ScalarEvolution.cpp revision c6aedf70b3a7d0478b8882bf79b985a48d78d37e
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle.  These classes are reference counted, managed by the SCEVHandle
18// class.  We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression.  These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43//  Chains of recurrences -- a method to expedite the evaluation
44//  of closed-form functions
45//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47//  On computational properties of chains of recurrences
48//  Eugene V. Zima
49//
50//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51//  Robert A. van Engelen
52//
53//  Efficient Symbolic Analysis for Optimizing Compilers
54//  Robert A. van Engelen
55//
56//  Using the chains of recurrences algebra for data dependence testing and
57//  induction variable substitution
58//  MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Assembly/Writer.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Support/CFG.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
76#include "llvm/Support/InstIterator.h"
77#include "llvm/Support/ManagedStatic.h"
78#include "llvm/Support/MathExtras.h"
79#include "llvm/Support/Streams.h"
80#include "llvm/ADT/Statistic.h"
81#include <ostream>
82#include <algorithm>
83#include <cmath>
84using namespace llvm;
85
86STATISTIC(NumBruteForceEvaluations,
87          "Number of brute force evaluations needed to "
88          "calculate high-order polynomial exit values");
89STATISTIC(NumArrayLenItCounts,
90          "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92          "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94          "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96          "Number of loops with trip counts computed by force");
97
98cl::opt<unsigned>
99MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100                        cl::desc("Maximum number of iterations SCEV will "
101                                 "symbolically execute a constant derived loop"),
102                        cl::init(100));
103
104namespace {
105  RegisterPass<ScalarEvolution>
106  R("scalar-evolution", "Scalar Evolution Analysis");
107}
108
109//===----------------------------------------------------------------------===//
110//                           SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
118  print(cerr);
119}
120
121/// getValueRange - Return the tightest constant bounds that this value is
122/// known to have.  This method is only valid on integer SCEV objects.
123ConstantRange SCEV::getValueRange() const {
124  const Type *Ty = getType();
125  assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
126  // Default to a full range if no better information is available.
127  return ConstantRange(getBitWidth());
128}
129
130uint32_t SCEV::getBitWidth() const {
131  if (const IntegerType* ITy = dyn_cast<IntegerType>(getType()))
132    return ITy->getBitWidth();
133  return 0;
134}
135
136
137SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
138
139bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
140  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
141  return false;
142}
143
144const Type *SCEVCouldNotCompute::getType() const {
145  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146  return 0;
147}
148
149bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
150  assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151  return false;
152}
153
154SCEVHandle SCEVCouldNotCompute::
155replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
156                                  const SCEVHandle &Conc) const {
157  return this;
158}
159
160void SCEVCouldNotCompute::print(std::ostream &OS) const {
161  OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165  return S->getSCEVType() == scCouldNotCompute;
166}
167
168
169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value.  Don't use a SCEVHandle here, or else the object will
171// never be deleted!
172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
173
174
175SCEVConstant::~SCEVConstant() {
176  SCEVConstants->erase(V);
177}
178
179SCEVHandle SCEVConstant::get(ConstantInt *V) {
180  SCEVConstant *&R = (*SCEVConstants)[V];
181  if (R == 0) R = new SCEVConstant(V);
182  return R;
183}
184
185ConstantRange SCEVConstant::getValueRange() const {
186  return ConstantRange(V->getValue());
187}
188
189const Type *SCEVConstant::getType() const { return V->getType(); }
190
191void SCEVConstant::print(std::ostream &OS) const {
192  WriteAsOperand(OS, V, false);
193}
194
195// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
196// particular input.  Don't use a SCEVHandle here, or else the object will
197// never be deleted!
198static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
199                     SCEVTruncateExpr*> > SCEVTruncates;
200
201SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
202  : SCEV(scTruncate), Op(op), Ty(ty) {
203  assert(Op->getType()->isInteger() && Ty->isInteger() &&
204         "Cannot truncate non-integer value!");
205  assert(Op->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()
206         && "This is not a truncating conversion!");
207}
208
209SCEVTruncateExpr::~SCEVTruncateExpr() {
210  SCEVTruncates->erase(std::make_pair(Op, Ty));
211}
212
213ConstantRange SCEVTruncateExpr::getValueRange() const {
214  return getOperand()->getValueRange().truncate(getBitWidth());
215}
216
217void SCEVTruncateExpr::print(std::ostream &OS) const {
218  OS << "(truncate " << *Op << " to " << *Ty << ")";
219}
220
221// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
222// particular input.  Don't use a SCEVHandle here, or else the object will never
223// be deleted!
224static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
225                     SCEVZeroExtendExpr*> > SCEVZeroExtends;
226
227SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
228  : SCEV(scZeroExtend), Op(op), Ty(ty) {
229  assert(Op->getType()->isInteger() && Ty->isInteger() &&
230         "Cannot zero extend non-integer value!");
231  assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()
232         && "This is not an extending conversion!");
233}
234
235SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
236  SCEVZeroExtends->erase(std::make_pair(Op, Ty));
237}
238
239ConstantRange SCEVZeroExtendExpr::getValueRange() const {
240  return getOperand()->getValueRange().zeroExtend(getBitWidth());
241}
242
243void SCEVZeroExtendExpr::print(std::ostream &OS) const {
244  OS << "(zeroextend " << *Op << " to " << *Ty << ")";
245}
246
247// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
248// particular input.  Don't use a SCEVHandle here, or else the object will never
249// be deleted!
250static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
251                     SCEVCommutativeExpr*> > SCEVCommExprs;
252
253SCEVCommutativeExpr::~SCEVCommutativeExpr() {
254  SCEVCommExprs->erase(std::make_pair(getSCEVType(),
255                                      std::vector<SCEV*>(Operands.begin(),
256                                                         Operands.end())));
257}
258
259void SCEVCommutativeExpr::print(std::ostream &OS) const {
260  assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
261  const char *OpStr = getOperationStr();
262  OS << "(" << *Operands[0];
263  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
264    OS << OpStr << *Operands[i];
265  OS << ")";
266}
267
268SCEVHandle SCEVCommutativeExpr::
269replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
270                                  const SCEVHandle &Conc) const {
271  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
272    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
273    if (H != getOperand(i)) {
274      std::vector<SCEVHandle> NewOps;
275      NewOps.reserve(getNumOperands());
276      for (unsigned j = 0; j != i; ++j)
277        NewOps.push_back(getOperand(j));
278      NewOps.push_back(H);
279      for (++i; i != e; ++i)
280        NewOps.push_back(getOperand(i)->
281                         replaceSymbolicValuesWithConcrete(Sym, Conc));
282
283      if (isa<SCEVAddExpr>(this))
284        return SCEVAddExpr::get(NewOps);
285      else if (isa<SCEVMulExpr>(this))
286        return SCEVMulExpr::get(NewOps);
287      else
288        assert(0 && "Unknown commutative expr!");
289    }
290  }
291  return this;
292}
293
294
295// SCEVSDivs - Only allow the creation of one SCEVSDivExpr for any particular
296// input.  Don't use a SCEVHandle here, or else the object will never be
297// deleted!
298static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
299                     SCEVSDivExpr*> > SCEVSDivs;
300
301SCEVSDivExpr::~SCEVSDivExpr() {
302  SCEVSDivs->erase(std::make_pair(LHS, RHS));
303}
304
305void SCEVSDivExpr::print(std::ostream &OS) const {
306  OS << "(" << *LHS << " /s " << *RHS << ")";
307}
308
309const Type *SCEVSDivExpr::getType() const {
310  return LHS->getType();
311}
312
313// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
314// particular input.  Don't use a SCEVHandle here, or else the object will never
315// be deleted!
316static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
317                     SCEVAddRecExpr*> > SCEVAddRecExprs;
318
319SCEVAddRecExpr::~SCEVAddRecExpr() {
320  SCEVAddRecExprs->erase(std::make_pair(L,
321                                        std::vector<SCEV*>(Operands.begin(),
322                                                           Operands.end())));
323}
324
325SCEVHandle SCEVAddRecExpr::
326replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
327                                  const SCEVHandle &Conc) const {
328  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
329    SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
330    if (H != getOperand(i)) {
331      std::vector<SCEVHandle> NewOps;
332      NewOps.reserve(getNumOperands());
333      for (unsigned j = 0; j != i; ++j)
334        NewOps.push_back(getOperand(j));
335      NewOps.push_back(H);
336      for (++i; i != e; ++i)
337        NewOps.push_back(getOperand(i)->
338                         replaceSymbolicValuesWithConcrete(Sym, Conc));
339
340      return get(NewOps, L);
341    }
342  }
343  return this;
344}
345
346
347bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
348  // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
349  // contain L and if the start is invariant.
350  return !QueryLoop->contains(L->getHeader()) &&
351         getOperand(0)->isLoopInvariant(QueryLoop);
352}
353
354
355void SCEVAddRecExpr::print(std::ostream &OS) const {
356  OS << "{" << *Operands[0];
357  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
358    OS << ",+," << *Operands[i];
359  OS << "}<" << L->getHeader()->getName() + ">";
360}
361
362// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
363// value.  Don't use a SCEVHandle here, or else the object will never be
364// deleted!
365static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
366
367SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
368
369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370  // All non-instruction values are loop invariant.  All instructions are loop
371  // invariant if they are not contained in the specified loop.
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    return !L->contains(I->getParent());
374  return true;
375}
376
377const Type *SCEVUnknown::getType() const {
378  return V->getType();
379}
380
381void SCEVUnknown::print(std::ostream &OS) const {
382  WriteAsOperand(OS, V, false);
383}
384
385//===----------------------------------------------------------------------===//
386//                               SCEV Utilities
387//===----------------------------------------------------------------------===//
388
389namespace {
390  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
391  /// than the complexity of the RHS.  This comparator is used to canonicalize
392  /// expressions.
393  struct VISIBILITY_HIDDEN SCEVComplexityCompare {
394    bool operator()(SCEV *LHS, SCEV *RHS) {
395      return LHS->getSCEVType() < RHS->getSCEVType();
396    }
397  };
398}
399
400/// GroupByComplexity - Given a list of SCEV objects, order them by their
401/// complexity, and group objects of the same complexity together by value.
402/// When this routine is finished, we know that any duplicates in the vector are
403/// consecutive and that complexity is monotonically increasing.
404///
405/// Note that we go take special precautions to ensure that we get determinstic
406/// results from this routine.  In other words, we don't want the results of
407/// this to depend on where the addresses of various SCEV objects happened to
408/// land in memory.
409///
410static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
411  if (Ops.size() < 2) return;  // Noop
412  if (Ops.size() == 2) {
413    // This is the common case, which also happens to be trivially simple.
414    // Special case it.
415    if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
416      std::swap(Ops[0], Ops[1]);
417    return;
418  }
419
420  // Do the rough sort by complexity.
