ScalarEvolution.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
3324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//                     The LLVM Compiler Infrastructure
4324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
5324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// This file is distributed under the University of Illinois Open Source
6324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// License. See LICENSE.TXT for details.
7324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
8324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===//
9324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
10324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// This file contains the implementation of the scalar evolution analysis
11324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// engine, which is used primarily to analyze expressions involving induction
12324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// variables in loops.
13324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
14324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// There are several aspects to this library.  First is the representation of
15324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// scalar expressions, which are represented as subclasses of the SCEV class.
16324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// These classes are used to represent certain types of subexpressions that we
17324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// can handle. We only create one SCEV of a particular shape, so
18324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// pointer-comparisons for equality are legal.
19324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
20324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// One important aspect of the SCEV objects is that they are never cyclic, even
21324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// recurrence) then we represent it directly as a recurrence node, otherwise we
24324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// represent it as a SCEVUnknown node.
25324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
26324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// In addition to being able to represent expressions of various types, we also
27324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// have folders that are used to build the *canonical* representation for a
28324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// particular expression.  These folders are capable of using a variety of
29324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// rewrite rules to simplify the expressions.
30324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
31324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// Once the folders are defined, we can implement the more interesting
32324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// higher-level code, such as the code that recognizes PHI nodes of various
33324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// types, computes the execution count of a loop, etc.
34324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
35324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// TODO: We should use these routines and value representations to implement
36324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// dependence analysis!
37324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
38324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===//
39324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
40324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// There are several good references for the techniques used in this analysis.
41324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
42324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Chains of recurrences -- a method to expedite the evaluation
43324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  of closed-form functions
44324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
46324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  On computational properties of chains of recurrences
47324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Eugene V. Zima
48324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
49324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Robert A. van Engelen
51324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
52324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Efficient Symbolic Analysis for Optimizing Compilers
53324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Robert A. van Engelen
54324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
55324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  Using the chains of recurrences algebra for data dependence testing and
56324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  induction variable substitution
57324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  MS Thesis, Johnie Birch
58324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
59324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===//
60324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
61324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Analysis/ScalarEvolution.h"
62324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/ADT/STLExtras.h"
63324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/ADT/SmallPtrSet.h"
64324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/ADT/Statistic.h"
65324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Analysis/ConstantFolding.h"
66324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Analysis/InstructionSimplify.h"
67#include "llvm/Analysis/LoopInfo.h"
68#include "llvm/Analysis/ScalarEvolutionExpressions.h"
69#include "llvm/Analysis/ValueTracking.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DerivedTypes.h"
74#include "llvm/IR/Dominators.h"
75#include "llvm/IR/GetElementPtrTypeIterator.h"
76#include "llvm/IR/GlobalAlias.h"
77#include "llvm/IR/GlobalVariable.h"
78#include "llvm/IR/InstIterator.h"
79#include "llvm/IR/Instructions.h"
80#include "llvm/IR/LLVMContext.h"
81#include "llvm/IR/Operator.h"
82#include "llvm/Support/CommandLine.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/MathExtras.h"
86#include "llvm/Support/raw_ostream.h"
87#include "llvm/Target/TargetLibraryInfo.h"
88#include <algorithm>
89using namespace llvm;
90
91#define DEBUG_TYPE "scalar-evolution"
92
93STATISTIC(NumArrayLenItCounts,
94          "Number of trip counts computed with array length");
95STATISTIC(NumTripCountsComputed,
96          "Number of loops with predictable loop counts");
97STATISTIC(NumTripCountsNotComputed,
98          "Number of loops without predictable loop counts");
99STATISTIC(NumBruteForceTripCountsComputed,
100          "Number of loops with trip counts computed by force");
101
102static cl::opt<unsigned>
103MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
104                        cl::desc("Maximum number of iterations SCEV will "
105                                 "symbolically execute a constant "
106                                 "derived loop"),
107                        cl::init(100));
108
109// FIXME: Enable this with XDEBUG when the test suite is clean.
110static cl::opt<bool>
111VerifySCEV("verify-scev",
112           cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
113
114INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
115                "Scalar Evolution Analysis", false, true)
116INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
118INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
119INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
120                "Scalar Evolution Analysis", false, true)
121char ScalarEvolution::ID = 0;
122
123//===----------------------------------------------------------------------===//
124//                           SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
130
131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
132void SCEV::dump() const {
133  print(dbgs());
134  dbgs() << '\n';
135}
136#endif
137
138void SCEV::print(raw_ostream &OS) const {
139  switch (static_cast<SCEVTypes>(getSCEVType())) {
140  case scConstant:
141    cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
142    return;
143  case scTruncate: {
144    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
145    const SCEV *Op = Trunc->getOperand();
146    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
147       << *Trunc->getType() << ")";
148    return;
149  }
150  case scZeroExtend: {
151    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
152    const SCEV *Op = ZExt->getOperand();
153    OS << "(zext " << *Op->getType() << " " << *Op << " to "
154       << *ZExt->getType() << ")";
155    return;
156  }
157  case scSignExtend: {
158    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
159    const SCEV *Op = SExt->getOperand();
160    OS << "(sext " << *Op->getType() << " " << *Op << " to "
161       << *SExt->getType() << ")";
162    return;
163  }
164  case scAddRecExpr: {
165    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
166    OS << "{" << *AR->getOperand(0);
167    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
168      OS << ",+," << *AR->getOperand(i);
169    OS << "}<";
170    if (AR->getNoWrapFlags(FlagNUW))
171      OS << "nuw><";
172    if (AR->getNoWrapFlags(FlagNSW))
173      OS << "nsw><";
174    if (AR->getNoWrapFlags(FlagNW) &&
175        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
176      OS << "nw><";
177    AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
178    OS << ">";
179    return;
180  }
181  case scAddExpr:
182  case scMulExpr:
183  case scUMaxExpr:
184  case scSMaxExpr: {
185    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
186    const char *OpStr = nullptr;
187    switch (NAry->getSCEVType()) {
188    case scAddExpr: OpStr = " + "; break;
189    case scMulExpr: OpStr = " * "; break;
190    case scUMaxExpr: OpStr = " umax "; break;
191    case scSMaxExpr: OpStr = " smax "; break;
192    }
193    OS << "(";
194    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
195         I != E; ++I) {
196      OS << **I;
197      if (std::next(I) != E)
198        OS << OpStr;
199    }
200    OS << ")";
201    switch (NAry->getSCEVType()) {
202    case scAddExpr:
203    case scMulExpr:
204      if (NAry->getNoWrapFlags(FlagNUW))
205        OS << "<nuw>";
206      if (NAry->getNoWrapFlags(FlagNSW))
207        OS << "<nsw>";
208    }
209    return;
210  }
211  case scUDivExpr: {
212    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
213    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
214    return;
215  }
216  case scUnknown: {
217    const SCEVUnknown *U = cast<SCEVUnknown>(this);
218    Type *AllocTy;
219    if (U->isSizeOf(AllocTy)) {
220      OS << "sizeof(" << *AllocTy << ")";
221      return;
222    }
223    if (U->isAlignOf(AllocTy)) {
224      OS << "alignof(" << *AllocTy << ")";
225      return;
226    }
227
228    Type *CTy;
229    Constant *FieldNo;
230    if (U->isOffsetOf(CTy, FieldNo)) {
231      OS << "offsetof(" << *CTy << ", ";
232      FieldNo->printAsOperand(OS, false);
233      OS << ")";
234      return;
235    }
236
237    // Otherwise just print it normally.
238    U->getValue()->printAsOperand(OS, false);
239    return;
240  }
241  case scCouldNotCompute:
242    OS << "***COULDNOTCOMPUTE***";
243    return;
244  }
245  llvm_unreachable("Unknown SCEV kind!");
246}
247
248Type *SCEV::getType() const {
249  switch (static_cast<SCEVTypes>(getSCEVType())) {
250  case scConstant:
251    return cast<SCEVConstant>(this)->getType();
252  case scTruncate:
253  case scZeroExtend:
254  case scSignExtend:
255    return cast<SCEVCastExpr>(this)->getType();
256  case scAddRecExpr:
257  case scMulExpr:
258  case scUMaxExpr:
259  case scSMaxExpr:
260    return cast<SCEVNAryExpr>(this)->getType();
261  case scAddExpr:
262    return cast<SCEVAddExpr>(this)->getType();
263  case scUDivExpr:
264    return cast<SCEVUDivExpr>(this)->getType();
265  case scUnknown:
266    return cast<SCEVUnknown>(this)->getType();
267  case scCouldNotCompute:
268    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
269  }
270  llvm_unreachable("Unknown SCEV kind!");
271}
272
273bool SCEV::isZero() const {
274  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275    return SC->getValue()->isZero();
276  return false;
277}
278
279bool SCEV::isOne() const {
280  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281    return SC->getValue()->isOne();
282  return false;
283}
284
285bool SCEV::isAllOnesValue() const {
286  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
287    return SC->getValue()->isAllOnesValue();
288  return false;
289}
290
291/// isNonConstantNegative - Return true if the specified scev is negated, but
292/// not a constant.
293bool SCEV::isNonConstantNegative() const {
294  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
295  if (!Mul) return false;
296
297  // If there is a constant factor, it will be first.
298  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
299  if (!SC) return false;
300
301  // Return true if the value is negative, this matches things like (-42 * V).
302  return SC->getValue()->getValue().isNegative();
303}
304
305SCEVCouldNotCompute::SCEVCouldNotCompute() :
306  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
307
308bool SCEVCouldNotCompute::classof(const SCEV *S) {
309  return S->getSCEVType() == scCouldNotCompute;
310}
311
312const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
313  FoldingSetNodeID ID;
314  ID.AddInteger(scConstant);
315  ID.AddPointer(V);
316  void *IP = nullptr;
317  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
318  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
319  UniqueSCEVs.InsertNode(S, IP);
320  return S;
321}
322
323const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
324  return getConstant(ConstantInt::get(getContext(), Val));
325}
326
327const SCEV *
328ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
329  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
330  return getConstant(ConstantInt::get(ITy, V, isSigned));
331}
332
333SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
334                           unsigned SCEVTy, const SCEV *op, Type *ty)
335  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
336
337SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
338                                   const SCEV *op, Type *ty)
339  : SCEVCastExpr(ID, scTruncate, op, ty) {
340  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
341         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
342         "Cannot truncate non-integer value!");
343}
344
345SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
346                                       const SCEV *op, Type *ty)
347  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
348  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
349         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
350         "Cannot zero extend non-integer value!");
351}
352
353SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
354                                       const SCEV *op, Type *ty)
355  : SCEVCastExpr(ID, scSignExtend, op, ty) {
356  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
357         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
358         "Cannot sign extend non-integer value!");
359}
360
361void SCEVUnknown::deleted() {
362  // Clear this SCEVUnknown from various maps.
363  SE->forgetMemoizedResults(this);
364
365  // Remove this SCEVUnknown from the uniquing map.
366  SE->UniqueSCEVs.RemoveNode(this);
367
368  // Release the value.
369  setValPtr(nullptr);
370}
371
372void SCEVUnknown::allUsesReplacedWith(Value *New) {
373  // Clear this SCEVUnknown from various maps.
374  SE->forgetMemoizedResults(this);
375
376  // Remove this SCEVUnknown from the uniquing map.
377  SE->UniqueSCEVs.RemoveNode(this);
378
379  // Update this SCEVUnknown to point to the new value. This is needed
380  // because there may still be outstanding SCEVs which still point to
381  // this SCEVUnknown.
382  setValPtr(New);
383}
384
385bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
386  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
387    if (VCE->getOpcode() == Instruction::PtrToInt)
388      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
389        if (CE->getOpcode() == Instruction::GetElementPtr &&
390            CE->getOperand(0)->isNullValue() &&
391            CE->getNumOperands() == 2)
392          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
393            if (CI->isOne()) {
394              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
395                                 ->getElementType();
396              return true;
397            }
398
399  return false;
400}
401
402bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
403  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
404    if (VCE->getOpcode() == Instruction::PtrToInt)
405      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
406        if (CE->getOpcode() == Instruction::GetElementPtr &&
407            CE->getOperand(0)->isNullValue()) {
408          Type *Ty =
409            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
410          if (StructType *STy = dyn_cast<StructType>(Ty))
411            if (!STy->isPacked() &&
412                CE->getNumOperands() == 3 &&
413                CE->getOperand(1)->isNullValue()) {
414              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
415                if (CI->isOne() &&
416                    STy->getNumElements() == 2 &&
417                    STy->getElementType(0)->isIntegerTy(1)) {
418                  AllocTy = STy->getElementType(1);
419                  return true;
420                }
421            }
422        }
423
424  return false;
425}
426
427bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
428  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
429    if (VCE->getOpcode() == Instruction::PtrToInt)
430      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
431        if (CE->getOpcode() == Instruction::GetElementPtr &&
432            CE->getNumOperands() == 3 &&
433            CE->getOperand(0)->isNullValue() &&
434            CE->getOperand(1)->isNullValue()) {
435          Type *Ty =
436            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
437          // Ignore vector types here so that ScalarEvolutionExpander doesn't
438          // emit getelementptrs that index into vectors.
439          if (Ty->isStructTy() || Ty->isArrayTy()) {
440            CTy = Ty;
441            FieldNo = CE->getOperand(2);
442            return true;
443          }
444        }
445
446  return false;
447}
448
449//===----------------------------------------------------------------------===//
450//                               SCEV Utilities
451//===----------------------------------------------------------------------===//
452
453namespace {
454  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
455  /// than the complexity of the RHS.  This comparator is used to canonicalize
456  /// expressions.
457  class SCEVComplexityCompare {
458    const LoopInfo *const LI;
459  public:
460    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
461
462    // Return true or false if LHS is less than, or at least RHS, respectively.
463    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
464      return compare(LHS, RHS) < 0;
465    }
466
467    // Return negative, zero, or positive, if LHS is less than, equal to, or
468    // greater than RHS, respectively. A three-way result allows recursive
469    // comparisons to be more efficient.
470    int compare(const SCEV *LHS, const SCEV *RHS) const {
471      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
472      if (LHS == RHS)
473        return 0;
474
475      // Primarily, sort the SCEVs by their getSCEVType().
476      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
477      if (LType != RType)
478        return (int)LType - (int)RType;
479
480      // Aside from the getSCEVType() ordering, the particular ordering
481      // isn't very important except that it's beneficial to be consistent,
482      // so that (a + b) and (b + a) don't end up as different expressions.
483      switch (static_cast<SCEVTypes>(LType)) {
484      case scUnknown: {
485        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
486        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
487
488        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
489        // not as complete as it could be.
490        const Value *LV = LU->getValue(), *RV = RU->getValue();
491
492        // Order pointer values after integer values. This helps SCEVExpander
493        // form GEPs.
494        bool LIsPointer = LV->getType()->isPointerTy(),
495             RIsPointer = RV->getType()->isPointerTy();
496        if (LIsPointer != RIsPointer)
497          return (int)LIsPointer - (int)RIsPointer;
498
499        // Compare getValueID values.
500        unsigned LID = LV->getValueID(),
501                 RID = RV->getValueID();
502        if (LID != RID)
503          return (int)LID - (int)RID;
504
505        // Sort arguments by their position.
506        if (const Argument *LA = dyn_cast<Argument>(LV)) {
507          const Argument *RA = cast<Argument>(RV);
508          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
509          return (int)LArgNo - (int)RArgNo;
510        }
511
512        // For instructions, compare their loop depth, and their operand
513        // count.  This is pretty loose.
514        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
515          const Instruction *RInst = cast<Instruction>(RV);
516
517          // Compare loop depths.
518          const BasicBlock *LParent = LInst->getParent(),
519                           *RParent = RInst->getParent();
520          if (LParent != RParent) {
521            unsigned LDepth = LI->getLoopDepth(LParent),
522                     RDepth = LI->getLoopDepth(RParent);
523            if (LDepth != RDepth)
524              return (int)LDepth - (int)RDepth;
525          }
526
527          // Compare the number of operands.
528          unsigned LNumOps = LInst->getNumOperands(),
529                   RNumOps = RInst->getNumOperands();
530          return (int)LNumOps - (int)RNumOps;
531        }
532
533        return 0;
534      }
535
536      case scConstant: {
537        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
538        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
539
540        // Compare constant values.
541        const APInt &LA = LC->getValue()->getValue();
542        const APInt &RA = RC->getValue()->getValue();
543        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
544        if (LBitWidth != RBitWidth)
545          return (int)LBitWidth - (int)RBitWidth;
546        return LA.ult(RA) ? -1 : 1;
547      }
548
549      case scAddRecExpr: {
550        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
551        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
552
553        // Compare addrec loop depths.
554        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
555        if (LLoop != RLoop) {
556          unsigned LDepth = LLoop->getLoopDepth(),
557                   RDepth = RLoop->getLoopDepth();
558          if (LDepth != RDepth)
559            return (int)LDepth - (int)RDepth;
560        }
561
562        // Addrec complexity grows with operand count.
563        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
564        if (LNumOps != RNumOps)
565          return (int)LNumOps - (int)RNumOps;
566
567        // Lexicographically compare.
568        for (unsigned i = 0; i != LNumOps; ++i) {
569          long X = compare(LA->getOperand(i), RA->getOperand(i));
570          if (X != 0)
571            return X;
572        }
573
574        return 0;
575      }
576
577      case scAddExpr:
578      case scMulExpr:
579      case scSMaxExpr:
580      case scUMaxExpr: {
581        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
582        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
583
584        // Lexicographically compare n-ary expressions.
585        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
586        if (LNumOps != RNumOps)
587          return (int)LNumOps - (int)RNumOps;
588
589        for (unsigned i = 0; i != LNumOps; ++i) {
590          if (i >= RNumOps)
591            return 1;
592          long X = compare(LC->getOperand(i), RC->getOperand(i));
593          if (X != 0)
594            return X;
595        }
596        return (int)LNumOps - (int)RNumOps;
597      }
598
599      case scUDivExpr: {
600        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
601        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
602
603        // Lexicographically compare udiv expressions.
604        long X = compare(LC->getLHS(), RC->getLHS());
605        if (X != 0)
606          return X;
607        return compare(LC->getRHS(), RC->getRHS());
608      }
609
610      case scTruncate:
611      case scZeroExtend:
612      case scSignExtend: {
613        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
614        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
615
616        // Compare cast expressions by operand.
617        return compare(LC->getOperand(), RC->getOperand());
618      }
619
620      case scCouldNotCompute:
621        llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
622      }
623      llvm_unreachable("Unknown SCEV kind!");
624    }
625  };
626}
627
628/// GroupByComplexity - Given a list of SCEV objects, order them by their
629/// complexity, and group objects of the same complexity together by value.
630/// When this routine is finished, we know that any duplicates in the vector are
631/// consecutive and that complexity is monotonically increasing.
632///
633/// Note that we go take special precautions to ensure that we get deterministic
634/// results from this routine.  In other words, we don't want the results of
635/// this to depend on where the addresses of various SCEV objects happened to
636/// land in memory.
637///
638static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
639                              LoopInfo *LI) {
640  if (Ops.size() < 2) return;  // Noop
641  if (Ops.size() == 2) {
642    // This is the common case, which also happens to be trivially simple.
643    // Special case it.
644    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
645    if (SCEVComplexityCompare(LI)(RHS, LHS))
646      std::swap(LHS, RHS);
647    return;
648  }
649
650  // Do the rough sort by complexity.
651  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
652
653  // Now that we are sorted by complexity, group elements of the same
654  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
655  // be extremely short in practice.  Note that we take this approach because we
656  // do not want to depend on the addresses of the objects we are grouping.
657  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
658    const SCEV *S = Ops[i];
659    unsigned Complexity = S->getSCEVType();
660
661    // If there are any objects of the same complexity and same value as this
662    // one, group them.
663    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
664      if (Ops[j] == S) { // Found a duplicate.
665        // Move it to immediately after i'th element.
666        std::swap(Ops[i+1], Ops[j]);
667        ++i;   // no need to rescan it.
668        if (i == e-2) return;  // Done!
669      }
670    }
671  }
672}
673
674
675
676//===----------------------------------------------------------------------===//
677//                      Simple SCEV method implementations
678//===----------------------------------------------------------------------===//
679
680/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
681/// Assume, K > 0.
682static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
683                                       ScalarEvolution &SE,
684                                       Type *ResultTy) {
685  // Handle the simplest case efficiently.
686  if (K == 1)
687    return SE.getTruncateOrZeroExtend(It, ResultTy);
688
689  // We are using the following formula for BC(It, K):
690  //
691  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
692  //
693  // Suppose, W is the bitwidth of the return value.  We must be prepared for
694  // overflow.  Hence, we must assure that the result of our computation is
695  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
696  // safe in modular arithmetic.
697  //
698  // However, this code doesn't use exactly that formula; the formula it uses
699  // is something like the following, where T is the number of factors of 2 in
700  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
701  // exponentiation:
702  //
703  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
704  //
705  // This formula is trivially equivalent to the previous formula.  However,
706  // this formula can be implemented much more efficiently.  The trick is that
707  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
708  // arithmetic.  To do exact division in modular arithmetic, all we have
709  // to do is multiply by the inverse.  Therefore, this step can be done at
710  // width W.
711  //
712  // The next issue is how to safely do the division by 2^T.  The way this
713  // is done is by doing the multiplication step at a width of at least W + T
714  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
715  // when we perform the division by 2^T (which is equivalent to a right shift
716  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
717  // truncated out after the division by 2^T.
718  //
719  // In comparison to just directly using the first formula, this technique
720  // is much more efficient; using the first formula requires W * K bits,
721  // but this formula less than W + K bits. Also, the first formula requires
722  // a division step, whereas this formula only requires multiplies and shifts.
723  //
724  // It doesn't matter whether the subtraction step is done in the calculation
725  // width or the input iteration count's width; if the subtraction overflows,
726  // the result must be zero anyway.  We prefer here to do it in the width of
727  // the induction variable because it helps a lot for certain cases; CodeGen
728  // isn't smart enough to ignore the overflow, which leads to much less
729  // efficient code if the width of the subtraction is wider than the native
730  // register width.
731  //
732  // (It's possible to not widen at all by pulling out factors of 2 before
733  // the multiplication; for example, K=2 can be calculated as
734  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
735  // extra arithmetic, so it's not an obvious win, and it gets
736  // much more complicated for K > 3.)
737
738  // Protection from insane SCEVs; this bound is conservative,
739  // but it probably doesn't matter.
740  if (K > 1000)
741    return SE.getCouldNotCompute();
742
743  unsigned W = SE.getTypeSizeInBits(ResultTy);
744
745  // Calculate K! / 2^T and T; we divide out the factors of two before
746  // multiplying for calculating K! / 2^T to avoid overflow.
747  // Other overflow doesn't matter because we only care about the bottom
748  // W bits of the result.
749  APInt OddFactorial(W, 1);
750  unsigned T = 1;
751  for (unsigned i = 3; i <= K; ++i) {
752    APInt Mult(W, i);
753    unsigned TwoFactors = Mult.countTrailingZeros();
754    T += TwoFactors;
755    Mult = Mult.lshr(TwoFactors);
756    OddFactorial *= Mult;
757  }
758
759  // We need at least W + T bits for the multiplication step
760  unsigned CalculationBits = W + T;
761
762  // Calculate 2^T, at width T+W.
763  APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
764
765  // Calculate the multiplicative inverse of K! / 2^T;
766  // this multiplication factor will perform the exact division by
767  // K! / 2^T.
768  APInt Mod = APInt::getSignedMinValue(W+1);
769  APInt MultiplyFactor = OddFactorial.zext(W+1);
770  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
771  MultiplyFactor = MultiplyFactor.trunc(W);
772
773  // Calculate the product, at width T+W
774  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
775                                                      CalculationBits);
776  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
777  for (unsigned i = 1; i != K; ++i) {
778    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
779    Dividend = SE.getMulExpr(Dividend,
780                             SE.getTruncateOrZeroExtend(S, CalculationTy));
781  }
782
783  // Divide by 2^T
784  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
785
786  // Truncate the result, and divide by K! / 2^T.
787
788  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
789                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
790}
791
792/// evaluateAtIteration - Return the value of this chain of recurrences at
793/// the specified iteration number.  We can evaluate this recurrence by
794/// multiplying each element in the chain by the binomial coefficient
795/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
796///
797///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
798///
799/// where BC(It, k) stands for binomial coefficient.
800///
801const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
802                                                ScalarEvolution &SE) const {
803  const SCEV *Result = getStart();
804  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
805    // The computation is correct in the face of overflow provided that the
806    // multiplication is performed _after_ the evaluation of the binomial
807    // coefficient.
808    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
809    if (isa<SCEVCouldNotCompute>(Coeff))
810      return Coeff;
811
812    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
813  }
814  return Result;
815}
816
817//===----------------------------------------------------------------------===//
818//                    SCEV Expression folder implementations
819//===----------------------------------------------------------------------===//
820
821const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
822                                             Type *Ty) {
823  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
824         "This is not a truncating conversion!");
825  assert(isSCEVable(Ty) &&
826         "This is not a conversion to a SCEVable type!");
827  Ty = getEffectiveSCEVType(Ty);
828
829  FoldingSetNodeID ID;
830  ID.AddInteger(scTruncate);
831  ID.AddPointer(Op);
832  ID.AddPointer(Ty);
833  void *IP = nullptr;
834  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
835
836  // Fold if the operand is constant.
837  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
838    return getConstant(
839      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
840
841  // trunc(trunc(x)) --> trunc(x)
842  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
843    return getTruncateExpr(ST->getOperand(), Ty);
844
845  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
846  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
847    return getTruncateOrSignExtend(SS->getOperand(), Ty);
848
849  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
850  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
851    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
852
853  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
854  // eliminate all the truncates.
855  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
856    SmallVector<const SCEV *, 4> Operands;
857    bool hasTrunc = false;
858    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
859      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
860      hasTrunc = isa<SCEVTruncateExpr>(S);
861      Operands.push_back(S);
862    }
863    if (!hasTrunc)
864      return getAddExpr(Operands);
865    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
866  }
867
868  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
869  // eliminate all the truncates.
870  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
871    SmallVector<const SCEV *, 4> Operands;
872    bool hasTrunc = false;
873    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
874      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
875      hasTrunc = isa<SCEVTruncateExpr>(S);
876      Operands.push_back(S);
877    }
878    if (!hasTrunc)
879      return getMulExpr(Operands);
880    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
881  }
882
883  // If the input value is a chrec scev, truncate the chrec's operands.
884  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
885    SmallVector<const SCEV *, 4> Operands;
886    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
887      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
888    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
889  }
890
891  // The cast wasn't folded; create an explicit cast node. We can reuse
892  // the existing insert position since if we get here, we won't have
893  // made any changes which would invalidate it.
894  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
895                                                 Op, Ty);
896  UniqueSCEVs.InsertNode(S, IP);
897  return S;
898}
899
900const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
901                                               Type *Ty) {
902  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
903         "This is not an extending conversion!");
904  assert(isSCEVable(Ty) &&
905         "This is not a conversion to a SCEVable type!");
906  Ty = getEffectiveSCEVType(Ty);
907
908  // Fold if the operand is constant.
909  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
910    return getConstant(
911      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
912
913  // zext(zext(x)) --> zext(x)
914  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
915    return getZeroExtendExpr(SZ->getOperand(), Ty);
916
917  // Before doing any expensive analysis, check to see if we've already
918  // computed a SCEV for this Op and Ty.
919  FoldingSetNodeID ID;
920  ID.AddInteger(scZeroExtend);
921  ID.AddPointer(Op);
922  ID.AddPointer(Ty);
923  void *IP = nullptr;
924  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
925
926  // zext(trunc(x)) --> zext(x) or x or trunc(x)
927  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
928    // It's possible the bits taken off by the truncate were all zero bits. If
929    // so, we should be able to simplify this further.
930    const SCEV *X = ST->getOperand();
931    ConstantRange CR = getUnsignedRange(X);
932    unsigned TruncBits = getTypeSizeInBits(ST->getType());
933    unsigned NewBits = getTypeSizeInBits(Ty);
934    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
935            CR.zextOrTrunc(NewBits)))
936      return getTruncateOrZeroExtend(X, Ty);
937  }
938
939  // If the input value is a chrec scev, and we can prove that the value
940  // did not overflow the old, smaller, value, we can zero extend all of the
941  // operands (often constants).  This allows analysis of something like
942  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
943  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
944    if (AR->isAffine()) {
945      const SCEV *Start = AR->getStart();
946      const SCEV *Step = AR->getStepRecurrence(*this);
947      unsigned BitWidth = getTypeSizeInBits(AR->getType());
948      const Loop *L = AR->getLoop();
949
950      // If we have special knowledge that this addrec won't overflow,
951      // we don't need to do any further analysis.
952      if (AR->getNoWrapFlags(SCEV::FlagNUW))
953        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
954                             getZeroExtendExpr(Step, Ty),
955                             L, AR->getNoWrapFlags());
956
957      // Check whether the backedge-taken count is SCEVCouldNotCompute.
958      // Note that this serves two purposes: It filters out loops that are
959      // simply not analyzable, and it covers the case where this code is
960      // being called from within backedge-taken count analysis, such that
961      // attempting to ask for the backedge-taken count would likely result
962      // in infinite recursion. In the later case, the analysis code will
963      // cope with a conservative value, and it will take care to purge
964      // that value once it has finished.
965      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
966      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
967        // Manually compute the final value for AR, checking for
968        // overflow.
969
970        // Check whether the backedge-taken count can be losslessly casted to
971        // the addrec's type. The count is always unsigned.
972        const SCEV *CastedMaxBECount =
973          getTruncateOrZeroExtend(MaxBECount, Start->getType());
974        const SCEV *RecastedMaxBECount =
975          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
976        if (MaxBECount == RecastedMaxBECount) {
977          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
978          // Check whether Start+Step*MaxBECount has no unsigned overflow.
979          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
980          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
981          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
982          const SCEV *WideMaxBECount =
983            getZeroExtendExpr(CastedMaxBECount, WideTy);
984          const SCEV *OperandExtendedAdd =
985            getAddExpr(WideStart,
986                       getMulExpr(WideMaxBECount,
987                                  getZeroExtendExpr(Step, WideTy)));
988          if (ZAdd == OperandExtendedAdd) {
989            // Cache knowledge of AR NUW, which is propagated to this AddRec.
990            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
991            // Return the expression with the addrec on the outside.
992            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
993                                 getZeroExtendExpr(Step, Ty),
994                                 L, AR->getNoWrapFlags());
995          }
996          // Similar to above, only this time treat the step value as signed.
997          // This covers loops that count down.
998          OperandExtendedAdd =
999            getAddExpr(WideStart,
1000                       getMulExpr(WideMaxBECount,
1001                                  getSignExtendExpr(Step, WideTy)));
1002          if (ZAdd == OperandExtendedAdd) {
1003            // Cache knowledge of AR NW, which is propagated to this AddRec.
1004            // Negative step causes unsigned wrap, but it still can't self-wrap.
1005            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1006            // Return the expression with the addrec on the outside.
1007            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1008                                 getSignExtendExpr(Step, Ty),
1009                                 L, AR->getNoWrapFlags());
1010          }
1011        }
1012
1013        // If the backedge is guarded by a comparison with the pre-inc value
1014        // the addrec is safe. Also, if the entry is guarded by a comparison
1015        // with the start value and the backedge is guarded by a comparison
1016        // with the post-inc value, the addrec is safe.
1017        if (isKnownPositive(Step)) {
1018          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1019                                      getUnsignedRange(Step).getUnsignedMax());
1020          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1021              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1022               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1023                                           AR->getPostIncExpr(*this), N))) {
1024            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1025            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1026            // Return the expression with the addrec on the outside.
1027            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1028                                 getZeroExtendExpr(Step, Ty),
1029                                 L, AR->getNoWrapFlags());
1030          }
1031        } else if (isKnownNegative(Step)) {
1032          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1033                                      getSignedRange(Step).getSignedMin());
1034          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1035              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1036               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1037                                           AR->getPostIncExpr(*this), N))) {
1038            // Cache knowledge of AR NW, which is propagated to this AddRec.
