ScalarEvolution.cpp revision f8fd841a4bb7a59f81cf4642169e8251e039acfe
1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Target/TargetLibraryInfo.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/ConstantRange.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Support/GetElementPtrTypeIterator.h"
83#include "llvm/Support/InstIterator.h"
84#include "llvm/Support/MathExtras.h"
85#include "llvm/Support/raw_ostream.h"
86#include "llvm/ADT/Statistic.h"
87#include "llvm/ADT/STLExtras.h"
88#include "llvm/ADT/SmallPtrSet.h"
89#include <algorithm>
90using namespace llvm;
91
92STATISTIC(NumArrayLenItCounts,
93          "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95          "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97          "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99          "Number of loops with trip counts computed by force");
100
101static cl::opt<unsigned>
102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103                        cl::desc("Maximum number of iterations SCEV will "
104                                 "symbolically execute a constant "
105                                 "derived loop"),
106                        cl::init(100));
107
108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109                "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
114                "Scalar Evolution Analysis", false, true)
115char ScalarEvolution::ID = 0;
116
117//===----------------------------------------------------------------------===//
118//                           SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
124
125void SCEV::dump() const {
126  print(dbgs());
127  dbgs() << '\n';
128}
129
130void SCEV::print(raw_ostream &OS) const {
131  switch (getSCEVType()) {
132  case scConstant:
133    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
134    return;
135  case scTruncate: {
136    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
137    const SCEV *Op = Trunc->getOperand();
138    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
139       << *Trunc->getType() << ")";
140    return;
141  }
142  case scZeroExtend: {
143    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
144    const SCEV *Op = ZExt->getOperand();
145    OS << "(zext " << *Op->getType() << " " << *Op << " to "
146       << *ZExt->getType() << ")";
147    return;
148  }
149  case scSignExtend: {
150    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
151    const SCEV *Op = SExt->getOperand();
152    OS << "(sext " << *Op->getType() << " " << *Op << " to "
153       << *SExt->getType() << ")";
154    return;
155  }
156  case scAddRecExpr: {
157    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
158    OS << "{" << *AR->getOperand(0);
159    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
160      OS << ",+," << *AR->getOperand(i);
161    OS << "}<";
162    if (AR->getNoWrapFlags(FlagNUW))
163      OS << "nuw><";
164    if (AR->getNoWrapFlags(FlagNSW))
165      OS << "nsw><";
166    if (AR->getNoWrapFlags(FlagNW) &&
167        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
168      OS << "nw><";
169    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
170    OS << ">";
171    return;
172  }
173  case scAddExpr:
174  case scMulExpr:
175  case scUMaxExpr:
176  case scSMaxExpr: {
177    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
178    const char *OpStr = 0;
179    switch (NAry->getSCEVType()) {
180    case scAddExpr: OpStr = " + "; break;
181    case scMulExpr: OpStr = " * "; break;
182    case scUMaxExpr: OpStr = " umax "; break;
183    case scSMaxExpr: OpStr = " smax "; break;
184    }
185    OS << "(";
186    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
187         I != E; ++I) {
188      OS << **I;
189      if (llvm::next(I) != E)
190        OS << OpStr;
191    }
192    OS << ")";
193    switch (NAry->getSCEVType()) {
194    case scAddExpr:
195    case scMulExpr:
196      if (NAry->getNoWrapFlags(FlagNUW))
197        OS << "<nuw>";
198      if (NAry->getNoWrapFlags(FlagNSW))
199        OS << "<nsw>";
200    }
201    return;
202  }
203  case scUDivExpr: {
204    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
205    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
206    return;
207  }
208  case scUnknown: {
209    const SCEVUnknown *U = cast<SCEVUnknown>(this);
210    Type *AllocTy;
211    if (U->isSizeOf(AllocTy)) {
212      OS << "sizeof(" << *AllocTy << ")";
213      return;
214    }
215    if (U->isAlignOf(AllocTy)) {
216      OS << "alignof(" << *AllocTy << ")";
217      return;
218    }
219
220    Type *CTy;
221    Constant *FieldNo;
222    if (U->isOffsetOf(CTy, FieldNo)) {
223      OS << "offsetof(" << *CTy << ", ";
224      WriteAsOperand(OS, FieldNo, false);
225      OS << ")";
226      return;
227    }
228
229    // Otherwise just print it normally.
230    WriteAsOperand(OS, U->getValue(), false);
231    return;
232  }
233  case scCouldNotCompute:
234    OS << "***COULDNOTCOMPUTE***";
235    return;
236  default: break;
237  }
238  llvm_unreachable("Unknown SCEV kind!");
239}
240
241Type *SCEV::getType() const {
242  switch (getSCEVType()) {
243  case scConstant:
244    return cast<SCEVConstant>(this)->getType();
245  case scTruncate:
246  case scZeroExtend:
247  case scSignExtend:
248    return cast<SCEVCastExpr>(this)->getType();
249  case scAddRecExpr:
250  case scMulExpr:
251  case scUMaxExpr:
252  case scSMaxExpr:
253    return cast<SCEVNAryExpr>(this)->getType();
254  case scAddExpr:
255    return cast<SCEVAddExpr>(this)->getType();
256  case scUDivExpr:
257    return cast<SCEVUDivExpr>(this)->getType();
258  case scUnknown:
259    return cast<SCEVUnknown>(this)->getType();
260  case scCouldNotCompute:
261    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
262    return 0;
263  default: break;
264  }
265  llvm_unreachable("Unknown SCEV kind!");
266  return 0;
267}
268
269bool SCEV::isZero() const {
270  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
271    return SC->getValue()->isZero();
272  return false;
273}
274
275bool SCEV::isOne() const {
276  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277    return SC->getValue()->isOne();
278  return false;
279}
280
281bool SCEV::isAllOnesValue() const {
282  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283    return SC->getValue()->isAllOnesValue();
284  return false;
285}
286
287/// isNonConstantNegative - Return true if the specified scev is negated, but
288/// not a constant.
289bool SCEV::isNonConstantNegative() const {
290  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
291  if (!Mul) return false;
292
293  // If there is a constant factor, it will be first.
294  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
295  if (!SC) return false;
296
297  // Return true if the value is negative, this matches things like (-42 * V).
298  return SC->getValue()->getValue().isNegative();
299}
300
301SCEVCouldNotCompute::SCEVCouldNotCompute() :
302  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
303
304bool SCEVCouldNotCompute::classof(const SCEV *S) {
305  return S->getSCEVType() == scCouldNotCompute;
306}
307
308const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
309  FoldingSetNodeID ID;
310  ID.AddInteger(scConstant);
311  ID.AddPointer(V);
312  void *IP = 0;
313  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
314  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
315  UniqueSCEVs.InsertNode(S, IP);
316  return S;
317}
318
319const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
320  return getConstant(ConstantInt::get(getContext(), Val));
321}
322
323const SCEV *
324ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
325  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
326  return getConstant(ConstantInt::get(ITy, V, isSigned));
327}
328
329SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
330                           unsigned SCEVTy, const SCEV *op, Type *ty)
331  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
332
333SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
334                                   const SCEV *op, Type *ty)
335  : SCEVCastExpr(ID, scTruncate, op, ty) {
336  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
337         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
338         "Cannot truncate non-integer value!");
339}
340
341SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
342                                       const SCEV *op, Type *ty)
343  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
344  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346         "Cannot zero extend non-integer value!");
347}
348
349SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
350                                       const SCEV *op, Type *ty)
351  : SCEVCastExpr(ID, scSignExtend, op, ty) {
352  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354         "Cannot sign extend non-integer value!");
355}
356
357void SCEVUnknown::deleted() {
358  // Clear this SCEVUnknown from various maps.
359  SE->forgetMemoizedResults(this);
360
361  // Remove this SCEVUnknown from the uniquing map.
362  SE->UniqueSCEVs.RemoveNode(this);
363
364  // Release the value.
365  setValPtr(0);
366}
367
368void SCEVUnknown::allUsesReplacedWith(Value *New) {
369  // Clear this SCEVUnknown from various maps.
370  SE->forgetMemoizedResults(this);
371
372  // Remove this SCEVUnknown from the uniquing map.
373  SE->UniqueSCEVs.RemoveNode(this);
374
375  // Update this SCEVUnknown to point to the new value. This is needed
376  // because there may still be outstanding SCEVs which still point to
377  // this SCEVUnknown.
378  setValPtr(New);
379}
380
381bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
382  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
383    if (VCE->getOpcode() == Instruction::PtrToInt)
384      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
385        if (CE->getOpcode() == Instruction::GetElementPtr &&
386            CE->getOperand(0)->isNullValue() &&
387            CE->getNumOperands() == 2)
388          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
389            if (CI->isOne()) {
390              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
391                                 ->getElementType();
392              return true;
393            }
394
395  return false;
396}
397
398bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
399  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
400    if (VCE->getOpcode() == Instruction::PtrToInt)
401      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
402        if (CE->getOpcode() == Instruction::GetElementPtr &&
403            CE->getOperand(0)->isNullValue()) {
404          Type *Ty =
405            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406          if (StructType *STy = dyn_cast<StructType>(Ty))
407            if (!STy->isPacked() &&
408                CE->getNumOperands() == 3 &&
409                CE->getOperand(1)->isNullValue()) {
410              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
411                if (CI->isOne() &&
412                    STy->getNumElements() == 2 &&
413                    STy->getElementType(0)->isIntegerTy(1)) {
414                  AllocTy = STy->getElementType(1);
415                  return true;
416                }
417            }
418        }
419
420  return false;
421}
422
423bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
424  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
425    if (VCE->getOpcode() == Instruction::PtrToInt)
426      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
427        if (CE->getOpcode() == Instruction::GetElementPtr &&
428            CE->getNumOperands() == 3 &&
429            CE->getOperand(0)->isNullValue() &&
430            CE->getOperand(1)->isNullValue()) {
431          Type *Ty =
432            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
433          // Ignore vector types here so that ScalarEvolutionExpander doesn't
434          // emit getelementptrs that index into vectors.
435          if (Ty->isStructTy() || Ty->isArrayTy()) {
436            CTy = Ty;
437            FieldNo = CE->getOperand(2);
438            return true;
439          }
440        }
441
442  return false;
443}
444
445//===----------------------------------------------------------------------===//
446//                               SCEV Utilities
447//===----------------------------------------------------------------------===//
448
449namespace {
450  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
451  /// than the complexity of the RHS.  This comparator is used to canonicalize
452  /// expressions.
453  class SCEVComplexityCompare {
454    const LoopInfo *const LI;
455  public:
456    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
457
458    // Return true or false if LHS is less than, or at least RHS, respectively.
459    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
460      return compare(LHS, RHS) < 0;
461    }
462
463    // Return negative, zero, or positive, if LHS is less than, equal to, or
464    // greater than RHS, respectively. A three-way result allows recursive
465    // comparisons to be more efficient.
466    int compare(const SCEV *LHS, const SCEV *RHS) const {
467      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
468      if (LHS == RHS)
469        return 0;
470
471      // Primarily, sort the SCEVs by their getSCEVType().
472      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
473      if (LType != RType)
474        return (int)LType - (int)RType;
475
476      // Aside from the getSCEVType() ordering, the particular ordering
477      // isn't very important except that it's beneficial to be consistent,
478      // so that (a + b) and (b + a) don't end up as different expressions.