421  std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
422
423  // Now that we are sorted by complexity, group elements of the same
424  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
425  // be extremely short in practice.  Note that we take this approach because we
426  // do not want to depend on the addresses of the objects we are grouping.
427  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
428    SCEV *S = Ops[i];
429    unsigned Complexity = S->getSCEVType();
430
431    // If there are any objects of the same complexity and same value as this
432    // one, group them.
433    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
434      if (Ops[j] == S) { // Found a duplicate.
435        // Move it to immediately after i'th element.
436        std::swap(Ops[i+1], Ops[j]);
437        ++i;   // no need to rescan it.
438        if (i == e-2) return;  // Done!
439      }
440    }
441  }
442}
443
444
445
446//===----------------------------------------------------------------------===//
447//                      Simple SCEV method implementations
448//===----------------------------------------------------------------------===//
449
450/// getIntegerSCEV - Given an integer or FP type, create a constant for the
451/// specified signed integer value and return a SCEV for the constant.
452SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
453  Constant *C;
454  if (Val == 0)
455    C = Constant::getNullValue(Ty);
456  else if (Ty->isFloatingPoint())
457    C = ConstantFP::get(Ty, Val);
458  else
459    C = ConstantInt::get(Ty, Val);
460  return SCEVUnknown::get(C);
461}
462
463/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
464/// input value to the specified type.  If the type must be extended, it is zero
465/// extended.
466static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
467  const Type *SrcTy = V->getType();
468  assert(SrcTy->isInteger() && Ty->isInteger() &&
469         "Cannot truncate or zero extend with non-integer arguments!");
470  if (SrcTy->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
471    return V;  // No conversion
472  if (SrcTy->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits())
473    return SCEVTruncateExpr::get(V, Ty);
474  return SCEVZeroExtendExpr::get(V, Ty);
475}
476
477/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
478///
479SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
480  if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
481    return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
482
483  return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
484}
485
486/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
487///
488SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
489  // X - Y --> X + -Y
490  return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
491}
492
493
494/// PartialFact - Compute V!/(V-NumSteps)!
495static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
496  // Handle this case efficiently, it is common to have constant iteration
497  // counts while computing loop exit values.
498  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
499    APInt Val = SC->getValue()->getValue();
500    APInt Result(Val.getBitWidth(), 1);
501    for (; NumSteps; --NumSteps)
502      Result *= Val-(NumSteps-1);
503    return SCEVUnknown::get(ConstantInt::get(V->getType(), Result));
504  }
505
506  const Type *Ty = V->getType();
507  if (NumSteps == 0)
508    return SCEVUnknown::getIntegerSCEV(1, Ty);
509
510  SCEVHandle Result = V;
511  for (unsigned i = 1; i != NumSteps; ++i)
512    Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
513                                          SCEVUnknown::getIntegerSCEV(i, Ty)));
514  return Result;
515}
516
517
518/// evaluateAtIteration - Return the value of this chain of recurrences at
519/// the specified iteration number.  We can evaluate this recurrence by
520/// multiplying each element in the chain by the binomial coefficient
521/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
522///
523///   A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
524///
525/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
526/// Is the binomial equation safe using modular arithmetic??
527///
528SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
529  SCEVHandle Result = getStart();
530  int Divisor = 1;
531  const Type *Ty = It->getType();
532  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
533    SCEVHandle BC = PartialFact(It, i);
534    Divisor *= i;
535    SCEVHandle Val = SCEVSDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
536                                       SCEVUnknown::getIntegerSCEV(Divisor,Ty));
537    Result = SCEVAddExpr::get(Result, Val);
538  }
539  return Result;
540}
541
542
543//===----------------------------------------------------------------------===//
544//                    SCEV Expression folder implementations
545//===----------------------------------------------------------------------===//
546
547SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
548  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
549    return SCEVUnknown::get(
550        ConstantExpr::getTrunc(SC->getValue(), Ty));
551
552  // If the input value is a chrec scev made out of constants, truncate
553  // all of the constants.
554  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
555    std::vector<SCEVHandle> Operands;
556    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
557      // FIXME: This should allow truncation of other expression types!
558      if (isa<SCEVConstant>(AddRec->getOperand(i)))
559        Operands.push_back(get(AddRec->getOperand(i), Ty));
560      else
561        break;
562    if (Operands.size() == AddRec->getNumOperands())
563      return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
564  }
565
566  SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
567  if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
568  return Result;
569}
570
571SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
572  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
573    return SCEVUnknown::get(
574        ConstantExpr::getZExt(SC->getValue(), Ty));
575
576  // FIXME: If the input value is a chrec scev, and we can prove that the value
577  // did not overflow the old, smaller, value, we can zero extend all of the
578  // operands (often constants).  This would allow analysis of something like
579  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
580
581  SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
582  if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
583  return Result;
584}
585
586// get - Get a canonical add expression, or something simpler if possible.
587SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
588  assert(!Ops.empty() && "Cannot get empty add!");
589  if (Ops.size() == 1) return Ops[0];
590
591  // Sort by complexity, this groups all similar expression types together.
592  GroupByComplexity(Ops);
593
594  // If there are any constants, fold them together.
595  unsigned Idx = 0;
596  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
597    ++Idx;
598    assert(Idx < Ops.size());
599    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
600      // We found two constants, fold them together!
601      Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
602      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
603        Ops[0] = SCEVConstant::get(CI);
604        Ops.erase(Ops.begin()+1);  // Erase the folded element
605        if (Ops.size() == 1) return Ops[0];
606        LHSC = cast<SCEVConstant>(Ops[0]);
607      } else {
608        // If we couldn't fold the expression, move to the next constant.  Note
609        // that this is impossible to happen in practice because we always
610        // constant fold constant ints to constant ints.
611        ++Idx;
612      }
613    }
614
615    // If we are left with a constant zero being added, strip it off.
616    if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
617      Ops.erase(Ops.begin());
618      --Idx;
619    }
620  }
621
622  if (Ops.size() == 1) return Ops[0];
623
624  // Okay, check to see if the same value occurs in the operand list twice.  If
625  // so, merge them together into an multiply expression.  Since we sorted the
626  // list, these values are required to be adjacent.
627  const Type *Ty = Ops[0]->getType();
628  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
629    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
630      // Found a match, merge the two values into a multiply, and add any
631      // remaining values to the result.
632      SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
633      SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
634      if (Ops.size() == 2)
635        return Mul;
636      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
637      Ops.push_back(Mul);
638      return SCEVAddExpr::get(Ops);
639    }
640
641  // Okay, now we know the first non-constant operand.  If there are add
642  // operands they would be next.
643  if (Idx < Ops.size()) {
644    bool DeletedAdd = false;
645    while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
646      // If we have an add, expand the add operands onto the end of the operands
647      // list.
648      Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
649      Ops.erase(Ops.begin()+Idx);
650      DeletedAdd = true;
651    }
652
653    // If we deleted at least one add, we added operands to the end of the list,
654    // and they are not necessarily sorted.  Recurse to resort and resimplify
655    // any operands we just aquired.
656    if (DeletedAdd)
657      return get(Ops);
658  }
659
660  // Skip over the add expression until we get to a multiply.
661  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
662    ++Idx;
663
664  // If we are adding something to a multiply expression, make sure the
665  // something is not already an operand of the multiply.  If so, merge it into
666  // the multiply.
667  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
668    SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
669    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
670      SCEV *MulOpSCEV = Mul->getOperand(MulOp);
671      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
672        if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
673          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
674          SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
675          if (Mul->getNumOperands() != 2) {
676            // If the multiply has more than two operands, we must get the
677            // Y*Z term.
678            std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
679            MulOps.erase(MulOps.begin()+MulOp);
680            InnerMul = SCEVMulExpr::get(MulOps);
681          }
682          SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
683          SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
684          SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
685          if (Ops.size() == 2) return OuterMul;
686          if (AddOp < Idx) {
687            Ops.erase(Ops.begin()+AddOp);
688            Ops.erase(Ops.begin()+Idx-1);
689          } else {
690            Ops.erase(Ops.begin()+Idx);
691            Ops.erase(Ops.begin()+AddOp-1);
692          }
693          Ops.push_back(OuterMul);
694          return SCEVAddExpr::get(Ops);
695        }
696
697      // Check this multiply against other multiplies being added together.
698      for (unsigned OtherMulIdx = Idx+1;
699           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
700           ++OtherMulIdx) {
701        SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
702        // If MulOp occurs in OtherMul, we can fold the two multiplies
703        // together.
704        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
705             OMulOp != e; ++OMulOp)
706          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
707            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
708            SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
709            if (Mul->getNumOperands() != 2) {
710              std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
711              MulOps.erase(MulOps.begin()+MulOp);
712              InnerMul1 = SCEVMulExpr::get(MulOps);
713            }
714            SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
715            if (OtherMul->getNumOperands() != 2) {
716              std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
717                                             OtherMul->op_end());
718              MulOps.erase(MulOps.begin()+OMulOp);
719              InnerMul2 = SCEVMulExpr::get(MulOps);
720            }
721            SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
722            SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
723            if (Ops.size() == 2) return OuterMul;
724            Ops.erase(Ops.begin()+Idx);
725            Ops.erase(Ops.begin()+OtherMulIdx-1);
726            Ops.push_back(OuterMul);
727            return SCEVAddExpr::get(Ops);
728          }
729      }
730    }
731  }
732
733  // If there are any add recurrences in the operands list, see if any other
734  // added values are loop invariant.  If so, we can fold them into the
735  // recurrence.
736  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
737    ++Idx;
738
739  // Scan over all recurrences, trying to fold loop invariants into them.
740  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
741    // Scan all of the other operands to this add and add them to the vector if
742    // they are loop invariant w.r.t. the recurrence.
743    std::vector<SCEVHandle> LIOps;
744    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
745    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
746      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
747        LIOps.push_back(Ops[i]);
748        Ops.erase(Ops.begin()+i);
749        --i; --e;
750      }
751
752    // If we found some loop invariants, fold them into the recurrence.
753    if (!LIOps.empty()) {
754      //  NLI + LI + { Start,+,Step}  -->  NLI + { LI+Start,+,Step }
755      LIOps.push_back(AddRec->getStart());
756
757      std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
758      AddRecOps[0] = SCEVAddExpr::get(LIOps);
759
760      SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
761      // If all of the other operands were loop invariant, we are done.
762      if (Ops.size() == 1) return NewRec;
763
764      // Otherwise, add the folded AddRec by the non-liv parts.
765      for (unsigned i = 0;; ++i)
766        if (Ops[i] == AddRec) {
767          Ops[i] = NewRec;
768          break;
769        }
770      return SCEVAddExpr::get(Ops);
771    }
772
773    // Okay, if there weren't any loop invariants to be folded, check to see if
774    // there are multiple AddRec's with the same loop induction variable being
775    // added together.  If so, we can fold them.