1039            // Negative step causes unsigned wrap, but it still can't self-wrap.
1040            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1041            // Return the expression with the addrec on the outside.
1042            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1043                                 getSignExtendExpr(Step, Ty),
1044                                 L, AR->getNoWrapFlags());
1045          }
1046        }
1047      }
1048    }
1049
1050  // The cast wasn't folded; create an explicit cast node.
1051  // Recompute the insert position, as it may have been invalidated.
1052  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1053  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1054                                                   Op, Ty);
1055  UniqueSCEVs.InsertNode(S, IP);
1056  return S;
1057}
1058
1059// Get the limit of a recurrence such that incrementing by Step cannot cause
1060// signed overflow as long as the value of the recurrence within the loop does
1061// not exceed this limit before incrementing.
1062static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1063                                           ICmpInst::Predicate *Pred,
1064                                           ScalarEvolution *SE) {
1065  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1066  if (SE->isKnownPositive(Step)) {
1067    *Pred = ICmpInst::ICMP_SLT;
1068    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1069                           SE->getSignedRange(Step).getSignedMax());
1070  }
1071  if (SE->isKnownNegative(Step)) {
1072    *Pred = ICmpInst::ICMP_SGT;
1073    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1074                       SE->getSignedRange(Step).getSignedMin());
1075  }
1076  return nullptr;
1077}
1078
1079// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1080// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1081// or postincrement sibling. This allows normalizing a sign extended AddRec as
1082// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1083// result, the expression "Step + sext(PreIncAR)" is congruent with
1084// "sext(PostIncAR)"
1085static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1086                                            Type *Ty,
1087                                            ScalarEvolution *SE) {
1088  const Loop *L = AR->getLoop();
1089  const SCEV *Start = AR->getStart();
1090  const SCEV *Step = AR->getStepRecurrence(*SE);
1091
1092  // Check for a simple looking step prior to loop entry.
1093  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1094  if (!SA)
1095    return nullptr;
1096
1097  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1098  // subtraction is expensive. For this purpose, perform a quick and dirty
1099  // difference, by checking for Step in the operand list.
1100  SmallVector<const SCEV *, 4> DiffOps;
1101  for (const SCEV *Op : SA->operands())
1102    if (Op != Step)
1103      DiffOps.push_back(Op);
1104
1105  if (DiffOps.size() == SA->getNumOperands())
1106    return nullptr;
1107
1108  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1109  // same three conditions that getSignExtendedExpr checks.
1110
1111  // 1. NSW flags on the step increment.
1112  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1113  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1114    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1115
1116  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1117    return PreStart;
1118
1119  // 2. Direct overflow check on the step operation's expression.
1120  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1121  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1122  const SCEV *OperandExtendedStart =
1123    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1124                   SE->getSignExtendExpr(Step, WideTy));
1125  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1126    // Cache knowledge of PreAR NSW.
1127    if (PreAR)
1128      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1129    // FIXME: this optimization needs a unit test
1130    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1131    return PreStart;
1132  }
1133
1134  // 3. Loop precondition.
1135  ICmpInst::Predicate Pred;
1136  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1137
1138  if (OverflowLimit &&
1139      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1140    return PreStart;
1141  }
1142  return nullptr;
1143}
1144
1145// Get the normalized sign-extended expression for this AddRec's Start.
1146static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1147                                            Type *Ty,
1148                                            ScalarEvolution *SE) {
1149  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1150  if (!PreStart)
1151    return SE->getSignExtendExpr(AR->getStart(), Ty);
1152
1153  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1154                        SE->getSignExtendExpr(PreStart, Ty));
1155}
1156
1157const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1158                                               Type *Ty) {
1159  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1160         "This is not an extending conversion!");
1161  assert(isSCEVable(Ty) &&
1162         "This is not a conversion to a SCEVable type!");
1163  Ty = getEffectiveSCEVType(Ty);
1164
1165  // Fold if the operand is constant.
1166  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1167    return getConstant(
1168      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1169
1170  // sext(sext(x)) --> sext(x)
1171  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1172    return getSignExtendExpr(SS->getOperand(), Ty);
1173
1174  // sext(zext(x)) --> zext(x)
1175  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176    return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
1178  // Before doing any expensive analysis, check to see if we've already
1179  // computed a SCEV for this Op and Ty.
1180  FoldingSetNodeID ID;
1181  ID.AddInteger(scSignExtend);
1182  ID.AddPointer(Op);
1183  ID.AddPointer(Ty);
1184  void *IP = nullptr;
1185  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
1187  // If the input value is provably positive, build a zext instead.
1188  if (isKnownNonNegative(Op))
1189    return getZeroExtendExpr(Op, Ty);
1190
1191  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193    // It's possible the bits taken off by the truncate were all sign bits. If
1194    // so, we should be able to simplify this further.
1195    const SCEV *X = ST->getOperand();
1196    ConstantRange CR = getSignedRange(X);
1197    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198    unsigned NewBits = getTypeSizeInBits(Ty);
1199    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1200            CR.sextOrTrunc(NewBits)))
1201      return getTruncateOrSignExtend(X, Ty);
1202  }
1203
1204  // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1205  if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1206    if (SA->getNumOperands() == 2) {
1207      auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1208      auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1209      if (SMul && SC1) {
1210        if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1211          const APInt &C1 = SC1->getValue()->getValue();
1212          const APInt &C2 = SC2->getValue()->getValue();
1213          if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1214              C2.ugt(C1) && C2.isPowerOf2())
1215            return getAddExpr(getSignExtendExpr(SC1, Ty),
1216                              getSignExtendExpr(SMul, Ty));
1217        }
1218      }
1219    }
1220  }
1221  // If the input value is a chrec scev, and we can prove that the value
1222  // did not overflow the old, smaller, value, we can sign extend all of the
1223  // operands (often constants).  This allows analysis of something like
1224  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1225  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1226    if (AR->isAffine()) {
1227      const SCEV *Start = AR->getStart();
1228      const SCEV *Step = AR->getStepRecurrence(*this);
1229      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1230      const Loop *L = AR->getLoop();
1231
1232      // If we have special knowledge that this addrec won't overflow,
1233      // we don't need to do any further analysis.
1234      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1235        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1236                             getSignExtendExpr(Step, Ty),
1237                             L, SCEV::FlagNSW);
1238
1239      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1240      // Note that this serves two purposes: It filters out loops that are
1241      // simply not analyzable, and it covers the case where this code is
1242      // being called from within backedge-taken count analysis, such that
1243      // attempting to ask for the backedge-taken count would likely result
1244      // in infinite recursion. In the later case, the analysis code will
1245      // cope with a conservative value, and it will take care to purge
1246      // that value once it has finished.
1247      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1248      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1249        // Manually compute the final value for AR, checking for
1250        // overflow.
1251
1252        // Check whether the backedge-taken count can be losslessly casted to
1253        // the addrec's type. The count is always unsigned.
1254        const SCEV *CastedMaxBECount =
1255          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1256        const SCEV *RecastedMaxBECount =
1257          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1258        if (MaxBECount == RecastedMaxBECount) {
1259          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1260          // Check whether Start+Step*MaxBECount has no signed overflow.
1261          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1262          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1263          const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1264          const SCEV *WideMaxBECount =
1265            getZeroExtendExpr(CastedMaxBECount, WideTy);
1266          const SCEV *OperandExtendedAdd =
1267            getAddExpr(WideStart,
1268                       getMulExpr(WideMaxBECount,
1269                                  getSignExtendExpr(Step, WideTy)));
1270          if (SAdd == OperandExtendedAdd) {
1271            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1272            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1273            // Return the expression with the addrec on the outside.
1274            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1275                                 getSignExtendExpr(Step, Ty),
1276                                 L, AR->getNoWrapFlags());
1277          }
1278          // Similar to above, only this time treat the step value as unsigned.
1279          // This covers loops that count up with an unsigned step.
1280          OperandExtendedAdd =
1281            getAddExpr(WideStart,
1282                       getMulExpr(WideMaxBECount,
1283                                  getZeroExtendExpr(Step, WideTy)));
1284          if (SAdd == OperandExtendedAdd) {
1285            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1286            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1287            // Return the expression with the addrec on the outside.
1288            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1289                                 getZeroExtendExpr(Step, Ty),
1290                                 L, AR->getNoWrapFlags());
1291          }
1292        }
1293
1294        // If the backedge is guarded by a comparison with the pre-inc value
1295        // the addrec is safe. Also, if the entry is guarded by a comparison
1296        // with the start value and the backedge is guarded by a comparison
1297        // with the post-inc value, the addrec is safe.
1298        ICmpInst::Predicate Pred;
1299        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1300        if (OverflowLimit &&
1301            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1302             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1303              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1304                                          OverflowLimit)))) {
1305          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1306          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1307          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1308                               getSignExtendExpr(Step, Ty),
1309                               L, AR->getNoWrapFlags());
1310        }
1311      }
1312      // If Start and Step are constants, check if we can apply this
1313      // transformation:
1314      // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1315      auto SC1 = dyn_cast<SCEVConstant>(Start);
1316      auto SC2 = dyn_cast<SCEVConstant>(Step);
1317      if (SC1 && SC2) {
1318        const APInt &C1 = SC1->getValue()->getValue();
1319        const APInt &C2 = SC2->getValue()->getValue();
1320        if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1321            C2.isPowerOf2()) {
1322          Start = getSignExtendExpr(Start, Ty);
1323          const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1324                                            L, AR->getNoWrapFlags());
1325          return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1326        }
1327      }
1328    }
1329
1330  // The cast wasn't folded; create an explicit cast node.
1331  // Recompute the insert position, as it may have been invalidated.
1332  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1333  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1334                                                   Op, Ty);
1335  UniqueSCEVs.InsertNode(S, IP);
1336  return S;
1337}
1338
1339/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1340/// unspecified bits out to the given type.
1341///
1342const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1343                                              Type *Ty) {
1344  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1345         "This is not an extending conversion!");
1346  assert(isSCEVable(Ty) &&
1347         "This is not a conversion to a SCEVable type!");
1348  Ty = getEffectiveSCEVType(Ty);
1349
1350  // Sign-extend negative constants.
1351  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1352    if (SC->getValue()->getValue().isNegative())
1353      return getSignExtendExpr(Op, Ty);
1354
1355  // Peel off a truncate cast.
1356  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1357    const SCEV *NewOp = T->getOperand();
1358    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1359      return getAnyExtendExpr(NewOp, Ty);
1360    return getTruncateOrNoop(NewOp, Ty);
1361  }
1362
1363  // Next try a zext cast. If the cast is folded, use it.
1364  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1365  if (!isa<SCEVZeroExtendExpr>(ZExt))
1366    return ZExt;
1367
1368  // Next try a sext cast. If the cast is folded, use it.
1369  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1370  if (!isa<SCEVSignExtendExpr>(SExt))
1371    return SExt;
1372
1373  // Force the cast to be folded into the operands of an addrec.
1374  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1375    SmallVector<const SCEV *, 4> Ops;
1376    for (const SCEV *Op : AR->operands())
1377      Ops.push_back(getAnyExtendExpr(Op, Ty));
1378    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1379  }
1380
1381  // If the expression is obviously signed, use the sext cast value.
1382  if (isa<SCEVSMaxExpr>(Op))
1383    return SExt;
1384
1385  // Absent any other information, use the zext cast value.
1386  return ZExt;
1387}
1388
1389/// CollectAddOperandsWithScales - Process the given Ops list, which is
1390/// a list of operands to be added under the given scale, update the given
1391/// map. This is a helper function for getAddRecExpr. As an example of
1392/// what it does, given a sequence of operands that would form an add
1393/// expression like this:
1394///
1395///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1396///
1397/// where A and B are constants, update the map with these values:
1398///
1399///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1400///
1401/// and add 13 + A*B*29 to AccumulatedConstant.
1402/// This will allow getAddRecExpr to produce this:
1403///
1404///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1405///
1406/// This form often exposes folding opportunities that are hidden in
1407/// the original operand list.
1408///
1409/// Return true iff it appears that any interesting folding opportunities
1410/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1411/// the common case where no interesting opportunities are present, and
1412/// is also used as a check to avoid infinite recursion.
1413///
1414static bool
1415CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1416                             SmallVectorImpl<const SCEV *> &NewOps,
1417                             APInt &AccumulatedConstant,
1418                             const SCEV *const *Ops, size_t NumOperands,
1419                             const APInt &Scale,
1420                             ScalarEvolution &SE) {
1421  bool Interesting = false;
1422
1423  // Iterate over the add operands. They are sorted, with constants first.
1424  unsigned i = 0;
1425  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1426    ++i;
1427    // Pull a buried constant out to the outside.
1428    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1429      Interesting = true;
1430    AccumulatedConstant += Scale * C->getValue()->getValue();
1431  }
1432
1433  // Next comes everything else. We're especially interested in multiplies
1434  // here, but they're in the middle, so just visit the rest with one loop.
1435  for (; i != NumOperands; ++i) {
1436    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1437    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1438      APInt NewScale =
1439        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1440      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1441        // A multiplication of a constant with another add; recurse.
1442        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1443        Interesting |=
1444          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1445                                       Add->op_begin(), Add->getNumOperands(),
1446                                       NewScale, SE);
1447      } else {
1448        // A multiplication of a constant with some other value. Update
1449        // the map.
1450        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1451        const SCEV *Key = SE.getMulExpr(MulOps);
1452        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1453          M.insert(std::make_pair(Key, NewScale));
1454        if (Pair.second) {
1455          NewOps.push_back(Pair.first->first);
1456        } else {
1457          Pair.first->second += NewScale;
1458          // The map already had an entry for this value, which may indicate
1459          // a folding opportunity.
1460          Interesting = true;
1461        }
1462      }
1463    } else {
1464      // An ordinary operand. Update the map.
1465      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1466        M.insert(std::make_pair(Ops[i], Scale));
1467      if (Pair.second) {
1468        NewOps.push_back(Pair.first->first);
1469      } else {
1470        Pair.first->second += Scale;
1471        // The map already had an entry for this value, which may indicate
1472        // a folding opportunity.
1473        Interesting = true;
1474      }
1475    }
1476  }
1477
1478  return Interesting;
1479}
1480
1481namespace {
1482  struct APIntCompare {
1483    bool operator()(const APInt &LHS, const APInt &RHS) const {
1484      return LHS.ult(RHS);
1485    }
1486  };
1487}
1488
1489/// getAddExpr - Get a canonical add expression, or something simpler if
1490/// possible.
1491const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1492                                        SCEV::NoWrapFlags Flags) {
1493  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1494         "only nuw or nsw allowed");
1495  assert(!Ops.empty() && "Cannot get empty add!");
1496  if (Ops.size() == 1) return Ops[0];
1497#ifndef NDEBUG
1498  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1499  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1500    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1501           "SCEVAddExpr operand types don't match!");
1502#endif
1503
1504  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1505  // And vice-versa.
1506  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1507  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1508  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1509    bool All = true;
1510    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1511         E = Ops.end(); I != E; ++I)
1512      if (!isKnownNonNegative(*I)) {
1513        All = false;
1514        break;
1515      }
1516    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1517  }
1518
1519  // Sort by complexity, this groups all similar expression types together.
1520  GroupByComplexity(Ops, LI);
1521
1522  // If there are any constants, fold them together.
1523  unsigned Idx = 0;
1524  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1525    ++Idx;
1526    assert(Idx < Ops.size());
1527    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1528      // We found two constants, fold them together!
1529      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1530                           RHSC->getValue()->getValue());
1531      if (Ops.size() == 2) return Ops[0];
1532      Ops.erase(Ops.begin()+1);  // Erase the folded element
1533      LHSC = cast<SCEVConstant>(Ops[0]);
1534    }
1535
1536    // If we are left with a constant zero being added, strip it off.
1537    if (LHSC->getValue()->isZero()) {
1538      Ops.erase(Ops.begin());
1539      --Idx;
1540    }
1541
1542    if (Ops.size() == 1) return Ops[0];
1543  }
1544
1545  // Okay, check to see if the same value occurs in the operand list more than
1546  // once.  If so, merge them together into an multiply expression.  Since we
1547  // sorted the list, these values are required to be adjacent.
1548  Type *Ty = Ops[0]->getType();
1549  bool FoundMatch = false;
1550  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1551    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1552      // Scan ahead to count how many equal operands there are.
1553      unsigned Count = 2;
1554      while (i+Count != e && Ops[i+Count] == Ops[i])
1555        ++Count;
1556      // Merge the values into a multiply.
1557      const SCEV *Scale = getConstant(Ty, Count);
1558      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1559      if (Ops.size() == Count)
1560        return Mul;
1561      Ops[i] = Mul;
1562      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1563      --i; e -= Count - 1;
1564      FoundMatch = true;
1565    }
1566  if (FoundMatch)
1567    return getAddExpr(Ops, Flags);
1568
1569  // Check for truncates. If all the operands are truncated from the same
1570  // type, see if factoring out the truncate would permit the result to be
1571  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1572  // if the contents of the resulting outer trunc fold to something simple.
1573  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1574    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1575    Type *DstType = Trunc->getType();
1576    Type *SrcType = Trunc->getOperand()->getType();
1577    SmallVector<const SCEV *, 8> LargeOps;
1578    bool Ok = true;
1579    // Check all the operands to see if they can be represented in the
1580    // source type of the truncate.
1581    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1582      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1583        if (T->getOperand()->getType() != SrcType) {
1584          Ok = false;
1585          break;
1586        }
1587        LargeOps.push_back(T->getOperand());
1588      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1589        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1590      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1591        SmallVector<const SCEV *, 8> LargeMulOps;
1592        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1593          if (const SCEVTruncateExpr *T =
1594                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1595            if (T->getOperand()->getType() != SrcType) {
1596              Ok = false;
1597              break;
1598            }
1599            LargeMulOps.push_back(T->getOperand());
1600          } else if (const SCEVConstant *C =
1601                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1602            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1603          } else {
1604            Ok = false;
1605            break;
1606          }
1607        }
1608        if (Ok)
1609          LargeOps.push_back(getMulExpr(LargeMulOps));
1610      } else {
1611        Ok = false;
1612        break;
1613      }
1614    }
1615    if (Ok) {
1616      // Evaluate the expression in the larger type.
1617      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1618      // If it folds to something simple, use it. Otherwise, don't.
1619      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1620        return getTruncateExpr(Fold, DstType);
1621    }
1622  }
1623
1624  // Skip past any other cast SCEVs.
1625  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1626    ++Idx;
1627
1628  // If there are add operands they would be next.
1629  if (Idx < Ops.size()) {
1630    bool DeletedAdd = false;
1631    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1632      // If we have an add, expand the add operands onto the end of the operands
1633      // list.
1634      Ops.erase(Ops.begin()+Idx);
1635      Ops.append(Add->op_begin(), Add->op_end());
1636      DeletedAdd = true;
1637    }
1638
1639    // If we deleted at least one add, we added operands to the end of the list,
1640    // and they are not necessarily sorted.  Recurse to resort and resimplify
1641    // any operands we just acquired.
1642    if (DeletedAdd)
1643      return getAddExpr(Ops);
1644  }
1645
1646  // Skip over the add expression until we get to a multiply.
1647  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1648    ++Idx;
1649
1650  // Check to see if there are any folding opportunities present with
1651  // operands multiplied by constant values.
1652  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1653    uint64_t BitWidth = getTypeSizeInBits(Ty);
1654    DenseMap<const SCEV *, APInt> M;
1655    SmallVector<const SCEV *, 8> NewOps;
1656    APInt AccumulatedConstant(BitWidth, 0);
1657    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1658                                     Ops.data(), Ops.size(),
1659                                     APInt(BitWidth, 1), *this)) {
1660      // Some interesting folding opportunity is present, so its worthwhile to
1661      // re-generate the operands list. Group the operands by constant scale,
1662      // to avoid multiplying by the same constant scale multiple times.
1663      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1664      for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
1665           E = NewOps.end(); I != E; ++I)
1666        MulOpLists[M.find(*I)->second].push_back(*I);
1667      // Re-generate the operands list.
1668      Ops.clear();
1669      if (AccumulatedConstant != 0)
1670        Ops.push_back(getConstant(AccumulatedConstant));
1671      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1672           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1673        if (I->first != 0)
1674          Ops.push_back(getMulExpr(getConstant(I->first),
1675                                   getAddExpr(I->second)));
1676      if (Ops.empty())
1677        return getConstant(Ty, 0);
1678      if (Ops.size() == 1)
1679        return Ops[0];
1680      return getAddExpr(Ops);
1681    }
1682  }
1683
1684  // If we are adding something to a multiply expression, make sure the
1685  // something is not already an operand of the multiply.  If so, merge it into
1686  // the multiply.
1687  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1688    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1689    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1690      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1691      if (isa<SCEVConstant>(MulOpSCEV))
1692        continue;
1693      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1694        if (MulOpSCEV == Ops[AddOp]) {
1695          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1696          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1697          if (Mul->getNumOperands() != 2) {
1698            // If the multiply has more than two operands, we must get the
1699            // Y*Z term.
1700            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1701                                                Mul->op_begin()+MulOp);
1702            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1703            InnerMul = getMulExpr(MulOps);
1704          }
1705          const SCEV *One = getConstant(Ty, 1);
1706          const SCEV *AddOne = getAddExpr(One, InnerMul);
1707          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1708          if (Ops.size() == 2) return OuterMul;
1709          if (AddOp < Idx) {
1710            Ops.erase(Ops.begin()+AddOp);
1711            Ops.erase(Ops.begin()+Idx-1);
1712          } else {
1713            Ops.erase(Ops.begin()+Idx);
1714            Ops.erase(Ops.begin()+AddOp-1);
1715          }
1716          Ops.push_back(OuterMul);
1717          return getAddExpr(Ops);
1718        }
1719
1720      // Check this multiply against other multiplies being added together.
1721      for (unsigned OtherMulIdx = Idx+1;
1722           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1723           ++OtherMulIdx) {
1724        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1725        // If MulOp occurs in OtherMul, we can fold the two multiplies
1726        // together.
1727        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1728             OMulOp != e; ++OMulOp)
1729          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1730            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1731            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1732            if (Mul->getNumOperands() != 2) {
1733              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1734                                                  Mul->op_begin()+MulOp);
1735              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1736              InnerMul1 = getMulExpr(MulOps);
1737            }
1738            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1739            if (OtherMul->getNumOperands() != 2) {
1740              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1741                                                  OtherMul->op_begin()+OMulOp);
1742              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1743              InnerMul2 = getMulExpr(MulOps);
1744            }
1745            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1746            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1747            if (Ops.size() == 2) return OuterMul;
1748            Ops.erase(Ops.begin()+Idx);
1749            Ops.erase(Ops.begin()+OtherMulIdx-1);
1750            Ops.push_back(OuterMul);
1751            return getAddExpr(Ops);
1752          }
1753      }
1754    }
1755  }
1756
1757  // If there are any add recurrences in the operands list, see if any other
1758  // added values are loop invariant.  If so, we can fold them into the
1759  // recurrence.
1760  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1761    ++Idx;
1762
1763  // Scan over all recurrences, trying to fold loop invariants into them.
1764  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1765    // Scan all of the other operands to this add and add them to the vector if
1766    // they are loop invariant w.r.t. the recurrence.
1767    SmallVector<const SCEV *, 8> LIOps;
1768    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1769    const Loop *AddRecLoop = AddRec->getLoop();
1770    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1771      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1772        LIOps.push_back(Ops[i]);
1773        Ops.erase(Ops.begin()+i);
1774        --i; --e;
1775      }
1776
1777    // If we found some loop invariants, fold them into the recurrence.
1778    if (!LIOps.empty()) {
1779      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1780      LIOps.push_back(AddRec->getStart());
1781
1782      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1783                                             AddRec->op_end());
1784      AddRecOps[0] = getAddExpr(LIOps);
1785
1786      // Build the new addrec. Propagate the NUW and NSW flags if both the
1787      // outer add and the inner addrec are guaranteed to have no overflow.
1788      // Always propagate NW.
1789      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1790      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1791
1792      // If all of the other operands were loop invariant, we are done.
1793      if (Ops.size() == 1) return NewRec;
1794
1795      // Otherwise, add the folded AddRec by the non-invariant parts.
1796      for (unsigned i = 0;; ++i)
1797        if (Ops[i] == AddRec) {
1798          Ops[i] = NewRec;
1799          break;
1800        }
1801      return getAddExpr(Ops);
1802    }
1803
1804    // Okay, if there weren't any loop invariants to be folded, check to see if
1805    // there are multiple AddRec's with the same loop induction variable being
1806    // added together.  If so, we can fold them.
1807    for (unsigned OtherIdx = Idx+1;
1808         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1809         ++OtherIdx)
1810      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1811        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1812        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1813                                               AddRec->op_end());
1814        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1815             ++OtherIdx)
1816          if (const SCEVAddRecExpr *OtherAddRec =
1817                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1818            if (OtherAddRec->getLoop() == AddRecLoop) {
1819              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1820                   i != e; ++i) {
1821                if (i >= AddRecOps.size()) {
1822                  AddRecOps.append(OtherAddRec->op_begin()+i,
1823                                   OtherAddRec->op_end());
1824                  break;
1825                }
1826                AddRecOps[i] = getAddExpr(AddRecOps[i],
1827                                          OtherAddRec->getOperand(i));
1828              }
1829              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1830            }
1831        // Step size has changed, so we cannot guarantee no self-wraparound.
1832        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1833        return getAddExpr(Ops);
1834      }
1835
1836    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1837    // next one.
1838  }
1839
1840  // Okay, it looks like we really DO need an add expr.  Check to see if we
1841  // already have one, otherwise create a new one.
1842  FoldingSetNodeID ID;
1843  ID.AddInteger(scAddExpr);
1844  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1845    ID.AddPointer(Ops[i]);
1846  void *IP = nullptr;
1847  SCEVAddExpr *S =
1848    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1849  if (!S) {
1850    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1851    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1852    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1853                                        O, Ops.size());
1854    UniqueSCEVs.InsertNode(S, IP);
1855  }
1856  S->setNoWrapFlags(Flags);
1857  return S;
1858}
1859
1860static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1861  uint64_t k = i*j;
1862  if (j > 1 && k / j != i) Overflow = true;
1863  return k;
1864}
1865
1866/// Compute the result of "n choose k", the binomial coefficient.  If an
1867/// intermediate computation overflows, Overflow will be set and the return will
1868/// be garbage. Overflow is not cleared on absence of overflow.
1869static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1870  // We use the multiplicative formula:
1871  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1872  // At each iteration, we take the n-th term of the numeral and divide by the
1873  // (k-n)th term of the denominator.  This division will always produce an
1874  // integral result, and helps reduce the chance of overflow in the
1875  // intermediate computations. However, we can still overflow even when the
1876  // final result would fit.
1877
1878  if (n == 0 || n == k) return 1;
1879  if (k > n) return 0;
1880
1881  if (k > n/2)
1882    k = n-k;
1883
1884  uint64_t r = 1;
1885  for (uint64_t i = 1; i <= k; ++i) {
1886    r = umul_ov(r, n-(i-1), Overflow);
1887    r /= i;
1888  }
1889  return r;
1890}
1891
1892/// getMulExpr - Get a canonical multiply expression, or something simpler if
1893/// possible.
1894const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1895                                        SCEV::NoWrapFlags Flags) {
1896  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1897         "only nuw or nsw allowed");
1898  assert(!Ops.empty() && "Cannot get empty mul!");
1899  if (Ops.size() == 1) return Ops[0];
1900#ifndef NDEBUG
1901  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1902  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1903    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1904           "SCEVMulExpr operand types don't match!");
1905#endif
1906
1907  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1908  // And vice-versa.
1909  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1910  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1911  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1912    bool All = true;
1913    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1914         E = Ops.end(); I != E; ++I)
1915      if (!isKnownNonNegative(*I)) {
1916        All = false;
1917        break;
1918      }
1919    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1920  }
1921
1922  // Sort by complexity, this groups all similar expression types together.
1923  GroupByComplexity(Ops, LI);
1924
1925  // If there are any constants, fold them together.
1926  unsigned Idx = 0;
1927  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1928
1929    // C1*(C2+V) -> C1*C2 + C1*V
1930    if (Ops.size() == 2)
1931      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1932        if (Add->getNumOperands() == 2 &&
1933            isa<SCEVConstant>(Add->getOperand(0)))
1934          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1935                            getMulExpr(LHSC, Add->getOperand(1)));
1936
1937    ++Idx;
1938    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1939      // We found two constants, fold them together!
1940      ConstantInt *Fold = ConstantInt::get(getContext(),
1941                                           LHSC->getValue()->getValue() *
1942                                           RHSC->getValue()->getValue());
1943      Ops[0] = getConstant(Fold);
1944      Ops.erase(Ops.begin()+1);  // Erase the folded element
1945      if (Ops.size() == 1) return Ops[0];
1946      LHSC = cast<SCEVConstant>(Ops[0]);
1947    }
1948
1949    // If we are left with a constant one being multiplied, strip it off.
1950    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1951      Ops.erase(Ops.begin());
1952      --Idx;
1953    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1954      // If we have a multiply of zero, it will always be zero.
1955      return Ops[0];
1956    } else if (Ops[0]->isAllOnesValue()) {
1957      // If we have a mul by -1 of an add, try distributing the -1 among the
1958      // add operands.
1959      if (Ops.size() == 2) {
1960        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1961          SmallVector<const SCEV *, 4> NewOps;
1962          bool AnyFolded = false;
1963          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1964                 E = Add->op_end(); I != E; ++I) {
1965            const SCEV *Mul = getMulExpr(Ops[0], *I);
1966            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1967            NewOps.push_back(Mul);
1968          }
1969          if (AnyFolded)
1970            return getAddExpr(NewOps);
1971        }
1972        else if (const SCEVAddRecExpr *
1973                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1974          // Negation preserves a recurrence's no self-wrap property.
1975          SmallVector<const SCEV *, 4> Operands;
1976          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1977                 E = AddRec->op_end(); I != E; ++I) {
1978            Operands.push_back(getMulExpr(Ops[0], *I));
1979          }
1980          return getAddRecExpr(Operands, AddRec->getLoop(),
1981                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1982        }
1983      }
1984    }
1985
1986    if (Ops.size() == 1)
1987      return Ops[0];
1988  }
1989
1990  // Skip over the add expression until we get to a multiply.
1991  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1992    ++Idx;
1993
1994  // If there are mul operands inline them all into this expression.
1995  if (Idx < Ops.size()) {
1996    bool DeletedMul = false;
1997    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1998      // If we have an mul, expand the mul operands onto the end of the operands
1999      // list.
2000      Ops.erase(Ops.begin()+Idx);
2001      Ops.append(Mul->op_begin(), Mul->op_end());
2002      DeletedMul = true;
2003    }
2004
2005    // If we deleted at least one mul, we added operands to the end of the list,
2006    // and they are not necessarily sorted.  Recurse to resort and resimplify
2007    // any operands we just acquired.
2008    if (DeletedMul)
2009      return getMulExpr(Ops);
2010  }
2011
2012  // If there are any add recurrences in the operands list, see if any other
2013  // added values are loop invariant.  If so, we can fold them into the
2014  // recurrence.
2015  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2016    ++Idx;
2017
2018  // Scan over all recurrences, trying to fold loop invariants into them.
2019  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2020    // Scan all of the other operands to this mul and add them to the vector if
2021    // they are loop invariant w.r.t. the recurrence.
2022    SmallVector<const SCEV *, 8> LIOps;
2023    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2024    const Loop *AddRecLoop = AddRec->getLoop();
2025    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2026      if (isLoopInvariant(Ops[i], AddRecLoop)) {
2027        LIOps.push_back(Ops[i]);
2028        Ops.erase(Ops.begin()+i);
2029        --i; --e;
2030      }
2031
2032    // If we found some loop invariants, fold them into the recurrence.
2033    if (!LIOps.empty()) {
2034      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2035      SmallVector<const SCEV *, 4> NewOps;
2036      NewOps.reserve(AddRec->getNumOperands());
2037      const SCEV *Scale = getMulExpr(LIOps);
2038      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2039        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2040
2041      // Build the new addrec. Propagate the NUW and NSW flags if both the
2042      // outer mul and the inner addrec are guaranteed to have no overflow.