479      switch (LType) {
480      case scUnknown: {
481        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
482        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
483
484        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
485        // not as complete as it could be.
486        const Value *LV = LU->getValue(), *RV = RU->getValue();
487
488        // Order pointer values after integer values. This helps SCEVExpander
489        // form GEPs.
490        bool LIsPointer = LV->getType()->isPointerTy(),
491             RIsPointer = RV->getType()->isPointerTy();
492        if (LIsPointer != RIsPointer)
493          return (int)LIsPointer - (int)RIsPointer;
494
495        // Compare getValueID values.
496        unsigned LID = LV->getValueID(),
497                 RID = RV->getValueID();
498        if (LID != RID)
499          return (int)LID - (int)RID;
500
501        // Sort arguments by their position.
502        if (const Argument *LA = dyn_cast<Argument>(LV)) {
503          const Argument *RA = cast<Argument>(RV);
504          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
505          return (int)LArgNo - (int)RArgNo;
506        }
507
508        // For instructions, compare their loop depth, and their operand
509        // count.  This is pretty loose.
510        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
511          const Instruction *RInst = cast<Instruction>(RV);
512
513          // Compare loop depths.
514          const BasicBlock *LParent = LInst->getParent(),
515                           *RParent = RInst->getParent();
516          if (LParent != RParent) {
517            unsigned LDepth = LI->getLoopDepth(LParent),
518                     RDepth = LI->getLoopDepth(RParent);
519            if (LDepth != RDepth)
520              return (int)LDepth - (int)RDepth;
521          }
522
523          // Compare the number of operands.
524          unsigned LNumOps = LInst->getNumOperands(),
525                   RNumOps = RInst->getNumOperands();
526          return (int)LNumOps - (int)RNumOps;
527        }
528
529        return 0;
530      }
531
532      case scConstant: {
533        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
534        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
535
536        // Compare constant values.
537        const APInt &LA = LC->getValue()->getValue();
538        const APInt &RA = RC->getValue()->getValue();
539        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
540        if (LBitWidth != RBitWidth)
541          return (int)LBitWidth - (int)RBitWidth;
542        return LA.ult(RA) ? -1 : 1;
543      }
544
545      case scAddRecExpr: {
546        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
547        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
548
549        // Compare addrec loop depths.
550        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
551        if (LLoop != RLoop) {
552          unsigned LDepth = LLoop->getLoopDepth(),
553                   RDepth = RLoop->getLoopDepth();
554          if (LDepth != RDepth)
555            return (int)LDepth - (int)RDepth;
556        }
557
558        // Addrec complexity grows with operand count.
559        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
560        if (LNumOps != RNumOps)
561          return (int)LNumOps - (int)RNumOps;
562
563        // Lexicographically compare.
564        for (unsigned i = 0; i != LNumOps; ++i) {
565          long X = compare(LA->getOperand(i), RA->getOperand(i));
566          if (X != 0)
567            return X;
568        }
569
570        return 0;
571      }
572
573      case scAddExpr:
574      case scMulExpr:
575      case scSMaxExpr:
576      case scUMaxExpr: {
577        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
578        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
579
580        // Lexicographically compare n-ary expressions.
581        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
582        for (unsigned i = 0; i != LNumOps; ++i) {
583          if (i >= RNumOps)
584            return 1;
585          long X = compare(LC->getOperand(i), RC->getOperand(i));
586          if (X != 0)
587            return X;
588        }
589        return (int)LNumOps - (int)RNumOps;
590      }
591
592      case scUDivExpr: {
593        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
594        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
595
596        // Lexicographically compare udiv expressions.
597        long X = compare(LC->getLHS(), RC->getLHS());
598        if (X != 0)
599          return X;
600        return compare(LC->getRHS(), RC->getRHS());
601      }
602
603      case scTruncate:
604      case scZeroExtend:
605      case scSignExtend: {
606        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
607        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
608
609        // Compare cast expressions by operand.
610        return compare(LC->getOperand(), RC->getOperand());
611      }
612
613      default:
614        break;
615      }
616
617      llvm_unreachable("Unknown SCEV kind!");
618      return 0;
619    }
620  };
621}
622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
628/// Note that we go take special precautions to ensure that we get deterministic
629/// results from this routine.  In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
634                              LoopInfo *LI) {
635  if (Ops.size() < 2) return;  // Noop
636  if (Ops.size() == 2) {
637    // This is the common case, which also happens to be trivially simple.
638    // Special case it.
639    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640    if (SCEVComplexityCompare(LI)(RHS, LHS))
641      std::swap(LHS, RHS);
642    return;
643  }
644
645  // Do the rough sort by complexity.
646  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648  // Now that we are sorted by complexity, group elements of the same
649  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
650  // be extremely short in practice.  Note that we take this approach because we
651  // do not want to depend on the addresses of the objects we are grouping.
652  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653    const SCEV *S = Ops[i];
654    unsigned Complexity = S->getSCEVType();
655
656    // If there are any objects of the same complexity and same value as this
657    // one, group them.
658    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659      if (Ops[j] == S) { // Found a duplicate.
660        // Move it to immediately after i'th element.
661        std::swap(Ops[i+1], Ops[j]);
662        ++i;   // no need to rescan it.
663        if (i == e-2) return;  // Done!
664      }
665    }
666  }
667}
668
669
670
671//===----------------------------------------------------------------------===//
672//                      Simple SCEV method implementations
673//===----------------------------------------------------------------------===//
674
675/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
676/// Assume, K > 0.
677static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
678                                       ScalarEvolution &SE,
679                                       Type *ResultTy) {
680  // Handle the simplest case efficiently.
681  if (K == 1)
682    return SE.getTruncateOrZeroExtend(It, ResultTy);
683
684  // We are using the following formula for BC(It, K):
685  //
686  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
687  //
688  // Suppose, W is the bitwidth of the return value.  We must be prepared for
689  // overflow.  Hence, we must assure that the result of our computation is
690  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
691  // safe in modular arithmetic.
692  //
693  // However, this code doesn't use exactly that formula; the formula it uses
694  // is something like the following, where T is the number of factors of 2 in
695  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
696  // exponentiation:
697  //
698  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
699  //
700  // This formula is trivially equivalent to the previous formula.  However,
701  // this formula can be implemented much more efficiently.  The trick is that
702  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
703  // arithmetic.  To do exact division in modular arithmetic, all we have
704  // to do is multiply by the inverse.  Therefore, this step can be done at
705  // width W.
706  //
707  // The next issue is how to safely do the division by 2^T.  The way this
708  // is done is by doing the multiplication step at a width of at least W + T
709  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
710  // when we perform the division by 2^T (which is equivalent to a right shift
711  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
712  // truncated out after the division by 2^T.
713  //
714  // In comparison to just directly using the first formula, this technique
715  // is much more efficient; using the first formula requires W * K bits,
716  // but this formula less than W + K bits. Also, the first formula requires
717  // a division step, whereas this formula only requires multiplies and shifts.
718  //
719  // It doesn't matter whether the subtraction step is done in the calculation
720  // width or the input iteration count's width; if the subtraction overflows,
721  // the result must be zero anyway.  We prefer here to do it in the width of
722  // the induction variable because it helps a lot for certain cases; CodeGen
723  // isn't smart enough to ignore the overflow, which leads to much less
724  // efficient code if the width of the subtraction is wider than the native
725  // register width.
726  //
727  // (It's possible to not widen at all by pulling out factors of 2 before
728  // the multiplication; for example, K=2 can be calculated as
729  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
730  // extra arithmetic, so it's not an obvious win, and it gets
731  // much more complicated for K > 3.)
732
733  // Protection from insane SCEVs; this bound is conservative,
734  // but it probably doesn't matter.
735  if (K > 1000)
736    return SE.getCouldNotCompute();
737
738  unsigned W = SE.getTypeSizeInBits(ResultTy);
739
740  // Calculate K! / 2^T and T; we divide out the factors of two before
741  // multiplying for calculating K! / 2^T to avoid overflow.
742  // Other overflow doesn't matter because we only care about the bottom
743  // W bits of the result.
744  APInt OddFactorial(W, 1);
745  unsigned T = 1;
746  for (unsigned i = 3; i <= K; ++i) {
747    APInt Mult(W, i);
748    unsigned TwoFactors = Mult.countTrailingZeros();
749    T += TwoFactors;
750    Mult = Mult.lshr(TwoFactors);
751    OddFactorial *= Mult;
752  }
753
754  // We need at least W + T bits for the multiplication step
755  unsigned CalculationBits = W + T;
756
757  // Calculate 2^T, at width T+W.
758  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
759
760  // Calculate the multiplicative inverse of K! / 2^T;
761  // this multiplication factor will perform the exact division by
762  // K! / 2^T.
763  APInt Mod = APInt::getSignedMinValue(W+1);
764  APInt MultiplyFactor = OddFactorial.zext(W+1);
765  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
766  MultiplyFactor = MultiplyFactor.trunc(W);
767
768  // Calculate the product, at width T+W
769  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
770                                                      CalculationBits);
771  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
772  for (unsigned i = 1; i != K; ++i) {
773    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
774    Dividend = SE.getMulExpr(Dividend,
775                             SE.getTruncateOrZeroExtend(S, CalculationTy));
776  }
777
778  // Divide by 2^T
779  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
780
781  // Truncate the result, and divide by K! / 2^T.
782
783  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
784                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
785}
786
787/// evaluateAtIteration - Return the value of this chain of recurrences at
788/// the specified iteration number.  We can evaluate this recurrence by
789/// multiplying each element in the chain by the binomial coefficient
790/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
791///
792///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
793///
794/// where BC(It, k) stands for binomial coefficient.
795///
796const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
797                                                ScalarEvolution &SE) const {
798  const SCEV *Result = getStart();
799  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
800    // The computation is correct in the face of overflow provided that the
801    // multiplication is performed _after_ the evaluation of the binomial
802    // coefficient.
803    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
804    if (isa<SCEVCouldNotCompute>(Coeff))
805      return Coeff;
806
807    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
808  }
809  return Result;
810}
811
812//===----------------------------------------------------------------------===//
813//                    SCEV Expression folder implementations
814//===----------------------------------------------------------------------===//
815
816const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
817                                             Type *Ty) {
818  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
819         "This is not a truncating conversion!");
820  assert(isSCEVable(Ty) &&
821         "This is not a conversion to a SCEVable type!");
822  Ty = getEffectiveSCEVType(Ty);
823
824  FoldingSetNodeID ID;
825  ID.AddInteger(scTruncate);
826  ID.AddPointer(Op);
827  ID.AddPointer(Ty);
828  void *IP = 0;
829  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
830
831  // Fold if the operand is constant.
832  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
833    return getConstant(
834      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
835                                               getEffectiveSCEVType(Ty))));
836
837  // trunc(trunc(x)) --> trunc(x)
838  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
839    return getTruncateExpr(ST->getOperand(), Ty);
840
841  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
842  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
843    return getTruncateOrSignExtend(SS->getOperand(), Ty);
844
845  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
846  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
847    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
848
849  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
850  // eliminate all the truncates.
851  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
852    SmallVector<const SCEV *, 4> Operands;
853    bool hasTrunc = false;
854    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
855      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
856      hasTrunc = isa<SCEVTruncateExpr>(S);
857      Operands.push_back(S);
858    }
859    if (!hasTrunc)
860      return getAddExpr(Operands);
861    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
862  }
863
864  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
865  // eliminate all the truncates.
