okay, if there weren't any loop invariants to be folded, check to see if
1597    // there are multiple AddRec's with the same loop induction variable being
1598    // multiplied together.  If so, we can fold them.
1599    for (unsigned OtherIdx = Idx+1;
1600         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1601      if (OtherIdx != Idx) {
1602        const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1603        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1604          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
1605          const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1606          const SCEV *NewStart = getMulExpr(F->getStart(),
1607                                                 G->getStart());
1608          const SCEV *B = F->getStepRecurrence(*this);
1609          const SCEV *D = G->getStepRecurrence(*this);
1610          const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1611                                          getMulExpr(G, B),
1612                                          getMulExpr(B, D));
1613          const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1614                                               F->getLoop());
1615          if (Ops.size() == 2) return NewAddRec;
1616
1617          Ops.erase(Ops.begin()+Idx);
1618          Ops.erase(Ops.begin()+OtherIdx-1);
1619          Ops.push_back(NewAddRec);
1620          return getMulExpr(Ops);
1621        }
1622      }
1623
1624    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1625    // next one.
1626  }
1627
1628  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1629  // already have one, otherwise create a new one.
1630  FoldingSetNodeID ID;
1631  ID.AddInteger(scMulExpr);
1632  ID.AddInteger(Ops.size());
1633  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1634    ID.AddPointer(Ops[i]);
1635  void *IP = 0;
1636  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1637  SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1638  new (S) SCEVMulExpr(ID, Ops);
1639  UniqueSCEVs.InsertNode(S, IP);
1640  return S;
1641}
1642
1643/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1644/// possible.
1645const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1646                                         const SCEV *RHS) {
1647  assert(getEffectiveSCEVType(LHS->getType()) ==
1648         getEffectiveSCEVType(RHS->getType()) &&
1649         "SCEVUDivExpr operand types don't match!");
1650
1651  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1652    if (RHSC->getValue()->equalsInt(1))
1653      return LHS;                            // X udiv 1 --> x
1654    if (RHSC->isZero())
1655      return getIntegerSCEV(0, LHS->getType()); // value is undefined
1656
1657    // Determine if the division can be folded into the operands of
1658    // its operands.
1659    // TODO: Generalize this to non-constants by using known-bits information.
1660    const Type *Ty = LHS->getType();
1661    unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1662    unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1663    // For non-power-of-two values, effectively round the value up to the
1664    // nearest power of two.
1665    if (!RHSC->getValue()->getValue().isPowerOf2())
1666      ++MaxShiftAmt;
1667    const IntegerType *ExtTy =
1668      IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1669    // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1670    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1671      if (const SCEVConstant *Step =
1672            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1673        if (!Step->getValue()->getValue()
1674              .urem(RHSC->getValue()->getValue()) &&
1675            getZeroExtendExpr(AR, ExtTy) ==
1676            getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1677                          getZeroExtendExpr(Step, ExtTy),
1678                          AR->getLoop())) {
1679          SmallVector<const SCEV *, 4> Operands;
1680          for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1681            Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1682          return getAddRecExpr(Operands, AR->getLoop());
1683        }
1684    // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1685    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1686      SmallVector<const SCEV *, 4> Operands;
1687      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1688        Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1689      if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1690        // Find an operand that's safely divisible.
1691        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1692          const SCEV *Op = M->getOperand(i);
1693          const SCEV *Div = getUDivExpr(Op, RHSC);
1694          if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1695            const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1696            Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1697                                                  MOperands.end());
1698            Operands[i] = Div;
1699            return getMulExpr(Operands);
1700          }
1701        }
1702    }
1703    // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1704    if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1705      SmallVector<const SCEV *, 4> Operands;
1706      for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1707        Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1708      if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1709        Operands.clear();
1710        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1711          const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1712          if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1713            break;
1714          Operands.push_back(Op);
1715        }
1716        if (Operands.size() == A->getNumOperands())
1717          return getAddExpr(Operands);
1718      }
1719    }
1720
1721    // Fold if both operands are constant.
1722    if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1723      Constant *LHSCV = LHSC->getValue();
1724      Constant *RHSCV = RHSC->getValue();
1725      return getConstant(cast<ConstantInt>(Context->getConstantExprUDiv(LHSCV,
1726                                                                 RHSCV)));
1727    }
1728  }
1729
1730  FoldingSetNodeID ID;
1731  ID.AddInteger(scUDivExpr);
1732  ID.AddPointer(LHS);
1733  ID.AddPointer(RHS);
1734  void *IP = 0;
1735  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1736  SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1737  new (S) SCEVUDivExpr(ID, LHS, RHS);
1738  UniqueSCEVs.InsertNode(S, IP);
1739  return S;
1740}
1741
1742
1743/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1744/// Simplify the expression as much as possible.
1745const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1746                               const SCEV *Step, const Loop *L) {
1747  SmallVector<const SCEV *, 4> Operands;
1748  Operands.push_back(Start);
1749  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1750    if (StepChrec->getLoop() == L) {
1751      Operands.insert(Operands.end(), StepChrec->op_begin(),
1752                      StepChrec->op_end());
1753      return getAddRecExpr(Operands, L);
1754    }
1755
1756  Operands.push_back(Step);
1757  return getAddRecExpr(Operands, L);
1758}
1759
1760/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1761/// Simplify the expression as much as possible.
1762const SCEV *
1763ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1764                               const Loop *L) {
1765  if (Operands.size() == 1) return Operands[0];
1766#ifndef NDEBUG
1767  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1768    assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1769           getEffectiveSCEVType(Operands[0]->getType()) &&
1770           "SCEVAddRecExpr operand types don't match!");
1771#endif
1772
1773  if (Operands.back()->isZero()) {
1774    Operands.pop_back();
1775    return getAddRecExpr(Operands, L);             // {X,+,0}  -->  X
1776  }
1777
1778  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1779  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1780    const Loop* NestedLoop = NestedAR->getLoop();
1781    if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1782      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1783                                                NestedAR->op_end());
1784      Operands[0] = NestedAR->getStart();
1785      // AddRecs require their operands be loop-invariant with respect to their
1786      // loops. Don't perform this transformation if it would break this
1787      // requirement.
1788      bool AllInvariant = true;
1789      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1790        if (!Operands[i]->isLoopInvariant(L)) {
1791          AllInvariant = false;
1792          break;
1793        }
1794      if (AllInvariant) {
1795        NestedOperands[0] = getAddRecExpr(Operands, L);
1796        AllInvariant = true;
1797        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1798          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1799            AllInvariant = false;
1800            break;
1801          }
1802        if (AllInvariant)
1803          // Ok, both add recurrences are valid after the transformation.
1804          return getAddRecExpr(NestedOperands, NestedLoop);
1805      }
1806      // Reset Operands to its original state.
1807      Operands[0] = NestedAR;
1808    }
1809  }
1810
1811  FoldingSetNodeID ID;
1812  ID.AddInteger(scAddRecExpr);
1813  ID.AddInteger(Operands.size());
1814  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1815    ID.AddPointer(Operands[i]);
1816  ID.AddPointer(L);
1817  void *IP = 0;
1818  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1819  SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1820  new (S) SCEVAddRecExpr(ID, Operands, L);
1821  UniqueSCEVs.InsertNode(S, IP);
1822  return S;
1823}
1824
1825const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1826                                         const SCEV *RHS) {
1827  SmallVector<const SCEV *, 2> Ops;
1828  Ops.push_back(LHS);
1829  Ops.push_back(RHS);
1830  return getSMaxExpr(Ops);
1831}
1832
1833const SCEV *
1834ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1835  assert(!Ops.empty() && "Cannot get empty smax!");
1836  if (Ops.size() == 1) return Ops[0];
1837#ifndef NDEBUG
1838  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1839    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1840           getEffectiveSCEVType(Ops[0]->getType()) &&
1841           "SCEVSMaxExpr operand types don't match!");
1842#endif
1843
1844  // Sort by complexity, this groups all similar expression types together.
1845  GroupByComplexity(Ops, LI);
1846
1847  // If there are any constants, fold them together.
1848  unsigned Idx = 0;
1849  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1850    ++Idx;
1851    assert(Idx < Ops.size());
1852    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1853      // We found two constants, fold them together!
1854      ConstantInt *Fold = ConstantInt::get(
1855                              APIntOps::smax(LHSC->getValue()->getValue(),
1856                                             RHSC->getValue()->getValue()));
1857      Ops[0] = getConstant(Fold);
1858      Ops.erase(Ops.begin()+1);  // Erase the folded element
1859      if (Ops.size() == 1) return Ops[0];
1860      LHSC = cast<SCEVConstant>(Ops[0]);
1861    }
1862
1863    // If we are left with a constant minimum-int, strip it off.
1864    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1865      Ops.erase(Ops.begin());
1866      --Idx;
1867    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1868      // If we have an smax with a constant maximum-int, it will always be
1869      // maximum-int.
1870      return Ops[0];
1871    }
1872  }
1873
1874  if (Ops.size() == 1) return Ops[0];
1875
1876  // Find the first SMax
1877  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1878    ++Idx;
1879
1880  // Check to see if one of the operands is an SMax. If so, expand its operands
1881  // onto our operand list, and recurse to simplify.
1882  if (Idx < Ops.size()) {
1883    bool DeletedSMax = false;
1884    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1885      Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1886      Ops.erase(Ops.begin()+Idx);
1887      DeletedSMax = true;
1888    }
1889
1890    if (DeletedSMax)
1891      return getSMaxExpr(Ops);
1892  }
1893
1894  // Okay, check to see if the same value occurs in the operand list twice.  If
1895  // so, delete one.  Since we sorted the list, these values are required to
1896  // be adjacent.
1897  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1898    if (Ops[i] == Ops[i+1]) {      //  X smax Y smax Y  -->  X smax Y
1899      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1900      --i; --e;
1901    }
1902
1903  if (Ops.size() == 1) return Ops[0];
1904
1905  assert(!Ops.empty() && "Reduced smax down to nothing!");
1906
1907  // Okay, it looks like we really DO need an smax expr.  Check to see if we
1908  // already have one, otherwise create a new one.
1909  FoldingSetNodeID ID;
1910  ID.AddInteger(scSMaxExpr);
1911  ID.AddInteger(Ops.size());
1912  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1913    ID.AddPointer(Ops[i]);
1914  void *IP = 0;
1915  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1916  SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1917  new (S) SCEVSMaxExpr(ID, Ops);
1918  UniqueSCEVs.InsertNode(S, IP);
1919  return S;
1920}
1921
1922const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1923                                         const SCEV *RHS) {
1924  SmallVector<const SCEV *, 2> Ops;
1925  Ops.push_back(LHS);
1926  Ops.push_back(RHS);
1927  return getUMaxExpr(Ops);
1928}
1929
1930const SCEV *
1931ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1932  assert(!Ops.empty() && "Cannot get empty umax!");
1933  if (Ops.size() == 1) return Ops[0];
1934#ifndef NDEBUG
1935  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1936    assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1937           getEffectiveSCEVType(Ops[0]->getType()) &&
1938           "SCEVUMaxExpr operand types don't match!");
1939#endif
1940
1941  // Sort by complexity, this groups all similar expression types together.
1942  GroupByComplexity(Ops, LI);
1943
1944  // If there are any constants, fold them together.
1945  unsigned Idx = 0;
1946  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1947    ++Idx;
1948    assert(Idx < Ops.size());
1949    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1950      // We found two constants, fold them together!
1951      ConstantInt *Fold = ConstantInt::get(
1952                              APIntOps::umax(LHSC->getValue()->getValue(),
1953                                             RHSC->getValue()->getValue()));
1954      Ops[0] = getConstant(Fold);
1955      Ops.erase(Ops.begin()+1);  // Erase the folded element
1956      if (Ops.size() == 1) return Ops[0];
1957      LHSC = cast<SCEVConstant>(Ops[0]);
1958    }
1959
1960    // If we are left with a constant minimum-int, strip it off.
1961    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1962      Ops.erase(Ops.begin());
1963      --Idx;
1964    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1965      // If we have an umax with a constant maximum-int, it will always be
1966      // maximum-int.
1967      return Ops[0];
1968    }
1969  }
1970
1971  if (Ops.size() == 1) return Ops[0];
1972
1973  // Find the first UMax
1974  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1975    ++Idx;
1976
1977  // Check to see if one of the operands is a UMax. If so, expand its operands
1978  // onto our operand list, and recurse to simplify.
1979  if (Idx < Ops.size()) {
1980    bool DeletedUMax = false;
1981    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1982      Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1983      Ops.erase(Ops.begin()+Idx);
1984      DeletedUMax = true;
1985    }
1986
1987    if (DeletedUMax)
1988      return getUMaxExpr(Ops);
1989  }
1990
1991  // Okay, check to see if the same value occurs in the operand list twice.  If
1992  // so, delete one.  Since we sorted the list, these values are required to
1993  // be adjacent.
1994  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1995    if (Ops[i] == Ops[i+1]) {      //  X umax Y umax Y  -->  X umax Y
1996      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1997      --i; --e;
1998    }
1999
2000  if (Ops.size() == 1) return Ops[0];
2001
2002  assert(!Ops.empty() && "Reduced umax down to nothing!");
2003
2004  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2005  // already have one, otherwise create a new one.
2006  FoldingSetNodeID ID;
2007  ID.AddInteger(scUMaxExpr);
2008  ID.AddInteger(Ops.size());
2009  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2010    ID.AddPointer(Ops[i]);
2011  void *IP = 0;
2012  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2013  SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2014  new (S) SCEVUMaxExpr(ID, Ops);
2015  UniqueSCEVs.InsertNode(S, IP);
2016  return S;
2017}
2018
2019const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2020                                         const SCEV *RHS) {
2021  // ~smax(~x, ~y) == smin(x, y).
