ScalarEvolution.cpp revision d578a40853ab54f6172c2ca350626edacc45846c
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/ValueTracking.h"
74#include "llvm/Assembly/Writer.h"
75#include "llvm/Target/TargetData.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/ConstantRange.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/GetElementPtrTypeIterator.h"
81#include "llvm/Support/InstIterator.h"
82#include "llvm/Support/MathExtras.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/ADT/Statistic.h"
85#include "llvm/ADT/STLExtras.h"
86#include "llvm/ADT/SmallPtrSet.h"
87#include <algorithm>
88using namespace llvm;
89
90STATISTIC(NumArrayLenItCounts,
91          "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93          "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95          "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97          "Number of loops with trip counts computed by force");
98
99static cl::opt<unsigned>
100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101                        cl::desc("Maximum number of iterations SCEV will "
102                                 "symbolically execute a constant "
103                                 "derived loop"),
104                        cl::init(100));
105
106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107                "Scalar Evolution Analysis", false, true);
108char ScalarEvolution::ID = 0;
109
110//===----------------------------------------------------------------------===//
111//                           SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
117
118SCEV::~SCEV() {}
119
120void SCEV::dump() const {
121  print(dbgs());
122  dbgs() << '\n';
123}
124
125bool SCEV::isZero() const {
126  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127    return SC->getValue()->isZero();
128  return false;
129}
130
131bool SCEV::isOne() const {
132  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133    return SC->getValue()->isOne();
134  return false;
135}
136
137bool SCEV::isAllOnesValue() const {
138  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139    return SC->getValue()->isAllOnesValue();
140  return false;
141}
142
143SCEVCouldNotCompute::SCEVCouldNotCompute() :
144  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
145
146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
147  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
148  return false;
149}
150
151const Type *SCEVCouldNotCompute::getType() const {
152  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153  return 0;
154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
157  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158  return false;
159}
160
161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162  llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163  return false;
164}
165
166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
167  OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171  return S->getSCEVType() == scCouldNotCompute;
172}
173
174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
175  FoldingSetNodeID ID;
176  ID.AddInteger(scConstant);
177  ID.AddPointer(V);
178  void *IP = 0;
179  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
180  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
181  UniqueSCEVs.InsertNode(S, IP);
182  return S;
183}
184
185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
186  return getConstant(ConstantInt::get(getContext(), Val));
187}
188
189const SCEV *
190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191  const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192  return getConstant(ConstantInt::get(ITy, V, isSigned));
193}
194
195const Type *SCEVConstant::getType() const { return V->getType(); }
196
197void SCEVConstant::print(raw_ostream &OS) const {
198  WriteAsOperand(OS, V, false);
199}
200
201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
202                           unsigned SCEVTy, const SCEV *op, const Type *ty)
203  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
204
205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206  return Op->dominates(BB, DT);
207}
208
209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210  return Op->properlyDominates(BB, DT);
211}
212
213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
214                                   const SCEV *op, const Type *ty)
215  : SCEVCastExpr(ID, scTruncate, op, ty) {
216  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
218         "Cannot truncate non-integer value!");
219}
220
221void SCEVTruncateExpr::print(raw_ostream &OS) const {
222  OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
223}
224
225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
226                                       const SCEV *op, const Type *ty)
227  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
228  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
230         "Cannot zero extend non-integer value!");
231}
232
233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
234  OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
235}
236
237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
238                                       const SCEV *op, const Type *ty)
239  : SCEVCastExpr(ID, scSignExtend, op, ty) {
240  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
242         "Cannot sign extend non-integer value!");
243}
244
245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
246  OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
247}
248
249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
250  const char *OpStr = getOperationStr();
251  OS << "(";
252  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253    OS << **I;
254    if (llvm::next(I) != E)
255      OS << OpStr;
256  }
257  OS << ")";
258}
259
260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
261  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
262    if (!(*I)->dominates(BB, DT))
263      return false;
264  return true;
265}
266
267bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
268  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
269    if (!(*I)->properlyDominates(BB, DT))
270      return false;
271  return true;
272}
273
274bool SCEVNAryExpr::isLoopInvariant(const Loop *L) const {
275  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
276    if (!(*I)->isLoopInvariant(L))
277      return false;
278  return true;
279}
280
281// hasComputableLoopEvolution - N-ary expressions have computable loop
282// evolutions iff they have at least one operand that varies with the loop,
283// but that all varying operands are computable.
284bool SCEVNAryExpr::hasComputableLoopEvolution(const Loop *L) const {
285  bool HasVarying = false;
286  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
287    const SCEV *S = *I;
288    if (!S->isLoopInvariant(L)) {
289      if (S->hasComputableLoopEvolution(L))
290        HasVarying = true;
291      else
292        return false;
293    }
294  }
295  return HasVarying;
296}
297
298bool SCEVNAryExpr::hasOperand(const SCEV *O) const {
299  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
300    const SCEV *S = *I;
301    if (O == S || S->hasOperand(O))
302      return true;
303  }
304  return false;
305}
306
307bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
308  return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
309}
310
311bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
312  return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
313}
314
315void SCEVUDivExpr::print(raw_ostream &OS) const {
316  OS << "(" << *LHS << " /u " << *RHS << ")";
317}
318
319const Type *SCEVUDivExpr::getType() const {
320  // In most cases the types of LHS and RHS will be the same, but in some
321  // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
322  // depend on the type for correctness, but handling types carefully can
323  // avoid extra casts in the SCEVExpander. The LHS is more likely to be
324  // a pointer type than the RHS, so use the RHS' type here.
325  return RHS->getType();
326}
327
328bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
329  // Add recurrences are never invariant in the function-body (null loop).
330  if (!QueryLoop)
331    return false;
332
333  // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
334  if (QueryLoop->contains(L))
335    return false;
336
337  // This recurrence is invariant w.r.t. QueryLoop if L contains QueryLoop.
338  if (L->contains(QueryLoop))
339    return true;
340
341  // This recurrence is variant w.r.t. QueryLoop if any of its operands
342  // are variant.
343  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
344    if (!(*I)->isLoopInvariant(QueryLoop))
345      return false;
346
347  // Otherwise it's loop-invariant.
348  return true;
349}
350
351bool
352SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
353  return DT->dominates(L->getHeader(), BB) &&
354         SCEVNAryExpr::dominates(BB, DT);
355}
356
357bool
358SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
359  // This uses a "dominates" query instead of "properly dominates" query because
360  // the instruction which produces the addrec's value is a PHI, and a PHI
361  // effectively properly dominates its entire containing block.
362  return DT->dominates(L->getHeader(), BB) &&
363         SCEVNAryExpr::properlyDominates(BB, DT);
364}
365
366void SCEVAddRecExpr::print(raw_ostream &OS) const {
367  OS << "{" << *Operands[0];
368  for (unsigned i = 1, e = NumOperands; i != e; ++i)
369    OS << ",+," << *Operands[i];
370  OS << "}<";
371  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
372  OS << ">";
373}
374
375void SCEVUnknown::deleted() {
376  // Clear this SCEVUnknown from ValuesAtScopes.
377  SE->ValuesAtScopes.erase(this);
378
379  // Remove this SCEVUnknown from the uniquing map.
380  SE->UniqueSCEVs.RemoveNode(this);
381
382  // Release the value.
383  setValPtr(0);
384}
385
386void SCEVUnknown::allUsesReplacedWith(Value *New) {
387  // Clear this SCEVUnknown from ValuesAtScopes.
388  SE->ValuesAtScopes.erase(this);
389
390  // Remove this SCEVUnknown from the uniquing map.
391  SE->UniqueSCEVs.RemoveNode(this);
392
393  // Update this SCEVUnknown to point to the new value. This is needed
394  // because there may still be outstanding SCEVs which still point to
395  // this SCEVUnknown.
396  setValPtr(New);
397}
398
399bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
400  // All non-instruction values are loop invariant.  All instructions are loop
401  // invariant if they are not contained in the specified loop.
402  // Instructions are never considered invariant in the function body
403  // (null loop) because they are defined within the "loop".
404  if (Instruction *I = dyn_cast<Instruction>(getValue()))
405    return L && !L->contains(I);
406  return true;
407}
408
409bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
410  if (Instruction *I = dyn_cast<Instruction>(getValue()))
411    return DT->dominates(I->getParent(), BB);
412  return true;
413}
414
415bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
416  if (Instruction *I = dyn_cast<Instruction>(getValue()))
417    return DT->properlyDominates(I->getParent(), BB);
418  return true;
419}
420
421const Type *SCEVUnknown::getType() const {
422  return getValue()->getType();
423}
424
425bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
426  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
427    if (VCE->getOpcode() == Instruction::PtrToInt)
428      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
429        if (CE->getOpcode() == Instruction::GetElementPtr &&
430            CE->getOperand(0)->isNullValue() &&
431            CE->getNumOperands() == 2)
432          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
433            if (CI->isOne()) {
434              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
435                                 ->getElementType();
436              return true;
437            }
438
439  return false;
440}
441
442bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
443  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
444    if (VCE->getOpcode() == Instruction::PtrToInt)
445      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
446        if (CE->getOpcode() == Instruction::GetElementPtr &&
447            CE->getOperand(0)->isNullValue()) {
448          const Type *Ty =
449            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450          if (const StructType *STy = dyn_cast<StructType>(Ty))
451            if (!STy->isPacked() &&
452                CE->getNumOperands() == 3 &&
453                CE->getOperand(1)->isNullValue()) {
454              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
455                if (CI->isOne() &&
456                    STy->getNumElements() == 2 &&
457                    STy->getElementType(0)->isIntegerTy(1)) {
458                  AllocTy = STy->getElementType(1);
459                  return true;
460                }
461            }
462        }
463
464  return false;
465}
466
467bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
468  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
469    if (VCE->getOpcode() == Instruction::PtrToInt)
470      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
471        if (CE->getOpcode() == Instruction::GetElementPtr &&
472            CE->getNumOperands() == 3 &&
473            CE->getOperand(0)->isNullValue() &&
474            CE->getOperand(1)->isNullValue()) {
475          const Type *Ty =
476            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
477          // Ignore vector types here so that ScalarEvolutionExpander doesn't
478          // emit getelementptrs that index into vectors.
479          if (Ty->isStructTy() || Ty->isArrayTy()) {
480            CTy = Ty;
481            FieldNo = CE->getOperand(2);
482            return true;
483          }
484        }
485
486  return false;
487}
488
489void SCEVUnknown::print(raw_ostream &OS) const {
490  const Type *AllocTy;
491  if (isSizeOf(AllocTy)) {
492    OS << "sizeof(" << *AllocTy << ")";
493    return;
494  }
495  if (isAlignOf(AllocTy)) {
496    OS << "alignof(" << *AllocTy << ")";
497    return;
498  }
499
500  const Type *CTy;
501  Constant *FieldNo;
502  if (isOffsetOf(CTy, FieldNo)) {
503    OS << "offsetof(" << *CTy << ", ";
504    WriteAsOperand(OS, FieldNo, false);
505    OS << ")";
506    return;
507  }
508
509  // Otherwise just print it normally.
510  WriteAsOperand(OS, getValue(), false);
511}
512
513//===----------------------------------------------------------------------===//
514//                               SCEV Utilities
515//===----------------------------------------------------------------------===//
516
517namespace {
518  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519  /// than the complexity of the RHS.  This comparator is used to canonicalize
520  /// expressions.
521  class SCEVComplexityCompare {
522    const LoopInfo *const LI;
523  public:
524    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
525
526    // Return true or false if LHS is less than, or at least RHS, respectively.
527    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
528      return compare(LHS, RHS) < 0;
529    }
530
531    // Return negative, zero, or positive, if LHS is less than, equal to, or
532    // greater than RHS, respectively. A three-way result allows recursive
533    // comparisons to be more efficient.
534    int compare(const SCEV *LHS, const SCEV *RHS) const {
535      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
536      if (LHS == RHS)
537        return 0;
538
539      // Primarily, sort the SCEVs by their getSCEVType().
540      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
541      if (LType != RType)
542        return (int)LType - (int)RType;
543
544      // Aside from the getSCEVType() ordering, the particular ordering
545      // isn't very important except that it's beneficial to be consistent,
546      // so that (a + b) and (b + a) don't end up as different expressions.
547      switch (LType) {
548      case scUnknown: {
549        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
550        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
551
552        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
553        // not as complete as it could be.
554        const Value *LV = LU->getValue(), *RV = RU->getValue();
555
556        // Order pointer values after integer values. This helps SCEVExpander
557        // form GEPs.
558        bool LIsPointer = LV->getType()->isPointerTy(),
559             RIsPointer = RV->getType()->isPointerTy();
560        if (LIsPointer != RIsPointer)
561          return (int)LIsPointer - (int)RIsPointer;
562
563        // Compare getValueID values.
564        unsigned LID = LV->getValueID(),
565                 RID = RV->getValueID();
566        if (LID != RID)
567          return (int)LID - (int)RID;
568
569        // Sort arguments by their position.
570        if (const Argument *LA = dyn_cast<Argument>(LV)) {
571          const Argument *RA = cast<Argument>(RV);
572          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
573          return (int)LArgNo - (int)RArgNo;
574        }
575
576        // For instructions, compare their loop depth, and their operand
577        // count.  This is pretty loose.
578        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
579          const Instruction *RInst = cast<Instruction>(RV);
580
581          // Compare loop depths.
582          const BasicBlock *LParent = LInst->getParent(),
583                           *RParent = RInst->getParent();
584          if (LParent != RParent) {
585            unsigned LDepth = LI->getLoopDepth(LParent),
586                     RDepth = LI->getLoopDepth(RParent);
587            if (LDepth != RDepth)
588              return (int)LDepth - (int)RDepth;
589          }
590
591          // Compare the number of operands.
592          unsigned LNumOps = LInst->getNumOperands(),
593                   RNumOps = RInst->getNumOperands();
594          return (int)LNumOps - (int)RNumOps;
595        }
596
597        return 0;
598      }
599
600      case scConstant: {
601        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
602        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
603
604        // Compare constant values.
605        const APInt &LA = LC->getValue()->getValue();
606        const APInt &RA = RC->getValue()->getValue();
607        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
608        if (LBitWidth != RBitWidth)
609          return (int)LBitWidth - (int)RBitWidth;
610        return LA.ult(RA) ? -1 : 1;
611      }
612
613      case scAddRecExpr: {
614        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
615        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
616
617        // Compare addrec loop depths.
618        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
619        if (LLoop != RLoop) {
620          unsigned LDepth = LLoop->getLoopDepth(),
621                   RDepth = RLoop->getLoopDepth();
622          if (LDepth != RDepth)
623            return (int)LDepth - (int)RDepth;
624        }
625
626        // Addrec complexity grows with operand count.
627        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
628        if (LNumOps != RNumOps)
629          return (int)LNumOps - (int)RNumOps;
630
631        // Lexicographically compare.
632        for (unsigned i = 0; i != LNumOps; ++i) {
633          long X = compare(LA->getOperand(i), RA->getOperand(i));
634          if (X != 0)
635            return X;
636        }
637
638        return 0;
639      }
640
641      case scAddExpr:
642      case scMulExpr:
643      case scSMaxExpr:
644      case scUMaxExpr: {
645        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
646        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
647
648        // Lexicographically compare n-ary expressions.
649        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
650        for (unsigned i = 0; i != LNumOps; ++i) {
651          if (i >= RNumOps)
652            return 1;
653          long X = compare(LC->getOperand(i), RC->getOperand(i));
654          if (X != 0)
655            return X;
656        }
657        return (int)LNumOps - (int)RNumOps;
658      }
659
660      case scUDivExpr: {
661        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
662        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
663
664        // Lexicographically compare udiv expressions.
665        long X = compare(LC->getLHS(), RC->getLHS());
666        if (X != 0)
667          return X;
668        return compare(LC->getRHS(), RC->getRHS());
669      }
670
671      case scTruncate:
672      case scZeroExtend:
673      case scSignExtend: {
674        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
675        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
676
677        // Compare cast expressions by operand.
678        return compare(LC->getOperand(), RC->getOperand());
679      }
680
681      default:
682        break;
683      }
684
685      llvm_unreachable("Unknown SCEV kind!");
686      return 0;
687    }
688  };
689}
690
691/// GroupByComplexity - Given a list of SCEV objects, order them by their
692/// complexity, and group objects of the same complexity together by value.
693/// When this routine is finished, we know that any duplicates in the vector are
694/// consecutive and that complexity is monotonically increasing.
695///
696/// Note that we go take special precautions to ensure that we get deterministic
697/// results from this routine.  In other words, we don't want the results of
698/// this to depend on where the addresses of various SCEV objects happened to
699/// land in memory.
700///
701static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
702                              LoopInfo *LI) {
703  if (Ops.size() < 2) return;  // Noop
704  if (Ops.size() == 2) {
705    // This is the common case, which also happens to be trivially simple.
706    // Special case it.
707    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
708    if (SCEVComplexityCompare(LI)(RHS, LHS))
709      std::swap(LHS, RHS);
710    return;
711  }
712
713  // Do the rough sort by complexity.
714  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
715
716  // Now that we are sorted by complexity, group elements of the same
717  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
718  // be extremely short in practice.  Note that we take this approach because we
719  // do not want to depend on the addresses of the objects we are grouping.
720  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
721    const SCEV *S = Ops[i];
722    unsigned Complexity = S->getSCEVType();
723
724    // If there are any objects of the same complexity and same value as this
725    // one, group them.
726    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
727      if (Ops[j] == S) { // Found a duplicate.
728        // Move it to immediately after i'th element.
729        std::swap(Ops[i+1], Ops[j]);
730        ++i;   // no need to rescan it.
731        if (i == e-2) return;  // Done!
732      }
733    }
734  }
735}
736
737
738
739//===----------------------------------------------------------------------===//
740//                      Simple SCEV method implementations
741//===----------------------------------------------------------------------===//
742
743/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
744/// Assume, K > 0.
745static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
746                                       ScalarEvolution &SE,
747                                       const Type* ResultTy) {
748  // Handle the simplest case efficiently.
749  if (K == 1)
750    return SE.getTruncateOrZeroExtend(It, ResultTy);
751
752  // We are using the following formula for BC(It, K):
753  //
754  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
755  //
756  // Suppose, W is the bitwidth of the return value.  We must be prepared for
757  // overflow.  Hence, we must assure that the result of our computation is
758  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
759  // safe in modular arithmetic.
760  //
761  // However, this code doesn't use exactly that formula; the formula it uses
762  // is something like the following, where T is the number of factors of 2 in
763  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
764  // exponentiation:
765  //
766  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
767  //
768  // This formula is trivially equivalent to the previous formula.  However,
769  // this formula can be implemented much more efficiently.  The trick is that
770  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
771  // arithmetic.  To do exact division in modular arithmetic, all we have
772  // to do is multiply by the inverse.  Therefore, this step can be done at
773  // width W.
774  //
775  // The next issue is how to safely do the division by 2^T.  The way this
776  // is done is by doing the multiplication step at a width of at least W + T
777  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
778  // when we perform the division by 2^T (which is equivalent to a right shift
779  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
780  // truncated out after the division by 2^T.
781  //
782  // In comparison to just directly using the first formula, this technique
783  // is much more efficient; using the first formula requires W * K bits,
784  // but this formula less than W + K bits. Also, the first formula requires
785  // a division step, whereas this formula only requires multiplies and shifts.
786  //
787  // It doesn't matter whether the subtraction step is done in the calculation
788  // width or the input iteration count's width; if the subtraction overflows,
789  // the result must be zero anyway.  We prefer here to do it in the width of
790  // the induction variable because it helps a lot for certain cases; CodeGen
791  // isn't smart enough to ignore the overflow, which leads to much less
792  // efficient code if the width of the subtraction is wider than the native
793  // register width.
794  //
795  // (It's possible to not widen at all by pulling out factors of 2 before
796  // the multiplication; for example, K=2 can be calculated as
797  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
798  // extra arithmetic, so it's not an obvious win, and it gets
799  // much more complicated for K > 3.)
800
801  // Protection from insane SCEVs; this bound is conservative,
802  // but it probably doesn't matter.
803  if (K > 1000)
804    return SE.getCouldNotCompute();
805
806  unsigned W = SE.getTypeSizeInBits(ResultTy);
807
808  // Calculate K! / 2^T and T; we divide out the factors of two before
809  // multiplying for calculating K! / 2^T to avoid overflow.
810  // Other overflow doesn't matter because we only care about the bottom
811  // W bits of the result.
812  APInt OddFactorial(W, 1);
813  unsigned T = 1;
814  for (unsigned i = 3; i <= K; ++i) {
815    APInt Mult(W, i);
816    unsigned TwoFactors = Mult.countTrailingZeros();
817    T += TwoFactors;
818    Mult = Mult.lshr(TwoFactors);
819    OddFactorial *= Mult;
820  }
821
822  // We need at least W + T bits for the multiplication step
823  unsigned CalculationBits = W + T;
824
825  // Calculate 2^T, at width T+W.
826  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
827
828  // Calculate the multiplicative inverse of K! / 2^T;
829  // this multiplication factor will perform the exact division by
830  // K! / 2^T.
831  APInt Mod = APInt::getSignedMinValue(W+1);
832  APInt MultiplyFactor = OddFactorial.zext(W+1);
833  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
834  MultiplyFactor = MultiplyFactor.trunc(W);
835
836  // Calculate the product, at width T+W
837  const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
838                                                      CalculationBits);
839  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
840  for (unsigned i = 1; i != K; ++i) {
841    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
842    Dividend = SE.getMulExpr(Dividend,
843                             SE.getTruncateOrZeroExtend(S, CalculationTy));
844  }
845
846  // Divide by 2^T
847  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
848
849  // Truncate the result, and divide by K! / 2^T.
850
851  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
852                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
853}
854
855/// evaluateAtIteration - Return the value of this chain of recurrences at
856/// the specified iteration number.  We can evaluate this recurrence by
857/// multiplying each element in the chain by the binomial coefficient
858/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
859///
860///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
861///
862/// where BC(It, k) stands for binomial coefficient.
863///
864const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
865                                                ScalarEvolution &SE) const {
866  const SCEV *Result = getStart();
867  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
868    // The computation is correct in the face of overflow provided that the
869    // multiplication is performed _after_ the evaluation of the binomial
870    // coefficient.
871    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
872    if (isa<SCEVCouldNotCompute>(Coeff))
873      return Coeff;
874
875    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
876  }
877  return Result;
878}
879
880//===----------------------------------------------------------------------===//
881//                    SCEV Expression folder implementations
882//===----------------------------------------------------------------------===//
883
884const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
885                                             const Type *Ty) {
886  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
887         "This is not a truncating conversion!");
888  assert(isSCEVable(Ty) &&
889         "This is not a conversion to a SCEVable type!");
890  Ty = getEffectiveSCEVType(Ty);
891
892  FoldingSetNodeID ID;
893  ID.AddInteger(scTruncate);
894  ID.AddPointer(Op);
895  ID.AddPointer(Ty);
896  void *IP = 0;
897  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
898
899  // Fold if the operand is constant.
900  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
901    return getConstant(
902      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
903                                               getEffectiveSCEVType(Ty))));
904
905  // trunc(trunc(x)) --> trunc(x)
906  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
907    return getTruncateExpr(ST->getOperand(), Ty);
908
909  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
910  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
911    return getTruncateOrSignExtend(SS->getOperand(), Ty);
912
913  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
914  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
915    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
916
917  // If the input value is a chrec scev, truncate the chrec's operands.