776    for (unsigned OtherIdx = Idx+1;
777         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
778      if (OtherIdx != Idx) {
779        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
780        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
781          // Other + {A,+,B} + {C,+,D}  -->  Other + {A+C,+,B+D}
782          std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
783          for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
784            if (i >= NewOps.size()) {
785              NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
786                            OtherAddRec->op_end());
787              break;
788            }
789            NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
790          }
791          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
792
793          if (Ops.size() == 2) return NewAddRec;
794
795          Ops.erase(Ops.begin()+Idx);
796          Ops.erase(Ops.begin()+OtherIdx-1);
797          Ops.push_back(NewAddRec);
798          return SCEVAddExpr::get(Ops);
799        }
800      }
801
802    // Otherwise couldn't fold anything into this recurrence.  Move onto the
803    // next one.
804  }
805
806  // Okay, it looks like we really DO need an add expr.  Check to see if we
807  // already have one, otherwise create a new one.
808  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
809  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
810                                                                 SCEVOps)];
811  if (Result == 0) Result = new SCEVAddExpr(Ops);
812  return Result;
813}
814
815
816SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
817  assert(!Ops.empty() && "Cannot get empty mul!");
818
819  // Sort by complexity, this groups all similar expression types together.
820  GroupByComplexity(Ops);
821
822  // If there are any constants, fold them together.
823  unsigned Idx = 0;
824  if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
825
826    // C1*(C2+V) -> C1*C2 + C1*V
827    if (Ops.size() == 2)
828      if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
829        if (Add->getNumOperands() == 2 &&
830            isa<SCEVConstant>(Add->getOperand(0)))
831          return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
832                                  SCEVMulExpr::get(LHSC, Add->getOperand(1)));
833
834
835    ++Idx;
836    while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
837      // We found two constants, fold them together!
838      Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
839      if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
840        Ops[0] = SCEVConstant::get(CI);
841        Ops.erase(Ops.begin()+1);  // Erase the folded element
842        if (Ops.size() == 1) return Ops[0];
843        LHSC = cast<SCEVConstant>(Ops[0]);
844      } else {
845        // If we couldn't fold the expression, move to the next constant.  Note
846        // that this is impossible to happen in practice because we always
847        // constant fold constant ints to constant ints.
848        ++Idx;
849      }
850    }
851
852    // If we are left with a constant one being multiplied, strip it off.
853    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
854      Ops.erase(Ops.begin());
855      --Idx;
856    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
857      // If we have a multiply of zero, it will always be zero.
858      return Ops[0];
859    }
860  }
861
862  // Skip over the add expression until we get to a multiply.
863  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
864    ++Idx;
865
866  if (Ops.size() == 1)
867    return Ops[0];
868
869  // If there are mul operands inline them all into this expression.
870  if (Idx < Ops.size()) {
871    bool DeletedMul = false;
872    while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
873      // If we have an mul, expand the mul operands onto the end of the operands
874      // list.
875      Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
876      Ops.erase(Ops.begin()+Idx);
877      DeletedMul = true;
878    }
879
880    // If we deleted at least one mul, we added operands to the end of the list,
881    // and they are not necessarily sorted.  Recurse to resort and resimplify
882    // any operands we just aquired.
883    if (DeletedMul)
884      return get(Ops);
885  }
886
887  // If there are any add recurrences in the operands list, see if any other
888  // added values are loop invariant.  If so, we can fold them into the
889  // recurrence.
890  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
891    ++Idx;
892
893  // Scan over all recurrences, trying to fold loop invariants into them.
894  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
895    // Scan all of the other operands to this mul and add them to the vector if
896    // they are loop invariant w.r.t. the recurrence.
897    std::vector<SCEVHandle> LIOps;
898    SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
899    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
900      if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
901        LIOps.push_back(Ops[i]);
902        Ops.erase(Ops.begin()+i);
903        --i; --e;
904      }
905
906    // If we found some loop invariants, fold them into the recurrence.
907    if (!LIOps.empty()) {
908      //  NLI * LI * { Start,+,Step}  -->  NLI * { LI*Start,+,LI*Step }
909      std::vector<SCEVHandle> NewOps;
910      NewOps.reserve(AddRec->getNumOperands());
911      if (LIOps.size() == 1) {
912        SCEV *Scale = LIOps[0];
913        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
914          NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
915      } else {
916        for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
917          std::vector<SCEVHandle> MulOps(LIOps);
918          MulOps.push_back(AddRec->getOperand(i));
919          NewOps.push_back(SCEVMulExpr::get(MulOps));
920        }
921      }
922
923      SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
924
925      // If all of the other operands were loop invariant, we are done.
926      if (Ops.size() == 1) return NewRec;
927
928      // Otherwise, multiply the folded AddRec by the non-liv parts.
929      for (unsigned i = 0;; ++i)
930        if (Ops[i] == AddRec) {
931          Ops[i] = NewRec;
932          break;
933        }
934      return SCEVMulExpr::get(Ops);
935    }
936
937    // Okay, if there weren't any loop invariants to be folded, check to see if
938    // there are multiple AddRec's with the same loop induction variable being
939    // multiplied together.  If so, we can fold them.
940    for (unsigned OtherIdx = Idx+1;
941         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
942      if (OtherIdx != Idx) {
943        SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
944        if (AddRec->getLoop() == OtherAddRec->getLoop()) {
945          // F * G  -->  {A,+,B} * {C,+,D}  -->  {A*C,+,F*D + G*B + B*D}
946          SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
947          SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
948                                                 G->getStart());
949          SCEVHandle B = F->getStepRecurrence();
950          SCEVHandle D = G->getStepRecurrence();
951          SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
952                                                SCEVMulExpr::get(G, B),
953                                                SCEVMulExpr::get(B, D));
954          SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
955                                                     F->getLoop());
956          if (Ops.size() == 2) return NewAddRec;
957
958          Ops.erase(Ops.begin()+Idx);
959          Ops.erase(Ops.begin()+OtherIdx-1);
960          Ops.push_back(NewAddRec);
961          return SCEVMulExpr::get(Ops);
962        }
963      }
964
965    // Otherwise couldn't fold anything into this recurrence.  Move onto the
966    // next one.
967  }
968
969  // Okay, it looks like we really DO need an mul expr.  Check to see if we
970  // already have one, otherwise create a new one.
971  std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
972  SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
973                                                                 SCEVOps)];
974  if (Result == 0)
975    Result = new SCEVMulExpr(Ops);
976  return Result;
977}
978
979SCEVHandle SCEVSDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
980  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
981    if (RHSC->getValue()->equalsInt(1))
982      return LHS;                            // X sdiv 1 --> x
983    if (RHSC->getValue()->isAllOnesValue())
984      return SCEV::getNegativeSCEV(LHS);           // X sdiv -1  -->  -x
985
986    if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
987      Constant *LHSCV = LHSC->getValue();
988      Constant *RHSCV = RHSC->getValue();
989      return SCEVUnknown::get(ConstantExpr::getSDiv(LHSCV, RHSCV));
990    }
991  }
992
993  // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
994
995  SCEVSDivExpr *&Result = (*SCEVSDivs)[std::make_pair(LHS, RHS)];
996  if (Result == 0) Result = new SCEVSDivExpr(LHS, RHS);
997  return Result;
998}
999
1000
1001/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1002/// specified loop.  Simplify the expression as much as possible.
1003SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
1004                               const SCEVHandle &Step, const Loop *L) {
1005  std::vector<SCEVHandle> Operands;
1006  Operands.push_back(Start);
1007  if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1008    if (StepChrec->getLoop() == L) {
1009      Operands.insert(Operands.end(), StepChrec->op_begin(),
1010                      StepChrec->op_end());
1011      return get(Operands, L);
1012    }
1013
1014  Operands.push_back(Step);
1015  return get(Operands, L);
1016}
1017
1018/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1019/// specified loop.  Simplify the expression as much as possible.
1020SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
1021                               const Loop *L) {
1022  if (Operands.size() == 1) return Operands[0];
1023
1024  if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
1025    if (StepC->getValue()->isNullValue()) {
1026      Operands.pop_back();
1027      return get(Operands, L);             // { X,+,0 }  -->  X
1028    }
1029
1030  SCEVAddRecExpr *&Result =
1031    (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1032                                                            Operands.end()))];
1033  if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1034  return Result;
1035}
1036
1037SCEVHandle SCEVUnknown::get(Value *V) {
1038  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
1039    return SCEVConstant::get(CI);
1040  SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1041  if (Result == 0) Result = new SCEVUnknown(V);
1042  return Result;
1043}
1044
1045
1046//===----------------------------------------------------------------------===//
1047//             ScalarEvolutionsImpl Definition and Implementation
1048//===----------------------------------------------------------------------===//
1049//
1050/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
1051/// evolution code.
1052///
1053namespace {
1054  struct VISIBILITY_HIDDEN ScalarEvolutionsImpl {
1055    /// F - The function we are analyzing.
1056    ///
1057    Function &F;
1058
1059    /// LI - The loop information for the function we are currently analyzing.
1060    ///
1061    LoopInfo &LI;
1062
1063    /// UnknownValue - This SCEV is used to represent unknown trip counts and
1064    /// things.
1065    SCEVHandle UnknownValue;
1066
1067    /// Scalars - This is a cache of the scalars we have analyzed so far.
1068    ///
1069    std::map<Value*, SCEVHandle> Scalars;
1070
1071    /// IterationCounts - Cache the iteration count of the loops for this
1072    /// function as they are computed.
1073    std::map<const Loop*, SCEVHandle> IterationCounts;
1074
1075    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
1076    /// the PHI instructions that we attempt to compute constant evolutions for.
1077    /// This allows us to avoid potentially expensive recomputation of these
1078    /// properties.  An instruction maps to null if we are unable to compute its
1079    /// exit value.
1080    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
1081
1082  public:
1083    ScalarEvolutionsImpl(Function &f, LoopInfo &li)
1084      : F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
1085
1086    /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1087    /// expression and create a new one.
1088    SCEVHandle getSCEV(Value *V);
1089
1090    /// hasSCEV - Return true if the SCEV for this value has already been
1091    /// computed.
1092    bool hasSCEV(Value *V) const {
1093      return Scalars.count(V);
1094    }
1095
1096    /// setSCEV - Insert the specified SCEV into the map of current SCEVs for
1097    /// the specified value.
1098    void setSCEV(Value *V, const SCEVHandle &H) {
1099      bool isNew = Scalars.insert(std::make_pair(V, H)).second;
1100      assert(isNew && "This entry already existed!");
1101    }
1102
1103
1104    /// getSCEVAtScope - Compute the value of the specified expression within
1105    /// the indicated loop (which may be null to indicate in no loop).  If the
1106    /// expression cannot be evaluated, return UnknownValue itself.
1107    SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
1108
1109
1110    /// hasLoopInvariantIterationCount - Return true if the specified loop has
1111    /// an analyzable loop-invariant iteration count.