866  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
867    SmallVector<const SCEV *, 4> Operands;
868    bool hasTrunc = false;
869    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
870      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
871      hasTrunc = isa<SCEVTruncateExpr>(S);
872      Operands.push_back(S);
873    }
874    if (!hasTrunc)
875      return getMulExpr(Operands);
876    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
877  }
878
879  // If the input value is a chrec scev, truncate the chrec's operands.
880  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
881    SmallVector<const SCEV *, 4> Operands;
882    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
883      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
884    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
885  }
886
887  // As a special case, fold trunc(undef) to undef. We don't want to
888  // know too much about SCEVUnknowns, but this special case is handy
889  // and harmless.
890  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
891    if (isa<UndefValue>(U->getValue()))
892      return getSCEV(UndefValue::get(Ty));
893
894  // The cast wasn't folded; create an explicit cast node. We can reuse
895  // the existing insert position since if we get here, we won't have
896  // made any changes which would invalidate it.
897  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
898                                                 Op, Ty);
899  UniqueSCEVs.InsertNode(S, IP);
900  return S;
901}
902
903const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
904                                               Type *Ty) {
905  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
906         "This is not an extending conversion!");
907  assert(isSCEVable(Ty) &&
908         "This is not a conversion to a SCEVable type!");
909  Ty = getEffectiveSCEVType(Ty);
910
911  // Fold if the operand is constant.
912  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
913    return getConstant(
914      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
915                                              getEffectiveSCEVType(Ty))));
916
917  // zext(zext(x)) --> zext(x)
918  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
919    return getZeroExtendExpr(SZ->getOperand(), Ty);
920
921  // Before doing any expensive analysis, check to see if we've already
922  // computed a SCEV for this Op and Ty.
923  FoldingSetNodeID ID;
924  ID.AddInteger(scZeroExtend);
925  ID.AddPointer(Op);
926  ID.AddPointer(Ty);
927  void *IP = 0;
928  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
929
930  // zext(trunc(x)) --> zext(x) or x or trunc(x)
931  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
932    // It's possible the bits taken off by the truncate were all zero bits. If
933    // so, we should be able to simplify this further.
934    const SCEV *X = ST->getOperand();
935    ConstantRange CR = getUnsignedRange(X);
936    unsigned TruncBits = getTypeSizeInBits(ST->getType());
937    unsigned NewBits = getTypeSizeInBits(Ty);
938    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
939            CR.zextOrTrunc(NewBits)))
940      return getTruncateOrZeroExtend(X, Ty);
941  }
942
943  // If the input value is a chrec scev, and we can prove that the value
944  // did not overflow the old, smaller, value, we can zero extend all of the
945  // operands (often constants).  This allows analysis of something like
946  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
947  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
948    if (AR->isAffine()) {
949      const SCEV *Start = AR->getStart();
950      const SCEV *Step = AR->getStepRecurrence(*this);
951      unsigned BitWidth = getTypeSizeInBits(AR->getType());
952      const Loop *L = AR->getLoop();
953
954      // If we have special knowledge that this addrec won't overflow,
955      // we don't need to do any further analysis.
956      if (AR->getNoWrapFlags(SCEV::FlagNUW))
957        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
958                             getZeroExtendExpr(Step, Ty),
959                             L, AR->getNoWrapFlags());
960
961      // Check whether the backedge-taken count is SCEVCouldNotCompute.
962      // Note that this serves two purposes: It filters out loops that are
963      // simply not analyzable, and it covers the case where this code is
964      // being called from within backedge-taken count analysis, such that
965      // attempting to ask for the backedge-taken count would likely result
966      // in infinite recursion. In the later case, the analysis code will
967      // cope with a conservative value, and it will take care to purge
968      // that value once it has finished.
969      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
970      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
971        // Manually compute the final value for AR, checking for
972        // overflow.
973
974        // Check whether the backedge-taken count can be losslessly casted to
975        // the addrec's type. The count is always unsigned.
976        const SCEV *CastedMaxBECount =
977          getTruncateOrZeroExtend(MaxBECount, Start->getType());
978        const SCEV *RecastedMaxBECount =
979          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
980        if (MaxBECount == RecastedMaxBECount) {
981          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
982          // Check whether Start+Step*MaxBECount has no unsigned overflow.
983          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
984          const SCEV *Add = getAddExpr(Start, ZMul);
985          const SCEV *OperandExtendedAdd =
986            getAddExpr(getZeroExtendExpr(Start, WideTy),
987                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
988                                  getZeroExtendExpr(Step, WideTy)));
989          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
990            // Cache knowledge of AR NUW, which is propagated to this AddRec.
991            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
992            // Return the expression with the addrec on the outside.
993            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
994                                 getZeroExtendExpr(Step, Ty),
995                                 L, AR->getNoWrapFlags());
996          }
997          // Similar to above, only this time treat the step value as signed.
998          // This covers loops that count down.
999          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1000          Add = getAddExpr(Start, SMul);
1001          OperandExtendedAdd =
1002            getAddExpr(getZeroExtendExpr(Start, WideTy),
1003                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1004                                  getSignExtendExpr(Step, WideTy)));
1005          if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1006            // Cache knowledge of AR NW, which is propagated to this AddRec.
1007            // Negative step causes unsigned wrap, but it still can't self-wrap.
1008            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1009            // Return the expression with the addrec on the outside.
1010            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1011                                 getSignExtendExpr(Step, Ty),
1012                                 L, AR->getNoWrapFlags());
1013          }
1014        }
1015
1016        // If the backedge is guarded by a comparison with the pre-inc value
1017        // the addrec is safe. Also, if the entry is guarded by a comparison
1018        // with the start value and the backedge is guarded by a comparison
1019        // with the post-inc value, the addrec is safe.
1020        if (isKnownPositive(Step)) {
1021          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1022                                      getUnsignedRange(Step).getUnsignedMax());
1023          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1024              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1025               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1026                                           AR->getPostIncExpr(*this), N))) {
1027            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1028            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1029            // Return the expression with the addrec on the outside.
1030            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1031                                 getZeroExtendExpr(Step, Ty),
1032                                 L, AR->getNoWrapFlags());
1033          }
1034        } else if (isKnownNegative(Step)) {
1035          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1036                                      getSignedRange(Step).getSignedMin());
1037          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1038              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1039               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1040                                           AR->getPostIncExpr(*this), N))) {
1041            // Cache knowledge of AR NW, which is propagated to this AddRec.
1042            // Negative step causes unsigned wrap, but it still can't self-wrap.
1043            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1044            // Return the expression with the addrec on the outside.
1045            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1046                                 getSignExtendExpr(Step, Ty),
1047                                 L, AR->getNoWrapFlags());
1048          }
1049        }
1050      }
1051    }
1052
1053  // The cast wasn't folded; create an explicit cast node.
1054  // Recompute the insert position, as it may have been invalidated.
1055  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1056  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1057                                                   Op, Ty);
1058  UniqueSCEVs.InsertNode(S, IP);
1059  return S;
1060}
1061
1062// Get the limit of a recurrence such that incrementing by Step cannot cause
1063// signed overflow as long as the value of the recurrence within the loop does
1064// not exceed this limit before incrementing.
1065static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1066                                           ICmpInst::Predicate *Pred,
1067                                           ScalarEvolution *SE) {
1068  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1069  if (SE->isKnownPositive(Step)) {
1070    *Pred = ICmpInst::ICMP_SLT;
1071    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1072                           SE->getSignedRange(Step).getSignedMax());
1073  }
1074  if (SE->isKnownNegative(Step)) {
1075    *Pred = ICmpInst::ICMP_SGT;
1076    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1077                       SE->getSignedRange(Step).getSignedMin());
1078  }
1079  return 0;
1080}
1081
1082// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1083// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1084// or postincrement sibling. This allows normalizing a sign extended AddRec as
1085// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1086// result, the expression "Step + sext(PreIncAR)" is congruent with
1087// "sext(PostIncAR)"
1088static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1089                                            Type *Ty,
1090                                            ScalarEvolution *SE) {
1091  const Loop *L = AR->getLoop();
1092  const SCEV *Start = AR->getStart();
1093  const SCEV *Step = AR->getStepRecurrence(*SE);
1094
1095  // Check for a simple looking step prior to loop entry.
1096  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1097  if (!SA)
1098    return 0;
1099
1100  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1101  // subtraction is expensive. For this purpose, perform a quick and dirty
1102  // difference, by checking for Step in the operand list.
1103  SmallVector<const SCEV *, 4> DiffOps;
1104  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1105       I != E; ++I) {
1106    if (*I != Step)
1107      DiffOps.push_back(*I);
1108  }
1109  if (DiffOps.size() == SA->getNumOperands())
1110    return 0;
1111
1112  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1113  // same three conditions that getSignExtendedExpr checks.
1114
1115  // 1. NSW flags on the step increment.
1116  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1117  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1118    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1119
1120  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1121    return PreStart;
1122
1123  // 2. Direct overflow check on the step operation's expression.
1124  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1125  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1126  const SCEV *OperandExtendedStart =
1127    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1128                   SE->getSignExtendExpr(Step, WideTy));
1129  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1130    // Cache knowledge of PreAR NSW.
1131    if (PreAR)
1132      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1133    // FIXME: this optimization needs a unit test
1134    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1135    return PreStart;
1136  }
1137
1138  // 3. Loop precondition.
1139  ICmpInst::Predicate Pred;
1140  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1141
1142  if (OverflowLimit &&
1143      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1144    return PreStart;
1145  }
1146  return 0;
1147}
1148
1149// Get the normalized sign-extended expression for this AddRec's Start.
1150static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1151                                            Type *Ty,
1152                                            ScalarEvolution *SE) {
1153  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1154  if (!PreStart)
1155    return SE->getSignExtendExpr(AR->getStart(), Ty);
1156
1157  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1158                        SE->getSignExtendExpr(PreStart, Ty));
1159}
1160
1161const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1162                                               Type *Ty) {
1163  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1164         "This is not an extending conversion!");
1165  assert(isSCEVable(Ty) &&
1166         "This is not a conversion to a SCEVable type!");
1167  Ty = getEffectiveSCEVType(Ty);
1168
1169  // Fold if the operand is constant.
1170  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1171    return getConstant(
1172      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1173                                              getEffectiveSCEVType(Ty))));
1174
1175  // sext(sext(x)) --> sext(x)
1176  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1177    return getSignExtendExpr(SS->getOperand(), Ty);
1178
1179  // sext(zext(x)) --> zext(x)
1180  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1181    return getZeroExtendExpr(SZ->getOperand(), Ty);
1182
1183  // Before doing any expensive analysis, check to see if we've already
1184  // computed a SCEV for this Op and Ty.
1185  FoldingSetNodeID ID;
1186  ID.AddInteger(scSignExtend);
1187  ID.AddPointer(Op);
1188  ID.AddPointer(Ty);
1189  void *IP = 0;
1190  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1191
1192  // If the input value is provably positive, build a zext instead.
1193  if (isKnownNonNegative(Op))
1194    return getZeroExtendExpr(Op, Ty);
1195
1196  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1197  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1198    // It's possible the bits taken off by the truncate were all sign bits. If
1199    // so, we should be able to simplify this further.