918  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
919    SmallVector<const SCEV *, 4> Operands;
920    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
921      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
922    return getAddRecExpr(Operands, AddRec->getLoop());
923  }
924
925  // As a special case, fold trunc(undef) to undef. We don't want to
926  // know too much about SCEVUnknowns, but this special case is handy
927  // and harmless.
928  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
929    if (isa<UndefValue>(U->getValue()))
930      return getSCEV(UndefValue::get(Ty));
931
932  // The cast wasn't folded; create an explicit cast node. We can reuse
933  // the existing insert position since if we get here, we won't have
934  // made any changes which would invalidate it.
935  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
936                                                 Op, Ty);
937  UniqueSCEVs.InsertNode(S, IP);
938  return S;
939}
940
941const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
942                                               const Type *Ty) {
943  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
944         "This is not an extending conversion!");
945  assert(isSCEVable(Ty) &&
946         "This is not a conversion to a SCEVable type!");
947  Ty = getEffectiveSCEVType(Ty);
948
949  // Fold if the operand is constant.
950  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
951    return getConstant(
952      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
953                                              getEffectiveSCEVType(Ty))));
954
955  // zext(zext(x)) --> zext(x)
956  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
957    return getZeroExtendExpr(SZ->getOperand(), Ty);
958
959  // Before doing any expensive analysis, check to see if we've already
960  // computed a SCEV for this Op and Ty.
961  FoldingSetNodeID ID;
962  ID.AddInteger(scZeroExtend);
963  ID.AddPointer(Op);
964  ID.AddPointer(Ty);
965  void *IP = 0;
966  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
967
968  // If the input value is a chrec scev, and we can prove that the value
969  // did not overflow the old, smaller, value, we can zero extend all of the
970  // operands (often constants).  This allows analysis of something like
971  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
972  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
973    if (AR->isAffine()) {
974      const SCEV *Start = AR->getStart();
975      const SCEV *Step = AR->getStepRecurrence(*this);
976      unsigned BitWidth = getTypeSizeInBits(AR->getType());
977      const Loop *L = AR->getLoop();
978
979      // If we have special knowledge that this addrec won't overflow,
980      // we don't need to do any further analysis.
981      if (AR->hasNoUnsignedWrap())
982        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
983                             getZeroExtendExpr(Step, Ty),
984                             L);
985
986      // Check whether the backedge-taken count is SCEVCouldNotCompute.
987      // Note that this serves two purposes: It filters out loops that are
988      // simply not analyzable, and it covers the case where this code is
989      // being called from within backedge-taken count analysis, such that
990      // attempting to ask for the backedge-taken count would likely result
991      // in infinite recursion. In the later case, the analysis code will
992      // cope with a conservative value, and it will take care to purge
993      // that value once it has finished.
994      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
995      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
996        // Manually compute the final value for AR, checking for
997        // overflow.
998
999        // Check whether the backedge-taken count can be losslessly casted to
1000        // the addrec's type. The count is always unsigned.
1001        const SCEV *CastedMaxBECount =
1002          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1003        const SCEV *RecastedMaxBECount =
1004          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1005        if (MaxBECount == RecastedMaxBECount) {
1006          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1007          // Check whether Start+Step*MaxBECount has no unsigned overflow.
1008          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1009          const SCEV *Add = getAddExpr(Start, ZMul);
1010          const SCEV *OperandExtendedAdd =
1011            getAddExpr(getZeroExtendExpr(Start, WideTy),
1012                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1013                                  getZeroExtendExpr(Step, WideTy)));
1014          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1015            // Return the expression with the addrec on the outside.
1016            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1017                                 getZeroExtendExpr(Step, Ty),
1018                                 L);
1019
1020          // Similar to above, only this time treat the step value as signed.
1021          // This covers loops that count down.
1022          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1023          Add = getAddExpr(Start, SMul);
1024          OperandExtendedAdd =
1025            getAddExpr(getZeroExtendExpr(Start, WideTy),
1026                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1027                                  getSignExtendExpr(Step, WideTy)));
1028          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
1029            // Return the expression with the addrec on the outside.
1030            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1031                                 getSignExtendExpr(Step, Ty),
1032                                 L);
1033        }
1034
1035        // If the backedge is guarded by a comparison with the pre-inc value
1036        // the addrec is safe. Also, if the entry is guarded by a comparison
1037        // with the start value and the backedge is guarded by a comparison
1038        // with the post-inc value, the addrec is safe.
1039        if (isKnownPositive(Step)) {
1040          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1041                                      getUnsignedRange(Step).getUnsignedMax());
1042          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1043              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1044               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1045                                           AR->getPostIncExpr(*this), N)))
1046            // Return the expression with the addrec on the outside.
1047            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1048                                 getZeroExtendExpr(Step, Ty),
1049                                 L);
1050        } else if (isKnownNegative(Step)) {
1051          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1052                                      getSignedRange(Step).getSignedMin());
1053          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1054              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1055               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1056                                           AR->getPostIncExpr(*this), N)))
1057            // Return the expression with the addrec on the outside.
1058            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1059                                 getSignExtendExpr(Step, Ty),
1060                                 L);
1061        }
1062      }
1063    }
1064
1065  // The cast wasn't folded; create an explicit cast node.
1066  // Recompute the insert position, as it may have been invalidated.
1067  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1068  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1069                                                   Op, Ty);
1070  UniqueSCEVs.InsertNode(S, IP);
1071  return S;
1072}
1073
1074const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1075                                               const Type *Ty) {
1076  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1077         "This is not an extending conversion!");
1078  assert(isSCEVable(Ty) &&
1079         "This is not a conversion to a SCEVable type!");
1080  Ty = getEffectiveSCEVType(Ty);
1081
1082  // Fold if the operand is constant.
1083  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084    return getConstant(
1085      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1086                                              getEffectiveSCEVType(Ty))));
1087
1088  // sext(sext(x)) --> sext(x)
1089  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1090    return getSignExtendExpr(SS->getOperand(), Ty);
1091
1092  // Before doing any expensive analysis, check to see if we've already
1093  // computed a SCEV for this Op and Ty.
1094  FoldingSetNodeID ID;
1095  ID.AddInteger(scSignExtend);
1096  ID.AddPointer(Op);
1097  ID.AddPointer(Ty);
1098  void *IP = 0;
1099  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1100
1101  // If the input value is a chrec scev, and we can prove that the value
1102  // did not overflow the old, smaller, value, we can sign extend all of the
1103  // operands (often constants).  This allows analysis of something like
1104  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1105  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1106    if (AR->isAffine()) {
1107      const SCEV *Start = AR->getStart();
1108      const SCEV *Step = AR->getStepRecurrence(*this);
1109      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1110      const Loop *L = AR->getLoop();
1111
1112      // If we have special knowledge that this addrec won't overflow,
1113      // we don't need to do any further analysis.
1114      if (AR->hasNoSignedWrap())
1115        return getAddRecExpr(getSignExtendExpr(Start, Ty),
1116                             getSignExtendExpr(Step, Ty),
1117                             L);
1118
1119      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1120      // Note that this serves two purposes: It filters out loops that are
1121      // simply not analyzable, and it covers the case where this code is
1122      // being called from within backedge-taken count analysis, such that
1123      // attempting to ask for the backedge-taken count would likely result
1124      // in infinite recursion. In the later case, the analysis code will
1125      // cope with a conservative value, and it will take care to purge
1126      // that value once it has finished.
1127      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1128      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1129        // Manually compute the final value for AR, checking for
1130        // overflow.
1131
1132        // Check whether the backedge-taken count can be losslessly casted to
1133        // the addrec's type. The count is always unsigned.
1134        const SCEV *CastedMaxBECount =
1135          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1136        const SCEV *RecastedMaxBECount =
1137          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1138        if (MaxBECount == RecastedMaxBECount) {
1139          const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1140          // Check whether Start+Step*MaxBECount has no signed overflow.
1141          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1142          const SCEV *Add = getAddExpr(Start, SMul);
1143          const SCEV *OperandExtendedAdd =
1144            getAddExpr(getSignExtendExpr(Start, WideTy),
1145                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1146                                  getSignExtendExpr(Step, WideTy)));
1147          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1148            // Return the expression with the addrec on the outside.
1149            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1150                                 getSignExtendExpr(Step, Ty),
1151                                 L);
1152
1153          // Similar to above, only this time treat the step value as unsigned.
1154          // This covers loops that count up with an unsigned step.
1155          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1156          Add = getAddExpr(Start, UMul);
1157          OperandExtendedAdd =
1158            getAddExpr(getSignExtendExpr(Start, WideTy),
1159                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1160                                  getZeroExtendExpr(Step, WideTy)));
1161          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1162            // Return the expression with the addrec on the outside.
1163            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1164                                 getZeroExtendExpr(Step, Ty),
1165                                 L);
1166        }
1167
1168        // If the backedge is guarded by a comparison with the pre-inc value
1169        // the addrec is safe. Also, if the entry is guarded by a comparison
1170        // with the start value and the backedge is guarded by a comparison
1171        // with the post-inc value, the addrec is safe.
1172        if (isKnownPositive(Step)) {
1173          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1174                                      getSignedRange(Step).getSignedMax());
1175          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1176              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1177               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1178                                           AR->getPostIncExpr(*this), N)))
1179            // Return the expression with the addrec on the outside.
1180            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1181                                 getSignExtendExpr(Step, Ty),
1182                                 L);
1183        } else if (isKnownNegative(Step)) {
1184          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1185                                      getSignedRange(Step).getSignedMin());
1186          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1187              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1188               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1189                                           AR->getPostIncExpr(*this), N)))
1190            // Return the expression with the addrec on the outside.
1191            return getAddRecExpr(getSignExtendExpr(Start, Ty),
1192                                 getSignExtendExpr(Step, Ty),
1193                                 L);
1194        }
1195      }
1196    }
1197
1198  // The cast wasn't folded; create an explicit cast node.
1199  // Recompute the insert position, as it may have been invalidated.
1200  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1202                                                   Op, Ty);
1203  UniqueSCEVs.InsertNode(S, IP);
1204  return S;
1205}
1206
1207/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1208/// unspecified bits out to the given type.
1209///
1210const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1211                                              const Type *Ty) {
1212  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1213         "This is not an extending conversion!");
1214  assert(isSCEVable(Ty) &&
1215         "This is not a conversion to a SCEVable type!");
1216  Ty = getEffectiveSCEVType(Ty);
1217
1218  // Sign-extend negative constants.
1219  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1220    if (SC->getValue()->getValue().isNegative())
1221      return getSignExtendExpr(Op, Ty);
1222
1223  // Peel off a truncate cast.
1224  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1225    const SCEV *NewOp = T->getOperand();
1226    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1227      return getAnyExtendExpr(NewOp, Ty);
1228    return getTruncateOrNoop(NewOp, Ty);
1229  }
1230
1231  // Next try a zext cast. If the cast is folded, use it.
1232  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1233  if (!isa<SCEVZeroExtendExpr>(ZExt))
1234    return ZExt;
1235
1236  // Next try a sext cast. If the cast is folded, use it.
1237  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1238  if (!isa<SCEVSignExtendExpr>(SExt))
1239    return SExt;
1240
1241  // Force the cast to be folded into the operands of an addrec.
1242  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1243    SmallVector<const SCEV *, 4> Ops;
1244    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1245         I != E; ++I)
1246      Ops.push_back(getAnyExtendExpr(*I, Ty));
1247    return getAddRecExpr(Ops, AR->getLoop());
1248  }
1249
1250  // As a special case, fold anyext(undef) to undef. We don't want to
1251  // know too much about SCEVUnknowns, but this special case is handy
1252  // and harmless.
1253  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1254    if (isa<UndefValue>(U->getValue()))
1255      return getSCEV(UndefValue::get(Ty));
1256
1257  // If the expression is obviously signed, use the sext cast value.
1258  if (isa<SCEVSMaxExpr>(Op))
1259    return SExt;
1260
1261  // Absent any other information, use the zext cast value.
1262  return ZExt;
1263}
1264
1265/// CollectAddOperandsWithScales - Process the given Ops list, which is
1266/// a list of operands to be added under the given scale, update the given
1267/// map. This is a helper function for getAddRecExpr. As an example of
1268/// what it does, given a sequence of operands that would form an add
1269/// expression like this:
1270///
1271///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1272///
1273/// where A and B are constants, update the map with these values:
1274///
1275///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1276///
1277/// and add 13 + A*B*29 to AccumulatedConstant.
1278/// This will allow getAddRecExpr to produce this:
1279///
1280///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1281///
1282/// This form often exposes folding opportunities that are hidden in
1283/// the original operand list.
1284///
1285/// Return true iff it appears that any interesting folding opportunities
1286/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1287/// the common case where no interesting opportunities are present, and
1288/// is also used as a check to avoid infinite recursion.
1289///
1290static bool
1291CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1292                             SmallVector<const SCEV *, 8> &NewOps,
1293                             APInt &AccumulatedConstant,
1294                             const SCEV *const *Ops, size_t NumOperands,
1295                             const APInt &Scale,
1296                             ScalarEvolution &SE) {
1297  bool Interesting = false;
1298
1299  // Iterate over the add operands. They are sorted, with constants first.
1300  unsigned i = 0;
1301  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1302    ++i;
1303    // Pull a buried constant out to the outside.
1304    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1305      Interesting = true;
1306    AccumulatedConstant += Scale * C->getValue()->getValue();
1307  }
1308
1309  // Next comes everything else. We're especially interested in multiplies
1310  // here, but they're in the middle, so just visit the rest with one loop.
1311  for (; i != NumOperands; ++i) {
1312    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1313    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1314      APInt NewScale =
1315        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1316      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1317        // A multiplication of a constant with another add; recurse.
1318        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1319        Interesting |=
1320          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1321                                       Add->op_begin(), Add->getNumOperands(),
1322                                       NewScale, SE);
1323      } else {
1324        // A multiplication of a constant with some other value. Update
1325        // the map.
1326        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1327        const SCEV *Key = SE.getMulExpr(MulOps);
1328        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1329          M.insert(std::make_pair(Key, NewScale));
1330        if (Pair.second) {
1331          NewOps.push_back(Pair.first->first);
1332        } else {
1333          Pair.first->second += NewScale;
1334          // The map already had an entry for this value, which may indicate
1335          // a folding opportunity.
1336          Interesting = true;
1337        }
1338      }
1339    } else {
1340      // An ordinary operand. Update the map.
1341      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1342        M.insert(std::make_pair(Ops[i], Scale));
1343      if (Pair.second) {
1344        NewOps.push_back(Pair.first->first);
1345      } else {
1346        Pair.first->second += Scale;
1347        // The map already had an entry for this value, which may indicate
1348        // a folding opportunity.
1349        Interesting = true;
1350      }
1351    }
1352  }
1353
1354  return Interesting;
1355}
1356
1357namespace {
1358  struct APIntCompare {
1359    bool operator()(const APInt &LHS, const APInt &RHS) const {
1360      return LHS.ult(RHS);
1361    }
1362  };
1363}
1364
1365/// getAddExpr - Get a canonical add expression, or something simpler if
1366/// possible.
1367const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1368                                        bool HasNUW, bool HasNSW) {
1369  assert(!Ops.empty() && "Cannot get empty add!");
1370  if (Ops.size() == 1) return Ops[0];
1371#ifndef NDEBUG
1372  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1373  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1374    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1375           "SCEVAddExpr operand types don't match!");
1376#endif
1377
1378  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1379  if (!HasNUW && HasNSW) {
1380    bool All = true;
1381    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1382         E = Ops.end(); I != E; ++I)
1383      if (!isKnownNonNegative(*I)) {
1384        All = false;
1385        break;
1386      }
1387    if (All) HasNUW = true;
1388  }
1389
1390  // Sort by complexity, this groups all similar expression types together.
1391  GroupByComplexity(Ops, LI);
1392
1393  // If there are any constants, fold them together.
1394  unsigned Idx = 0;
1395  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1396    ++Idx;
1397    assert(Idx < Ops.size());
1398    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1399      // We found two constants, fold them together!
1400      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1401                           RHSC->getValue()->getValue());
1402      if (Ops.size() == 2) return Ops[0];
1403      Ops.erase(Ops.begin()+1);  // Erase the folded element
1404      LHSC = cast<SCEVConstant>(Ops[0]);
1405    }
1406
1407    // If we are left with a constant zero being added, strip it off.
1408    if (LHSC->getValue()->isZero()) {
1409      Ops.erase(Ops.begin());
1410      --Idx;
1411    }
1412
1413    if (Ops.size() == 1) return Ops[0];
1414  }
1415
1416  // Okay, check to see if the same value occurs in the operand list more than
1417  // once.  If so, merge them together into an multiply expression.  Since we
1418  // sorted the list, these values are required to be adjacent.
1419  const Type *Ty = Ops[0]->getType();
1420  bool FoundMatch = false;
1421  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1422    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1423      // Scan ahead to count how many equal operands there are.
1424      unsigned Count = 2;
1425      while (i+Count != e && Ops[i+Count] == Ops[i])
1426        ++Count;
1427      // Merge the values into a multiply.
1428      const SCEV *Scale = getConstant(Ty, Count);
1429      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1430      if (Ops.size() == Count)
1431        return Mul;
1432      Ops[i] = Mul;
1433      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1434      --i; e -= Count - 1;
1435      FoundMatch = true;
1436    }
1437  if (FoundMatch)
1438    return getAddExpr(Ops, HasNUW, HasNSW);
1439
1440  // Check for truncates. If all the operands are truncated from the same
1441  // type, see if factoring out the truncate would permit the result to be
1442  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1443  // if the contents of the resulting outer trunc fold to something simple.
1444  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1445    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1446    const Type *DstType = Trunc->getType();
1447    const Type *SrcType = Trunc->getOperand()->getType();
1448    SmallVector<const SCEV *, 8> LargeOps;
1449    bool Ok = true;
1450    // Check all the operands to see if they can be represented in the
1451    // source type of the truncate.
1452    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1453      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1454        if (T->getOperand()->getType() != SrcType) {
1455          Ok = false;
1456          break;
1457        }
1458        LargeOps.push_back(T->getOperand());
1459      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1460        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1461      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1462        SmallVector<const SCEV *, 8> LargeMulOps;
1463        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1464          if (const SCEVTruncateExpr *T =
1465                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1466            if (T->getOperand()->getType() != SrcType) {
1467              Ok = false;
1468              break;
1469            }
1470            LargeMulOps.push_back(T->getOperand());
1471          } else if (const SCEVConstant *C =
1472                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1473            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1474          } else {
1475            Ok = false;
1476            break;
1477          }
1478        }
1479        if (Ok)
1480          LargeOps.push_back(getMulExpr(LargeMulOps));
1481      } else {
1482        Ok = false;
1483        break;
1484      }
1485    }
1486    if (Ok) {
1487      // Evaluate the expression in the larger type.
1488      const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1489      // If it folds to something simple, use it. Otherwise, don't.
1490      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1491        return getTruncateExpr(Fold, DstType);
1492    }
1493  }
1494
1495  // Skip past any other cast SCEVs.
1496  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1497    ++Idx;
1498
1499  // If there are add operands they would be next.
1500  if (Idx < Ops.size()) {
1501    bool DeletedAdd = false;
1502    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1503      // If we have an add, expand the add operands onto the end of the operands
1504      // list.
1505      Ops.erase(Ops.begin()+Idx);
1506      Ops.append(Add->op_begin(), Add->op_end());
1507      DeletedAdd = true;
1508    }
1509
1510    // If we deleted at least one add, we added operands to the end of the list,
1511    // and they are not necessarily sorted.  Recurse to resort and resimplify
1512    // any operands we just acquired.
1513    if (DeletedAdd)
1514      return getAddExpr(Ops);
1515  }
1516
1517  // Skip over the add expression until we get to a multiply.
1518  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1519    ++Idx;
1520
1521  // Check to see if there are any folding opportunities present with
1522  // operands multiplied by constant values.
1523  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1524    uint64_t BitWidth = getTypeSizeInBits(Ty);
1525    DenseMap<const SCEV *, APInt> M;
1526    SmallVector<const SCEV *, 8> NewOps;
1527    APInt AccumulatedConstant(BitWidth, 0);
1528    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1529                                     Ops.data(), Ops.size(),
1530                                     APInt(BitWidth, 1), *this)) {
1531      // Some interesting folding opportunity is present, so its worthwhile to
1532      // re-generate the operands list. Group the operands by constant scale,
1533      // to avoid multiplying by the same constant scale multiple times.
1534      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1535      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1536           E = NewOps.end(); I != E; ++I)
1537        MulOpLists[M.find(*I)->second].push_back(*I);
1538      // Re-generate the operands list.
1539      Ops.clear();
1540      if (AccumulatedConstant != 0)
1541        Ops.push_back(getConstant(AccumulatedConstant));
1542      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1543           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1544        if (I->first != 0)
1545          Ops.push_back(getMulExpr(getConstant(I->first),
1546                                   getAddExpr(I->second)));
1547      if (Ops.empty())
1548        return getConstant(Ty, 0);
1549      if (Ops.size() == 1)
1550        return Ops[0];
1551      return getAddExpr(Ops);
1552    }
1553  }
1554
1555  // If we are adding something to a multiply expression, make sure the
1556  // something is not already an operand of the multiply.  If so, merge it into
1557  // the multiply.
1558  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1559    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1560    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1561      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1562      if (isa<SCEVConstant>(MulOpSCEV))
1563        continue;
1564      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1565        if (MulOpSCEV == Ops[AddOp]) {
1566          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1567          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1568          if (Mul->getNumOperands() != 2) {
1569            // If the multiply has more than two operands, we must get the
1570            // Y*Z term.
1571            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1572                                                Mul->op_begin()+MulOp);
1573            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1574            InnerMul = getMulExpr(MulOps);
1575          }
1576          const SCEV *One = getConstant(Ty, 1);
1577          const SCEV *AddOne = getAddExpr(One, InnerMul);
1578          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1579          if (Ops.size() == 2) return OuterMul;
1580          if (AddOp < Idx) {
1581            Ops.erase(Ops.begin()+AddOp);
1582            Ops.erase(Ops.begin()+Idx-1);
1583          } else {
1584            Ops.erase(Ops.begin()+Idx);
1585            Ops.erase(Ops.begin()+AddOp-1);
1586          }
1587          Ops.push_back(OuterMul);
1588          return getAddExpr(Ops);
1589        }
1590
1591      // Check this multiply against other multiplies being added together.
1592      bool AnyFold = false;
1593      for (unsigned OtherMulIdx = Idx+1;
1594           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1595           ++OtherMulIdx) {
1596        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1597        // If MulOp occurs in OtherMul, we can fold the two multiplies
1598        // together.
1599        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1600             OMulOp != e; ++OMulOp)
1601          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1602            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1603            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1604            if (Mul->getNumOperands() != 2) {
1605              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1606                                                  Mul->op_begin()+MulOp);
1607              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1608              InnerMul1 = getMulExpr(MulOps);
1609            }
1610            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1611            if (OtherMul->getNumOperands() != 2) {
1612              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1613                                                  OtherMul->op_begin()+OMulOp);
1614              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1615              InnerMul2 = getMulExpr(MulOps);
1616            }
1617            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1618            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1619            if (Ops.size() == 2) return OuterMul;
1620            Ops[Idx] = OuterMul;
1621            Ops.erase(Ops.begin()+OtherMulIdx);
1622            OtherMulIdx = Idx;
1623            AnyFold = true;
1624          }
1625      }
1626      if (AnyFold)
1627        return getAddExpr(Ops);
1628    }
1629  }
1630
1631  // If there are any add recurrences in the operands list, see if any other
1632  // added values are loop invariant.  If so, we can fold them into the
1633  // recurrence.