2043      //
2044      // No self-wrap cannot be guaranteed after changing the step size, but
2045      // will be inferred if either NUW or NSW is true.
2046      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2047      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2048
2049      // If all of the other operands were loop invariant, we are done.
2050      if (Ops.size() == 1) return NewRec;
2051
2052      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2053      for (unsigned i = 0;; ++i)
2054        if (Ops[i] == AddRec) {
2055          Ops[i] = NewRec;
2056          break;
2057        }
2058      return getMulExpr(Ops);
2059    }
2060
2061    // Okay, if there weren't any loop invariants to be folded, check to see if
2062    // there are multiple AddRec's with the same loop induction variable being
2063    // multiplied together.  If so, we can fold them.
2064    for (unsigned OtherIdx = Idx+1;
2065         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2066         ++OtherIdx) {
2067      if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2068        continue;
2069
2070      // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2071      // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2072      //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2073      //   ]]],+,...up to x=2n}.
2074      // Note that the arguments to choose() are always integers with values
2075      // known at compile time, never SCEV objects.
2076      //
2077      // The implementation avoids pointless extra computations when the two
2078      // addrec's are of different length (mathematically, it's equivalent to
2079      // an infinite stream of zeros on the right).
2080      bool OpsModified = false;
2081      for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2082           ++OtherIdx) {
2083        const SCEVAddRecExpr *OtherAddRec =
2084          dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2085        if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2086          continue;
2087
2088        bool Overflow = false;
2089        Type *Ty = AddRec->getType();
2090        bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2091        SmallVector<const SCEV*, 7> AddRecOps;
2092        for (int x = 0, xe = AddRec->getNumOperands() +
2093               OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2094          const SCEV *Term = getConstant(Ty, 0);
2095          for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2096            uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2097            for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2098                   ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2099                 z < ze && !Overflow; ++z) {
2100              uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2101              uint64_t Coeff;
2102              if (LargerThan64Bits)
2103                Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2104              else
2105                Coeff = Coeff1*Coeff2;
2106              const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2107              const SCEV *Term1 = AddRec->getOperand(y-z);
2108              const SCEV *Term2 = OtherAddRec->getOperand(z);
2109              Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2110            }
2111          }
2112          AddRecOps.push_back(Term);
2113        }
2114        if (!Overflow) {
2115          const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2116                                                SCEV::FlagAnyWrap);
2117          if (Ops.size() == 2) return NewAddRec;
2118          Ops[Idx] = NewAddRec;
2119          Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2120          OpsModified = true;
2121          AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2122          if (!AddRec)
2123            break;
2124        }
2125      }
2126      if (OpsModified)
2127        return getMulExpr(Ops);
2128    }
2129
2130    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2131    // next one.
2132  }
2133
2134  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2135  // already have one, otherwise create a new one.
2136  FoldingSetNodeID ID;
2137  ID.AddInteger(scMulExpr);
2138  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2139    ID.AddPointer(Ops[i]);
2140  void *IP = nullptr;
2141  SCEVMulExpr *S =
2142    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2143  if (!S) {
2144    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2145    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2146    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2147                                        O, Ops.size());
2148    UniqueSCEVs.InsertNode(S, IP);
2149  }
2150  S->setNoWrapFlags(Flags);
2151  return S;
2152}
2153
2154/// getUDivExpr - Get a canonical unsigned division expression, or something
2155/// simpler if possible.
2156const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2157                                         const SCEV *RHS) {
2158  assert(getEffectiveSCEVType(LHS->getType()) ==
2159         getEffectiveSCEVType(RHS->getType()) &&
2160         "SCEVUDivExpr operand types don't match!");
2161
2162  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2163    if (RHSC->getValue()->equalsInt(1))
2164      return LHS;                               // X udiv 1 --> x
2165    // If the denominator is zero, the result of the udiv is undefined. Don't
2166    // try to analyze it, because the resolution chosen here may differ from
2167    // the resolution chosen in other parts of the compiler.
2168    if (!RHSC->getValue()->isZero()) {
2169      // Determine if the division can be folded into the operands of
2170      // its operands.
2171      // TODO: Generalize this to non-constants by using known-bits information.
2172      Type *Ty = LHS->getType();
2173      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2174      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2175      // For non-power-of-two values, effectively round the value up to the
2176      // nearest power of two.
2177      if (!RHSC->getValue()->getValue().isPowerOf2())
2178        ++MaxShiftAmt;
2179      IntegerType *ExtTy =
2180        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2181      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2182        if (const SCEVConstant *Step =
2183            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2184          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2185          const APInt &StepInt = Step->getValue()->getValue();
2186          const APInt &DivInt = RHSC->getValue()->getValue();
2187          if (!StepInt.urem(DivInt) &&
2188              getZeroExtendExpr(AR, ExtTy) ==
2189              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2190                            getZeroExtendExpr(Step, ExtTy),
2191                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2192            SmallVector<const SCEV *, 4> Operands;
2193            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2194              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2195            return getAddRecExpr(Operands, AR->getLoop(),
2196                                 SCEV::FlagNW);
2197          }
2198          /// Get a canonical UDivExpr for a recurrence.
2199          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2200          // We can currently only fold X%N if X is constant.
2201          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2202          if (StartC && !DivInt.urem(StepInt) &&
2203              getZeroExtendExpr(AR, ExtTy) ==
2204              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2205                            getZeroExtendExpr(Step, ExtTy),
2206                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2207            const APInt &StartInt = StartC->getValue()->getValue();
2208            const APInt &StartRem = StartInt.urem(StepInt);
2209            if (StartRem != 0)
2210              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2211                                  AR->getLoop(), SCEV::FlagNW);
2212          }
2213        }
2214      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2215      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2216        SmallVector<const SCEV *, 4> Operands;
2217        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2218          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2219        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2220          // Find an operand that's safely divisible.
2221          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2222            const SCEV *Op = M->getOperand(i);
2223            const SCEV *Div = getUDivExpr(Op, RHSC);
2224            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2225              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2226                                                      M->op_end());
2227              Operands[i] = Div;
2228              return getMulExpr(Operands);
2229            }
2230          }
2231      }
2232      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2233      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2234        SmallVector<const SCEV *, 4> Operands;
2235        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2236          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2237        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2238          Operands.clear();
2239          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2240            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2241            if (isa<SCEVUDivExpr>(Op) ||
2242                getMulExpr(Op, RHS) != A->getOperand(i))
2243              break;
2244            Operands.push_back(Op);
2245          }
2246          if (Operands.size() == A->getNumOperands())
2247            return getAddExpr(Operands);
2248        }
2249      }
2250
2251      // Fold if both operands are constant.
2252      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2253        Constant *LHSCV = LHSC->getValue();
2254        Constant *RHSCV = RHSC->getValue();
2255        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2256                                                                   RHSCV)));
2257      }
2258    }
2259  }
2260
2261  FoldingSetNodeID ID;
2262  ID.AddInteger(scUDivExpr);
2263  ID.AddPointer(LHS);
2264  ID.AddPointer(RHS);
2265  void *IP = nullptr;
2266  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2267  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2268                                             LHS, RHS);
2269  UniqueSCEVs.InsertNode(S, IP);
2270  return S;
2271}
2272
2273static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2274  APInt A = C1->getValue()->getValue().abs();
2275  APInt B = C2->getValue()->getValue().abs();
2276  uint32_t ABW = A.getBitWidth();
2277  uint32_t BBW = B.getBitWidth();
2278
2279  if (ABW > BBW)
2280    B = B.zext(ABW);
2281  else if (ABW < BBW)
2282    A = A.zext(BBW);
2283
2284  return APIntOps::GreatestCommonDivisor(A, B);
2285}
2286
2287/// getUDivExactExpr - Get a canonical unsigned division expression, or
2288/// something simpler if possible. There is no representation for an exact udiv
2289/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2290/// We can't do this when it's not exact because the udiv may be clearing bits.
2291const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2292                                              const SCEV *RHS) {
2293  // TODO: we could try to find factors in all sorts of things, but for now we
2294  // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2295  // end of this file for inspiration.
2296
2297  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2298  if (!Mul)
2299    return getUDivExpr(LHS, RHS);
2300
2301  if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2302    // If the mulexpr multiplies by a constant, then that constant must be the
2303    // first element of the mulexpr.
2304    if (const SCEVConstant *LHSCst =
2305            dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2306      if (LHSCst == RHSCst) {
2307        SmallVector<const SCEV *, 2> Operands;
2308        Operands.append(Mul->op_begin() + 1, Mul->op_end());
2309        return getMulExpr(Operands);
2310      }
2311
2312      // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2313      // that there's a factor provided by one of the other terms. We need to
2314      // check.
2315      APInt Factor = gcd(LHSCst, RHSCst);
2316      if (!Factor.isIntN(1)) {
2317        LHSCst = cast<SCEVConstant>(
2318            getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2319        RHSCst = cast<SCEVConstant>(
2320            getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2321        SmallVector<const SCEV *, 2> Operands;
2322        Operands.push_back(LHSCst);
2323        Operands.append(Mul->op_begin() + 1, Mul->op_end());
2324        LHS = getMulExpr(Operands);
2325        RHS = RHSCst;
2326        Mul = dyn_cast<SCEVMulExpr>(LHS);
2327        if (!Mul)
2328          return getUDivExactExpr(LHS, RHS);
2329      }
2330    }
2331  }
2332
2333  for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2334    if (Mul->getOperand(i) == RHS) {
2335      SmallVector<const SCEV *, 2> Operands;
2336      Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2337      Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2338      return getMulExpr(Operands);
2339    }
2340  }
2341
2342  return getUDivExpr(LHS, RHS);
2343}
2344
2345/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2346/// Simplify the expression as much as possible.
2347const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2348                                           const Loop *L,
2349                                           SCEV::NoWrapFlags Flags) {
2350  SmallVector<const SCEV *, 4> Operands;
2351  Operands.push_back(Start);
2352  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2353    if (StepChrec->getLoop() == L) {
2354      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2355      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2356    }
2357
2358  Operands.push_back(Step);
2359  return getAddRecExpr(Operands, L, Flags);
2360}
2361
2362/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2363/// Simplify the expression as much as possible.
2364const SCEV *
2365ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2366                               const Loop *L, SCEV::NoWrapFlags Flags) {
2367  if (Operands.size() == 1) return Operands[0];
2368#ifndef NDEBUG
2369  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2370  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2371    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2372           "SCEVAddRecExpr operand types don't match!");
2373  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2374    assert(isLoopInvariant(Operands[i], L) &&
2375           "SCEVAddRecExpr operand is not loop-invariant!");
2376#endif
2377
2378  if (Operands.back()->isZero()) {
2379    Operands.pop_back();
2380    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2381  }
2382
2383  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2384  // use that information to infer NUW and NSW flags. However, computing a
2385  // BE count requires calling getAddRecExpr, so we may not yet have a
2386  // meaningful BE count at this point (and if we don't, we'd be stuck
2387  // with a SCEVCouldNotCompute as the cached BE count).
2388
2389  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2390  // And vice-versa.
2391  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2392  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2393  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2394    bool All = true;
2395    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2396         E = Operands.end(); I != E; ++I)
2397      if (!isKnownNonNegative(*I)) {
2398        All = false;
2399        break;
2400      }
2401    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2402  }
2403
2404  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2405  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2406    const Loop *NestedLoop = NestedAR->getLoop();
2407    if (L->contains(NestedLoop) ?
2408        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2409        (!NestedLoop->contains(L) &&
2410         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2411      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2412                                                  NestedAR->op_end());
2413      Operands[0] = NestedAR->getStart();
2414      // AddRecs require their operands be loop-invariant with respect to their
2415      // loops. Don't perform this transformation if it would break this
2416      // requirement.
2417      bool AllInvariant = true;
2418      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2419        if (!isLoopInvariant(Operands[i], L)) {
2420          AllInvariant = false;
2421          break;
2422        }
2423      if (AllInvariant) {
2424        // Create a recurrence for the outer loop with the same step size.
2425        //
2426        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2427        // inner recurrence has the same property.
2428        SCEV::NoWrapFlags OuterFlags =
2429          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2430
2431        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2432        AllInvariant = true;
2433        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2434          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2435            AllInvariant = false;
2436            break;
2437          }
2438        if (AllInvariant) {
2439          // Ok, both add recurrences are valid after the transformation.
2440          //
2441          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2442          // the outer recurrence has the same property.
2443          SCEV::NoWrapFlags InnerFlags =
2444            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2445          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2446        }
2447      }
2448      // Reset Operands to its original state.
2449      Operands[0] = NestedAR;
2450    }
2451  }
2452
2453  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2454  // already have one, otherwise create a new one.
2455  FoldingSetNodeID ID;
2456  ID.AddInteger(scAddRecExpr);
2457  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2458    ID.AddPointer(Operands[i]);
2459  ID.AddPointer(L);
2460  void *IP = nullptr;
2461  SCEVAddRecExpr *S =
2462    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2463  if (!S) {
2464    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2465    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2466    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2467                                           O, Operands.size(), L);
2468    UniqueSCEVs.InsertNode(S, IP);
2469  }
2470  S->setNoWrapFlags(Flags);
2471  return S;
2472}
2473
2474const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2475                                         const SCEV *RHS) {
2476  SmallVector<const SCEV *, 2> Ops;
2477  Ops.push_back(LHS);
2478  Ops.push_back(RHS);
2479  return getSMaxExpr(Ops);
2480}
2481
2482const SCEV *
2483ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2484  assert(!Ops.empty() && "Cannot get empty smax!");
2485  if (Ops.size() == 1) return Ops[0];
2486#ifndef NDEBUG
2487  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2488  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2489    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2490           "SCEVSMaxExpr operand types don't match!");
2491#endif
2492
2493  // Sort by complexity, this groups all similar expression types together.
2494  GroupByComplexity(Ops, LI);
2495
2496  // If there are any constants, fold them together.
2497  unsigned Idx = 0;
2498  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2499    ++Idx;
2500    assert(Idx < Ops.size());
2501    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2502      // We found two constants, fold them together!
2503      ConstantInt *Fold = ConstantInt::get(getContext(),
2504                              APIntOps::smax(LHSC->getValue()->getValue(),
2505                                             RHSC->getValue()->getValue()));
2506      Ops[0] = getConstant(Fold);
2507      Ops.erase(Ops.begin()+1);  // Erase the folded element
2508      if (Ops.size() == 1) return Ops[0];
2509      LHSC = cast<SCEVConstant>(Ops[0]);
2510    }
2511
2512    // If we are left with a constant minimum-int, strip it off.
2513    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2514      Ops.erase(Ops.begin());
2515      --Idx;
2516    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2517      // If we have an smax with a constant maximum-int, it will always be
2518      // maximum-int.
2519      return Ops[0];
2520    }
2521
2522    if (Ops.size() == 1) return Ops[0];
2523  }
2524
2525  // Find the first SMax
2526  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2527    ++Idx;
2528
2529  // Check to see if one of the operands is an SMax. If so, expand its operands
2530  // onto our operand list, and recurse to simplify.
2531  if (Idx < Ops.size()) {
2532    bool DeletedSMax = false;
2533    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2534      Ops.erase(Ops.begin()+Idx);
2535      Ops.append(SMax->op_begin(), SMax->op_end());
2536      DeletedSMax = true;
2537    }
2538
2539    if (DeletedSMax)
2540      return getSMaxExpr(Ops);
2541  }
2542
2543  // Okay, check to see if the same value occurs in the operand list twice.  If
2544  // so, delete one.  Since we sorted the list, these values are required to
2545  // be adjacent.
2546  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2547    //  X smax Y smax Y  -->  X smax Y
2548    //  X smax Y         -->  X, if X is always greater than Y
2549    if (Ops[i] == Ops[i+1] ||
2550        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2551      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2552      --i; --e;
2553    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2554      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2555      --i; --e;
2556    }
2557
2558  if (Ops.size() == 1) return Ops[0];
2559
2560  assert(!Ops.empty() && "Reduced smax down to nothing!");
2561
2562  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2563  // already have one, otherwise create a new one.
2564  FoldingSetNodeID ID;
2565  ID.AddInteger(scSMaxExpr);
2566  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2567    ID.AddPointer(Ops[i]);
2568  void *IP = nullptr;
2569  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2570  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2571  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2572  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2573                                             O, Ops.size());
2574  UniqueSCEVs.InsertNode(S, IP);
2575  return S;
2576}
2577
2578const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2579                                         const SCEV *RHS) {
2580  SmallVector<const SCEV *, 2> Ops;
2581  Ops.push_back(LHS);
2582  Ops.push_back(RHS);
2583  return getUMaxExpr(Ops);
2584}
2585
2586const SCEV *
2587ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2588  assert(!Ops.empty() && "Cannot get empty umax!");
2589  if (Ops.size() == 1) return Ops[0];
2590#ifndef NDEBUG
2591  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2592  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2593    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2594           "SCEVUMaxExpr operand types don't match!");
2595#endif
2596
2597  // Sort by complexity, this groups all similar expression types together.
2598  GroupByComplexity(Ops, LI);
2599
2600  // If there are any constants, fold them together.
2601  unsigned Idx = 0;
2602  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2603    ++Idx;
2604    assert(Idx < Ops.size());
2605    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2606      // We found two constants, fold them together!
2607      ConstantInt *Fold = ConstantInt::get(getContext(),
2608                              APIntOps::umax(LHSC->getValue()->getValue(),
2609                                             RHSC->getValue()->getValue()));
2610      Ops[0] = getConstant(Fold);
2611      Ops.erase(Ops.begin()+1);  // Erase the folded element
2612      if (Ops.size() == 1) return Ops[0];
2613      LHSC = cast<SCEVConstant>(Ops[0]);
2614    }
2615
2616    // If we are left with a constant minimum-int, strip it off.
2617    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2618      Ops.erase(Ops.begin());
2619      --Idx;
2620    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2621      // If we have an umax with a constant maximum-int, it will always be
2622      // maximum-int.
2623      return Ops[0];
2624    }
2625
2626    if (Ops.size() == 1) return Ops[0];
2627  }
2628
2629  // Find the first UMax
2630  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2631    ++Idx;
2632
2633  // Check to see if one of the operands is a UMax. If so, expand its operands
2634  // onto our operand list, and recurse to simplify.
2635  if (Idx < Ops.size()) {
2636    bool DeletedUMax = false;
2637    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2638      Ops.erase(Ops.begin()+Idx);
2639      Ops.append(UMax->op_begin(), UMax->op_end());
2640      DeletedUMax = true;
2641    }
2642
2643    if (DeletedUMax)
2644      return getUMaxExpr(Ops);
2645  }
2646
2647  // Okay, check to see if the same value occurs in the operand list twice.  If
2648  // so, delete one.  Since we sorted the list, these values are required to
2649  // be adjacent.
2650  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2651    //  X umax Y umax Y  -->  X umax Y
2652    //  X umax Y         -->  X, if X is always greater than Y
2653    if (Ops[i] == Ops[i+1] ||
2654        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2655      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2656      --i; --e;
2657    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2658      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2659      --i; --e;
2660    }
2661
2662  if (Ops.size() == 1) return Ops[0];
2663
2664  assert(!Ops.empty() && "Reduced umax down to nothing!");
2665
2666  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2667  // already have one, otherwise create a new one.
2668  FoldingSetNodeID ID;
2669  ID.AddInteger(scUMaxExpr);
2670  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2671    ID.AddPointer(Ops[i]);
2672  void *IP = nullptr;
2673  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2674  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2675  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2676  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2677                                             O, Ops.size());
2678  UniqueSCEVs.InsertNode(S, IP);
2679  return S;
2680}
2681
2682const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2683                                         const SCEV *RHS) {
2684  // ~smax(~x, ~y) == smin(x, y).
2685  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2686}
2687
2688const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2689                                         const SCEV *RHS) {
2690  // ~umax(~x, ~y) == umin(x, y)
2691  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2692}
2693
2694const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
2695  // If we have DataLayout, we can bypass creating a target-independent
2696  // constant expression and then folding it back into a ConstantInt.
2697  // This is just a compile-time optimization.
2698  if (DL)
2699    return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
2700
2701  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2702  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2703    if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2704      C = Folded;
2705  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2706  assert(Ty == IntTy && "Effective SCEV type doesn't match");
2707  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2708}
2709
2710const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2711                                             StructType *STy,
2712                                             unsigned FieldNo) {
2713  // If we have DataLayout, we can bypass creating a target-independent
2714  // constant expression and then folding it back into a ConstantInt.
2715  // This is just a compile-time optimization.
2716  if (DL) {
2717    return getConstant(IntTy,
2718                       DL->getStructLayout(STy)->getElementOffset(FieldNo));
2719  }
2720
2721  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2722  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2723    if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2724      C = Folded;
2725
2726  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2727  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2728}
2729
2730const SCEV *ScalarEvolution::getUnknown(Value *V) {
2731  // Don't attempt to do anything other than create a SCEVUnknown object
2732  // here.  createSCEV only calls getUnknown after checking for all other
2733  // interesting possibilities, and any other code that calls getUnknown
2734  // is doing so in order to hide a value from SCEV canonicalization.
2735
2736  FoldingSetNodeID ID;
2737  ID.AddInteger(scUnknown);
2738  ID.AddPointer(V);
2739  void *IP = nullptr;
2740  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2741    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2742           "Stale SCEVUnknown in uniquing map!");
2743    return S;
2744  }
2745  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2746                                            FirstUnknown);
2747  FirstUnknown = cast<SCEVUnknown>(S);
2748  UniqueSCEVs.InsertNode(S, IP);
2749  return S;
2750}
2751
2752//===----------------------------------------------------------------------===//
2753//            Basic SCEV Analysis and PHI Idiom Recognition Code
2754//
2755
2756/// isSCEVable - Test if values of the given type are analyzable within
2757/// the SCEV framework. This primarily includes integer types, and it
2758/// can optionally include pointer types if the ScalarEvolution class
2759/// has access to target-specific information.
2760bool ScalarEvolution::isSCEVable(Type *Ty) const {
2761  // Integers and pointers are always SCEVable.
2762  return Ty->isIntegerTy() || Ty->isPointerTy();
2763}
2764
2765/// getTypeSizeInBits - Return the size in bits of the specified type,
2766/// for which isSCEVable must return true.
2767uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2768  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2769
2770  // If we have a DataLayout, use it!
2771  if (DL)
2772    return DL->getTypeSizeInBits(Ty);
2773
2774  // Integer types have fixed sizes.
2775  if (Ty->isIntegerTy())
2776    return Ty->getPrimitiveSizeInBits();
2777
2778  // The only other support type is pointer. Without DataLayout, conservatively
2779  // assume pointers are 64-bit.
2780  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2781  return 64;
2782}
2783
2784/// getEffectiveSCEVType - Return a type with the same bitwidth as
2785/// the given type and which represents how SCEV will treat the given
2786/// type, for which isSCEVable must return true. For pointer types,
2787/// this is the pointer-sized integer type.
2788Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2789  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2790
2791  if (Ty->isIntegerTy()) {
2792    return Ty;
2793  }
2794
2795  // The only other support type is pointer.
2796  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2797
2798  if (DL)
2799    return DL->getIntPtrType(Ty);
2800
2801  // Without DataLayout, conservatively assume pointers are 64-bit.
2802  return Type::getInt64Ty(getContext());
2803}
2804
2805const SCEV *ScalarEvolution::getCouldNotCompute() {
2806  return &CouldNotCompute;
2807}
2808
2809namespace {
2810  // Helper class working with SCEVTraversal to figure out if a SCEV contains
2811  // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2812  // is set iff if find such SCEVUnknown.
2813  //
2814  struct FindInvalidSCEVUnknown {
2815    bool FindOne;
2816    FindInvalidSCEVUnknown() { FindOne = false; }
2817    bool follow(const SCEV *S) {
2818      switch (static_cast<SCEVTypes>(S->getSCEVType())) {
2819      case scConstant:
2820        return false;
2821      case scUnknown:
2822        if (!cast<SCEVUnknown>(S)->getValue())
2823          FindOne = true;
2824        return false;
2825      default:
2826        return true;
2827      }
2828    }
2829    bool isDone() const { return FindOne; }
2830  };
2831}
2832
2833bool ScalarEvolution::checkValidity(const SCEV *S) const {
2834  FindInvalidSCEVUnknown F;
2835  SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2836  ST.visitAll(S);
2837
2838  return !F.FindOne;
2839}
2840
2841/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2842/// expression and create a new one.
2843const SCEV *ScalarEvolution::getSCEV(Value *V) {
2844  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2845
2846  ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2847  if (I != ValueExprMap.end()) {
2848    const SCEV *S = I->second;
2849    if (checkValidity(S))
2850      return S;
2851    else
2852      ValueExprMap.erase(I);
2853  }
2854  const SCEV *S = createSCEV(V);
2855
2856  // The process of creating a SCEV for V may have caused other SCEVs
2857  // to have been created, so it's necessary to insert the new entry
2858  // from scratch, rather than trying to remember the insert position
2859  // above.
2860  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2861  return S;
2862}
2863
2864/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2865///
2866const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2867  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2868    return getConstant(
2869               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2870
2871  Type *Ty = V->getType();
2872  Ty = getEffectiveSCEVType(Ty);
2873  return getMulExpr(V,
2874                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2875}
2876
2877/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2878const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2879  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2880    return getConstant(
2881                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2882
2883  Type *Ty = V->getType();
2884  Ty = getEffectiveSCEVType(Ty);
2885  const SCEV *AllOnes =
2886                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2887  return getMinusSCEV(AllOnes, V);
2888}
2889
2890/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2891const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2892                                          SCEV::NoWrapFlags Flags) {
2893  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2894
2895  // Fast path: X - X --> 0.
2896  if (LHS == RHS)
2897    return getConstant(LHS->getType(), 0);
2898
2899  // X - Y --> X + -Y
2900  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2901}
2902
2903/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2904/// input value to the specified type.  If the type must be extended, it is zero
2905/// extended.
2906const SCEV *
2907ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2908  Type *SrcTy = V->getType();
2909  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2910         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2911         "Cannot truncate or zero extend with non-integer arguments!");
2912  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2913    return V;  // No conversion
2914  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2915    return getTruncateExpr(V, Ty);
2916  return getZeroExtendExpr(V, Ty);
2917}
2918
2919/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2920/// input value to the specified type.  If the type must be extended, it is sign
2921/// extended.
2922const SCEV *
2923ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2924                                         Type *Ty) {
2925  Type *SrcTy = V->getType();
2926  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2927         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2928         "Cannot truncate or zero extend with non-integer arguments!");
2929  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2930    return V;  // No conversion
2931  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2932    return getTruncateExpr(V, Ty);
2933  return getSignExtendExpr(V, Ty);
2934}
2935
2936/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2937/// input value to the specified type.  If the type must be extended, it is zero
2938/// extended.  The conversion must not be narrowing.
2939const SCEV *
2940ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2941  Type *SrcTy = V->getType();
2942  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2943         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2944         "Cannot noop or zero extend with non-integer arguments!");
2945  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2946         "getNoopOrZeroExtend cannot truncate!");
2947  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2948    return V;  // No conversion
2949  return getZeroExtendExpr(V, Ty);
2950}
2951
2952/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2953/// input value to the specified type.  If the type must be extended, it is sign
2954/// extended.  The conversion must not be narrowing.
2955const SCEV *
2956ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2957  Type *SrcTy = V->getType();
2958  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2959         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2960         "Cannot noop or sign extend with non-integer arguments!");
2961  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2962         "getNoopOrSignExtend cannot truncate!");
2963  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2964    return V;  // No conversion
2965  return getSignExtendExpr(V, Ty);
2966}
2967
2968/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2969/// the input value to the specified type. If the type must be extended,
2970/// it is extended with unspecified bits. The conversion must not be
2971/// narrowing.
2972const SCEV *
2973ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2974  Type *SrcTy = V->getType();
2975  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2976         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2977         "Cannot noop or any extend with non-integer arguments!");
2978  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2979         "getNoopOrAnyExtend cannot truncate!");
2980  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2981    return V;  // No conversion
2982  return getAnyExtendExpr(V, Ty);
2983}
2984
2985/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2986/// input value to the specified type.  The conversion must not be widening.
2987const SCEV *
2988ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2989  Type *SrcTy = V->getType();
2990  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2991         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2992         "Cannot truncate or noop with non-integer arguments!");
2993  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2994         "getTruncateOrNoop cannot extend!");
2995  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2996    return V;  // No conversion
2997  return getTruncateExpr(V, Ty);
2998}
2999
3000/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3001/// the types using zero-extension, and then perform a umax operation
3002/// with them.
3003const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3004                                                        const SCEV *RHS) {
3005  const SCEV *PromotedLHS = LHS;
3006  const SCEV *PromotedRHS = RHS;
3007
3008  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3009    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3010  else
3011    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3012
3013  return getUMaxExpr(PromotedLHS, PromotedRHS);
3014}
3015
3016/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3017/// the types using zero-extension, and then perform a umin operation
3018/// with them.
3019const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3020                                                        const SCEV *RHS) {
3021  const SCEV *PromotedLHS = LHS;
3022  const SCEV *PromotedRHS = RHS;
3023
3024  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3025    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3026  else
3027    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3028
3029  return getUMinExpr(PromotedLHS, PromotedRHS);
3030}
3031
3032/// getPointerBase - Transitively follow the chain of pointer-type operands
3033/// until reaching a SCEV that does not have a single pointer operand. This
3034/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3035/// but corner cases do exist.
3036const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3037  // A pointer operand may evaluate to a nonpointer expression, such as null.
3038  if (!V->getType()->isPointerTy())
3039    return V;
3040
3041  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3042    return getPointerBase(Cast->getOperand());
3043  }
3044  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3045    const SCEV *PtrOp = nullptr;
3046    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3047         I != E; ++I) {
3048      if ((*I)->getType()->isPointerTy()) {
3049        // Cannot find the base of an expression with multiple pointer operands.
3050        if (PtrOp)
3051          return V;
3052        PtrOp = *I;
3053      }
3054    }
3055    if (!PtrOp)
3056      return V;
3057    return getPointerBase(PtrOp);
3058  }
3059  return V;
3060}
3061
3062/// PushDefUseChildren - Push users of the given Instruction
3063/// onto the given Worklist.
3064static void
3065PushDefUseChildren(Instruction *I,
3066                   SmallVectorImpl<Instruction *> &Worklist) {
3067  // Push the def-use children onto the Worklist stack.
3068  for (User *U : I->users())
3069    Worklist.push_back(cast<Instruction>(U));
3070}
3071
3072/// ForgetSymbolicValue - This looks up computed SCEV values for all
3073/// instructions that depend on the given instruction and removes them from
3074/// the ValueExprMapType map if they reference SymName. This is used during PHI
3075/// resolution.
3076void
3077ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3078  SmallVector<Instruction *, 16> Worklist;
3079  PushDefUseChildren(PN, Worklist);
3080
3081  SmallPtrSet<Instruction *, 8> Visited;
3082  Visited.insert(PN);
3083  while (!Worklist.empty()) {
3084    Instruction *I = Worklist.pop_back_val();
3085    if (!Visited.insert(I)) continue;
3086
3087    ValueExprMapType::iterator It =
3088      ValueExprMap.find_as(static_cast<Value *>(I));
3089    if (It != ValueExprMap.end()) {
3090      const SCEV *Old = It->second;
3091
3092      // Short-circuit the def-use traversal if the symbolic name
3093      // ceases to appear in expressions.
3094      if (Old != SymName && !hasOperand(Old, SymName))
3095        continue;
3096
3097      // SCEVUnknown for a PHI either means that it has an unrecognized
3098      // structure, it's a PHI that's in the progress of being computed
3099      // by createNodeForPHI, or it's a single-value PHI. In the first case,
3100      // additional loop trip count information isn't going to change anything.
3101      // In the second case, createNodeForPHI will perform the necessary
3102      // updates on its own when it gets to that point. In the third, we do
3103      // want to forget the SCEVUnknown.