1200    const SCEV *X = ST->getOperand();
1201    ConstantRange CR = getSignedRange(X);
1202    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1203    unsigned NewBits = getTypeSizeInBits(Ty);
1204    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1205            CR.sextOrTrunc(NewBits)))
1206      return getTruncateOrSignExtend(X, Ty);
1207  }
1208
1209  // If the input value is a chrec scev, and we can prove that the value
1210  // did not overflow the old, smaller, value, we can sign extend all of the
1211  // operands (often constants).  This allows analysis of something like
1212  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1213  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1214    if (AR->isAffine()) {
1215      const SCEV *Start = AR->getStart();
1216      const SCEV *Step = AR->getStepRecurrence(*this);
1217      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1218      const Loop *L = AR->getLoop();
1219
1220      // If we have special knowledge that this addrec won't overflow,
1221      // we don't need to do any further analysis.
1222      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1223        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1224                             getSignExtendExpr(Step, Ty),
1225                             L, SCEV::FlagNSW);
1226
1227      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1228      // Note that this serves two purposes: It filters out loops that are
1229      // simply not analyzable, and it covers the case where this code is
1230      // being called from within backedge-taken count analysis, such that
1231      // attempting to ask for the backedge-taken count would likely result
1232      // in infinite recursion. In the later case, the analysis code will
1233      // cope with a conservative value, and it will take care to purge
1234      // that value once it has finished.
1235      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1236      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1237        // Manually compute the final value for AR, checking for
1238        // overflow.
1239
1240        // Check whether the backedge-taken count can be losslessly casted to
1241        // the addrec's type. The count is always unsigned.
1242        const SCEV *CastedMaxBECount =
1243          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1244        const SCEV *RecastedMaxBECount =
1245          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1246        if (MaxBECount == RecastedMaxBECount) {
1247          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1248          // Check whether Start+Step*MaxBECount has no signed overflow.
1249          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1250          const SCEV *Add = getAddExpr(Start, SMul);
1251          const SCEV *OperandExtendedAdd =
1252            getAddExpr(getSignExtendExpr(Start, WideTy),
1253                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1254                                  getSignExtendExpr(Step, WideTy)));
1255          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1256            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1257            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1258            // Return the expression with the addrec on the outside.
1259            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1260                                 getSignExtendExpr(Step, Ty),
1261                                 L, AR->getNoWrapFlags());
1262          }
1263          // Similar to above, only this time treat the step value as unsigned.
1264          // This covers loops that count up with an unsigned step.
1265          const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1266          Add = getAddExpr(Start, UMul);
1267          OperandExtendedAdd =
1268            getAddExpr(getSignExtendExpr(Start, WideTy),
1269                       getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1270                                  getZeroExtendExpr(Step, WideTy)));
1271          if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) {
1272            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1273            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1274            // Return the expression with the addrec on the outside.
1275            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1276                                 getZeroExtendExpr(Step, Ty),
1277                                 L, AR->getNoWrapFlags());
1278          }
1279        }
1280
1281        // If the backedge is guarded by a comparison with the pre-inc value
1282        // the addrec is safe. Also, if the entry is guarded by a comparison
1283        // with the start value and the backedge is guarded by a comparison
1284        // with the post-inc value, the addrec is safe.
1285        ICmpInst::Predicate Pred;
1286        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1287        if (OverflowLimit &&
1288            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1289             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1290              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1291                                          OverflowLimit)))) {
1292          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1293          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1294          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1295                               getSignExtendExpr(Step, Ty),
1296                               L, AR->getNoWrapFlags());
1297        }
1298      }
1299    }
1300
1301  // The cast wasn't folded; create an explicit cast node.
1302  // Recompute the insert position, as it may have been invalidated.
1303  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1304  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1305                                                   Op, Ty);
1306  UniqueSCEVs.InsertNode(S, IP);
1307  return S;
1308}
1309
1310/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1311/// unspecified bits out to the given type.
1312///
1313const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1314                                              Type *Ty) {
1315  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1316         "This is not an extending conversion!");
1317  assert(isSCEVable(Ty) &&
1318         "This is not a conversion to a SCEVable type!");
1319  Ty = getEffectiveSCEVType(Ty);
1320
1321  // Sign-extend negative constants.
1322  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1323    if (SC->getValue()->getValue().isNegative())
1324      return getSignExtendExpr(Op, Ty);
1325
1326  // Peel off a truncate cast.
1327  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1328    const SCEV *NewOp = T->getOperand();
1329    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1330      return getAnyExtendExpr(NewOp, Ty);
1331    return getTruncateOrNoop(NewOp, Ty);
1332  }
1333
1334  // Next try a zext cast. If the cast is folded, use it.
1335  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1336  if (!isa<SCEVZeroExtendExpr>(ZExt))
1337    return ZExt;
1338
1339  // Next try a sext cast. If the cast is folded, use it.
1340  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1341  if (!isa<SCEVSignExtendExpr>(SExt))
1342    return SExt;
1343
1344  // Force the cast to be folded into the operands of an addrec.
1345  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1346    SmallVector<const SCEV *, 4> Ops;
1347    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1348         I != E; ++I)
1349      Ops.push_back(getAnyExtendExpr(*I, Ty));
1350    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1351  }
1352
1353  // As a special case, fold anyext(undef) to undef. We don't want to
1354  // know too much about SCEVUnknowns, but this special case is handy
1355  // and harmless.
1356  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1357    if (isa<UndefValue>(U->getValue()))
1358      return getSCEV(UndefValue::get(Ty));
1359
1360  // If the expression is obviously signed, use the sext cast value.
1361  if (isa<SCEVSMaxExpr>(Op))
1362    return SExt;
1363
1364  // Absent any other information, use the zext cast value.
1365  return ZExt;
1366}
1367
1368/// CollectAddOperandsWithScales - Process the given Ops list, which is
1369/// a list of operands to be added under the given scale, update the given
1370/// map. This is a helper function for getAddRecExpr. As an example of
1371/// what it does, given a sequence of operands that would form an add
1372/// expression like this:
1373///
1374///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1375///
1376/// where A and B are constants, update the map with these values:
1377///
1378///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1379///
1380/// and add 13 + A*B*29 to AccumulatedConstant.
1381/// This will allow getAddRecExpr to produce this:
1382///
1383///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1384///
1385/// This form often exposes folding opportunities that are hidden in
1386/// the original operand list.
1387///
1388/// Return true iff it appears that any interesting folding opportunities
1389/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1390/// the common case where no interesting opportunities are present, and
1391/// is also used as a check to avoid infinite recursion.
1392///
1393static bool
1394CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1395                             SmallVector<const SCEV *, 8> &NewOps,
1396                             APInt &AccumulatedConstant,
1397                             const SCEV *const *Ops, size_t NumOperands,
1398                             const APInt &Scale,
1399                             ScalarEvolution &SE) {
1400  bool Interesting = false;
1401
1402  // Iterate over the add operands. They are sorted, with constants first.
1403  unsigned i = 0;
1404  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1405    ++i;
1406    // Pull a buried constant out to the outside.
1407    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1408      Interesting = true;
1409    AccumulatedConstant += Scale * C->getValue()->getValue();
1410  }
1411
1412  // Next comes everything else. We're especially interested in multiplies
1413  // here, but they're in the middle, so just visit the rest with one loop.
1414  for (; i != NumOperands; ++i) {
1415    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1416    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1417      APInt NewScale =
1418        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1419      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1420        // A multiplication of a constant with another add; recurse.
1421        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1422        Interesting |=
1423          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1424                                       Add->op_begin(), Add->getNumOperands(),
1425                                       NewScale, SE);
1426      } else {
1427        // A multiplication of a constant with some other value. Update
1428        // the map.
1429        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1430        const SCEV *Key = SE.getMulExpr(MulOps);
1431        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1432          M.insert(std::make_pair(Key, NewScale));
1433        if (Pair.second) {
1434          NewOps.push_back(Pair.first->first);
1435        } else {
1436          Pair.first->second += NewScale;
1437          // The map already had an entry for this value, which may indicate
1438          // a folding opportunity.
1439          Interesting = true;
1440        }
1441      }
1442    } else {
1443      // An ordinary operand. Update the map.
1444      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1445        M.insert(std::make_pair(Ops[i], Scale));
1446      if (Pair.second) {
1447        NewOps.push_back(Pair.first->first);
1448      } else {
1449        Pair.first->second += Scale;
1450        // The map already had an entry for this value, which may indicate
1451        // a folding opportunity.
1452        Interesting = true;
1453      }
1454    }
1455  }
1456
1457  return Interesting;
1458}
1459
1460namespace {
1461  struct APIntCompare {
1462    bool operator()(const APInt &LHS, const APInt &RHS) const {
1463      return LHS.ult(RHS);
1464    }
1465  };
1466}
1467
1468/// getAddExpr - Get a canonical add expression, or something simpler if
1469/// possible.
1470const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1471                                        SCEV::NoWrapFlags Flags) {
1472  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1473         "only nuw or nsw allowed");
1474  assert(!Ops.empty() && "Cannot get empty add!");
1475  if (Ops.size() == 1) return Ops[0];
1476#ifndef NDEBUG
1477  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1478  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1479    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1480           "SCEVAddExpr operand types don't match!");
1481#endif
1482
1483  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1484  // And vice-versa.
1485  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1486  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1487  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1488    bool All = true;
1489    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1490         E = Ops.end(); I != E; ++I)
1491      if (!isKnownNonNegative(*I)) {
1492        All = false;
1493        break;
1494      }
1495    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1496  }
1497
1498  // Sort by complexity, this groups all similar expression types together.
1499  GroupByComplexity(Ops, LI);
1500
1501  // If there are any constants, fold them together.
1502  unsigned Idx = 0;
1503  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1504    ++Idx;
1505    assert(Idx < Ops.size());
1506    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1507      // We found two constants, fold them together!
1508      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1509                           RHSC->getValue()->getValue());
1510      if (Ops.size() == 2) return Ops[0];
1511      Ops.erase(Ops.begin()+1);  // Erase the folded element
1512      LHSC = cast<SCEVConstant>(Ops[0]);
1513    }
1514
1515    // If we are left with a constant zero being added, strip it off.
1516    if (LHSC->getValue()->isZero()) {
1517      Ops.erase(Ops.begin());
1518      --Idx;
1519    }
1520
1521    if (Ops.size() == 1) return Ops[0];
1522  }
1523
1524  // Okay, check to see if the same value occurs in the operand list more than
1525  // once.  If so, merge them together into an multiply expression.  Since we
1526  // sorted the list, these values are required to be adjacent.
1527  Type *Ty = Ops[0]->getType();
1528  bool FoundMatch = false;
1529  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1530    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1531      // Scan ahead to count how many equal operands there are.
1532      unsigned Count = 2;
1533      while (i+Count != e && Ops[i+Count] == Ops[i])
1534        ++Count;
1535      // Merge the values into a multiply.
1536      const SCEV *Scale = getConstant(Ty, Count);
1537      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1538      if (Ops.size() == Count)
1539        return Mul;
1540      Ops[i] = Mul;
1541      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1542      --i; e -= Count - 1;
1543      FoundMatch = true;
1544    }
1545  if (FoundMatch)
1546    return getAddExpr(Ops, Flags);
1547
1548  // Check for truncates. If all the operands are truncated from the same
1549  // type, see if factoring out the truncate would permit the result to be
1550  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1551  // if the contents of the resulting outer trunc fold to something simple.