1634  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1635    ++Idx;
1636
1637  // Scan over all recurrences, trying to fold loop invariants into them.
1638  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1639    // Scan all of the other operands to this add and add them to the vector if
1640    // they are loop invariant w.r.t. the recurrence.
1641    SmallVector<const SCEV *, 8> LIOps;
1642    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1643    const Loop *AddRecLoop = AddRec->getLoop();
1644    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1645      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1646        LIOps.push_back(Ops[i]);
1647        Ops.erase(Ops.begin()+i);
1648        --i; --e;
1649      }
1650
1651    // If we found some loop invariants, fold them into the recurrence.
1652    if (!LIOps.empty()) {
1653      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1654      LIOps.push_back(AddRec->getStart());
1655
1656      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1657                                             AddRec->op_end());
1658      AddRecOps[0] = getAddExpr(LIOps);
1659
1660      // Build the new addrec. Propagate the NUW and NSW flags if both the
1661      // outer add and the inner addrec are guaranteed to have no overflow.
1662      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1663                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1664                                         HasNSW && AddRec->hasNoSignedWrap());
1665
1666      // If all of the other operands were loop invariant, we are done.
1667      if (Ops.size() == 1) return NewRec;
1668
1669      // Otherwise, add the folded AddRec by the non-liv parts.
1670      for (unsigned i = 0;; ++i)
1671        if (Ops[i] == AddRec) {
1672          Ops[i] = NewRec;
1673          break;
1674        }
1675      return getAddExpr(Ops);
1676    }
1677
1678    // Okay, if there weren't any loop invariants to be folded, check to see if
1679    // there are multiple AddRec's with the same loop induction variable being
1680    // added together.  If so, we can fold them.
1681    for (unsigned OtherIdx = Idx+1;
1682         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1683         ++OtherIdx)
1684      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1685        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1686        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1687                                               AddRec->op_end());
1688        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1689             ++OtherIdx)
1690          if (const SCEVAddRecExpr *OtherAddRec =
1691                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1692            if (OtherAddRec->getLoop() == AddRecLoop) {
1693              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1694                   i != e; ++i) {
1695                if (i >= AddRecOps.size()) {
1696                  AddRecOps.append(OtherAddRec->op_begin()+i,
1697                                   OtherAddRec->op_end());
1698                  break;
1699                }
1700                AddRecOps[i] = getAddExpr(AddRecOps[i],
1701                                          OtherAddRec->getOperand(i));
1702              }
1703              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1704            }
1705        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1706        return getAddExpr(Ops);
1707      }
1708
1709    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1710    // next one.
1711  }
1712
1713  // Okay, it looks like we really DO need an add expr.  Check to see if we
1714  // already have one, otherwise create a new one.
1715  FoldingSetNodeID ID;
1716  ID.AddInteger(scAddExpr);
1717  ID.AddInteger(Ops.size());
1718  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1719    ID.AddPointer(Ops[i]);
1720  void *IP = 0;
1721  SCEVAddExpr *S =
1722    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1723  if (!S) {
1724    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1725    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1726    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1727                                        O, Ops.size());
1728    UniqueSCEVs.InsertNode(S, IP);
1729  }
1730  if (HasNUW) S->setHasNoUnsignedWrap(true);
1731  if (HasNSW) S->setHasNoSignedWrap(true);
1732  return S;
1733}
1734
1735/// getMulExpr - Get a canonical multiply expression, or something simpler if
1736/// possible.
1737const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1738                                        bool HasNUW, bool HasNSW) {
1739  assert(!Ops.empty() && "Cannot get empty mul!");
1740  if (Ops.size() == 1) return Ops[0];
1741#ifndef NDEBUG
1742  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1743  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1744    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1745           "SCEVMulExpr operand types don't match!");
1746#endif
1747
1748  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1749  if (!HasNUW && HasNSW) {
1750    bool All = true;
1751    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1752         E = Ops.end(); I != E; ++I)
1753      if (!isKnownNonNegative(*I)) {
1754        All = false;
1755        break;
1756      }
1757    if (All) HasNUW = true;
1758  }
1759
1760  // Sort by complexity, this groups all similar expression types together.
1761  GroupByComplexity(Ops, LI);
1762
1763  // If there are any constants, fold them together.
1764  unsigned Idx = 0;
1765  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1766
1767    // C1*(C2+V) -> C1*C2 + C1*V
1768    if (Ops.size() == 2)
1769      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1770        if (Add->getNumOperands() == 2 &&
1771            isa<SCEVConstant>(Add->getOperand(0)))
1772          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1773                            getMulExpr(LHSC, Add->getOperand(1)));
1774
1775    ++Idx;
1776    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1777      // We found two constants, fold them together!
1778      ConstantInt *Fold = ConstantInt::get(getContext(),
1779                                           LHSC->getValue()->getValue() *
1780                                           RHSC->getValue()->getValue());
1781      Ops[0] = getConstant(Fold);
1782      Ops.erase(Ops.begin()+1);  // Erase the folded element
1783      if (Ops.size() == 1) return Ops[0];
1784      LHSC = cast<SCEVConstant>(Ops[0]);
1785    }
1786
1787    // If we are left with a constant one being multiplied, strip it off.
1788    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1789      Ops.erase(Ops.begin());
1790      --Idx;
1791    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1792      // If we have a multiply of zero, it will always be zero.
1793      return Ops[0];
1794    } else if (Ops[0]->isAllOnesValue()) {
1795      // If we have a mul by -1 of an add, try distributing the -1 among the
1796      // add operands.
1797      if (Ops.size() == 2)
1798        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1799          SmallVector<const SCEV *, 4> NewOps;
1800          bool AnyFolded = false;
1801          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1802               I != E; ++I) {
1803            const SCEV *Mul = getMulExpr(Ops[0], *I);
1804            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1805            NewOps.push_back(Mul);
1806          }
1807          if (AnyFolded)
1808            return getAddExpr(NewOps);
1809        }
1810    }
1811
1812    if (Ops.size() == 1)
1813      return Ops[0];
1814  }
1815
1816  // Skip over the add expression until we get to a multiply.
1817  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1818    ++Idx;
1819
1820  // If there are mul operands inline them all into this expression.
1821  if (Idx < Ops.size()) {
1822    bool DeletedMul = false;
1823    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1824      // If we have an mul, expand the mul operands onto the end of the operands
1825      // list.
1826      Ops.erase(Ops.begin()+Idx);
1827      Ops.append(Mul->op_begin(), Mul->op_end());
1828      DeletedMul = true;
1829    }
1830
1831    // If we deleted at least one mul, we added operands to the end of the list,
1832    // and they are not necessarily sorted.  Recurse to resort and resimplify
1833    // any operands we just acquired.
1834    if (DeletedMul)
1835      return getMulExpr(Ops);
1836  }
1837
1838  // If there are any add recurrences in the operands list, see if any other
1839  // added values are loop invariant.  If so, we can fold them into the
1840  // recurrence.
1841  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1842    ++Idx;
1843
1844  // Scan over all recurrences, trying to fold loop invariants into them.
1845  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1846    // Scan all of the other operands to this mul and add them to the vector if
1847    // they are loop invariant w.r.t. the recurrence.
1848    SmallVector<const SCEV *, 8> LIOps;
1849    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1850    const Loop *AddRecLoop = AddRec->getLoop();
1851    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1852      if (Ops[i]->isLoopInvariant(AddRecLoop)) {
1853        LIOps.push_back(Ops[i]);
1854        Ops.erase(Ops.begin()+i);
1855        --i; --e;
1856      }
1857
1858    // If we found some loop invariants, fold them into the recurrence.
1859    if (!LIOps.empty()) {
1860      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1861      SmallVector<const SCEV *, 4> NewOps;
1862      NewOps.reserve(AddRec->getNumOperands());
1863      const SCEV *Scale = getMulExpr(LIOps);
1864      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1865        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1866
1867      // Build the new addrec. Propagate the NUW and NSW flags if both the
1868      // outer mul and the inner addrec are guaranteed to have no overflow.
1869      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1870                                         HasNUW && AddRec->hasNoUnsignedWrap(),
1871                                         HasNSW && AddRec->hasNoSignedWrap());
1872
1873      // If all of the other operands were loop invariant, we are done.
1874      if (Ops.size() == 1) return NewRec;
1875
1876      // Otherwise, multiply the folded AddRec by the non-liv parts.
1877      for (unsigned i = 0;; ++i)
1878        if (Ops[i] == AddRec) {
1879          Ops[i] = NewRec;
1880          break;
1881        }
1882      return getMulExpr(Ops);
1883    }
1884
1885    // Okay, if there weren't any loop invariants to be folded, check to see if
1886    // there are multiple AddRec's with the same loop induction variable being
1887    // multiplied together.  If so, we can fold them.
1888    for (unsigned OtherIdx = Idx+1;
1889         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1890         ++OtherIdx)
1891      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1892        // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L>  -->
1893        // {A*C,+,F*D + G*B + B*D}<L>
1894        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1895             ++OtherIdx)
1896          if (const SCEVAddRecExpr *OtherAddRec =
1897                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1898            if (OtherAddRec->getLoop() == AddRecLoop) {
1899              const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1900              const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1901              const SCEV *B = F->getStepRecurrence(*this);
1902              const SCEV *D = G->getStepRecurrence(*this);
1903              const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1904                                               getMulExpr(G, B),
1905                                               getMulExpr(B, D));
1906              const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1907                                                    F->getLoop());
1908              if (Ops.size() == 2) return NewAddRec;
1909              Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1910              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1911            }
1912        return getMulExpr(Ops);
1913      }
1914
1915    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1916    // next one.
1917  }
1918
1919  // Okay, it looks like we really DO need an mul expr.  Check to see if we
1920  // already have one, otherwise create a new one.
1921  FoldingSetNodeID ID;
1922  ID.AddInteger(scMulExpr);
1923  ID.AddInteger(Ops.size());
1924  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1925    ID.AddPointer(Ops[i]);
1926  void *IP = 0;
1927  SCEVMulExpr *S =
1928    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1929  if (!S) {
1930    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1931    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1932    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1933                                        O, Ops.size());
1934    UniqueSCEVs.InsertNode(S, IP);
1935  }
1936  if (HasNUW) S->setHasNoUnsignedWrap(true);
1937  if (HasNSW) S->setHasNoSignedWrap(true);
1938  return S;
1939}
1940
1941/// getUDivExpr - Get a canonical unsigned division expression, or something
1942/// simpler if possible.
1943const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1944                                         const SCEV *RHS) {
1945  assert(getEffectiveSCEVType(LHS->getType()) ==
1946         getEffectiveSCEVType(RHS->getType()) &&
1947         "SCEVUDivExpr operand types don't match!");
1948
1949  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1950    if (RHSC->getValue()->equalsInt(1))
1951      return LHS;                               // X udiv 1 --> x
1952    // If the denominator is zero, the result of the udiv is undefined. Don't
1953    // try to analyze it, because the resolution chosen here may differ from
1954    // the resolution chosen in other parts of the compiler.
1955    if (!RHSC->getValue()->isZero()) {
1956      // Determine if the division can be folded into the operands of
1957      // its operands.
1958      // TODO: Generalize this to non-constants by using known-bits information.
1959      const Type *Ty = LHS->getType();
1960      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1961      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1962      // For non-power-of-two values, effectively round the value up to the
1963      // nearest power of two.
1964      if (!RHSC->getValue()->getValue().isPowerOf2())
1965        ++MaxShiftAmt;
1966      const IntegerType *ExtTy =
1967        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1968      // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1969      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1970        if (const SCEVConstant *Step =
1971              dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1972          if (!Step->getValue()->getValue()
1973                .urem(RHSC->getValue()->getValue()) &&
1974              getZeroExtendExpr(AR, ExtTy) ==
1975              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1976                            getZeroExtendExpr(Step, ExtTy),
1977                            AR->getLoop())) {
1978            SmallVector<const SCEV *, 4> Operands;
1979            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1980              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1981            return getAddRecExpr(Operands, AR->getLoop());
1982          }
1983      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1984      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1985        SmallVector<const SCEV *, 4> Operands;
1986        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1987          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1988        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1989          // Find an operand that's safely divisible.
1990          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1991            const SCEV *Op = M->getOperand(i);
1992            const SCEV *Div = getUDivExpr(Op, RHSC);
1993            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1994              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1995                                                      M->op_end());
1996              Operands[i] = Div;
1997              return getMulExpr(Operands);
1998            }
1999          }
2000      }
2001      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2002      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
2003        SmallVector<const SCEV *, 4> Operands;
2004        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2005          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2006        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2007          Operands.clear();
2008          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2009            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2010            if (isa<SCEVUDivExpr>(Op) ||
2011                getMulExpr(Op, RHS) != A->getOperand(i))
2012              break;
2013            Operands.push_back(Op);
2014          }
2015          if (Operands.size() == A->getNumOperands())
2016            return getAddExpr(Operands);
2017        }
2018      }
2019
2020      // Fold if both operands are constant.
2021      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2022        Constant *LHSCV = LHSC->getValue();
2023        Constant *RHSCV = RHSC->getValue();
2024        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2025                                                                   RHSCV)));
2026      }
2027    }
2028  }
2029
2030  FoldingSetNodeID ID;
2031  ID.AddInteger(scUDivExpr);
2032  ID.AddPointer(LHS);
2033  ID.AddPointer(RHS);
2034  void *IP = 0;
2035  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2036  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2037                                             LHS, RHS);
2038  UniqueSCEVs.InsertNode(S, IP);
2039  return S;
2040}
2041
2042
2043/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2044/// Simplify the expression as much as possible.
2045const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
2046                                           const SCEV *Step, const Loop *L,
2047                                           bool HasNUW, bool HasNSW) {
2048  SmallVector<const SCEV *, 4> Operands;
2049  Operands.push_back(Start);
2050  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2051    if (StepChrec->getLoop() == L) {
2052      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2053      return getAddRecExpr(Operands, L);
2054    }
2055
2056  Operands.push_back(Step);
2057  return getAddRecExpr(Operands, L, HasNUW, HasNSW);
2058}
2059
2060/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2061/// Simplify the expression as much as possible.
2062const SCEV *
2063ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2064                               const Loop *L,
2065                               bool HasNUW, bool HasNSW) {
2066  if (Operands.size() == 1) return Operands[0];
2067#ifndef NDEBUG
2068  const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2069  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2070    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2071           "SCEVAddRecExpr operand types don't match!");
2072#endif
2073
2074  if (Operands.back()->isZero()) {
2075    Operands.pop_back();
2076    return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0}  -->  X
2077  }
2078
2079  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2080  // use that information to infer NUW and NSW flags. However, computing a
2081  // BE count requires calling getAddRecExpr, so we may not yet have a
2082  // meaningful BE count at this point (and if we don't, we'd be stuck
2083  // with a SCEVCouldNotCompute as the cached BE count).
2084
2085  // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2086  if (!HasNUW && HasNSW) {
2087    bool All = true;
2088    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2089         E = Operands.end(); I != E; ++I)
2090      if (!isKnownNonNegative(*I)) {
2091        All = false;
2092        break;
2093      }
2094    if (All) HasNUW = true;
2095  }
2096
2097  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2098  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2099    const Loop *NestedLoop = NestedAR->getLoop();
2100    if (L->contains(NestedLoop) ?
2101        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2102        (!NestedLoop->contains(L) &&
2103         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2104      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2105                                                  NestedAR->op_end());
2106      Operands[0] = NestedAR->getStart();
2107      // AddRecs require their operands be loop-invariant with respect to their
2108      // loops. Don't perform this transformation if it would break this
2109      // requirement.
2110      bool AllInvariant = true;
2111      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2112        if (!Operands[i]->isLoopInvariant(L)) {
2113          AllInvariant = false;
2114          break;
2115        }
2116      if (AllInvariant) {
2117        NestedOperands[0] = getAddRecExpr(Operands, L);
2118        AllInvariant = true;
2119        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2120          if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2121            AllInvariant = false;
2122            break;
2123          }
2124        if (AllInvariant)
2125          // Ok, both add recurrences are valid after the transformation.
2126          return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2127      }
2128      // Reset Operands to its original state.
2129      Operands[0] = NestedAR;
2130    }
2131  }
2132
2133  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2134  // already have one, otherwise create a new one.
2135  FoldingSetNodeID ID;
2136  ID.AddInteger(scAddRecExpr);
2137  ID.AddInteger(Operands.size());
2138  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2139    ID.AddPointer(Operands[i]);
2140  ID.AddPointer(L);
2141  void *IP = 0;
2142  SCEVAddRecExpr *S =
2143    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2144  if (!S) {
2145    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2146    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2147    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2148                                           O, Operands.size(), L);
2149    UniqueSCEVs.InsertNode(S, IP);
2150  }
2151  if (HasNUW) S->setHasNoUnsignedWrap(true);
2152  if (HasNSW) S->setHasNoSignedWrap(true);
2153  return S;
2154}
2155
2156const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2157                                         const SCEV *RHS) {
2158  SmallVector<const SCEV *, 2> Ops;
2159  Ops.push_back(LHS);
2160  Ops.push_back(RHS);
2161  return getSMaxExpr(Ops);
2162}
2163
2164const SCEV *
2165ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2166  assert(!Ops.empty() && "Cannot get empty smax!");
2167  if (Ops.size() == 1) return Ops[0];
2168#ifndef NDEBUG
2169  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2170  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2171    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2172           "SCEVSMaxExpr operand types don't match!");
2173#endif
2174
2175  // Sort by complexity, this groups all similar expression types together.
2176  GroupByComplexity(Ops, LI);
2177
2178  // If there are any constants, fold them together.
2179  unsigned Idx = 0;
2180  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2181    ++Idx;
2182    assert(Idx < Ops.size());
2183    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2184      // We found two constants, fold them together!
2185      ConstantInt *Fold = ConstantInt::get(getContext(),
2186                              APIntOps::smax(LHSC->getValue()->getValue(),
2187                                             RHSC->getValue()->getValue()));
2188      Ops[0] = getConstant(Fold);
2189      Ops.erase(Ops.begin()+1);  // Erase the folded element
2190      if (Ops.size() == 1) return Ops[0];
2191      LHSC = cast<SCEVConstant>(Ops[0]);
2192    }
2193
2194    // If we are left with a constant minimum-int, strip it off.
2195    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2196      Ops.erase(Ops.begin());
2197      --Idx;
2198    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2199      // If we have an smax with a constant maximum-int, it will always be
2200      // maximum-int.
2201      return Ops[0];
2202    }
2203
2204    if (Ops.size() == 1) return Ops[0];
2205  }
2206
2207  // Find the first SMax
2208  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2209    ++Idx;
2210
2211  // Check to see if one of the operands is an SMax. If so, expand its operands
2212  // onto our operand list, and recurse to simplify.
2213  if (Idx < Ops.size()) {
2214    bool DeletedSMax = false;
2215    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2216      Ops.erase(Ops.begin()+Idx);
2217      Ops.append(SMax->op_begin(), SMax->op_end());
2218      DeletedSMax = true;
2219    }
2220
2221    if (DeletedSMax)
2222      return getSMaxExpr(Ops);
2223  }
2224
2225  // Okay, check to see if the same value occurs in the operand list twice.  If
2226  // so, delete one.  Since we sorted the list, these values are required to
2227  // be adjacent.
2228  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2229    //  X smax Y smax Y  -->  X smax Y
2230    //  X smax Y         -->  X, if X is always greater than Y
2231    if (Ops[i] == Ops[i+1] ||
2232        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2233      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2234      --i; --e;
2235    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2236      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2237      --i; --e;
2238    }
2239
2240  if (Ops.size() == 1) return Ops[0];
2241
2242  assert(!Ops.empty() && "Reduced smax down to nothing!");
2243
2244  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2245  // already have one, otherwise create a new one.
2246  FoldingSetNodeID ID;
2247  ID.AddInteger(scSMaxExpr);
2248  ID.AddInteger(Ops.size());
2249  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2250    ID.AddPointer(Ops[i]);
2251  void *IP = 0;
2252  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2253  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2254  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2255  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2256                                             O, Ops.size());
2257  UniqueSCEVs.InsertNode(S, IP);
2258  return S;
2259}
2260
2261const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2262                                         const SCEV *RHS) {
2263  SmallVector<const SCEV *, 2> Ops;
2264  Ops.push_back(LHS);
2265  Ops.push_back(RHS);
2266  return getUMaxExpr(Ops);
2267}
2268
2269const SCEV *
2270ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2271  assert(!Ops.empty() && "Cannot get empty umax!");
2272  if (Ops.size() == 1) return Ops[0];
2273#ifndef NDEBUG
2274  const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2275  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2276    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2277           "SCEVUMaxExpr operand types don't match!");
2278#endif
2279
2280  // Sort by complexity, this groups all similar expression types together.
2281  GroupByComplexity(Ops, LI);
2282
2283  // If there are any constants, fold them together.
2284  unsigned Idx = 0;
2285  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2286    ++Idx;
2287    assert(Idx < Ops.size());
2288    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2289      // We found two constants, fold them together!
2290      ConstantInt *Fold = ConstantInt::get(getContext(),
2291                              APIntOps::umax(LHSC->getValue()->getValue(),
2292                                             RHSC->getValue()->getValue()));
2293      Ops[0] = getConstant(Fold);
2294      Ops.erase(Ops.begin()+1);  // Erase the folded element
2295      if (Ops.size() == 1) return Ops[0];
2296      LHSC = cast<SCEVConstant>(Ops[0]);
2297    }
2298
2299    // If we are left with a constant minimum-int, strip it off.
2300    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2301      Ops.erase(Ops.begin());
2302      --Idx;
2303    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2304      // If we have an umax with a constant maximum-int, it will always be
2305      // maximum-int.
2306      return Ops[0];
2307    }
2308
2309    if (Ops.size() == 1) return Ops[0];
2310  }
2311
2312  // Find the first UMax
2313  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2314    ++Idx;
2315
2316  // Check to see if one of the operands is a UMax. If so, expand its operands
2317  // onto our operand list, and recurse to simplify.
2318  if (Idx < Ops.size()) {
2319    bool DeletedUMax = false;
2320    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2321      Ops.erase(Ops.begin()+Idx);
2322      Ops.append(UMax->op_begin(), UMax->op_end());
2323      DeletedUMax = true;
2324    }
2325
2326    if (DeletedUMax)
2327      return getUMaxExpr(Ops);
2328  }
2329
2330  // Okay, check to see if the same value occurs in the operand list twice.  If
2331  // so, delete one.  Since we sorted the list, these values are required to
2332  // be adjacent.
2333  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2334    //  X umax Y umax Y  -->  X umax Y
2335    //  X umax Y         -->  X, if X is always greater than Y
2336    if (Ops[i] == Ops[i+1] ||
2337        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2338      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2339      --i; --e;
2340    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2341      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2342      --i; --e;
2343    }
2344
2345  if (Ops.size() == 1) return Ops[0];
2346
2347  assert(!Ops.empty() && "Reduced umax down to nothing!");
2348
2349  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2350  // already have one, otherwise create a new one.