1112    bool hasLoopInvariantIterationCount(const Loop *L);
1113
1114    /// getIterationCount - If the specified loop has a predictable iteration
1115    /// count, return it.  Note that it is not valid to call this method on a
1116    /// loop without a loop-invariant iteration count.
1117    SCEVHandle getIterationCount(const Loop *L);
1118
1119    /// deleteInstructionFromRecords - This method should be called by the
1120    /// client before it removes an instruction from the program, to make sure
1121    /// that no dangling references are left around.
1122    void deleteInstructionFromRecords(Instruction *I);
1123
1124  private:
1125    /// createSCEV - We know that there is no SCEV for the specified value.
1126    /// Analyze the expression.
1127    SCEVHandle createSCEV(Value *V);
1128
1129    /// createNodeForPHI - Provide the special handling we need to analyze PHI
1130    /// SCEVs.
1131    SCEVHandle createNodeForPHI(PHINode *PN);
1132
1133    /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
1134    /// for the specified instruction and replaces any references to the
1135    /// symbolic value SymName with the specified value.  This is used during
1136    /// PHI resolution.
1137    void ReplaceSymbolicValueWithConcrete(Instruction *I,
1138                                          const SCEVHandle &SymName,
1139                                          const SCEVHandle &NewVal);
1140
1141    /// ComputeIterationCount - Compute the number of times the specified loop
1142    /// will iterate.
1143    SCEVHandle ComputeIterationCount(const Loop *L);
1144
1145    /// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1146    /// 'setcc load X, cst', try to se if we can compute the trip count.
1147    SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
1148                                                        Constant *RHS,
1149                                                        const Loop *L,
1150                                                        ICmpInst::Predicate p);
1151
1152    /// ComputeIterationCountExhaustively - If the trip is known to execute a
1153    /// constant number of times (the condition evolves only from constants),
1154    /// try to evaluate a few iterations of the loop until we get the exit
1155    /// condition gets a value of ExitWhen (true or false).  If we cannot
1156    /// evaluate the trip count of the loop, return UnknownValue.
1157    SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
1158                                                 bool ExitWhen);
1159
1160    /// HowFarToZero - Return the number of times a backedge comparing the
1161    /// specified value to zero will execute.  If not computable, return
1162    /// UnknownValue.
1163    SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
1164
1165    /// HowFarToNonZero - Return the number of times a backedge checking the
1166    /// specified value for nonzero will execute.  If not computable, return
1167    /// UnknownValue.
1168    SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
1169
1170    /// HowManyLessThans - Return the number of times a backedge containing the
1171    /// specified less-than comparison will execute.  If not computable, return
1172    /// UnknownValue.
1173    SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
1174
1175    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1176    /// in the header of its containing loop, we know the loop executes a
1177    /// constant number of times, and the PHI node is just a recurrence
1178    /// involving constants, fold it.
1179    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
1180                                                const Loop *L);
1181  };
1182}
1183
1184//===----------------------------------------------------------------------===//
1185//            Basic SCEV Analysis and PHI Idiom Recognition Code
1186//
1187
1188/// deleteInstructionFromRecords - This method should be called by the
1189/// client before it removes an instruction from the program, to make sure
1190/// that no dangling references are left around.
1191void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
1192  Scalars.erase(I);
1193  if (PHINode *PN = dyn_cast<PHINode>(I))
1194    ConstantEvolutionLoopExitValue.erase(PN);
1195}
1196
1197
1198/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1199/// expression and create a new one.
1200SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
1201  assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
1202
1203  std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1204  if (I != Scalars.end()) return I->second;
1205  SCEVHandle S = createSCEV(V);
1206  Scalars.insert(std::make_pair(V, S));
1207  return S;
1208}
1209
1210/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1211/// the specified instruction and replaces any references to the symbolic value
1212/// SymName with the specified value.  This is used during PHI resolution.
1213void ScalarEvolutionsImpl::
1214ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1215                                 const SCEVHandle &NewVal) {
1216  std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1217  if (SI == Scalars.end()) return;
1218
1219  SCEVHandle NV =
1220    SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
1221  if (NV == SI->second) return;  // No change.
1222
1223  SI->second = NV;       // Update the scalars map!
1224
1225  // Any instruction values that use this instruction might also need to be
1226  // updated!
1227  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1228       UI != E; ++UI)
1229    ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1230}
1231
1232/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
1233/// a loop header, making it a potential recurrence, or it doesn't.
1234///
1235SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
1236  if (PN->getNumIncomingValues() == 2)  // The loops have been canonicalized.
1237    if (const Loop *L = LI.getLoopFor(PN->getParent()))
1238      if (L->getHeader() == PN->getParent()) {
1239        // If it lives in the loop header, it has two incoming values, one
1240        // from outside the loop, and one from inside.
1241        unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1242        unsigned BackEdge     = IncomingEdge^1;
1243
1244        // While we are analyzing this PHI node, handle its value symbolically.
1245        SCEVHandle SymbolicName = SCEVUnknown::get(PN);
1246        assert(Scalars.find(PN) == Scalars.end() &&
1247               "PHI node already processed?");
1248        Scalars.insert(std::make_pair(PN, SymbolicName));
1249
1250        // Using this symbolic name for the PHI, analyze the value coming around
1251        // the back-edge.
1252        SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1253
1254        // NOTE: If BEValue is loop invariant, we know that the PHI node just
1255        // has a special value for the first iteration of the loop.
1256
1257        // If the value coming around the backedge is an add with the symbolic
1258        // value we just inserted, then we found a simple induction variable!
1259        if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1260          // If there is a single occurrence of the symbolic value, replace it
1261          // with a recurrence.
1262          unsigned FoundIndex = Add->getNumOperands();
1263          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1264            if (Add->getOperand(i) == SymbolicName)
1265              if (FoundIndex == e) {
1266                FoundIndex = i;
1267                break;
1268              }
1269
1270          if (FoundIndex != Add->getNumOperands()) {
1271            // Create an add with everything but the specified operand.
1272            std::vector<SCEVHandle> Ops;
1273            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1274              if (i != FoundIndex)
1275                Ops.push_back(Add->getOperand(i));
1276            SCEVHandle Accum = SCEVAddExpr::get(Ops);
1277
1278            // This is not a valid addrec if the step amount is varying each
1279            // loop iteration, but is not itself an addrec in this loop.
1280            if (Accum->isLoopInvariant(L) ||
1281                (isa<SCEVAddRecExpr>(Accum) &&
1282                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1283              SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1284              SCEVHandle PHISCEV  = SCEVAddRecExpr::get(StartVal, Accum, L);
1285
1286              // Okay, for the entire analysis of this edge we assumed the PHI
1287              // to be symbolic.  We now need to go back and update all of the
1288              // entries for the scalars that use the PHI (except for the PHI
1289              // itself) to use the new analyzed value instead of the "symbolic"
1290              // value.
1291              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1292              return PHISCEV;
1293            }
1294          }
1295        } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1296          // Otherwise, this could be a loop like this:
1297          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
1298          // In this case, j = {1,+,1}  and BEValue is j.
1299          // Because the other in-value of i (0) fits the evolution of BEValue
1300          // i really is an addrec evolution.
1301          if (AddRec->getLoop() == L && AddRec->isAffine()) {
1302            SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1303
1304            // If StartVal = j.start - j.stride, we can use StartVal as the
1305            // initial step of the addrec evolution.
1306            if (StartVal == SCEV::getMinusSCEV(AddRec->getOperand(0),
1307                                               AddRec->getOperand(1))) {
1308              SCEVHandle PHISCEV =
1309                 SCEVAddRecExpr::get(StartVal, AddRec->getOperand(1), L);
1310
1311              // Okay, for the entire analysis of this edge we assumed the PHI
1312              // to be symbolic.  We now need to go back and update all of the
1313              // entries for the scalars that use the PHI (except for the PHI
1314              // itself) to use the new analyzed value instead of the "symbolic"
1315              // value.
1316              ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1317              return PHISCEV;
1318            }
1319          }
1320        }
1321
1322        return SymbolicName;
1323      }
1324
1325  // If it's not a loop phi, we can't handle it yet.
1326  return SCEVUnknown::get(PN);
1327}
1328
1329/// GetConstantFactor - Determine the largest constant factor that S has.  For
1330/// example, turn {4,+,8} -> 4.    (S umod result) should always equal zero.
1331static uint64_t GetConstantFactor(SCEVHandle S) {
1332  if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
1333    if (uint64_t V = C->getValue()->getZExtValue())
1334      return V;
1335    else   // Zero is a multiple of everything.
1336      return 1ULL << (S->getType()->getPrimitiveSizeInBits()-1);
1337  }
1338
1339  if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
1340    return GetConstantFactor(T->getOperand()) &
1341           cast<IntegerType>(T->getType())->getBitMask();
1342  if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S))
1343    return GetConstantFactor(E->getOperand());
1344
1345  if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
1346    // The result is the min of all operands.
1347    uint64_t Res = GetConstantFactor(A->getOperand(0));
1348    for (unsigned i = 1, e = A->getNumOperands(); i != e && Res > 1; ++i)
1349      Res = std::min(Res, GetConstantFactor(A->getOperand(i)));
1350    return Res;
1351  }
1352
1353  if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
1354    // The result is the product of all the operands.
1355    uint64_t Res = GetConstantFactor(M->getOperand(0));
1356    for (unsigned i = 1, e = M->getNumOperands(); i != e; ++i)
1357      Res *= GetConstantFactor(M->getOperand(i));
1358    return Res;
1359  }
1360
1361  if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
1362    // For now, we just handle linear expressions.
1363    if (A->getNumOperands() == 2) {
1364      // We want the GCD between the start and the stride value.
1365      uint64_t Start = GetConstantFactor(A->getOperand(0));
1366      if (Start == 1) return 1;
1367      uint64_t Stride = GetConstantFactor(A->getOperand(1));
1368      return GreatestCommonDivisor64(Start, Stride);
1369    }
1370  }
1371
1372  // SCEVSDivExpr, SCEVUnknown.
1373  return 1;
1374}
1375
1376/// createSCEV - We know that there is no SCEV for the specified value.
1377/// Analyze the expression.
1378///
1379SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
1380  if (Instruction *I = dyn_cast<Instruction>(V)) {
1381    switch (I->getOpcode()) {
1382    case Instruction::Add:
1383      return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
1384                              getSCEV(I->getOperand(1)));
1385    case Instruction::Mul:
1386      return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
1387                              getSCEV(I->getOperand(1)));
1388    case Instruction::SDiv:
1389      return SCEVSDivExpr::get(getSCEV(I->getOperand(0)),
1390                              getSCEV(I->getOperand(1)));
1391      break;
1392
1393    case Instruction::Sub:
1394      return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
1395                                getSCEV(I->getOperand(1)));
1396    case Instruction::Or:
1397      // If the RHS of the Or is a constant, we may have something like:
1398      // X*4+1 which got turned into X*4|1.  Handle this as an add so loop
1399      // optimizations will transparently handle this case.