1552  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1553    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1554    Type *DstType = Trunc->getType();
1555    Type *SrcType = Trunc->getOperand()->getType();
1556    SmallVector<const SCEV *, 8> LargeOps;
1557    bool Ok = true;
1558    // Check all the operands to see if they can be represented in the
1559    // source type of the truncate.
1560    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1561      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1562        if (T->getOperand()->getType() != SrcType) {
1563          Ok = false;
1564          break;
1565        }
1566        LargeOps.push_back(T->getOperand());
1567      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1568        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1569      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1570        SmallVector<const SCEV *, 8> LargeMulOps;
1571        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1572          if (const SCEVTruncateExpr *T =
1573                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1574            if (T->getOperand()->getType() != SrcType) {
1575              Ok = false;
1576              break;
1577            }
1578            LargeMulOps.push_back(T->getOperand());
1579          } else if (const SCEVConstant *C =
1580                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1581            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1582          } else {
1583            Ok = false;
1584            break;
1585          }
1586        }
1587        if (Ok)
1588          LargeOps.push_back(getMulExpr(LargeMulOps));
1589      } else {
1590        Ok = false;
1591        break;
1592      }
1593    }
1594    if (Ok) {
1595      // Evaluate the expression in the larger type.
1596      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1597      // If it folds to something simple, use it. Otherwise, don't.
1598      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1599        return getTruncateExpr(Fold, DstType);
1600    }
1601  }
1602
1603  // Skip past any other cast SCEVs.
1604  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1605    ++Idx;
1606
1607  // If there are add operands they would be next.
1608  if (Idx < Ops.size()) {
1609    bool DeletedAdd = false;
1610    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1611      // If we have an add, expand the add operands onto the end of the operands
1612      // list.
1613      Ops.erase(Ops.begin()+Idx);
1614      Ops.append(Add->op_begin(), Add->op_end());
1615      DeletedAdd = true;
1616    }
1617
1618    // If we deleted at least one add, we added operands to the end of the list,
1619    // and they are not necessarily sorted.  Recurse to resort and resimplify
1620    // any operands we just acquired.
1621    if (DeletedAdd)
1622      return getAddExpr(Ops);
1623  }
1624
1625  // Skip over the add expression until we get to a multiply.
1626  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1627    ++Idx;
1628
1629  // Check to see if there are any folding opportunities present with
1630  // operands multiplied by constant values.
1631  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1632    uint64_t BitWidth = getTypeSizeInBits(Ty);
1633    DenseMap<const SCEV *, APInt> M;
1634    SmallVector<const SCEV *, 8> NewOps;
1635    APInt AccumulatedConstant(BitWidth, 0);
1636    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1637                                     Ops.data(), Ops.size(),
1638                                     APInt(BitWidth, 1), *this)) {
1639      // Some interesting folding opportunity is present, so its worthwhile to
1640      // re-generate the operands list. Group the operands by constant scale,
1641      // to avoid multiplying by the same constant scale multiple times.
1642      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1643      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1644           E = NewOps.end(); I != E; ++I)
1645        MulOpLists[M.find(*I)->second].push_back(*I);
1646      // Re-generate the operands list.
1647      Ops.clear();
1648      if (AccumulatedConstant != 0)
1649        Ops.push_back(getConstant(AccumulatedConstant));
1650      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1651           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1652        if (I->first != 0)
1653          Ops.push_back(getMulExpr(getConstant(I->first),
1654                                   getAddExpr(I->second)));
1655      if (Ops.empty())
1656        return getConstant(Ty, 0);
1657      if (Ops.size() == 1)
1658        return Ops[0];
1659      return getAddExpr(Ops);
1660    }
1661  }
1662
1663  // If we are adding something to a multiply expression, make sure the
1664  // something is not already an operand of the multiply.  If so, merge it into
1665  // the multiply.
1666  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1667    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1668    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1669      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1670      if (isa<SCEVConstant>(MulOpSCEV))
1671        continue;
1672      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1673        if (MulOpSCEV == Ops[AddOp]) {
1674          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1675          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1676          if (Mul->getNumOperands() != 2) {
1677            // If the multiply has more than two operands, we must get the
1678            // Y*Z term.
1679            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1680                                                Mul->op_begin()+MulOp);
1681            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1682            InnerMul = getMulExpr(MulOps);
1683          }
1684          const SCEV *One = getConstant(Ty, 1);
1685          const SCEV *AddOne = getAddExpr(One, InnerMul);
1686          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1687          if (Ops.size() == 2) return OuterMul;
1688          if (AddOp < Idx) {
1689            Ops.erase(Ops.begin()+AddOp);
1690            Ops.erase(Ops.begin()+Idx-1);
1691          } else {
1692            Ops.erase(Ops.begin()+Idx);
1693            Ops.erase(Ops.begin()+AddOp-1);
1694          }
1695          Ops.push_back(OuterMul);
1696          return getAddExpr(Ops);
1697        }
1698
1699      // Check this multiply against other multiplies being added together.
1700      for (unsigned OtherMulIdx = Idx+1;
1701           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1702           ++OtherMulIdx) {
1703        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1704        // If MulOp occurs in OtherMul, we can fold the two multiplies
1705        // together.
1706        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1707             OMulOp != e; ++OMulOp)
1708          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1709            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1710            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1711            if (Mul->getNumOperands() != 2) {
1712              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1713                                                  Mul->op_begin()+MulOp);
1714              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1715              InnerMul1 = getMulExpr(MulOps);
1716            }
1717            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1718            if (OtherMul->getNumOperands() != 2) {
1719              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1720                                                  OtherMul->op_begin()+OMulOp);
1721              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1722              InnerMul2 = getMulExpr(MulOps);
1723            }
1724            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1725            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1726            if (Ops.size() == 2) return OuterMul;
1727            Ops.erase(Ops.begin()+Idx);
1728            Ops.erase(Ops.begin()+OtherMulIdx-1);
1729            Ops.push_back(OuterMul);
1730            return getAddExpr(Ops);
1731          }
1732      }
1733    }
1734  }
1735
1736  // If there are any add recurrences in the operands list, see if any other
1737  // added values are loop invariant.  If so, we can fold them into the
1738  // recurrence.
1739  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1740    ++Idx;
1741
1742  // Scan over all recurrences, trying to fold loop invariants into them.
1743  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1744    // Scan all of the other operands to this add and add them to the vector if
1745    // they are loop invariant w.r.t. the recurrence.
1746    SmallVector<const SCEV *, 8> LIOps;
1747    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1748    const Loop *AddRecLoop = AddRec->getLoop();
1749    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1750      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1751        LIOps.push_back(Ops[i]);
1752        Ops.erase(Ops.begin()+i);
1753        --i; --e;
1754      }
1755
1756    // If we found some loop invariants, fold them into the recurrence.
1757    if (!LIOps.empty()) {
1758      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1759      LIOps.push_back(AddRec->getStart());
1760
1761      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1762                                             AddRec->op_end());
1763      AddRecOps[0] = getAddExpr(LIOps);
1764
1765      // Build the new addrec. Propagate the NUW and NSW flags if both the
1766      // outer add and the inner addrec are guaranteed to have no overflow.
1767      // Always propagate NW.
1768      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1769      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1770
1771      // If all of the other operands were loop invariant, we are done.
1772      if (Ops.size() == 1) return NewRec;
1773
1774      // Otherwise, add the folded AddRec by the non-invariant parts.
1775      for (unsigned i = 0;; ++i)
1776        if (Ops[i] == AddRec) {
1777          Ops[i] = NewRec;
1778          break;
1779        }
1780      return getAddExpr(Ops);
1781    }
1782
1783    // Okay, if there weren't any loop invariants to be folded, check to see if
1784    // there are multiple AddRec's with the same loop induction variable being
1785    // added together.  If so, we can fold them.
1786    for (unsigned OtherIdx = Idx+1;
1787         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1788         ++OtherIdx)
1789      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1790        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1791        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1792                                               AddRec->op_end());
1793        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1794             ++OtherIdx)
1795          if (const SCEVAddRecExpr *OtherAddRec =
1796                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1797            if (OtherAddRec->getLoop() == AddRecLoop) {
1798              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1799                   i != e; ++i) {
1800                if (i >= AddRecOps.size()) {
1801                  AddRecOps.append(OtherAddRec->op_begin()+i,
1802                                   OtherAddRec->op_end());
1803                  break;
1804                }
1805                AddRecOps[i] = getAddExpr(AddRecOps[i],
1806                                          OtherAddRec->getOperand(i));
1807              }
1808              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1809            }
1810        // Step size has changed, so we cannot guarantee no self-wraparound.
1811        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1812        return getAddExpr(Ops);
1813      }
1814
1815    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1816    // next one.
1817  }
1818
1819  // Okay, it looks like we really DO need an add expr.  Check to see if we
1820  // already have one, otherwise create a new one.
1821  FoldingSetNodeID ID;
1822  ID.AddInteger(scAddExpr);
1823  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1824    ID.AddPointer(Ops[i]);
1825  void *IP = 0;
1826  SCEVAddExpr *S =
1827    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1828  if (!S) {
1829    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1830    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1831    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1832                                        O, Ops.size());
1833    UniqueSCEVs.InsertNode(S, IP);
1834  }
1835  S->setNoWrapFlags(Flags);
1836  return S;
1837}
1838
1839static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1840  uint64_t k = i*j;
1841  if (j > 1 && k / j != i) Overflow = true;
1842  return k;
1843}
1844
1845/// Compute the result of "n choose k", the binomial coefficient.  If an
1846/// intermediate computation overflows, Overflow will be set and the return will
1847/// be garbage. Overflow is not cleared on absense of overflow.
1848static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1849  // We use the multiplicative formula:
1850  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1851  // At each iteration, we take the n-th term of the numeral and divide by the
1852  // (k-n)th term of the denominator.  This division will always produce an
1853  // integral result, and helps reduce the chance of overflow in the
1854  // intermediate computations. However, we can still overflow even when the
1855  // final result would fit.
1856
1857  if (n == 0 || n == k) return 1;
1858  if (k > n) return 0;
1859
1860  if (k > n/2)
1861    k = n-k;
1862
1863  uint64_t r = 1;
1864  for (uint64_t i = 1; i <= k; ++i) {
1865    r = umul_ov(r, n-(i-1), Overflow);
1866    r /= i;
1867  }
1868  return r;
1869}
1870
1871/// getMulExpr - Get a canonical multiply expression, or something simpler if
1872/// possible.
1873const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1874                                        SCEV::NoWrapFlags Flags) {
1875  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1876         "only nuw or nsw allowed");
1877  assert(!Ops.empty() && "Cannot get empty mul!");
1878  if (Ops.size() == 1) return Ops[0];
1879#ifndef NDEBUG
1880  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1881  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1882    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1883           "SCEVMulExpr operand types don't match!");
1884#endif
1885
1886  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1887  // And vice-versa.
1888  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1889  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1890  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1891    bool All = true;
1892    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1893         E = Ops.end(); I != E; ++I)
1894      if (!isKnownNonNegative(*I)) {
1895        All = false;
1896        break;
1897      }
1898    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1899  }
1900
1901  // Sort by complexity, this groups all similar expression types together.