2351  FoldingSetNodeID ID;
2352  ID.AddInteger(scUMaxExpr);
2353  ID.AddInteger(Ops.size());
2354  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2355    ID.AddPointer(Ops[i]);
2356  void *IP = 0;
2357  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2358  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2359  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2360  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2361                                             O, Ops.size());
2362  UniqueSCEVs.InsertNode(S, IP);
2363  return S;
2364}
2365
2366const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2367                                         const SCEV *RHS) {
2368  // ~smax(~x, ~y) == smin(x, y).
2369  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2370}
2371
2372const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2373                                         const SCEV *RHS) {
2374  // ~umax(~x, ~y) == umin(x, y)
2375  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2376}
2377
2378const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2379  // If we have TargetData, we can bypass creating a target-independent
2380  // constant expression and then folding it back into a ConstantInt.
2381  // This is just a compile-time optimization.
2382  if (TD)
2383    return getConstant(TD->getIntPtrType(getContext()),
2384                       TD->getTypeAllocSize(AllocTy));
2385
2386  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2387  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2388    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2389      C = Folded;
2390  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2391  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2392}
2393
2394const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2395  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2396  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2397    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2398      C = Folded;
2399  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2400  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2401}
2402
2403const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2404                                             unsigned FieldNo) {
2405  // If we have TargetData, we can bypass creating a target-independent
2406  // constant expression and then folding it back into a ConstantInt.
2407  // This is just a compile-time optimization.
2408  if (TD)
2409    return getConstant(TD->getIntPtrType(getContext()),
2410                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2411
2412  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2413  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2414    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2415      C = Folded;
2416  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2417  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2418}
2419
2420const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2421                                             Constant *FieldNo) {
2422  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2423  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2424    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2425      C = Folded;
2426  const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2427  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2428}
2429
2430const SCEV *ScalarEvolution::getUnknown(Value *V) {
2431  // Don't attempt to do anything other than create a SCEVUnknown object
2432  // here.  createSCEV only calls getUnknown after checking for all other
2433  // interesting possibilities, and any other code that calls getUnknown
2434  // is doing so in order to hide a value from SCEV canonicalization.
2435
2436  FoldingSetNodeID ID;
2437  ID.AddInteger(scUnknown);
2438  ID.AddPointer(V);
2439  void *IP = 0;
2440  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2441    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2442           "Stale SCEVUnknown in uniquing map!");
2443    return S;
2444  }
2445  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2446                                            FirstUnknown);
2447  FirstUnknown = cast<SCEVUnknown>(S);
2448  UniqueSCEVs.InsertNode(S, IP);
2449  return S;
2450}
2451
2452//===----------------------------------------------------------------------===//
2453//            Basic SCEV Analysis and PHI Idiom Recognition Code
2454//
2455
2456/// isSCEVable - Test if values of the given type are analyzable within
2457/// the SCEV framework. This primarily includes integer types, and it
2458/// can optionally include pointer types if the ScalarEvolution class
2459/// has access to target-specific information.
2460bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2461  // Integers and pointers are always SCEVable.
2462  return Ty->isIntegerTy() || Ty->isPointerTy();
2463}
2464
2465/// getTypeSizeInBits - Return the size in bits of the specified type,
2466/// for which isSCEVable must return true.
2467uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2468  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2469
2470  // If we have a TargetData, use it!
2471  if (TD)
2472    return TD->getTypeSizeInBits(Ty);
2473
2474  // Integer types have fixed sizes.
2475  if (Ty->isIntegerTy())
2476    return Ty->getPrimitiveSizeInBits();
2477
2478  // The only other support type is pointer. Without TargetData, conservatively
2479  // assume pointers are 64-bit.
2480  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2481  return 64;
2482}
2483
2484/// getEffectiveSCEVType - Return a type with the same bitwidth as
2485/// the given type and which represents how SCEV will treat the given
2486/// type, for which isSCEVable must return true. For pointer types,
2487/// this is the pointer-sized integer type.
2488const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2489  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2490
2491  if (Ty->isIntegerTy())
2492    return Ty;
2493
2494  // The only other support type is pointer.
2495  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2496  if (TD) return TD->getIntPtrType(getContext());
2497
2498  // Without TargetData, conservatively assume pointers are 64-bit.
2499  return Type::getInt64Ty(getContext());
2500}
2501
2502const SCEV *ScalarEvolution::getCouldNotCompute() {
2503  return &CouldNotCompute;
2504}
2505
2506/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2507/// expression and create a new one.
2508const SCEV *ScalarEvolution::getSCEV(Value *V) {
2509  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2510
2511  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2512  if (I != ValueExprMap.end()) return I->second;
2513  const SCEV *S = createSCEV(V);
2514
2515  // The process of creating a SCEV for V may have caused other SCEVs
2516  // to have been created, so it's necessary to insert the new entry
2517  // from scratch, rather than trying to remember the insert position
2518  // above.
2519  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2520  return S;
2521}
2522
2523/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2524///
2525const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2526  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2527    return getConstant(
2528               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2529
2530  const Type *Ty = V->getType();
2531  Ty = getEffectiveSCEVType(Ty);
2532  return getMulExpr(V,
2533                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2534}
2535
2536/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2537const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2538  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2539    return getConstant(
2540                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2541
2542  const Type *Ty = V->getType();
2543  Ty = getEffectiveSCEVType(Ty);
2544  const SCEV *AllOnes =
2545                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2546  return getMinusSCEV(AllOnes, V);
2547}
2548
2549/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2550///
2551const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2552                                          const SCEV *RHS) {
2553  // Fast path: X - X --> 0.
2554  if (LHS == RHS)
2555    return getConstant(LHS->getType(), 0);
2556
2557  // X - Y --> X + -Y
2558  return getAddExpr(LHS, getNegativeSCEV(RHS));
2559}
2560
2561/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2562/// input value to the specified type.  If the type must be extended, it is zero
2563/// extended.
2564const SCEV *
2565ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2566                                         const Type *Ty) {
2567  const Type *SrcTy = V->getType();
2568  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2569         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2570         "Cannot truncate or zero extend with non-integer arguments!");
2571  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2572    return V;  // No conversion
2573  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2574    return getTruncateExpr(V, Ty);
2575  return getZeroExtendExpr(V, Ty);
2576}
2577
2578/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2579/// input value to the specified type.  If the type must be extended, it is sign
2580/// extended.
2581const SCEV *
2582ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2583                                         const Type *Ty) {
2584  const Type *SrcTy = V->getType();
2585  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2586         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2587         "Cannot truncate or zero extend with non-integer arguments!");
2588  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2589    return V;  // No conversion
2590  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2591    return getTruncateExpr(V, Ty);
2592  return getSignExtendExpr(V, Ty);
2593}
2594
2595/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2596/// input value to the specified type.  If the type must be extended, it is zero
2597/// extended.  The conversion must not be narrowing.
2598const SCEV *
2599ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2600  const Type *SrcTy = V->getType();
2601  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2602         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2603         "Cannot noop or zero extend with non-integer arguments!");
2604  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2605         "getNoopOrZeroExtend cannot truncate!");
2606  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2607    return V;  // No conversion
2608  return getZeroExtendExpr(V, Ty);
2609}
2610
2611/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2612/// input value to the specified type.  If the type must be extended, it is sign
2613/// extended.  The conversion must not be narrowing.
2614const SCEV *
2615ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2616  const Type *SrcTy = V->getType();
2617  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2618         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2619         "Cannot noop or sign extend with non-integer arguments!");
2620  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2621         "getNoopOrSignExtend cannot truncate!");
2622  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2623    return V;  // No conversion
2624  return getSignExtendExpr(V, Ty);
2625}
2626
2627/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2628/// the input value to the specified type. If the type must be extended,
2629/// it is extended with unspecified bits. The conversion must not be
2630/// narrowing.
2631const SCEV *
2632ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2633  const Type *SrcTy = V->getType();
2634  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2635         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2636         "Cannot noop or any extend with non-integer arguments!");
2637  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2638         "getNoopOrAnyExtend cannot truncate!");
2639  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2640    return V;  // No conversion
2641  return getAnyExtendExpr(V, Ty);
2642}
2643
2644/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2645/// input value to the specified type.  The conversion must not be widening.
2646const SCEV *
2647ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2648  const Type *SrcTy = V->getType();
2649  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2650         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2651         "Cannot truncate or noop with non-integer arguments!");
2652  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2653         "getTruncateOrNoop cannot extend!");
2654  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2655    return V;  // No conversion
2656  return getTruncateExpr(V, Ty);
2657}
2658
2659/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2660/// the types using zero-extension, and then perform a umax operation
2661/// with them.
2662const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2663                                                        const SCEV *RHS) {
2664  const SCEV *PromotedLHS = LHS;
2665  const SCEV *PromotedRHS = RHS;
2666
2667  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2668    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2669  else
2670    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2671
2672  return getUMaxExpr(PromotedLHS, PromotedRHS);
2673}
2674
2675/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2676/// the types using zero-extension, and then perform a umin operation
2677/// with them.
2678const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2679                                                        const SCEV *RHS) {
2680  const SCEV *PromotedLHS = LHS;
2681  const SCEV *PromotedRHS = RHS;
2682
2683  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2684    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2685  else
2686    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2687
2688  return getUMinExpr(PromotedLHS, PromotedRHS);
2689}
2690
2691/// PushDefUseChildren - Push users of the given Instruction
2692/// onto the given Worklist.
2693static void
2694PushDefUseChildren(Instruction *I,
2695                   SmallVectorImpl<Instruction *> &Worklist) {
2696  // Push the def-use children onto the Worklist stack.
2697  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2698       UI != UE; ++UI)
2699    Worklist.push_back(cast<Instruction>(*UI));
2700}
2701
2702/// ForgetSymbolicValue - This looks up computed SCEV values for all
2703/// instructions that depend on the given instruction and removes them from
2704/// the ValueExprMapType map if they reference SymName. This is used during PHI
2705/// resolution.
2706void
2707ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2708  SmallVector<Instruction *, 16> Worklist;
2709  PushDefUseChildren(PN, Worklist);
2710
2711  SmallPtrSet<Instruction *, 8> Visited;
2712  Visited.insert(PN);
2713  while (!Worklist.empty()) {
2714    Instruction *I = Worklist.pop_back_val();
2715    if (!Visited.insert(I)) continue;
2716
2717    ValueExprMapType::iterator It =
2718      ValueExprMap.find(static_cast<Value *>(I));
2719    if (It != ValueExprMap.end()) {
2720      // Short-circuit the def-use traversal if the symbolic name
2721      // ceases to appear in expressions.
2722      if (It->second != SymName && !It->second->hasOperand(SymName))
2723        continue;
2724
2725      // SCEVUnknown for a PHI either means that it has an unrecognized
2726      // structure, it's a PHI that's in the progress of being computed
2727      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2728      // additional loop trip count information isn't going to change anything.
2729      // In the second case, createNodeForPHI will perform the necessary
2730      // updates on its own when it gets to that point. In the third, we do
2731      // want to forget the SCEVUnknown.
2732      if (!isa<PHINode>(I) ||
2733          !isa<SCEVUnknown>(It->second) ||
2734          (I != PN && It->second == SymName)) {
2735        ValuesAtScopes.erase(It->second);
2736        ValueExprMap.erase(It);
2737      }
2738    }
2739
2740    PushDefUseChildren(I, Worklist);
2741  }
2742}
2743
2744/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2745/// a loop header, making it a potential recurrence, or it doesn't.
2746///
2747const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2748  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2749    if (L->getHeader() == PN->getParent()) {
2750      // The loop may have multiple entrances or multiple exits; we can analyze
2751      // this phi as an addrec if it has a unique entry value and a unique
2752      // backedge value.
2753      Value *BEValueV = 0, *StartValueV = 0;
2754      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2755        Value *V = PN->getIncomingValue(i);
2756        if (L->contains(PN->getIncomingBlock(i))) {
2757          if (!BEValueV) {
2758            BEValueV = V;
2759          } else if (BEValueV != V) {
2760            BEValueV = 0;
2761            break;
2762          }
2763        } else if (!StartValueV) {
2764          StartValueV = V;
2765        } else if (StartValueV != V) {
2766          StartValueV = 0;
2767          break;
2768        }
2769      }
2770      if (BEValueV && StartValueV) {
2771        // While we are analyzing this PHI node, handle its value symbolically.
2772        const SCEV *SymbolicName = getUnknown(PN);
2773        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2774               "PHI node already processed?");
2775        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2776
2777        // Using this symbolic name for the PHI, analyze the value coming around
2778        // the back-edge.
2779        const SCEV *BEValue = getSCEV(BEValueV);
2780
2781        // NOTE: If BEValue is loop invariant, we know that the PHI node just
2782        // has a special value for the first iteration of the loop.
2783
2784        // If the value coming around the backedge is an add with the symbolic
2785        // value we just inserted, then we found a simple induction variable!
2786        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2787          // If there is a single occurrence of the symbolic value, replace it
2788          // with a recurrence.
2789          unsigned FoundIndex = Add->getNumOperands();
2790          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2791            if (Add->getOperand(i) == SymbolicName)
2792              if (FoundIndex == e) {
2793                FoundIndex = i;
2794                break;
2795              }
2796
2797          if (FoundIndex != Add->getNumOperands()) {
2798            // Create an add with everything but the specified operand.
2799            SmallVector<const SCEV *, 8> Ops;
2800            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2801              if (i != FoundIndex)
2802                Ops.push_back(Add->getOperand(i));
2803            const SCEV *Accum = getAddExpr(Ops);
2804
2805            // This is not a valid addrec if the step amount is varying each
2806            // loop iteration, but is not itself an addrec in this loop.
2807            if (Accum->isLoopInvariant(L) ||
2808                (isa<SCEVAddRecExpr>(Accum) &&
2809                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2810              bool HasNUW = false;
2811              bool HasNSW = false;
2812
2813              // If the increment doesn't overflow, then neither the addrec nor
2814              // the post-increment will overflow.
2815              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2816                if (OBO->hasNoUnsignedWrap())
2817                  HasNUW = true;
2818                if (OBO->hasNoSignedWrap())
2819                  HasNSW = true;
2820              }
2821
2822              const SCEV *StartVal = getSCEV(StartValueV);
2823              const SCEV *PHISCEV =
2824                getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2825
2826              // Since the no-wrap flags are on the increment, they apply to the
2827              // post-incremented value as well.
2828              if (Accum->isLoopInvariant(L))
2829                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2830                                    Accum, L, HasNUW, HasNSW);
2831
2832              // Okay, for the entire analysis of this edge we assumed the PHI
2833              // to be symbolic.  We now need to go back and purge all of the
2834              // entries for the scalars that use the symbolic expression.
2835              ForgetSymbolicName(PN, SymbolicName);
2836              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2837              return PHISCEV;
2838            }
2839          }
2840        } else if (const SCEVAddRecExpr *AddRec =
2841                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
2842          // Otherwise, this could be a loop like this:
2843          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
2844          // In this case, j = {1,+,1}  and BEValue is j.
2845          // Because the other in-value of i (0) fits the evolution of BEValue
2846          // i really is an addrec evolution.
2847          if (AddRec->getLoop() == L && AddRec->isAffine()) {
2848            const SCEV *StartVal = getSCEV(StartValueV);
2849
2850            // If StartVal = j.start - j.stride, we can use StartVal as the
2851            // initial step of the addrec evolution.
2852            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2853                                         AddRec->getOperand(1))) {
2854              const SCEV *PHISCEV =
2855                 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2856
2857              // Okay, for the entire analysis of this edge we assumed the PHI
2858              // to be symbolic.  We now need to go back and purge all of the
2859              // entries for the scalars that use the symbolic expression.
2860              ForgetSymbolicName(PN, SymbolicName);
2861              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2862              return PHISCEV;
2863            }
2864          }
2865        }
2866      }
2867    }
2868
2869  // If the PHI has a single incoming value, follow that value, unless the
2870  // PHI's incoming blocks are in a different loop, in which case doing so
2871  // risks breaking LCSSA form. Instcombine would normally zap these, but
2872  // it doesn't have DominatorTree information, so it may miss cases.
2873  if (Value *V = PN->hasConstantValue(DT)) {
2874    bool AllSameLoop = true;
2875    Loop *PNLoop = LI->getLoopFor(PN->getParent());
2876    for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2877      if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2878        AllSameLoop = false;
2879        break;
2880      }
2881    if (AllSameLoop)
2882      return getSCEV(V);
2883  }
2884
2885  // If it's not a loop phi, we can't handle it yet.
2886  return getUnknown(PN);
2887}
2888
2889/// createNodeForGEP - Expand GEP instructions into add and multiply
2890/// operations. This allows them to be analyzed by regular SCEV code.
2891///
2892const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2893
2894  // Don't blindly transfer the inbounds flag from the GEP instruction to the
2895  // Add expression, because the Instruction may be guarded by control flow
2896  // and the no-overflow bits may not be valid for the expression in any
2897  // context.
2898
2899  const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2900  Value *Base = GEP->getOperand(0);
2901  // Don't attempt to analyze GEPs over unsized objects.
2902  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2903    return getUnknown(GEP);
2904  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2905  gep_type_iterator GTI = gep_type_begin(GEP);
2906  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2907                                      E = GEP->op_end();
2908       I != E; ++I) {
2909    Value *Index = *I;
2910    // Compute the (potentially symbolic) offset in bytes for this index.
2911    if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2912      // For a struct, add the member offset.
2913      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2914      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2915
2916      // Add the field offset to the running total offset.
2917      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2918    } else {
2919      // For an array, add the element offset, explicitly scaled.
2920      const SCEV *ElementSize = getSizeOfExpr(*GTI);
2921      const SCEV *IndexS = getSCEV(Index);
2922      // Getelementptr indices are signed.
2923      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2924
2925      // Multiply the index by the element size to compute the element offset.
2926      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2927
2928      // Add the element offset to the running total offset.
2929      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2930    }
2931  }
2932
2933  // Get the SCEV for the GEP base.
2934  const SCEV *BaseS = getSCEV(Base);
2935
2936  // Add the total offset from all the GEP indices to the base.
2937  return getAddExpr(BaseS, TotalOffset);
2938}
2939
2940/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2941/// guaranteed to end in (at every loop iteration).  It is, at the same time,
2942/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
2943/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
2944uint32_t
2945ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2946  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2947    return C->getValue()->getValue().countTrailingZeros();
2948
2949  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2950    return std::min(GetMinTrailingZeros(T->getOperand()),
2951                    (uint32_t)getTypeSizeInBits(T->getType()));
2952
2953  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2954    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2955    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2956             getTypeSizeInBits(E->getType()) : OpRes;
2957  }
2958
2959  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2960    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2961    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2962             getTypeSizeInBits(E->getType()) : OpRes;
2963  }
2964
2965  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2966    // The result is the min of all operands results.
2967    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2968    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2969      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2970    return MinOpRes;
2971  }
2972
2973  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2974    // The result is the sum of all operands results.
2975    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2976    uint32_t BitWidth = getTypeSizeInBits(M->getType());
2977    for (unsigned i = 1, e = M->getNumOperands();
2978         SumOpRes != BitWidth && i != e; ++i)
2979      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2980                          BitWidth);
2981    return SumOpRes;
2982  }
2983
2984  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2985    // The result is the min of all operands results.
2986    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2987    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2988      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2989    return MinOpRes;
2990  }
2991
2992  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2993    // The result is the min of all operands results.
2994    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2995    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2996      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2997    return MinOpRes;
2998  }
2999
3000  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3001    // The result is the min of all operands results.
3002    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3003    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3004      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3005    return MinOpRes;
3006  }
3007
3008  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3009    // For a SCEVUnknown, ask ValueTracking.
3010    unsigned BitWidth = getTypeSizeInBits(U->getType());
3011    APInt Mask = APInt::getAllOnesValue(BitWidth);
3012    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3013    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3014    return Zeros.countTrailingOnes();
3015  }
3016
3017  // SCEVUDivExpr
3018  return 0;
3019}
3020
3021/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3022///
3023ConstantRange
3024ScalarEvolution::getUnsignedRange(const SCEV *S) {
3025
3026  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3027    return ConstantRange(C->getValue()->getValue());
3028
3029  unsigned BitWidth = getTypeSizeInBits(S->getType());
3030  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3031
3032  // If the value has known zeros, the maximum unsigned value will have those
3033  // known zeros as well.
3034  uint32_t TZ = GetMinTrailingZeros(S);
3035  if (TZ != 0)
3036    ConservativeResult =
3037      ConstantRange(APInt::getMinValue(BitWidth),
3038                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3039
3040  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3041    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3042    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3043      X = X.add(getUnsignedRange(Add->getOperand(i)));
3044    return ConservativeResult.intersectWith(X);
3045  }
3046
3047  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3048    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3049    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3050      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3051    return ConservativeResult.intersectWith(X);
3052  }
3053
3054  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3055    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3056    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3057      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3058    return ConservativeResult.intersectWith(X);
3059  }
3060
3061  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3062    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3063    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3064      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3065    return ConservativeResult.intersectWith(X);
3066  }
3067
3068  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3069    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3070    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3071    return ConservativeResult.intersectWith(X.udiv(Y));
3072  }
3073
3074  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3075    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3076    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3077  }
3078
3079  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3080    ConstantRange X = getUnsignedRange(SExt->getOperand());
3081    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3082  }
3083
3084  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3085    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3086    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3087  }
3088
3089  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3090    // If there's no unsigned wrap, the value will never be less than its
3091    // initial value.
3092    if (AddRec->hasNoUnsignedWrap())
3093      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3094        if (!C->getValue()->isZero())
3095          ConservativeResult =
3096            ConservativeResult.intersectWith(
3097              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3098
3099    // TODO: non-affine addrec
3100    if (AddRec->isAffine()) {
3101      const Type *Ty = AddRec->getType();
3102      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3103      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3104          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3105        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3106
3107        const SCEV *Start = AddRec->getStart();
3108        const SCEV *Step = AddRec->getStepRecurrence(*this);
3109
3110        ConstantRange StartRange = getUnsignedRange(Start);
3111        ConstantRange StepRange = getSignedRange(Step);
3112        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3113        ConstantRange EndRange =
3114          StartRange.add(MaxBECountRange.multiply(StepRange));
3115
3116        // Check for overflow. This must be done with ConstantRange arithmetic
3117        // because we could be called from within the ScalarEvolution overflow
3118        // checking code.
3119        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3120        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3121        ConstantRange ExtMaxBECountRange =
3122          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3123        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3124        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3125            ExtEndRange)
3126          return ConservativeResult;
3127
3128        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3129                                   EndRange.getUnsignedMin());
3130        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3131                                   EndRange.getUnsignedMax());
3132        if (Min.isMinValue() && Max.isMaxValue())
3133          return ConservativeResult;
3134        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3135      }
3136    }
3137
3138    return ConservativeResult;
3139  }
3140
3141  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3142    // For a SCEVUnknown, ask ValueTracking.
3143    APInt Mask = APInt::getAllOnesValue(BitWidth);
3144    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3145    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3146    if (Ones == ~Zeros + 1)
3147      return ConservativeResult;
3148    return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
3149  }
3150
3151  return ConservativeResult;
3152}
3153
3154/// getSignedRange - Determine the signed range for a particular SCEV.
3155///
3156ConstantRange
3157ScalarEvolution::getSignedRange(const SCEV *S) {
3158
3159  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3160    return ConstantRange(C->getValue()->getValue());
3161
3162  unsigned BitWidth = getTypeSizeInBits(S->getType());
3163  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3164
3165  // If the value has known zeros, the maximum signed value will have those
3166  // known zeros as well.