2022  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2023}
2024
2025const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2026                                         const SCEV *RHS) {
2027  // ~umax(~x, ~y) == umin(x, y)
2028  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2029}
2030
2031const SCEV *ScalarEvolution::getUnknown(Value *V) {
2032  // Don't attempt to do anything other than create a SCEVUnknown object
2033  // here.  createSCEV only calls getUnknown after checking for all other
2034  // interesting possibilities, and any other code that calls getUnknown
2035  // is doing so in order to hide a value from SCEV canonicalization.
2036
2037  FoldingSetNodeID ID;
2038  ID.AddInteger(scUnknown);
2039  ID.AddPointer(V);
2040  void *IP = 0;
2041  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2042  SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2043  new (S) SCEVUnknown(ID, V);
2044  UniqueSCEVs.InsertNode(S, IP);
2045  return S;
2046}
2047
2048//===----------------------------------------------------------------------===//
2049//            Basic SCEV Analysis and PHI Idiom Recognition Code
2050//
2051
2052/// isSCEVable - Test if values of the given type are analyzable within
2053/// the SCEV framework. This primarily includes integer types, and it
2054/// can optionally include pointer types if the ScalarEvolution class
2055/// has access to target-specific information.
2056bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2057  // Integers are always SCEVable.
2058  if (Ty->isInteger())
2059    return true;
2060
2061  // Pointers are SCEVable if TargetData information is available
2062  // to provide pointer size information.
2063  if (isa<PointerType>(Ty))
2064    return TD != NULL;
2065
2066  // Otherwise it's not SCEVable.
2067  return false;
2068}
2069
2070/// getTypeSizeInBits - Return the size in bits of the specified type,
2071/// for which isSCEVable must return true.
2072uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2073  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2074
2075  // If we have a TargetData, use it!
2076  if (TD)
2077    return TD->getTypeSizeInBits(Ty);
2078
2079  // Otherwise, we support only integer types.
2080  assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2081  return Ty->getPrimitiveSizeInBits();
2082}
2083
2084/// getEffectiveSCEVType - Return a type with the same bitwidth as
2085/// the given type and which represents how SCEV will treat the given
2086/// type, for which isSCEVable must return true. For pointer types,
2087/// this is the pointer-sized integer type.
2088const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2089  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2090
2091  if (Ty->isInteger())
2092    return Ty;
2093
2094  assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2095  return TD->getIntPtrType();
2096}
2097
2098const SCEV *ScalarEvolution::getCouldNotCompute() {
2099  return &CouldNotCompute;
2100}
2101
2102/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2103/// expression and create a new one.
2104const SCEV *ScalarEvolution::getSCEV(Value *V) {
2105  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2106
2107  std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2108  if (I != Scalars.end()) return I->second;
2109  const SCEV *S = createSCEV(V);
2110  Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2111  return S;
2112}
2113
2114/// getIntegerSCEV - Given a SCEVable type, create a constant for the
2115/// specified signed integer value and return a SCEV for the constant.
2116const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2117  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2118  return getConstant(ConstantInt::get(ITy, Val));
2119}
2120
2121/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2122///
2123const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2124  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2125    return getConstant(
2126               cast<ConstantInt>(Context->getConstantExprNeg(VC->getValue())));
2127
2128  const Type *Ty = V->getType();
2129  Ty = getEffectiveSCEVType(Ty);
2130  return getMulExpr(V,
2131                  getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty))));
2132}
2133
2134/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2135const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2136  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2137    return getConstant(
2138                cast<ConstantInt>(Context->getConstantExprNot(VC->getValue())));
2139
2140  const Type *Ty = V->getType();
2141  Ty = getEffectiveSCEVType(Ty);
2142  const SCEV *AllOnes =
2143                   getConstant(cast<ConstantInt>(Context->getAllOnesValue(Ty)));
2144  return getMinusSCEV(AllOnes, V);
2145}
2146
2147/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2148///
2149const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2150                                          const SCEV *RHS) {
2151  // X - Y --> X + -Y
2152  return getAddExpr(LHS, getNegativeSCEV(RHS));
2153}
2154
2155/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2156/// input value to the specified type.  If the type must be extended, it is zero
2157/// extended.
2158const SCEV *
2159ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2160                                         const Type *Ty) {
2161  const Type *SrcTy = V->getType();
2162  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2163         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2164         "Cannot truncate or zero extend with non-integer arguments!");
2165  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2166    return V;  // No conversion
2167  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2168    return getTruncateExpr(V, Ty);
2169  return getZeroExtendExpr(V, Ty);
2170}
2171
2172/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2173/// input value to the specified type.  If the type must be extended, it is sign
2174/// extended.
2175const SCEV *
2176ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2177                                         const Type *Ty) {
2178  const Type *SrcTy = V->getType();
2179  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2180         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2181         "Cannot truncate or zero extend with non-integer arguments!");
2182  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2183    return V;  // No conversion
2184  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2185    return getTruncateExpr(V, Ty);
2186  return getSignExtendExpr(V, Ty);
2187}
2188
2189/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2190/// input value to the specified type.  If the type must be extended, it is zero
2191/// extended.  The conversion must not be narrowing.
2192const SCEV *
2193ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2194  const Type *SrcTy = V->getType();
2195  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2196         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2197         "Cannot noop or zero extend with non-integer arguments!");
2198  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2199         "getNoopOrZeroExtend cannot truncate!");
2200  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2201    return V;  // No conversion
2202  return getZeroExtendExpr(V, Ty);
2203}
2204
2205/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2206/// input value to the specified type.  If the type must be extended, it is sign
2207/// extended.  The conversion must not be narrowing.
2208const SCEV *
2209ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2210  const Type *SrcTy = V->getType();
2211  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2212         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2213         "Cannot noop or sign extend with non-integer arguments!");
2214  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2215         "getNoopOrSignExtend cannot truncate!");
2216  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2217    return V;  // No conversion
2218  return getSignExtendExpr(V, Ty);
2219}
2220
2221/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2222/// the input value to the specified type. If the type must be extended,
2223/// it is extended with unspecified bits. The conversion must not be
2224/// narrowing.
2225const SCEV *
2226ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2227  const Type *SrcTy = V->getType();
2228  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2229         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2230         "Cannot noop or any extend with non-integer arguments!");
2231  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2232         "getNoopOrAnyExtend cannot truncate!");
2233  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2234    return V;  // No conversion
2235  return getAnyExtendExpr(V, Ty);
2236}
2237
2238/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2239/// input value to the specified type.  The conversion must not be widening.
2240const SCEV *
2241ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2242  const Type *SrcTy = V->getType();
2243  assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2244         (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2245         "Cannot truncate or noop with non-integer arguments!");
2246  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2247         "getTruncateOrNoop cannot extend!");
2248  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2249    return V;  // No conversion
2250  return getTruncateExpr(V, Ty);
2251}
2252
2253/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2254/// the types using zero-extension, and then perform a umax operation
2255/// with them.
2256const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2257                                                        const SCEV *RHS) {
2258  const SCEV *PromotedLHS = LHS;
2259  const SCEV *PromotedRHS = RHS;
2260
2261  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2262    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2263  else
2264    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2265
2266  return getUMaxExpr(PromotedLHS, PromotedRHS);
2267}
2268
2269/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2270/// the types using zero-extension, and then perform a umin operation
2271/// with them.
2272const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2273                                                        const SCEV *RHS) {
2274  const SCEV *PromotedLHS = LHS;
2275  const SCEV *PromotedRHS = RHS;
2276
2277  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2278    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2279  else
2280    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2281
2282  return getUMinExpr(PromotedLHS, PromotedRHS);
2283}
2284
2285/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2286/// the specified instruction and replaces any references to the symbolic value
2287/// SymName with the specified value.  This is used during PHI resolution.
2288void
2289ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
2290                                                  const SCEV *SymName,
2291                                                  const SCEV *NewVal) {
2292  std::map<SCEVCallbackVH, const SCEV *>::iterator SI =
2293    Scalars.find(SCEVCallbackVH(I, this));
2294  if (SI == Scalars.end()) return;
2295
2296  const SCEV *NV =
2297    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
2298  if (NV == SI->second) return;  // No change.
2299
2300  SI->second = NV;       // Update the scalars map!
2301
2302  // Any instruction values that use this instruction might also need to be
2303  // updated!
2304  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2305       UI != E; ++UI)
2306    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2307}
2308
2309/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2310/// a loop header, making it a potential recurrence, or it doesn't.
2311///
2312const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2313  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
2314    if (const Loop *L = LI->getLoopFor(PN->getParent()))
2315      if (L->getHeader() == PN->getParent()) {
2316        // If it lives in the loop header, it has two incoming values, one
2317        // from outside the loop, and one from inside.
2318        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2319        unsigned BackEdge     = IncomingEdge^1;
2320
2321        // While we are analyzing this PHI node, handle its value symbolically.
2322        const SCEV *SymbolicName = getUnknown(PN);
2323        assert(Scalars.find(PN) == Scalars.end() &&
2324               "PHI node already processed?");
2325        Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2326
2327        // Using this symbolic name for the PHI, analyze the value coming around
2328        // the back-edge.
2329        const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2330
2331        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2332        // has a special value for the first iteration of the loop.
2333
2334        // If the value coming around the backedge is an add with the symbolic
2335        // value we just inserted, then we found a simple induction variable!
2336        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2337          // If there is a single occurrence of the symbolic value, replace it
2338          // with a recurrence.
2339          unsigned FoundIndex = Add->getNumOperands();
2340          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2341            if (Add->getOperand(i) == SymbolicName)
2342              if (FoundIndex == e) {
2343                FoundIndex = i;
2344                break;
2345              }
2346
2347          if (FoundIndex != Add->getNumOperands()) {
2348            // Create an add with everything but the specified operand.
2349            SmallVector<const SCEV *, 8> Ops;
2350            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2351              if (i != FoundIndex)
2352                Ops.push_back(Add->getOperand(i));
2353            const SCEV *Accum = getAddExpr(Ops);
2354
2355            // This is not a valid addrec if the step amount is varying each
2356            // loop iteration, but is not itself an addrec in this loop.
2357            if (Accum->isLoopInvariant(L) ||
2358                (isa<SCEVAddRecExpr>(Accum) &&
2359                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2360              const SCEV *StartVal =
2361                getSCEV(PN->getIncomingValue(IncomingEdge));
2362              const SCEV *PHISCEV =
2363                getAddRecExpr(StartVal, Accum, L);
2364
2365              // Okay, for the entire analysis of this edge we assumed the PHI
2366              // to be symbolic.  We now need to go back and update all of the
2367              // entries for the scalars that use the PHI (except for the PHI
2368              // itself) to use the new analyzed value instead of the "symbolic"
2369              // value.
2370              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2371              return PHISCEV;
2372            }
2373          }
2374        } else if (const SCEVAddRecExpr *AddRec =
2375                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2376          // Otherwise, this could be a loop like this:
2377          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2378          // In this case, j = {1,+,1}  and BEValue is j.
2379          // Because the other in-value of i (0) fits the evolution of BEValue
2380          // i really is an addrec evolution.
2381          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2382            const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2383
2384            // If StartVal = j.start - j.stride, we can use StartVal as the
2385            // initial step of the addrec evolution.
2386            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2387                                            AddRec->getOperand(1))) {
2388              const SCEV *PHISCEV =
2389                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2390
2391              // Okay, for the entire analysis of this edge we assumed the PHI
2392              // to be symbolic.  We now need to go back and update all of the
2393              // entries for the scalars that use the PHI (except for the PHI
2394              // itself) to use the new analyzed value instead of the "symbolic"
2395              // value.
2396              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2397              return PHISCEV;
2398            }
2399          }
2400        }
2401
2402        return SymbolicName;
2403      }
2404
2405  // It's tempting to recognize PHIs with a unique incoming value, however
2406  // this leads passes like indvars to break LCSSA form. Fortunately, such
2407  // PHIs are rare, as instcombine zaps them.
2408
2409  // If it's not a loop phi, we can't handle it yet.
2410  return getUnknown(PN);
2411}
2412
2413/// createNodeForGEP - Expand GEP instructions into add and multiply
2414/// operations. This allows them to be analyzed by regular SCEV code.
2415///
2416const SCEV *ScalarEvolution::createNodeForGEP(User *GEP) {
2417
2418  const Type *IntPtrTy = TD->getIntPtrType();
2419  Value *Base = GEP->getOperand(0);
2420  // Don't attempt to analyze GEPs over unsized objects.
2421  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2422    return getUnknown(GEP);
2423  const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2424  gep_type_iterator GTI = gep_type_begin(GEP);
2425  for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2426                                      E = GEP->op_end();
2427       I != E; ++I) {
2428    Value *Index = *I;
2429    // Compute the (potentially symbolic) offset in bytes for this index.
2430    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2431      // For a struct, add the member offset.
2432      const StructLayout &SL = *TD->getStructLayout(STy);
2433      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2434      uint64_t Offset = SL.getElementOffset(FieldNo);
2435      TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
2436    } else {
2437      // For an array, add the element offset, explicitly scaled.
2438      const SCEV *LocalOffset = getSCEV(Index);
2439      if (!isa<PointerType>(LocalOffset->getType()))
2440        // Getelementptr indicies are signed.
2441        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2442      LocalOffset =
2443        getMulExpr(LocalOffset,
2444                   getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
2445      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2446    }
2447  }
2448  return getAddExpr(getSCEV(Base), TotalOffset);
2449}
2450
2451/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2452/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2453/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2454/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2455uint32_t
2456ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2457  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2458    return C->getValue()->getValue().countTrailingZeros();
2459
2460  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2461    return std::min(GetMinTrailingZeros(T->getOperand()),
2462                    (uint32_t)getTypeSizeInBits(T->getType()));
2463
2464  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2465    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2466    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2467             getTypeSizeInBits(E->getType()) : OpRes;
2468  }
2469
2470  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2471    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2472    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2473             getTypeSizeInBits(E->getType()) : OpRes;
2474  }
2475
2476  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2477    // The result is the min of all operands results.