1902  GroupByComplexity(Ops, LI);
1903
1904  // If there are any constants, fold them together.
1905  unsigned Idx = 0;
1906  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1907
1908    // C1*(C2+V) -> C1*C2 + C1*V
1909    if (Ops.size() == 2)
1910      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1911        if (Add->getNumOperands() == 2 &&
1912            isa<SCEVConstant>(Add->getOperand(0)))
1913          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1914                            getMulExpr(LHSC, Add->getOperand(1)));
1915
1916    ++Idx;
1917    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1918      // We found two constants, fold them together!
1919      ConstantInt *Fold = ConstantInt::get(getContext(),
1920                                           LHSC->getValue()->getValue() *
1921                                           RHSC->getValue()->getValue());
1922      Ops[0] = getConstant(Fold);
1923      Ops.erase(Ops.begin()+1);  // Erase the folded element
1924      if (Ops.size() == 1) return Ops[0];
1925      LHSC = cast<SCEVConstant>(Ops[0]);
1926    }
1927
1928    // If we are left with a constant one being multiplied, strip it off.
1929    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1930      Ops.erase(Ops.begin());
1931      --Idx;
1932    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1933      // If we have a multiply of zero, it will always be zero.
1934      return Ops[0];
1935    } else if (Ops[0]->isAllOnesValue()) {
1936      // If we have a mul by -1 of an add, try distributing the -1 among the
1937      // add operands.
1938      if (Ops.size() == 2) {
1939        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1940          SmallVector<const SCEV *, 4> NewOps;
1941          bool AnyFolded = false;
1942          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1943                 E = Add->op_end(); I != E; ++I) {
1944            const SCEV *Mul = getMulExpr(Ops[0], *I);
1945            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1946            NewOps.push_back(Mul);
1947          }
1948          if (AnyFolded)
1949            return getAddExpr(NewOps);
1950        }
1951        else if (const SCEVAddRecExpr *
1952                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1953          // Negation preserves a recurrence's no self-wrap property.
1954          SmallVector<const SCEV *, 4> Operands;
1955          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1956                 E = AddRec->op_end(); I != E; ++I) {
1957            Operands.push_back(getMulExpr(Ops[0], *I));
1958          }
1959          return getAddRecExpr(Operands, AddRec->getLoop(),
1960                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1961        }
1962      }
1963    }
1964
1965    if (Ops.size() == 1)
1966      return Ops[0];
1967  }
1968
1969  // Skip over the add expression until we get to a multiply.
1970  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1971    ++Idx;
1972
1973  // If there are mul operands inline them all into this expression.
1974  if (Idx < Ops.size()) {
1975    bool DeletedMul = false;
1976    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1977      // If we have an mul, expand the mul operands onto the end of the operands
1978      // list.
1979      Ops.erase(Ops.begin()+Idx);
1980      Ops.append(Mul->op_begin(), Mul->op_end());
1981      DeletedMul = true;
1982    }
1983
1984    // If we deleted at least one mul, we added operands to the end of the list,
1985    // and they are not necessarily sorted.  Recurse to resort and resimplify
1986    // any operands we just acquired.
1987    if (DeletedMul)
1988      return getMulExpr(Ops);
1989  }
1990
1991  // If there are any add recurrences in the operands list, see if any other
1992  // added values are loop invariant.  If so, we can fold them into the
1993  // recurrence.
1994  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1995    ++Idx;
1996
1997  // Scan over all recurrences, trying to fold loop invariants into them.
1998  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1999    // Scan all of the other operands to this mul and add them to the vector if
2000    // they are loop invariant w.r.t. the recurrence.
2001    SmallVector<const SCEV *, 8> LIOps;
2002    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2003    const Loop *AddRecLoop = AddRec->getLoop();
2004    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2005      if (isLoopInvariant(Ops[i], AddRecLoop)) {
2006        LIOps.push_back(Ops[i]);
2007        Ops.erase(Ops.begin()+i);
2008        --i; --e;
2009      }
2010
2011    // If we found some loop invariants, fold them into the recurrence.
2012    if (!LIOps.empty()) {
2013      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2014      SmallVector<const SCEV *, 4> NewOps;
2015      NewOps.reserve(AddRec->getNumOperands());
2016      const SCEV *Scale = getMulExpr(LIOps);
2017      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2018        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2019
2020      // Build the new addrec. Propagate the NUW and NSW flags if both the
2021      // outer mul and the inner addrec are guaranteed to have no overflow.
2022      //
2023      // No self-wrap cannot be guaranteed after changing the step size, but
2024      // will be inferred if either NUW or NSW is true.
2025      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2026      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2027
2028      // If all of the other operands were loop invariant, we are done.
2029      if (Ops.size() == 1) return NewRec;
2030
2031      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2032      for (unsigned i = 0;; ++i)
2033        if (Ops[i] == AddRec) {
2034          Ops[i] = NewRec;
2035          break;
2036        }
2037      return getMulExpr(Ops);
2038    }
2039
2040    // Okay, if there weren't any loop invariants to be folded, check to see if
2041    // there are multiple AddRec's with the same loop induction variable being
2042    // multiplied together.  If so, we can fold them.
2043    for (unsigned OtherIdx = Idx+1;
2044         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2045         ++OtherIdx) {
2046      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2047        // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2048        // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2049        //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2050        //   ]]],+,...up to x=2n}.
2051        // Note that the arguments to choose() are always integers with values
2052        // known at compile time, never SCEV objects.
2053        //
2054        // The implementation avoids pointless extra computations when the two
2055        // addrec's are of different length (mathematically, it's equivalent to
2056        // an infinite stream of zeros on the right).
2057        bool OpsModified = false;
2058        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2059             ++OtherIdx)
2060          if (const SCEVAddRecExpr *OtherAddRec =
2061                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2062            if (OtherAddRec->getLoop() == AddRecLoop) {
2063              bool Overflow = false;
2064              Type *Ty = AddRec->getType();
2065              bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2066              SmallVector<const SCEV*, 7> AddRecOps;
2067              for (int x = 0, xe = AddRec->getNumOperands() +
2068                     OtherAddRec->getNumOperands() - 1;
2069                   x != xe && !Overflow; ++x) {
2070                const SCEV *Term = getConstant(Ty, 0);
2071                for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2072                  uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2073                  for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2074                         ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2075                       z < ze && !Overflow; ++z) {
2076                    uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2077                    uint64_t Coeff;
2078                    if (LargerThan64Bits)
2079                      Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2080                    else
2081                      Coeff = Coeff1*Coeff2;
2082                    const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2083                    const SCEV *Term1 = AddRec->getOperand(y-z);
2084                    const SCEV *Term2 = OtherAddRec->getOperand(z);
2085                    Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2086                  }
2087                }
2088                AddRecOps.push_back(Term);
2089              }
2090              if (!Overflow) {
2091                const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
2092                                                      AddRec->getLoop(),
2093                                                      SCEV::FlagAnyWrap);
2094                if (Ops.size() == 2) return NewAddRec;
2095                Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
2096                Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2097                OpsModified = true;
2098              }
2099            }
2100        if (OpsModified)
2101          return getMulExpr(Ops);
2102      }
2103    }
2104
2105    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2106    // next one.
2107  }
2108
2109  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2110  // already have one, otherwise create a new one.
2111  FoldingSetNodeID ID;
2112  ID.AddInteger(scMulExpr);
2113  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2114    ID.AddPointer(Ops[i]);
2115  void *IP = 0;
2116  SCEVMulExpr *S =
2117    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2118  if (!S) {
2119    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2120    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2121    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2122                                        O, Ops.size());
2123    UniqueSCEVs.InsertNode(S, IP);
2124  }
2125  S->setNoWrapFlags(Flags);
2126  return S;
2127}
2128
2129/// getUDivExpr - Get a canonical unsigned division expression, or something
2130/// simpler if possible.
2131const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2132                                         const SCEV *RHS) {
2133  assert(getEffectiveSCEVType(LHS->getType()) ==
2134         getEffectiveSCEVType(RHS->getType()) &&
2135         "SCEVUDivExpr operand types don't match!");
2136
2137  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2138    if (RHSC->getValue()->equalsInt(1))
2139      return LHS;                               // X udiv 1 --> x
2140    // If the denominator is zero, the result of the udiv is undefined. Don't
2141    // try to analyze it, because the resolution chosen here may differ from
2142    // the resolution chosen in other parts of the compiler.
2143    if (!RHSC->getValue()->isZero()) {
2144      // Determine if the division can be folded into the operands of
2145      // its operands.
2146      // TODO: Generalize this to non-constants by using known-bits information.
2147      Type *Ty = LHS->getType();
2148      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2149      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2150      // For non-power-of-two values, effectively round the value up to the
2151      // nearest power of two.
2152      if (!RHSC->getValue()->getValue().isPowerOf2())
2153        ++MaxShiftAmt;
2154      IntegerType *ExtTy =
2155        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2156      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2157        if (const SCEVConstant *Step =
2158            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2159          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2160          const APInt &StepInt = Step->getValue()->getValue();
2161          const APInt &DivInt = RHSC->getValue()->getValue();
2162          if (!StepInt.urem(DivInt) &&
2163              getZeroExtendExpr(AR, ExtTy) ==
2164              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2165                            getZeroExtendExpr(Step, ExtTy),
2166                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2167            SmallVector<const SCEV *, 4> Operands;
2168            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2169              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2170            return getAddRecExpr(Operands, AR->getLoop(),
2171                                 SCEV::FlagNW);
2172          }
2173          /// Get a canonical UDivExpr for a recurrence.
2174          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2175          // We can currently only fold X%N if X is constant.
2176          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2177          if (StartC && !DivInt.urem(StepInt) &&
2178              getZeroExtendExpr(AR, ExtTy) ==
2179              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2180                            getZeroExtendExpr(Step, ExtTy),
2181                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2182            const APInt &StartInt = StartC->getValue()->getValue();
2183            const APInt &StartRem = StartInt.urem(StepInt);
2184            if (StartRem != 0)
2185              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2186                                  AR->getLoop(), SCEV::FlagNW);
2187          }
2188        }
2189      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2190      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2191        SmallVector<const SCEV *, 4> Operands;
2192        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2193          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2194        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2195          // Find an operand that's safely divisible.
2196          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2197            const SCEV *Op = M->getOperand(i);
2198            const SCEV *Div = getUDivExpr(Op, RHSC);
2199            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2200              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2201                                                      M->op_end());
2202              Operands[i] = Div;
2203              return getMulExpr(Operands);
2204            }
2205          }
2206      }
2207      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2208      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2209        SmallVector<const SCEV *, 4> Operands;
2210        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2211          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2212        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2213          Operands.clear();
2214          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2215            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2216            if (isa<SCEVUDivExpr>(Op) ||
2217                getMulExpr(Op, RHS) != A->getOperand(i))
2218              break;
2219            Operands.push_back(Op);
2220          }
2221          if (Operands.size() == A->getNumOperands())
2222            return getAddExpr(Operands);
2223        }
2224      }
2225
2226      // Fold if both operands are constant.