3167  uint32_t TZ = GetMinTrailingZeros(S);
3168  if (TZ != 0)
3169    ConservativeResult =
3170      ConstantRange(APInt::getSignedMinValue(BitWidth),
3171                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3172
3173  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3174    ConstantRange X = getSignedRange(Add->getOperand(0));
3175    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3176      X = X.add(getSignedRange(Add->getOperand(i)));
3177    return ConservativeResult.intersectWith(X);
3178  }
3179
3180  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3181    ConstantRange X = getSignedRange(Mul->getOperand(0));
3182    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3183      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3184    return ConservativeResult.intersectWith(X);
3185  }
3186
3187  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3188    ConstantRange X = getSignedRange(SMax->getOperand(0));
3189    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3190      X = X.smax(getSignedRange(SMax->getOperand(i)));
3191    return ConservativeResult.intersectWith(X);
3192  }
3193
3194  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3195    ConstantRange X = getSignedRange(UMax->getOperand(0));
3196    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3197      X = X.umax(getSignedRange(UMax->getOperand(i)));
3198    return ConservativeResult.intersectWith(X);
3199  }
3200
3201  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3202    ConstantRange X = getSignedRange(UDiv->getLHS());
3203    ConstantRange Y = getSignedRange(UDiv->getRHS());
3204    return ConservativeResult.intersectWith(X.udiv(Y));
3205  }
3206
3207  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3208    ConstantRange X = getSignedRange(ZExt->getOperand());
3209    return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
3210  }
3211
3212  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3213    ConstantRange X = getSignedRange(SExt->getOperand());
3214    return ConservativeResult.intersectWith(X.signExtend(BitWidth));
3215  }
3216
3217  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3218    ConstantRange X = getSignedRange(Trunc->getOperand());
3219    return ConservativeResult.intersectWith(X.truncate(BitWidth));
3220  }
3221
3222  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3223    // If there's no signed wrap, and all the operands have the same sign or
3224    // zero, the value won't ever change sign.
3225    if (AddRec->hasNoSignedWrap()) {
3226      bool AllNonNeg = true;
3227      bool AllNonPos = true;
3228      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3229        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3230        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3231      }
3232      if (AllNonNeg)
3233        ConservativeResult = ConservativeResult.intersectWith(
3234          ConstantRange(APInt(BitWidth, 0),
3235                        APInt::getSignedMinValue(BitWidth)));
3236      else if (AllNonPos)
3237        ConservativeResult = ConservativeResult.intersectWith(
3238          ConstantRange(APInt::getSignedMinValue(BitWidth),
3239                        APInt(BitWidth, 1)));
3240    }
3241
3242    // TODO: non-affine addrec
3243    if (AddRec->isAffine()) {
3244      const Type *Ty = AddRec->getType();
3245      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3246      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3247          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3248        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3249
3250        const SCEV *Start = AddRec->getStart();
3251        const SCEV *Step = AddRec->getStepRecurrence(*this);
3252
3253        ConstantRange StartRange = getSignedRange(Start);
3254        ConstantRange StepRange = getSignedRange(Step);
3255        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3256        ConstantRange EndRange =
3257          StartRange.add(MaxBECountRange.multiply(StepRange));
3258
3259        // Check for overflow. This must be done with ConstantRange arithmetic
3260        // because we could be called from within the ScalarEvolution overflow
3261        // checking code.
3262        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3263        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3264        ConstantRange ExtMaxBECountRange =
3265          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3266        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3267        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3268            ExtEndRange)
3269          return ConservativeResult;
3270
3271        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3272                                   EndRange.getSignedMin());
3273        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3274                                   EndRange.getSignedMax());
3275        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3276          return ConservativeResult;
3277        return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
3278      }
3279    }
3280
3281    return ConservativeResult;
3282  }
3283
3284  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3285    // For a SCEVUnknown, ask ValueTracking.
3286    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3287      return ConservativeResult;
3288    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3289    if (NS == 1)
3290      return ConservativeResult;
3291    return ConservativeResult.intersectWith(
3292      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3293                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
3294  }
3295
3296  return ConservativeResult;
3297}
3298
3299/// createSCEV - We know that there is no SCEV for the specified value.
3300/// Analyze the expression.
3301///
3302const SCEV *ScalarEvolution::createSCEV(Value *V) {
3303  if (!isSCEVable(V->getType()))
3304    return getUnknown(V);
3305
3306  unsigned Opcode = Instruction::UserOp1;
3307  if (Instruction *I = dyn_cast<Instruction>(V)) {
3308    Opcode = I->getOpcode();
3309
3310    // Don't attempt to analyze instructions in blocks that aren't
3311    // reachable. Such instructions don't matter, and they aren't required
3312    // to obey basic rules for definitions dominating uses which this
3313    // analysis depends on.
3314    if (!DT->isReachableFromEntry(I->getParent()))
3315      return getUnknown(V);
3316  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3317    Opcode = CE->getOpcode();
3318  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3319    return getConstant(CI);
3320  else if (isa<ConstantPointerNull>(V))
3321    return getConstant(V->getType(), 0);
3322  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3323    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3324  else
3325    return getUnknown(V);
3326
3327  Operator *U = cast<Operator>(V);
3328  switch (Opcode) {
3329  case Instruction::Add: {
3330    // The simple thing to do would be to just call getSCEV on both operands
3331    // and call getAddExpr with the result. However if we're looking at a
3332    // bunch of things all added together, this can be quite inefficient,
3333    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3334    // Instead, gather up all the operands and make a single getAddExpr call.
3335    // LLVM IR canonical form means we need only traverse the left operands.
3336    SmallVector<const SCEV *, 4> AddOps;
3337    AddOps.push_back(getSCEV(U->getOperand(1)));
3338    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3339      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3340      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3341        break;
3342      U = cast<Operator>(Op);
3343      const SCEV *Op1 = getSCEV(U->getOperand(1));
3344      if (Opcode == Instruction::Sub)
3345        AddOps.push_back(getNegativeSCEV(Op1));
3346      else
3347        AddOps.push_back(Op1);
3348    }
3349    AddOps.push_back(getSCEV(U->getOperand(0)));
3350    return getAddExpr(AddOps);
3351  }
3352  case Instruction::Mul: {
3353    // See the Add code above.
3354    SmallVector<const SCEV *, 4> MulOps;
3355    MulOps.push_back(getSCEV(U->getOperand(1)));
3356    for (Value *Op = U->getOperand(0);
3357         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3358         Op = U->getOperand(0)) {
3359      U = cast<Operator>(Op);
3360      MulOps.push_back(getSCEV(U->getOperand(1)));
3361    }
3362    MulOps.push_back(getSCEV(U->getOperand(0)));
3363    return getMulExpr(MulOps);
3364  }
3365  case Instruction::UDiv:
3366    return getUDivExpr(getSCEV(U->getOperand(0)),
3367                       getSCEV(U->getOperand(1)));
3368  case Instruction::Sub:
3369    return getMinusSCEV(getSCEV(U->getOperand(0)),
3370                        getSCEV(U->getOperand(1)));
3371  case Instruction::And:
3372    // For an expression like x&255 that merely masks off the high bits,
3373    // use zext(trunc(x)) as the SCEV expression.
3374    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3375      if (CI->isNullValue())
3376        return getSCEV(U->getOperand(1));
3377      if (CI->isAllOnesValue())
3378        return getSCEV(U->getOperand(0));
3379      const APInt &A = CI->getValue();
3380
3381      // Instcombine's ShrinkDemandedConstant may strip bits out of
3382      // constants, obscuring what would otherwise be a low-bits mask.
3383      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3384      // knew about to reconstruct a low-bits mask value.
3385      unsigned LZ = A.countLeadingZeros();
3386      unsigned BitWidth = A.getBitWidth();
3387      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3388      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3389      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3390
3391      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3392
3393      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3394        return
3395          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3396                                IntegerType::get(getContext(), BitWidth - LZ)),
3397                            U->getType());
3398    }
3399    break;
3400
3401  case Instruction::Or:
3402    // If the RHS of the Or is a constant, we may have something like:
3403    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3404    // optimizations will transparently handle this case.
3405    //
3406    // In order for this transformation to be safe, the LHS must be of the
3407    // form X*(2^n) and the Or constant must be less than 2^n.
3408    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3409      const SCEV *LHS = getSCEV(U->getOperand(0));
3410      const APInt &CIVal = CI->getValue();
3411      if (GetMinTrailingZeros(LHS) >=
3412          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3413        // Build a plain add SCEV.
3414        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3415        // If the LHS of the add was an addrec and it has no-wrap flags,
3416        // transfer the no-wrap flags, since an or won't introduce a wrap.
3417        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3418          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3419          if (OldAR->hasNoUnsignedWrap())
3420            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3421          if (OldAR->hasNoSignedWrap())
3422            const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3423        }
3424        return S;
3425      }
3426    }
3427    break;
3428  case Instruction::Xor:
3429    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3430      // If the RHS of the xor is a signbit, then this is just an add.
3431      // Instcombine turns add of signbit into xor as a strength reduction step.
3432      if (CI->getValue().isSignBit())
3433        return getAddExpr(getSCEV(U->getOperand(0)),
3434                          getSCEV(U->getOperand(1)));
3435
3436      // If the RHS of xor is -1, then this is a not operation.
3437      if (CI->isAllOnesValue())
3438        return getNotSCEV(getSCEV(U->getOperand(0)));
3439
3440      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3441      // This is a variant of the check for xor with -1, and it handles
3442      // the case where instcombine has trimmed non-demanded bits out
3443      // of an xor with -1.
3444      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3445        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3446          if (BO->getOpcode() == Instruction::And &&
3447              LCI->getValue() == CI->getValue())
3448            if (const SCEVZeroExtendExpr *Z =
3449                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3450              const Type *UTy = U->getType();
3451              const SCEV *Z0 = Z->getOperand();
3452              const Type *Z0Ty = Z0->getType();
3453              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3454
3455              // If C is a low-bits mask, the zero extend is serving to
3456              // mask off the high bits. Complement the operand and
3457              // re-apply the zext.
3458              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3459                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3460
3461              // If C is a single bit, it may be in the sign-bit position
3462              // before the zero-extend. In this case, represent the xor
3463              // using an add, which is equivalent, and re-apply the zext.
3464              APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3465              if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3466                  Trunc.isSignBit())
3467                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3468                                         UTy);
3469            }
3470    }
3471    break;
3472
3473  case Instruction::Shl:
3474    // Turn shift left of a constant amount into a multiply.
3475    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3476      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3477
3478      // If the shift count is not less than the bitwidth, the result of
3479      // the shift is undefined. Don't try to analyze it, because the
3480      // resolution chosen here may differ from the resolution chosen in
3481      // other parts of the compiler.
3482      if (SA->getValue().uge(BitWidth))
3483        break;
3484
3485      Constant *X = ConstantInt::get(getContext(),
3486        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3487      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3488    }
3489    break;
3490
3491  case Instruction::LShr:
3492    // Turn logical shift right of a constant into a unsigned divide.
3493    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3494      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3495
3496      // If the shift count is not less than the bitwidth, the result of
3497      // the shift is undefined. Don't try to analyze it, because the
3498      // resolution chosen here may differ from the resolution chosen in
3499      // other parts of the compiler.
3500      if (SA->getValue().uge(BitWidth))
3501        break;
3502
3503      Constant *X = ConstantInt::get(getContext(),
3504        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3505      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3506    }
3507    break;
3508
3509  case Instruction::AShr:
3510    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3511    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3512      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3513        if (L->getOpcode() == Instruction::Shl &&
3514            L->getOperand(1) == U->getOperand(1)) {
3515          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3516
3517          // If the shift count is not less than the bitwidth, the result of
3518          // the shift is undefined. Don't try to analyze it, because the
3519          // resolution chosen here may differ from the resolution chosen in
3520          // other parts of the compiler.
3521          if (CI->getValue().uge(BitWidth))
3522            break;
3523
3524          uint64_t Amt = BitWidth - CI->getZExtValue();
3525          if (Amt == BitWidth)
3526            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3527          return
3528            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3529                                              IntegerType::get(getContext(),
3530                                                               Amt)),
3531                              U->getType());
3532        }
3533    break;
3534
3535  case Instruction::Trunc:
3536    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3537
3538  case Instruction::ZExt:
3539    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3540
3541  case Instruction::SExt:
3542    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3543
3544  case Instruction::BitCast:
3545    // BitCasts are no-op casts so we just eliminate the cast.
3546    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3547      return getSCEV(U->getOperand(0));
3548    break;
3549
3550  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3551  // lead to pointer expressions which cannot safely be expanded to GEPs,
3552  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3553  // simplifying integer expressions.
3554
3555  case Instruction::GetElementPtr:
3556    return createNodeForGEP(cast<GEPOperator>(U));
3557
3558  case Instruction::PHI:
3559    return createNodeForPHI(cast<PHINode>(U));
3560
3561  case Instruction::Select:
3562    // This could be a smax or umax that was lowered earlier.
3563    // Try to recover it.
3564    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3565      Value *LHS = ICI->getOperand(0);
3566      Value *RHS = ICI->getOperand(1);
3567      switch (ICI->getPredicate()) {
3568      case ICmpInst::ICMP_SLT:
3569      case ICmpInst::ICMP_SLE:
3570        std::swap(LHS, RHS);
3571        // fall through
3572      case ICmpInst::ICMP_SGT:
3573      case ICmpInst::ICMP_SGE:
3574        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3575        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3576        if (LHS->getType() == U->getType()) {
3577          const SCEV *LS = getSCEV(LHS);
3578          const SCEV *RS = getSCEV(RHS);
3579          const SCEV *LA = getSCEV(U->getOperand(1));
3580          const SCEV *RA = getSCEV(U->getOperand(2));
3581          const SCEV *LDiff = getMinusSCEV(LA, LS);
3582          const SCEV *RDiff = getMinusSCEV(RA, RS);
3583          if (LDiff == RDiff)
3584            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3585          LDiff = getMinusSCEV(LA, RS);
3586          RDiff = getMinusSCEV(RA, LS);
3587          if (LDiff == RDiff)
3588            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3589        }
3590        break;
3591      case ICmpInst::ICMP_ULT:
3592      case ICmpInst::ICMP_ULE:
3593        std::swap(LHS, RHS);
3594        // fall through
3595      case ICmpInst::ICMP_UGT:
3596      case ICmpInst::ICMP_UGE:
3597        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3598        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3599        if (LHS->getType() == U->getType()) {
3600          const SCEV *LS = getSCEV(LHS);
3601          const SCEV *RS = getSCEV(RHS);
3602          const SCEV *LA = getSCEV(U->getOperand(1));
3603          const SCEV *RA = getSCEV(U->getOperand(2));
3604          const SCEV *LDiff = getMinusSCEV(LA, LS);
3605          const SCEV *RDiff = getMinusSCEV(RA, RS);
3606          if (LDiff == RDiff)
3607            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3608          LDiff = getMinusSCEV(LA, RS);
3609          RDiff = getMinusSCEV(RA, LS);
3610          if (LDiff == RDiff)
3611            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3612        }
3613        break;
3614      case ICmpInst::ICMP_NE:
3615        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3616        if (LHS->getType() == U->getType() &&
3617            isa<ConstantInt>(RHS) &&
3618            cast<ConstantInt>(RHS)->isZero()) {
3619          const SCEV *One = getConstant(LHS->getType(), 1);
3620          const SCEV *LS = getSCEV(LHS);
3621          const SCEV *LA = getSCEV(U->getOperand(1));
3622          const SCEV *RA = getSCEV(U->getOperand(2));
3623          const SCEV *LDiff = getMinusSCEV(LA, LS);
3624          const SCEV *RDiff = getMinusSCEV(RA, One);
3625          if (LDiff == RDiff)
3626            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3627        }
3628        break;
3629      case ICmpInst::ICMP_EQ:
3630        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3631        if (LHS->getType() == U->getType() &&
3632            isa<ConstantInt>(RHS) &&
3633            cast<ConstantInt>(RHS)->isZero()) {
3634          const SCEV *One = getConstant(LHS->getType(), 1);
3635          const SCEV *LS = getSCEV(LHS);
3636          const SCEV *LA = getSCEV(U->getOperand(1));
3637          const SCEV *RA = getSCEV(U->getOperand(2));
3638          const SCEV *LDiff = getMinusSCEV(LA, One);
3639          const SCEV *RDiff = getMinusSCEV(RA, LS);
3640          if (LDiff == RDiff)
3641            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3642        }
3643        break;
3644      default:
3645        break;
3646      }
3647    }
3648
3649  default: // We cannot analyze this expression.
3650    break;
3651  }
3652
3653  return getUnknown(V);
3654}
3655
3656
3657
3658//===----------------------------------------------------------------------===//
3659//                   Iteration Count Computation Code
3660//
3661
3662/// getBackedgeTakenCount - If the specified loop has a predictable
3663/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3664/// object. The backedge-taken count is the number of times the loop header
3665/// will be branched to from within the loop. This is one less than the
3666/// trip count of the loop, since it doesn't count the first iteration,
3667/// when the header is branched to from outside the loop.
3668///
3669/// Note that it is not valid to call this method on a loop without a
3670/// loop-invariant backedge-taken count (see
3671/// hasLoopInvariantBackedgeTakenCount).
3672///
3673const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3674  return getBackedgeTakenInfo(L).Exact;
3675}
3676
3677/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3678/// return the least SCEV value that is known never to be less than the
3679/// actual backedge taken count.
3680const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3681  return getBackedgeTakenInfo(L).Max;
3682}
3683
3684/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3685/// onto the given Worklist.
3686static void
3687PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3688  BasicBlock *Header = L->getHeader();
3689
3690  // Push all Loop-header PHIs onto the Worklist stack.
3691  for (BasicBlock::iterator I = Header->begin();
3692       PHINode *PN = dyn_cast<PHINode>(I); ++I)
3693    Worklist.push_back(PN);
3694}
3695
3696const ScalarEvolution::BackedgeTakenInfo &
3697ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3698  // Initially insert a CouldNotCompute for this loop. If the insertion
3699  // succeeds, proceed to actually compute a backedge-taken count and
3700  // update the value. The temporary CouldNotCompute value tells SCEV
3701  // code elsewhere that it shouldn't attempt to request a new
3702  // backedge-taken count, which could result in infinite recursion.
3703  std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3704    BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3705  if (Pair.second) {
3706    BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3707    if (BECount.Exact != getCouldNotCompute()) {
3708      assert(BECount.Exact->isLoopInvariant(L) &&
3709             BECount.Max->isLoopInvariant(L) &&
3710             "Computed backedge-taken count isn't loop invariant for loop!");
3711      ++NumTripCountsComputed;
3712
3713      // Update the value in the map.
3714      Pair.first->second = BECount;
3715    } else {
3716      if (BECount.Max != getCouldNotCompute())
3717        // Update the value in the map.
3718        Pair.first->second = BECount;
3719      if (isa<PHINode>(L->getHeader()->begin()))
3720        // Only count loops that have phi nodes as not being computable.
3721        ++NumTripCountsNotComputed;
3722    }
3723
3724    // Now that we know more about the trip count for this loop, forget any
3725    // existing SCEV values for PHI nodes in this loop since they are only
3726    // conservative estimates made without the benefit of trip count
3727    // information. This is similar to the code in forgetLoop, except that
3728    // it handles SCEVUnknown PHI nodes specially.
3729    if (BECount.hasAnyInfo()) {
3730      SmallVector<Instruction *, 16> Worklist;
3731      PushLoopPHIs(L, Worklist);
3732
3733      SmallPtrSet<Instruction *, 8> Visited;
3734      while (!Worklist.empty()) {
3735        Instruction *I = Worklist.pop_back_val();
3736        if (!Visited.insert(I)) continue;
3737
3738        ValueExprMapType::iterator It =
3739          ValueExprMap.find(static_cast<Value *>(I));
3740        if (It != ValueExprMap.end()) {
3741          // SCEVUnknown for a PHI either means that it has an unrecognized
3742          // structure, or it's a PHI that's in the progress of being computed
3743          // by createNodeForPHI.  In the former case, additional loop trip
3744          // count information isn't going to change anything. In the later
3745          // case, createNodeForPHI will perform the necessary updates on its
3746          // own when it gets to that point.
3747          if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3748            ValuesAtScopes.erase(It->second);
3749            ValueExprMap.erase(It);
3750          }
3751          if (PHINode *PN = dyn_cast<PHINode>(I))
3752            ConstantEvolutionLoopExitValue.erase(PN);
3753        }
3754
3755        PushDefUseChildren(I, Worklist);
3756      }
3757    }
3758  }
3759  return Pair.first->second;
3760}
3761
3762/// forgetLoop - This method should be called by the client when it has
3763/// changed a loop in a way that may effect ScalarEvolution's ability to
3764/// compute a trip count, or if the loop is deleted.
3765void ScalarEvolution::forgetLoop(const Loop *L) {
3766  // Drop any stored trip count value.
3767  BackedgeTakenCounts.erase(L);
3768
3769  // Drop information about expressions based on loop-header PHIs.
3770  SmallVector<Instruction *, 16> Worklist;
3771  PushLoopPHIs(L, Worklist);
3772
3773  SmallPtrSet<Instruction *, 8> Visited;
3774  while (!Worklist.empty()) {
3775    Instruction *I = Worklist.pop_back_val();
3776    if (!Visited.insert(I)) continue;
3777
3778    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3779    if (It != ValueExprMap.end()) {
3780      ValuesAtScopes.erase(It->second);
3781      ValueExprMap.erase(It);
3782      if (PHINode *PN = dyn_cast<PHINode>(I))
3783        ConstantEvolutionLoopExitValue.erase(PN);
3784    }
3785
3786    PushDefUseChildren(I, Worklist);
3787  }
3788}
3789
3790/// forgetValue - This method should be called by the client when it has
3791/// changed a value in a way that may effect its value, or which may
3792/// disconnect it from a def-use chain linking it to a loop.
3793void ScalarEvolution::forgetValue(Value *V) {
3794  Instruction *I = dyn_cast<Instruction>(V);
3795  if (!I) return;
3796
3797  // Drop information about expressions based on loop-header PHIs.
3798  SmallVector<Instruction *, 16> Worklist;
3799  Worklist.push_back(I);
3800
3801  SmallPtrSet<Instruction *, 8> Visited;
3802  while (!Worklist.empty()) {
3803    I = Worklist.pop_back_val();
3804    if (!Visited.insert(I)) continue;
3805
3806    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3807    if (It != ValueExprMap.end()) {
3808      ValuesAtScopes.erase(It->second);
3809      ValueExprMap.erase(It);
3810      if (PHINode *PN = dyn_cast<PHINode>(I))
3811        ConstantEvolutionLoopExitValue.erase(PN);
3812    }
3813
3814    PushDefUseChildren(I, Worklist);
3815  }
3816}
3817
3818/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3819/// of the specified loop will execute.
3820ScalarEvolution::BackedgeTakenInfo
3821ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3822  SmallVector<BasicBlock *, 8> ExitingBlocks;
3823  L->getExitingBlocks(ExitingBlocks);
3824
3825  // Examine all exits and pick the most conservative values.