3104      if (!isa<PHINode>(I) ||
3105          !isa<SCEVUnknown>(Old) ||
3106          (I != PN && Old == SymName)) {
3107        forgetMemoizedResults(Old);
3108        ValueExprMap.erase(It);
3109      }
3110    }
3111
3112    PushDefUseChildren(I, Worklist);
3113  }
3114}
3115
3116/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
3117/// a loop header, making it a potential recurrence, or it doesn't.
3118///
3119const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3120  if (const Loop *L = LI->getLoopFor(PN->getParent()))
3121    if (L->getHeader() == PN->getParent()) {
3122      // The loop may have multiple entrances or multiple exits; we can analyze
3123      // this phi as an addrec if it has a unique entry value and a unique
3124      // backedge value.
3125      Value *BEValueV = nullptr, *StartValueV = nullptr;
3126      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3127        Value *V = PN->getIncomingValue(i);
3128        if (L->contains(PN->getIncomingBlock(i))) {
3129          if (!BEValueV) {
3130            BEValueV = V;
3131          } else if (BEValueV != V) {
3132            BEValueV = nullptr;
3133            break;
3134          }
3135        } else if (!StartValueV) {
3136          StartValueV = V;
3137        } else if (StartValueV != V) {
3138          StartValueV = nullptr;
3139          break;
3140        }
3141      }
3142      if (BEValueV && StartValueV) {
3143        // While we are analyzing this PHI node, handle its value symbolically.
3144        const SCEV *SymbolicName = getUnknown(PN);
3145        assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3146               "PHI node already processed?");
3147        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3148
3149        // Using this symbolic name for the PHI, analyze the value coming around
3150        // the back-edge.
3151        const SCEV *BEValue = getSCEV(BEValueV);
3152
3153        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3154        // has a special value for the first iteration of the loop.
3155
3156        // If the value coming around the backedge is an add with the symbolic
3157        // value we just inserted, then we found a simple induction variable!
3158        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3159          // If there is a single occurrence of the symbolic value, replace it
3160          // with a recurrence.
3161          unsigned FoundIndex = Add->getNumOperands();
3162          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3163            if (Add->getOperand(i) == SymbolicName)
3164              if (FoundIndex == e) {
3165                FoundIndex = i;
3166                break;
3167              }
3168
3169          if (FoundIndex != Add->getNumOperands()) {
3170            // Create an add with everything but the specified operand.
3171            SmallVector<const SCEV *, 8> Ops;
3172            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3173              if (i != FoundIndex)
3174                Ops.push_back(Add->getOperand(i));
3175            const SCEV *Accum = getAddExpr(Ops);
3176
3177            // This is not a valid addrec if the step amount is varying each
3178            // loop iteration, but is not itself an addrec in this loop.
3179            if (isLoopInvariant(Accum, L) ||
3180                (isa<SCEVAddRecExpr>(Accum) &&
3181                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3182              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3183
3184              // If the increment doesn't overflow, then neither the addrec nor
3185              // the post-increment will overflow.
3186              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3187                if (OBO->hasNoUnsignedWrap())
3188                  Flags = setFlags(Flags, SCEV::FlagNUW);
3189                if (OBO->hasNoSignedWrap())
3190                  Flags = setFlags(Flags, SCEV::FlagNSW);
3191              } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3192                // If the increment is an inbounds GEP, then we know the address
3193                // space cannot be wrapped around. We cannot make any guarantee
3194                // about signed or unsigned overflow because pointers are
3195                // unsigned but we may have a negative index from the base
3196                // pointer. We can guarantee that no unsigned wrap occurs if the
3197                // indices form a positive value.
3198                if (GEP->isInBounds()) {
3199                  Flags = setFlags(Flags, SCEV::FlagNW);
3200
3201                  const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3202                  if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3203                    Flags = setFlags(Flags, SCEV::FlagNUW);
3204                }
3205              } else if (const SubOperator *OBO =
3206                           dyn_cast<SubOperator>(BEValueV)) {
3207                if (OBO->hasNoUnsignedWrap())
3208                  Flags = setFlags(Flags, SCEV::FlagNUW);
3209                if (OBO->hasNoSignedWrap())
3210                  Flags = setFlags(Flags, SCEV::FlagNSW);
3211              }
3212
3213              const SCEV *StartVal = getSCEV(StartValueV);
3214              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3215
3216              // Since the no-wrap flags are on the increment, they apply to the
3217              // post-incremented value as well.
3218              if (isLoopInvariant(Accum, L))
3219                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3220                                    Accum, L, Flags);
3221
3222              // Okay, for the entire analysis of this edge we assumed the PHI
3223              // to be symbolic.  We now need to go back and purge all of the
3224              // entries for the scalars that use the symbolic expression.
3225              ForgetSymbolicName(PN, SymbolicName);
3226              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3227              return PHISCEV;
3228            }
3229          }
3230        } else if (const SCEVAddRecExpr *AddRec =
3231                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3232          // Otherwise, this could be a loop like this:
3233          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3234          // In this case, j = {1,+,1}  and BEValue is j.
3235          // Because the other in-value of i (0) fits the evolution of BEValue
3236          // i really is an addrec evolution.
3237          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3238            const SCEV *StartVal = getSCEV(StartValueV);
3239
3240            // If StartVal = j.start - j.stride, we can use StartVal as the
3241            // initial step of the addrec evolution.
3242            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3243                                         AddRec->getOperand(1))) {
3244              // FIXME: For constant StartVal, we should be able to infer
3245              // no-wrap flags.
3246              const SCEV *PHISCEV =
3247                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3248                              SCEV::FlagAnyWrap);
3249
3250              // Okay, for the entire analysis of this edge we assumed the PHI
3251              // to be symbolic.  We now need to go back and purge all of the
3252              // entries for the scalars that use the symbolic expression.
3253              ForgetSymbolicName(PN, SymbolicName);
3254              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3255              return PHISCEV;
3256            }
3257          }
3258        }
3259      }
3260    }
3261
3262  // If the PHI has a single incoming value, follow that value, unless the
3263  // PHI's incoming blocks are in a different loop, in which case doing so
3264  // risks breaking LCSSA form. Instcombine would normally zap these, but
3265  // it doesn't have DominatorTree information, so it may miss cases.
3266  if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
3267    if (LI->replacementPreservesLCSSAForm(PN, V))
3268      return getSCEV(V);
3269
3270  // If it's not a loop phi, we can't handle it yet.
3271  return getUnknown(PN);
3272}
3273
3274/// createNodeForGEP - Expand GEP instructions into add and multiply
3275/// operations. This allows them to be analyzed by regular SCEV code.
3276///
3277const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3278  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3279  Value *Base = GEP->getOperand(0);
3280  // Don't attempt to analyze GEPs over unsized objects.
3281  if (!Base->getType()->getPointerElementType()->isSized())
3282    return getUnknown(GEP);
3283
3284  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3285  // Add expression, because the Instruction may be guarded by control flow
3286  // and the no-overflow bits may not be valid for the expression in any
3287  // context.
3288  SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3289
3290  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3291  gep_type_iterator GTI = gep_type_begin(GEP);
3292  for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
3293                                      E = GEP->op_end();
3294       I != E; ++I) {
3295    Value *Index = *I;
3296    // Compute the (potentially symbolic) offset in bytes for this index.
3297    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3298      // For a struct, add the member offset.
3299      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3300      const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3301
3302      // Add the field offset to the running total offset.
3303      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3304    } else {
3305      // For an array, add the element offset, explicitly scaled.
3306      const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3307      const SCEV *IndexS = getSCEV(Index);
3308      // Getelementptr indices are signed.
3309      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3310
3311      // Multiply the index by the element size to compute the element offset.
3312      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3313
3314      // Add the element offset to the running total offset.
3315      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3316    }
3317  }
3318
3319  // Get the SCEV for the GEP base.
3320  const SCEV *BaseS = getSCEV(Base);
3321
3322  // Add the total offset from all the GEP indices to the base.
3323  return getAddExpr(BaseS, TotalOffset, Wrap);
3324}
3325
3326/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3327/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3328/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3329/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3330uint32_t
3331ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3332  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3333    return C->getValue()->getValue().countTrailingZeros();
3334
3335  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3336    return std::min(GetMinTrailingZeros(T->getOperand()),
3337                    (uint32_t)getTypeSizeInBits(T->getType()));
3338
3339  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3340    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3341    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3342             getTypeSizeInBits(E->getType()) : OpRes;
3343  }
3344
3345  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3346    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3347    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3348             getTypeSizeInBits(E->getType()) : OpRes;
3349  }
3350
3351  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3352    // The result is the min of all operands results.
3353    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3354    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3355      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3356    return MinOpRes;
3357  }
3358
3359  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3360    // The result is the sum of all operands results.
3361    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3362    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3363    for (unsigned i = 1, e = M->getNumOperands();
3364         SumOpRes != BitWidth && i != e; ++i)
3365      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3366                          BitWidth);
3367    return SumOpRes;
3368  }
3369
3370  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3371    // The result is the min of all operands results.
3372    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3373    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3374      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3375    return MinOpRes;
3376  }
3377
3378  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3379    // The result is the min of all operands results.
3380    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3381    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3382      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3383    return MinOpRes;
3384  }
3385
3386  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3387    // The result is the min of all operands results.
3388    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3389    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3390      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3391    return MinOpRes;
3392  }
3393
3394  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3395    // For a SCEVUnknown, ask ValueTracking.
3396    unsigned BitWidth = getTypeSizeInBits(U->getType());
3397    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3398    computeKnownBits(U->getValue(), Zeros, Ones);
3399    return Zeros.countTrailingOnes();
3400  }
3401
3402  // SCEVUDivExpr
3403  return 0;
3404}
3405
3406/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3407///
3408ConstantRange
3409ScalarEvolution::getUnsignedRange(const SCEV *S) {
3410  // See if we've computed this range already.
3411  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3412  if (I != UnsignedRanges.end())
3413    return I->second;
3414
3415  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3416    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3417
3418  unsigned BitWidth = getTypeSizeInBits(S->getType());
3419  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3420
3421  // If the value has known zeros, the maximum unsigned value will have those
3422  // known zeros as well.
3423  uint32_t TZ = GetMinTrailingZeros(S);
3424  if (TZ != 0)
3425    ConservativeResult =
3426      ConstantRange(APInt::getMinValue(BitWidth),
3427                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3428
3429  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3430    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3431    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3432      X = X.add(getUnsignedRange(Add->getOperand(i)));
3433    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3434  }
3435
3436  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3437    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3438    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3439      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3440    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3441  }
3442
3443  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3444    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3445    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3446      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3447    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3448  }
3449
3450  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3451    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3452    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3453      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3454    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3455  }
3456
3457  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3458    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3459    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3460    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3461  }
3462
3463  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3464    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3465    return setUnsignedRange(ZExt,
3466      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3467  }
3468
3469  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3470    ConstantRange X = getUnsignedRange(SExt->getOperand());
3471    return setUnsignedRange(SExt,
3472      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3473  }
3474
3475  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3476    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3477    return setUnsignedRange(Trunc,
3478      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3479  }
3480
3481  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3482    // If there's no unsigned wrap, the value will never be less than its
3483    // initial value.
3484    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3485      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3486        if (!C->getValue()->isZero())
3487          ConservativeResult =
3488            ConservativeResult.intersectWith(
3489              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3490
3491    // TODO: non-affine addrec
3492    if (AddRec->isAffine()) {
3493      Type *Ty = AddRec->getType();
3494      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3495      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3496          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3497        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3498
3499        const SCEV *Start = AddRec->getStart();
3500        const SCEV *Step = AddRec->getStepRecurrence(*this);
3501
3502        ConstantRange StartRange = getUnsignedRange(Start);
3503        ConstantRange StepRange = getSignedRange(Step);
3504        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3505        ConstantRange EndRange =
3506          StartRange.add(MaxBECountRange.multiply(StepRange));
3507
3508        // Check for overflow. This must be done with ConstantRange arithmetic
3509        // because we could be called from within the ScalarEvolution overflow
3510        // checking code.
3511        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3512        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3513        ConstantRange ExtMaxBECountRange =
3514          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3515        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3516        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3517            ExtEndRange)
3518          return setUnsignedRange(AddRec, ConservativeResult);
3519
3520        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3521                                   EndRange.getUnsignedMin());
3522        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3523                                   EndRange.getUnsignedMax());
3524        if (Min.isMinValue() && Max.isMaxValue())
3525          return setUnsignedRange(AddRec, ConservativeResult);
3526        return setUnsignedRange(AddRec,
3527          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3528      }
3529    }
3530
3531    return setUnsignedRange(AddRec, ConservativeResult);
3532  }
3533
3534  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3535    // For a SCEVUnknown, ask ValueTracking.
3536    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3537    computeKnownBits(U->getValue(), Zeros, Ones, DL);
3538    if (Ones == ~Zeros + 1)
3539      return setUnsignedRange(U, ConservativeResult);
3540    return setUnsignedRange(U,
3541      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3542  }
3543
3544  return setUnsignedRange(S, ConservativeResult);
3545}
3546
3547/// getSignedRange - Determine the signed range for a particular SCEV.
3548///
3549ConstantRange
3550ScalarEvolution::getSignedRange(const SCEV *S) {
3551  // See if we've computed this range already.
3552  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3553  if (I != SignedRanges.end())
3554    return I->second;
3555
3556  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3557    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3558
3559  unsigned BitWidth = getTypeSizeInBits(S->getType());
3560  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3561
3562  // If the value has known zeros, the maximum signed value will have those
3563  // known zeros as well.
3564  uint32_t TZ = GetMinTrailingZeros(S);
3565  if (TZ != 0)
3566    ConservativeResult =
3567      ConstantRange(APInt::getSignedMinValue(BitWidth),
3568                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3569
3570  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3571    ConstantRange X = getSignedRange(Add->getOperand(0));
3572    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3573      X = X.add(getSignedRange(Add->getOperand(i)));
3574    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3575  }
3576
3577  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3578    ConstantRange X = getSignedRange(Mul->getOperand(0));
3579    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3580      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3581    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3582  }
3583
3584  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3585    ConstantRange X = getSignedRange(SMax->getOperand(0));
3586    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3587      X = X.smax(getSignedRange(SMax->getOperand(i)));
3588    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3589  }
3590
3591  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3592    ConstantRange X = getSignedRange(UMax->getOperand(0));
3593    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3594      X = X.umax(getSignedRange(UMax->getOperand(i)));
3595    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3596  }
3597
3598  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3599    ConstantRange X = getSignedRange(UDiv->getLHS());
3600    ConstantRange Y = getSignedRange(UDiv->getRHS());
3601    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3602  }
3603
3604  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3605    ConstantRange X = getSignedRange(ZExt->getOperand());
3606    return setSignedRange(ZExt,
3607      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3608  }
3609
3610  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3611    ConstantRange X = getSignedRange(SExt->getOperand());
3612    return setSignedRange(SExt,
3613      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3614  }
3615
3616  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3617    ConstantRange X = getSignedRange(Trunc->getOperand());
3618    return setSignedRange(Trunc,
3619      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3620  }
3621
3622  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3623    // If there's no signed wrap, and all the operands have the same sign or
3624    // zero, the value won't ever change sign.
3625    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3626      bool AllNonNeg = true;
3627      bool AllNonPos = true;
3628      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3629        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3630        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3631      }
3632      if (AllNonNeg)
3633        ConservativeResult = ConservativeResult.intersectWith(
3634          ConstantRange(APInt(BitWidth, 0),
3635                        APInt::getSignedMinValue(BitWidth)));
3636      else if (AllNonPos)
3637        ConservativeResult = ConservativeResult.intersectWith(
3638          ConstantRange(APInt::getSignedMinValue(BitWidth),
3639                        APInt(BitWidth, 1)));
3640    }
3641
3642    // TODO: non-affine addrec
3643    if (AddRec->isAffine()) {
3644      Type *Ty = AddRec->getType();
3645      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3646      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3647          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3648        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3649
3650        const SCEV *Start = AddRec->getStart();
3651        const SCEV *Step = AddRec->getStepRecurrence(*this);
3652
3653        ConstantRange StartRange = getSignedRange(Start);
3654        ConstantRange StepRange = getSignedRange(Step);
3655        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3656        ConstantRange EndRange =
3657          StartRange.add(MaxBECountRange.multiply(StepRange));
3658
3659        // Check for overflow. This must be done with ConstantRange arithmetic
3660        // because we could be called from within the ScalarEvolution overflow
3661        // checking code.
3662        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3663        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3664        ConstantRange ExtMaxBECountRange =
3665          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3666        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3667        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3668            ExtEndRange)
3669          return setSignedRange(AddRec, ConservativeResult);
3670
3671        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3672                                   EndRange.getSignedMin());
3673        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3674                                   EndRange.getSignedMax());
3675        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3676          return setSignedRange(AddRec, ConservativeResult);
3677        return setSignedRange(AddRec,
3678          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3679      }
3680    }
3681
3682    return setSignedRange(AddRec, ConservativeResult);
3683  }
3684
3685  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3686    // For a SCEVUnknown, ask ValueTracking.
3687    if (!U->getValue()->getType()->isIntegerTy() && !DL)
3688      return setSignedRange(U, ConservativeResult);
3689    unsigned NS = ComputeNumSignBits(U->getValue(), DL);
3690    if (NS <= 1)
3691      return setSignedRange(U, ConservativeResult);
3692    return setSignedRange(U, ConservativeResult.intersectWith(
3693      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3694                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3695  }
3696
3697  return setSignedRange(S, ConservativeResult);
3698}
3699
3700/// createSCEV - We know that there is no SCEV for the specified value.
3701/// Analyze the expression.
3702///
3703const SCEV *ScalarEvolution::createSCEV(Value *V) {
3704  if (!isSCEVable(V->getType()))
3705    return getUnknown(V);
3706
3707  unsigned Opcode = Instruction::UserOp1;
3708  if (Instruction *I = dyn_cast<Instruction>(V)) {
3709    Opcode = I->getOpcode();
3710
3711    // Don't attempt to analyze instructions in blocks that aren't
3712    // reachable. Such instructions don't matter, and they aren't required
3713    // to obey basic rules for definitions dominating uses which this
3714    // analysis depends on.
3715    if (!DT->isReachableFromEntry(I->getParent()))
3716      return getUnknown(V);
3717  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3718    Opcode = CE->getOpcode();
3719  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3720    return getConstant(CI);
3721  else if (isa<ConstantPointerNull>(V))
3722    return getConstant(V->getType(), 0);
3723  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3724    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3725  else
3726    return getUnknown(V);
3727
3728  Operator *U = cast<Operator>(V);
3729  switch (Opcode) {
3730  case Instruction::Add: {
3731    // The simple thing to do would be to just call getSCEV on both operands
3732    // and call getAddExpr with the result. However if we're looking at a
3733    // bunch of things all added together, this can be quite inefficient,
3734    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3735    // Instead, gather up all the operands and make a single getAddExpr call.
3736    // LLVM IR canonical form means we need only traverse the left operands.
3737    //
3738    // Don't apply this instruction's NSW or NUW flags to the new
3739    // expression. The instruction may be guarded by control flow that the
3740    // no-wrap behavior depends on. Non-control-equivalent instructions can be
3741    // mapped to the same SCEV expression, and it would be incorrect to transfer
3742    // NSW/NUW semantics to those operations.
3743    SmallVector<const SCEV *, 4> AddOps;
3744    AddOps.push_back(getSCEV(U->getOperand(1)));
3745    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3746      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3747      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3748        break;
3749      U = cast<Operator>(Op);
3750      const SCEV *Op1 = getSCEV(U->getOperand(1));
3751      if (Opcode == Instruction::Sub)
3752        AddOps.push_back(getNegativeSCEV(Op1));
3753      else
3754        AddOps.push_back(Op1);
3755    }
3756    AddOps.push_back(getSCEV(U->getOperand(0)));
3757    return getAddExpr(AddOps);
3758  }
3759  case Instruction::Mul: {
3760    // Don't transfer NSW/NUW for the same reason as AddExpr.
3761    SmallVector<const SCEV *, 4> MulOps;
3762    MulOps.push_back(getSCEV(U->getOperand(1)));
3763    for (Value *Op = U->getOperand(0);
3764         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3765         Op = U->getOperand(0)) {
3766      U = cast<Operator>(Op);
3767      MulOps.push_back(getSCEV(U->getOperand(1)));
3768    }
3769    MulOps.push_back(getSCEV(U->getOperand(0)));
3770    return getMulExpr(MulOps);
3771  }
3772  case Instruction::UDiv:
3773    return getUDivExpr(getSCEV(U->getOperand(0)),
3774                       getSCEV(U->getOperand(1)));
3775  case Instruction::Sub:
3776    return getMinusSCEV(getSCEV(U->getOperand(0)),
3777                        getSCEV(U->getOperand(1)));
3778  case Instruction::And:
3779    // For an expression like x&255 that merely masks off the high bits,
3780    // use zext(trunc(x)) as the SCEV expression.
3781    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3782      if (CI->isNullValue())
3783        return getSCEV(U->getOperand(1));
3784      if (CI->isAllOnesValue())
3785        return getSCEV(U->getOperand(0));
3786      const APInt &A = CI->getValue();
3787
3788      // Instcombine's ShrinkDemandedConstant may strip bits out of
3789      // constants, obscuring what would otherwise be a low-bits mask.
3790      // Use computeKnownBits to compute what ShrinkDemandedConstant
3791      // knew about to reconstruct a low-bits mask value.
3792      unsigned LZ = A.countLeadingZeros();
3793      unsigned TZ = A.countTrailingZeros();
3794      unsigned BitWidth = A.getBitWidth();
3795      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3796      computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL);
3797
3798      APInt EffectiveMask =
3799          APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3800      if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3801        const SCEV *MulCount = getConstant(
3802            ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3803        return getMulExpr(
3804            getZeroExtendExpr(
3805                getTruncateExpr(
3806                    getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3807                    IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3808                U->getType()),
3809            MulCount);
3810      }
3811    }
3812    break;
3813
3814  case Instruction::Or:
3815    // If the RHS of the Or is a constant, we may have something like:
3816    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3817    // optimizations will transparently handle this case.
3818    //
3819    // In order for this transformation to be safe, the LHS must be of the
3820    // form X*(2^n) and the Or constant must be less than 2^n.
3821    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3822      const SCEV *LHS = getSCEV(U->getOperand(0));
3823      const APInt &CIVal = CI->getValue();
3824      if (GetMinTrailingZeros(LHS) >=
3825          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3826        // Build a plain add SCEV.
3827        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3828        // If the LHS of the add was an addrec and it has no-wrap flags,
3829        // transfer the no-wrap flags, since an or won't introduce a wrap.
3830        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3831          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3832          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3833            OldAR->getNoWrapFlags());
3834        }
3835        return S;
3836      }
3837    }
3838    break;
3839  case Instruction::Xor:
3840    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3841      // If the RHS of the xor is a signbit, then this is just an add.
3842      // Instcombine turns add of signbit into xor as a strength reduction step.
3843      if (CI->getValue().isSignBit())
3844        return getAddExpr(getSCEV(U->getOperand(0)),
3845                          getSCEV(U->getOperand(1)));
3846
3847      // If the RHS of xor is -1, then this is a not operation.
3848      if (CI->isAllOnesValue())
3849        return getNotSCEV(getSCEV(U->getOperand(0)));
3850
3851      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3852      // This is a variant of the check for xor with -1, and it handles
3853      // the case where instcombine has trimmed non-demanded bits out
3854      // of an xor with -1.
3855      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3856        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3857          if (BO->getOpcode() == Instruction::And &&
3858              LCI->getValue() == CI->getValue())
3859            if (const SCEVZeroExtendExpr *Z =
3860                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3861              Type *UTy = U->getType();
3862              const SCEV *Z0 = Z->getOperand();
3863              Type *Z0Ty = Z0->getType();
3864              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3865
3866              // If C is a low-bits mask, the zero extend is serving to
3867              // mask off the high bits. Complement the operand and
3868              // re-apply the zext.
3869              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3870                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3871
3872              // If C is a single bit, it may be in the sign-bit position
3873              // before the zero-extend. In this case, represent the xor
3874              // using an add, which is equivalent, and re-apply the zext.
3875              APInt Trunc = CI->getValue().trunc(Z0TySize);
3876              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3877                  Trunc.isSignBit())
3878                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3879                                         UTy);
3880            }
3881    }
3882    break;
3883
3884  case Instruction::Shl:
3885    // Turn shift left of a constant amount into a multiply.
3886    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3887      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3888
3889      // If the shift count is not less than the bitwidth, the result of
3890      // the shift is undefined. Don't try to analyze it, because the
3891      // resolution chosen here may differ from the resolution chosen in
3892      // other parts of the compiler.
3893      if (SA->getValue().uge(BitWidth))
3894        break;
3895
3896      Constant *X = ConstantInt::get(getContext(),
3897        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3898      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3899    }
3900    break;
3901
3902  case Instruction::LShr:
3903    // Turn logical shift right of a constant into a unsigned divide.
3904    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3905      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3906
3907      // If the shift count is not less than the bitwidth, the result of
3908      // the shift is undefined. Don't try to analyze it, because the
3909      // resolution chosen here may differ from the resolution chosen in
3910      // other parts of the compiler.
3911      if (SA->getValue().uge(BitWidth))
3912        break;
3913
3914      Constant *X = ConstantInt::get(getContext(),
3915        APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3916      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3917    }
3918    break;
3919
3920  case Instruction::AShr:
3921    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3922    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3923      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3924        if (L->getOpcode() == Instruction::Shl &&
3925            L->getOperand(1) == U->getOperand(1)) {
3926          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3927
3928          // If the shift count is not less than the bitwidth, the result of
3929          // the shift is undefined. Don't try to analyze it, because the
3930          // resolution chosen here may differ from the resolution chosen in
3931          // other parts of the compiler.
3932          if (CI->getValue().uge(BitWidth))
3933            break;
3934
3935          uint64_t Amt = BitWidth - CI->getZExtValue();
3936          if (Amt == BitWidth)
3937            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3938          return
3939            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3940                                              IntegerType::get(getContext(),
3941                                                               Amt)),
3942                              U->getType());
3943        }
3944    break;
3945
3946  case Instruction::Trunc:
3947    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3948
3949  case Instruction::ZExt:
3950    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3951
3952  case Instruction::SExt:
3953    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3954
3955  case Instruction::BitCast:
3956    // BitCasts are no-op casts so we just eliminate the cast.
3957    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3958      return getSCEV(U->getOperand(0));
3959    break;
3960
3961  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3962  // lead to pointer expressions which cannot safely be expanded to GEPs,
3963  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3964  // simplifying integer expressions.
3965
3966  case Instruction::GetElementPtr:
3967    return createNodeForGEP(cast<GEPOperator>(U));
3968
3969  case Instruction::PHI:
3970    return createNodeForPHI(cast<PHINode>(U));
3971
3972  case Instruction::Select:
3973    // This could be a smax or umax that was lowered earlier.
3974    // Try to recover it.
3975    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3976      Value *LHS = ICI->getOperand(0);
3977      Value *RHS = ICI->getOperand(1);
3978      switch (ICI->getPredicate()) {
3979      case ICmpInst::ICMP_SLT:
3980      case ICmpInst::ICMP_SLE:
3981        std::swap(LHS, RHS);
3982        // fall through
3983      case ICmpInst::ICMP_SGT:
3984      case ICmpInst::ICMP_SGE:
3985        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3986        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3987        if (LHS->getType() == U->getType()) {
3988          const SCEV *LS = getSCEV(LHS);
3989          const SCEV *RS = getSCEV(RHS);
3990          const SCEV *LA = getSCEV(U->getOperand(1));
3991          const SCEV *RA = getSCEV(U->getOperand(2));
3992          const SCEV *LDiff = getMinusSCEV(LA, LS);
3993          const SCEV *RDiff = getMinusSCEV(RA, RS);
3994          if (LDiff == RDiff)
3995            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3996          LDiff = getMinusSCEV(LA, RS);
3997          RDiff = getMinusSCEV(RA, LS);
3998          if (LDiff == RDiff)
3999            return getAddExpr(getSMinExpr(LS, RS), LDiff);
4000        }
4001        break;
4002      case ICmpInst::ICMP_ULT:
4003      case ICmpInst::ICMP_ULE:
4004        std::swap(LHS, RHS);
4005        // fall through
4006      case ICmpInst::ICMP_UGT:
4007      case ICmpInst::ICMP_UGE:
4008        // a >u b ? a+x : b+x  ->  umax(a, b)+x
4009        // a >u b ? b+x : a+x  ->  umin(a, b)+x
4010        if (LHS->getType() == U->getType()) {
4011          const SCEV *LS = getSCEV(LHS);
4012          const SCEV *RS = getSCEV(RHS);
4013          const SCEV *LA = getSCEV(U->getOperand(1));
4014          const SCEV *RA = getSCEV(U->getOperand(2));
4015          const SCEV *LDiff = getMinusSCEV(LA, LS);
4016          const SCEV *RDiff = getMinusSCEV(RA, RS);
4017          if (LDiff == RDiff)
4018            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4019          LDiff = getMinusSCEV(LA, RS);
4020          RDiff = getMinusSCEV(RA, LS);
4021          if (LDiff == RDiff)
4022            return getAddExpr(getUMinExpr(LS, RS), LDiff);
4023        }
4024        break;
4025      case ICmpInst::ICMP_NE:
4026        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4027        if (LHS->getType() == U->getType() &&
4028            isa<ConstantInt>(RHS) &&
4029            cast<ConstantInt>(RHS)->isZero()) {
4030          const SCEV *One = getConstant(LHS->getType(), 1);
4031          const SCEV *LS = getSCEV(LHS);
4032          const SCEV *LA = getSCEV(U->getOperand(1));
4033          const SCEV *RA = getSCEV(U->getOperand(2));
4034          const SCEV *LDiff = getMinusSCEV(LA, LS);
4035          const SCEV *RDiff = getMinusSCEV(RA, One);
4036          if (LDiff == RDiff)
4037            return getAddExpr(getUMaxExpr(One, LS), LDiff);
4038        }
4039        break;
4040      case ICmpInst::ICMP_EQ:
4041        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4042        if (LHS->getType() == U->getType() &&
4043            isa<ConstantInt>(RHS) &&
4044            cast<ConstantInt>(RHS)->isZero()) {
4045          const SCEV *One = getConstant(LHS->getType(), 1);
4046          const SCEV *LS = getSCEV(LHS);
4047          const SCEV *LA = getSCEV(U->getOperand(1));
4048          const SCEV *RA = getSCEV(U->getOperand(2));
4049          const SCEV *LDiff = getMinusSCEV(LA, One);
4050          const SCEV *RDiff = getMinusSCEV(RA, LS);
4051          if (LDiff == RDiff)
4052            return getAddExpr(getUMaxExpr(One, LS), LDiff);
4053        }
4054        break;
4055      default:
4056        break;
4057      }
4058    }
4059
4060  default: // We cannot analyze this expression.
4061    break;
4062  }
4063
4064  return getUnknown(V);
4065}
4066
4067
4068
4069//===----------------------------------------------------------------------===//
4070//                   Iteration Count Computation Code
4071//
4072
4073/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4074/// normal unsigned value. Returns 0 if the trip count is unknown or not
4075/// constant. Will also return 0 if the maximum trip count is very large (>=
4076/// 2^32).
4077///
4078/// This "trip count" assumes that control exits via ExitingBlock. More
4079/// precisely, it is the number of times that control may reach ExitingBlock
4080/// before taking the branch. For loops with multiple exits, it may not be the
4081/// number times that the loop header executes because the loop may exit
4082/// prematurely via another branch.
4083///
4084/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4085/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4086/// loop exits. getExitCount() may return an exact count for this branch
4087/// assuming no-signed-wrap. The number of well-defined iterations may actually
4088/// be higher than this trip count if this exit test is skipped and the loop
4089/// exits via a different branch. Ideally, getExitCount() would know whether it
4090/// depends on a NSW assumption, and we would only fall back to a conservative
4091/// trip count in that case.