2227      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2228        Constant *LHSCV = LHSC->getValue();
2229        Constant *RHSCV = RHSC->getValue();
2230        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2231                                                                   RHSCV)));
2232      }
2233    }
2234  }
2235
2236  FoldingSetNodeID ID;
2237  ID.AddInteger(scUDivExpr);
2238  ID.AddPointer(LHS);
2239  ID.AddPointer(RHS);
2240  void *IP = 0;
2241  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2242  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2243                                             LHS, RHS);
2244  UniqueSCEVs.InsertNode(S, IP);
2245  return S;
2246}
2247
2248
2249/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2250/// Simplify the expression as much as possible.
2251const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2252                                           const Loop *L,
2253                                           SCEV::NoWrapFlags Flags) {
2254  SmallVector<const SCEV *, 4> Operands;
2255  Operands.push_back(Start);
2256  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2257    if (StepChrec->getLoop() == L) {
2258      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2259      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2260    }
2261
2262  Operands.push_back(Step);
2263  return getAddRecExpr(Operands, L, Flags);
2264}
2265
2266/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2267/// Simplify the expression as much as possible.
2268const SCEV *
2269ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2270                               const Loop *L, SCEV::NoWrapFlags Flags) {
2271  if (Operands.size() == 1) return Operands[0];
2272#ifndef NDEBUG
2273  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2274  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2275    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2276           "SCEVAddRecExpr operand types don't match!");
2277  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2278    assert(isLoopInvariant(Operands[i], L) &&
2279           "SCEVAddRecExpr operand is not loop-invariant!");
2280#endif
2281
2282  if (Operands.back()->isZero()) {
2283    Operands.pop_back();
2284    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2285  }
2286
2287  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2288  // use that information to infer NUW and NSW flags. However, computing a
2289  // BE count requires calling getAddRecExpr, so we may not yet have a
2290  // meaningful BE count at this point (and if we don't, we'd be stuck
2291  // with a SCEVCouldNotCompute as the cached BE count).
2292
2293  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2294  // And vice-versa.
2295  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2296  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2297  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2298    bool All = true;
2299    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2300         E = Operands.end(); I != E; ++I)
2301      if (!isKnownNonNegative(*I)) {
2302        All = false;
2303        break;
2304      }
2305    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2306  }
2307
2308  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2309  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2310    const Loop *NestedLoop = NestedAR->getLoop();
2311    if (L->contains(NestedLoop) ?
2312        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2313        (!NestedLoop->contains(L) &&
2314         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2315      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2316                                                  NestedAR->op_end());
2317      Operands[0] = NestedAR->getStart();
2318      // AddRecs require their operands be loop-invariant with respect to their
2319      // loops. Don't perform this transformation if it would break this
2320      // requirement.
2321      bool AllInvariant = true;
2322      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2323        if (!isLoopInvariant(Operands[i], L)) {
2324          AllInvariant = false;
2325          break;
2326        }
2327      if (AllInvariant) {
2328        // Create a recurrence for the outer loop with the same step size.
2329        //
2330        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2331        // inner recurrence has the same property.
2332        SCEV::NoWrapFlags OuterFlags =
2333          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2334
2335        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2336        AllInvariant = true;
2337        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2338          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2339            AllInvariant = false;
2340            break;
2341          }
2342        if (AllInvariant) {
2343          // Ok, both add recurrences are valid after the transformation.
2344          //
2345          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2346          // the outer recurrence has the same property.
2347          SCEV::NoWrapFlags InnerFlags =
2348            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2349          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2350        }
2351      }
2352      // Reset Operands to its original state.
2353      Operands[0] = NestedAR;
2354    }
2355  }
2356
2357  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2358  // already have one, otherwise create a new one.
2359  FoldingSetNodeID ID;
2360  ID.AddInteger(scAddRecExpr);
2361  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2362    ID.AddPointer(Operands[i]);
2363  ID.AddPointer(L);
2364  void *IP = 0;
2365  SCEVAddRecExpr *S =
2366    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2367  if (!S) {
2368    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2369    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2370    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2371                                           O, Operands.size(), L);
2372    UniqueSCEVs.InsertNode(S, IP);
2373  }
2374  S->setNoWrapFlags(Flags);
2375  return S;
2376}
2377
2378const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2379                                         const SCEV *RHS) {
2380  SmallVector<const SCEV *, 2> Ops;
2381  Ops.push_back(LHS);
2382  Ops.push_back(RHS);
2383  return getSMaxExpr(Ops);
2384}
2385
2386const SCEV *
2387ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2388  assert(!Ops.empty() && "Cannot get empty smax!");
2389  if (Ops.size() == 1) return Ops[0];
2390#ifndef NDEBUG
2391  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2392  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2393    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2394           "SCEVSMaxExpr operand types don't match!");
2395#endif
2396
2397  // Sort by complexity, this groups all similar expression types together.
2398  GroupByComplexity(Ops, LI);
2399
2400  // If there are any constants, fold them together.
2401  unsigned Idx = 0;
2402  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2403    ++Idx;
2404    assert(Idx < Ops.size());
2405    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2406      // We found two constants, fold them together!
2407      ConstantInt *Fold = ConstantInt::get(getContext(),
2408                              APIntOps::smax(LHSC->getValue()->getValue(),
2409                                             RHSC->getValue()->getValue()));
2410      Ops[0] = getConstant(Fold);
2411      Ops.erase(Ops.begin()+1);  // Erase the folded element
2412      if (Ops.size() == 1) return Ops[0];
2413      LHSC = cast<SCEVConstant>(Ops[0]);
2414    }
2415
2416    // If we are left with a constant minimum-int, strip it off.
2417    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2418      Ops.erase(Ops.begin());
2419      --Idx;
2420    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2421      // If we have an smax with a constant maximum-int, it will always be
2422      // maximum-int.
2423      return Ops[0];
2424    }
2425
2426    if (Ops.size() == 1) return Ops[0];
2427  }
2428
2429  // Find the first SMax
2430  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2431    ++Idx;
2432
2433  // Check to see if one of the operands is an SMax. If so, expand its operands
2434  // onto our operand list, and recurse to simplify.
2435  if (Idx < Ops.size()) {
2436    bool DeletedSMax = false;
2437    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2438      Ops.erase(Ops.begin()+Idx);
2439      Ops.append(SMax->op_begin(), SMax->op_end());
2440      DeletedSMax = true;
2441    }
2442
2443    if (DeletedSMax)
2444      return getSMaxExpr(Ops);
2445  }
2446
2447  // Okay, check to see if the same value occurs in the operand list twice.  If
2448  // so, delete one.  Since we sorted the list, these values are required to
2449  // be adjacent.
2450  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2451    //  X smax Y smax Y  -->  X smax Y
2452    //  X smax Y         -->  X, if X is always greater than Y
2453    if (Ops[i] == Ops[i+1] ||
2454        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2455      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2456      --i; --e;
2457    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2458      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2459      --i; --e;
2460    }
2461
2462  if (Ops.size() == 1) return Ops[0];
2463
2464  assert(!Ops.empty() && "Reduced smax down to nothing!");
2465
2466  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2467  // already have one, otherwise create a new one.
2468  FoldingSetNodeID ID;
2469  ID.AddInteger(scSMaxExpr);
2470  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2471    ID.AddPointer(Ops[i]);
2472  void *IP = 0;
2473  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2474  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2475  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2476  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2477                                             O, Ops.size());
2478  UniqueSCEVs.InsertNode(S, IP);
2479  return S;
2480}
2481
2482const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2483                                         const SCEV *RHS) {
2484  SmallVector<const SCEV *, 2> Ops;
2485  Ops.push_back(LHS);
2486  Ops.push_back(RHS);
2487  return getUMaxExpr(Ops);
2488}
2489
2490const SCEV *
2491ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2492  assert(!Ops.empty() && "Cannot get empty umax!");
2493  if (Ops.size() == 1) return Ops[0];
2494#ifndef NDEBUG
2495  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2496  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2497    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2498           "SCEVUMaxExpr operand types don't match!");
2499#endif
2500
2501  // Sort by complexity, this groups all similar expression types together.
2502  GroupByComplexity(Ops, LI);
2503
2504  // If there are any constants, fold them together.
2505  unsigned Idx = 0;
2506  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2507    ++Idx;
2508    assert(Idx < Ops.size());
2509    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2510      // We found two constants, fold them together!
2511      ConstantInt *Fold = ConstantInt::get(getContext(),
2512                              APIntOps::umax(LHSC->getValue()->getValue(),
2513                                             RHSC->getValue()->getValue()));
2514      Ops[0] = getConstant(Fold);
2515      Ops.erase(Ops.begin()+1);  // Erase the folded element
2516      if (Ops.size() == 1) return Ops[0];
2517      LHSC = cast<SCEVConstant>(Ops[0]);
2518    }
2519
2520    // If we are left with a constant minimum-int, strip it off.
2521    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2522      Ops.erase(Ops.begin());
2523      --Idx;
2524    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2525      // If we have an umax with a constant maximum-int, it will always be
2526      // maximum-int.
2527      return Ops[0];
2528    }
2529
2530    if (Ops.size() == 1) return Ops[0];
2531  }
2532
2533  // Find the first UMax
2534  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2535    ++Idx;
2536
2537  // Check to see if one of the operands is a UMax. If so, expand its operands
2538  // onto our operand list, and recurse to simplify.
2539  if (Idx < Ops.size()) {
2540    bool DeletedUMax = false;
2541    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2542      Ops.erase(Ops.begin()+Idx);
2543      Ops.append(UMax->op_begin(), UMax->op_end());
2544      DeletedUMax = true;
2545    }
2546
2547    if (DeletedUMax)
2548      return getUMaxExpr(Ops);
2549  }
2550
2551  // Okay, check to see if the same value occurs in the operand list twice.  If
2552  // so, delete one.  Since we sorted the list, these values are required to
2553  // be adjacent.
2554  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2555    //  X umax Y umax Y  -->  X umax Y
2556    //  X umax Y         -->  X, if X is always greater than Y
2557    if (Ops[i] == Ops[i+1] ||
2558        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2559      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2560      --i; --e;
2561    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2562      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2563      --i; --e;
2564    }
2565
2566  if (Ops.size() == 1) return Ops[0];
2567
2568  assert(!Ops.empty() && "Reduced umax down to nothing!");
2569
2570  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2571  // already have one, otherwise create a new one.
2572  FoldingSetNodeID ID;
2573  ID.AddInteger(scUMaxExpr);
2574  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2575    ID.AddPointer(Ops[i]);
2576  void *IP = 0;
2577  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2578  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2579  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2580  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2581                                             O, Ops.size());
2582  UniqueSCEVs.InsertNode(S, IP);
2583  return S;
2584}
2585
2586const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2587                                         const SCEV *RHS) {
2588  // ~smax(~x, ~y) == smin(x, y).
2589  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2590}
2591
2592const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2593                                         const SCEV *RHS) {
2594  // ~umax(~x, ~y) == umin(x, y)
2595  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2596}
2597
2598const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2599  // If we have TargetData, we can bypass creating a target-independent
2600  // constant expression and then folding it back into a ConstantInt.
2601  // This is just a compile-time optimization.
2602  if (TD)
2603    return getConstant(TD->getIntPtrType(getContext()),
2604                       TD->getTypeAllocSize(AllocTy));
2605
2606  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2607  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2608    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2609      C = Folded;
2610  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2611  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2612}
2613
2614const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2615  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2616  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2617    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2618      C = Folded;
2619  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2620  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2621}
2622
2623const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2624                                             unsigned FieldNo) {
2625  // If we have TargetData, we can bypass creating a target-independent
2626  // constant expression and then folding it back into a ConstantInt.