3826  const SCEV *BECount = getCouldNotCompute();
3827  const SCEV *MaxBECount = getCouldNotCompute();
3828  bool CouldNotComputeBECount = false;
3829  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3830    BackedgeTakenInfo NewBTI =
3831      ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3832
3833    if (NewBTI.Exact == getCouldNotCompute()) {
3834      // We couldn't compute an exact value for this exit, so
3835      // we won't be able to compute an exact value for the loop.
3836      CouldNotComputeBECount = true;
3837      BECount = getCouldNotCompute();
3838    } else if (!CouldNotComputeBECount) {
3839      if (BECount == getCouldNotCompute())
3840        BECount = NewBTI.Exact;
3841      else
3842        BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3843    }
3844    if (MaxBECount == getCouldNotCompute())
3845      MaxBECount = NewBTI.Max;
3846    else if (NewBTI.Max != getCouldNotCompute())
3847      MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3848  }
3849
3850  return BackedgeTakenInfo(BECount, MaxBECount);
3851}
3852
3853/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3854/// of the specified loop will execute if it exits via the specified block.
3855ScalarEvolution::BackedgeTakenInfo
3856ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3857                                                   BasicBlock *ExitingBlock) {
3858
3859  // Okay, we've chosen an exiting block.  See what condition causes us to
3860  // exit at this block.
3861  //
3862  // FIXME: we should be able to handle switch instructions (with a single exit)
3863  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3864  if (ExitBr == 0) return getCouldNotCompute();
3865  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3866
3867  // At this point, we know we have a conditional branch that determines whether
3868  // the loop is exited.  However, we don't know if the branch is executed each
3869  // time through the loop.  If not, then the execution count of the branch will
3870  // not be equal to the trip count of the loop.
3871  //
3872  // Currently we check for this by checking to see if the Exit branch goes to
3873  // the loop header.  If so, we know it will always execute the same number of
3874  // times as the loop.  We also handle the case where the exit block *is* the
3875  // loop header.  This is common for un-rotated loops.
3876  //
3877  // If both of those tests fail, walk up the unique predecessor chain to the
3878  // header, stopping if there is an edge that doesn't exit the loop. If the
3879  // header is reached, the execution count of the branch will be equal to the
3880  // trip count of the loop.
3881  //
3882  //  More extensive analysis could be done to handle more cases here.
3883  //
3884  if (ExitBr->getSuccessor(0) != L->getHeader() &&
3885      ExitBr->getSuccessor(1) != L->getHeader() &&
3886      ExitBr->getParent() != L->getHeader()) {
3887    // The simple checks failed, try climbing the unique predecessor chain
3888    // up to the header.
3889    bool Ok = false;
3890    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3891      BasicBlock *Pred = BB->getUniquePredecessor();
3892      if (!Pred)
3893        return getCouldNotCompute();
3894      TerminatorInst *PredTerm = Pred->getTerminator();
3895      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3896        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3897        if (PredSucc == BB)
3898          continue;
3899        // If the predecessor has a successor that isn't BB and isn't
3900        // outside the loop, assume the worst.
3901        if (L->contains(PredSucc))
3902          return getCouldNotCompute();
3903      }
3904      if (Pred == L->getHeader()) {
3905        Ok = true;
3906        break;
3907      }
3908      BB = Pred;
3909    }
3910    if (!Ok)
3911      return getCouldNotCompute();
3912  }
3913
3914  // Proceed to the next level to examine the exit condition expression.
3915  return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3916                                               ExitBr->getSuccessor(0),
3917                                               ExitBr->getSuccessor(1));
3918}
3919
3920/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3921/// backedge of the specified loop will execute if its exit condition
3922/// were a conditional branch of ExitCond, TBB, and FBB.
3923ScalarEvolution::BackedgeTakenInfo
3924ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3925                                                       Value *ExitCond,
3926                                                       BasicBlock *TBB,
3927                                                       BasicBlock *FBB) {
3928  // Check if the controlling expression for this loop is an And or Or.
3929  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3930    if (BO->getOpcode() == Instruction::And) {
3931      // Recurse on the operands of the and.
3932      BackedgeTakenInfo BTI0 =
3933        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3934      BackedgeTakenInfo BTI1 =
3935        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3936      const SCEV *BECount = getCouldNotCompute();
3937      const SCEV *MaxBECount = getCouldNotCompute();
3938      if (L->contains(TBB)) {
3939        // Both conditions must be true for the loop to continue executing.
3940        // Choose the less conservative count.
3941        if (BTI0.Exact == getCouldNotCompute() ||
3942            BTI1.Exact == getCouldNotCompute())
3943          BECount = getCouldNotCompute();
3944        else
3945          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3946        if (BTI0.Max == getCouldNotCompute())
3947          MaxBECount = BTI1.Max;
3948        else if (BTI1.Max == getCouldNotCompute())
3949          MaxBECount = BTI0.Max;
3950        else
3951          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3952      } else {
3953        // Both conditions must be true at the same time for the loop to exit.
3954        // For now, be conservative.
3955        assert(L->contains(FBB) && "Loop block has no successor in loop!");
3956        if (BTI0.Max == BTI1.Max)
3957          MaxBECount = BTI0.Max;
3958        if (BTI0.Exact == BTI1.Exact)
3959          BECount = BTI0.Exact;
3960      }
3961
3962      return BackedgeTakenInfo(BECount, MaxBECount);
3963    }
3964    if (BO->getOpcode() == Instruction::Or) {
3965      // Recurse on the operands of the or.
3966      BackedgeTakenInfo BTI0 =
3967        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3968      BackedgeTakenInfo BTI1 =
3969        ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3970      const SCEV *BECount = getCouldNotCompute();
3971      const SCEV *MaxBECount = getCouldNotCompute();
3972      if (L->contains(FBB)) {
3973        // Both conditions must be false for the loop to continue executing.
3974        // Choose the less conservative count.
3975        if (BTI0.Exact == getCouldNotCompute() ||
3976            BTI1.Exact == getCouldNotCompute())
3977          BECount = getCouldNotCompute();
3978        else
3979          BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3980        if (BTI0.Max == getCouldNotCompute())
3981          MaxBECount = BTI1.Max;
3982        else if (BTI1.Max == getCouldNotCompute())
3983          MaxBECount = BTI0.Max;
3984        else
3985          MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3986      } else {
3987        // Both conditions must be false at the same time for the loop to exit.
3988        // For now, be conservative.
3989        assert(L->contains(TBB) && "Loop block has no successor in loop!");
3990        if (BTI0.Max == BTI1.Max)
3991          MaxBECount = BTI0.Max;
3992        if (BTI0.Exact == BTI1.Exact)
3993          BECount = BTI0.Exact;
3994      }
3995
3996      return BackedgeTakenInfo(BECount, MaxBECount);
3997    }
3998  }
3999
4000  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4001  // Proceed to the next level to examine the icmp.
4002  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4003    return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
4004
4005  // Check for a constant condition. These are normally stripped out by
4006  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4007  // preserve the CFG and is temporarily leaving constant conditions
4008  // in place.
4009  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4010    if (L->contains(FBB) == !CI->getZExtValue())
4011      // The backedge is always taken.
4012      return getCouldNotCompute();
4013    else
4014      // The backedge is never taken.
4015      return getConstant(CI->getType(), 0);
4016  }
4017
4018  // If it's not an integer or pointer comparison then compute it the hard way.
4019  return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4020}
4021
4022/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4023/// backedge of the specified loop will execute if its exit condition
4024/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4025ScalarEvolution::BackedgeTakenInfo
4026ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4027                                                           ICmpInst *ExitCond,
4028                                                           BasicBlock *TBB,
4029                                                           BasicBlock *FBB) {
4030
4031  // If the condition was exit on true, convert the condition to exit on false
4032  ICmpInst::Predicate Cond;
4033  if (!L->contains(FBB))
4034    Cond = ExitCond->getPredicate();
4035  else
4036    Cond = ExitCond->getInversePredicate();
4037
4038  // Handle common loops like: for (X = "string"; *X; ++X)
4039  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4040    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4041      BackedgeTakenInfo ItCnt =
4042        ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4043      if (ItCnt.hasAnyInfo())
4044        return ItCnt;
4045    }
4046
4047  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4048  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4049
4050  // Try to evaluate any dependencies out of the loop.
4051  LHS = getSCEVAtScope(LHS, L);
4052  RHS = getSCEVAtScope(RHS, L);
4053
4054  // At this point, we would like to compute how many iterations of the
4055  // loop the predicate will return true for these inputs.
4056  if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
4057    // If there is a loop-invariant, force it into the RHS.
4058    std::swap(LHS, RHS);
4059    Cond = ICmpInst::getSwappedPredicate(Cond);
4060  }
4061
4062  // Simplify the operands before analyzing them.
4063  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4064
4065  // If we have a comparison of a chrec against a constant, try to use value
4066  // ranges to answer this query.
4067  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4068    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4069      if (AddRec->getLoop() == L) {
4070        // Form the constant range.
4071        ConstantRange CompRange(
4072            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4073
4074        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4075        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4076      }
4077
4078  switch (Cond) {
4079  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4080    // Convert to: while (X-Y != 0)
4081    BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4082    if (BTI.hasAnyInfo()) return BTI;
4083    break;
4084  }
4085  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4086    // Convert to: while (X-Y == 0)
4087    BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4088    if (BTI.hasAnyInfo()) return BTI;
4089    break;
4090  }
4091  case ICmpInst::ICMP_SLT: {
4092    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4093    if (BTI.hasAnyInfo()) return BTI;
4094    break;
4095  }
4096  case ICmpInst::ICMP_SGT: {
4097    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4098                                             getNotSCEV(RHS), L, true);
4099    if (BTI.hasAnyInfo()) return BTI;
4100    break;
4101  }
4102  case ICmpInst::ICMP_ULT: {
4103    BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4104    if (BTI.hasAnyInfo()) return BTI;
4105    break;
4106  }
4107  case ICmpInst::ICMP_UGT: {
4108    BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4109                                             getNotSCEV(RHS), L, false);
4110    if (BTI.hasAnyInfo()) return BTI;
4111    break;
4112  }
4113  default:
4114#if 0
4115    dbgs() << "ComputeBackedgeTakenCount ";
4116    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4117      dbgs() << "[unsigned] ";
4118    dbgs() << *LHS << "   "
4119         << Instruction::getOpcodeName(Instruction::ICmp)
4120         << "   " << *RHS << "\n";
4121#endif
4122    break;
4123  }
4124  return
4125    ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4126}
4127
4128static ConstantInt *
4129EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4130                                ScalarEvolution &SE) {
4131  const SCEV *InVal = SE.getConstant(C);
4132  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4133  assert(isa<SCEVConstant>(Val) &&
4134         "Evaluation of SCEV at constant didn't fold correctly?");
4135  return cast<SCEVConstant>(Val)->getValue();
4136}
4137
4138/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4139/// and a GEP expression (missing the pointer index) indexing into it, return
4140/// the addressed element of the initializer or null if the index expression is
4141/// invalid.
4142static Constant *
4143GetAddressedElementFromGlobal(GlobalVariable *GV,
4144                              const std::vector<ConstantInt*> &Indices) {
4145  Constant *Init = GV->getInitializer();
4146  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4147    uint64_t Idx = Indices[i]->getZExtValue();
4148    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4149      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4150      Init = cast<Constant>(CS->getOperand(Idx));
4151    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4152      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4153      Init = cast<Constant>(CA->getOperand(Idx));
4154    } else if (isa<ConstantAggregateZero>(Init)) {
4155      if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4156        assert(Idx < STy->getNumElements() && "Bad struct index!");
4157        Init = Constant::getNullValue(STy->getElementType(Idx));
4158      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4159        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4160        Init = Constant::getNullValue(ATy->getElementType());
4161      } else {
4162        llvm_unreachable("Unknown constant aggregate type!");
4163      }
4164      return 0;
4165    } else {
4166      return 0; // Unknown initializer type
4167    }
4168  }
4169  return Init;
4170}
4171
4172/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4173/// 'icmp op load X, cst', try to see if we can compute the backedge
4174/// execution count.
4175ScalarEvolution::BackedgeTakenInfo
4176ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4177                                                LoadInst *LI,
4178                                                Constant *RHS,
4179                                                const Loop *L,
4180                                                ICmpInst::Predicate predicate) {
4181  if (LI->isVolatile()) return getCouldNotCompute();
4182
4183  // Check to see if the loaded pointer is a getelementptr of a global.
4184  // TODO: Use SCEV instead of manually grubbing with GEPs.
4185  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4186  if (!GEP) return getCouldNotCompute();
4187
4188  // Make sure that it is really a constant global we are gepping, with an
4189  // initializer, and make sure the first IDX is really 0.
4190  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4191  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4192      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4193      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4194    return getCouldNotCompute();
4195
4196  // Okay, we allow one non-constant index into the GEP instruction.
4197  Value *VarIdx = 0;
4198  std::vector<ConstantInt*> Indexes;
4199  unsigned VarIdxNum = 0;
4200  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4201    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4202      Indexes.push_back(CI);
4203    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4204      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4205      VarIdx = GEP->getOperand(i);
4206      VarIdxNum = i-2;
4207      Indexes.push_back(0);
4208    }
4209
4210  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4211  // Check to see if X is a loop variant variable value now.
4212  const SCEV *Idx = getSCEV(VarIdx);
4213  Idx = getSCEVAtScope(Idx, L);
4214
4215  // We can only recognize very limited forms of loop index expressions, in
4216  // particular, only affine AddRec's like {C1,+,C2}.
4217  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4218  if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4219      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4220      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4221    return getCouldNotCompute();
4222
4223  unsigned MaxSteps = MaxBruteForceIterations;
4224  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4225    ConstantInt *ItCst = ConstantInt::get(
4226                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4227    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4228
4229    // Form the GEP offset.
4230    Indexes[VarIdxNum] = Val;
4231
4232    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4233    if (Result == 0) break;  // Cannot compute!
4234
4235    // Evaluate the condition for this iteration.
4236    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4237    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4238    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4239#if 0
4240      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4241             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4242             << "***\n";
4243#endif
4244      ++NumArrayLenItCounts;
4245      return getConstant(ItCst);   // Found terminating iteration!
4246    }
4247  }
4248  return getCouldNotCompute();
4249}
4250
4251
4252/// CanConstantFold - Return true if we can constant fold an instruction of the
4253/// specified type, assuming that all operands were constants.
4254static bool CanConstantFold(const Instruction *I) {
4255  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4256      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4257    return true;
4258
4259  if (const CallInst *CI = dyn_cast<CallInst>(I))
4260    if (const Function *F = CI->getCalledFunction())
4261      return canConstantFoldCallTo(F);
4262  return false;
4263}
4264
4265/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4266/// in the loop that V is derived from.  We allow arbitrary operations along the
4267/// way, but the operands of an operation must either be constants or a value
4268/// derived from a constant PHI.  If this expression does not fit with these
4269/// constraints, return null.
4270static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4271  // If this is not an instruction, or if this is an instruction outside of the
4272  // loop, it can't be derived from a loop PHI.
4273  Instruction *I = dyn_cast<Instruction>(V);
4274  if (I == 0 || !L->contains(I)) return 0;
4275
4276  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4277    if (L->getHeader() == I->getParent())
4278      return PN;
4279    else
4280      // We don't currently keep track of the control flow needed to evaluate
4281      // PHIs, so we cannot handle PHIs inside of loops.
4282      return 0;
4283  }
4284
4285  // If we won't be able to constant fold this expression even if the operands
4286  // are constants, return early.
4287  if (!CanConstantFold(I)) return 0;
4288
4289  // Otherwise, we can evaluate this instruction if all of its operands are
4290  // constant or derived from a PHI node themselves.
4291  PHINode *PHI = 0;
4292  for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4293    if (!isa<Constant>(I->getOperand(Op))) {
4294      PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4295      if (P == 0) return 0;  // Not evolving from PHI
4296      if (PHI == 0)
4297        PHI = P;
4298      else if (PHI != P)
4299        return 0;  // Evolving from multiple different PHIs.
4300    }
4301
4302  // This is a expression evolving from a constant PHI!
4303  return PHI;
4304}
4305
4306/// EvaluateExpression - Given an expression that passes the
4307/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4308/// in the loop has the value PHIVal.  If we can't fold this expression for some
4309/// reason, return null.
4310static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4311                                    const TargetData *TD) {
4312  if (isa<PHINode>(V)) return PHIVal;
4313  if (Constant *C = dyn_cast<Constant>(V)) return C;
4314  Instruction *I = cast<Instruction>(V);
4315
4316  std::vector<Constant*> Operands(I->getNumOperands());
4317
4318  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4319    Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4320    if (Operands[i] == 0) return 0;
4321  }
4322
4323  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4324    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4325                                           Operands[1], TD);
4326  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4327                                  &Operands[0], Operands.size(), TD);
4328}
4329
4330/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4331/// in the header of its containing loop, we know the loop executes a
4332/// constant number of times, and the PHI node is just a recurrence
4333/// involving constants, fold it.
4334Constant *
4335ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4336                                                   const APInt &BEs,
4337                                                   const Loop *L) {
4338  std::map<PHINode*, Constant*>::const_iterator I =
4339    ConstantEvolutionLoopExitValue.find(PN);
4340  if (I != ConstantEvolutionLoopExitValue.end())
4341    return I->second;
4342
4343  if (BEs.ugt(MaxBruteForceIterations))
4344    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4345
4346  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4347
4348  // Since the loop is canonicalized, the PHI node must have two entries.  One
4349  // entry must be a constant (coming in from outside of the loop), and the
4350  // second must be derived from the same PHI.
4351  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4352  Constant *StartCST =
4353    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4354  if (StartCST == 0)
4355    return RetVal = 0;  // Must be a constant.
4356
4357  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4358  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4359      !isa<Constant>(BEValue))
4360    return RetVal = 0;  // Not derived from same PHI.
4361
4362  // Execute the loop symbolically to determine the exit value.
4363  if (BEs.getActiveBits() >= 32)
4364    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4365
4366  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4367  unsigned IterationNum = 0;
4368  for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4369    if (IterationNum == NumIterations)
4370      return RetVal = PHIVal;  // Got exit value!
4371
4372    // Compute the value of the PHI node for the next iteration.
4373    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4374    if (NextPHI == PHIVal)
4375      return RetVal = NextPHI;  // Stopped evolving!
4376    if (NextPHI == 0)
4377      return 0;        // Couldn't evaluate!
4378    PHIVal = NextPHI;
4379  }
4380}
4381
4382/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4383/// constant number of times (the condition evolves only from constants),
4384/// try to evaluate a few iterations of the loop until we get the exit
4385/// condition gets a value of ExitWhen (true or false).  If we cannot
4386/// evaluate the trip count of the loop, return getCouldNotCompute().
4387const SCEV *
4388ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4389                                                       Value *Cond,
4390                                                       bool ExitWhen) {
4391  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4392  if (PN == 0) return getCouldNotCompute();
4393
4394  // If the loop is canonicalized, the PHI will have exactly two entries.
4395  // That's the only form we support here.
4396  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4397
4398  // One entry must be a constant (coming in from outside of the loop), and the
4399  // second must be derived from the same PHI.
4400  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4401  Constant *StartCST =
4402    dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4403  if (StartCST == 0) return getCouldNotCompute();  // Must be a constant.
4404
4405  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4406  if (getConstantEvolvingPHI(BEValue, L) != PN &&
4407      !isa<Constant>(BEValue))
4408    return getCouldNotCompute();  // Not derived from same PHI.
4409
4410  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4411  // the loop symbolically to determine when the condition gets a value of
4412  // "ExitWhen".
4413  unsigned IterationNum = 0;
4414  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4415  for (Constant *PHIVal = StartCST;
4416       IterationNum != MaxIterations; ++IterationNum) {
4417    ConstantInt *CondVal =
4418      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4419
4420    // Couldn't symbolically evaluate.
4421    if (!CondVal) return getCouldNotCompute();
4422
4423    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4424      ++NumBruteForceTripCountsComputed;
4425      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4426    }
4427
4428    // Compute the value of the PHI node for the next iteration.
4429    Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4430    if (NextPHI == 0 || NextPHI == PHIVal)
4431      return getCouldNotCompute();// Couldn't evaluate or not making progress...
4432    PHIVal = NextPHI;
4433  }
4434
4435  // Too many iterations were needed to evaluate.
4436  return getCouldNotCompute();
4437}
4438
4439/// getSCEVAtScope - Return a SCEV expression for the specified value
4440/// at the specified scope in the program.  The L value specifies a loop
4441/// nest to evaluate the expression at, where null is the top-level or a
4442/// specified loop is immediately inside of the loop.
4443///
4444/// This method can be used to compute the exit value for a variable defined
4445/// in a loop by querying what the value will hold in the parent loop.
4446///
4447/// In the case that a relevant loop exit value cannot be computed, the
4448/// original value V is returned.
4449const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4450  // Check to see if we've folded this expression at this loop before.
4451  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4452  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4453    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4454  if (!Pair.second)
4455    return Pair.first->second ? Pair.first->second : V;
4456
4457  // Otherwise compute it.
4458  const SCEV *C = computeSCEVAtScope(V, L);
4459  ValuesAtScopes[V][L] = C;
4460  return C;
4461}
4462
4463const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4464  if (isa<SCEVConstant>(V)) return V;
4465
4466  // If this instruction is evolved from a constant-evolving PHI, compute the
4467  // exit value from the loop without using SCEVs.
4468  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4469    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4470      const Loop *LI = (*this->LI)[I->getParent()];
4471      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
4472        if (PHINode *PN = dyn_cast<PHINode>(I))
4473          if (PN->getParent() == LI->getHeader()) {
4474            // Okay, there is no closed form solution for the PHI node.  Check
4475            // to see if the loop that contains it has a known backedge-taken
4476            // count.  If so, we may be able to force computation of the exit
4477            // value.
4478            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4479            if (const SCEVConstant *BTCC =
4480                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4481              // Okay, we know how many times the containing loop executes.  If
4482              // this is a constant evolving PHI node, get the final value at
4483              // the specified iteration number.
4484              Constant *RV = getConstantEvolutionLoopExitValue(PN,
4485                                                   BTCC->getValue()->getValue(),
4486                                                               LI);
4487              if (RV) return getSCEV(RV);
4488            }
4489          }
4490
4491      // Okay, this is an expression that we cannot symbolically evaluate
4492      // into a SCEV.  Check to see if it's possible to symbolically evaluate
4493      // the arguments into constants, and if so, try to constant propagate the
4494      // result.  This is particularly useful for computing loop exit values.
4495      if (CanConstantFold(I)) {
4496        SmallVector<Constant *, 4> Operands;
4497        bool MadeImprovement = false;
4498        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4499          Value *Op = I->getOperand(i);
4500          if (Constant *C = dyn_cast<Constant>(Op)) {
4501            Operands.push_back(C);
4502            continue;
4503          }
4504
4505          // If any of the operands is non-constant and if they are
4506          // non-integer and non-pointer, don't even try to analyze them
4507          // with scev techniques.
4508          if (!isSCEVable(Op->getType()))
4509            return V;
4510
4511          const SCEV *OrigV = getSCEV(Op);
4512          const SCEV *OpV = getSCEVAtScope(OrigV, L);
4513          MadeImprovement |= OrigV != OpV;
4514
4515          Constant *C = 0;
4516          if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4517            C = SC->getValue();
4518          if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4519            C = dyn_cast<Constant>(SU->getValue());
4520          if (!C) return V;
4521          if (C->getType() != Op->getType())
4522            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4523                                                              Op->getType(),
4524                                                              false),
4525                                      C, Op->getType());
4526          Operands.push_back(C);
4527        }
4528
4529        // Check to see if getSCEVAtScope actually made an improvement.