2478    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2479    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2480      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2481    return MinOpRes;
2482  }
2483
2484  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2485    // The result is the sum of all operands results.
2486    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2487    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2488    for (unsigned i = 1, e = M->getNumOperands();
2489         SumOpRes != BitWidth && i != e; ++i)
2490      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2491                          BitWidth);
2492    return SumOpRes;
2493  }
2494
2495  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2496    // The result is the min of all operands results.
2497    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2498    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2499      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2500    return MinOpRes;
2501  }
2502
2503  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2504    // The result is the min of all operands results.
2505    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2506    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2507      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2508    return MinOpRes;
2509  }
2510
2511  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2512    // The result is the min of all operands results.
2513    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2514    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2515      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2516    return MinOpRes;
2517  }
2518
2519  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2520    // For a SCEVUnknown, ask ValueTracking.
2521    unsigned BitWidth = getTypeSizeInBits(U->getType());
2522    APInt Mask = APInt::getAllOnesValue(BitWidth);
2523    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2524    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2525    return Zeros.countTrailingOnes();
2526  }
2527
2528  // SCEVUDivExpr
2529  return 0;
2530}
2531
2532/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2533///
2534ConstantRange
2535ScalarEvolution::getUnsignedRange(const SCEV *S) {
2536
2537  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2538    return ConstantRange(C->getValue()->getValue());
2539
2540  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2541    ConstantRange X = getUnsignedRange(Add->getOperand(0));
2542    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2543      X = X.add(getUnsignedRange(Add->getOperand(i)));
2544    return X;
2545  }
2546
2547  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2548    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2549    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2550      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2551    return X;
2552  }
2553
2554  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2555    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2556    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2557      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2558    return X;
2559  }
2560
2561  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2562    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2563    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2564      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2565    return X;
2566  }
2567
2568  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2569    ConstantRange X = getUnsignedRange(UDiv->getLHS());
2570    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2571    return X.udiv(Y);
2572  }
2573
2574  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2575    ConstantRange X = getUnsignedRange(ZExt->getOperand());
2576    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2577  }
2578
2579  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2580    ConstantRange X = getUnsignedRange(SExt->getOperand());
2581    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2582  }
2583
2584  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2585    ConstantRange X = getUnsignedRange(Trunc->getOperand());
2586    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2587  }
2588
2589  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2590
2591  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2592    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2593    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2594    if (!Trip) return FullSet;
2595
2596    // TODO: non-affine addrec
2597    if (AddRec->isAffine()) {
2598      const Type *Ty = AddRec->getType();
2599      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2600      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2601        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2602
2603        const SCEV *Start = AddRec->getStart();
2604        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2605
2606        // Check for overflow.
2607        if (!isKnownPredicate(ICmpInst::ICMP_ULE, Start, End))
2608          return FullSet;
2609
2610        ConstantRange StartRange = getUnsignedRange(Start);
2611        ConstantRange EndRange = getUnsignedRange(End);
2612        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2613                                   EndRange.getUnsignedMin());
2614        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2615                                   EndRange.getUnsignedMax());
2616        if (Min.isMinValue() && Max.isMaxValue())
2617          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
2618        return ConstantRange(Min, Max+1);
2619      }
2620    }
2621  }
2622
2623  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2624    // For a SCEVUnknown, ask ValueTracking.
2625    unsigned BitWidth = getTypeSizeInBits(U->getType());
2626    APInt Mask = APInt::getAllOnesValue(BitWidth);
2627    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2628    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2629    return ConstantRange(Ones, ~Zeros);
2630  }
2631
2632  return FullSet;
2633}
2634
2635/// getSignedRange - Determine the signed range for a particular SCEV.
2636///
2637ConstantRange
2638ScalarEvolution::getSignedRange(const SCEV *S) {
2639
2640  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2641    return ConstantRange(C->getValue()->getValue());
2642
2643  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2644    ConstantRange X = getSignedRange(Add->getOperand(0));
2645    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2646      X = X.add(getSignedRange(Add->getOperand(i)));
2647    return X;
2648  }
2649
2650  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2651    ConstantRange X = getSignedRange(Mul->getOperand(0));
2652    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2653      X = X.multiply(getSignedRange(Mul->getOperand(i)));
2654    return X;
2655  }
2656
2657  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2658    ConstantRange X = getSignedRange(SMax->getOperand(0));
2659    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2660      X = X.smax(getSignedRange(SMax->getOperand(i)));
2661    return X;
2662  }
2663
2664  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2665    ConstantRange X = getSignedRange(UMax->getOperand(0));
2666    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2667      X = X.umax(getSignedRange(UMax->getOperand(i)));
2668    return X;
2669  }
2670
2671  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2672    ConstantRange X = getSignedRange(UDiv->getLHS());
2673    ConstantRange Y = getSignedRange(UDiv->getRHS());
2674    return X.udiv(Y);
2675  }
2676
2677  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2678    ConstantRange X = getSignedRange(ZExt->getOperand());
2679    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2680  }
2681
2682  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2683    ConstantRange X = getSignedRange(SExt->getOperand());
2684    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2685  }
2686
2687  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2688    ConstantRange X = getSignedRange(Trunc->getOperand());
2689    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2690  }
2691
2692  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2693
2694  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2695    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2696    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2697    if (!Trip) return FullSet;
2698
2699    // TODO: non-affine addrec
2700    if (AddRec->isAffine()) {
2701      const Type *Ty = AddRec->getType();
2702      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2703      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2704        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2705
2706        const SCEV *Start = AddRec->getStart();
2707        const SCEV *Step = AddRec->getStepRecurrence(*this);
2708        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2709
2710        // Check for overflow.
2711        if (!(isKnownPositive(Step) &&
2712              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2713            !(isKnownNegative(Step) &&
2714              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2715          return FullSet;
2716
2717        ConstantRange StartRange = getSignedRange(Start);
2718        ConstantRange EndRange = getSignedRange(End);
2719        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2720                                   EndRange.getSignedMin());
2721        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2722                                   EndRange.getSignedMax());
2723        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2724          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
2725        return ConstantRange(Min, Max+1);
2726      }
2727    }
2728  }
2729
2730  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2731    // For a SCEVUnknown, ask ValueTracking.
2732    unsigned BitWidth = getTypeSizeInBits(U->getType());
2733    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2734    if (NS == 1)
2735      return FullSet;
2736    return
2737      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2738                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2739  }
2740
2741  return FullSet;
2742}
2743
2744/// createSCEV - We know that there is no SCEV for the specified value.
2745/// Analyze the expression.
2746///
2747const SCEV *ScalarEvolution::createSCEV(Value *V) {
2748  if (!isSCEVable(V->getType()))
2749    return getUnknown(V);
2750
2751  unsigned Opcode = Instruction::UserOp1;
2752  if (Instruction *I = dyn_cast<Instruction>(V))
2753    Opcode = I->getOpcode();
2754  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2755    Opcode = CE->getOpcode();
2756  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2757    return getConstant(CI);
2758  else if (isa<ConstantPointerNull>(V))
2759    return getIntegerSCEV(0, V->getType());
2760  else if (isa<UndefValue>(V))
2761    return getIntegerSCEV(0, V->getType());
2762  else
2763    return getUnknown(V);
2764
2765  User *U = cast<User>(V);
2766  switch (Opcode) {
2767  case Instruction::Add:
2768    return getAddExpr(getSCEV(U->getOperand(0)),
2769                      getSCEV(U->getOperand(1)));
2770  case Instruction::Mul:
2771    return getMulExpr(getSCEV(U->getOperand(0)),
2772                      getSCEV(U->getOperand(1)));
2773  case Instruction::UDiv:
2774    return getUDivExpr(getSCEV(U->getOperand(0)),
2775                       getSCEV(U->getOperand(1)));
2776  case Instruction::Sub:
2777    return getMinusSCEV(getSCEV(U->getOperand(0)),
2778                        getSCEV(U->getOperand(1)));
2779  case Instruction::And:
2780    // For an expression like x&255 that merely masks off the high bits,
2781    // use zext(trunc(x)) as the SCEV expression.
2782    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2783      if (CI->isNullValue())
2784        return getSCEV(U->getOperand(1));
2785      if (CI->isAllOnesValue())
2786        return getSCEV(U->getOperand(0));
2787      const APInt &A = CI->getValue();
2788
2789      // Instcombine's ShrinkDemandedConstant may strip bits out of
2790      // constants, obscuring what would otherwise be a low-bits mask.
2791      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2792      // knew about to reconstruct a low-bits mask value.
2793      unsigned LZ = A.countLeadingZeros();
2794      unsigned BitWidth = A.getBitWidth();
2795      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2796      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2797      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2798
2799      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2800
2801      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2802        return
2803          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2804                                            IntegerType::get(BitWidth - LZ)),
2805                            U->getType());
2806    }
2807    break;
2808
2809  case Instruction::Or:
2810    // If the RHS of the Or is a constant, we may have something like:
2811    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
2812    // optimizations will transparently handle this case.
2813    //
2814    // In order for this transformation to be safe, the LHS must be of the
2815    // form X*(2^n) and the Or constant must be less than 2^n.
2816    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2817      const SCEV *LHS = getSCEV(U->getOperand(0));
2818      const APInt &CIVal = CI->getValue();
2819      if (GetMinTrailingZeros(LHS) >=
2820          (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2821        return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2822    }
2823    break;
2824  case Instruction::Xor:
2825    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2826      // If the RHS of the xor is a signbit, then this is just an add.
2827      // Instcombine turns add of signbit into xor as a strength reduction step.
2828      if (CI->getValue().isSignBit())
2829        return getAddExpr(getSCEV(U->getOperand(0)),
2830                          getSCEV(U->getOperand(1)));
2831
2832      // If the RHS of xor is -1, then this is a not operation.
2833      if (CI->isAllOnesValue())
2834        return getNotSCEV(getSCEV(U->getOperand(0)));
2835
2836      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2837      // This is a variant of the check for xor with -1, and it handles
2838      // the case where instcombine has trimmed non-demanded bits out
2839      // of an xor with -1.
2840      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2841        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2842          if (BO->getOpcode() == Instruction::And &&
2843              LCI->getValue() == CI->getValue())
2844            if (const SCEVZeroExtendExpr *Z =
2845                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2846              const Type *UTy = U->getType();
2847              const SCEV *Z0 = Z->getOperand();
2848              const Type *Z0Ty = Z0->getType();
2849              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2850
2851              // If C is a low-bits mask, the zero extend is zerving to
2852              // mask off the high bits. Complement the operand and
2853              // re-apply the zext.
2854              if (APIntOps::isMask(Z0TySize, CI->getValue()))
2855                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2856
2857              // If C is a single bit, it may be in the sign-bit position
2858              // before the zero-extend. In this case, represent the xor
2859              // using an add, which is equivalent, and re-apply the zext.
2860              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2861              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2862                  Trunc.isSignBit())
2863                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2864                                         UTy);
2865            }
2866    }
2867    break;
2868
2869  case Instruction::Shl:
2870    // Turn shift left of a constant amount into a multiply.
2871    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2872      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2873      Constant *X = ConstantInt::get(
2874        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2875      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2876    }
2877    break;
2878
2879  case Instruction::LShr:
2880    // Turn logical shift right of a constant into a unsigned divide.
2881    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2882      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2883      Constant *X = ConstantInt::get(
2884        APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2885      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2886    }
2887    break;
2888
2889  case Instruction::AShr:
2890    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2891    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2892      if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2893        if (L->getOpcode() == Instruction::Shl &&
2894            L->getOperand(1) == U->getOperand(1)) {
2895          unsigned BitWidth = getTypeSizeInBits(U->getType());
2896          uint64_t Amt = BitWidth - CI->getZExtValue();
2897          if (Amt == BitWidth)
2898            return getSCEV(L->getOperand(0));       // shift by zero --> noop
2899          if (Amt > BitWidth)
2900            return getIntegerSCEV(0, U->getType()); // value is undefined
2901          return
2902            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2903                                                      IntegerType::get(Amt)),
2904                                 U->getType());
2905        }
2906    break;
2907
2908  case Instruction::Trunc:
2909    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2910
2911  case Instruction::ZExt:
2912    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2913
2914  case Instruction::SExt:
2915    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2916
2917  case Instruction::BitCast:
2918    // BitCasts are no-op casts so we just eliminate the cast.
2919    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2920      return getSCEV(U->getOperand(0));
2921    break;
2922
2923  case Instruction::IntToPtr:
2924    if (!TD) break; // Without TD we can't analyze pointers.
2925    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2926                                   TD->getIntPtrType());
2927
2928  case Instruction::PtrToInt:
2929    if (!TD) break; // Without TD we can't analyze pointers.
2930    return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2931                                   U->getType());
2932
2933  case Instruction::GetElementPtr:
2934    if (!TD) break; // Without TD we can't analyze pointers.
2935    return createNodeForGEP(U);
2936
2937  case Instruction::PHI:
2938    return createNodeForPHI(cast<PHINode>(U));
2939
2940  case Instruction::Select:
2941    // This could be a smax or umax that was lowered earlier.
2942    // Try to recover it.