4092unsigned ScalarEvolution::
4093getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
4094  const SCEVConstant *ExitCount =
4095    dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
4096  if (!ExitCount)
4097    return 0;
4098
4099  ConstantInt *ExitConst = ExitCount->getValue();
4100
4101  // Guard against huge trip counts.
4102  if (ExitConst->getValue().getActiveBits() > 32)
4103    return 0;
4104
4105  // In case of integer overflow, this returns 0, which is correct.
4106  return ((unsigned)ExitConst->getZExtValue()) + 1;
4107}
4108
4109/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4110/// trip count of this loop as a normal unsigned value, if possible. This
4111/// means that the actual trip count is always a multiple of the returned
4112/// value (don't forget the trip count could very well be zero as well!).
4113///
4114/// Returns 1 if the trip count is unknown or not guaranteed to be the
4115/// multiple of a constant (which is also the case if the trip count is simply
4116/// constant, use getSmallConstantTripCount for that case), Will also return 1
4117/// if the trip count is very large (>= 2^32).
4118///
4119/// As explained in the comments for getSmallConstantTripCount, this assumes
4120/// that control exits the loop via ExitingBlock.
4121unsigned ScalarEvolution::
4122getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
4123  const SCEV *ExitCount = getBackedgeTakenCount(L);
4124  if (ExitCount == getCouldNotCompute())
4125    return 1;
4126
4127  // Get the trip count from the BE count by adding 1.
4128  const SCEV *TCMul = getAddExpr(ExitCount,
4129                                 getConstant(ExitCount->getType(), 1));
4130  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4131  // to factor simple cases.
4132  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4133    TCMul = Mul->getOperand(0);
4134
4135  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4136  if (!MulC)
4137    return 1;
4138
4139  ConstantInt *Result = MulC->getValue();
4140
4141  // Guard against huge trip counts (this requires checking
4142  // for zero to handle the case where the trip count == -1 and the
4143  // addition wraps).
4144  if (!Result || Result->getValue().getActiveBits() > 32 ||
4145      Result->getValue().getActiveBits() == 0)
4146    return 1;
4147
4148  return (unsigned)Result->getZExtValue();
4149}
4150
4151// getExitCount - Get the expression for the number of loop iterations for which
4152// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4153// SCEVCouldNotCompute.
4154const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4155  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4156}
4157
4158/// getBackedgeTakenCount - If the specified loop has a predictable
4159/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4160/// object. The backedge-taken count is the number of times the loop header
4161/// will be branched to from within the loop. This is one less than the
4162/// trip count of the loop, since it doesn't count the first iteration,
4163/// when the header is branched to from outside the loop.
4164///
4165/// Note that it is not valid to call this method on a loop without a
4166/// loop-invariant backedge-taken count (see
4167/// hasLoopInvariantBackedgeTakenCount).
4168///
4169const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4170  return getBackedgeTakenInfo(L).getExact(this);
4171}
4172
4173/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4174/// return the least SCEV value that is known never to be less than the
4175/// actual backedge taken count.
4176const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4177  return getBackedgeTakenInfo(L).getMax(this);
4178}
4179
4180/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4181/// onto the given Worklist.
4182static void
4183PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4184  BasicBlock *Header = L->getHeader();
4185
4186  // Push all Loop-header PHIs onto the Worklist stack.
4187  for (BasicBlock::iterator I = Header->begin();
4188       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4189    Worklist.push_back(PN);
4190}
4191
4192const ScalarEvolution::BackedgeTakenInfo &
4193ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4194  // Initially insert an invalid entry for this loop. If the insertion
4195  // succeeds, proceed to actually compute a backedge-taken count and
4196  // update the value. The temporary CouldNotCompute value tells SCEV
4197  // code elsewhere that it shouldn't attempt to request a new
4198  // backedge-taken count, which could result in infinite recursion.
4199  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4200    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4201  if (!Pair.second)
4202    return Pair.first->second;
4203
4204  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4205  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4206  // must be cleared in this scope.
4207  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4208
4209  if (Result.getExact(this) != getCouldNotCompute()) {
4210    assert(isLoopInvariant(Result.getExact(this), L) &&
4211           isLoopInvariant(Result.getMax(this), L) &&
4212           "Computed backedge-taken count isn't loop invariant for loop!");
4213    ++NumTripCountsComputed;
4214  }
4215  else if (Result.getMax(this) == getCouldNotCompute() &&
4216           isa<PHINode>(L->getHeader()->begin())) {
4217    // Only count loops that have phi nodes as not being computable.
4218    ++NumTripCountsNotComputed;
4219  }
4220
4221  // Now that we know more about the trip count for this loop, forget any
4222  // existing SCEV values for PHI nodes in this loop since they are only
4223  // conservative estimates made without the benefit of trip count
4224  // information. This is similar to the code in forgetLoop, except that
4225  // it handles SCEVUnknown PHI nodes specially.
4226  if (Result.hasAnyInfo()) {
4227    SmallVector<Instruction *, 16> Worklist;
4228    PushLoopPHIs(L, Worklist);
4229
4230    SmallPtrSet<Instruction *, 8> Visited;
4231    while (!Worklist.empty()) {
4232      Instruction *I = Worklist.pop_back_val();
4233      if (!Visited.insert(I)) continue;
4234
4235      ValueExprMapType::iterator It =
4236        ValueExprMap.find_as(static_cast<Value *>(I));
4237      if (It != ValueExprMap.end()) {
4238        const SCEV *Old = It->second;
4239
4240        // SCEVUnknown for a PHI either means that it has an unrecognized
4241        // structure, or it's a PHI that's in the progress of being computed
4242        // by createNodeForPHI.  In the former case, additional loop trip
4243        // count information isn't going to change anything. In the later
4244        // case, createNodeForPHI will perform the necessary updates on its
4245        // own when it gets to that point.
4246        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4247          forgetMemoizedResults(Old);
4248          ValueExprMap.erase(It);
4249        }
4250        if (PHINode *PN = dyn_cast<PHINode>(I))
4251          ConstantEvolutionLoopExitValue.erase(PN);
4252      }
4253
4254      PushDefUseChildren(I, Worklist);
4255    }
4256  }
4257
4258  // Re-lookup the insert position, since the call to
4259  // ComputeBackedgeTakenCount above could result in a
4260  // recusive call to getBackedgeTakenInfo (on a different
4261  // loop), which would invalidate the iterator computed
4262  // earlier.
4263  return BackedgeTakenCounts.find(L)->second = Result;
4264}
4265
4266/// forgetLoop - This method should be called by the client when it has
4267/// changed a loop in a way that may effect ScalarEvolution's ability to
4268/// compute a trip count, or if the loop is deleted.
4269void ScalarEvolution::forgetLoop(const Loop *L) {
4270  // Drop any stored trip count value.
4271  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4272    BackedgeTakenCounts.find(L);
4273  if (BTCPos != BackedgeTakenCounts.end()) {
4274    BTCPos->second.clear();
4275    BackedgeTakenCounts.erase(BTCPos);
4276  }
4277
4278  // Drop information about expressions based on loop-header PHIs.
4279  SmallVector<Instruction *, 16> Worklist;
4280  PushLoopPHIs(L, Worklist);
4281
4282  SmallPtrSet<Instruction *, 8> Visited;
4283  while (!Worklist.empty()) {
4284    Instruction *I = Worklist.pop_back_val();
4285    if (!Visited.insert(I)) continue;
4286
4287    ValueExprMapType::iterator It =
4288      ValueExprMap.find_as(static_cast<Value *>(I));
4289    if (It != ValueExprMap.end()) {
4290      forgetMemoizedResults(It->second);
4291      ValueExprMap.erase(It);
4292      if (PHINode *PN = dyn_cast<PHINode>(I))
4293        ConstantEvolutionLoopExitValue.erase(PN);
4294    }
4295
4296    PushDefUseChildren(I, Worklist);
4297  }
4298
4299  // Forget all contained loops too, to avoid dangling entries in the
4300  // ValuesAtScopes map.
4301  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4302    forgetLoop(*I);
4303}
4304
4305/// forgetValue - This method should be called by the client when it has
4306/// changed a value in a way that may effect its value, or which may
4307/// disconnect it from a def-use chain linking it to a loop.
4308void ScalarEvolution::forgetValue(Value *V) {
4309  Instruction *I = dyn_cast<Instruction>(V);
4310  if (!I) return;
4311
4312  // Drop information about expressions based on loop-header PHIs.
4313  SmallVector<Instruction *, 16> Worklist;
4314  Worklist.push_back(I);
4315
4316  SmallPtrSet<Instruction *, 8> Visited;
4317  while (!Worklist.empty()) {
4318    I = Worklist.pop_back_val();
4319    if (!Visited.insert(I)) continue;
4320
4321    ValueExprMapType::iterator It =
4322      ValueExprMap.find_as(static_cast<Value *>(I));
4323    if (It != ValueExprMap.end()) {
4324      forgetMemoizedResults(It->second);
4325      ValueExprMap.erase(It);
4326      if (PHINode *PN = dyn_cast<PHINode>(I))
4327        ConstantEvolutionLoopExitValue.erase(PN);
4328    }
4329
4330    PushDefUseChildren(I, Worklist);
4331  }
4332}
4333
4334/// getExact - Get the exact loop backedge taken count considering all loop
4335/// exits. A computable result can only be return for loops with a single exit.
4336/// Returning the minimum taken count among all exits is incorrect because one
4337/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4338/// the limit of each loop test is never skipped. This is a valid assumption as
4339/// long as the loop exits via that test. For precise results, it is the
4340/// caller's responsibility to specify the relevant loop exit using
4341/// getExact(ExitingBlock, SE).
4342const SCEV *
4343ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4344  // If any exits were not computable, the loop is not computable.
4345  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4346
4347  // We need exactly one computable exit.
4348  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4349  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4350
4351  const SCEV *BECount = nullptr;
4352  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4353       ENT != nullptr; ENT = ENT->getNextExit()) {
4354
4355    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4356
4357    if (!BECount)
4358      BECount = ENT->ExactNotTaken;
4359    else if (BECount != ENT->ExactNotTaken)
4360      return SE->getCouldNotCompute();
4361  }
4362  assert(BECount && "Invalid not taken count for loop exit");
4363  return BECount;
4364}
4365
4366/// getExact - Get the exact not taken count for this loop exit.
4367const SCEV *
4368ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4369                                             ScalarEvolution *SE) const {
4370  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4371       ENT != nullptr; ENT = ENT->getNextExit()) {
4372
4373    if (ENT->ExitingBlock == ExitingBlock)
4374      return ENT->ExactNotTaken;
4375  }
4376  return SE->getCouldNotCompute();
4377}
4378
4379/// getMax - Get the max backedge taken count for the loop.
4380const SCEV *
4381ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4382  return Max ? Max : SE->getCouldNotCompute();
4383}
4384
4385bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4386                                                    ScalarEvolution *SE) const {
4387  if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4388    return true;
4389
4390  if (!ExitNotTaken.ExitingBlock)
4391    return false;
4392
4393  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4394       ENT != nullptr; ENT = ENT->getNextExit()) {
4395
4396    if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4397        && SE->hasOperand(ENT->ExactNotTaken, S)) {
4398      return true;
4399    }
4400  }
4401  return false;
4402}
4403
4404/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4405/// computable exit into a persistent ExitNotTakenInfo array.
4406ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4407  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4408  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4409
4410  if (!Complete)
4411    ExitNotTaken.setIncomplete();
4412
4413  unsigned NumExits = ExitCounts.size();
4414  if (NumExits == 0) return;
4415
4416  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4417  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4418  if (NumExits == 1) return;
4419
4420  // Handle the rare case of multiple computable exits.
4421  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4422
4423  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4424  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4425    PrevENT->setNextExit(ENT);
4426    ENT->ExitingBlock = ExitCounts[i].first;
4427    ENT->ExactNotTaken = ExitCounts[i].second;
4428  }
4429}
4430
4431/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4432void ScalarEvolution::BackedgeTakenInfo::clear() {
4433  ExitNotTaken.ExitingBlock = nullptr;
4434  ExitNotTaken.ExactNotTaken = nullptr;
4435  delete[] ExitNotTaken.getNextExit();
4436}
4437
4438/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4439/// of the specified loop will execute.
4440ScalarEvolution::BackedgeTakenInfo
4441ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4442  SmallVector<BasicBlock *, 8> ExitingBlocks;
4443  L->getExitingBlocks(ExitingBlocks);
4444
4445  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4446  bool CouldComputeBECount = true;
4447  BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4448  const SCEV *MustExitMaxBECount = nullptr;
4449  const SCEV *MayExitMaxBECount = nullptr;
4450
4451  // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4452  // and compute maxBECount.
4453  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4454    BasicBlock *ExitBB = ExitingBlocks[i];
4455    ExitLimit EL = ComputeExitLimit(L, ExitBB);
4456
4457    // 1. For each exit that can be computed, add an entry to ExitCounts.
4458    // CouldComputeBECount is true only if all exits can be computed.
4459    if (EL.Exact == getCouldNotCompute())
4460      // We couldn't compute an exact value for this exit, so
4461      // we won't be able to compute an exact value for the loop.
4462      CouldComputeBECount = false;
4463    else
4464      ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
4465
4466    // 2. Derive the loop's MaxBECount from each exit's max number of
4467    // non-exiting iterations. Partition the loop exits into two kinds:
4468    // LoopMustExits and LoopMayExits.
4469    //
4470    // A LoopMustExit meets two requirements:
4471    //
4472    // (a) Its ExitLimit.MustExit flag must be set which indicates that the exit
4473    // test condition cannot be skipped (the tested variable has unit stride or
4474    // the test is less-than or greater-than, rather than a strict inequality).
4475    //
4476    // (b) It must dominate the loop latch, hence must be tested on every loop
4477    // iteration.
4478    //
4479    // If any computable LoopMustExit is found, then MaxBECount is the minimum
4480    // EL.Max of computable LoopMustExits. Otherwise, MaxBECount is
4481    // conservatively the maximum EL.Max, where CouldNotCompute is considered
4482    // greater than any computable EL.Max.
4483    if (EL.MustExit && EL.Max != getCouldNotCompute() && Latch &&
4484        DT->dominates(ExitBB, Latch)) {
4485      if (!MustExitMaxBECount)
4486        MustExitMaxBECount = EL.Max;
4487      else {
4488        MustExitMaxBECount =
4489          getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
4490      }
4491    } else if (MayExitMaxBECount != getCouldNotCompute()) {
4492      if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4493        MayExitMaxBECount = EL.Max;
4494      else {
4495        MayExitMaxBECount =
4496          getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4497      }
4498    }
4499  }
4500  const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4501    (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
4502  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4503}
4504
4505/// ComputeExitLimit - Compute the number of times the backedge of the specified
4506/// loop will execute if it exits via the specified block.
4507ScalarEvolution::ExitLimit
4508ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4509
4510  // Okay, we've chosen an exiting block.  See what condition causes us to
4511  // exit at this block and remember the exit block and whether all other targets
4512  // lead to the loop header.
4513  bool MustExecuteLoopHeader = true;
4514  BasicBlock *Exit = nullptr;
4515  for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4516       SI != SE; ++SI)
4517    if (!L->contains(*SI)) {
4518      if (Exit) // Multiple exit successors.
4519        return getCouldNotCompute();
4520      Exit = *SI;
4521    } else if (*SI != L->getHeader()) {
4522      MustExecuteLoopHeader = false;
4523    }
4524
4525  // At this point, we know we have a conditional branch that determines whether
4526  // the loop is exited.  However, we don't know if the branch is executed each
4527  // time through the loop.  If not, then the execution count of the branch will
4528  // not be equal to the trip count of the loop.
4529  //
4530  // Currently we check for this by checking to see if the Exit branch goes to
4531  // the loop header.  If so, we know it will always execute the same number of
4532  // times as the loop.  We also handle the case where the exit block *is* the
4533  // loop header.  This is common for un-rotated loops.
4534  //
4535  // If both of those tests fail, walk up the unique predecessor chain to the
4536  // header, stopping if there is an edge that doesn't exit the loop. If the
4537  // header is reached, the execution count of the branch will be equal to the
4538  // trip count of the loop.
4539  //
4540  //  More extensive analysis could be done to handle more cases here.
4541  //
4542  if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
4543    // The simple checks failed, try climbing the unique predecessor chain
4544    // up to the header.
4545    bool Ok = false;
4546    for (BasicBlock *BB = ExitingBlock; BB; ) {
4547      BasicBlock *Pred = BB->getUniquePredecessor();
4548      if (!Pred)
4549        return getCouldNotCompute();
4550      TerminatorInst *PredTerm = Pred->getTerminator();
4551      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4552        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4553        if (PredSucc == BB)
4554          continue;
4555        // If the predecessor has a successor that isn't BB and isn't
4556        // outside the loop, assume the worst.
4557        if (L->contains(PredSucc))
4558          return getCouldNotCompute();
4559      }
4560      if (Pred == L->getHeader()) {
4561        Ok = true;
4562        break;
4563      }
4564      BB = Pred;
4565    }
4566    if (!Ok)
4567      return getCouldNotCompute();
4568  }
4569
4570  TerminatorInst *Term = ExitingBlock->getTerminator();
4571  if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4572    assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4573    // Proceed to the next level to examine the exit condition expression.
4574    return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4575                                    BI->getSuccessor(1),
4576                                    /*IsSubExpr=*/false);
4577  }
4578
4579  if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4580    return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4581                                                /*IsSubExpr=*/false);
4582
4583  return getCouldNotCompute();
4584}
4585
4586/// ComputeExitLimitFromCond - Compute the number of times the
4587/// backedge of the specified loop will execute if its exit condition
4588/// were a conditional branch of ExitCond, TBB, and FBB.
4589///
4590/// @param IsSubExpr is true if ExitCond does not directly control the exit
4591/// branch. In this case, we cannot assume that the loop only exits when the
4592/// condition is true and cannot infer that failing to meet the condition prior
4593/// to integer wraparound results in undefined behavior.
4594ScalarEvolution::ExitLimit
4595ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4596                                          Value *ExitCond,
4597                                          BasicBlock *TBB,
4598                                          BasicBlock *FBB,
4599                                          bool IsSubExpr) {
4600  // Check if the controlling expression for this loop is an And or Or.
4601  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4602    if (BO->getOpcode() == Instruction::And) {
4603      // Recurse on the operands of the and.
4604      bool EitherMayExit = L->contains(TBB);
4605      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4606                                               IsSubExpr || EitherMayExit);
4607      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4608                                               IsSubExpr || EitherMayExit);
4609      const SCEV *BECount = getCouldNotCompute();
4610      const SCEV *MaxBECount = getCouldNotCompute();
4611      bool MustExit = false;
4612      if (EitherMayExit) {
4613        // Both conditions must be true for the loop to continue executing.
4614        // Choose the less conservative count.
4615        if (EL0.Exact == getCouldNotCompute() ||
4616            EL1.Exact == getCouldNotCompute())
4617          BECount = getCouldNotCompute();
4618        else
4619          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4620        if (EL0.Max == getCouldNotCompute())
4621          MaxBECount = EL1.Max;
4622        else if (EL1.Max == getCouldNotCompute())
4623          MaxBECount = EL0.Max;
4624        else
4625          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4626        MustExit = EL0.MustExit || EL1.MustExit;
4627      } else {
4628        // Both conditions must be true at the same time for the loop to exit.
4629        // For now, be conservative.
4630        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4631        if (EL0.Max == EL1.Max)
4632          MaxBECount = EL0.Max;
4633        if (EL0.Exact == EL1.Exact)
4634          BECount = EL0.Exact;
4635        MustExit = EL0.MustExit && EL1.MustExit;
4636      }
4637
4638      return ExitLimit(BECount, MaxBECount, MustExit);
4639    }
4640    if (BO->getOpcode() == Instruction::Or) {
4641      // Recurse on the operands of the or.
4642      bool EitherMayExit = L->contains(FBB);
4643      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4644                                               IsSubExpr || EitherMayExit);
4645      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4646                                               IsSubExpr || EitherMayExit);
4647      const SCEV *BECount = getCouldNotCompute();
4648      const SCEV *MaxBECount = getCouldNotCompute();
4649      bool MustExit = false;
4650      if (EitherMayExit) {
4651        // Both conditions must be false for the loop to continue executing.
4652        // Choose the less conservative count.
4653        if (EL0.Exact == getCouldNotCompute() ||
4654            EL1.Exact == getCouldNotCompute())
4655          BECount = getCouldNotCompute();
4656        else
4657          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4658        if (EL0.Max == getCouldNotCompute())
4659          MaxBECount = EL1.Max;
4660        else if (EL1.Max == getCouldNotCompute())
4661          MaxBECount = EL0.Max;
4662        else
4663          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4664        MustExit = EL0.MustExit || EL1.MustExit;
4665      } else {
4666        // Both conditions must be false at the same time for the loop to exit.
4667        // For now, be conservative.
4668        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4669        if (EL0.Max == EL1.Max)
4670          MaxBECount = EL0.Max;
4671        if (EL0.Exact == EL1.Exact)
4672          BECount = EL0.Exact;
4673        MustExit = EL0.MustExit && EL1.MustExit;
4674      }
4675
4676      return ExitLimit(BECount, MaxBECount, MustExit);
4677    }
4678  }
4679
4680  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4681  // Proceed to the next level to examine the icmp.
4682  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4683    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
4684
4685  // Check for a constant condition. These are normally stripped out by
4686  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4687  // preserve the CFG and is temporarily leaving constant conditions
4688  // in place.
4689  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4690    if (L->contains(FBB) == !CI->getZExtValue())
4691      // The backedge is always taken.
4692      return getCouldNotCompute();
4693    else
4694      // The backedge is never taken.
4695      return getConstant(CI->getType(), 0);
4696  }
4697
4698  // If it's not an integer or pointer comparison then compute it the hard way.
4699  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4700}
4701
4702/// ComputeExitLimitFromICmp - Compute the number of times the
4703/// backedge of the specified loop will execute if its exit condition
4704/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4705ScalarEvolution::ExitLimit
4706ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4707                                          ICmpInst *ExitCond,
4708                                          BasicBlock *TBB,
4709                                          BasicBlock *FBB,
4710                                          bool IsSubExpr) {
4711
4712  // If the condition was exit on true, convert the condition to exit on false
4713  ICmpInst::Predicate Cond;
4714  if (!L->contains(FBB))
4715    Cond = ExitCond->getPredicate();
4716  else
4717    Cond = ExitCond->getInversePredicate();
4718
4719  // Handle common loops like: for (X = "string"; *X; ++X)
4720  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4721    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4722      ExitLimit ItCnt =
4723        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4724      if (ItCnt.hasAnyInfo())
4725        return ItCnt;
4726    }
4727
4728  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4729  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4730
4731  // Try to evaluate any dependencies out of the loop.
4732  LHS = getSCEVAtScope(LHS, L);
4733  RHS = getSCEVAtScope(RHS, L);
4734
4735  // At this point, we would like to compute how many iterations of the
4736  // loop the predicate will return true for these inputs.
4737  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4738    // If there is a loop-invariant, force it into the RHS.
4739    std::swap(LHS, RHS);
4740    Cond = ICmpInst::getSwappedPredicate(Cond);
4741  }
4742
4743  // Simplify the operands before analyzing them.
4744  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4745
4746  // If we have a comparison of a chrec against a constant, try to use value
4747  // ranges to answer this query.
4748  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4749    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4750      if (AddRec->getLoop() == L) {
4751        // Form the constant range.
4752        ConstantRange CompRange(
4753            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4754
4755        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4756        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4757      }
4758
4759  switch (Cond) {
4760  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4761    // Convert to: while (X-Y != 0)
4762    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4763    if (EL.hasAnyInfo()) return EL;
4764    break;
4765  }
4766  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4767    // Convert to: while (X-Y == 0)
4768    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4769    if (EL.hasAnyInfo()) return EL;
4770    break;
4771  }
4772  case ICmpInst::ICMP_SLT:
4773  case ICmpInst::ICMP_ULT: {                    // while (X < Y)
4774    bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4775    ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
4776    if (EL.hasAnyInfo()) return EL;
4777    break;
4778  }
4779  case ICmpInst::ICMP_SGT:
4780  case ICmpInst::ICMP_UGT: {                    // while (X > Y)
4781    bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4782    ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
4783    if (EL.hasAnyInfo()) return EL;
4784    break;
4785  }
4786  default:
4787#if 0
4788    dbgs() << "ComputeBackedgeTakenCount ";
4789    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4790      dbgs() << "[unsigned] ";
4791    dbgs() << *LHS << "   "
4792         << Instruction::getOpcodeName(Instruction::ICmp)
4793         << "   " << *RHS << "\n";
4794#endif
4795    break;
4796  }
4797  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4798}
4799
4800ScalarEvolution::ExitLimit
4801ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4802                                                      SwitchInst *Switch,
4803                                                      BasicBlock *ExitingBlock,
4804                                                      bool IsSubExpr) {
4805  assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4806
4807  // Give up if the exit is the default dest of a switch.
4808  if (Switch->getDefaultDest() == ExitingBlock)
4809    return getCouldNotCompute();
4810
4811  assert(L->contains(Switch->getDefaultDest()) &&
4812         "Default case must not exit the loop!");
4813  const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4814  const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4815
4816  // while (X != Y) --> while (X-Y != 0)
4817  ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4818  if (EL.hasAnyInfo())
4819    return EL;
4820
4821  return getCouldNotCompute();
4822}
4823
4824static ConstantInt *
4825EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4826                                ScalarEvolution &SE) {
4827  const SCEV *InVal = SE.getConstant(C);
4828  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4829  assert(isa<SCEVConstant>(Val) &&
4830         "Evaluation of SCEV at constant didn't fold correctly?");
4831  return cast<SCEVConstant>(Val)->getValue();
4832}
4833
4834/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4835/// 'icmp op load X, cst', try to see if we can compute the backedge
4836/// execution count.
4837ScalarEvolution::ExitLimit
4838ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4839  LoadInst *LI,
4840  Constant *RHS,
4841  const Loop *L,
4842  ICmpInst::Predicate predicate) {
4843
4844  if (LI->isVolatile()) return getCouldNotCompute();
4845
4846  // Check to see if the loaded pointer is a getelementptr of a global.
4847  // TODO: Use SCEV instead of manually grubbing with GEPs.
4848  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4849  if (!GEP) return getCouldNotCompute();
4850
4851  // Make sure that it is really a constant global we are gepping, with an
4852  // initializer, and make sure the first IDX is really 0.
4853  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4854  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4855      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4856      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4857    return getCouldNotCompute();
4858
4859  // Okay, we allow one non-constant index into the GEP instruction.
4860  Value *VarIdx = nullptr;
4861  std::vector<Constant*> Indexes;
4862  unsigned VarIdxNum = 0;
4863  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4864    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4865      Indexes.push_back(CI);
4866    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4867      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4868      VarIdx = GEP->getOperand(i);
4869      VarIdxNum = i-2;
4870      Indexes.push_back(nullptr);
4871    }
4872
4873  // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4874  if (!VarIdx)
4875    return getCouldNotCompute();
4876
4877  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4878  // Check to see if X is a loop variant variable value now.
4879  const SCEV *Idx = getSCEV(VarIdx);
4880  Idx = getSCEVAtScope(Idx, L);
4881
4882  // We can only recognize very limited forms of loop index expressions, in
4883  // particular, only affine AddRec's like {C1,+,C2}.
4884  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4885  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4886      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4887      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4888    return getCouldNotCompute();
4889
4890  unsigned MaxSteps = MaxBruteForceIterations;
4891  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4892    ConstantInt *ItCst = ConstantInt::get(
4893                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4894    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4895
4896    // Form the GEP offset.
4897    Indexes[VarIdxNum] = Val;
4898
4899    Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4900                                                         Indexes);
4901    if (!Result) break;  // Cannot compute!
4902
4903    // Evaluate the condition for this iteration.
4904    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4905    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4906    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4907#if 0
4908      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4909             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4910             << "***\n";
4911#endif
4912      ++NumArrayLenItCounts;
4913      return getConstant(ItCst);   // Found terminating iteration!
4914    }
4915  }
4916  return getCouldNotCompute();
4917}
4918
4919
4920/// CanConstantFold - Return true if we can constant fold an instruction of the
4921/// specified type, assuming that all operands were constants.
4922static bool CanConstantFold(const Instruction *I) {
4923  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4924      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4925      isa<LoadInst>(I))
4926    return true;
4927
4928  if (const CallInst *CI = dyn_cast<CallInst>(I))
4929    if (const Function *F = CI->getCalledFunction())
4930      return canConstantFoldCallTo(F);
4931  return false;
4932}
4933
4934/// Determine whether this instruction can constant evolve within this loop
4935/// assuming its operands can all constant evolve.
4936static bool canConstantEvolve(Instruction *I, const Loop *L) {
4937  // An instruction outside of the loop can't be derived from a loop PHI.
4938  if (!L->contains(I)) return false;
4939
4940  if (isa<PHINode>(I)) {
4941    if (L->getHeader() == I->getParent())
4942      return true;
4943    else
4944      // We don't currently keep track of the control flow needed to evaluate
4945      // PHIs, so we cannot handle PHIs inside of loops.
4946      return false;
4947  }
4948
4949  // If we won't be able to constant fold this expression even if the operands
4950  // are constants, bail early.
4951  return CanConstantFold(I);
4952}
4953
4954/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4955/// recursing through each instruction operand until reaching a loop header phi.
4956static PHINode *
4957getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4958                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4959
4960  // Otherwise, we can evaluate this instruction if all of its operands are
4961  // constant or derived from a PHI node themselves.
4962  PHINode *PHI = nullptr;
4963  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4964         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4965
4966    if (isa<Constant>(*OpI)) continue;
4967
4968    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4969    if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
4970
4971    PHINode *P = dyn_cast<PHINode>(OpInst);
4972    if (!P)
4973      // If this operand is already visited, reuse the prior result.
4974      // We may have P != PHI if this is the deepest point at which the
4975      // inconsistent paths meet.
4976      P = PHIMap.lookup(OpInst);
4977    if (!P) {
4978      // Recurse and memoize the results, whether a phi is found or not.
4979      // This recursive call invalidates pointers into PHIMap.
4980      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4981      PHIMap[OpInst] = P;
4982    }
4983    if (!P)
4984      return nullptr;  // Not evolving from PHI
4985    if (PHI && PHI != P)
4986      return nullptr;  // Evolving from multiple different PHIs.
4987    PHI = P;
4988  }
4989  // This is a expression evolving from a constant PHI!
4990  return PHI;
4991}
4992
4993/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4994/// in the loop that V is derived from.  We allow arbitrary operations along the
4995/// way, but the operands of an operation must either be constants or a value
4996/// derived from a constant PHI.  If this expression does not fit with these
4997/// constraints, return null.
4998static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4999  Instruction *I = dyn_cast<Instruction>(V);
5000  if (!I || !canConstantEvolve(I, L)) return nullptr;
5001
5002  if (PHINode *PN = dyn_cast<PHINode>(I)) {
5003    return PN;
5004  }
5005
5006  // Record non-constant instructions contained by the loop.
5007  DenseMap<Instruction *, PHINode *> PHIMap;
5008  return getConstantEvolvingPHIOperands(I, L, PHIMap);
5009}
5010
5011/// EvaluateExpression - Given an expression that passes the
5012/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5013/// in the loop has the value PHIVal.  If we can't fold this expression for some
5014/// reason, return null.
5015static Constant *EvaluateExpression(Value *V, const Loop *L,
5016                                    DenseMap<Instruction *, Constant *> &Vals,
5017                                    const DataLayout *DL,
5018                                    const TargetLibraryInfo *TLI) {
5019  // Convenient constant check, but redundant for recursive calls.
5020  if (Constant *C = dyn_cast<Constant>(V)) return C;
5021  Instruction *I = dyn_cast<Instruction>(V);
5022  if (!I) return nullptr;
5023
5024  if (Constant *C = Vals.lookup(I)) return C;
5025
5026  // An instruction inside the loop depends on a value outside the loop that we
5027  // weren't given a mapping for, or a value such as a call inside the loop.