4530        if (MadeImprovement) {
4531          Constant *C = 0;
4532          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4533            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4534                                                Operands[0], Operands[1], TD);
4535          else
4536            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4537                                         &Operands[0], Operands.size(), TD);
4538          if (!C) return V;
4539          return getSCEV(C);
4540        }
4541      }
4542    }
4543
4544    // This is some other type of SCEVUnknown, just return it.
4545    return V;
4546  }
4547
4548  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4549    // Avoid performing the look-up in the common case where the specified
4550    // expression has no loop-variant portions.
4551    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4552      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4553      if (OpAtScope != Comm->getOperand(i)) {
4554        // Okay, at least one of these operands is loop variant but might be
4555        // foldable.  Build a new instance of the folded commutative expression.
4556        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4557                                            Comm->op_begin()+i);
4558        NewOps.push_back(OpAtScope);
4559
4560        for (++i; i != e; ++i) {
4561          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4562          NewOps.push_back(OpAtScope);
4563        }
4564        if (isa<SCEVAddExpr>(Comm))
4565          return getAddExpr(NewOps);
4566        if (isa<SCEVMulExpr>(Comm))
4567          return getMulExpr(NewOps);
4568        if (isa<SCEVSMaxExpr>(Comm))
4569          return getSMaxExpr(NewOps);
4570        if (isa<SCEVUMaxExpr>(Comm))
4571          return getUMaxExpr(NewOps);
4572        llvm_unreachable("Unknown commutative SCEV type!");
4573      }
4574    }
4575    // If we got here, all operands are loop invariant.
4576    return Comm;
4577  }
4578
4579  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4580    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4581    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4582    if (LHS == Div->getLHS() && RHS == Div->getRHS())
4583      return Div;   // must be loop invariant
4584    return getUDivExpr(LHS, RHS);
4585  }
4586
4587  // If this is a loop recurrence for a loop that does not contain L, then we
4588  // are dealing with the final value computed by the loop.
4589  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4590    // First, attempt to evaluate each operand.
4591    // Avoid performing the look-up in the common case where the specified
4592    // expression has no loop-variant portions.
4593    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4594      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4595      if (OpAtScope == AddRec->getOperand(i))
4596        continue;
4597
4598      // Okay, at least one of these operands is loop variant but might be
4599      // foldable.  Build a new instance of the folded commutative expression.
4600      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4601                                          AddRec->op_begin()+i);
4602      NewOps.push_back(OpAtScope);
4603      for (++i; i != e; ++i)
4604        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4605
4606      AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4607      break;
4608    }
4609
4610    // If the scope is outside the addrec's loop, evaluate it by using the
4611    // loop exit value of the addrec.
4612    if (!AddRec->getLoop()->contains(L)) {
4613      // To evaluate this recurrence, we need to know how many times the AddRec
4614      // loop iterates.  Compute this now.
4615      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4616      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4617
4618      // Then, evaluate the AddRec.
4619      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4620    }
4621
4622    return AddRec;
4623  }
4624
4625  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4626    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4627    if (Op == Cast->getOperand())
4628      return Cast;  // must be loop invariant
4629    return getZeroExtendExpr(Op, Cast->getType());
4630  }
4631
4632  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4633    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4634    if (Op == Cast->getOperand())
4635      return Cast;  // must be loop invariant
4636    return getSignExtendExpr(Op, Cast->getType());
4637  }
4638
4639  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4640    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4641    if (Op == Cast->getOperand())
4642      return Cast;  // must be loop invariant
4643    return getTruncateExpr(Op, Cast->getType());
4644  }
4645
4646  llvm_unreachable("Unknown SCEV type!");
4647  return 0;
4648}
4649
4650/// getSCEVAtScope - This is a convenience function which does
4651/// getSCEVAtScope(getSCEV(V), L).
4652const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4653  return getSCEVAtScope(getSCEV(V), L);
4654}
4655
4656/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4657/// following equation:
4658///
4659///     A * X = B (mod N)
4660///
4661/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4662/// A and B isn't important.
4663///
4664/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4665static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4666                                               ScalarEvolution &SE) {
4667  uint32_t BW = A.getBitWidth();
4668  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4669  assert(A != 0 && "A must be non-zero.");
4670
4671  // 1. D = gcd(A, N)
4672  //
4673  // The gcd of A and N may have only one prime factor: 2. The number of
4674  // trailing zeros in A is its multiplicity
4675  uint32_t Mult2 = A.countTrailingZeros();
4676  // D = 2^Mult2
4677
4678  // 2. Check if B is divisible by D.
4679  //
4680  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4681  // is not less than multiplicity of this prime factor for D.
4682  if (B.countTrailingZeros() < Mult2)
4683    return SE.getCouldNotCompute();
4684
4685  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4686  // modulo (N / D).
4687  //
4688  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
4689  // bit width during computations.
4690  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
4691  APInt Mod(BW + 1, 0);
4692  Mod.set(BW - Mult2);  // Mod = N / D
4693  APInt I = AD.multiplicativeInverse(Mod);
4694
4695  // 4. Compute the minimum unsigned root of the equation:
4696  // I * (B / D) mod (N / D)
4697  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4698
4699  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4700  // bits.
4701  return SE.getConstant(Result.trunc(BW));
4702}
4703
4704/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4705/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
4706/// might be the same) or two SCEVCouldNotCompute objects.
4707///
4708static std::pair<const SCEV *,const SCEV *>
4709SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4710  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4711  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4712  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4713  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4714
4715  // We currently can only solve this if the coefficients are constants.
4716  if (!LC || !MC || !NC) {
4717    const SCEV *CNC = SE.getCouldNotCompute();
4718    return std::make_pair(CNC, CNC);
4719  }
4720
4721  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4722  const APInt &L = LC->getValue()->getValue();
4723  const APInt &M = MC->getValue()->getValue();
4724  const APInt &N = NC->getValue()->getValue();
4725  APInt Two(BitWidth, 2);
4726  APInt Four(BitWidth, 4);
4727
4728  {
4729    using namespace APIntOps;
4730    const APInt& C = L;
4731    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4732    // The B coefficient is M-N/2
4733    APInt B(M);
4734    B -= sdiv(N,Two);
4735
4736    // The A coefficient is N/2
4737    APInt A(N.sdiv(Two));
4738
4739    // Compute the B^2-4ac term.
4740    APInt SqrtTerm(B);
4741    SqrtTerm *= B;
4742    SqrtTerm -= Four * (A * C);
4743
4744    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4745    // integer value or else APInt::sqrt() will assert.
4746    APInt SqrtVal(SqrtTerm.sqrt());
4747
4748    // Compute the two solutions for the quadratic formula.
4749    // The divisions must be performed as signed divisions.
4750    APInt NegB(-B);
4751    APInt TwoA( A << 1 );
4752    if (TwoA.isMinValue()) {
4753      const SCEV *CNC = SE.getCouldNotCompute();
4754      return std::make_pair(CNC, CNC);
4755    }
4756
4757    LLVMContext &Context = SE.getContext();
4758
4759    ConstantInt *Solution1 =
4760      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4761    ConstantInt *Solution2 =
4762      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4763
4764    return std::make_pair(SE.getConstant(Solution1),
4765                          SE.getConstant(Solution2));
4766    } // end APIntOps namespace
4767}
4768
4769/// HowFarToZero - Return the number of times a backedge comparing the specified
4770/// value to zero will execute.  If not computable, return CouldNotCompute.
4771ScalarEvolution::BackedgeTakenInfo
4772ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4773  // If the value is a constant
4774  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4775    // If the value is already zero, the branch will execute zero times.
4776    if (C->getValue()->isZero()) return C;
4777    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4778  }
4779
4780  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4781  if (!AddRec || AddRec->getLoop() != L)
4782    return getCouldNotCompute();
4783
4784  if (AddRec->isAffine()) {
4785    // If this is an affine expression, the execution count of this branch is
4786    // the minimum unsigned root of the following equation:
4787    //
4788    //     Start + Step*N = 0 (mod 2^BW)
4789    //
4790    // equivalent to:
4791    //
4792    //             Step*N = -Start (mod 2^BW)
4793    //
4794    // where BW is the common bit width of Start and Step.
4795
4796    // Get the initial value for the loop.
4797    const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4798                                       L->getParentLoop());
4799    const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4800                                      L->getParentLoop());
4801
4802    if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4803      // For now we handle only constant steps.
4804
4805      // First, handle unitary steps.
4806      if (StepC->getValue()->equalsInt(1))      // 1*N = -Start (mod 2^BW), so:
4807        return getNegativeSCEV(Start);          //   N = -Start (as unsigned)
4808      if (StepC->getValue()->isAllOnesValue())  // -1*N = -Start (mod 2^BW), so:
4809        return Start;                           //    N = Start (as unsigned)
4810
4811      // Then, try to solve the above equation provided that Start is constant.
4812      if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4813        return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4814                                            -StartC->getValue()->getValue(),
4815                                            *this);
4816    }
4817  } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4818    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4819    // the quadratic equation to solve it.
4820    std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4821                                                                    *this);
4822    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4823    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4824    if (R1) {
4825#if 0
4826      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4827             << "  sol#2: " << *R2 << "\n";
4828#endif
4829      // Pick the smallest positive root value.
4830      if (ConstantInt *CB =
4831          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4832                                   R1->getValue(), R2->getValue()))) {
4833        if (CB->getZExtValue() == false)
4834          std::swap(R1, R2);   // R1 is the minimum root now.
4835
4836        // We can only use this value if the chrec ends up with an exact zero
4837        // value at this index.  When solving for "X*X != 5", for example, we
4838        // should not accept a root of 2.
4839        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4840        if (Val->isZero())
4841          return R1;  // We found a quadratic root!
4842      }
4843    }
4844  }
4845
4846  return getCouldNotCompute();
4847}
4848
4849/// HowFarToNonZero - Return the number of times a backedge checking the
4850/// specified value for nonzero will execute.  If not computable, return
4851/// CouldNotCompute
4852ScalarEvolution::BackedgeTakenInfo
4853ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4854  // Loops that look like: while (X == 0) are very strange indeed.  We don't
4855  // handle them yet except for the trivial case.  This could be expanded in the
4856  // future as needed.
4857
4858  // If the value is a constant, check to see if it is known to be non-zero
4859  // already.  If so, the backedge will execute zero times.
4860  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4861    if (!C->getValue()->isNullValue())
4862      return getConstant(C->getType(), 0);
4863    return getCouldNotCompute();  // Otherwise it will loop infinitely.
4864  }
4865
4866  // We could implement others, but I really doubt anyone writes loops like
4867  // this, and if they did, they would already be constant folded.
4868  return getCouldNotCompute();
4869}
4870
4871/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4872/// (which may not be an immediate predecessor) which has exactly one
4873/// successor from which BB is reachable, or null if no such block is
4874/// found.
4875///
4876std::pair<BasicBlock *, BasicBlock *>
4877ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4878  // If the block has a unique predecessor, then there is no path from the
4879  // predecessor to the block that does not go through the direct edge
4880  // from the predecessor to the block.
4881  if (BasicBlock *Pred = BB->getSinglePredecessor())
4882    return std::make_pair(Pred, BB);
4883
4884  // A loop's header is defined to be a block that dominates the loop.
4885  // If the header has a unique predecessor outside the loop, it must be
4886  // a block that has exactly one successor that can reach the loop.
4887  if (Loop *L = LI->getLoopFor(BB))
4888    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4889
4890  return std::pair<BasicBlock *, BasicBlock *>();
4891}
4892
4893/// HasSameValue - SCEV structural equivalence is usually sufficient for
4894/// testing whether two expressions are equal, however for the purposes of
4895/// looking for a condition guarding a loop, it can be useful to be a little
4896/// more general, since a front-end may have replicated the controlling
4897/// expression.
4898///
4899static bool HasSameValue(const SCEV *A, const SCEV *B) {
4900  // Quick check to see if they are the same SCEV.
4901  if (A == B) return true;
4902
4903  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4904  // two different instructions with the same value. Check for this case.
4905  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4906    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4907      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4908        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4909          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4910            return true;
4911
4912  // Otherwise assume they may have a different value.
4913  return false;
4914}
4915
4916/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4917/// predicate Pred. Return true iff any changes were made.
4918///
4919bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4920                                           const SCEV *&LHS, const SCEV *&RHS) {
4921  bool Changed = false;
4922
4923  // Canonicalize a constant to the right side.
4924  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4925    // Check for both operands constant.
4926    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4927      if (ConstantExpr::getICmp(Pred,
4928                                LHSC->getValue(),
4929                                RHSC->getValue())->isNullValue())
4930        goto trivially_false;
4931      else
4932        goto trivially_true;
4933    }
4934    // Otherwise swap the operands to put the constant on the right.
4935    std::swap(LHS, RHS);
4936    Pred = ICmpInst::getSwappedPredicate(Pred);
4937    Changed = true;
4938  }
4939
4940  // If we're comparing an addrec with a value which is loop-invariant in the
4941  // addrec's loop, put the addrec on the left. Also make a dominance check,
4942  // as both operands could be addrecs loop-invariant in each other's loop.
4943  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4944    const Loop *L = AR->getLoop();
4945    if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
4946      std::swap(LHS, RHS);
4947      Pred = ICmpInst::getSwappedPredicate(Pred);
4948      Changed = true;
4949    }
4950  }
4951
4952  // If there's a constant operand, canonicalize comparisons with boundary
4953  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4954  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4955    const APInt &RA = RC->getValue()->getValue();
4956    switch (Pred) {
4957    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4958    case ICmpInst::ICMP_EQ:
4959    case ICmpInst::ICMP_NE:
4960      break;
4961    case ICmpInst::ICMP_UGE:
4962      if ((RA - 1).isMinValue()) {
4963        Pred = ICmpInst::ICMP_NE;
4964        RHS = getConstant(RA - 1);
4965        Changed = true;
4966        break;
4967      }
4968      if (RA.isMaxValue()) {
4969        Pred = ICmpInst::ICMP_EQ;
4970        Changed = true;
4971        break;
4972      }
4973      if (RA.isMinValue()) goto trivially_true;
4974
4975      Pred = ICmpInst::ICMP_UGT;
4976      RHS = getConstant(RA - 1);
4977      Changed = true;
4978      break;
4979    case ICmpInst::ICMP_ULE:
4980      if ((RA + 1).isMaxValue()) {
4981        Pred = ICmpInst::ICMP_NE;
4982        RHS = getConstant(RA + 1);
4983        Changed = true;
4984        break;
4985      }
4986      if (RA.isMinValue()) {
4987        Pred = ICmpInst::ICMP_EQ;
4988        Changed = true;
4989        break;
4990      }
4991      if (RA.isMaxValue()) goto trivially_true;
4992
4993      Pred = ICmpInst::ICMP_ULT;
4994      RHS = getConstant(RA + 1);
4995      Changed = true;
4996      break;
4997    case ICmpInst::ICMP_SGE:
4998      if ((RA - 1).isMinSignedValue()) {
4999        Pred = ICmpInst::ICMP_NE;
5000        RHS = getConstant(RA - 1);
5001        Changed = true;
5002        break;
5003      }
5004      if (RA.isMaxSignedValue()) {
5005        Pred = ICmpInst::ICMP_EQ;
5006        Changed = true;
5007        break;
5008      }
5009      if (RA.isMinSignedValue()) goto trivially_true;
5010
5011      Pred = ICmpInst::ICMP_SGT;
5012      RHS = getConstant(RA - 1);
5013      Changed = true;
5014      break;
5015    case ICmpInst::ICMP_SLE:
5016      if ((RA + 1).isMaxSignedValue()) {
5017        Pred = ICmpInst::ICMP_NE;
5018        RHS = getConstant(RA + 1);
5019        Changed = true;
5020        break;
5021      }
5022      if (RA.isMinSignedValue()) {
5023        Pred = ICmpInst::ICMP_EQ;
5024        Changed = true;
5025        break;
5026      }
5027      if (RA.isMaxSignedValue()) goto trivially_true;
5028
5029      Pred = ICmpInst::ICMP_SLT;
5030      RHS = getConstant(RA + 1);
5031      Changed = true;
5032      break;
5033    case ICmpInst::ICMP_UGT:
5034      if (RA.isMinValue()) {
5035        Pred = ICmpInst::ICMP_NE;
5036        Changed = true;
5037        break;
5038      }
5039      if ((RA + 1).isMaxValue()) {
5040        Pred = ICmpInst::ICMP_EQ;
5041        RHS = getConstant(RA + 1);
5042        Changed = true;
5043        break;
5044      }
5045      if (RA.isMaxValue()) goto trivially_false;
5046      break;
5047    case ICmpInst::ICMP_ULT:
5048      if (RA.isMaxValue()) {
5049        Pred = ICmpInst::ICMP_NE;
5050        Changed = true;
5051        break;
5052      }
5053      if ((RA - 1).isMinValue()) {
5054        Pred = ICmpInst::ICMP_EQ;
5055        RHS = getConstant(RA - 1);
5056        Changed = true;
5057        break;
5058      }
5059      if (RA.isMinValue()) goto trivially_false;
5060      break;
5061    case ICmpInst::ICMP_SGT:
5062      if (RA.isMinSignedValue()) {
5063        Pred = ICmpInst::ICMP_NE;
5064        Changed = true;
5065        break;
5066      }
5067      if ((RA + 1).isMaxSignedValue()) {
5068        Pred = ICmpInst::ICMP_EQ;
5069        RHS = getConstant(RA + 1);
5070        Changed = true;
5071        break;
5072      }
5073      if (RA.isMaxSignedValue()) goto trivially_false;
5074      break;
5075    case ICmpInst::ICMP_SLT:
5076      if (RA.isMaxSignedValue()) {
5077        Pred = ICmpInst::ICMP_NE;
5078        Changed = true;
5079        break;
5080      }
5081      if ((RA - 1).isMinSignedValue()) {
5082       Pred = ICmpInst::ICMP_EQ;
5083       RHS = getConstant(RA - 1);
5084        Changed = true;
5085       break;
5086      }
5087      if (RA.isMinSignedValue()) goto trivially_false;
5088      break;
5089    }
5090  }
5091
5092  // Check for obvious equality.
5093  if (HasSameValue(LHS, RHS)) {
5094    if (ICmpInst::isTrueWhenEqual(Pred))
5095      goto trivially_true;
5096    if (ICmpInst::isFalseWhenEqual(Pred))
5097      goto trivially_false;
5098  }
5099
5100  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5101  // adding or subtracting 1 from one of the operands.
5102  switch (Pred) {
5103  case ICmpInst::ICMP_SLE:
5104    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5105      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5106                       /*HasNUW=*/false, /*HasNSW=*/true);
5107      Pred = ICmpInst::ICMP_SLT;
5108      Changed = true;
5109    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5110      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5111                       /*HasNUW=*/false, /*HasNSW=*/true);
5112      Pred = ICmpInst::ICMP_SLT;
5113      Changed = true;
5114    }
5115    break;
5116  case ICmpInst::ICMP_SGE:
5117    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5118      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5119                       /*HasNUW=*/false, /*HasNSW=*/true);
5120      Pred = ICmpInst::ICMP_SGT;
5121      Changed = true;
5122    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5123      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5124                       /*HasNUW=*/false, /*HasNSW=*/true);
5125      Pred = ICmpInst::ICMP_SGT;
5126      Changed = true;
5127    }
5128    break;
5129  case ICmpInst::ICMP_ULE:
5130    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5131      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5132                       /*HasNUW=*/true, /*HasNSW=*/false);
5133      Pred = ICmpInst::ICMP_ULT;
5134      Changed = true;
5135    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5136      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5137                       /*HasNUW=*/true, /*HasNSW=*/false);
5138      Pred = ICmpInst::ICMP_ULT;
5139      Changed = true;
5140    }
5141    break;
5142  case ICmpInst::ICMP_UGE:
5143    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5144      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5145                       /*HasNUW=*/true, /*HasNSW=*/false);
5146      Pred = ICmpInst::ICMP_UGT;
5147      Changed = true;
5148    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5149      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5150                       /*HasNUW=*/true, /*HasNSW=*/false);
5151      Pred = ICmpInst::ICMP_UGT;
5152      Changed = true;
5153    }
5154    break;
5155  default:
5156    break;
5157  }
5158
5159  // TODO: More simplifications are possible here.
5160
5161  return Changed;
5162
5163trivially_true:
5164  // Return 0 == 0.
5165  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5166  Pred = ICmpInst::ICMP_EQ;
5167  return true;
5168
5169trivially_false:
5170  // Return 0 != 0.
5171  LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5172  Pred = ICmpInst::ICMP_NE;
5173  return true;
5174}
5175
5176bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5177  return getSignedRange(S).getSignedMax().isNegative();
5178}
5179
5180bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5181  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5182}
5183
5184bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5185  return !getSignedRange(S).getSignedMin().isNegative();
5186}
5187
5188bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5189  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5190}
5191
5192bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5193  return isKnownNegative(S) || isKnownPositive(S);
5194}
5195
5196bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5197                                       const SCEV *LHS, const SCEV *RHS) {
5198  // Canonicalize the inputs first.
5199  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5200
5201  // If LHS or RHS is an addrec, check to see if the condition is true in
5202  // every iteration of the loop.
5203  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5204    if (isLoopEntryGuardedByCond(
5205          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5206        isLoopBackedgeGuardedByCond(
5207          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5208      return true;
5209  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5210    if (isLoopEntryGuardedByCond(
5211          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5212        isLoopBackedgeGuardedByCond(
5213          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5214      return true;
5215
5216  // Otherwise see what can be done with known constant ranges.
5217  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5218}
5219
5220bool
5221ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5222                                            const SCEV *LHS, const SCEV *RHS) {
5223  if (HasSameValue(LHS, RHS))
5224    return ICmpInst::isTrueWhenEqual(Pred);
5225
5226  // This code is split out from isKnownPredicate because it is called from
5227  // within isLoopEntryGuardedByCond.
5228  switch (Pred) {
5229  default:
5230    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5231    break;
5232  case ICmpInst::ICMP_SGT:
5233    Pred = ICmpInst::ICMP_SLT;
5234    std::swap(LHS, RHS);
5235  case ICmpInst::ICMP_SLT: {
5236    ConstantRange LHSRange = getSignedRange(LHS);
5237    ConstantRange RHSRange = getSignedRange(RHS);
5238    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5239      return true;
5240    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5241      return false;
5242    break;
5243  }
5244  case ICmpInst::ICMP_SGE:
5245    Pred = ICmpInst::ICMP_SLE;
5246    std::swap(LHS, RHS);
5247  case ICmpInst::ICMP_SLE: {
5248    ConstantRange LHSRange = getSignedRange(LHS);
5249    ConstantRange RHSRange = getSignedRange(RHS);
5250    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5251      return true;
5252    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5253      return false;
5254    break;
5255  }
5256  case ICmpInst::ICMP_UGT:
5257    Pred = ICmpInst::ICMP_ULT;
5258    std::swap(LHS, RHS);
5259  case ICmpInst::ICMP_ULT: {
5260    ConstantRange LHSRange = getUnsignedRange(LHS);
5261    ConstantRange RHSRange = getUnsignedRange(RHS);
5262    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5263      return true;
5264    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5265      return false;
5266    break;
5267  }
5268  case ICmpInst::ICMP_UGE:
5269    Pred = ICmpInst::ICMP_ULE;
5270    std::swap(LHS, RHS);
5271  case ICmpInst::ICMP_ULE: {
5272    ConstantRange LHSRange = getUnsignedRange(LHS);
5273    ConstantRange RHSRange = getUnsignedRange(RHS);
5274    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5275      return true;
5276    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5277      return false;
5278    break;
5279  }
5280  case ICmpInst::ICMP_NE: {
5281    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5282      return true;
5283    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5284      return true;
5285
5286    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5287    if (isKnownNonZero(Diff))
5288      return true;
5289    break;
5290  }
5291  case ICmpInst::ICMP_EQ:
5292    // The check at the top of the function catches the case where
5293    // the values are known to be equal.