2943    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2944      Value *LHS = ICI->getOperand(0);
2945      Value *RHS = ICI->getOperand(1);
2946      switch (ICI->getPredicate()) {
2947      case ICmpInst::ICMP_SLT:
2948      case ICmpInst::ICMP_SLE:
2949        std::swap(LHS, RHS);
2950        // fall through
2951      case ICmpInst::ICMP_SGT:
2952      case ICmpInst::ICMP_SGE:
2953        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2954          return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2955        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2956          return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2957        break;
2958      case ICmpInst::ICMP_ULT:
2959      case ICmpInst::ICMP_ULE:
2960        std::swap(LHS, RHS);
2961        // fall through
2962      case ICmpInst::ICMP_UGT:
2963      case ICmpInst::ICMP_UGE:
2964        if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2965          return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2966        else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2967          return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2968        break;
2969      case ICmpInst::ICMP_NE:
2970        // n != 0 ? n : 1  ->  umax(n, 1)
2971        if (LHS == U->getOperand(1) &&
2972            isa<ConstantInt>(U->getOperand(2)) &&
2973            cast<ConstantInt>(U->getOperand(2))->isOne() &&
2974            isa<ConstantInt>(RHS) &&
2975            cast<ConstantInt>(RHS)->isZero())
2976          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2977        break;
2978      case ICmpInst::ICMP_EQ:
2979        // n == 0 ? 1 : n  ->  umax(n, 1)
2980        if (LHS == U->getOperand(2) &&
2981            isa<ConstantInt>(U->getOperand(1)) &&
2982            cast<ConstantInt>(U->getOperand(1))->isOne() &&
2983            isa<ConstantInt>(RHS) &&
2984            cast<ConstantInt>(RHS)->isZero())
2985          return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2986        break;
2987      default:
2988        break;
2989      }
2990    }
2991
2992  default: // We cannot analyze this expression.
2993    break;
2994  }
2995
2996  return getUnknown(V);
2997}
2998
2999
3000
3001//===----------------------------------------------------------------------===//
3002//                   Iteration Count Computation Code
3003//
3004
3005/// getBackedgeTakenCount - If the specified loop has a predictable
3006/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3007/// object. The backedge-taken count is the number of times the loop header
3008/// will be branched to from within the loop. This is one less than the
3009/// trip count of the loop, since it doesn't count the first iteration,
3010/// when the header is branched to from outside the loop.
3011///
3012/// Note that it is not valid to call this method on a loop without a
3013/// loop-invariant backedge-taken count (see
3014/// hasLoopInvariantBackedgeTakenCount).
3015///
3016const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3017  return getBackedgeTakenInfo(L).Exact;
3018}
3019
3020/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3021/// return the least SCEV value that is known never to be less than the
3022/// actual backedge taken count.
3023const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3024  return getBackedgeTakenInfo(L).Max;
3025}
3026
3027/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3028/// onto the given Worklist.
3029static void
3030PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3031  BasicBlock *Header = L->getHeader();
3032
3033  // Push all Loop-header PHIs onto the Worklist stack.
3034  for (BasicBlock::iterator I = Header->begin();
3035       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3036    Worklist.push_back(PN);
3037}
3038
3039/// PushDefUseChildren - Push users of the given Instruction
3040/// onto the given Worklist.
3041static void
3042PushDefUseChildren(Instruction *I,
3043                   SmallVectorImpl<Instruction *> &Worklist) {
3044  // Push the def-use children onto the Worklist stack.
3045  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
3046       UI != UE; ++UI)
3047    Worklist.push_back(cast<Instruction>(UI));
3048}
3049
3050const ScalarEvolution::BackedgeTakenInfo &
3051ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3052  // Initially insert a CouldNotCompute for this loop. If the insertion
3053  // succeeds, procede to actually compute a backedge-taken count and
3054  // update the value. The temporary CouldNotCompute value tells SCEV
3055  // code elsewhere that it shouldn't attempt to request a new
3056  // backedge-taken count, which could result in infinite recursion.
3057  std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
3058    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3059  if (Pair.second) {
3060    BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3061    if (ItCount.Exact != getCouldNotCompute()) {
3062      assert(ItCount.Exact->isLoopInvariant(L) &&
3063             ItCount.Max->isLoopInvariant(L) &&
3064             "Computed trip count isn't loop invariant for loop!");
3065      ++NumTripCountsComputed;
3066
3067      // Update the value in the map.
3068      Pair.first->second = ItCount;
3069    } else {
3070      if (ItCount.Max != getCouldNotCompute())
3071        // Update the value in the map.
3072        Pair.first->second = ItCount;
3073      if (isa<PHINode>(L->getHeader()->begin()))
3074        // Only count loops that have phi nodes as not being computable.
3075        ++NumTripCountsNotComputed;
3076    }
3077
3078    // Now that we know more about the trip count for this loop, forget any
3079    // existing SCEV values for PHI nodes in this loop since they are only
3080    // conservative estimates made without the benefit of trip count
3081    // information. This is similar to the code in
3082    // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3083    // nodes specially.
3084    if (ItCount.hasAnyInfo()) {
3085      SmallVector<Instruction *, 16> Worklist;
3086      PushLoopPHIs(L, Worklist);
3087
3088      SmallPtrSet<Instruction *, 8> Visited;
3089      while (!Worklist.empty()) {
3090        Instruction *I = Worklist.pop_back_val();
3091        if (!Visited.insert(I)) continue;
3092
3093        std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3094          Scalars.find(static_cast<Value *>(I));
3095        if (It != Scalars.end()) {
3096          // SCEVUnknown for a PHI either means that it has an unrecognized
3097          // structure, or it's a PHI that's in the progress of being computed
3098          // by createNodeForPHI.  In the former case, additional loop trip
3099          // count information isn't going to change anything. In the later
3100          // case, createNodeForPHI will perform the necessary updates on its
3101          // own when it gets to that point.
3102          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
3103            Scalars.erase(It);
3104          ValuesAtScopes.erase(I);
3105          if (PHINode *PN = dyn_cast<PHINode>(I))
3106            ConstantEvolutionLoopExitValue.erase(PN);
3107        }
3108
3109        PushDefUseChildren(I, Worklist);
3110      }
3111    }
3112  }
3113  return Pair.first->second;
3114}
3115
3116/// forgetLoopBackedgeTakenCount - This method should be called by the
3117/// client when it has changed a loop in a way that may effect
3118/// ScalarEvolution's ability to compute a trip count, or if the loop
3119/// is deleted.
3120void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3121  BackedgeTakenCounts.erase(L);
3122
3123  SmallVector<Instruction *, 16> Worklist;
3124  PushLoopPHIs(L, Worklist);
3125
3126  SmallPtrSet<Instruction *, 8> Visited;
3127  while (!Worklist.empty()) {
3128    Instruction *I = Worklist.pop_back_val();
3129    if (!Visited.insert(I)) continue;
3130
3131    std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3132      Scalars.find(static_cast<Value *>(I));
3133    if (It != Scalars.end()) {
3134      Scalars.erase(It);
3135      ValuesAtScopes.erase(I);
3136      if (PHINode *PN = dyn_cast<PHINode>(I))
3137        ConstantEvolutionLoopExitValue.erase(PN);
3138    }
3139
3140    PushDefUseChildren(I, Worklist);
3141  }
3142}
3143
3144/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3145/// of the specified loop will execute.
3146ScalarEvolution::BackedgeTakenInfo
3147ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3148  SmallVector<BasicBlock*, 8> ExitingBlocks;
3149  L->getExitingBlocks(ExitingBlocks);
3150
3151  // Examine all exits and pick the most conservative values.
3152  const SCEV *BECount = getCouldNotCompute();
3153  const SCEV *MaxBECount = getCouldNotCompute();
3154  bool CouldNotComputeBECount = false;
3155  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3156    BackedgeTakenInfo NewBTI =
3157      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3158
3159    if (NewBTI.Exact == getCouldNotCompute()) {
3160      // We couldn't compute an exact value for this exit, so
3161      // we won't be able to compute an exact value for the loop.
3162      CouldNotComputeBECount = true;
3163      BECount = getCouldNotCompute();
3164    } else if (!CouldNotComputeBECount) {
3165      if (BECount == getCouldNotCompute())
3166        BECount = NewBTI.Exact;
3167      else
3168        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3169    }
3170    if (MaxBECount == getCouldNotCompute())
3171      MaxBECount = NewBTI.Max;
3172    else if (NewBTI.Max != getCouldNotCompute())
3173      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3174  }
3175
3176  return BackedgeTakenInfo(BECount, MaxBECount);
3177}
3178
3179/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3180/// of the specified loop will execute if it exits via the specified block.
3181ScalarEvolution::BackedgeTakenInfo
3182ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3183                                                   BasicBlock *ExitingBlock) {
3184
3185  // Okay, we've chosen an exiting block.  See what condition causes us to
3186  // exit at this block.
3187  //
3188  // FIXME: we should be able to handle switch instructions (with a single exit)
3189  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3190  if (ExitBr == 0) return getCouldNotCompute();
3191  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3192
3193  // At this point, we know we have a conditional branch that determines whether
3194  // the loop is exited.  However, we don't know if the branch is executed each
3195  // time through the loop.  If not, then the execution count of the branch will
3196  // not be equal to the trip count of the loop.
3197  //
3198  // Currently we check for this by checking to see if the Exit branch goes to
3199  // the loop header.  If so, we know it will always execute the same number of
3200  // times as the loop.  We also handle the case where the exit block *is* the
3201  // loop header.  This is common for un-rotated loops.
3202  //
3203  // If both of those tests fail, walk up the unique predecessor chain to the
3204  // header, stopping if there is an edge that doesn't exit the loop. If the
3205  // header is reached, the execution count of the branch will be equal to the
3206  // trip count of the loop.
3207  //
3208  //  More extensive analysis could be done to handle more cases here.
3209  //
3210  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3211      ExitBr->getSuccessor(1) != L->getHeader() &&
3212      ExitBr->getParent() != L->getHeader()) {
3213    // The simple checks failed, try climbing the unique predecessor chain
3214    // up to the header.
3215    bool Ok = false;
3216    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3217      BasicBlock *Pred = BB->getUniquePredecessor();
3218      if (!Pred)
3219        return getCouldNotCompute();
3220      TerminatorInst *PredTerm = Pred->getTerminator();
3221      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3222        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3223        if (PredSucc == BB)
3224          continue;
3225        // If the predecessor has a successor that isn't BB and isn't
3226        // outside the loop, assume the worst.
3227        if (L->contains(PredSucc))
3228          return getCouldNotCompute();
3229      }
3230      if (Pred == L->getHeader()) {
3231        Ok = true;
3232        break;
3233      }
3234      BB = Pred;
3235    }
3236    if (!Ok)
3237      return getCouldNotCompute();
3238  }
3239
3240  // Procede to the next level to examine the exit condition expression.
3241  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3242                                               ExitBr->getSuccessor(0),
3243                                               ExitBr->getSuccessor(1));
3244}
3245
3246/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3247/// backedge of the specified loop will execute if its exit condition
3248/// were a conditional branch of ExitCond, TBB, and FBB.
3249ScalarEvolution::BackedgeTakenInfo
3250ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3251                                                       Value *ExitCond,
3252                                                       BasicBlock *TBB,
3253                                                       BasicBlock *FBB) {
3254  // Check if the controlling expression for this loop is an And or Or.
3255  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3256    if (BO->getOpcode() == Instruction::And) {
3257      // Recurse on the operands of the and.
3258      BackedgeTakenInfo BTI0 =
3259        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3260      BackedgeTakenInfo BTI1 =
3261        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3262      const SCEV *BECount = getCouldNotCompute();
3263      const SCEV *MaxBECount = getCouldNotCompute();
3264      if (L->contains(TBB)) {
3265        // Both conditions must be true for the loop to continue executing.
3266        // Choose the less conservative count.
3267        if (BTI0.Exact == getCouldNotCompute() ||
3268            BTI1.Exact == getCouldNotCompute())
3269          BECount = getCouldNotCompute();
3270        else
3271          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3272        if (BTI0.Max == getCouldNotCompute())
3273          MaxBECount = BTI1.Max;
3274        else if (BTI1.Max == getCouldNotCompute())
3275          MaxBECount = BTI0.Max;
3276        else
3277          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3278      } else {
3279        // Both conditions must be true for the loop to exit.
3280        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3281        if (BTI0.Exact != getCouldNotCompute() &&
3282            BTI1.Exact != getCouldNotCompute())
3283          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3284        if (BTI0.Max != getCouldNotCompute() &&
3285            BTI1.Max != getCouldNotCompute())
3286          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3287      }
3288
3289      return BackedgeTakenInfo(BECount, MaxBECount);
3290    }
3291    if (BO->getOpcode() == Instruction::Or) {
3292      // Recurse on the operands of the or.
3293      BackedgeTakenInfo BTI0 =
3294        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3295      BackedgeTakenInfo BTI1 =
3296        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3297      const SCEV *BECount = getCouldNotCompute();
3298      const SCEV *MaxBECount = getCouldNotCompute();
3299      if (L->contains(FBB)) {
3300        // Both conditions must be false for the loop to continue executing.
3301        // Choose the less conservative count.
3302        if (BTI0.Exact == getCouldNotCompute() ||
3303            BTI1.Exact == getCouldNotCompute())
3304          BECount = getCouldNotCompute();
3305        else
3306          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3307        if (BTI0.Max == getCouldNotCompute())
3308          MaxBECount = BTI1.Max;
3309        else if (BTI1.Max == getCouldNotCompute())
3310          MaxBECount = BTI0.Max;
3311        else
3312          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3313      } else {
3314        // Both conditions must be false for the loop to exit.
3315        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3316        if (BTI0.Exact != getCouldNotCompute() &&
3317            BTI1.Exact != getCouldNotCompute())
3318          BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3319        if (BTI0.Max != getCouldNotCompute() &&
3320            BTI1.Max != getCouldNotCompute())
3321          MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3322      }
3323
3324      return BackedgeTakenInfo(BECount, MaxBECount);
3325    }
3326  }
3327
3328  // With an icmp, it may be feasible to compute an exact backedge-taken count.
3329  // Procede to the next level to examine the icmp.
3330  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3331    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3332
3333  // If it's not an integer or pointer comparison then compute it the hard way.