5028  if (!canConstantEvolve(I, L)) return nullptr;
5029
5030  // An unmapped PHI can be due to a branch or another loop inside this loop,
5031  // or due to this not being the initial iteration through a loop where we
5032  // couldn't compute the evolution of this particular PHI last time.
5033  if (isa<PHINode>(I)) return nullptr;
5034
5035  std::vector<Constant*> Operands(I->getNumOperands());
5036
5037  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5038    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5039    if (!Operand) {
5040      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5041      if (!Operands[i]) return nullptr;
5042      continue;
5043    }
5044    Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5045    Vals[Operand] = C;
5046    if (!C) return nullptr;
5047    Operands[i] = C;
5048  }
5049
5050  if (CmpInst *CI = dyn_cast<CmpInst>(I))
5051    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5052                                           Operands[1], DL, TLI);
5053  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5054    if (!LI->isVolatile())
5055      return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5056  }
5057  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5058                                  TLI);
5059}
5060
5061/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5062/// in the header of its containing loop, we know the loop executes a
5063/// constant number of times, and the PHI node is just a recurrence
5064/// involving constants, fold it.
5065Constant *
5066ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5067                                                   const APInt &BEs,
5068                                                   const Loop *L) {
5069  DenseMap<PHINode*, Constant*>::const_iterator I =
5070    ConstantEvolutionLoopExitValue.find(PN);
5071  if (I != ConstantEvolutionLoopExitValue.end())
5072    return I->second;
5073
5074  if (BEs.ugt(MaxBruteForceIterations))
5075    return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
5076
5077  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5078
5079  DenseMap<Instruction *, Constant *> CurrentIterVals;
5080  BasicBlock *Header = L->getHeader();
5081  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5082
5083  // Since the loop is canonicalized, the PHI node must have two entries.  One
5084  // entry must be a constant (coming in from outside of the loop), and the
5085  // second must be derived from the same PHI.
5086  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5087  PHINode *PHI = nullptr;
5088  for (BasicBlock::iterator I = Header->begin();
5089       (PHI = dyn_cast<PHINode>(I)); ++I) {
5090    Constant *StartCST =
5091      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5092    if (!StartCST) continue;
5093    CurrentIterVals[PHI] = StartCST;
5094  }
5095  if (!CurrentIterVals.count(PN))
5096    return RetVal = nullptr;
5097
5098  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
5099
5100  // Execute the loop symbolically to determine the exit value.
5101  if (BEs.getActiveBits() >= 32)
5102    return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5103
5104  unsigned NumIterations = BEs.getZExtValue(); // must be in range
5105  unsigned IterationNum = 0;
5106  for (; ; ++IterationNum) {
5107    if (IterationNum == NumIterations)
5108      return RetVal = CurrentIterVals[PN];  // Got exit value!
5109
5110    // Compute the value of the PHIs for the next iteration.
5111    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5112    DenseMap<Instruction *, Constant *> NextIterVals;
5113    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
5114                                           TLI);
5115    if (!NextPHI)
5116      return nullptr;        // Couldn't evaluate!
5117    NextIterVals[PN] = NextPHI;
5118
5119    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5120
5121    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
5122    // cease to be able to evaluate one of them or if they stop evolving,
5123    // because that doesn't necessarily prevent us from computing PN.
5124    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
5125    for (DenseMap<Instruction *, Constant *>::const_iterator
5126           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5127      PHINode *PHI = dyn_cast<PHINode>(I->first);
5128      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
5129      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5130    }
5131    // We use two distinct loops because EvaluateExpression may invalidate any
5132    // iterators into CurrentIterVals.
5133    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5134             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5135      PHINode *PHI = I->first;
5136      Constant *&NextPHI = NextIterVals[PHI];
5137      if (!NextPHI) {   // Not already computed.
5138        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5139        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5140      }
5141      if (NextPHI != I->second)
5142        StoppedEvolving = false;
5143    }
5144
5145    // If all entries in CurrentIterVals == NextIterVals then we can stop
5146    // iterating, the loop can't continue to change.
5147    if (StoppedEvolving)
5148      return RetVal = CurrentIterVals[PN];
5149
5150    CurrentIterVals.swap(NextIterVals);
5151  }
5152}
5153
5154/// ComputeExitCountExhaustively - If the loop is known to execute a
5155/// constant number of times (the condition evolves only from constants),
5156/// try to evaluate a few iterations of the loop until we get the exit
5157/// condition gets a value of ExitWhen (true or false).  If we cannot
5158/// evaluate the trip count of the loop, return getCouldNotCompute().
5159const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5160                                                          Value *Cond,
5161                                                          bool ExitWhen) {
5162  PHINode *PN = getConstantEvolvingPHI(Cond, L);
5163  if (!PN) return getCouldNotCompute();
5164
5165  // If the loop is canonicalized, the PHI will have exactly two entries.
5166  // That's the only form we support here.
5167  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5168
5169  DenseMap<Instruction *, Constant *> CurrentIterVals;
5170  BasicBlock *Header = L->getHeader();
5171  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5172
5173  // One entry must be a constant (coming in from outside of the loop), and the
5174  // second must be derived from the same PHI.
5175  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5176  PHINode *PHI = nullptr;
5177  for (BasicBlock::iterator I = Header->begin();
5178       (PHI = dyn_cast<PHINode>(I)); ++I) {
5179    Constant *StartCST =
5180      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5181    if (!StartCST) continue;
5182    CurrentIterVals[PHI] = StartCST;
5183  }
5184  if (!CurrentIterVals.count(PN))
5185    return getCouldNotCompute();
5186
5187  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
5188  // the loop symbolically to determine when the condition gets a value of
5189  // "ExitWhen".
5190
5191  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
5192  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5193    ConstantInt *CondVal =
5194      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5195                                                       DL, TLI));
5196
5197    // Couldn't symbolically evaluate.
5198    if (!CondVal) return getCouldNotCompute();
5199
5200    if (CondVal->getValue() == uint64_t(ExitWhen)) {
5201      ++NumBruteForceTripCountsComputed;
5202      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5203    }
5204
5205    // Update all the PHI nodes for the next iteration.
5206    DenseMap<Instruction *, Constant *> NextIterVals;
5207
5208    // Create a list of which PHIs we need to compute. We want to do this before
5209    // calling EvaluateExpression on them because that may invalidate iterators
5210    // into CurrentIterVals.
5211    SmallVector<PHINode *, 8> PHIsToCompute;
5212    for (DenseMap<Instruction *, Constant *>::const_iterator
5213           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5214      PHINode *PHI = dyn_cast<PHINode>(I->first);
5215      if (!PHI || PHI->getParent() != Header) continue;
5216      PHIsToCompute.push_back(PHI);
5217    }
5218    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5219             E = PHIsToCompute.end(); I != E; ++I) {
5220      PHINode *PHI = *I;
5221      Constant *&NextPHI = NextIterVals[PHI];
5222      if (NextPHI) continue;    // Already computed!
5223
5224      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5225      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5226    }
5227    CurrentIterVals.swap(NextIterVals);
5228  }
5229
5230  // Too many iterations were needed to evaluate.
5231  return getCouldNotCompute();
5232}
5233
5234/// getSCEVAtScope - Return a SCEV expression for the specified value
5235/// at the specified scope in the program.  The L value specifies a loop
5236/// nest to evaluate the expression at, where null is the top-level or a
5237/// specified loop is immediately inside of the loop.
5238///
5239/// This method can be used to compute the exit value for a variable defined
5240/// in a loop by querying what the value will hold in the parent loop.
5241///
5242/// In the case that a relevant loop exit value cannot be computed, the
5243/// original value V is returned.
5244const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5245  // Check to see if we've folded this expression at this loop before.
5246  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5247  for (unsigned u = 0; u < Values.size(); u++) {
5248    if (Values[u].first == L)
5249      return Values[u].second ? Values[u].second : V;
5250  }
5251  Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
5252  // Otherwise compute it.
5253  const SCEV *C = computeSCEVAtScope(V, L);
5254  SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5255  for (unsigned u = Values2.size(); u > 0; u--) {
5256    if (Values2[u - 1].first == L) {
5257      Values2[u - 1].second = C;
5258      break;
5259    }
5260  }
5261  return C;
5262}
5263
5264/// This builds up a Constant using the ConstantExpr interface.  That way, we
5265/// will return Constants for objects which aren't represented by a
5266/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5267/// Returns NULL if the SCEV isn't representable as a Constant.
5268static Constant *BuildConstantFromSCEV(const SCEV *V) {
5269  switch (static_cast<SCEVTypes>(V->getSCEVType())) {
5270    case scCouldNotCompute:
5271    case scAddRecExpr:
5272      break;
5273    case scConstant:
5274      return cast<SCEVConstant>(V)->getValue();
5275    case scUnknown:
5276      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5277    case scSignExtend: {
5278      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5279      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5280        return ConstantExpr::getSExt(CastOp, SS->getType());
5281      break;
5282    }
5283    case scZeroExtend: {
5284      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5285      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5286        return ConstantExpr::getZExt(CastOp, SZ->getType());
5287      break;
5288    }
5289    case scTruncate: {
5290      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5291      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5292        return ConstantExpr::getTrunc(CastOp, ST->getType());
5293      break;
5294    }
5295    case scAddExpr: {
5296      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5297      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5298        if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5299          unsigned AS = PTy->getAddressSpace();
5300          Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5301          C = ConstantExpr::getBitCast(C, DestPtrTy);
5302        }
5303        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5304          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5305          if (!C2) return nullptr;
5306
5307          // First pointer!
5308          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5309            unsigned AS = C2->getType()->getPointerAddressSpace();
5310            std::swap(C, C2);
5311            Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5312            // The offsets have been converted to bytes.  We can add bytes to an
5313            // i8* by GEP with the byte count in the first index.
5314            C = ConstantExpr::getBitCast(C, DestPtrTy);
5315          }
5316
5317          // Don't bother trying to sum two pointers. We probably can't
5318          // statically compute a load that results from it anyway.
5319          if (C2->getType()->isPointerTy())
5320            return nullptr;
5321
5322          if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5323            if (PTy->getElementType()->isStructTy())
5324              C2 = ConstantExpr::getIntegerCast(
5325                  C2, Type::getInt32Ty(C->getContext()), true);
5326            C = ConstantExpr::getGetElementPtr(C, C2);
5327          } else
5328            C = ConstantExpr::getAdd(C, C2);
5329        }
5330        return C;
5331      }
5332      break;
5333    }
5334    case scMulExpr: {
5335      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5336      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5337        // Don't bother with pointers at all.
5338        if (C->getType()->isPointerTy()) return nullptr;
5339        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5340          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5341          if (!C2 || C2->getType()->isPointerTy()) return nullptr;
5342          C = ConstantExpr::getMul(C, C2);
5343        }
5344        return C;
5345      }
5346      break;
5347    }
5348    case scUDivExpr: {
5349      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5350      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5351        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5352          if (LHS->getType() == RHS->getType())
5353            return ConstantExpr::getUDiv(LHS, RHS);
5354      break;
5355    }
5356    case scSMaxExpr:
5357    case scUMaxExpr:
5358      break; // TODO: smax, umax.
5359  }
5360  return nullptr;
5361}
5362
5363const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5364  if (isa<SCEVConstant>(V)) return V;
5365
5366  // If this instruction is evolved from a constant-evolving PHI, compute the
5367  // exit value from the loop without using SCEVs.
5368  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5369    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5370      const Loop *LI = (*this->LI)[I->getParent()];
5371      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5372        if (PHINode *PN = dyn_cast<PHINode>(I))
5373          if (PN->getParent() == LI->getHeader()) {
5374            // Okay, there is no closed form solution for the PHI node.  Check
5375            // to see if the loop that contains it has a known backedge-taken
5376            // count.  If so, we may be able to force computation of the exit
5377            // value.
5378            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5379            if (const SCEVConstant *BTCC =
5380                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5381              // Okay, we know how many times the containing loop executes.  If
5382              // this is a constant evolving PHI node, get the final value at
5383              // the specified iteration number.
5384              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5385                                                   BTCC->getValue()->getValue(),
5386                                                               LI);
5387              if (RV) return getSCEV(RV);
5388            }
5389          }
5390
5391      // Okay, this is an expression that we cannot symbolically evaluate
5392      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5393      // the arguments into constants, and if so, try to constant propagate the
5394      // result.  This is particularly useful for computing loop exit values.
5395      if (CanConstantFold(I)) {
5396        SmallVector<Constant *, 4> Operands;
5397        bool MadeImprovement = false;
5398        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5399          Value *Op = I->getOperand(i);
5400          if (Constant *C = dyn_cast<Constant>(Op)) {
5401            Operands.push_back(C);
5402            continue;
5403          }
5404
5405          // If any of the operands is non-constant and if they are
5406          // non-integer and non-pointer, don't even try to analyze them
5407          // with scev techniques.
5408          if (!isSCEVable(Op->getType()))
5409            return V;
5410
5411          const SCEV *OrigV = getSCEV(Op);
5412          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5413          MadeImprovement |= OrigV != OpV;
5414
5415          Constant *C = BuildConstantFromSCEV(OpV);
5416          if (!C) return V;
5417          if (C->getType() != Op->getType())
5418            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5419                                                              Op->getType(),
5420                                                              false),
5421                                      C, Op->getType());
5422          Operands.push_back(C);
5423        }
5424
5425        // Check to see if getSCEVAtScope actually made an improvement.
5426        if (MadeImprovement) {
5427          Constant *C = nullptr;
5428          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5429            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5430                                                Operands[0], Operands[1], DL,
5431                                                TLI);
5432          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5433            if (!LI->isVolatile())
5434              C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
5435          } else
5436            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5437                                         Operands, DL, TLI);
5438          if (!C) return V;
5439          return getSCEV(C);
5440        }
5441      }
5442    }
5443
5444    // This is some other type of SCEVUnknown, just return it.
5445    return V;
5446  }
5447
5448  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5449    // Avoid performing the look-up in the common case where the specified
5450    // expression has no loop-variant portions.
5451    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5452      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5453      if (OpAtScope != Comm->getOperand(i)) {
5454        // Okay, at least one of these operands is loop variant but might be
5455        // foldable.  Build a new instance of the folded commutative expression.
5456        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5457                                            Comm->op_begin()+i);
5458        NewOps.push_back(OpAtScope);
5459
5460        for (++i; i != e; ++i) {
5461          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5462          NewOps.push_back(OpAtScope);
5463        }
5464        if (isa<SCEVAddExpr>(Comm))
5465          return getAddExpr(NewOps);
5466        if (isa<SCEVMulExpr>(Comm))
5467          return getMulExpr(NewOps);
5468        if (isa<SCEVSMaxExpr>(Comm))
5469          return getSMaxExpr(NewOps);
5470        if (isa<SCEVUMaxExpr>(Comm))
5471          return getUMaxExpr(NewOps);
5472        llvm_unreachable("Unknown commutative SCEV type!");
5473      }
5474    }
5475    // If we got here, all operands are loop invariant.
5476    return Comm;
5477  }
5478
5479  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5480    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5481    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5482    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5483      return Div;   // must be loop invariant
5484    return getUDivExpr(LHS, RHS);
5485  }
5486
5487  // If this is a loop recurrence for a loop that does not contain L, then we
5488  // are dealing with the final value computed by the loop.
5489  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5490    // First, attempt to evaluate each operand.
5491    // Avoid performing the look-up in the common case where the specified
5492    // expression has no loop-variant portions.
5493    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5494      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5495      if (OpAtScope == AddRec->getOperand(i))
5496        continue;
5497
5498      // Okay, at least one of these operands is loop variant but might be
5499      // foldable.  Build a new instance of the folded commutative expression.
5500      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5501                                          AddRec->op_begin()+i);
5502      NewOps.push_back(OpAtScope);
5503      for (++i; i != e; ++i)
5504        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5505
5506      const SCEV *FoldedRec =
5507        getAddRecExpr(NewOps, AddRec->getLoop(),
5508                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5509      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5510      // The addrec may be folded to a nonrecurrence, for example, if the
5511      // induction variable is multiplied by zero after constant folding. Go
5512      // ahead and return the folded value.
5513      if (!AddRec)
5514        return FoldedRec;
5515      break;
5516    }
5517
5518    // If the scope is outside the addrec's loop, evaluate it by using the
5519    // loop exit value of the addrec.
5520    if (!AddRec->getLoop()->contains(L)) {
5521      // To evaluate this recurrence, we need to know how many times the AddRec
5522      // loop iterates.  Compute this now.
5523      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5524      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5525
5526      // Then, evaluate the AddRec.
5527      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5528    }
5529
5530    return AddRec;
5531  }
5532
5533  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5534    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5535    if (Op == Cast->getOperand())
5536      return Cast;  // must be loop invariant
5537    return getZeroExtendExpr(Op, Cast->getType());
5538  }
5539
5540  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5541    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5542    if (Op == Cast->getOperand())
5543      return Cast;  // must be loop invariant
5544    return getSignExtendExpr(Op, Cast->getType());
5545  }
5546
5547  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5548    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5549    if (Op == Cast->getOperand())
5550      return Cast;  // must be loop invariant
5551    return getTruncateExpr(Op, Cast->getType());
5552  }
5553
5554  llvm_unreachable("Unknown SCEV type!");
5555}
5556
5557/// getSCEVAtScope - This is a convenience function which does
5558/// getSCEVAtScope(getSCEV(V), L).
5559const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5560  return getSCEVAtScope(getSCEV(V), L);
5561}
5562
5563/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5564/// following equation:
5565///
5566///     A * X = B (mod N)
5567///
5568/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5569/// A and B isn't important.
5570///
5571/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5572static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5573                                               ScalarEvolution &SE) {
5574  uint32_t BW = A.getBitWidth();
5575  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5576  assert(A != 0 && "A must be non-zero.");
5577
5578  // 1. D = gcd(A, N)
5579  //
5580  // The gcd of A and N may have only one prime factor: 2. The number of
5581  // trailing zeros in A is its multiplicity
5582  uint32_t Mult2 = A.countTrailingZeros();
5583  // D = 2^Mult2
5584
5585  // 2. Check if B is divisible by D.
5586  //
5587  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5588  // is not less than multiplicity of this prime factor for D.
5589  if (B.countTrailingZeros() < Mult2)
5590    return SE.getCouldNotCompute();
5591
5592  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5593  // modulo (N / D).
5594  //
5595  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5596  // bit width during computations.
5597  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5598  APInt Mod(BW + 1, 0);
5599  Mod.setBit(BW - Mult2);  // Mod = N / D
5600  APInt I = AD.multiplicativeInverse(Mod);
5601
5602  // 4. Compute the minimum unsigned root of the equation:
5603  // I * (B / D) mod (N / D)
5604  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5605
5606  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5607  // bits.
5608  return SE.getConstant(Result.trunc(BW));
5609}
5610
5611/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5612/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5613/// might be the same) or two SCEVCouldNotCompute objects.
5614///
5615static std::pair<const SCEV *,const SCEV *>
5616SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5617  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5618  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5619  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5620  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5621
5622  // We currently can only solve this if the coefficients are constants.
5623  if (!LC || !MC || !NC) {
5624    const SCEV *CNC = SE.getCouldNotCompute();
5625    return std::make_pair(CNC, CNC);
5626  }
5627
5628  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5629  const APInt &L = LC->getValue()->getValue();
5630  const APInt &M = MC->getValue()->getValue();
5631  const APInt &N = NC->getValue()->getValue();
5632  APInt Two(BitWidth, 2);
5633  APInt Four(BitWidth, 4);
5634
5635  {
5636    using namespace APIntOps;
5637    const APInt& C = L;
5638    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5639    // The B coefficient is M-N/2
5640    APInt B(M);
5641    B -= sdiv(N,Two);
5642
5643    // The A coefficient is N/2
5644    APInt A(N.sdiv(Two));
5645
5646    // Compute the B^2-4ac term.
5647    APInt SqrtTerm(B);
5648    SqrtTerm *= B;
5649    SqrtTerm -= Four * (A * C);
5650
5651    if (SqrtTerm.isNegative()) {
5652      // The loop is provably infinite.
5653      const SCEV *CNC = SE.getCouldNotCompute();
5654      return std::make_pair(CNC, CNC);
5655    }
5656
5657    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5658    // integer value or else APInt::sqrt() will assert.
5659    APInt SqrtVal(SqrtTerm.sqrt());
5660
5661    // Compute the two solutions for the quadratic formula.
5662    // The divisions must be performed as signed divisions.
5663    APInt NegB(-B);
5664    APInt TwoA(A << 1);
5665    if (TwoA.isMinValue()) {
5666      const SCEV *CNC = SE.getCouldNotCompute();
5667      return std::make_pair(CNC, CNC);
5668    }
5669
5670    LLVMContext &Context = SE.getContext();
5671
5672    ConstantInt *Solution1 =
5673      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5674    ConstantInt *Solution2 =
5675      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5676
5677    return std::make_pair(SE.getConstant(Solution1),
5678                          SE.getConstant(Solution2));
5679  } // end APIntOps namespace
5680}
5681
5682/// HowFarToZero - Return the number of times a backedge comparing the specified
5683/// value to zero will execute.  If not computable, return CouldNotCompute.
5684///
5685/// This is only used for loops with a "x != y" exit test. The exit condition is
5686/// now expressed as a single expression, V = x-y. So the exit test is
5687/// effectively V != 0.  We know and take advantage of the fact that this
5688/// expression only being used in a comparison by zero context.
5689ScalarEvolution::ExitLimit
5690ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
5691  // If the value is a constant
5692  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5693    // If the value is already zero, the branch will execute zero times.
5694    if (C->getValue()->isZero()) return C;
5695    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5696  }
5697
5698  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5699  if (!AddRec || AddRec->getLoop() != L)
5700    return getCouldNotCompute();
5701
5702  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5703  // the quadratic equation to solve it.
5704  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5705    std::pair<const SCEV *,const SCEV *> Roots =
5706      SolveQuadraticEquation(AddRec, *this);
5707    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5708    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5709    if (R1 && R2) {
5710#if 0
5711      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5712             << "  sol#2: " << *R2 << "\n";
5713#endif
5714      // Pick the smallest positive root value.
5715      if (ConstantInt *CB =
5716          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5717                                                      R1->getValue(),
5718                                                      R2->getValue()))) {
5719        if (CB->getZExtValue() == false)
5720          std::swap(R1, R2);   // R1 is the minimum root now.
5721
5722        // We can only use this value if the chrec ends up with an exact zero
5723        // value at this index.  When solving for "X*X != 5", for example, we
5724        // should not accept a root of 2.
5725        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5726        if (Val->isZero())
5727          return R1;  // We found a quadratic root!
5728      }
5729    }
5730    return getCouldNotCompute();
5731  }
5732
5733  // Otherwise we can only handle this if it is affine.
5734  if (!AddRec->isAffine())
5735    return getCouldNotCompute();
5736
5737  // If this is an affine expression, the execution count of this branch is
5738  // the minimum unsigned root of the following equation:
5739  //
5740  //     Start + Step*N = 0 (mod 2^BW)
5741  //
5742  // equivalent to:
5743  //
5744  //             Step*N = -Start (mod 2^BW)
5745  //
5746  // where BW is the common bit width of Start and Step.
5747
5748  // Get the initial value for the loop.
5749  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5750  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5751
5752  // For now we handle only constant steps.
5753  //
5754  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5755  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5756  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5757  // We have not yet seen any such cases.
5758  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5759  if (!StepC || StepC->getValue()->equalsInt(0))
5760    return getCouldNotCompute();
5761
5762  // For positive steps (counting up until unsigned overflow):
5763  //   N = -Start/Step (as unsigned)
5764  // For negative steps (counting down to zero):
5765  //   N = Start/-Step
5766  // First compute the unsigned distance from zero in the direction of Step.
5767  bool CountDown = StepC->getValue()->getValue().isNegative();
5768  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5769
5770  // Handle unitary steps, which cannot wraparound.
5771  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5772  //   N = Distance (as unsigned)
5773  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5774    ConstantRange CR = getUnsignedRange(Start);
5775    const SCEV *MaxBECount;
5776    if (!CountDown && CR.getUnsignedMin().isMinValue())
5777      // When counting up, the worst starting value is 1, not 0.
5778      MaxBECount = CR.getUnsignedMax().isMinValue()
5779        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5780        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5781    else
5782      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5783                                         : -CR.getUnsignedMin());
5784    return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
5785  }
5786
5787  // If the recurrence is known not to wraparound, unsigned divide computes the
5788  // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5789  // that the value will either become zero (and thus the loop terminates), that
5790  // the loop will terminate through some other exit condition first, or that
5791  // the loop has undefined behavior.  This means we can't "miss" the exit
5792  // value, even with nonunit stride, and exit later via the same branch. Note
5793  // that we can skip this exit if loop later exits via a different
5794  // branch. Hence MustExit=false.
5795  //
5796  // This is only valid for expressions that directly compute the loop exit. It
5797  // is invalid for subexpressions in which the loop may exit through this
5798  // branch even if this subexpression is false. In that case, the trip count
5799  // computed by this udiv could be smaller than the number of well-defined
5800  // iterations.
5801  if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5802    const SCEV *Exact =
5803      getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5804    return ExitLimit(Exact, Exact, /*MustExit=*/false);
5805  }
5806
5807  // If Step is a power of two that evenly divides Start we know that the loop
5808  // will always terminate.  Start may not be a constant so we just have the
5809  // number of trailing zeros available.  This is safe even in presence of
5810  // overflow as the recurrence will overflow to exactly 0.
5811  const APInt &StepV = StepC->getValue()->getValue();
5812  if (StepV.isPowerOf2() &&
5813      GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
5814    return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5815
5816  // Then, try to solve the above equation provided that Start is constant.
5817  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5818    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5819                                        -StartC->getValue()->getValue(),
5820                                        *this);
5821  return getCouldNotCompute();
5822}
5823
5824/// HowFarToNonZero - Return the number of times a backedge checking the
5825/// specified value for nonzero will execute.  If not computable, return
5826/// CouldNotCompute
5827ScalarEvolution::ExitLimit
5828ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5829  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5830  // handle them yet except for the trivial case.  This could be expanded in the
5831  // future as needed.
5832
5833  // If the value is a constant, check to see if it is known to be non-zero
5834  // already.  If so, the backedge will execute zero times.
5835  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5836    if (!C->getValue()->isNullValue())
5837      return getConstant(C->getType(), 0);
5838    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5839  }
5840
5841  // We could implement others, but I really doubt anyone writes loops like
5842  // this, and if they did, they would already be constant folded.
5843  return getCouldNotCompute();
5844}
5845
5846/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5847/// (which may not be an immediate predecessor) which has exactly one
5848/// successor from which BB is reachable, or null if no such block is
5849/// found.
5850///
5851std::pair<BasicBlock *, BasicBlock *>
5852ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5853  // If the block has a unique predecessor, then there is no path from the
5854  // predecessor to the block that does not go through the direct edge
5855  // from the predecessor to the block.
5856  if (BasicBlock *Pred = BB->getSinglePredecessor())
5857    return std::make_pair(Pred, BB);
5858
5859  // A loop's header is defined to be a block that dominates the loop.
5860  // If the header has a unique predecessor outside the loop, it must be
5861  // a block that has exactly one successor that can reach the loop.
5862  if (Loop *L = LI->getLoopFor(BB))
5863    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5864
5865  return std::pair<BasicBlock *, BasicBlock *>();
5866}
5867
5868/// HasSameValue - SCEV structural equivalence is usually sufficient for
5869/// testing whether two expressions are equal, however for the purposes of
5870/// looking for a condition guarding a loop, it can be useful to be a little
5871/// more general, since a front-end may have replicated the controlling
5872/// expression.
5873///
5874static bool HasSameValue(const SCEV *A, const SCEV *B) {
5875  // Quick check to see if they are the same SCEV.
5876  if (A == B) return true;
5877
5878  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5879  // two different instructions with the same value. Check for this case.
5880  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5881    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5882      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5883        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5884          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5885            return true;
5886
5887  // Otherwise assume they may have a different value.
5888  return false;
5889}
5890
5891/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5892/// predicate Pred. Return true iff any changes were made.
5893///
5894bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5895                                           const SCEV *&LHS, const SCEV *&RHS,
5896                                           unsigned Depth) {
5897  bool Changed = false;
5898
5899  // If we hit the max recursion limit bail out.
5900  if (Depth >= 3)
5901    return false;
5902
5903  // Canonicalize a constant to the right side.
5904  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5905    // Check for both operands constant.
5906    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5907      if (ConstantExpr::getICmp(Pred,
5908                                LHSC->getValue(),
5909                                RHSC->getValue())->isNullValue())
5910        goto trivially_false;
5911      else
5912        goto trivially_true;
5913    }
5914    // Otherwise swap the operands to put the constant on the right.
5915    std::swap(LHS, RHS);
5916    Pred = ICmpInst::getSwappedPredicate(Pred);
5917    Changed = true;
5918  }
5919
5920  // If we're comparing an addrec with a value which is loop-invariant in the
5921  // addrec's loop, put the addrec on the left. Also make a dominance check,
5922  // as both operands could be addrecs loop-invariant in each other's loop.
5923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5924    const Loop *L = AR->getLoop();
5925    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5926      std::swap(LHS, RHS);
5927      Pred = ICmpInst::getSwappedPredicate(Pred);
5928      Changed = true;
5929    }
5930  }
5931
5932  // If there's a constant operand, canonicalize comparisons with boundary
5933  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5934  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5935    const APInt &RA = RC->getValue()->getValue();
5936    switch (Pred) {
5937    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5938    case ICmpInst::ICMP_EQ:
5939    case ICmpInst::ICMP_NE:
5940      // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5941      if (!RA)
5942        if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5943          if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5944            if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5945                ME->getOperand(0)->isAllOnesValue()) {
5946              RHS = AE->getOperand(1);
5947              LHS = ME->getOperand(1);
5948              Changed = true;
5949            }
5950      break;
5951    case ICmpInst::ICMP_UGE:
5952      if ((RA - 1).isMinValue()) {
5953        Pred = ICmpInst::ICMP_NE;
5954        RHS = getConstant(RA - 1);
5955        Changed = true;
5956        break;
5957      }
5958      if (RA.isMaxValue()) {
5959        Pred = ICmpInst::ICMP_EQ;
5960        Changed = true;
5961        break;
5962      }
5963      if (RA.isMinValue()) goto trivially_true;
5964
5965      Pred = ICmpInst::ICMP_UGT;
5966      RHS = getConstant(RA - 1);
5967      Changed = true;
5968      break;
5969    case ICmpInst::ICMP_ULE:
5970      if ((RA + 1).isMaxValue()) {
5971        Pred = ICmpInst::ICMP_NE;
5972        RHS = getConstant(RA + 1);
5973        Changed = true;
5974        break;
5975      }
5976      if (RA.isMinValue()) {
5977        Pred = ICmpInst::ICMP_EQ;
5978        Changed = true;
5979        break;
5980      }
5981      if (RA.isMaxValue()) goto trivially_true;
5982
5983      Pred = ICmpInst::ICMP_ULT;
5984      RHS = getConstant(RA + 1);
5985      Changed = true;
5986      break;
5987    case ICmpInst::ICMP_SGE:
5988      if ((RA - 1).isMinSignedValue()) {
5989        Pred = ICmpInst::ICMP_NE;
5990        RHS = getConstant(RA - 1);
5991        Changed = true;
5992        break;
5993      }
5994      if (RA.isMaxSignedValue()) {
5995        Pred = ICmpInst::ICMP_EQ;
5996        Changed = true;
5997        break;
5998      }
5999      if (RA.isMinSignedValue()) goto trivially_true;
6000
6001      Pred = ICmpInst::ICMP_SGT;
6002      RHS = getConstant(RA - 1);
6003      Changed = true;
6004      break;
6005    case ICmpInst::ICMP_SLE:
6006      if ((RA + 1).isMaxSignedValue()) {
6007        Pred = ICmpInst::ICMP_NE;
6008        RHS = getConstant(RA + 1);
6009        Changed = true;
6010        break;
6011      }
6012      if (RA.isMinSignedValue()) {
6013        Pred = ICmpInst::ICMP_EQ;
6014        Changed = true;
6015        break;
6016      }
6017      if (RA.isMaxSignedValue()) goto trivially_true;
6018
6019      Pred = ICmpInst::ICMP_SLT;
6020      RHS = getConstant(RA + 1);
6021      Changed = true;
6022      break;
6023    case ICmpInst::ICMP_UGT:
6024      if (RA.isMinValue()) {
6025        Pred = ICmpInst::ICMP_NE;
6026        Changed = true;
6027        break;
6028      }
6029      if ((RA + 1).isMaxValue()) {
6030        Pred = ICmpInst::ICMP_EQ;
6031        RHS = getConstant(RA + 1);
6032        Changed = true;
6033        break;
6034      }
6035      if (RA.isMaxValue()) goto trivially_false;
6036      break;
6037    case ICmpInst::ICMP_ULT:
6038      if (RA.isMaxValue()) {
6039        Pred = ICmpInst::ICMP_NE;
6040        Changed = true;
6041        break;
6042      }
6043      if ((RA - 1).isMinValue()) {
6044        Pred = ICmpInst::ICMP_EQ;
6045        RHS = getConstant(RA - 1);
6046        Changed = true;
6047        break;
6048      }
6049      if (RA.isMinValue()) goto trivially_false;
6050      break;
6051    case ICmpInst::ICMP_SGT:
6052      if (RA.isMinSignedValue()) {
6053        Pred = ICmpInst::ICMP_NE;
6054        Changed = true;
6055        break;
6056      }
6057      if ((RA + 1).isMaxSignedValue()) {
6058        Pred = ICmpInst::ICMP_EQ;
6059        RHS = getConstant(RA + 1);
6060        Changed = true;
6061        break;
6062      }
6063      if (RA.isMaxSignedValue()) goto trivially_false;
6064      break;
6065    case ICmpInst::ICMP_SLT:
6066      if (RA.isMaxSignedValue()) {
6067        Pred = ICmpInst::ICMP_NE;
6068        Changed = true;
6069        break;
6070      }
6071      if ((RA - 1).isMinSignedValue()) {
6072       Pred = ICmpInst::ICMP_EQ;
6073       RHS = getConstant(RA - 1);
6074        Changed = true;
6075       break;
6076      }
6077      if (RA.isMinSignedValue()) goto trivially_false;
6078      break;
6079    }
6080  }
6081
6082  // Check for obvious equality.