1400      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
1401        SCEVHandle LHS = getSCEV(I->getOperand(0));
1402        uint64_t CommonFact = GetConstantFactor(LHS);
1403        assert(CommonFact && "Common factor should at least be 1!");
1404        if (CommonFact > CI->getZExtValue()) {
1405          // If the LHS is a multiple that is larger than the RHS, use +.
1406          return SCEVAddExpr::get(LHS,
1407                                  getSCEV(I->getOperand(1)));
1408        }
1409      }
1410      break;
1411
1412    case Instruction::Shl:
1413      // Turn shift left of a constant amount into a multiply.
1414      if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1415        Constant *X = ConstantInt::get(V->getType(), 1);
1416        X = ConstantExpr::getShl(X, SA);
1417        return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
1418      }
1419      break;
1420
1421    case Instruction::Trunc:
1422      return SCEVTruncateExpr::get(getSCEV(I->getOperand(0)), I->getType());
1423
1424    case Instruction::ZExt:
1425      return SCEVZeroExtendExpr::get(getSCEV(I->getOperand(0)), I->getType());
1426
1427    case Instruction::BitCast:
1428      // BitCasts are no-op casts so we just eliminate the cast.
1429      if (I->getType()->isInteger() &&
1430          I->getOperand(0)->getType()->isInteger())
1431        return getSCEV(I->getOperand(0));
1432      break;
1433
1434    case Instruction::PHI:
1435      return createNodeForPHI(cast<PHINode>(I));
1436
1437    default: // We cannot analyze this expression.
1438      break;
1439    }
1440  }
1441
1442  return SCEVUnknown::get(V);
1443}
1444
1445
1446
1447//===----------------------------------------------------------------------===//
1448//                   Iteration Count Computation Code
1449//
1450
1451/// getIterationCount - If the specified loop has a predictable iteration
1452/// count, return it.  Note that it is not valid to call this method on a
1453/// loop without a loop-invariant iteration count.
1454SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
1455  std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
1456  if (I == IterationCounts.end()) {
1457    SCEVHandle ItCount = ComputeIterationCount(L);
1458    I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
1459    if (ItCount != UnknownValue) {
1460      assert(ItCount->isLoopInvariant(L) &&
1461             "Computed trip count isn't loop invariant for loop!");
1462      ++NumTripCountsComputed;
1463    } else if (isa<PHINode>(L->getHeader()->begin())) {
1464      // Only count loops that have phi nodes as not being computable.
1465      ++NumTripCountsNotComputed;
1466    }
1467  }
1468  return I->second;
1469}
1470
1471/// ComputeIterationCount - Compute the number of times the specified loop
1472/// will iterate.
1473SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
1474  // If the loop has a non-one exit block count, we can't analyze it.
1475  std::vector<BasicBlock*> ExitBlocks;
1476  L->getExitBlocks(ExitBlocks);
1477  if (ExitBlocks.size() != 1) return UnknownValue;
1478
1479  // Okay, there is one exit block.  Try to find the condition that causes the
1480  // loop to be exited.
1481  BasicBlock *ExitBlock = ExitBlocks[0];
1482
1483  BasicBlock *ExitingBlock = 0;
1484  for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
1485       PI != E; ++PI)
1486    if (L->contains(*PI)) {
1487      if (ExitingBlock == 0)
1488        ExitingBlock = *PI;
1489      else
1490        return UnknownValue;   // More than one block exiting!
1491    }
1492  assert(ExitingBlock && "No exits from loop, something is broken!");
1493
1494  // Okay, we've computed the exiting block.  See what condition causes us to
1495  // exit.
1496  //
1497  // FIXME: we should be able to handle switch instructions (with a single exit)
1498  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1499  if (ExitBr == 0) return UnknownValue;
1500  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
1501
1502  // At this point, we know we have a conditional branch that determines whether
1503  // the loop is exited.  However, we don't know if the branch is executed each
1504  // time through the loop.  If not, then the execution count of the branch will
1505  // not be equal to the trip count of the loop.
1506  //
1507  // Currently we check for this by checking to see if the Exit branch goes to
1508  // the loop header.  If so, we know it will always execute the same number of
1509  // times as the loop.  We also handle the case where the exit block *is* the
1510  // loop header.  This is common for un-rotated loops.  More extensive analysis
1511  // could be done to handle more cases here.
1512  if (ExitBr->getSuccessor(0) != L->getHeader() &&
1513      ExitBr->getSuccessor(1) != L->getHeader() &&
1514      ExitBr->getParent() != L->getHeader())
1515    return UnknownValue;
1516
1517  ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
1518
1519  // If its not an integer comparison then compute it the hard way.
1520  // Note that ICmpInst deals with pointer comparisons too so we must check
1521  // the type of the operand.
1522  if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
1523    return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
1524                                          ExitBr->getSuccessor(0) == ExitBlock);
1525
1526  // If the condition was exit on true, convert the condition to exit on false
1527  ICmpInst::Predicate Cond;
1528  if (ExitBr->getSuccessor(1) == ExitBlock)
1529    Cond = ExitCond->getPredicate();
1530  else
1531    Cond = ExitCond->getInversePredicate();
1532
1533  // Handle common loops like: for (X = "string"; *X; ++X)
1534  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
1535    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
1536      SCEVHandle ItCnt =
1537        ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
1538      if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
1539    }
1540
1541  SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
1542  SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
1543
1544  // Try to evaluate any dependencies out of the loop.
1545  SCEVHandle Tmp = getSCEVAtScope(LHS, L);
1546  if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
1547  Tmp = getSCEVAtScope(RHS, L);
1548  if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
1549
1550  // At this point, we would like to compute how many iterations of the
1551  // loop the predicate will return true for these inputs.
1552  if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
1553    // If there is a constant, force it into the RHS.
1554    std::swap(LHS, RHS);
1555    Cond = ICmpInst::getSwappedPredicate(Cond);
1556  }
1557
1558  // FIXME: think about handling pointer comparisons!  i.e.:
1559  // while (P != P+100) ++P;
1560
1561  // If we have a comparison of a chrec against a constant, try to use value
1562  // ranges to answer this query.
1563  if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
1564    if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
1565      if (AddRec->getLoop() == L) {
1566        // Form the comparison range using the constant of the correct type so
1567        // that the ConstantRange class knows to do a signed or unsigned
1568        // comparison.
1569        ConstantInt *CompVal = RHSC->getValue();
1570        const Type *RealTy = ExitCond->getOperand(0)->getType();
1571        CompVal = dyn_cast<ConstantInt>(
1572          ConstantExpr::getBitCast(CompVal, RealTy));
1573        if (CompVal) {
1574          // Form the constant range.
1575          ConstantRange CompRange(
1576              ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
1577
1578          SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange,
1579              false /*Always treat as unsigned range*/);
1580          if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
1581        }
1582      }
1583
1584  switch (Cond) {
1585  case ICmpInst::ICMP_NE: {                     // while (X != Y)
1586    // Convert to: while (X-Y != 0)
1587    SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
1588    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1589    break;
1590  }
1591  case ICmpInst::ICMP_EQ: {
1592    // Convert to: while (X-Y == 0)           // while (X == Y)
1593    SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
1594    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1595    break;
1596  }
1597  case ICmpInst::ICMP_SLT: {
1598    SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
1599    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1600    break;
1601  }
1602  case ICmpInst::ICMP_SGT: {
1603    SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
1604    if (!isa<SCEVCouldNotCompute>(TC)) return TC;
1605    break;
1606  }
1607  default:
1608#if 0
1609    cerr << "ComputeIterationCount ";
1610    if (ExitCond->getOperand(0)->getType()->isUnsigned())
1611      cerr << "[unsigned] ";
1612    cerr << *LHS << "   "
1613         << Instruction::getOpcodeName(Instruction::ICmp)
1614         << "   " << *RHS << "\n";
1615#endif
1616    break;
1617  }
1618  return ComputeIterationCountExhaustively(L, ExitCond,
1619                                       ExitBr->getSuccessor(0) == ExitBlock);
1620}
1621
1622static ConstantInt *
1623EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
1624  SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
1625  SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
1626  assert(isa<SCEVConstant>(Val) &&
1627         "Evaluation of SCEV at constant didn't fold correctly?");
1628  return cast<SCEVConstant>(Val)->getValue();
1629}
1630
1631/// GetAddressedElementFromGlobal - Given a global variable with an initializer
1632/// and a GEP expression (missing the pointer index) indexing into it, return
1633/// the addressed element of the initializer or null if the index expression is
1634/// invalid.
1635static Constant *
1636GetAddressedElementFromGlobal(GlobalVariable *GV,
1637                              const std::vector<ConstantInt*> &Indices) {
1638  Constant *Init = GV->getInitializer();
1639  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1640    uint64_t Idx = Indices[i]->getZExtValue();
1641    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1642      assert(Idx < CS->getNumOperands() && "Bad struct index!");
1643      Init = cast<Constant>(CS->getOperand(Idx));
1644    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1645      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
1646      Init = cast<Constant>(CA->getOperand(Idx));
1647    } else if (isa<ConstantAggregateZero>(Init)) {
1648      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1649        assert(Idx < STy->getNumElements() && "Bad struct index!");
1650        Init = Constant::getNullValue(STy->getElementType(Idx));
1651      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
1652        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
1653        Init = Constant::getNullValue(ATy->getElementType());
1654      } else {
1655        assert(0 && "Unknown constant aggregate type!");
1656      }
1657      return 0;
1658    } else {
1659      return 0; // Unknown initializer type
1660    }
1661  }
1662  return Init;
1663}
1664
1665/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
1666/// 'setcc load X, cst', try to se if we can compute the trip count.
1667SCEVHandle ScalarEvolutionsImpl::
1668ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
1669                                         const Loop *L,
1670                                         ICmpInst::Predicate predicate) {
1671  if (LI->isVolatile()) return UnknownValue;
1672
1673  // Check to see if the loaded pointer is a getelementptr of a global.
1674  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
1675  if (!GEP) return UnknownValue;
1676
1677  // Make sure that it is really a constant global we are gepping, with an
1678  // initializer, and make sure the first IDX is really 0.
1679  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1680  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1681      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
1682      !cast<Constant>(GEP->getOperand(1))->isNullValue())
1683    return UnknownValue;
1684
1685  // Okay, we allow one non-constant index into the GEP instruction.
1686  Value *VarIdx = 0;
1687  std::vector<ConstantInt*> Indexes;
1688  unsigned VarIdxNum = 0;
1689  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
1690    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
1691      Indexes.push_back(CI);
1692    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
1693      if (VarIdx) return UnknownValue;  // Multiple non-constant idx's.