3334  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3335}
3336
3337/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3338/// backedge of the specified loop will execute if its exit condition
3339/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3340ScalarEvolution::BackedgeTakenInfo
3341ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3342                                                           ICmpInst *ExitCond,
3343                                                           BasicBlock *TBB,
3344                                                           BasicBlock *FBB) {
3345
3346  // If the condition was exit on true, convert the condition to exit on false
3347  ICmpInst::Predicate Cond;
3348  if (!L->contains(FBB))
3349    Cond = ExitCond->getPredicate();
3350  else
3351    Cond = ExitCond->getInversePredicate();
3352
3353  // Handle common loops like: for (X = "string"; *X; ++X)
3354  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3355    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3356      const SCEV *ItCnt =
3357        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3358      if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3359        unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3360        return BackedgeTakenInfo(ItCnt,
3361                                 isa<SCEVConstant>(ItCnt) ? ItCnt :
3362                                   getConstant(APInt::getMaxValue(BitWidth)-1));
3363      }
3364    }
3365
3366  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3367  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3368
3369  // Try to evaluate any dependencies out of the loop.
3370  LHS = getSCEVAtScope(LHS, L);
3371  RHS = getSCEVAtScope(RHS, L);
3372
3373  // At this point, we would like to compute how many iterations of the
3374  // loop the predicate will return true for these inputs.
3375  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3376    // If there is a loop-invariant, force it into the RHS.
3377    std::swap(LHS, RHS);
3378    Cond = ICmpInst::getSwappedPredicate(Cond);
3379  }
3380
3381  // If we have a comparison of a chrec against a constant, try to use value
3382  // ranges to answer this query.
3383  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3384    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3385      if (AddRec->getLoop() == L) {
3386        // Form the constant range.
3387        ConstantRange CompRange(
3388            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3389
3390        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3391        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3392      }
3393
3394  switch (Cond) {
3395  case ICmpInst::ICMP_NE: {                     // while (X != Y)
3396    // Convert to: while (X-Y != 0)
3397    const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3398    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3399    break;
3400  }
3401  case ICmpInst::ICMP_EQ: {
3402    // Convert to: while (X-Y == 0)           // while (X == Y)
3403    const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3404    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3405    break;
3406  }
3407  case ICmpInst::ICMP_SLT: {
3408    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3409    if (BTI.hasAnyInfo()) return BTI;
3410    break;
3411  }
3412  case ICmpInst::ICMP_SGT: {
3413    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3414                                             getNotSCEV(RHS), L, true);
3415    if (BTI.hasAnyInfo()) return BTI;
3416    break;
3417  }
3418  case ICmpInst::ICMP_ULT: {
3419    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3420    if (BTI.hasAnyInfo()) return BTI;
3421    break;
3422  }
3423  case ICmpInst::ICMP_UGT: {
3424    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3425                                             getNotSCEV(RHS), L, false);
3426    if (BTI.hasAnyInfo()) return BTI;
3427    break;
3428  }
3429  default:
3430#if 0
3431    errs() << "ComputeBackedgeTakenCount ";
3432    if (ExitCond->getOperand(0)->getType()->isUnsigned())
3433      errs() << "[unsigned] ";
3434    errs() << *LHS << "   "
3435         << Instruction::getOpcodeName(Instruction::ICmp)
3436         << "   " << *RHS << "\n";
3437#endif
3438    break;
3439  }
3440  return
3441    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3442}
3443
3444static ConstantInt *
3445EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3446                                ScalarEvolution &SE) {
3447  const SCEV *InVal = SE.getConstant(C);
3448  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3449  assert(isa<SCEVConstant>(Val) &&
3450         "Evaluation of SCEV at constant didn't fold correctly?");
3451  return cast<SCEVConstant>(Val)->getValue();
3452}
3453
3454/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3455/// and a GEP expression (missing the pointer index) indexing into it, return
3456/// the addressed element of the initializer or null if the index expression is
3457/// invalid.
3458static Constant *
3459GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV,
3460                              const std::vector<ConstantInt*> &Indices) {
3461  Constant *Init = GV->getInitializer();
3462  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3463    uint64_t Idx = Indices[i]->getZExtValue();
3464    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3465      assert(Idx < CS->getNumOperands() && "Bad struct index!");
3466      Init = cast<Constant>(CS->getOperand(Idx));
3467    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3468      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
3469      Init = cast<Constant>(CA->getOperand(Idx));
3470    } else if (isa<ConstantAggregateZero>(Init)) {
3471      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3472        assert(Idx < STy->getNumElements() && "Bad struct index!");
3473        Init = Context->getNullValue(STy->getElementType(Idx));
3474      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3475        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
3476        Init = Context->getNullValue(ATy->getElementType());
3477      } else {
3478        LLVM_UNREACHABLE("Unknown constant aggregate type!");
3479      }
3480      return 0;
3481    } else {
3482      return 0; // Unknown initializer type
3483    }
3484  }
3485  return Init;
3486}
3487
3488/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3489/// 'icmp op load X, cst', try to see if we can compute the backedge
3490/// execution count.
3491const SCEV *
3492ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3493                                                LoadInst *LI,
3494                                                Constant *RHS,
3495                                                const Loop *L,
3496                                                ICmpInst::Predicate predicate) {
3497  if (LI->isVolatile()) return getCouldNotCompute();
3498
3499  // Check to see if the loaded pointer is a getelementptr of a global.
3500  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3501  if (!GEP) return getCouldNotCompute();
3502
3503  // Make sure that it is really a constant global we are gepping, with an
3504  // initializer, and make sure the first IDX is really 0.
3505  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3506  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3507      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3508      !cast<Constant>(GEP->getOperand(1))->isNullValue())
3509    return getCouldNotCompute();
3510
3511  // Okay, we allow one non-constant index into the GEP instruction.
3512  Value *VarIdx = 0;
3513  std::vector<ConstantInt*> Indexes;
3514  unsigned VarIdxNum = 0;
3515  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3516    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3517      Indexes.push_back(CI);
3518    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3519      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
3520      VarIdx = GEP->getOperand(i);
3521      VarIdxNum = i-2;
3522      Indexes.push_back(0);
3523    }
3524
3525  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3526  // Check to see if X is a loop variant variable value now.
3527  const SCEV *Idx = getSCEV(VarIdx);
3528  Idx = getSCEVAtScope(Idx, L);
3529
3530  // We can only recognize very limited forms of loop index expressions, in
3531  // particular, only affine AddRec's like {C1,+,C2}.
3532  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3533  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3534      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3535      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3536    return getCouldNotCompute();
3537
3538  unsigned MaxSteps = MaxBruteForceIterations;
3539  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3540    ConstantInt *ItCst =
3541      ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
3542    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3543
3544    // Form the GEP offset.
3545    Indexes[VarIdxNum] = Val;
3546
3547    Constant *Result = GetAddressedElementFromGlobal(Context, GV, Indexes);
3548    if (Result == 0) break;  // Cannot compute!
3549
3550    // Evaluate the condition for this iteration.
3551    Result = ConstantExpr::getICmp(predicate, Result, RHS);
3552    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
3553    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3554#if 0
3555      errs() << "\n***\n*** Computed loop count " << *ItCst
3556             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3557             << "***\n";
3558#endif
3559      ++NumArrayLenItCounts;
3560      return getConstant(ItCst);   // Found terminating iteration!
3561    }
3562  }
3563  return getCouldNotCompute();
3564}
3565
3566
3567/// CanConstantFold - Return true if we can constant fold an instruction of the
3568/// specified type, assuming that all operands were constants.
3569static bool CanConstantFold(const Instruction *I) {
3570  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3571      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3572    return true;
3573
3574  if (const CallInst *CI = dyn_cast<CallInst>(I))
3575    if (const Function *F = CI->getCalledFunction())
3576      return canConstantFoldCallTo(F);
3577  return false;
3578}
3579
3580/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3581/// in the loop that V is derived from.  We allow arbitrary operations along the
3582/// way, but the operands of an operation must either be constants or a value
3583/// derived from a constant PHI.  If this expression does not fit with these
3584/// constraints, return null.
3585static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3586  // If this is not an instruction, or if this is an instruction outside of the
3587  // loop, it can't be derived from a loop PHI.
3588  Instruction *I = dyn_cast<Instruction>(V);
3589  if (I == 0 || !L->contains(I->getParent())) return 0;
3590
3591  if (PHINode *PN = dyn_cast<PHINode>(I)) {
3592    if (L->getHeader() == I->getParent())
3593      return PN;
3594    else
3595      // We don't currently keep track of the control flow needed to evaluate
3596      // PHIs, so we cannot handle PHIs inside of loops.
3597      return 0;
3598  }
3599
3600  // If we won't be able to constant fold this expression even if the operands
3601  // are constants, return early.
3602  if (!CanConstantFold(I)) return 0;
3603
3604  // Otherwise, we can evaluate this instruction if all of its operands are
3605  // constant or derived from a PHI node themselves.
3606  PHINode *PHI = 0;
3607  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3608    if (!(isa<Constant>(I->getOperand(Op)) ||
3609          isa<GlobalValue>(I->getOperand(Op)))) {
3610      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3611      if (P == 0) return 0;  // Not evolving from PHI
3612      if (PHI == 0)
3613        PHI = P;
3614      else if (PHI != P)
3615        return 0;  // Evolving from multiple different PHIs.
3616    }
3617
3618  // This is a expression evolving from a constant PHI!
3619  return PHI;
3620}
3621
3622/// EvaluateExpression - Given an expression that passes the
3623/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3624/// in the loop has the value PHIVal.  If we can't fold this expression for some
3625/// reason, return null.
3626static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3627  if (isa<PHINode>(V)) return PHIVal;
3628  if (Constant *C = dyn_cast<Constant>(V)) return C;
3629  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3630  Instruction *I = cast<Instruction>(V);
3631  LLVMContext *Context = I->getParent()->getContext();
3632
3633  std::vector<Constant*> Operands;
3634  Operands.resize(I->getNumOperands());
3635
3636  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3637    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3638    if (Operands[i] == 0) return 0;
3639  }
3640
3641  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3642    return ConstantFoldCompareInstOperands(CI->getPredicate(),
3643                                           &Operands[0], Operands.size(),
3644                                           Context);
3645  else
3646    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3647                                    &Operands[0], Operands.size(),
3648                                    Context);
3649}
3650
3651/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3652/// in the header of its containing loop, we know the loop executes a
3653/// constant number of times, and the PHI node is just a recurrence
3654/// involving constants, fold it.
3655Constant *
3656ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3657                                                   const APInt& BEs,
3658                                                   const Loop *L) {
3659  std::map<PHINode*, Constant*>::iterator I =
3660    ConstantEvolutionLoopExitValue.find(PN);
3661  if (I != ConstantEvolutionLoopExitValue.end())
3662    return I->second;
3663
3664  if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3665    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
3666
3667  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3668
3669  // Since the loop is canonicalized, the PHI node must have two entries.  One
3670  // entry must be a constant (coming in from outside of the loop), and the
3671  // second must be derived from the same PHI.
3672  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3673  Constant *StartCST =
3674    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3675  if (StartCST == 0)
3676    return RetVal = 0;  // Must be a constant.
3677
3678  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3679  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3680  if (PN2 != PN)
3681    return RetVal = 0;  // Not derived from same PHI.
3682
3683  // Execute the loop symbolically to determine the exit value.
3684  if (BEs.getActiveBits() >= 32)
3685    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3686
3687  unsigned NumIterations = BEs.getZExtValue(); // must be in range
3688  unsigned IterationNum = 0;
3689  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3690    if (IterationNum == NumIterations)
3691      return RetVal = PHIVal;  // Got exit value!
3692
3693    // Compute the value of the PHI node for the next iteration.
3694    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3695    if (NextPHI == PHIVal)
3696      return RetVal = NextPHI;  // Stopped evolving!
3697    if (NextPHI == 0)
3698      return 0;        // Couldn't evaluate!
3699    PHIVal = NextPHI;
3700  }
3701}
3702
3703/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3704/// constant number of times (the condition evolves only from constants),
3705/// try to evaluate a few iterations of the loop until we get the exit
3706/// condition gets a value of ExitWhen (true or false).  If we cannot
3707/// evaluate the trip count of the loop, return getCouldNotCompute().
3708const SCEV *
3709ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3710                                                       Value *Cond,
3711                                                       bool ExitWhen) {
3712  PHINode *PN = getConstantEvolvingPHI(Cond, L);
3713  if (PN == 0) return getCouldNotCompute();
3714
3715  // Since the loop is canonicalized, the PHI node must have two entries.  One
3716  // entry must be a constant (coming in from outside of the loop), and the
3717  // second must be derived from the same PHI.
3718  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3719  Constant *StartCST =
3720    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3721  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
3722
3723  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3724  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3725  if (PN2 != PN) return getCouldNotCompute();  // Not derived from same PHI.
3726
3727  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
3728  // the loop symbolically to determine when the condition gets a value of
3729  // "ExitWhen".
3730  unsigned IterationNum = 0;
3731  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
3732  for (Constant *PHIVal = StartCST;
3733       IterationNum != MaxIterations; ++IterationNum) {
3734    ConstantInt *CondVal =
3735      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3736
3737    // Couldn't symbolically evaluate.
3738    if (!CondVal) return getCouldNotCompute();
3739
3740    if (CondVal->getValue() == uint64_t(ExitWhen)) {
3741      ++NumBruteForceTripCountsComputed;
3742      return getConstant(Type::Int32Ty, IterationNum);
3743    }
3744
3745    // Compute the value of the PHI node for the next iteration.
3746    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3747    if (NextPHI == 0 || NextPHI == PHIVal)
3748      return getCouldNotCompute();// Couldn't evaluate or not making progress...
3749    PHIVal = NextPHI;
3750  }
3751
3752  // Too many iterations were needed to evaluate.
3753  return getCouldNotCompute();
3754}
3755
3756/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3757/// at the specified scope in the program.  The L value specifies a loop
3758/// nest to evaluate the expression at, where null is the top-level or a
3759/// specified loop is immediately inside of the loop.
3760///
3761/// This method can be used to compute the exit value for a variable defined
3762/// in a loop by querying what the value will hold in the parent loop.