6083  if (HasSameValue(LHS, RHS)) {
6084    if (ICmpInst::isTrueWhenEqual(Pred))
6085      goto trivially_true;
6086    if (ICmpInst::isFalseWhenEqual(Pred))
6087      goto trivially_false;
6088  }
6089
6090  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6091  // adding or subtracting 1 from one of the operands.
6092  switch (Pred) {
6093  case ICmpInst::ICMP_SLE:
6094    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6095      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6096                       SCEV::FlagNSW);
6097      Pred = ICmpInst::ICMP_SLT;
6098      Changed = true;
6099    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
6100      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6101                       SCEV::FlagNSW);
6102      Pred = ICmpInst::ICMP_SLT;
6103      Changed = true;
6104    }
6105    break;
6106  case ICmpInst::ICMP_SGE:
6107    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
6108      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6109                       SCEV::FlagNSW);
6110      Pred = ICmpInst::ICMP_SGT;
6111      Changed = true;
6112    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6113      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6114                       SCEV::FlagNSW);
6115      Pred = ICmpInst::ICMP_SGT;
6116      Changed = true;
6117    }
6118    break;
6119  case ICmpInst::ICMP_ULE:
6120    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
6121      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6122                       SCEV::FlagNUW);
6123      Pred = ICmpInst::ICMP_ULT;
6124      Changed = true;
6125    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
6126      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6127                       SCEV::FlagNUW);
6128      Pred = ICmpInst::ICMP_ULT;
6129      Changed = true;
6130    }
6131    break;
6132  case ICmpInst::ICMP_UGE:
6133    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
6134      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6135                       SCEV::FlagNUW);
6136      Pred = ICmpInst::ICMP_UGT;
6137      Changed = true;
6138    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
6139      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6140                       SCEV::FlagNUW);
6141      Pred = ICmpInst::ICMP_UGT;
6142      Changed = true;
6143    }
6144    break;
6145  default:
6146    break;
6147  }
6148
6149  // TODO: More simplifications are possible here.
6150
6151  // Recursively simplify until we either hit a recursion limit or nothing
6152  // changes.
6153  if (Changed)
6154    return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6155
6156  return Changed;
6157
6158trivially_true:
6159  // Return 0 == 0.
6160  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6161  Pred = ICmpInst::ICMP_EQ;
6162  return true;
6163
6164trivially_false:
6165  // Return 0 != 0.
6166  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6167  Pred = ICmpInst::ICMP_NE;
6168  return true;
6169}
6170
6171bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6172  return getSignedRange(S).getSignedMax().isNegative();
6173}
6174
6175bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6176  return getSignedRange(S).getSignedMin().isStrictlyPositive();
6177}
6178
6179bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6180  return !getSignedRange(S).getSignedMin().isNegative();
6181}
6182
6183bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6184  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6185}
6186
6187bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6188  return isKnownNegative(S) || isKnownPositive(S);
6189}
6190
6191bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6192                                       const SCEV *LHS, const SCEV *RHS) {
6193  // Canonicalize the inputs first.
6194  (void)SimplifyICmpOperands(Pred, LHS, RHS);
6195
6196  // If LHS or RHS is an addrec, check to see if the condition is true in
6197  // every iteration of the loop.
6198  // If LHS and RHS are both addrec, both conditions must be true in
6199  // every iteration of the loop.
6200  const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6201  const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6202  bool LeftGuarded = false;
6203  bool RightGuarded = false;
6204  if (LAR) {
6205    const Loop *L = LAR->getLoop();
6206    if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6207        isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6208      if (!RAR) return true;
6209      LeftGuarded = true;
6210    }
6211  }
6212  if (RAR) {
6213    const Loop *L = RAR->getLoop();
6214    if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6215        isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6216      if (!LAR) return true;
6217      RightGuarded = true;
6218    }
6219  }
6220  if (LeftGuarded && RightGuarded)
6221    return true;
6222
6223  // Otherwise see what can be done with known constant ranges.
6224  return isKnownPredicateWithRanges(Pred, LHS, RHS);
6225}
6226
6227bool
6228ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6229                                            const SCEV *LHS, const SCEV *RHS) {
6230  if (HasSameValue(LHS, RHS))
6231    return ICmpInst::isTrueWhenEqual(Pred);
6232
6233  // This code is split out from isKnownPredicate because it is called from
6234  // within isLoopEntryGuardedByCond.
6235  switch (Pred) {
6236  default:
6237    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6238  case ICmpInst::ICMP_SGT:
6239    std::swap(LHS, RHS);
6240  case ICmpInst::ICMP_SLT: {
6241    ConstantRange LHSRange = getSignedRange(LHS);
6242    ConstantRange RHSRange = getSignedRange(RHS);
6243    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6244      return true;
6245    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6246      return false;
6247    break;
6248  }
6249  case ICmpInst::ICMP_SGE:
6250    std::swap(LHS, RHS);
6251  case ICmpInst::ICMP_SLE: {
6252    ConstantRange LHSRange = getSignedRange(LHS);
6253    ConstantRange RHSRange = getSignedRange(RHS);
6254    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6255      return true;
6256    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6257      return false;
6258    break;
6259  }
6260  case ICmpInst::ICMP_UGT:
6261    std::swap(LHS, RHS);
6262  case ICmpInst::ICMP_ULT: {
6263    ConstantRange LHSRange = getUnsignedRange(LHS);
6264    ConstantRange RHSRange = getUnsignedRange(RHS);
6265    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6266      return true;
6267    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6268      return false;
6269    break;
6270  }
6271  case ICmpInst::ICMP_UGE:
6272    std::swap(LHS, RHS);
6273  case ICmpInst::ICMP_ULE: {
6274    ConstantRange LHSRange = getUnsignedRange(LHS);
6275    ConstantRange RHSRange = getUnsignedRange(RHS);
6276    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6277      return true;
6278    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6279      return false;
6280    break;
6281  }
6282  case ICmpInst::ICMP_NE: {
6283    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6284      return true;
6285    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6286      return true;
6287
6288    const SCEV *Diff = getMinusSCEV(LHS, RHS);
6289    if (isKnownNonZero(Diff))
6290      return true;
6291    break;
6292  }
6293  case ICmpInst::ICMP_EQ:
6294    // The check at the top of the function catches the case where
6295    // the values are known to be equal.
6296    break;
6297  }
6298  return false;
6299}
6300
6301/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6302/// protected by a conditional between LHS and RHS.  This is used to
6303/// to eliminate casts.
6304bool
6305ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6306                                             ICmpInst::Predicate Pred,
6307                                             const SCEV *LHS, const SCEV *RHS) {
6308  // Interpret a null as meaning no loop, where there is obviously no guard
6309  // (interprocedural conditions notwithstanding).
6310  if (!L) return true;
6311
6312  BasicBlock *Latch = L->getLoopLatch();
6313  if (!Latch)
6314    return false;
6315
6316  BranchInst *LoopContinuePredicate =
6317    dyn_cast<BranchInst>(Latch->getTerminator());
6318  if (!LoopContinuePredicate ||
6319      LoopContinuePredicate->isUnconditional())
6320    return false;
6321
6322  return isImpliedCond(Pred, LHS, RHS,
6323                       LoopContinuePredicate->getCondition(),
6324                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6325}
6326
6327/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6328/// by a conditional between LHS and RHS.  This is used to help avoid max
6329/// expressions in loop trip counts, and to eliminate casts.
6330bool
6331ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6332                                          ICmpInst::Predicate Pred,
6333                                          const SCEV *LHS, const SCEV *RHS) {
6334  // Interpret a null as meaning no loop, where there is obviously no guard
6335  // (interprocedural conditions notwithstanding).
6336  if (!L) return false;
6337
6338  // Starting at the loop predecessor, climb up the predecessor chain, as long
6339  // as there are predecessors that can be found that have unique successors
6340  // leading to the original header.
6341  for (std::pair<BasicBlock *, BasicBlock *>
6342         Pair(L->getLoopPredecessor(), L->getHeader());
6343       Pair.first;
6344       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6345
6346    BranchInst *LoopEntryPredicate =
6347      dyn_cast<BranchInst>(Pair.first->getTerminator());
6348    if (!LoopEntryPredicate ||
6349        LoopEntryPredicate->isUnconditional())
6350      continue;
6351
6352    if (isImpliedCond(Pred, LHS, RHS,
6353                      LoopEntryPredicate->getCondition(),
6354                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6355      return true;
6356  }
6357
6358  return false;
6359}
6360
6361/// RAII wrapper to prevent recursive application of isImpliedCond.
6362/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6363/// currently evaluating isImpliedCond.
6364struct MarkPendingLoopPredicate {
6365  Value *Cond;
6366  DenseSet<Value*> &LoopPreds;
6367  bool Pending;
6368
6369  MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6370    : Cond(C), LoopPreds(LP) {
6371    Pending = !LoopPreds.insert(Cond).second;
6372  }
6373  ~MarkPendingLoopPredicate() {
6374    if (!Pending)
6375      LoopPreds.erase(Cond);
6376  }
6377};
6378
6379/// isImpliedCond - Test whether the condition described by Pred, LHS,
6380/// and RHS is true whenever the given Cond value evaluates to true.
6381bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6382                                    const SCEV *LHS, const SCEV *RHS,
6383                                    Value *FoundCondValue,
6384                                    bool Inverse) {
6385  MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6386  if (Mark.Pending)
6387    return false;
6388
6389  // Recursively handle And and Or conditions.
6390  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6391    if (BO->getOpcode() == Instruction::And) {
6392      if (!Inverse)
6393        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6394               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6395    } else if (BO->getOpcode() == Instruction::Or) {
6396      if (Inverse)
6397        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6398               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6399    }
6400  }
6401
6402  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6403  if (!ICI) return false;
6404
6405  // Bail if the ICmp's operands' types are wider than the needed type
6406  // before attempting to call getSCEV on them. This avoids infinite
6407  // recursion, since the analysis of widening casts can require loop
6408  // exit condition information for overflow checking, which would
6409  // lead back here.
6410  if (getTypeSizeInBits(LHS->getType()) <
6411      getTypeSizeInBits(ICI->getOperand(0)->getType()))
6412    return false;
6413
6414  // Now that we found a conditional branch that dominates the loop or controls
6415  // the loop latch. Check to see if it is the comparison we are looking for.
6416  ICmpInst::Predicate FoundPred;
6417  if (Inverse)
6418    FoundPred = ICI->getInversePredicate();
6419  else
6420    FoundPred = ICI->getPredicate();
6421
6422  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6423  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6424
6425  // Balance the types. The case where FoundLHS' type is wider than
6426  // LHS' type is checked for above.
6427  if (getTypeSizeInBits(LHS->getType()) >
6428      getTypeSizeInBits(FoundLHS->getType())) {
6429    if (CmpInst::isSigned(FoundPred)) {
6430      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6431      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6432    } else {
6433      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6434      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6435    }
6436  }
6437
6438  // Canonicalize the query to match the way instcombine will have
6439  // canonicalized the comparison.
6440  if (SimplifyICmpOperands(Pred, LHS, RHS))
6441    if (LHS == RHS)
6442      return CmpInst::isTrueWhenEqual(Pred);
6443  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6444    if (FoundLHS == FoundRHS)
6445      return CmpInst::isFalseWhenEqual(FoundPred);
6446
6447  // Check to see if we can make the LHS or RHS match.
6448  if (LHS == FoundRHS || RHS == FoundLHS) {
6449    if (isa<SCEVConstant>(RHS)) {
6450      std::swap(FoundLHS, FoundRHS);
6451      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6452    } else {
6453      std::swap(LHS, RHS);
6454      Pred = ICmpInst::getSwappedPredicate(Pred);
6455    }
6456  }
6457
6458  // Check whether the found predicate is the same as the desired predicate.
6459  if (FoundPred == Pred)
6460    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6461
6462  // Check whether swapping the found predicate makes it the same as the
6463  // desired predicate.
6464  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6465    if (isa<SCEVConstant>(RHS))
6466      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6467    else
6468      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6469                                   RHS, LHS, FoundLHS, FoundRHS);
6470  }
6471
6472  // Check whether the actual condition is beyond sufficient.
6473  if (FoundPred == ICmpInst::ICMP_EQ)
6474    if (ICmpInst::isTrueWhenEqual(Pred))
6475      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6476        return true;
6477  if (Pred == ICmpInst::ICMP_NE)
6478    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6479      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6480        return true;
6481
6482  // Otherwise assume the worst.
6483  return false;
6484}
6485
6486/// isImpliedCondOperands - Test whether the condition described by Pred,
6487/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6488/// and FoundRHS is true.
6489bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6490                                            const SCEV *LHS, const SCEV *RHS,
6491                                            const SCEV *FoundLHS,
6492                                            const SCEV *FoundRHS) {
6493  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6494                                     FoundLHS, FoundRHS) ||
6495         // ~x < ~y --> x > y
6496         isImpliedCondOperandsHelper(Pred, LHS, RHS,
6497                                     getNotSCEV(FoundRHS),
6498                                     getNotSCEV(FoundLHS));
6499}
6500
6501/// isImpliedCondOperandsHelper - Test whether the condition described by
6502/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6503/// FoundLHS, and FoundRHS is true.
6504bool
6505ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6506                                             const SCEV *LHS, const SCEV *RHS,
6507                                             const SCEV *FoundLHS,
6508                                             const SCEV *FoundRHS) {
6509  switch (Pred) {
6510  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6511  case ICmpInst::ICMP_EQ:
6512  case ICmpInst::ICMP_NE:
6513    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6514      return true;
6515    break;
6516  case ICmpInst::ICMP_SLT:
6517  case ICmpInst::ICMP_SLE:
6518    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6519        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6520      return true;
6521    break;
6522  case ICmpInst::ICMP_SGT:
6523  case ICmpInst::ICMP_SGE:
6524    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6525        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6526      return true;
6527    break;
6528  case ICmpInst::ICMP_ULT:
6529  case ICmpInst::ICMP_ULE:
6530    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6531        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6532      return true;
6533    break;
6534  case ICmpInst::ICMP_UGT:
6535  case ICmpInst::ICMP_UGE:
6536    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6537        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6538      return true;
6539    break;
6540  }
6541
6542  return false;
6543}
6544
6545// Verify if an linear IV with positive stride can overflow when in a
6546// less-than comparison, knowing the invariant term of the comparison, the
6547// stride and the knowledge of NSW/NUW flags on the recurrence.
6548bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6549                                         bool IsSigned, bool NoWrap) {
6550  if (NoWrap) return false;
6551
6552  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6553  const SCEV *One = getConstant(Stride->getType(), 1);
6554
6555  if (IsSigned) {
6556    APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6557    APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6558    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6559                                .getSignedMax();
6560
6561    // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6562    return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
6563  }
6564
6565  APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6566  APInt MaxValue = APInt::getMaxValue(BitWidth);
6567  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6568                              .getUnsignedMax();
6569
6570  // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6571  return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6572}
6573
6574// Verify if an linear IV with negative stride can overflow when in a
6575// greater-than comparison, knowing the invariant term of the comparison,
6576// the stride and the knowledge of NSW/NUW flags on the recurrence.
6577bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6578                                         bool IsSigned, bool NoWrap) {
6579  if (NoWrap) return false;
6580
6581  unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6582  const SCEV *One = getConstant(Stride->getType(), 1);
6583
6584  if (IsSigned) {
6585    APInt MinRHS = getSignedRange(RHS).getSignedMin();
6586    APInt MinValue = APInt::getSignedMinValue(BitWidth);
6587    APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6588                               .getSignedMax();
6589
6590    // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6591    return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6592  }
6593
6594  APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6595  APInt MinValue = APInt::getMinValue(BitWidth);
6596  APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6597                            .getUnsignedMax();
6598
6599  // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6600  return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6601}
6602
6603// Compute the backedge taken count knowing the interval difference, the
6604// stride and presence of the equality in the comparison.
6605const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6606                                            bool Equality) {
6607  const SCEV *One = getConstant(Step->getType(), 1);
6608  Delta = Equality ? getAddExpr(Delta, Step)
6609                   : getAddExpr(Delta, getMinusSCEV(Step, One));
6610  return getUDivExpr(Delta, Step);
6611}
6612
6613/// HowManyLessThans - Return the number of times a backedge containing the
6614/// specified less-than comparison will execute.  If not computable, return
6615/// CouldNotCompute.
6616///
6617/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6618/// control the branch. In this case, we can only compute an iteration count for
6619/// a subexpression that cannot overflow before evaluating true.
6620ScalarEvolution::ExitLimit
6621ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6622                                  const Loop *L, bool IsSigned,
6623                                  bool IsSubExpr) {
6624  // We handle only IV < Invariant
6625  if (!isLoopInvariant(RHS, L))
6626    return getCouldNotCompute();
6627
6628  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6629
6630  // Avoid weird loops
6631  if (!IV || IV->getLoop() != L || !IV->isAffine())
6632    return getCouldNotCompute();
6633
6634  bool NoWrap = !IsSubExpr &&
6635                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6636
6637  const SCEV *Stride = IV->getStepRecurrence(*this);
6638
6639  // Avoid negative or zero stride values
6640  if (!isKnownPositive(Stride))
6641    return getCouldNotCompute();
6642
6643  // Avoid proven overflow cases: this will ensure that the backedge taken count
6644  // will not generate any unsigned overflow. Relaxed no-overflow conditions
6645  // exploit NoWrapFlags, allowing to optimize in presence of undefined
6646  // behaviors like the case of C language.
6647  if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6648    return getCouldNotCompute();
6649
6650  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6651                                      : ICmpInst::ICMP_ULT;
6652  const SCEV *Start = IV->getStart();
6653  const SCEV *End = RHS;
6654  if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6655    End = IsSigned ? getSMaxExpr(RHS, Start)
6656                   : getUMaxExpr(RHS, Start);
6657
6658  const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
6659
6660  APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6661                            : getUnsignedRange(Start).getUnsignedMin();
6662
6663  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6664                             : getUnsignedRange(Stride).getUnsignedMin();
6665
6666  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6667  APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6668                         : APInt::getMaxValue(BitWidth) - (MinStride - 1);
6669
6670  // Although End can be a MAX expression we estimate MaxEnd considering only
6671  // the case End = RHS. This is safe because in the other case (End - Start)
6672  // is zero, leading to a zero maximum backedge taken count.
6673  APInt MaxEnd =
6674    IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6675             : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6676
6677  const SCEV *MaxBECount;
6678  if (isa<SCEVConstant>(BECount))
6679    MaxBECount = BECount;
6680  else
6681    MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6682                                getConstant(MinStride), false);
6683
6684  if (isa<SCEVCouldNotCompute>(MaxBECount))
6685    MaxBECount = BECount;
6686
6687  return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
6688}
6689
6690ScalarEvolution::ExitLimit
6691ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6692                                     const Loop *L, bool IsSigned,
6693                                     bool IsSubExpr) {
6694  // We handle only IV > Invariant
6695  if (!isLoopInvariant(RHS, L))
6696    return getCouldNotCompute();
6697
6698  const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6699
6700  // Avoid weird loops
6701  if (!IV || IV->getLoop() != L || !IV->isAffine())
6702    return getCouldNotCompute();
6703
6704  bool NoWrap = !IsSubExpr &&
6705                IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6706
6707  const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6708
6709  // Avoid negative or zero stride values
6710  if (!isKnownPositive(Stride))
6711    return getCouldNotCompute();
6712
6713  // Avoid proven overflow cases: this will ensure that the backedge taken count
6714  // will not generate any unsigned overflow. Relaxed no-overflow conditions
6715  // exploit NoWrapFlags, allowing to optimize in presence of undefined
6716  // behaviors like the case of C language.
6717  if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6718    return getCouldNotCompute();
6719
6720  ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6721                                      : ICmpInst::ICMP_UGT;
6722
6723  const SCEV *Start = IV->getStart();
6724  const SCEV *End = RHS;
6725  if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6726    End = IsSigned ? getSMinExpr(RHS, Start)
6727                   : getUMinExpr(RHS, Start);
6728
6729  const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6730
6731  APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6732                            : getUnsignedRange(Start).getUnsignedMax();
6733
6734  APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6735                             : getUnsignedRange(Stride).getUnsignedMin();
6736
6737  unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6738  APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6739                         : APInt::getMinValue(BitWidth) + (MinStride - 1);
6740
6741  // Although End can be a MIN expression we estimate MinEnd considering only
6742  // the case End = RHS. This is safe because in the other case (Start - End)
6743  // is zero, leading to a zero maximum backedge taken count.
6744  APInt MinEnd =
6745    IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6746             : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6747
6748
6749  const SCEV *MaxBECount = getCouldNotCompute();
6750  if (isa<SCEVConstant>(BECount))
6751    MaxBECount = BECount;
6752  else
6753    MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6754                                getConstant(MinStride), false);
6755
6756  if (isa<SCEVCouldNotCompute>(MaxBECount))
6757    MaxBECount = BECount;
6758
6759  return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
6760}
6761
6762/// getNumIterationsInRange - Return the number of iterations of this loop that
6763/// produce values in the specified constant range.  Another way of looking at
6764/// this is that it returns the first iteration number where the value is not in
6765/// the condition, thus computing the exit count. If the iteration count can't
6766/// be computed, an instance of SCEVCouldNotCompute is returned.
6767const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6768                                                    ScalarEvolution &SE) const {
6769  if (Range.isFullSet())  // Infinite loop.
6770    return SE.getCouldNotCompute();
6771
6772  // If the start is a non-zero constant, shift the range to simplify things.
6773  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6774    if (!SC->getValue()->isZero()) {
6775      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6776      Operands[0] = SE.getConstant(SC->getType(), 0);
6777      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6778                                             getNoWrapFlags(FlagNW));
6779      if (const SCEVAddRecExpr *ShiftedAddRec =
6780            dyn_cast<SCEVAddRecExpr>(Shifted))
6781        return ShiftedAddRec->getNumIterationsInRange(
6782                           Range.subtract(SC->getValue()->getValue()), SE);
6783      // This is strange and shouldn't happen.
6784      return SE.getCouldNotCompute();
6785    }
6786
6787  // The only time we can solve this is when we have all constant indices.
6788  // Otherwise, we cannot determine the overflow conditions.
6789  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6790    if (!isa<SCEVConstant>(getOperand(i)))
6791      return SE.getCouldNotCompute();
6792
6793
6794  // Okay at this point we know that all elements of the chrec are constants and
6795  // that the start element is zero.
6796
6797  // First check to see if the range contains zero.  If not, the first
6798  // iteration exits.
6799  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6800  if (!Range.contains(APInt(BitWidth, 0)))
6801    return SE.getConstant(getType(), 0);
6802
6803  if (isAffine()) {
6804    // If this is an affine expression then we have this situation:
6805    //   Solve {0,+,A} in Range  ===  Ax in Range
6806
6807    // We know that zero is in the range.  If A is positive then we know that
6808    // the upper value of the range must be the first possible exit value.
6809    // If A is negative then the lower of the range is the last possible loop
6810    // value.  Also note that we already checked for a full range.
6811    APInt One(BitWidth,1);
6812    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6813    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6814
6815    // The exit value should be (End+A)/A.
6816    APInt ExitVal = (End + A).udiv(A);
6817    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6818
6819    // Evaluate at the exit value.  If we really did fall out of the valid
6820    // range, then we computed our trip count, otherwise wrap around or other
6821    // things must have happened.
6822    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6823    if (Range.contains(Val->getValue()))
6824      return SE.getCouldNotCompute();  // Something strange happened
6825
6826    // Ensure that the previous value is in the range.  This is a sanity check.
6827    assert(Range.contains(
6828           EvaluateConstantChrecAtConstant(this,
6829           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6830           "Linear scev computation is off in a bad way!");
6831    return SE.getConstant(ExitValue);
6832  } else if (isQuadratic()) {
6833    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6834    // quadratic equation to solve it.  To do this, we must frame our problem in
6835    // terms of figuring out when zero is crossed, instead of when
6836    // Range.getUpper() is crossed.
6837    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6838    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6839    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6840                                             // getNoWrapFlags(FlagNW)
6841                                             FlagAnyWrap);
6842
6843    // Next, solve the constructed addrec
6844    std::pair<const SCEV *,const SCEV *> Roots =
6845      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6846    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6847    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6848    if (R1) {
6849      // Pick the smallest positive root value.
6850      if (ConstantInt *CB =
6851          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6852                         R1->getValue(), R2->getValue()))) {
6853        if (CB->getZExtValue() == false)
6854          std::swap(R1, R2);   // R1 is the minimum root now.
6855
6856        // Make sure the root is not off by one.  The returned iteration should
6857        // not be in the range, but the previous one should be.  When solving
6858        // for "X*X < 5", for example, we should not return a root of 2.
6859        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6860                                                             R1->getValue(),
6861                                                             SE);
6862        if (Range.contains(R1Val->getValue())) {
6863          // The next iteration must be out of the range...
6864          ConstantInt *NextVal =
6865                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6866
6867          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6868          if (!Range.contains(R1Val->getValue()))
6869            return SE.getConstant(NextVal);
6870          return SE.getCouldNotCompute();  // Something strange happened
6871        }
6872
6873        // If R1 was not in the range, then it is a good return value.  Make
6874        // sure that R1-1 WAS in the range though, just in case.
6875        ConstantInt *NextVal =
6876               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6877        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6878        if (Range.contains(R1Val->getValue()))
6879          return R1;
6880        return SE.getCouldNotCompute();  // Something strange happened
6881      }
6882    }
6883  }
6884
6885  return SE.getCouldNotCompute();
6886}
6887
6888namespace {
6889struct FindUndefs {
6890  bool Found;
6891  FindUndefs() : Found(false) {}
6892
6893  bool follow(const SCEV *S) {
6894    if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
6895      if (isa<UndefValue>(C->getValue()))
6896        Found = true;
6897    } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6898      if (isa<UndefValue>(C->getValue()))
6899        Found = true;
6900    }
6901
6902    // Keep looking if we haven't found it yet.
6903    return !Found;
6904  }
6905  bool isDone() const {
6906    // Stop recursion if we have found an undef.
6907    return Found;
6908  }
6909};
6910}
6911
6912// Return true when S contains at least an undef value.
6913static inline bool
6914containsUndefs(const SCEV *S) {
6915  FindUndefs F;
6916  SCEVTraversal<FindUndefs> ST(F);
6917  ST.visitAll(S);
6918
6919  return F.Found;
6920}
6921
6922namespace {
6923// Collect all steps of SCEV expressions.
6924struct SCEVCollectStrides {
6925  ScalarEvolution &SE;
6926  SmallVectorImpl<const SCEV *> &Strides;
6927
6928  SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
6929      : SE(SE), Strides(S) {}
6930
6931  bool follow(const SCEV *S) {
6932    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
6933      Strides.push_back(AR->getStepRecurrence(SE));
6934    return true;
6935  }
6936  bool isDone() const { return false; }
6937};
6938
6939// Collect all SCEVUnknown and SCEVMulExpr expressions.
6940struct SCEVCollectTerms {
6941  SmallVectorImpl<const SCEV *> &Terms;
6942
6943  SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
6944      : Terms(T) {}
6945
6946  bool follow(const SCEV *S) {
6947    if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
6948      if (!containsUndefs(S))
6949        Terms.push_back(S);
6950
6951      // Stop recursion: once we collected a term, do not walk its operands.
6952      return false;
6953    }
6954
6955    // Keep looking.
6956    return true;
6957  }
6958  bool isDone() const { return false; }
6959};
6960}
6961
6962/// Find parametric terms in this SCEVAddRecExpr.
6963void SCEVAddRecExpr::collectParametricTerms(
6964    ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
6965  SmallVector<const SCEV *, 4> Strides;
6966  SCEVCollectStrides StrideCollector(SE, Strides);
6967  visitAll(this, StrideCollector);
6968
6969  DEBUG({
6970      dbgs() << "Strides:\n";
6971      for (const SCEV *S : Strides)
6972        dbgs() << *S << "\n";
6973    });
6974
6975  for (const SCEV *S : Strides) {
6976    SCEVCollectTerms TermCollector(Terms);
6977    visitAll(S, TermCollector);
6978  }
6979
6980  DEBUG({
6981      dbgs() << "Terms:\n";
6982      for (const SCEV *T : Terms)
6983        dbgs() << *T << "\n";
6984    });
6985}
6986
6987static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6988  APInt A = C1->getValue()->getValue();
6989  APInt B = C2->getValue()->getValue();
6990  uint32_t ABW = A.getBitWidth();
6991  uint32_t BBW = B.getBitWidth();
6992
6993  if (ABW > BBW)
6994    B = B.sext(ABW);
6995  else if (ABW < BBW)
6996    A = A.sext(BBW);
6997
6998  return APIntOps::srem(A, B);
6999}
7000
7001static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
7002  APInt A = C1->getValue()->getValue();
7003  APInt B = C2->getValue()->getValue();
7004  uint32_t ABW = A.getBitWidth();
7005  uint32_t BBW = B.getBitWidth();
7006
7007  if (ABW > BBW)
7008    B = B.sext(ABW);
7009  else if (ABW < BBW)
7010    A = A.sext(BBW);
7011
7012  return APIntOps::sdiv(A, B);
7013}
7014
7015namespace {
7016struct FindSCEVSize {
7017  int Size;
7018  FindSCEVSize() : Size(0) {}
7019
7020  bool follow(const SCEV *S) {
7021    ++Size;
7022    // Keep looking at all operands of S.
7023    return true;
7024  }
7025  bool isDone() const {
7026    return false;
7027  }
7028};
7029}
7030
7031// Returns the size of the SCEV S.
7032static inline int sizeOfSCEV(const SCEV *S) {
7033  FindSCEVSize F;
7034  SCEVTraversal<FindSCEVSize> ST(F);
7035  ST.visitAll(S);
7036  return F.Size;
7037}
7038
7039namespace {
7040
7041struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
7042public:
7043  // Computes the Quotient and Remainder of the division of Numerator by
7044  // Denominator.