1694      VarIdx = GEP->getOperand(i);
1695      VarIdxNum = i-2;
1696      Indexes.push_back(0);
1697    }
1698
1699  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
1700  // Check to see if X is a loop variant variable value now.
1701  SCEVHandle Idx = getSCEV(VarIdx);
1702  SCEVHandle Tmp = getSCEVAtScope(Idx, L);
1703  if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
1704
1705  // We can only recognize very limited forms of loop index expressions, in
1706  // particular, only affine AddRec's like {C1,+,C2}.
1707  SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
1708  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
1709      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
1710      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
1711    return UnknownValue;
1712
1713  unsigned MaxSteps = MaxBruteForceIterations;
1714  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
1715    ConstantInt *ItCst =
1716      ConstantInt::get(IdxExpr->getType(), IterationNum);
1717    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
1718
1719    // Form the GEP offset.
1720    Indexes[VarIdxNum] = Val;
1721
1722    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
1723    if (Result == 0) break;  // Cannot compute!
1724
1725    // Evaluate the condition for this iteration.
1726    Result = ConstantExpr::getICmp(predicate, Result, RHS);
1727    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
1728    if (cast<ConstantInt>(Result)->getZExtValue() == false) {
1729#if 0
1730      cerr << "\n***\n*** Computed loop count " << *ItCst
1731           << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
1732           << "***\n";
1733#endif
1734      ++NumArrayLenItCounts;
1735      return SCEVConstant::get(ItCst);   // Found terminating iteration!
1736    }
1737  }
1738  return UnknownValue;
1739}
1740
1741
1742/// CanConstantFold - Return true if we can constant fold an instruction of the
1743/// specified type, assuming that all operands were constants.
1744static bool CanConstantFold(const Instruction *I) {
1745  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
1746      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
1747    return true;
1748
1749  if (const CallInst *CI = dyn_cast<CallInst>(I))
1750    if (const Function *F = CI->getCalledFunction())
1751      return canConstantFoldCallTo((Function*)F);  // FIXME: elim cast
1752  return false;
1753}
1754
1755/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
1756/// in the loop that V is derived from.  We allow arbitrary operations along the
1757/// way, but the operands of an operation must either be constants or a value
1758/// derived from a constant PHI.  If this expression does not fit with these
1759/// constraints, return null.
1760static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
1761  // If this is not an instruction, or if this is an instruction outside of the
1762  // loop, it can't be derived from a loop PHI.
1763  Instruction *I = dyn_cast<Instruction>(V);
1764  if (I == 0 || !L->contains(I->getParent())) return 0;
1765
1766  if (PHINode *PN = dyn_cast<PHINode>(I))
1767    if (L->getHeader() == I->getParent())
1768      return PN;
1769    else
1770      // We don't currently keep track of the control flow needed to evaluate
1771      // PHIs, so we cannot handle PHIs inside of loops.
1772      return 0;
1773
1774  // If we won't be able to constant fold this expression even if the operands
1775  // are constants, return early.
1776  if (!CanConstantFold(I)) return 0;
1777
1778  // Otherwise, we can evaluate this instruction if all of its operands are
1779  // constant or derived from a PHI node themselves.
1780  PHINode *PHI = 0;
1781  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
1782    if (!(isa<Constant>(I->getOperand(Op)) ||
1783          isa<GlobalValue>(I->getOperand(Op)))) {
1784      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
1785      if (P == 0) return 0;  // Not evolving from PHI
1786      if (PHI == 0)
1787        PHI = P;
1788      else if (PHI != P)
1789        return 0;  // Evolving from multiple different PHIs.
1790    }
1791
1792  // This is a expression evolving from a constant PHI!
1793  return PHI;
1794}
1795
1796/// EvaluateExpression - Given an expression that passes the
1797/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
1798/// in the loop has the value PHIVal.  If we can't fold this expression for some
1799/// reason, return null.
1800static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
1801  if (isa<PHINode>(V)) return PHIVal;
1802  if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
1803    return GV;
1804  if (Constant *C = dyn_cast<Constant>(V)) return C;
1805  Instruction *I = cast<Instruction>(V);
1806
1807  std::vector<Constant*> Operands;
1808  Operands.resize(I->getNumOperands());
1809
1810  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1811    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
1812    if (Operands[i] == 0) return 0;
1813  }
1814
1815  return ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1816}
1817
1818/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
1819/// in the header of its containing loop, we know the loop executes a
1820/// constant number of times, and the PHI node is just a recurrence
1821/// involving constants, fold it.
1822Constant *ScalarEvolutionsImpl::
1823getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
1824  std::map<PHINode*, Constant*>::iterator I =
1825    ConstantEvolutionLoopExitValue.find(PN);
1826  if (I != ConstantEvolutionLoopExitValue.end())
1827    return I->second;
1828
1829  if (Its > MaxBruteForceIterations)
1830    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
1831
1832  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
1833
1834  // Since the loop is canonicalized, the PHI node must have two entries.  One
1835  // entry must be a constant (coming in from outside of the loop), and the
1836  // second must be derived from the same PHI.
1837  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1838  Constant *StartCST =
1839    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1840  if (StartCST == 0)
1841    return RetVal = 0;  // Must be a constant.
1842
1843  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1844  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1845  if (PN2 != PN)
1846    return RetVal = 0;  // Not derived from same PHI.
1847
1848  // Execute the loop symbolically to determine the exit value.
1849  unsigned IterationNum = 0;
1850  unsigned NumIterations = Its;
1851  if (NumIterations != Its)
1852    return RetVal = 0;  // More than 2^32 iterations??
1853
1854  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
1855    if (IterationNum == NumIterations)
1856      return RetVal = PHIVal;  // Got exit value!
1857
1858    // Compute the value of the PHI node for the next iteration.
1859    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1860    if (NextPHI == PHIVal)
1861      return RetVal = NextPHI;  // Stopped evolving!
1862    if (NextPHI == 0)
1863      return 0;        // Couldn't evaluate!
1864    PHIVal = NextPHI;
1865  }
1866}
1867
1868/// ComputeIterationCountExhaustively - If the trip is known to execute a
1869/// constant number of times (the condition evolves only from constants),
1870/// try to evaluate a few iterations of the loop until we get the exit
1871/// condition gets a value of ExitWhen (true or false).  If we cannot
1872/// evaluate the trip count of the loop, return UnknownValue.
1873SCEVHandle ScalarEvolutionsImpl::
1874ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
1875  PHINode *PN = getConstantEvolvingPHI(Cond, L);
1876  if (PN == 0) return UnknownValue;
1877
1878  // Since the loop is canonicalized, the PHI node must have two entries.  One
1879  // entry must be a constant (coming in from outside of the loop), and the
1880  // second must be derived from the same PHI.
1881  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
1882  Constant *StartCST =
1883    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
1884  if (StartCST == 0) return UnknownValue;  // Must be a constant.
1885
1886  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
1887  PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
1888  if (PN2 != PN) return UnknownValue;  // Not derived from same PHI.
1889
1890  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
1891  // the loop symbolically to determine when the condition gets a value of
1892  // "ExitWhen".
1893  unsigned IterationNum = 0;
1894  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
1895  for (Constant *PHIVal = StartCST;
1896       IterationNum != MaxIterations; ++IterationNum) {
1897    ConstantInt *CondVal =
1898      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
1899
1900    // Couldn't symbolically evaluate.
1901    if (!CondVal) return UnknownValue;
1902
1903    if (CondVal->getZExtValue() == uint64_t(ExitWhen)) {
1904      ConstantEvolutionLoopExitValue[PN] = PHIVal;
1905      ++NumBruteForceTripCountsComputed;
1906      return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
1907    }
1908
1909    // Compute the value of the PHI node for the next iteration.
1910    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
1911    if (NextPHI == 0 || NextPHI == PHIVal)
1912      return UnknownValue;  // Couldn't evaluate or not making progress...
1913    PHIVal = NextPHI;
1914  }
1915
1916  // Too many iterations were needed to evaluate.
1917  return UnknownValue;
1918}
1919
1920/// getSCEVAtScope - Compute the value of the specified expression within the
1921/// indicated loop (which may be null to indicate in no loop).  If the
1922/// expression cannot be evaluated, return UnknownValue.
1923SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
1924  // FIXME: this should be turned into a virtual method on SCEV!
1925
1926  if (isa<SCEVConstant>(V)) return V;
1927
1928  // If this instruction is evolves from a constant-evolving PHI, compute the
1929  // exit value from the loop without using SCEVs.
1930  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
1931    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
1932      const Loop *LI = this->LI[I->getParent()];
1933      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
1934        if (PHINode *PN = dyn_cast<PHINode>(I))
1935          if (PN->getParent() == LI->getHeader()) {
1936            // Okay, there is no closed form solution for the PHI node.  Check
1937            // to see if the loop that contains it has a known iteration count.
1938            // If so, we may be able to force computation of the exit value.
1939            SCEVHandle IterationCount = getIterationCount(LI);
1940            if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
1941              // Okay, we know how many times the containing loop executes.  If
1942              // this is a constant evolving PHI node, get the final value at
1943              // the specified iteration number.
1944              Constant *RV = getConstantEvolutionLoopExitValue(PN,
1945                                               ICC->getValue()->getZExtValue(),
1946                                                               LI);
1947              if (RV) return SCEVUnknown::get(RV);
1948            }
1949          }
1950
1951      // Okay, this is an expression that we cannot symbolically evaluate
1952      // into a SCEV.  Check to see if it's possible to symbolically evaluate
1953      // the arguments into constants, and if so, try to constant propagate the
1954      // result.  This is particularly useful for computing loop exit values.
1955      if (CanConstantFold(I)) {
1956        std::vector<Constant*> Operands;
1957        Operands.reserve(I->getNumOperands());
1958        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
1959          Value *Op = I->getOperand(i);
1960          if (Constant *C = dyn_cast<Constant>(Op)) {
1961            Operands.push_back(C);
1962          } else {
1963            SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
1964            if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
1965              Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
1966                                                              Op->getType(),
1967                                                              false));
1968            else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
1969              if (Constant *C = dyn_cast<Constant>(SU->getValue()))
1970                Operands.push_back(ConstantExpr::getIntegerCast(C,
1971                                                                Op->getType(),
1972                                                                false));
1973              else
1974                return V;
1975            } else {
1976              return V;
1977            }
1978          }
1979        }
1980        Constant *C =ConstantFoldInstOperands(I, &Operands[0], Operands.size());
1981        return SCEVUnknown::get(C);
1982      }
1983    }
1984
1985    // This is some other type of SCEVUnknown, just return it.
1986    return V;
1987  }
1988
1989  if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
1990    // Avoid performing the look-up in the common case where the specified
1991    // expression has no loop-variant portions.