3763///
3764/// In the case that a relevant loop exit value cannot be computed, the
3765/// original value V is returned.
3766const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3767  // FIXME: this should be turned into a virtual method on SCEV!
3768
3769  if (isa<SCEVConstant>(V)) return V;
3770
3771  // If this instruction is evolved from a constant-evolving PHI, compute the
3772  // exit value from the loop without using SCEVs.
3773  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3774    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3775      const Loop *LI = (*this->LI)[I->getParent()];
3776      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
3777        if (PHINode *PN = dyn_cast<PHINode>(I))
3778          if (PN->getParent() == LI->getHeader()) {
3779            // Okay, there is no closed form solution for the PHI node.  Check
3780            // to see if the loop that contains it has a known backedge-taken
3781            // count.  If so, we may be able to force computation of the exit
3782            // value.
3783            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3784            if (const SCEVConstant *BTCC =
3785                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3786              // Okay, we know how many times the containing loop executes.  If
3787              // this is a constant evolving PHI node, get the final value at
3788              // the specified iteration number.
3789              Constant *RV = getConstantEvolutionLoopExitValue(PN,
3790                                                   BTCC->getValue()->getValue(),
3791                                                               LI);
3792              if (RV) return getSCEV(RV);
3793            }
3794          }
3795
3796      // Okay, this is an expression that we cannot symbolically evaluate
3797      // into a SCEV.  Check to see if it's possible to symbolically evaluate
3798      // the arguments into constants, and if so, try to constant propagate the
3799      // result.  This is particularly useful for computing loop exit values.
3800      if (CanConstantFold(I)) {
3801        // Check to see if we've folded this instruction at this loop before.
3802        std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3803        std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3804          Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3805        if (!Pair.second)
3806          return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
3807
3808        std::vector<Constant*> Operands;
3809        Operands.reserve(I->getNumOperands());
3810        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3811          Value *Op = I->getOperand(i);
3812          if (Constant *C = dyn_cast<Constant>(Op)) {
3813            Operands.push_back(C);
3814          } else {
3815            // If any of the operands is non-constant and if they are
3816            // non-integer and non-pointer, don't even try to analyze them
3817            // with scev techniques.
3818            if (!isSCEVable(Op->getType()))
3819              return V;
3820
3821            const SCEV* OpV = getSCEVAtScope(Op, L);
3822            if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3823              Constant *C = SC->getValue();
3824              if (C->getType() != Op->getType())
3825                C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3826                                                                  Op->getType(),
3827                                                                  false),
3828                                          C, Op->getType());
3829              Operands.push_back(C);
3830            } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3831              if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3832                if (C->getType() != Op->getType())
3833                  C =
3834                    ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3835                                                                  Op->getType(),
3836                                                                  false),
3837                                          C, Op->getType());
3838                Operands.push_back(C);
3839              } else
3840                return V;
3841            } else {
3842              return V;
3843            }
3844          }
3845        }
3846
3847        Constant *C;
3848        if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3849          C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3850                                              &Operands[0], Operands.size(),
3851                                              Context);
3852        else
3853          C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3854                                       &Operands[0], Operands.size(), Context);
3855        Pair.first->second = C;
3856        return getSCEV(C);
3857      }
3858    }
3859
3860    // This is some other type of SCEVUnknown, just return it.
3861    return V;
3862  }
3863
3864  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3865    // Avoid performing the look-up in the common case where the specified
3866    // expression has no loop-variant portions.
3867    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3868      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3869      if (OpAtScope != Comm->getOperand(i)) {
3870        // Okay, at least one of these operands is loop variant but might be
3871        // foldable.  Build a new instance of the folded commutative expression.
3872        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3873                                            Comm->op_begin()+i);
3874        NewOps.push_back(OpAtScope);
3875
3876        for (++i; i != e; ++i) {
3877          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3878          NewOps.push_back(OpAtScope);
3879        }
3880        if (isa<SCEVAddExpr>(Comm))
3881          return getAddExpr(NewOps);
3882        if (isa<SCEVMulExpr>(Comm))
3883          return getMulExpr(NewOps);
3884        if (isa<SCEVSMaxExpr>(Comm))
3885          return getSMaxExpr(NewOps);
3886        if (isa<SCEVUMaxExpr>(Comm))
3887          return getUMaxExpr(NewOps);
3888        LLVM_UNREACHABLE("Unknown commutative SCEV type!");
3889      }
3890    }
3891    // If we got here, all operands are loop invariant.
3892    return Comm;
3893  }
3894
3895  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3896    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3897    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
3898    if (LHS == Div->getLHS() && RHS == Div->getRHS())
3899      return Div;   // must be loop invariant
3900    return getUDivExpr(LHS, RHS);
3901  }
3902
3903  // If this is a loop recurrence for a loop that does not contain L, then we
3904  // are dealing with the final value computed by the loop.
3905  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3906    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3907      // To evaluate this recurrence, we need to know how many times the AddRec
3908      // loop iterates.  Compute this now.
3909      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3910      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
3911
3912      // Then, evaluate the AddRec.
3913      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3914    }
3915    return AddRec;
3916  }
3917
3918  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3919    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3920    if (Op == Cast->getOperand())
3921      return Cast;  // must be loop invariant
3922    return getZeroExtendExpr(Op, Cast->getType());
3923  }
3924
3925  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3926    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3927    if (Op == Cast->getOperand())
3928      return Cast;  // must be loop invariant
3929    return getSignExtendExpr(Op, Cast->getType());
3930  }
3931
3932  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3933    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3934    if (Op == Cast->getOperand())
3935      return Cast;  // must be loop invariant
3936    return getTruncateExpr(Op, Cast->getType());
3937  }
3938
3939  LLVM_UNREACHABLE("Unknown SCEV type!");
3940  return 0;
3941}
3942
3943/// getSCEVAtScope - This is a convenience function which does
3944/// getSCEVAtScope(getSCEV(V), L).
3945const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3946  return getSCEVAtScope(getSCEV(V), L);
3947}
3948
3949/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3950/// following equation:
3951///
3952///     A * X = B (mod N)
3953///
3954/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3955/// A and B isn't important.
3956///
3957/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3958static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3959                                               ScalarEvolution &SE) {
3960  uint32_t BW = A.getBitWidth();
3961  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3962  assert(A != 0 && "A must be non-zero.");
3963
3964  // 1. D = gcd(A, N)
3965  //
3966  // The gcd of A and N may have only one prime factor: 2. The number of
3967  // trailing zeros in A is its multiplicity
3968  uint32_t Mult2 = A.countTrailingZeros();
3969  // D = 2^Mult2
3970
3971  // 2. Check if B is divisible by D.
3972  //
3973  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3974  // is not less than multiplicity of this prime factor for D.
3975  if (B.countTrailingZeros() < Mult2)
3976    return SE.getCouldNotCompute();
3977
3978  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3979  // modulo (N / D).
3980  //
3981  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
3982  // bit width during computations.
3983  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
3984  APInt Mod(BW + 1, 0);
3985  Mod.set(BW - Mult2);  // Mod = N / D
3986  APInt I = AD.multiplicativeInverse(Mod);
3987
3988  // 4. Compute the minimum unsigned root of the equation:
3989  // I * (B / D) mod (N / D)
3990  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3991
3992  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3993  // bits.
3994  return SE.getConstant(Result.trunc(BW));
3995}
3996
3997/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3998/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
3999/// might be the same) or two SCEVCouldNotCompute objects.
4000///
4001static std::pair<const SCEV *,const SCEV *>
4002SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4003  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4004  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4005  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4006  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4007
4008  // We currently can only solve this if the coefficients are constants.
4009  if (!LC || !MC || !NC) {
4010    const SCEV *CNC = SE.getCouldNotCompute();
4011    return std::make_pair(CNC, CNC);
4012  }
4013
4014  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4015  const APInt &L = LC->getValue()->getValue();
4016  const APInt &M = MC->getValue()->getValue();
4017  const APInt &N = NC->getValue()->getValue();
4018  APInt Two(BitWidth, 2);
4019  APInt Four(BitWidth, 4);
4020
4021  {
4022    using namespace APIntOps;
4023    const APInt& C = L;
4024    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4025    // The B coefficient is M-N/2
4026    APInt B(M);
4027    B -= sdiv(N,Two);
4028
4029    // The A coefficient is N/2
4030    APInt A(N.sdiv(Two));
4031
4032    // Compute the B^2-4ac term.
4033    APInt SqrtTerm(B);
4034    SqrtTerm *= B;
4035    SqrtTerm -= Four * (A * C);
4036
4037    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4038    // integer value or else APInt::sqrt() will assert.
4039    APInt SqrtVal(SqrtTerm.sqrt());
4040
4041    // Compute the two solutions for the quadratic formula.
4042    // The divisions must be performed as signed divisions.
4043    APInt NegB(-B);
4044    APInt TwoA( A << 1 );
4045    if (TwoA.isMinValue()) {
4046      const SCEV *CNC = SE.getCouldNotCompute();
4047      return std::make_pair(CNC, CNC);
4048    }
4049
4050    LLVMContext *Context = SE.getContext();
4051
4052    ConstantInt *Solution1 =
4053      Context->getConstantInt((NegB + SqrtVal).sdiv(TwoA));
4054    ConstantInt *Solution2 =
4055      Context->getConstantInt((NegB - SqrtVal).sdiv(TwoA));
4056
4057    return std::make_pair(SE.getConstant(Solution1),
4058                          SE.getConstant(Solution2));
4059    } // end APIntOps namespace
4060}
4061
4062/// HowFarToZero - Return the number of times a backedge comparing the specified
4063/// value to zero will execute.  If not computable, return CouldNotCompute.
4064const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4065  // If the value is a constant
4066  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4067    // If the value is already zero, the branch will execute zero times.
4068    if (C->getValue()->isZero()) return C;
4069    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4070  }
4071
4072  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4073  if (!AddRec || AddRec->getLoop() != L)
4074    return getCouldNotCompute();
4075
4076  if (AddRec->isAffine()) {
4077    // If this is an affine expression, the execution count of this branch is
4078    // the minimum unsigned root of the following equation:
4079    //
4080    //     Start + Step*N = 0 (mod 2^BW)
4081    //
4082    // equivalent to:
4083    //
4084    //             Step*N = -Start (mod 2^BW)
4085    //
4086    // where BW is the common bit width of Start and Step.
4087
4088    // Get the initial value for the loop.
4089    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4090                                       L->getParentLoop());
4091    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4092                                      L->getParentLoop());
4093
4094    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4095      // For now we handle only constant steps.
4096
4097      // First, handle unitary steps.
4098      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4099        return getNegativeSCEV(Start);       //   N = -Start (as unsigned)
4100      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4101        return Start;                           //    N = Start (as unsigned)
4102
4103      // Then, try to solve the above equation provided that Start is constant.
4104      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4105        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4106                                            -StartC->getValue()->getValue(),
4107                                            *this);
4108    }
4109  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4110    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4111    // the quadratic equation to solve it.
4112    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4113                                                                    *this);
4114    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4115    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4116    if (R1) {
4117#if 0
4118      errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4119             << "  sol#2: " << *R2 << "\n";
4120#endif
4121      // Pick the smallest positive root value.
4122      if (ConstantInt *CB =
4123          dyn_cast<ConstantInt>(Context->getConstantExprICmp(ICmpInst::ICMP_ULT,
4124                                   R1->getValue(), R2->getValue()))) {
4125        if (CB->getZExtValue() == false)
4126          std::swap(R1, R2);   // R1 is the minimum root now.
4127
4128        // We can only use this value if the chrec ends up with an exact zero
4129        // value at this index.  When solving for "X*X != 5", for example, we
4130        // should not accept a root of 2.
4131        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4132        if (Val->isZero())
4133          return R1;  // We found a quadratic root!
4134      }
4135    }
4136  }
4137
4138  return getCouldNotCompute();
4139}
4140
4141/// HowFarToNonZero - Return the number of times a backedge checking the
4142/// specified value for nonzero will execute.  If not computable, return
4143/// CouldNotCompute
4144const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4145  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4146  // handle them yet except for the trivial case.  This could be expanded in the
4147  // future as needed.
4148
4149  // If the value is a constant, check to see if it is known to be non-zero
4150  // already.  If so, the backedge will execute zero times.
4151  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4152    if (!C->getValue()->isNullValue())
4153      return getIntegerSCEV(0, C->getType());
4154    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4155  }
4156
4157  // We could implement others, but I really doubt anyone writes loops like
4158  // this, and if they did, they would already be constant folded.
4159  return getCouldNotCompute();
4160}
4161
4162/// getLoopPredecessor - If the given loop's header has exactly one unique
4163/// predecessor outside the loop, return it. Otherwise return null.
4164///
4165BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4166  BasicBlock *Header = L->getHeader();
4167  BasicBlock *Pred = 0;
4168  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4169       PI != E; ++PI)
4170    if (!L->contains(*PI)) {
4171      if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4172      Pred = *PI;
4173    }
4174  return Pred;
4175}
4176
4177/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4178/// (which may not be an immediate predecessor) which has exactly one
4179/// successor from which BB is reachable, or null if no such block is
4180/// found.
4181///
4182BasicBlock *
4183ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4184  // If the block has a unique predecessor, then there is no path from the
4185  // predecessor to the block that does not go through the direct edge
4186  // from the predecessor to the block.
4187  if (BasicBlock *Pred = BB->getSinglePredecessor())
4188    return Pred;
4189
4190  // A loop's header is defined to be a block that dominates the loop.
4191  // If the header has a unique predecessor outside the loop, it must be
4192  // a block that has exactly one successor that can reach the loop.