5294    break;
5295  }
5296  return false;
5297}
5298
5299/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5300/// protected by a conditional between LHS and RHS.  This is used to
5301/// to eliminate casts.
5302bool
5303ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5304                                             ICmpInst::Predicate Pred,
5305                                             const SCEV *LHS, const SCEV *RHS) {
5306  // Interpret a null as meaning no loop, where there is obviously no guard
5307  // (interprocedural conditions notwithstanding).
5308  if (!L) return true;
5309
5310  BasicBlock *Latch = L->getLoopLatch();
5311  if (!Latch)
5312    return false;
5313
5314  BranchInst *LoopContinuePredicate =
5315    dyn_cast<BranchInst>(Latch->getTerminator());
5316  if (!LoopContinuePredicate ||
5317      LoopContinuePredicate->isUnconditional())
5318    return false;
5319
5320  return isImpliedCond(Pred, LHS, RHS,
5321                       LoopContinuePredicate->getCondition(),
5322                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5323}
5324
5325/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5326/// by a conditional between LHS and RHS.  This is used to help avoid max
5327/// expressions in loop trip counts, and to eliminate casts.
5328bool
5329ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5330                                          ICmpInst::Predicate Pred,
5331                                          const SCEV *LHS, const SCEV *RHS) {
5332  // Interpret a null as meaning no loop, where there is obviously no guard
5333  // (interprocedural conditions notwithstanding).
5334  if (!L) return false;
5335
5336  // Starting at the loop predecessor, climb up the predecessor chain, as long
5337  // as there are predecessors that can be found that have unique successors
5338  // leading to the original header.
5339  for (std::pair<BasicBlock *, BasicBlock *>
5340         Pair(L->getLoopPredecessor(), L->getHeader());
5341       Pair.first;
5342       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5343
5344    BranchInst *LoopEntryPredicate =
5345      dyn_cast<BranchInst>(Pair.first->getTerminator());
5346    if (!LoopEntryPredicate ||
5347        LoopEntryPredicate->isUnconditional())
5348      continue;
5349
5350    if (isImpliedCond(Pred, LHS, RHS,
5351                      LoopEntryPredicate->getCondition(),
5352                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
5353      return true;
5354  }
5355
5356  return false;
5357}
5358
5359/// isImpliedCond - Test whether the condition described by Pred, LHS,
5360/// and RHS is true whenever the given Cond value evaluates to true.
5361bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5362                                    const SCEV *LHS, const SCEV *RHS,
5363                                    Value *FoundCondValue,
5364                                    bool Inverse) {
5365  // Recursively handle And and Or conditions.
5366  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5367    if (BO->getOpcode() == Instruction::And) {
5368      if (!Inverse)
5369        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5370               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5371    } else if (BO->getOpcode() == Instruction::Or) {
5372      if (Inverse)
5373        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5374               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5375    }
5376  }
5377
5378  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5379  if (!ICI) return false;
5380
5381  // Bail if the ICmp's operands' types are wider than the needed type
5382  // before attempting to call getSCEV on them. This avoids infinite
5383  // recursion, since the analysis of widening casts can require loop
5384  // exit condition information for overflow checking, which would
5385  // lead back here.
5386  if (getTypeSizeInBits(LHS->getType()) <
5387      getTypeSizeInBits(ICI->getOperand(0)->getType()))
5388    return false;
5389
5390  // Now that we found a conditional branch that dominates the loop, check to
5391  // see if it is the comparison we are looking for.
5392  ICmpInst::Predicate FoundPred;
5393  if (Inverse)
5394    FoundPred = ICI->getInversePredicate();
5395  else
5396    FoundPred = ICI->getPredicate();
5397
5398  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5399  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5400
5401  // Balance the types. The case where FoundLHS' type is wider than
5402  // LHS' type is checked for above.
5403  if (getTypeSizeInBits(LHS->getType()) >
5404      getTypeSizeInBits(FoundLHS->getType())) {
5405    if (CmpInst::isSigned(Pred)) {
5406      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5407      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5408    } else {
5409      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5410      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5411    }
5412  }
5413
5414  // Canonicalize the query to match the way instcombine will have
5415  // canonicalized the comparison.
5416  if (SimplifyICmpOperands(Pred, LHS, RHS))
5417    if (LHS == RHS)
5418      return CmpInst::isTrueWhenEqual(Pred);
5419  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5420    if (FoundLHS == FoundRHS)
5421      return CmpInst::isFalseWhenEqual(Pred);
5422
5423  // Check to see if we can make the LHS or RHS match.
5424  if (LHS == FoundRHS || RHS == FoundLHS) {
5425    if (isa<SCEVConstant>(RHS)) {
5426      std::swap(FoundLHS, FoundRHS);
5427      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5428    } else {
5429      std::swap(LHS, RHS);
5430      Pred = ICmpInst::getSwappedPredicate(Pred);
5431    }
5432  }
5433
5434  // Check whether the found predicate is the same as the desired predicate.
5435  if (FoundPred == Pred)
5436    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5437
5438  // Check whether swapping the found predicate makes it the same as the
5439  // desired predicate.
5440  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5441    if (isa<SCEVConstant>(RHS))
5442      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5443    else
5444      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5445                                   RHS, LHS, FoundLHS, FoundRHS);
5446  }
5447
5448  // Check whether the actual condition is beyond sufficient.
5449  if (FoundPred == ICmpInst::ICMP_EQ)
5450    if (ICmpInst::isTrueWhenEqual(Pred))
5451      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5452        return true;
5453  if (Pred == ICmpInst::ICMP_NE)
5454    if (!ICmpInst::isTrueWhenEqual(FoundPred))
5455      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5456        return true;
5457
5458  // Otherwise assume the worst.
5459  return false;
5460}
5461
5462/// isImpliedCondOperands - Test whether the condition described by Pred,
5463/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5464/// and FoundRHS is true.
5465bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5466                                            const SCEV *LHS, const SCEV *RHS,
5467                                            const SCEV *FoundLHS,
5468                                            const SCEV *FoundRHS) {
5469  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5470                                     FoundLHS, FoundRHS) ||
5471         // ~x < ~y --> x > y
5472         isImpliedCondOperandsHelper(Pred, LHS, RHS,
5473                                     getNotSCEV(FoundRHS),
5474                                     getNotSCEV(FoundLHS));
5475}
5476
5477/// isImpliedCondOperandsHelper - Test whether the condition described by
5478/// Pred, LHS, and RHS is true whenever the condition described by Pred,
5479/// FoundLHS, and FoundRHS is true.
5480bool
5481ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5482                                             const SCEV *LHS, const SCEV *RHS,
5483                                             const SCEV *FoundLHS,
5484                                             const SCEV *FoundRHS) {
5485  switch (Pred) {
5486  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5487  case ICmpInst::ICMP_EQ:
5488  case ICmpInst::ICMP_NE:
5489    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5490      return true;
5491    break;
5492  case ICmpInst::ICMP_SLT:
5493  case ICmpInst::ICMP_SLE:
5494    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5495        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5496      return true;
5497    break;
5498  case ICmpInst::ICMP_SGT:
5499  case ICmpInst::ICMP_SGE:
5500    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5501        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5502      return true;
5503    break;
5504  case ICmpInst::ICMP_ULT:
5505  case ICmpInst::ICMP_ULE:
5506    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5507        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5508      return true;
5509    break;
5510  case ICmpInst::ICMP_UGT:
5511  case ICmpInst::ICMP_UGE:
5512    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5513        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5514      return true;
5515    break;
5516  }
5517
5518  return false;
5519}
5520
5521/// getBECount - Subtract the end and start values and divide by the step,
5522/// rounding up, to get the number of times the backedge is executed. Return
5523/// CouldNotCompute if an intermediate computation overflows.
5524const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5525                                        const SCEV *End,
5526                                        const SCEV *Step,
5527                                        bool NoWrap) {
5528  assert(!isKnownNegative(Step) &&
5529         "This code doesn't handle negative strides yet!");
5530
5531  const Type *Ty = Start->getType();
5532  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5533  const SCEV *Diff = getMinusSCEV(End, Start);
5534  const SCEV *RoundUp = getAddExpr(Step, NegOne);
5535
5536  // Add an adjustment to the difference between End and Start so that
5537  // the division will effectively round up.
5538  const SCEV *Add = getAddExpr(Diff, RoundUp);
5539
5540  if (!NoWrap) {
5541    // Check Add for unsigned overflow.
5542    // TODO: More sophisticated things could be done here.
5543    const Type *WideTy = IntegerType::get(getContext(),
5544                                          getTypeSizeInBits(Ty) + 1);
5545    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5546    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5547    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5548    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5549      return getCouldNotCompute();
5550  }
5551
5552  return getUDivExpr(Add, Step);
5553}
5554
5555/// HowManyLessThans - Return the number of times a backedge containing the
5556/// specified less-than comparison will execute.  If not computable, return
5557/// CouldNotCompute.
5558ScalarEvolution::BackedgeTakenInfo
5559ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5560                                  const Loop *L, bool isSigned) {
5561  // Only handle:  "ADDREC < LoopInvariant".
5562  if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
5563
5564  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5565  if (!AddRec || AddRec->getLoop() != L)
5566    return getCouldNotCompute();
5567
5568  // Check to see if we have a flag which makes analysis easy.
5569  bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5570                           AddRec->hasNoUnsignedWrap();
5571
5572  if (AddRec->isAffine()) {
5573    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5574    const SCEV *Step = AddRec->getStepRecurrence(*this);
5575
5576    if (Step->isZero())
5577      return getCouldNotCompute();
5578    if (Step->isOne()) {
5579      // With unit stride, the iteration never steps past the limit value.
5580    } else if (isKnownPositive(Step)) {
5581      // Test whether a positive iteration can step past the limit
5582      // value and past the maximum value for its type in a single step.
5583      // Note that it's not sufficient to check NoWrap here, because even
5584      // though the value after a wrap is undefined, it's not undefined
5585      // behavior, so if wrap does occur, the loop could either terminate or
5586      // loop infinitely, but in either case, the loop is guaranteed to
5587      // iterate at least until the iteration where the wrapping occurs.
5588      const SCEV *One = getConstant(Step->getType(), 1);
5589      if (isSigned) {
5590        APInt Max = APInt::getSignedMaxValue(BitWidth);
5591        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5592              .slt(getSignedRange(RHS).getSignedMax()))
5593          return getCouldNotCompute();
5594      } else {
5595        APInt Max = APInt::getMaxValue(BitWidth);
5596        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5597              .ult(getUnsignedRange(RHS).getUnsignedMax()))
5598          return getCouldNotCompute();
5599      }
5600    } else
5601      // TODO: Handle negative strides here and below.
5602      return getCouldNotCompute();
5603
5604    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5605    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
5606    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5607    // treat m-n as signed nor unsigned due to overflow possibility.
5608
5609    // First, we get the value of the LHS in the first iteration: n
5610    const SCEV *Start = AddRec->getOperand(0);
5611
5612    // Determine the minimum constant start value.
5613    const SCEV *MinStart = getConstant(isSigned ?
5614      getSignedRange(Start).getSignedMin() :
5615      getUnsignedRange(Start).getUnsignedMin());
5616
5617    // If we know that the condition is true in order to enter the loop,
5618    // then we know that it will run exactly (m-n)/s times. Otherwise, we
5619    // only know that it will execute (max(m,n)-n)/s times. In both cases,
5620    // the division must round up.
5621    const SCEV *End = RHS;
5622    if (!isLoopEntryGuardedByCond(L,
5623                                  isSigned ? ICmpInst::ICMP_SLT :
5624                                             ICmpInst::ICMP_ULT,
5625                                  getMinusSCEV(Start, Step), RHS))
5626      End = isSigned ? getSMaxExpr(RHS, Start)
5627                     : getUMaxExpr(RHS, Start);
5628
5629    // Determine the maximum constant end value.
5630    const SCEV *MaxEnd = getConstant(isSigned ?
5631      getSignedRange(End).getSignedMax() :
5632      getUnsignedRange(End).getUnsignedMax());
5633
5634    // If MaxEnd is within a step of the maximum integer value in its type,
5635    // adjust it down to the minimum value which would produce the same effect.
5636    // This allows the subsequent ceiling division of (N+(step-1))/step to
5637    // compute the correct value.
5638    const SCEV *StepMinusOne = getMinusSCEV(Step,
5639                                            getConstant(Step->getType(), 1));
5640    MaxEnd = isSigned ?
5641      getSMinExpr(MaxEnd,
5642                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5643                               StepMinusOne)) :
5644      getUMinExpr(MaxEnd,
5645                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5646                               StepMinusOne));
5647
5648    // Finally, we subtract these two values and divide, rounding up, to get
5649    // the number of times the backedge is executed.
5650    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5651
5652    // The maximum backedge count is similar, except using the minimum start
5653    // value and the maximum end value.
5654    const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5655
5656    return BackedgeTakenInfo(BECount, MaxBECount);
5657  }
5658
5659  return getCouldNotCompute();
5660}
5661
5662/// getNumIterationsInRange - Return the number of iterations of this loop that
5663/// produce values in the specified constant range.  Another way of looking at
5664/// this is that it returns the first iteration number where the value is not in
5665/// the condition, thus computing the exit count. If the iteration count can't
5666/// be computed, an instance of SCEVCouldNotCompute is returned.
5667const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5668                                                    ScalarEvolution &SE) const {
5669  if (Range.isFullSet())  // Infinite loop.
5670    return SE.getCouldNotCompute();
5671
5672  // If the start is a non-zero constant, shift the range to simplify things.
5673  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5674    if (!SC->getValue()->isZero()) {
5675      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5676      Operands[0] = SE.getConstant(SC->getType(), 0);
5677      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5678      if (const SCEVAddRecExpr *ShiftedAddRec =
5679            dyn_cast<SCEVAddRecExpr>(Shifted))
5680        return ShiftedAddRec->getNumIterationsInRange(
5681                           Range.subtract(SC->getValue()->getValue()), SE);
5682      // This is strange and shouldn't happen.
5683      return SE.getCouldNotCompute();
5684    }
5685
5686  // The only time we can solve this is when we have all constant indices.
5687  // Otherwise, we cannot determine the overflow conditions.
5688  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5689    if (!isa<SCEVConstant>(getOperand(i)))
5690      return SE.getCouldNotCompute();
5691
5692
5693  // Okay at this point we know that all elements of the chrec are constants and
5694  // that the start element is zero.
5695
5696  // First check to see if the range contains zero.  If not, the first
5697  // iteration exits.
5698  unsigned BitWidth = SE.getTypeSizeInBits(getType());
5699  if (!Range.contains(APInt(BitWidth, 0)))
5700    return SE.getConstant(getType(), 0);
5701
5702  if (isAffine()) {
5703    // If this is an affine expression then we have this situation:
5704    //   Solve {0,+,A} in Range  ===  Ax in Range
5705
5706    // We know that zero is in the range.  If A is positive then we know that
5707    // the upper value of the range must be the first possible exit value.
5708    // If A is negative then the lower of the range is the last possible loop
5709    // value.  Also note that we already checked for a full range.
5710    APInt One(BitWidth,1);
5711    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5712    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5713
5714    // The exit value should be (End+A)/A.
5715    APInt ExitVal = (End + A).udiv(A);
5716    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5717
5718    // Evaluate at the exit value.  If we really did fall out of the valid
5719    // range, then we computed our trip count, otherwise wrap around or other
5720    // things must have happened.
5721    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5722    if (Range.contains(Val->getValue()))
5723      return SE.getCouldNotCompute();  // Something strange happened
5724
5725    // Ensure that the previous value is in the range.  This is a sanity check.
5726    assert(Range.contains(
5727           EvaluateConstantChrecAtConstant(this,
5728           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5729           "Linear scev computation is off in a bad way!");
5730    return SE.getConstant(ExitValue);
5731  } else if (isQuadratic()) {
5732    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5733    // quadratic equation to solve it.  To do this, we must frame our problem in
5734    // terms of figuring out when zero is crossed, instead of when
5735    // Range.getUpper() is crossed.
5736    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5737    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5738    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5739
5740    // Next, solve the constructed addrec
5741    std::pair<const SCEV *,const SCEV *> Roots =
5742      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5743    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5744    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5745    if (R1) {
5746      // Pick the smallest positive root value.
5747      if (ConstantInt *CB =
5748          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5749                         R1->getValue(), R2->getValue()))) {
5750        if (CB->getZExtValue() == false)
5751          std::swap(R1, R2);   // R1 is the minimum root now.
5752
5753        // Make sure the root is not off by one.  The returned iteration should
5754        // not be in the range, but the previous one should be.  When solving
5755        // for "X*X < 5", for example, we should not return a root of 2.
5756        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5757                                                             R1->getValue(),
5758                                                             SE);
5759        if (Range.contains(R1Val->getValue())) {
5760          // The next iteration must be out of the range...
5761          ConstantInt *NextVal =
5762                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5763
5764          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5765          if (!Range.contains(R1Val->getValue()))
5766            return SE.getConstant(NextVal);
5767          return SE.getCouldNotCompute();  // Something strange happened
5768        }
5769
5770        // If R1 was not in the range, then it is a good return value.  Make
5771        // sure that R1-1 WAS in the range though, just in case.
5772        ConstantInt *NextVal =
5773               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5774        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5775        if (Range.contains(R1Val->getValue()))
5776          return R1;
5777        return SE.getCouldNotCompute();  // Something strange happened
5778      }
5779    }
5780  }
5781
5782  return SE.getCouldNotCompute();
5783}
5784
5785
5786
5787//===----------------------------------------------------------------------===//
5788//                   SCEVCallbackVH Class Implementation
5789//===----------------------------------------------------------------------===//
5790
5791void ScalarEvolution::SCEVCallbackVH::deleted() {
5792  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5793  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5794    SE->ConstantEvolutionLoopExitValue.erase(PN);
5795  SE->ValueExprMap.erase(getValPtr());
5796  // this now dangles!
5797}
5798
5799void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5800  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5801
5802  // Forget all the expressions associated with users of the old value,
5803  // so that future queries will recompute the expressions using the new
5804  // value.
5805  Value *Old = getValPtr();
5806  SmallVector<User *, 16> Worklist;
5807  SmallPtrSet<User *, 8> Visited;
5808  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5809       UI != UE; ++UI)
5810    Worklist.push_back(*UI);
5811  while (!Worklist.empty()) {
5812    User *U = Worklist.pop_back_val();
5813    // Deleting the Old value will cause this to dangle. Postpone
5814    // that until everything else is done.
5815    if (U == Old)
5816      continue;
5817    if (!Visited.insert(U))
5818      continue;
5819    if (PHINode *PN = dyn_cast<PHINode>(U))
5820      SE->ConstantEvolutionLoopExitValue.erase(PN);
5821    SE->ValueExprMap.erase(U);
5822    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5823         UI != UE; ++UI)
5824      Worklist.push_back(*UI);
5825  }
5826  // Delete the Old value.
5827  if (PHINode *PN = dyn_cast<PHINode>(Old))
5828    SE->ConstantEvolutionLoopExitValue.erase(PN);
5829  SE->ValueExprMap.erase(Old);
5830  // this now dangles!
5831}
5832
5833ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5834  : CallbackVH(V), SE(se) {}
5835
5836//===----------------------------------------------------------------------===//
5837//                   ScalarEvolution Class Implementation
5838//===----------------------------------------------------------------------===//
5839
5840ScalarEvolution::ScalarEvolution()
5841  : FunctionPass(ID), FirstUnknown(0) {
5842}
5843
5844bool ScalarEvolution::runOnFunction(Function &F) {
5845  this->F = &F;
5846  LI = &getAnalysis<LoopInfo>();
5847  TD = getAnalysisIfAvailable<TargetData>();
5848  DT = &getAnalysis<DominatorTree>();
5849  return false;
5850}
5851
5852void ScalarEvolution::releaseMemory() {
5853  // Iterate through all the SCEVUnknown instances and call their
5854  // destructors, so that they release their references to their values.
5855  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5856    U->~SCEVUnknown();
5857  FirstUnknown = 0;
5858
5859  ValueExprMap.clear();
5860  BackedgeTakenCounts.clear();
5861  ConstantEvolutionLoopExitValue.clear();
5862  ValuesAtScopes.clear();
5863  UniqueSCEVs.clear();
5864  SCEVAllocator.Reset();
5865}
5866
5867void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5868  AU.setPreservesAll();
5869  AU.addRequiredTransitive<LoopInfo>();
5870  AU.addRequiredTransitive<DominatorTree>();
5871}
5872
5873bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5874  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5875}
5876
5877static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5878                          const Loop *L) {
5879  // Print all inner loops first
5880  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5881    PrintLoopInfo(OS, SE, *I);
5882
5883  OS << "Loop ";
5884  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5885  OS << ": ";
5886
5887  SmallVector<BasicBlock *, 8> ExitBlocks;
5888  L->getExitBlocks(ExitBlocks);
5889  if (ExitBlocks.size() != 1)
5890    OS << "<multiple exits> ";
5891
5892  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5893    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5894  } else {
5895    OS << "Unpredictable backedge-taken count. ";
5896  }
5897
5898  OS << "\n"
5899        "Loop ";
5900  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5901  OS << ": ";
5902
5903  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5904    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5905  } else {
5906    OS << "Unpredictable max backedge-taken count. ";
5907  }
5908
5909  OS << "\n";
5910}
5911
5912void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5913  // ScalarEvolution's implementation of the print method is to print
5914  // out SCEV values of all instructions that are interesting. Doing
5915  // this potentially causes it to create new SCEV objects though,
5916  // which technically conflicts with the const qualifier. This isn't
5917  // observable from outside the class though, so casting away the
5918  // const isn't dangerous.
5919  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5920
5921  OS << "Classifying expressions for: ";
5922  WriteAsOperand(OS, F, /*PrintType=*/false);
5923  OS << "\n";
5924  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5925    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
5926      OS << *I << '\n';
5927      OS << "  -->  ";
5928      const SCEV *SV = SE.getSCEV(&*I);
5929      SV->print(OS);
5930
5931      const Loop *L = LI->getLoopFor((*I).getParent());
5932
5933      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5934      if (AtUse != SV) {
5935        OS << "  -->  ";
5936        AtUse->print(OS);
5937      }
5938
5939      if (L) {
5940        OS << "\t\t" "Exits: ";
5941        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5942        if (!ExitValue->isLoopInvariant(L)) {
5943          OS << "<<Unknown>>";
5944        } else {
5945          OS << *ExitValue;
5946        }
5947      }
5948
5949      OS << "\n";
5950    }
5951
5952  OS << "Determining loop execution counts for: ";
5953  WriteAsOperand(OS, F, /*PrintType=*/false);
5954  OS << "\n";
5955  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5956    PrintLoopInfo(OS, &SE, *I);
5957}
5958
5959