1992    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
1993      SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
1994      if (OpAtScope != Comm->getOperand(i)) {
1995        if (OpAtScope == UnknownValue) return UnknownValue;
1996        // Okay, at least one of these operands is loop variant but might be
1997        // foldable.  Build a new instance of the folded commutative expression.
1998        std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
1999        NewOps.push_back(OpAtScope);
2000
2001        for (++i; i != e; ++i) {
2002          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2003          if (OpAtScope == UnknownValue) return UnknownValue;
2004          NewOps.push_back(OpAtScope);
2005        }
2006        if (isa<SCEVAddExpr>(Comm))
2007          return SCEVAddExpr::get(NewOps);
2008        assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
2009        return SCEVMulExpr::get(NewOps);
2010      }
2011    }
2012    // If we got here, all operands are loop invariant.
2013    return Comm;
2014  }
2015
2016  if (SCEVSDivExpr *Div = dyn_cast<SCEVSDivExpr>(V)) {
2017    SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
2018    if (LHS == UnknownValue) return LHS;
2019    SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
2020    if (RHS == UnknownValue) return RHS;
2021    if (LHS == Div->getLHS() && RHS == Div->getRHS())
2022      return Div;   // must be loop invariant
2023    return SCEVSDivExpr::get(LHS, RHS);
2024  }
2025
2026  // If this is a loop recurrence for a loop that does not contain L, then we
2027  // are dealing with the final value computed by the loop.
2028  if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2029    if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2030      // To evaluate this recurrence, we need to know how many times the AddRec
2031      // loop iterates.  Compute this now.
2032      SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
2033      if (IterationCount == UnknownValue) return UnknownValue;
2034      IterationCount = getTruncateOrZeroExtend(IterationCount,
2035                                               AddRec->getType());
2036
2037      // If the value is affine, simplify the expression evaluation to just
2038      // Start + Step*IterationCount.
2039      if (AddRec->isAffine())
2040        return SCEVAddExpr::get(AddRec->getStart(),
2041                                SCEVMulExpr::get(IterationCount,
2042                                                 AddRec->getOperand(1)));
2043
2044      // Otherwise, evaluate it the hard way.
2045      return AddRec->evaluateAtIteration(IterationCount);
2046    }
2047    return UnknownValue;
2048  }
2049
2050  //assert(0 && "Unknown SCEV type!");
2051  return UnknownValue;
2052}
2053
2054
2055/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2056/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
2057/// might be the same) or two SCEVCouldNotCompute objects.
2058///
2059static std::pair<SCEVHandle,SCEVHandle>
2060SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
2061  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2062  SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2063  SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2064  SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2065
2066  // We currently can only solve this if the coefficients are constants.
2067  if (!L || !M || !N) {
2068    SCEV *CNC = new SCEVCouldNotCompute();
2069    return std::make_pair(CNC, CNC);
2070  }
2071
2072  Constant *C = L->getValue();
2073  Constant *Two = ConstantInt::get(C->getType(), 2);
2074
2075  // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2076  // The B coefficient is M-N/2
2077  Constant *B = ConstantExpr::getSub(M->getValue(),
2078                                     ConstantExpr::getSDiv(N->getValue(),
2079                                                          Two));
2080  // The A coefficient is N/2
2081  Constant *A = ConstantExpr::getSDiv(N->getValue(), Two);
2082
2083  // Compute the B^2-4ac term.
2084  Constant *SqrtTerm =
2085    ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
2086                         ConstantExpr::getMul(A, C));
2087  SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
2088
2089  // Compute floor(sqrt(B^2-4ac))
2090  uint64_t SqrtValV = cast<ConstantInt>(SqrtTerm)->getZExtValue();
2091  uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
2092  // The square root might not be precise for arbitrary 64-bit integer
2093  // values.  Do some sanity checks to ensure it's correct.
2094  if (SqrtValV2*SqrtValV2 > SqrtValV ||
2095      (SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
2096    SCEV *CNC = new SCEVCouldNotCompute();
2097    return std::make_pair(CNC, CNC);
2098  }
2099
2100  ConstantInt *SqrtVal = ConstantInt::get(Type::Int64Ty, SqrtValV2);
2101  SqrtTerm = ConstantExpr::getTruncOrBitCast(SqrtVal, SqrtTerm->getType());
2102
2103  Constant *NegB = ConstantExpr::getNeg(B);
2104  Constant *TwoA = ConstantExpr::getMul(A, Two);
2105
2106  // The divisions must be performed as signed divisions.
2107  Constant *Solution1 =
2108    ConstantExpr::getSDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
2109  Constant *Solution2 =
2110    ConstantExpr::getSDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
2111  return std::make_pair(SCEVUnknown::get(Solution1),
2112                        SCEVUnknown::get(Solution2));
2113}
2114
2115/// HowFarToZero - Return the number of times a backedge comparing the specified
2116/// value to zero will execute.  If not computable, return UnknownValue
2117SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
2118  // If the value is a constant
2119  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2120    // If the value is already zero, the branch will execute zero times.
2121    if (C->getValue()->isNullValue()) return C;
2122    return UnknownValue;  // Otherwise it will loop infinitely.
2123  }
2124
2125  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2126  if (!AddRec || AddRec->getLoop() != L)
2127    return UnknownValue;
2128
2129  if (AddRec->isAffine()) {
2130    // If this is an affine expression the execution count of this branch is
2131    // equal to:
2132    //
2133    //     (0 - Start/Step)    iff   Start % Step == 0
2134    //
2135    // Get the initial value for the loop.
2136    SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2137    if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
2138    SCEVHandle Step = AddRec->getOperand(1);
2139
2140    Step = getSCEVAtScope(Step, L->getParentLoop());
2141
2142    // Figure out if Start % Step == 0.
2143    // FIXME: We should add DivExpr and RemExpr operations to our AST.
2144    if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
2145      if (StepC->getValue()->equalsInt(1))      // N % 1 == 0
2146        return SCEV::getNegativeSCEV(Start);  // 0 - Start/1 == -Start
2147      if (StepC->getValue()->isAllOnesValue())  // N % -1 == 0
2148        return Start;                   // 0 - Start/-1 == Start
2149
2150      // Check to see if Start is divisible by SC with no remainder.
2151      if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
2152        ConstantInt *StartCC = StartC->getValue();
2153        Constant *StartNegC = ConstantExpr::getNeg(StartCC);
2154        Constant *Rem = ConstantExpr::getSRem(StartNegC, StepC->getValue());
2155        if (Rem->isNullValue()) {
2156          Constant *Result =ConstantExpr::getSDiv(StartNegC,StepC->getValue());
2157          return SCEVUnknown::get(Result);
2158        }
2159      }
2160    }
2161  } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2162    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2163    // the quadratic equation to solve it.
2164    std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
2165    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2166    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2167    if (R1) {
2168#if 0
2169      cerr << "HFTZ: " << *V << " - sol#1: " << *R1
2170           << "  sol#2: " << *R2 << "\n";
2171#endif
2172      // Pick the smallest positive root value.
2173      if (ConstantInt *CB =
2174          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2175                                   R1->getValue(), R2->getValue()))) {
2176        if (CB->getZExtValue() == false)
2177          std::swap(R1, R2);   // R1 is the minimum root now.
2178
2179        // We can only use this value if the chrec ends up with an exact zero
2180        // value at this index.  When solving for "X*X != 5", for example, we
2181        // should not accept a root of 2.
2182        SCEVHandle Val = AddRec->evaluateAtIteration(R1);
2183        if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
2184          if (EvalVal->getValue()->isNullValue())
2185            return R1;  // We found a quadratic root!
2186      }
2187    }
2188  }
2189
2190  return UnknownValue;
2191}
2192
2193/// HowFarToNonZero - Return the number of times a backedge checking the
2194/// specified value for nonzero will execute.  If not computable, return
2195/// UnknownValue
2196SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
2197  // Loops that look like: while (X == 0) are very strange indeed.  We don't
2198  // handle them yet except for the trivial case.  This could be expanded in the
2199  // future as needed.
2200
2201  // If the value is a constant, check to see if it is known to be non-zero
2202  // already.  If so, the backedge will execute zero times.
2203  if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2204    Constant *Zero = Constant::getNullValue(C->getValue()->getType());
2205    Constant *NonZero =
2206      ConstantExpr::getICmp(ICmpInst::ICMP_NE, C->getValue(), Zero);
2207    if (NonZero == ConstantInt::getTrue())
2208      return getSCEV(Zero);
2209    return UnknownValue;  // Otherwise it will loop infinitely.
2210  }
2211
2212  // We could implement others, but I really doubt anyone writes loops like
2213  // this, and if they did, they would already be constant folded.
2214  return UnknownValue;
2215}
2216
2217/// HowManyLessThans - Return the number of times a backedge containing the
2218/// specified less-than comparison will execute.  If not computable, return
2219/// UnknownValue.
2220SCEVHandle ScalarEvolutionsImpl::
2221HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
2222  // Only handle:  "ADDREC < LoopInvariant".
2223  if (!RHS->isLoopInvariant(L)) return UnknownValue;
2224
2225  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
2226  if (!AddRec || AddRec->getLoop() != L)
2227    return UnknownValue;
2228
2229  if (AddRec->isAffine()) {
2230    // FORNOW: We only support unit strides.
2231    SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
2232    if (AddRec->getOperand(1) != One)
2233      return UnknownValue;
2234
2235    // The number of iterations for "[n,+,1] < m", is m-n.  However, we don't
2236    // know that m is >= n on input to the loop.  If it is, the condition return
2237    // true zero times.  What we really should return, for full generality, is
2238    // SMAX(0, m-n).  Since we cannot check this, we will instead check for a
2239    // canonical loop form: most do-loops will have a check that dominates the
2240    // loop, that only enters the loop if [n-1]<m.  If we can find this check,
2241    // we know that the SMAX will evaluate to m-n, because we know that m >= n.
2242
2243    // Search for the check.
2244    BasicBlock *Preheader = L->getLoopPreheader();
2245    BasicBlock *PreheaderDest = L->getHeader();
2246    if (Preheader == 0) return UnknownValue;
2247
2248    BranchInst *LoopEntryPredicate =
2249      dyn_cast<BranchInst>(Preheader->getTerminator());
2250    if (!LoopEntryPredicate) return UnknownValue;
2251
2252    // This might be a critical edge broken out.  If the loop preheader ends in
2253    // an unconditional branch to the loop, check to see if the preheader has a
2254    // single predecessor, and if so, look for its terminator.
2255    while (LoopEntryPredicate->isUnconditional()) {
2256      PreheaderDest = Preheader;
2257      Preheader = Preheader->getSinglePredecessor();
2258      if (!Preheader) return UnknownValue;  // Multiple preds.
2259
2260      LoopEntryPredicate =
2261        dyn_cast<BranchInst>(Preheader->getTerminator());
2262      if (!LoopEntryPredicate) return UnknownValue;
2263    }
2264
2265    // Now that we found a conditional branch that dominates the loop, check to
2266    // see if it is the comparison we are looking for.