4193  if (Loop *L = LI->getLoopFor(BB))
4194    return getLoopPredecessor(L);
4195
4196  return 0;
4197}
4198
4199/// HasSameValue - SCEV structural equivalence is usually sufficient for
4200/// testing whether two expressions are equal, however for the purposes of
4201/// looking for a condition guarding a loop, it can be useful to be a little
4202/// more general, since a front-end may have replicated the controlling
4203/// expression.
4204///
4205static bool HasSameValue(const SCEV *A, const SCEV *B) {
4206  // Quick check to see if they are the same SCEV.
4207  if (A == B) return true;
4208
4209  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4210  // two different instructions with the same value. Check for this case.
4211  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4212    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4213      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4214        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4215          if (AI->isIdenticalTo(BI))
4216            return true;
4217
4218  // Otherwise assume they may have a different value.
4219  return false;
4220}
4221
4222bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4223  return getSignedRange(S).getSignedMax().isNegative();
4224}
4225
4226bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4227  return getSignedRange(S).getSignedMin().isStrictlyPositive();
4228}
4229
4230bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4231  return !getSignedRange(S).getSignedMin().isNegative();
4232}
4233
4234bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4235  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4236}
4237
4238bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4239  return isKnownNegative(S) || isKnownPositive(S);
4240}
4241
4242bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4243                                       const SCEV *LHS, const SCEV *RHS) {
4244
4245  if (HasSameValue(LHS, RHS))
4246    return ICmpInst::isTrueWhenEqual(Pred);
4247
4248  switch (Pred) {
4249  default:
4250    assert(0 && "Unexpected ICmpInst::Predicate value!");
4251    break;
4252  case ICmpInst::ICMP_SGT:
4253    Pred = ICmpInst::ICMP_SLT;
4254    std::swap(LHS, RHS);
4255  case ICmpInst::ICMP_SLT: {
4256    ConstantRange LHSRange = getSignedRange(LHS);
4257    ConstantRange RHSRange = getSignedRange(RHS);
4258    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4259      return true;
4260    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4261      return false;
4262
4263    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4264    ConstantRange DiffRange = getUnsignedRange(Diff);
4265    if (isKnownNegative(Diff)) {
4266      if (DiffRange.getUnsignedMax().ult(LHSRange.getUnsignedMin()))
4267        return true;
4268      if (DiffRange.getUnsignedMin().uge(LHSRange.getUnsignedMax()))
4269        return false;
4270    } else if (isKnownPositive(Diff)) {
4271      if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
4272        return true;
4273      if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
4274        return false;
4275    }
4276    break;
4277  }
4278  case ICmpInst::ICMP_SGE:
4279    Pred = ICmpInst::ICMP_SLE;
4280    std::swap(LHS, RHS);
4281  case ICmpInst::ICMP_SLE: {
4282    ConstantRange LHSRange = getSignedRange(LHS);
4283    ConstantRange RHSRange = getSignedRange(RHS);
4284    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4285      return true;
4286    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4287      return false;
4288
4289    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4290    ConstantRange DiffRange = getUnsignedRange(Diff);
4291    if (isKnownNonPositive(Diff)) {
4292      if (DiffRange.getUnsignedMax().ule(LHSRange.getUnsignedMin()))
4293        return true;
4294      if (DiffRange.getUnsignedMin().ugt(LHSRange.getUnsignedMax()))
4295        return false;
4296    } else if (isKnownNonNegative(Diff)) {
4297      if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
4298        return true;
4299      if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
4300        return false;
4301    }
4302    break;
4303  }
4304  case ICmpInst::ICMP_UGT:
4305    Pred = ICmpInst::ICMP_ULT;
4306    std::swap(LHS, RHS);
4307  case ICmpInst::ICMP_ULT: {
4308    ConstantRange LHSRange = getUnsignedRange(LHS);
4309    ConstantRange RHSRange = getUnsignedRange(RHS);
4310    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4311      return true;
4312    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4313      return false;
4314
4315    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4316    ConstantRange DiffRange = getUnsignedRange(Diff);
4317    if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
4318      return true;
4319    if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
4320      return false;
4321    break;
4322  }
4323  case ICmpInst::ICMP_UGE:
4324    Pred = ICmpInst::ICMP_ULE;
4325    std::swap(LHS, RHS);
4326  case ICmpInst::ICMP_ULE: {
4327    ConstantRange LHSRange = getUnsignedRange(LHS);
4328    ConstantRange RHSRange = getUnsignedRange(RHS);
4329    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4330      return true;
4331    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4332      return false;
4333
4334    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4335    ConstantRange DiffRange = getUnsignedRange(Diff);
4336    if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
4337      return true;
4338    if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
4339      return false;
4340    break;
4341  }
4342  case ICmpInst::ICMP_NE: {
4343    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4344      return true;
4345    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4346      return true;
4347
4348    const SCEV *Diff = getMinusSCEV(LHS, RHS);
4349    if (isKnownNonZero(Diff))
4350      return true;
4351    break;
4352  }
4353  case ICmpInst::ICMP_EQ:
4354    break;
4355  }
4356  return false;
4357}
4358
4359/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4360/// protected by a conditional between LHS and RHS.  This is used to
4361/// to eliminate casts.
4362bool
4363ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4364                                             ICmpInst::Predicate Pred,
4365                                             const SCEV *LHS, const SCEV *RHS) {
4366  // Interpret a null as meaning no loop, where there is obviously no guard
4367  // (interprocedural conditions notwithstanding).
4368  if (!L) return true;
4369
4370  BasicBlock *Latch = L->getLoopLatch();
4371  if (!Latch)
4372    return false;
4373
4374  BranchInst *LoopContinuePredicate =
4375    dyn_cast<BranchInst>(Latch->getTerminator());
4376  if (!LoopContinuePredicate ||
4377      LoopContinuePredicate->isUnconditional())
4378    return false;
4379
4380  return
4381    isNecessaryCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4382                    LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4383}
4384
4385/// isLoopGuardedByCond - Test whether entry to the loop is protected
4386/// by a conditional between LHS and RHS.  This is used to help avoid max
4387/// expressions in loop trip counts, and to eliminate casts.
4388bool
4389ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4390                                     ICmpInst::Predicate Pred,
4391                                     const SCEV *LHS, const SCEV *RHS) {
4392  // Interpret a null as meaning no loop, where there is obviously no guard
4393  // (interprocedural conditions notwithstanding).
4394  if (!L) return false;
4395
4396  BasicBlock *Predecessor = getLoopPredecessor(L);
4397  BasicBlock *PredecessorDest = L->getHeader();
4398
4399  // Starting at the loop predecessor, climb up the predecessor chain, as long
4400  // as there are predecessors that can be found that have unique successors
4401  // leading to the original header.
4402  for (; Predecessor;
4403       PredecessorDest = Predecessor,
4404       Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4405
4406    BranchInst *LoopEntryPredicate =
4407      dyn_cast<BranchInst>(Predecessor->getTerminator());
4408    if (!LoopEntryPredicate ||
4409        LoopEntryPredicate->isUnconditional())
4410      continue;
4411
4412    if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4413                        LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4414      return true;
4415  }
4416
4417  return false;
4418}
4419
4420/// isNecessaryCond - Test whether the condition described by Pred, LHS,
4421/// and RHS is a necessary condition for the given Cond value to evaluate
4422/// to true.
4423bool ScalarEvolution::isNecessaryCond(Value *CondValue,
4424                                      ICmpInst::Predicate Pred,
4425                                      const SCEV *LHS, const SCEV *RHS,
4426                                      bool Inverse) {
4427  // Recursivly handle And and Or conditions.
4428  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4429    if (BO->getOpcode() == Instruction::And) {
4430      if (!Inverse)
4431        return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4432               isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4433    } else if (BO->getOpcode() == Instruction::Or) {
4434      if (Inverse)
4435        return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4436               isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4437    }
4438  }
4439
4440  ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4441  if (!ICI) return false;
4442
4443  // Now that we found a conditional branch that dominates the loop, check to
4444  // see if it is the comparison we are looking for.
4445  Value *PreCondLHS = ICI->getOperand(0);
4446  Value *PreCondRHS = ICI->getOperand(1);
4447  ICmpInst::Predicate FoundPred;
4448  if (Inverse)
4449    FoundPred = ICI->getInversePredicate();
4450  else
4451    FoundPred = ICI->getPredicate();
4452
4453  if (FoundPred == Pred)
4454    ; // An exact match.
4455  else if (!ICmpInst::isTrueWhenEqual(FoundPred) && Pred == ICmpInst::ICMP_NE) {
4456    // The actual condition is beyond sufficient.
4457    FoundPred = ICmpInst::ICMP_NE;
4458    // NE is symmetric but the original comparison may not be. Swap
4459    // the operands if necessary so that they match below.
4460    if (isa<SCEVConstant>(LHS))
4461      std::swap(PreCondLHS, PreCondRHS);
4462  } else
4463    // Check a few special cases.
4464    switch (FoundPred) {
4465    case ICmpInst::ICMP_UGT:
4466      if (Pred == ICmpInst::ICMP_ULT) {
4467        std::swap(PreCondLHS, PreCondRHS);
4468        FoundPred = ICmpInst::ICMP_ULT;
4469        break;
4470      }
4471      return false;
4472    case ICmpInst::ICMP_SGT:
4473      if (Pred == ICmpInst::ICMP_SLT) {
4474        std::swap(PreCondLHS, PreCondRHS);
4475        FoundPred = ICmpInst::ICMP_SLT;
4476        break;
4477      }
4478      return false;
4479    case ICmpInst::ICMP_NE:
4480      // Expressions like (x >u 0) are often canonicalized to (x != 0),
4481      // so check for this case by checking if the NE is comparing against
4482      // a minimum or maximum constant.
4483      if (!ICmpInst::isTrueWhenEqual(Pred))
4484        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(RHS)) {
4485          const APInt &A = C->getValue()->getValue();
4486          switch (Pred) {
4487          case ICmpInst::ICMP_SLT:
4488            if (A.isMaxSignedValue()) break;
4489            return false;
4490          case ICmpInst::ICMP_SGT:
4491            if (A.isMinSignedValue()) break;
4492            return false;
4493          case ICmpInst::ICMP_ULT:
4494            if (A.isMaxValue()) break;
4495            return false;
4496          case ICmpInst::ICMP_UGT:
4497            if (A.isMinValue()) break;
4498            return false;
4499          default:
4500            return false;
4501          }
4502          FoundPred = Pred;
4503          // NE is symmetric but the original comparison may not be. Swap
4504          // the operands if necessary so that they match below.
4505          if (isa<SCEVConstant>(LHS))
4506            std::swap(PreCondLHS, PreCondRHS);
4507          break;
4508        }
4509      return false;
4510    default:
4511      // We weren't able to reconcile the condition.
4512      return false;
4513    }
4514
4515  assert(Pred == FoundPred && "Conditions were not reconciled!");
4516
4517  // Bail if the ICmp's operands' types are wider than the needed type
4518  // before attempting to call getSCEV on them. This avoids infinite
4519  // recursion, since the analysis of widening casts can require loop
4520  // exit condition information for overflow checking, which would
4521  // lead back here.
4522  if (getTypeSizeInBits(LHS->getType()) <
4523      getTypeSizeInBits(PreCondLHS->getType()))
4524    return false;
4525
4526  const SCEV *FoundLHS = getSCEV(PreCondLHS);
4527  const SCEV *FoundRHS = getSCEV(PreCondRHS);
4528
4529  // Balance the types. The case where FoundLHS' type is wider than
4530  // LHS' type is checked for above.
4531  if (getTypeSizeInBits(LHS->getType()) >
4532      getTypeSizeInBits(FoundLHS->getType())) {
4533    if (CmpInst::isSigned(Pred)) {
4534      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4535      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4536    } else {
4537      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4538      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4539    }
4540  }
4541
4542  return isNecessaryCondOperands(Pred, LHS, RHS,
4543                                 FoundLHS, FoundRHS) ||
4544         // ~x < ~y --> x > y
4545         isNecessaryCondOperands(Pred, LHS, RHS,
4546                                 getNotSCEV(FoundRHS), getNotSCEV(FoundLHS));
4547}
4548
4549/// isNecessaryCondOperands - Test whether the condition described by Pred,
4550/// LHS, and RHS is a necessary condition for the condition described by
4551/// Pred, FoundLHS, and FoundRHS to evaluate to true.
4552bool
4553ScalarEvolution::isNecessaryCondOperands(ICmpInst::Predicate Pred,
4554                                         const SCEV *LHS, const SCEV *RHS,
4555                                         const SCEV *FoundLHS,
4556                                         const SCEV *FoundRHS) {
4557  switch (Pred) {
4558  default: break;
4559  case ICmpInst::ICMP_SLT:
4560    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4561        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4562      return true;
4563    break;
4564  case ICmpInst::ICMP_SGT:
4565    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4566        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4567      return true;
4568    break;
4569  case ICmpInst::ICMP_ULT:
4570    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4571        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4572      return true;
4573    break;
4574  case ICmpInst::ICMP_UGT:
4575    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4576        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4577      return true;
4578    break;
4579  }
4580
4581  return false;
4582}
4583
4584/// getBECount - Subtract the end and start values and divide by the step,
4585/// rounding up, to get the number of times the backedge is executed. Return
4586/// CouldNotCompute if an intermediate computation overflows.
4587const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4588                                        const SCEV *End,
4589                                        const SCEV *Step) {
4590  const Type *Ty = Start->getType();
4591  const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4592  const SCEV *Diff = getMinusSCEV(End, Start);
4593  const SCEV *RoundUp = getAddExpr(Step, NegOne);
4594
4595  // Add an adjustment to the difference between End and Start so that
4596  // the division will effectively round up.
4597  const SCEV *Add = getAddExpr(Diff, RoundUp);
4598
4599  // Check Add for unsigned overflow.
4600  // TODO: More sophisticated things could be done here.