7045  static void divide(ScalarEvolution &SE, const SCEV *Numerator,
7046                     const SCEV *Denominator, const SCEV **Quotient,
7047                     const SCEV **Remainder) {
7048    assert(Numerator && Denominator && "Uninitialized SCEV");
7049
7050    SCEVDivision D(SE, Numerator, Denominator);
7051
7052    // Check for the trivial case here to avoid having to check for it in the
7053    // rest of the code.
7054    if (Numerator == Denominator) {
7055      *Quotient = D.One;
7056      *Remainder = D.Zero;
7057      return;
7058    }
7059
7060    if (Numerator->isZero()) {
7061      *Quotient = D.Zero;
7062      *Remainder = D.Zero;
7063      return;
7064    }
7065
7066    // Split the Denominator when it is a product.
7067    if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
7068      const SCEV *Q, *R;
7069      *Quotient = Numerator;
7070      for (const SCEV *Op : T->operands()) {
7071        divide(SE, *Quotient, Op, &Q, &R);
7072        *Quotient = Q;
7073
7074        // Bail out when the Numerator is not divisible by one of the terms of
7075        // the Denominator.
7076        if (!R->isZero()) {
7077          *Quotient = D.Zero;
7078          *Remainder = Numerator;
7079          return;
7080        }
7081      }
7082      *Remainder = D.Zero;
7083      return;
7084    }
7085
7086    D.visit(Numerator);
7087    *Quotient = D.Quotient;
7088    *Remainder = D.Remainder;
7089  }
7090
7091  SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
7092      : SE(S), Denominator(Denominator) {
7093    Zero = SE.getConstant(Denominator->getType(), 0);
7094    One = SE.getConstant(Denominator->getType(), 1);
7095
7096    // By default, we don't know how to divide Expr by Denominator.
7097    // Providing the default here simplifies the rest of the code.
7098    Quotient = Zero;
7099    Remainder = Numerator;
7100  }
7101
7102  // Except in the trivial case described above, we do not know how to divide
7103  // Expr by Denominator for the following functions with empty implementation.
7104  void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
7105  void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
7106  void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
7107  void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
7108  void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
7109  void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
7110  void visitUnknown(const SCEVUnknown *Numerator) {}
7111  void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
7112
7113  void visitConstant(const SCEVConstant *Numerator) {
7114    if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
7115      Quotient = SE.getConstant(sdiv(Numerator, D));
7116      Remainder = SE.getConstant(srem(Numerator, D));
7117      return;
7118    }
7119  }
7120
7121  void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
7122    const SCEV *StartQ, *StartR, *StepQ, *StepR;
7123    assert(Numerator->isAffine() && "Numerator should be affine");
7124    divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
7125    divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
7126    Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
7127                                Numerator->getNoWrapFlags());
7128    Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
7129                                 Numerator->getNoWrapFlags());
7130  }
7131
7132  void visitAddExpr(const SCEVAddExpr *Numerator) {
7133    SmallVector<const SCEV *, 2> Qs, Rs;
7134    Type *Ty = Denominator->getType();
7135
7136    for (const SCEV *Op : Numerator->operands()) {
7137      const SCEV *Q, *R;
7138      divide(SE, Op, Denominator, &Q, &R);
7139
7140      // Bail out if types do not match.
7141      if (Ty != Q->getType() || Ty != R->getType()) {
7142        Quotient = Zero;
7143        Remainder = Numerator;
7144        return;
7145      }
7146
7147      Qs.push_back(Q);
7148      Rs.push_back(R);
7149    }
7150
7151    if (Qs.size() == 1) {
7152      Quotient = Qs[0];
7153      Remainder = Rs[0];
7154      return;
7155    }
7156
7157    Quotient = SE.getAddExpr(Qs);
7158    Remainder = SE.getAddExpr(Rs);
7159  }
7160
7161  void visitMulExpr(const SCEVMulExpr *Numerator) {
7162    SmallVector<const SCEV *, 2> Qs;
7163    Type *Ty = Denominator->getType();
7164
7165    bool FoundDenominatorTerm = false;
7166    for (const SCEV *Op : Numerator->operands()) {
7167      // Bail out if types do not match.
7168      if (Ty != Op->getType()) {
7169        Quotient = Zero;
7170        Remainder = Numerator;
7171        return;
7172      }
7173
7174      if (FoundDenominatorTerm) {
7175        Qs.push_back(Op);
7176        continue;
7177      }
7178
7179      // Check whether Denominator divides one of the product operands.
7180      const SCEV *Q, *R;
7181      divide(SE, Op, Denominator, &Q, &R);
7182      if (!R->isZero()) {
7183        Qs.push_back(Op);
7184        continue;
7185      }
7186
7187      // Bail out if types do not match.
7188      if (Ty != Q->getType()) {
7189        Quotient = Zero;
7190        Remainder = Numerator;
7191        return;
7192      }
7193
7194      FoundDenominatorTerm = true;
7195      Qs.push_back(Q);
7196    }
7197
7198    if (FoundDenominatorTerm) {
7199      Remainder = Zero;
7200      if (Qs.size() == 1)
7201        Quotient = Qs[0];
7202      else
7203        Quotient = SE.getMulExpr(Qs);
7204      return;
7205    }
7206
7207    if (!isa<SCEVUnknown>(Denominator)) {
7208      Quotient = Zero;
7209      Remainder = Numerator;
7210      return;
7211    }
7212
7213    // The Remainder is obtained by replacing Denominator by 0 in Numerator.
7214    ValueToValueMap RewriteMap;
7215    RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
7216        cast<SCEVConstant>(Zero)->getValue();
7217    Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
7218
7219    // Quotient is (Numerator - Remainder) divided by Denominator.
7220    const SCEV *Q, *R;
7221    const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
7222    if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
7223      // This SCEV does not seem to simplify: fail the division here.
7224      Quotient = Zero;
7225      Remainder = Numerator;
7226      return;
7227    }
7228    divide(SE, Diff, Denominator, &Q, &R);
7229    assert(R == Zero &&
7230           "(Numerator - Remainder) should evenly divide Denominator");
7231    Quotient = Q;
7232  }
7233
7234private:
7235  ScalarEvolution &SE;
7236  const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
7237};
7238}
7239
7240static bool findArrayDimensionsRec(ScalarEvolution &SE,
7241                                   SmallVectorImpl<const SCEV *> &Terms,
7242                                   SmallVectorImpl<const SCEV *> &Sizes) {
7243  int Last = Terms.size() - 1;
7244  const SCEV *Step = Terms[Last];
7245
7246  // End of recursion.
7247  if (Last == 0) {
7248    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
7249      SmallVector<const SCEV *, 2> Qs;
7250      for (const SCEV *Op : M->operands())
7251        if (!isa<SCEVConstant>(Op))
7252          Qs.push_back(Op);
7253
7254      Step = SE.getMulExpr(Qs);
7255    }
7256
7257    Sizes.push_back(Step);
7258    return true;
7259  }
7260
7261  for (const SCEV *&Term : Terms) {
7262    // Normalize the terms before the next call to findArrayDimensionsRec.
7263    const SCEV *Q, *R;
7264    SCEVDivision::divide(SE, Term, Step, &Q, &R);
7265
7266    // Bail out when GCD does not evenly divide one of the terms.
7267    if (!R->isZero())
7268      return false;
7269
7270    Term = Q;
7271  }
7272
7273  // Remove all SCEVConstants.
7274  Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7275                return isa<SCEVConstant>(E);
7276              }),
7277              Terms.end());
7278
7279  if (Terms.size() > 0)
7280    if (!findArrayDimensionsRec(SE, Terms, Sizes))
7281      return false;
7282
7283  Sizes.push_back(Step);
7284  return true;
7285}
7286
7287namespace {
7288struct FindParameter {
7289  bool FoundParameter;
7290  FindParameter() : FoundParameter(false) {}
7291
7292  bool follow(const SCEV *S) {
7293    if (isa<SCEVUnknown>(S)) {
7294      FoundParameter = true;
7295      // Stop recursion: we found a parameter.
7296      return false;
7297    }
7298    // Keep looking.
7299    return true;
7300  }
7301  bool isDone() const {
7302    // Stop recursion if we have found a parameter.
7303    return FoundParameter;
7304  }
7305};
7306}
7307
7308// Returns true when S contains at least a SCEVUnknown parameter.
7309static inline bool
7310containsParameters(const SCEV *S) {
7311  FindParameter F;
7312  SCEVTraversal<FindParameter> ST(F);
7313  ST.visitAll(S);
7314
7315  return F.FoundParameter;
7316}
7317
7318// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7319static inline bool
7320containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7321  for (const SCEV *T : Terms)
7322    if (containsParameters(T))
7323      return true;
7324  return false;
7325}
7326
7327// Return the number of product terms in S.
7328static inline int numberOfTerms(const SCEV *S) {
7329  if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7330    return Expr->getNumOperands();
7331  return 1;
7332}
7333
7334static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7335  if (isa<SCEVConstant>(T))
7336    return nullptr;
7337
7338  if (isa<SCEVUnknown>(T))
7339    return T;
7340
7341  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7342    SmallVector<const SCEV *, 2> Factors;
7343    for (const SCEV *Op : M->operands())
7344      if (!isa<SCEVConstant>(Op))
7345        Factors.push_back(Op);
7346
7347    return SE.getMulExpr(Factors);
7348  }
7349
7350  return T;
7351}
7352
7353/// Return the size of an element read or written by Inst.
7354const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7355  Type *Ty;
7356  if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7357    Ty = Store->getValueOperand()->getType();
7358  else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
7359    Ty = Load->getPointerOperand()->getType();
7360  else
7361    return nullptr;
7362
7363  Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7364  return getSizeOfExpr(ETy, Ty);
7365}
7366
7367/// Second step of delinearization: compute the array dimensions Sizes from the
7368/// set of Terms extracted from the memory access function of this SCEVAddRec.
7369void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7370                                          SmallVectorImpl<const SCEV *> &Sizes,
7371                                          const SCEV *ElementSize) const {
7372
7373  if (Terms.size() < 1)
7374    return;
7375
7376  // Early return when Terms do not contain parameters: we do not delinearize
7377  // non parametric SCEVs.
7378  if (!containsParameters(Terms))
7379    return;
7380
7381  DEBUG({
7382      dbgs() << "Terms:\n";
7383      for (const SCEV *T : Terms)
7384        dbgs() << *T << "\n";
7385    });
7386
7387  // Remove duplicates.
7388  std::sort(Terms.begin(), Terms.end());
7389  Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7390
7391  // Put larger terms first.
7392  std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7393    return numberOfTerms(LHS) > numberOfTerms(RHS);
7394  });
7395
7396  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7397
7398  // Divide all terms by the element size.
7399  for (const SCEV *&Term : Terms) {
7400    const SCEV *Q, *R;
7401    SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7402    Term = Q;
7403  }
7404
7405  SmallVector<const SCEV *, 4> NewTerms;
7406
7407  // Remove constant factors.
7408  for (const SCEV *T : Terms)
7409    if (const SCEV *NewT = removeConstantFactors(SE, T))
7410      NewTerms.push_back(NewT);
7411
7412  DEBUG({
7413      dbgs() << "Terms after sorting:\n";
7414      for (const SCEV *T : NewTerms)
7415        dbgs() << *T << "\n";
7416    });
7417
7418  if (NewTerms.empty() ||
7419      !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
7420    Sizes.clear();
7421    return;
7422  }
7423
7424  // The last element to be pushed into Sizes is the size of an element.
7425  Sizes.push_back(ElementSize);
7426
7427  DEBUG({
7428      dbgs() << "Sizes:\n";
7429      for (const SCEV *S : Sizes)
7430        dbgs() << *S << "\n";
7431    });
7432}
7433
7434/// Third step of delinearization: compute the access functions for the
7435/// Subscripts based on the dimensions in Sizes.
7436void SCEVAddRecExpr::computeAccessFunctions(
7437    ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7438    SmallVectorImpl<const SCEV *> &Sizes) const {
7439
7440  // Early exit in case this SCEV is not an affine multivariate function.
7441  if (Sizes.empty() || !this->isAffine())
7442    return;
7443
7444  const SCEV *Res = this;
7445  int Last = Sizes.size() - 1;
7446  for (int i = Last; i >= 0; i--) {
7447    const SCEV *Q, *R;
7448    SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7449
7450    DEBUG({
7451        dbgs() << "Res: " << *Res << "\n";
7452        dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7453        dbgs() << "Res divided by Sizes[i]:\n";
7454        dbgs() << "Quotient: " << *Q << "\n";
7455        dbgs() << "Remainder: " << *R << "\n";
7456      });
7457
7458    Res = Q;
7459
7460    // Do not record the last subscript corresponding to the size of elements in
7461    // the array.
7462    if (i == Last) {
7463
7464      // Bail out if the remainder is too complex.
7465      if (isa<SCEVAddRecExpr>(R)) {
7466        Subscripts.clear();
7467        Sizes.clear();
7468        return;
7469      }
7470
7471      continue;
7472    }
7473
7474    // Record the access function for the current subscript.
7475    Subscripts.push_back(R);
7476  }
7477
7478  // Also push in last position the remainder of the last division: it will be
7479  // the access function of the innermost dimension.
7480  Subscripts.push_back(Res);
7481
7482  std::reverse(Subscripts.begin(), Subscripts.end());
7483
7484  DEBUG({
7485      dbgs() << "Subscripts:\n";
7486      for (const SCEV *S : Subscripts)
7487        dbgs() << *S << "\n";
7488    });
7489}
7490
7491/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7492/// sizes of an array access. Returns the remainder of the delinearization that
7493/// is the offset start of the array.  The SCEV->delinearize algorithm computes
7494/// the multiples of SCEV coefficients: that is a pattern matching of sub
7495/// expressions in the stride and base of a SCEV corresponding to the
7496/// computation of a GCD (greatest common divisor) of base and stride.  When
7497/// SCEV->delinearize fails, it returns the SCEV unchanged.
7498///
7499/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7500///
7501///  void foo(long n, long m, long o, double A[n][m][o]) {
7502///
7503///    for (long i = 0; i < n; i++)
7504///      for (long j = 0; j < m; j++)
7505///        for (long k = 0; k < o; k++)
7506///          A[i][j][k] = 1.0;
7507///  }
7508///
7509/// the delinearization input is the following AddRec SCEV:
7510///
7511///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7512///
7513/// From this SCEV, we are able to say that the base offset of the access is %A
7514/// because it appears as an offset that does not divide any of the strides in
7515/// the loops:
7516///
7517///  CHECK: Base offset: %A
7518///
7519/// and then SCEV->delinearize determines the size of some of the dimensions of
7520/// the array as these are the multiples by which the strides are happening:
7521///
7522///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7523///
7524/// Note that the outermost dimension remains of UnknownSize because there are
7525/// no strides that would help identifying the size of the last dimension: when
7526/// the array has been statically allocated, one could compute the size of that
7527/// dimension by dividing the overall size of the array by the size of the known
7528/// dimensions: %m * %o * 8.
7529///
7530/// Finally delinearize provides the access functions for the array reference
7531/// that does correspond to A[i][j][k] of the above C testcase:
7532///
7533///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7534///
7535/// The testcases are checking the output of a function pass:
7536/// DelinearizationPass that walks through all loads and stores of a function
7537/// asking for the SCEV of the memory access with respect to all enclosing
7538/// loops, calling SCEV->delinearize on that and printing the results.
7539
7540void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7541                                 SmallVectorImpl<const SCEV *> &Subscripts,
7542                                 SmallVectorImpl<const SCEV *> &Sizes,
7543                                 const SCEV *ElementSize) const {
7544  // First step: collect parametric terms.
7545  SmallVector<const SCEV *, 4> Terms;
7546  collectParametricTerms(SE, Terms);
7547
7548  if (Terms.empty())
7549    return;
7550
7551  // Second step: find subscript sizes.
7552  SE.findArrayDimensions(Terms, Sizes, ElementSize);
7553
7554  if (Sizes.empty())
7555    return;
7556
7557  // Third step: compute the access functions for each subscript.
7558  computeAccessFunctions(SE, Subscripts, Sizes);
7559
7560  if (Subscripts.empty())
7561    return;
7562
7563  DEBUG({
7564      dbgs() << "succeeded to delinearize " << *this << "\n";
7565      dbgs() << "ArrayDecl[UnknownSize]";
7566      for (const SCEV *S : Sizes)
7567        dbgs() << "[" << *S << "]";
7568
7569      dbgs() << "\nArrayRef";
7570      for (const SCEV *S : Subscripts)
7571        dbgs() << "[" << *S << "]";
7572      dbgs() << "\n";
7573    });
7574}
7575
7576//===----------------------------------------------------------------------===//
7577//                   SCEVCallbackVH Class Implementation
7578//===----------------------------------------------------------------------===//
7579
7580void ScalarEvolution::SCEVCallbackVH::deleted() {
7581  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7582  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7583    SE->ConstantEvolutionLoopExitValue.erase(PN);
7584  SE->ValueExprMap.erase(getValPtr());
7585  // this now dangles!
7586}
7587
7588void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7589  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7590
7591  // Forget all the expressions associated with users of the old value,
7592  // so that future queries will recompute the expressions using the new
7593  // value.
7594  Value *Old = getValPtr();
7595  SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
7596  SmallPtrSet<User *, 8> Visited;
7597  while (!Worklist.empty()) {
7598    User *U = Worklist.pop_back_val();
7599    // Deleting the Old value will cause this to dangle. Postpone
7600    // that until everything else is done.
7601    if (U == Old)
7602      continue;
7603    if (!Visited.insert(U))
7604      continue;
7605    if (PHINode *PN = dyn_cast<PHINode>(U))
7606      SE->ConstantEvolutionLoopExitValue.erase(PN);
7607    SE->ValueExprMap.erase(U);
7608    Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
7609  }
7610  // Delete the Old value.
7611  if (PHINode *PN = dyn_cast<PHINode>(Old))
7612    SE->ConstantEvolutionLoopExitValue.erase(PN);
7613  SE->ValueExprMap.erase(Old);
7614  // this now dangles!
7615}
7616
7617ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7618  : CallbackVH(V), SE(se) {}
7619
7620//===----------------------------------------------------------------------===//
7621//                   ScalarEvolution Class Implementation
7622//===----------------------------------------------------------------------===//
7623
7624ScalarEvolution::ScalarEvolution()
7625  : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7626    BlockDispositions(64), FirstUnknown(nullptr) {
7627  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7628}
7629
7630bool ScalarEvolution::runOnFunction(Function &F) {
7631  this->F = &F;
7632  LI = &getAnalysis<LoopInfo>();
7633  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
7634  DL = DLP ? &DLP->getDataLayout() : nullptr;
7635  TLI = &getAnalysis<TargetLibraryInfo>();
7636  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7637  return false;
7638}
7639
7640void ScalarEvolution::releaseMemory() {
7641  // Iterate through all the SCEVUnknown instances and call their
7642  // destructors, so that they release their references to their values.
7643  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7644    U->~SCEVUnknown();
7645  FirstUnknown = nullptr;
7646
7647  ValueExprMap.clear();
7648
7649  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7650  // that a loop had multiple computable exits.
7651  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7652         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7653       I != E; ++I) {
7654    I->second.clear();
7655  }
7656
7657  assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7658
7659  BackedgeTakenCounts.clear();
7660  ConstantEvolutionLoopExitValue.clear();
7661  ValuesAtScopes.clear();
7662  LoopDispositions.clear();
7663  BlockDispositions.clear();
7664  UnsignedRanges.clear();
7665  SignedRanges.clear();
7666  UniqueSCEVs.clear();
7667  SCEVAllocator.Reset();
7668}
7669
7670void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7671  AU.setPreservesAll();
7672  AU.addRequiredTransitive<LoopInfo>();
7673  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
7674  AU.addRequired<TargetLibraryInfo>();
7675}
7676
7677bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
7678  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
7679}
7680
7681static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
7682                          const Loop *L) {
7683  // Print all inner loops first
7684  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7685    PrintLoopInfo(OS, SE, *I);
7686
7687  OS << "Loop ";
7688  L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7689  OS << ": ";
7690
7691  SmallVector<BasicBlock *, 8> ExitBlocks;
7692  L->getExitBlocks(ExitBlocks);
7693  if (ExitBlocks.size() != 1)
7694    OS << "<multiple exits> ";
7695
7696  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7697    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
7698  } else {
7699    OS << "Unpredictable backedge-taken count. ";
7700  }
7701
7702  OS << "\n"
7703        "Loop ";
7704  L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7705  OS << ": ";
7706
7707  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7708    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7709  } else {
7710    OS << "Unpredictable max backedge-taken count. ";
7711  }
7712
7713  OS << "\n";
7714}
7715
7716void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
7717  // ScalarEvolution's implementation of the print method is to print
7718  // out SCEV values of all instructions that are interesting. Doing
7719  // this potentially causes it to create new SCEV objects though,
7720  // which technically conflicts with the const qualifier. This isn't
7721  // observable from outside the class though, so casting away the
7722  // const isn't dangerous.
7723  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7724
7725  OS << "Classifying expressions for: ";
7726  F->printAsOperand(OS, /*PrintType=*/false);
7727  OS << "\n";
7728  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
7729    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
7730      OS << *I << '\n';
7731      OS << "  -->  ";
7732      const SCEV *SV = SE.getSCEV(&*I);
7733      SV->print(OS);
7734
7735      const Loop *L = LI->getLoopFor((*I).getParent());
7736
7737      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
7738      if (AtUse != SV) {
7739        OS << "  -->  ";
7740        AtUse->print(OS);
7741      }
7742
7743      if (L) {
7744        OS << "\t\t" "Exits: ";
7745        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
7746        if (!SE.isLoopInvariant(ExitValue, L)) {
7747          OS << "<<Unknown>>";
7748        } else {
7749          OS << *ExitValue;
7750        }
7751      }
7752
7753      OS << "\n";
7754    }
7755
7756  OS << "Determining loop execution counts for: ";
7757  F->printAsOperand(OS, /*PrintType=*/false);
7758  OS << "\n";
7759  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7760    PrintLoopInfo(OS, &SE, *I);
7761}
7762
7763ScalarEvolution::LoopDisposition
7764ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
7765  SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7766  for (unsigned u = 0; u < Values.size(); u++) {
7767    if (Values[u].first == L)
7768      return Values[u].second;
7769  }
7770  Values.push_back(std::make_pair(L, LoopVariant));
7771  LoopDisposition D = computeLoopDisposition(S, L);
7772  SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7773  for (unsigned u = Values2.size(); u > 0; u--) {
7774    if (Values2[u - 1].first == L) {
7775      Values2[u - 1].second = D;
7776      break;
7777    }
7778  }
7779  return D;
7780}
7781
7782ScalarEvolution::LoopDisposition
7783ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
7784  switch (static_cast<SCEVTypes>(S->getSCEVType())) {
7785  case scConstant:
7786    return LoopInvariant;
7787  case scTruncate:
7788  case scZeroExtend:
7789  case scSignExtend:
7790    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
7791  case scAddRecExpr: {
7792    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7793
7794    // If L is the addrec's loop, it's computable.
7795    if (AR->getLoop() == L)
7796      return LoopComputable;
7797
7798    // Add recurrences are never invariant in the function-body (null loop).
7799    if (!L)
7800      return LoopVariant;
7801
7802    // This recurrence is variant w.r.t. L if L contains AR's loop.
7803    if (L->contains(AR->getLoop()))
7804      return LoopVariant;
7805
7806    // This recurrence is invariant w.r.t. L if AR's loop contains L.
7807    if (AR->getLoop()->contains(L))
7808      return LoopInvariant;
7809
7810    // This recurrence is variant w.r.t. L if any of its operands
7811    // are variant.
7812    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7813         I != E; ++I)
7814      if (!isLoopInvariant(*I, L))
7815        return LoopVariant;
7816
7817    // Otherwise it's loop-invariant.
7818    return LoopInvariant;
7819  }
7820  case scAddExpr:
7821  case scMulExpr:
7822  case scUMaxExpr:
7823  case scSMaxExpr: {
7824    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7825    bool HasVarying = false;
7826    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7827         I != E; ++I) {
7828      LoopDisposition D = getLoopDisposition(*I, L);
7829      if (D == LoopVariant)
7830        return LoopVariant;
7831      if (D == LoopComputable)
7832        HasVarying = true;
7833    }
7834    return HasVarying ? LoopComputable : LoopInvariant;
7835  }
7836  case scUDivExpr: {
7837    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7838    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7839    if (LD == LoopVariant)
7840      return LoopVariant;
7841    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7842    if (RD == LoopVariant)
7843      return LoopVariant;
7844    return (LD == LoopInvariant && RD == LoopInvariant) ?
7845           LoopInvariant : LoopComputable;
7846  }
7847  case scUnknown:
7848    // All non-instruction values are loop invariant.  All instructions are loop
7849    // invariant if they are not contained in the specified loop.
7850    // Instructions are never considered invariant in the function body
7851    // (null loop) because they are defined within the "loop".
7852    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7853      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7854    return LoopInvariant;
7855  case scCouldNotCompute:
7856    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7857  }
7858  llvm_unreachable("Unknown SCEV kind!");
7859}
7860
7861bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7862  return getLoopDisposition(S, L) == LoopInvariant;
7863}
7864
7865bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7866  return getLoopDisposition(S, L) == LoopComputable;
7867}
7868
7869ScalarEvolution::BlockDisposition
7870ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7871  SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7872  for (unsigned u = 0; u < Values.size(); u++) {
7873    if (Values[u].first == BB)
7874      return Values[u].second;
7875  }
7876  Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
7877  BlockDisposition D = computeBlockDisposition(S, BB);
7878  SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7879  for (unsigned u = Values2.size(); u > 0; u--) {
7880    if (Values2[u - 1].first == BB) {
7881      Values2[u - 1].second = D;
7882      break;
7883    }
7884  }
7885  return D;
7886}
7887
7888ScalarEvolution::BlockDisposition
7889ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7890  switch (static_cast<SCEVTypes>(S->getSCEVType())) {
7891  case scConstant:
7892    return ProperlyDominatesBlock;
7893  case scTruncate:
7894  case scZeroExtend:
7895  case scSignExtend:
7896    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
7897  case scAddRecExpr: {
7898    // This uses a "dominates" query instead of "properly dominates" query
7899    // to test for proper dominance too, because the instruction which
7900    // produces the addrec's value is a PHI, and a PHI effectively properly
7901    // dominates its entire containing block.
7902    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7903    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
7904      return DoesNotDominateBlock;
7905  }
7906  // FALL THROUGH into SCEVNAryExpr handling.
7907  case scAddExpr:
7908  case scMulExpr:
7909  case scUMaxExpr:
7910  case scSMaxExpr: {
7911    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7912    bool Proper = true;
7913    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7914         I != E; ++I) {
7915      BlockDisposition D = getBlockDisposition(*I, BB);
7916      if (D == DoesNotDominateBlock)
7917        return DoesNotDominateBlock;
7918      if (D == DominatesBlock)
7919        Proper = false;
7920    }
7921    return Proper ? ProperlyDominatesBlock : DominatesBlock;
7922  }
7923  case scUDivExpr: {
7924    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7925    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7926    BlockDisposition LD = getBlockDisposition(LHS, BB);
7927    if (LD == DoesNotDominateBlock)
7928      return DoesNotDominateBlock;
7929    BlockDisposition RD = getBlockDisposition(RHS, BB);
7930    if (RD == DoesNotDominateBlock)
7931      return DoesNotDominateBlock;
7932    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7933      ProperlyDominatesBlock : DominatesBlock;
7934  }
7935  case scUnknown:
7936    if (Instruction *I =
7937          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7938      if (I->getParent() == BB)
7939        return DominatesBlock;
7940      if (DT->properlyDominates(I->getParent(), BB))
7941        return ProperlyDominatesBlock;
7942      return DoesNotDominateBlock;
7943    }
7944    return ProperlyDominatesBlock;
7945  case scCouldNotCompute:
7946    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7947  }
7948  llvm_unreachable("Unknown SCEV kind!");
7949}
7950
7951bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7952  return getBlockDisposition(S, BB) >= DominatesBlock;
7953}
7954
7955bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7956  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
7957}
7958
7959namespace {
7960// Search for a SCEV expression node within an expression tree.
7961// Implements SCEVTraversal::Visitor.
7962struct SCEVSearch {
7963  const SCEV *Node;
7964  bool IsFound;
7965
7966  SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7967
7968  bool follow(const SCEV *S) {
7969    IsFound |= (S == Node);
7970    return !IsFound;
7971  }
7972  bool isDone() const { return IsFound; }
7973};
7974}
7975
7976bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
7977  SCEVSearch Search(Op);
7978  visitAll(S, Search);
7979  return Search.IsFound;
7980}
7981
7982void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7983  ValuesAtScopes.erase(S);
7984  LoopDispositions.erase(S);
7985  BlockDispositions.erase(S);
7986  UnsignedRanges.erase(S);
7987  SignedRanges.erase(S);
7988
7989  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7990         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7991    BackedgeTakenInfo &BEInfo = I->second;
7992    if (BEInfo.hasOperand(S, this)) {
7993      BEInfo.clear();
7994      BackedgeTakenCounts.erase(I++);
7995    }
7996    else
7997      ++I;
7998  }
7999}
8000
8001typedef DenseMap<const Loop *, std::string> VerifyMap;
8002
8003/// replaceSubString - Replaces all occurrences of From in Str with To.
8004static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8005  size_t Pos = 0;
8006  while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8007    Str.replace(Pos, From.size(), To.data(), To.size());
8008    Pos += To.size();
8009  }
8010}
8011
8012/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8013static void
8014getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8015  for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8016    getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8017
8018    std::string &S = Map[L];
8019    if (S.empty()) {
8020      raw_string_ostream OS(S);
8021      SE.getBackedgeTakenCount(L)->print(OS);
8022
8023      // false and 0 are semantically equivalent. This can happen in dead loops.
8024      replaceSubString(OS.str(), "false", "0");
8025      // Remove wrap flags, their use in SCEV is highly fragile.
8026      // FIXME: Remove this when SCEV gets smarter about them.
8027      replaceSubString(OS.str(), "<nw>", "");
8028      replaceSubString(OS.str(), "<nsw>", "");
8029      replaceSubString(OS.str(), "<nuw>", "");
8030    }
8031  }
8032}
8033
8034void ScalarEvolution::verifyAnalysis() const {
8035  if (!VerifySCEV)
8036    return;
8037
8038  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8039
8040  // Gather stringified backedge taken counts for all loops using SCEV's caches.
8041  // FIXME: It would be much better to store actual values instead of strings,
8042  //        but SCEV pointers will change if we drop the caches.
8043  VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8044  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8045    getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8046
8047  // Gather stringified backedge taken counts for all loops without using
8048  // SCEV's caches.
8049  SE.releaseMemory();
8050  for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8051    getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8052
8053  // Now compare whether they're the same with and without caches. This allows
8054  // verifying that no pass changed the cache.
8055  assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8056         "New loops suddenly appeared!");
8057
8058  for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8059                           OldE = BackedgeDumpsOld.end(),
8060                           NewI = BackedgeDumpsNew.begin();
8061       OldI != OldE; ++OldI, ++NewI) {
8062    assert(OldI->first == NewI->first && "Loop order changed!");
8063
8064    // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8065    // changes.
8066    // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
8067    // means that a pass is buggy or SCEV has to learn a new pattern but is
8068    // usually not harmful.
8069    if (OldI->second != NewI->second &&
8070        OldI->second.find("undef") == std::string::npos &&
8071        NewI->second.find("undef") == std::string::npos &&
8072        OldI->second != "***COULDNOTCOMPUTE***" &&
8073        NewI->second != "***COULDNOTCOMPUTE***") {
8074      dbgs() << "SCEVValidator: SCEV for loop '"
8075             << OldI->first->getHeader()->getName()
8076             << "' changed from '" << OldI->second
8077             << "' to '" << NewI->second << "'!\n";
8078      std::abort();
8079    }
8080  }
8081
8082  // TODO: Verify more things.
8083}
8084