2267    if (ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition())){
2268      Value *PreCondLHS = ICI->getOperand(0);
2269      Value *PreCondRHS = ICI->getOperand(1);
2270      ICmpInst::Predicate Cond;
2271      if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2272        Cond = ICI->getPredicate();
2273      else
2274        Cond = ICI->getInversePredicate();
2275
2276      switch (Cond) {
2277      case ICmpInst::ICMP_UGT:
2278        std::swap(PreCondLHS, PreCondRHS);
2279        Cond = ICmpInst::ICMP_ULT;
2280        break;
2281      case ICmpInst::ICMP_SGT:
2282        std::swap(PreCondLHS, PreCondRHS);
2283        Cond = ICmpInst::ICMP_SLT;
2284        break;
2285      default: break;
2286      }
2287
2288      if (Cond == ICmpInst::ICMP_SLT) {
2289        if (PreCondLHS->getType()->isInteger()) {
2290          if (RHS != getSCEV(PreCondRHS))
2291            return UnknownValue;  // Not a comparison against 'm'.
2292
2293          if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
2294                      != getSCEV(PreCondLHS))
2295            return UnknownValue;  // Not a comparison against 'n-1'.
2296        }
2297        else return UnknownValue;
2298      } else if (Cond == ICmpInst::ICMP_ULT)
2299        return UnknownValue;
2300
2301      // cerr << "Computed Loop Trip Count as: "
2302      //      << //  *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
2303      return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
2304    }
2305    else
2306      return UnknownValue;
2307  }
2308
2309  return UnknownValue;
2310}
2311
2312/// getNumIterationsInRange - Return the number of iterations of this loop that
2313/// produce values in the specified constant range.  Another way of looking at
2314/// this is that it returns the first iteration number where the value is not in
2315/// the condition, thus computing the exit count. If the iteration count can't
2316/// be computed, an instance of SCEVCouldNotCompute is returned.
2317SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
2318                                                   bool isSigned) const {
2319  if (Range.isFullSet())  // Infinite loop.
2320    return new SCEVCouldNotCompute();
2321
2322  // If the start is a non-zero constant, shift the range to simplify things.
2323  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
2324    if (!SC->getValue()->isNullValue()) {
2325      std::vector<SCEVHandle> Operands(op_begin(), op_end());
2326      Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
2327      SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
2328      if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
2329        return ShiftedAddRec->getNumIterationsInRange(
2330                           Range.subtract(SC->getValue()->getValue()),isSigned);
2331      // This is strange and shouldn't happen.
2332      return new SCEVCouldNotCompute();
2333    }
2334
2335  // The only time we can solve this is when we have all constant indices.
2336  // Otherwise, we cannot determine the overflow conditions.
2337  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2338    if (!isa<SCEVConstant>(getOperand(i)))
2339      return new SCEVCouldNotCompute();
2340
2341
2342  // Okay at this point we know that all elements of the chrec are constants and
2343  // that the start element is zero.
2344
2345  // First check to see if the range contains zero.  If not, the first
2346  // iteration exits.
2347  if (!Range.contains(APInt(getBitWidth(),0), isSigned))
2348    return SCEVConstant::get(ConstantInt::get(getType(),0));
2349
2350  if (isAffine()) {
2351    // If this is an affine expression then we have this situation:
2352    //   Solve {0,+,A} in Range  ===  Ax in Range
2353
2354    // Since we know that zero is in the range, we know that the upper value of
2355    // the range must be the first possible exit value.  Also note that we
2356    // already checked for a full range.
2357    const APInt &Upper = Range.getUpper();
2358    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
2359    APInt One(getBitWidth(),1);
2360
2361    // The exit value should be (Upper+A-1)/A.
2362    APInt ExitVal(Upper);
2363    if (A != One)
2364      ExitVal = (Upper + A - One).sdiv(A);
2365    ConstantInt *ExitValue = ConstantInt::get(getType(), ExitVal);
2366
2367    // Evaluate at the exit value.  If we really did fall out of the valid
2368    // range, then we computed our trip count, otherwise wrap around or other
2369    // things must have happened.
2370    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
2371    if (Range.contains(Val->getValue(), isSigned))
2372      return new SCEVCouldNotCompute();  // Something strange happened
2373
2374    // Ensure that the previous value is in the range.  This is a sanity check.
2375    assert(Range.contains(
2376           EvaluateConstantChrecAtConstant(this,
2377           ConstantInt::get(getType(), ExitVal - One))->getValue(), isSigned) &&
2378           "Linear scev computation is off in a bad way!");
2379    return SCEVConstant::get(cast<ConstantInt>(ExitValue));
2380  } else if (isQuadratic()) {
2381    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
2382    // quadratic equation to solve it.  To do this, we must frame our problem in
2383    // terms of figuring out when zero is crossed, instead of when
2384    // Range.getUpper() is crossed.
2385    std::vector<SCEVHandle> NewOps(op_begin(), op_end());
2386    NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(
2387                                ConstantInt::get(getType(), Range.getUpper())));
2388    SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
2389
2390    // Next, solve the constructed addrec
2391    std::pair<SCEVHandle,SCEVHandle> Roots =
2392      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
2393    SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2394    SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2395    if (R1) {
2396      // Pick the smallest positive root value.
2397      if (ConstantInt *CB =
2398          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2399                                   R1->getValue(), R2->getValue()))) {
2400        if (CB->getZExtValue() == false)
2401          std::swap(R1, R2);   // R1 is the minimum root now.
2402
2403        // Make sure the root is not off by one.  The returned iteration should
2404        // not be in the range, but the previous one should be.  When solving
2405        // for "X*X < 5", for example, we should not return a root of 2.
2406        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
2407                                                             R1->getValue());
2408        if (Range.contains(R1Val->getValue(), isSigned)) {
2409          // The next iteration must be out of the range...
2410          Constant *NextVal =
2411            ConstantExpr::getAdd(R1->getValue(),
2412                                 ConstantInt::get(R1->getType(), 1));
2413
2414          R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2415          if (!Range.contains(R1Val->getValue(), isSigned))
2416            return SCEVUnknown::get(NextVal);
2417          return new SCEVCouldNotCompute();  // Something strange happened
2418        }
2419
2420        // If R1 was not in the range, then it is a good return value.  Make
2421        // sure that R1-1 WAS in the range though, just in case.
2422        Constant *NextVal =
2423          ConstantExpr::getSub(R1->getValue(),
2424                               ConstantInt::get(R1->getType(), 1));
2425        R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
2426        if (Range.contains(R1Val->getValue(), isSigned))
2427          return R1;
2428        return new SCEVCouldNotCompute();  // Something strange happened
2429      }
2430    }
2431  }
2432
2433  // Fallback, if this is a general polynomial, figure out the progression
2434  // through brute force: evaluate until we find an iteration that fails the
2435  // test.  This is likely to be slow, but getting an accurate trip count is
2436  // incredibly important, we will be able to simplify the exit test a lot, and
2437  // we are almost guaranteed to get a trip count in this case.
2438  ConstantInt *TestVal = ConstantInt::get(getType(), 0);
2439  ConstantInt *One     = ConstantInt::get(getType(), 1);
2440  ConstantInt *EndVal  = TestVal;  // Stop when we wrap around.
2441  do {
2442    ++NumBruteForceEvaluations;
2443    SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
2444    if (!isa<SCEVConstant>(Val))  // This shouldn't happen.
2445      return new SCEVCouldNotCompute();
2446
2447    // Check to see if we found the value!
2448    if (!Range.contains(cast<SCEVConstant>(Val)->getValue()->getValue(),
2449                        isSigned))
2450      return SCEVConstant::get(TestVal);
2451
2452    // Increment to test the next index.
2453    TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
2454  } while (TestVal != EndVal);
2455
2456  return new SCEVCouldNotCompute();
2457}
2458
2459
2460
2461//===----------------------------------------------------------------------===//
2462//                   ScalarEvolution Class Implementation
2463//===----------------------------------------------------------------------===//
2464
2465bool ScalarEvolution::runOnFunction(Function &F) {
2466  Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
2467  return false;
2468}
2469
2470void ScalarEvolution::releaseMemory() {
2471  delete (ScalarEvolutionsImpl*)Impl;
2472  Impl = 0;
2473}
2474
2475void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
2476  AU.setPreservesAll();
2477  AU.addRequiredTransitive<LoopInfo>();
2478}
2479
2480SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
2481  return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
2482}
2483
2484/// hasSCEV - Return true if the SCEV for this value has already been
2485/// computed.
2486bool ScalarEvolution::hasSCEV(Value *V) const {
2487  return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
2488}
2489
2490
2491/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
2492/// the specified value.
2493void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
2494  ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
2495}
2496
2497
2498SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
2499  return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
2500}
2501
2502bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
2503  return !isa<SCEVCouldNotCompute>(getIterationCount(L));
2504}
2505
2506SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
2507  return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
2508}
2509
2510void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
2511  return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
2512}
2513
2514static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
2515                          const Loop *L) {
2516  // Print all inner loops first
2517  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
2518    PrintLoopInfo(OS, SE, *I);
2519
2520  cerr << "Loop " << L->getHeader()->getName() << ": ";
2521
2522  std::vector<BasicBlock*> ExitBlocks;
2523  L->getExitBlocks(ExitBlocks);
2524  if (ExitBlocks.size() != 1)
2525    cerr << "<multiple exits> ";
2526
2527  if (SE->hasLoopInvariantIterationCount(L)) {
2528    cerr << *SE->getIterationCount(L) << " iterations! ";
2529  } else {
2530    cerr << "Unpredictable iteration count. ";
2531  }
2532
2533  cerr << "\n";
2534}
2535
2536void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
2537  Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
2538  LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
2539
2540  OS << "Classifying expressions for: " << F.getName() << "\n";
2541  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2542    if (I->getType()->isInteger()) {
2543      OS << *I;
2544      OS << "  --> ";
2545      SCEVHandle SV = getSCEV(&*I);
2546      SV->print(OS);
2547      OS << "\t\t";
2548
2549      if ((*I).getType()->isInteger()) {
2550        ConstantRange Bounds = SV->getValueRange();
2551        if (!Bounds.isFullSet())
2552          OS << "Bounds: " << Bounds << " ";
2553      }
2554
2555      if (const Loop *L = LI.getLoopFor((*I).getParent())) {
2556        OS << "Exits: ";
2557        SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
2558        if (isa<SCEVCouldNotCompute>(ExitValue)) {
2559          OS << "<<Unknown>>";
2560        } else {
2561          OS << *ExitValue;
2562        }
2563      }
2564
2565
2566      OS << "\n";
2567    }
2568
2569  OS << "Determining loop execution counts for: " << F.getName() << "\n";
2570  for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
2571    PrintLoopInfo(OS, this, *I);
2572}
2573
2574