4601  const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1);
4602  const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4603  const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4604  const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4605  if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4606    return getCouldNotCompute();
4607
4608  return getUDivExpr(Add, Step);
4609}
4610
4611/// HowManyLessThans - Return the number of times a backedge containing the
4612/// specified less-than comparison will execute.  If not computable, return
4613/// CouldNotCompute.
4614ScalarEvolution::BackedgeTakenInfo
4615ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4616                                  const Loop *L, bool isSigned) {
4617  // Only handle:  "ADDREC < LoopInvariant".
4618  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4619
4620  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4621  if (!AddRec || AddRec->getLoop() != L)
4622    return getCouldNotCompute();
4623
4624  if (AddRec->isAffine()) {
4625    // FORNOW: We only support unit strides.
4626    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4627    const SCEV *Step = AddRec->getStepRecurrence(*this);
4628
4629    // TODO: handle non-constant strides.
4630    const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4631    if (!CStep || CStep->isZero())
4632      return getCouldNotCompute();
4633    if (CStep->isOne()) {
4634      // With unit stride, the iteration never steps past the limit value.
4635    } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4636      if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4637        // Test whether a positive iteration iteration can step past the limit
4638        // value and past the maximum value for its type in a single step.
4639        if (isSigned) {
4640          APInt Max = APInt::getSignedMaxValue(BitWidth);
4641          if ((Max - CStep->getValue()->getValue())
4642                .slt(CLimit->getValue()->getValue()))
4643            return getCouldNotCompute();
4644        } else {
4645          APInt Max = APInt::getMaxValue(BitWidth);
4646          if ((Max - CStep->getValue()->getValue())
4647                .ult(CLimit->getValue()->getValue()))
4648            return getCouldNotCompute();
4649        }
4650      } else
4651        // TODO: handle non-constant limit values below.
4652        return getCouldNotCompute();
4653    } else
4654      // TODO: handle negative strides below.
4655      return getCouldNotCompute();
4656
4657    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4658    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
4659    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4660    // treat m-n as signed nor unsigned due to overflow possibility.
4661
4662    // First, we get the value of the LHS in the first iteration: n
4663    const SCEV *Start = AddRec->getOperand(0);
4664
4665    // Determine the minimum constant start value.
4666    const SCEV *MinStart = getConstant(isSigned ?
4667      getSignedRange(Start).getSignedMin() :
4668      getUnsignedRange(Start).getUnsignedMin());
4669
4670    // If we know that the condition is true in order to enter the loop,
4671    // then we know that it will run exactly (m-n)/s times. Otherwise, we
4672    // only know that it will execute (max(m,n)-n)/s times. In both cases,
4673    // the division must round up.
4674    const SCEV *End = RHS;
4675    if (!isLoopGuardedByCond(L,
4676                             isSigned ? ICmpInst::ICMP_SLT :
4677                                        ICmpInst::ICMP_ULT,
4678                             getMinusSCEV(Start, Step), RHS))
4679      End = isSigned ? getSMaxExpr(RHS, Start)
4680                     : getUMaxExpr(RHS, Start);
4681
4682    // Determine the maximum constant end value.
4683    const SCEV *MaxEnd = getConstant(isSigned ?
4684      getSignedRange(End).getSignedMax() :
4685      getUnsignedRange(End).getUnsignedMax());
4686
4687    // Finally, we subtract these two values and divide, rounding up, to get
4688    // the number of times the backedge is executed.
4689    const SCEV *BECount = getBECount(Start, End, Step);
4690
4691    // The maximum backedge count is similar, except using the minimum start
4692    // value and the maximum end value.
4693    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
4694
4695    return BackedgeTakenInfo(BECount, MaxBECount);
4696  }
4697
4698  return getCouldNotCompute();
4699}
4700
4701/// getNumIterationsInRange - Return the number of iterations of this loop that
4702/// produce values in the specified constant range.  Another way of looking at
4703/// this is that it returns the first iteration number where the value is not in
4704/// the condition, thus computing the exit count. If the iteration count can't
4705/// be computed, an instance of SCEVCouldNotCompute is returned.
4706const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4707                                                    ScalarEvolution &SE) const {
4708  if (Range.isFullSet())  // Infinite loop.
4709    return SE.getCouldNotCompute();
4710
4711  // If the start is a non-zero constant, shift the range to simplify things.
4712  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4713    if (!SC->getValue()->isZero()) {
4714      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4715      Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4716      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4717      if (const SCEVAddRecExpr *ShiftedAddRec =
4718            dyn_cast<SCEVAddRecExpr>(Shifted))
4719        return ShiftedAddRec->getNumIterationsInRange(
4720                           Range.subtract(SC->getValue()->getValue()), SE);
4721      // This is strange and shouldn't happen.
4722      return SE.getCouldNotCompute();
4723    }
4724
4725  // The only time we can solve this is when we have all constant indices.
4726  // Otherwise, we cannot determine the overflow conditions.
4727  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4728    if (!isa<SCEVConstant>(getOperand(i)))
4729      return SE.getCouldNotCompute();
4730
4731
4732  // Okay at this point we know that all elements of the chrec are constants and
4733  // that the start element is zero.
4734
4735  // First check to see if the range contains zero.  If not, the first
4736  // iteration exits.
4737  unsigned BitWidth = SE.getTypeSizeInBits(getType());
4738  if (!Range.contains(APInt(BitWidth, 0)))
4739    return SE.getIntegerSCEV(0, getType());
4740
4741  if (isAffine()) {
4742    // If this is an affine expression then we have this situation:
4743    //   Solve {0,+,A} in Range  ===  Ax in Range
4744
4745    // We know that zero is in the range.  If A is positive then we know that
4746    // the upper value of the range must be the first possible exit value.
4747    // If A is negative then the lower of the range is the last possible loop
4748    // value.  Also note that we already checked for a full range.
4749    APInt One(BitWidth,1);
4750    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4751    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4752
4753    // The exit value should be (End+A)/A.
4754    APInt ExitVal = (End + A).udiv(A);
4755    ConstantInt *ExitValue = SE.getContext()->getConstantInt(ExitVal);
4756
4757    // Evaluate at the exit value.  If we really did fall out of the valid
4758    // range, then we computed our trip count, otherwise wrap around or other
4759    // things must have happened.
4760    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4761    if (Range.contains(Val->getValue()))
4762      return SE.getCouldNotCompute();  // Something strange happened
4763
4764    // Ensure that the previous value is in the range.  This is a sanity check.
4765    assert(Range.contains(
4766           EvaluateConstantChrecAtConstant(this,
4767           SE.getContext()->getConstantInt(ExitVal - One), SE)->getValue()) &&
4768           "Linear scev computation is off in a bad way!");
4769    return SE.getConstant(ExitValue);
4770  } else if (isQuadratic()) {
4771    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4772    // quadratic equation to solve it.  To do this, we must frame our problem in
4773    // terms of figuring out when zero is crossed, instead of when
4774    // Range.getUpper() is crossed.
4775    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
4776    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4777    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4778
4779    // Next, solve the constructed addrec
4780    std::pair<const SCEV *,const SCEV *> Roots =
4781      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4782    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4783    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4784    if (R1) {
4785      // Pick the smallest positive root value.
4786      if (ConstantInt *CB =
4787          dyn_cast<ConstantInt>(
4788                       SE.getContext()->getConstantExprICmp(ICmpInst::ICMP_ULT,
4789                         R1->getValue(), R2->getValue()))) {
4790        if (CB->getZExtValue() == false)
4791          std::swap(R1, R2);   // R1 is the minimum root now.
4792
4793        // Make sure the root is not off by one.  The returned iteration should
4794        // not be in the range, but the previous one should be.  When solving
4795        // for "X*X < 5", for example, we should not return a root of 2.
4796        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4797                                                             R1->getValue(),
4798                                                             SE);
4799        if (Range.contains(R1Val->getValue())) {
4800          // The next iteration must be out of the range...
4801          ConstantInt *NextVal =
4802                 SE.getContext()->getConstantInt(R1->getValue()->getValue()+1);
4803
4804          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4805          if (!Range.contains(R1Val->getValue()))
4806            return SE.getConstant(NextVal);
4807          return SE.getCouldNotCompute();  // Something strange happened
4808        }
4809
4810        // If R1 was not in the range, then it is a good return value.  Make
4811        // sure that R1-1 WAS in the range though, just in case.
4812        ConstantInt *NextVal =
4813                 SE.getContext()->getConstantInt(R1->getValue()->getValue()-1);
4814        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4815        if (Range.contains(R1Val->getValue()))
4816          return R1;
4817        return SE.getCouldNotCompute();  // Something strange happened
4818      }
4819    }
4820  }
4821
4822  return SE.getCouldNotCompute();
4823}
4824
4825
4826
4827//===----------------------------------------------------------------------===//
4828//                   SCEVCallbackVH Class Implementation
4829//===----------------------------------------------------------------------===//
4830
4831void ScalarEvolution::SCEVCallbackVH::deleted() {
4832  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4833  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4834    SE->ConstantEvolutionLoopExitValue.erase(PN);
4835  if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4836    SE->ValuesAtScopes.erase(I);
4837  SE->Scalars.erase(getValPtr());
4838  // this now dangles!
4839}
4840
4841void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4842  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4843
4844  // Forget all the expressions associated with users of the old value,
4845  // so that future queries will recompute the expressions using the new
4846  // value.
4847  SmallVector<User *, 16> Worklist;
4848  Value *Old = getValPtr();
4849  bool DeleteOld = false;
4850  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4851       UI != UE; ++UI)
4852    Worklist.push_back(*UI);
4853  while (!Worklist.empty()) {
4854    User *U = Worklist.pop_back_val();
4855    // Deleting the Old value will cause this to dangle. Postpone
4856    // that until everything else is done.
4857    if (U == Old) {
4858      DeleteOld = true;
4859      continue;
4860    }
4861    if (PHINode *PN = dyn_cast<PHINode>(U))
4862      SE->ConstantEvolutionLoopExitValue.erase(PN);
4863    if (Instruction *I = dyn_cast<Instruction>(U))
4864      SE->ValuesAtScopes.erase(I);
4865    if (SE->Scalars.erase(U))
4866      for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4867           UI != UE; ++UI)
4868        Worklist.push_back(*UI);
4869  }
4870  if (DeleteOld) {
4871    if (PHINode *PN = dyn_cast<PHINode>(Old))
4872      SE->ConstantEvolutionLoopExitValue.erase(PN);
4873    if (Instruction *I = dyn_cast<Instruction>(Old))
4874      SE->ValuesAtScopes.erase(I);
4875    SE->Scalars.erase(Old);
4876    // this now dangles!
4877  }
4878  // this may dangle!
4879}
4880
4881ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4882  : CallbackVH(V), SE(se) {}
4883
4884//===----------------------------------------------------------------------===//
4885//                   ScalarEvolution Class Implementation
4886//===----------------------------------------------------------------------===//
4887
4888ScalarEvolution::ScalarEvolution()
4889  : FunctionPass(&ID) {
4890}
4891
4892bool ScalarEvolution::runOnFunction(Function &F) {
4893  this->F = &F;
4894  LI = &getAnalysis<LoopInfo>();
4895  TD = getAnalysisIfAvailable<TargetData>();
4896  return false;
4897}
4898
4899void ScalarEvolution::releaseMemory() {
4900  Scalars.clear();
4901  BackedgeTakenCounts.clear();
4902  ConstantEvolutionLoopExitValue.clear();
4903  ValuesAtScopes.clear();
4904  UniqueSCEVs.clear();
4905  SCEVAllocator.Reset();
4906}
4907
4908void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4909  AU.setPreservesAll();
4910  AU.addRequiredTransitive<LoopInfo>();
4911}
4912
4913bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
4914  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
4915}
4916
4917static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
4918                          const Loop *L) {
4919  // Print all inner loops first
4920  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4921    PrintLoopInfo(OS, SE, *I);
4922
4923  OS << "Loop " << L->getHeader()->getName() << ": ";
4924
4925  SmallVector<BasicBlock*, 8> ExitBlocks;
4926  L->getExitBlocks(ExitBlocks);
4927  if (ExitBlocks.size() != 1)
4928    OS << "<multiple exits> ";
4929
4930  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4931    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
4932  } else {
4933    OS << "Unpredictable backedge-taken count. ";
4934  }
4935
4936  OS << "\n";
4937  OS << "Loop " << L->getHeader()->getName() << ": ";
4938
4939  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4940    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4941  } else {
4942    OS << "Unpredictable max backedge-taken count. ";
4943  }
4944
4945  OS << "\n";
4946}
4947
4948void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
4949  // ScalarEvolution's implementaiton of the print method is to print
4950  // out SCEV values of all instructions that are interesting. Doing
4951  // this potentially causes it to create new SCEV objects though,
4952  // which technically conflicts with the const qualifier. This isn't
4953  // observable from outside the class though, so casting away the
4954  // const isn't dangerous.
4955  ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
4956
4957  OS << "Classifying expressions for: " << F->getName() << "\n";
4958  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
4959    if (isSCEVable(I->getType())) {
4960      OS << *I << '\n';
4961      OS << "  -->  ";
4962      const SCEV *SV = SE.getSCEV(&*I);
4963      SV->print(OS);
4964
4965      const Loop *L = LI->getLoopFor((*I).getParent());
4966
4967      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
4968      if (AtUse != SV) {
4969        OS << "  -->  ";
4970        AtUse->print(OS);
4971      }
4972
4973      if (L) {
4974        OS << "\t\t" "Exits: ";
4975        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
4976        if (!ExitValue->isLoopInvariant(L)) {
4977          OS << "<<Unknown>>";
4978        } else {
4979          OS << *ExitValue;
4980        }
4981      }
4982
4983      OS << "\n";
4984    }
4985
4986  OS << "Determining loop execution counts for: " << F->getName() << "\n";
4987  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4988    PrintLoopInfo(OS, &SE, *I);
4989}
4990
4991void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4992  raw_os_ostream OS(o);
4993  print(OS, M);
4994}
4995