2627  // This is just a compile-time optimization.
2628  if (TD)
2629    return getConstant(TD->getIntPtrType(getContext()),
2630                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2631
2632  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2633  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2634    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2635      C = Folded;
2636  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2637  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2638}
2639
2640const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2641                                             Constant *FieldNo) {
2642  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2643  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2644    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2645      C = Folded;
2646  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2647  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2648}
2649
2650const SCEV *ScalarEvolution::getUnknown(Value *V) {
2651  // Don't attempt to do anything other than create a SCEVUnknown object
2652  // here.  createSCEV only calls getUnknown after checking for all other
2653  // interesting possibilities, and any other code that calls getUnknown
2654  // is doing so in order to hide a value from SCEV canonicalization.
2655
2656  FoldingSetNodeID ID;
2657  ID.AddInteger(scUnknown);
2658  ID.AddPointer(V);
2659  void *IP = 0;
2660  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2661    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2662           "Stale SCEVUnknown in uniquing map!");
2663    return S;
2664  }
2665  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2666                                            FirstUnknown);
2667  FirstUnknown = cast<SCEVUnknown>(S);
2668  UniqueSCEVs.InsertNode(S, IP);
2669  return S;
2670}
2671
2672//===----------------------------------------------------------------------===//
2673//            Basic SCEV Analysis and PHI Idiom Recognition Code
2674//
2675
2676/// isSCEVable - Test if values of the given type are analyzable within
2677/// the SCEV framework. This primarily includes integer types, and it
2678/// can optionally include pointer types if the ScalarEvolution class
2679/// has access to target-specific information.
2680bool ScalarEvolution::isSCEVable(Type *Ty) const {
2681  // Integers and pointers are always SCEVable.
2682  return Ty->isIntegerTy() || Ty->isPointerTy();
2683}
2684
2685/// getTypeSizeInBits - Return the size in bits of the specified type,
2686/// for which isSCEVable must return true.
2687uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2688  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2689
2690  // If we have a TargetData, use it!
2691  if (TD)
2692    return TD->getTypeSizeInBits(Ty);
2693
2694  // Integer types have fixed sizes.
2695  if (Ty->isIntegerTy())
2696    return Ty->getPrimitiveSizeInBits();
2697
2698  // The only other support type is pointer. Without TargetData, conservatively
2699  // assume pointers are 64-bit.
2700  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2701  return 64;
2702}
2703
2704/// getEffectiveSCEVType - Return a type with the same bitwidth as
2705/// the given type and which represents how SCEV will treat the given
2706/// type, for which isSCEVable must return true. For pointer types,
2707/// this is the pointer-sized integer type.
2708Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2709  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2710
2711  if (Ty->isIntegerTy())
2712    return Ty;
2713
2714  // The only other support type is pointer.
2715  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2716  if (TD) return TD->getIntPtrType(getContext());
2717
2718  // Without TargetData, conservatively assume pointers are 64-bit.
2719  return Type::getInt64Ty(getContext());
2720}
2721
2722const SCEV *ScalarEvolution::getCouldNotCompute() {
2723  return &CouldNotCompute;
2724}
2725
2726/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2727/// expression and create a new one.
2728const SCEV *ScalarEvolution::getSCEV(Value *V) {
2729  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2730
2731  ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2732  if (I != ValueExprMap.end()) return I->second;
2733  const SCEV *S = createSCEV(V);
2734
2735  // The process of creating a SCEV for V may have caused other SCEVs
2736  // to have been created, so it's necessary to insert the new entry
2737  // from scratch, rather than trying to remember the insert position
2738  // above.
2739  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2740  return S;
2741}
2742
2743/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2744///
2745const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2746  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2747    return getConstant(
2748               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2749
2750  Type *Ty = V->getType();
2751  Ty = getEffectiveSCEVType(Ty);
2752  return getMulExpr(V,
2753                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2754}
2755
2756/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2757const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2758  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2759    return getConstant(
2760                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2761
2762  Type *Ty = V->getType();
2763  Ty = getEffectiveSCEVType(Ty);
2764  const SCEV *AllOnes =
2765                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2766  return getMinusSCEV(AllOnes, V);
2767}
2768
2769/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2770const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2771                                          SCEV::NoWrapFlags Flags) {
2772  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2773
2774  // Fast path: X - X --> 0.
2775  if (LHS == RHS)
2776    return getConstant(LHS->getType(), 0);
2777
2778  // X - Y --> X + -Y
2779  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2780}
2781
2782/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2783/// input value to the specified type.  If the type must be extended, it is zero
2784/// extended.
2785const SCEV *
2786ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2787  Type *SrcTy = V->getType();
2788  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2789         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2790         "Cannot truncate or zero extend with non-integer arguments!");
2791  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2792    return V;  // No conversion
2793  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2794    return getTruncateExpr(V, Ty);
2795  return getZeroExtendExpr(V, Ty);
2796}
2797
2798/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2799/// input value to the specified type.  If the type must be extended, it is sign
2800/// extended.
2801const SCEV *
2802ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2803                                         Type *Ty) {
2804  Type *SrcTy = V->getType();
2805  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2806         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2807         "Cannot truncate or zero extend with non-integer arguments!");
2808  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2809    return V;  // No conversion
2810  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2811    return getTruncateExpr(V, Ty);
2812  return getSignExtendExpr(V, Ty);
2813}
2814
2815/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2816/// input value to the specified type.  If the type must be extended, it is zero
2817/// extended.  The conversion must not be narrowing.
2818const SCEV *
2819ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2820  Type *SrcTy = V->getType();
2821  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2822         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2823         "Cannot noop or zero extend with non-integer arguments!");
2824  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2825         "getNoopOrZeroExtend cannot truncate!");
2826  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2827    return V;  // No conversion
2828  return getZeroExtendExpr(V, Ty);
2829}
2830
2831/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2832/// input value to the specified type.  If the type must be extended, it is sign
2833/// extended.  The conversion must not be narrowing.
2834const SCEV *
2835ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2836  Type *SrcTy = V->getType();
2837  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2838         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2839         "Cannot noop or sign extend with non-integer arguments!");
2840  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2841         "getNoopOrSignExtend cannot truncate!");
2842  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2843    return V;  // No conversion
2844  return getSignExtendExpr(V, Ty);
2845}
2846
2847/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2848/// the input value to the specified type. If the type must be extended,
2849/// it is extended with unspecified bits. The conversion must not be
2850/// narrowing.
2851const SCEV *
2852ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2853  Type *SrcTy = V->getType();
2854  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2855         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2856         "Cannot noop or any extend with non-integer arguments!");
2857  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2858         "getNoopOrAnyExtend cannot truncate!");
2859  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2860    return V;  // No conversion
2861  return getAnyExtendExpr(V, Ty);
2862}
2863
2864/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2865/// input value to the specified type.  The conversion must not be widening.
2866const SCEV *
2867ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2868  Type *SrcTy = V->getType();
2869  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2870         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2871         "Cannot truncate or noop with non-integer arguments!");
2872  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2873         "getTruncateOrNoop cannot extend!");
2874  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2875    return V;  // No conversion
2876  return getTruncateExpr(V, Ty);
2877}
2878
2879/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2880/// the types using zero-extension, and then perform a umax operation
2881/// with them.
2882const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2883                                                        const SCEV *RHS) {
2884  const SCEV *PromotedLHS = LHS;
2885  const SCEV *PromotedRHS = RHS;
2886
2887  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2888    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2889  else
2890    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2891
2892  return getUMaxExpr(PromotedLHS, PromotedRHS);
2893}
2894
2895/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2896/// the types using zero-extension, and then perform a umin operation
2897/// with them.
2898const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2899                                                        const SCEV *RHS) {
2900  const SCEV *PromotedLHS = LHS;
2901  const SCEV *PromotedRHS = RHS;
2902
2903  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2904    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2905  else
2906    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2907
2908  return getUMinExpr(PromotedLHS, PromotedRHS);
2909}
2910
2911/// getPointerBase - Transitively follow the chain of pointer-type operands
2912/// until reaching a SCEV that does not have a single pointer operand. This
2913/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2914/// but corner cases do exist.
2915const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2916  // A pointer operand may evaluate to a nonpointer expression, such as null.
2917  if (!V->getType()->isPointerTy())
2918    return V;
2919
2920  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2921    return getPointerBase(Cast->getOperand());
2922  }
2923  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2924    const SCEV *PtrOp = 0;
2925    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2926         I != E; ++I) {
2927      if ((*I)->getType()->isPointerTy()) {
2928        // Cannot find the base of an expression with multiple pointer operands.
2929        if (PtrOp)
2930          return V;
2931        PtrOp = *I;
2932      }
2933    }
2934    if (!PtrOp)
2935      return V;
2936    return getPointerBase(PtrOp);
2937  }
2938  return V;
2939}
2940
2941/// PushDefUseChildren - Push users of the given Instruction
2942/// onto the given Worklist.
2943static void
2944PushDefUseChildren(Instruction *I,
2945                   SmallVectorImpl<Instruction *> &Worklist) {
2946  // Push the def-use children onto the Worklist stack.
2947  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2948       UI != UE; ++UI)
2949    Worklist.push_back(cast<Instruction>(*UI));
2950}
2951
2952/// ForgetSymbolicValue - This looks up computed SCEV values for all
2953/// instructions that depend on the given instruction and removes them from
2954/// the ValueExprMapType map if they reference SymName. This is used during PHI
2955/// resolution.
2956void
2957ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2958  SmallVector<Instruction *, 16> Worklist;
2959  PushDefUseChildren(PN, Worklist);
2960
2961  SmallPtrSet<Instruction *, 8> Visited;
2962  Visited.insert(PN);
2963  while (!Worklist.empty()) {
2964    Instruction *I = Worklist.pop_back_val();
2965    if (!Visited.insert(I)) continue;
2966
2967    ValueExprMapType::iterator It =
2968      ValueExprMap.find(static_cast<Value *>(I));
2969    if (It != ValueExprMap.end()) {
2970      const SCEV *Old = It->second;
2971
2972      // Short-circuit the def-use traversal if the symbolic name
2973      // ceases to appear in expressions.
2974      if (Old != SymName && !hasOperand(Old, SymName))
2975        continue;
2976
2977      // SCEVUnknown for a PHI either means that it has an unrecognized
2978      // structure, it's a PHI that's in the progress of being computed
2979      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2980      // additional loop trip count information isn't going to change anything.
2981      // In the second case, createNodeForPHI will perform the necessary
2982      // updates on its own when it gets to that point. In the third, we do
2983      // want to forget the SCEVUnknown.
2984      if (!isa<PHINode>(I) ||
2985          !isa<SCEVUnknown>(Old) ||
2986          (I != PN && Old == SymName)) {
2987        forgetMemoizedResults(Old);
2988        ValueExprMap.erase(It);
2989      }
2990    }
2991
2992    PushDefUseChildren(I, Worklist);
2993  }
2994}
2995
2996/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2997/// a loop header, making it a potential recurrence, or it doesn't.
2998///
2999const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3000  if (const Loop *L = LI->getLoopFor(PN->getParent()))
3001    if (L->getHeader() == PN->getParent()) {
3002      // The loop may have multiple entrances or multiple exits; we can analyze
3003      // this phi as an addrec if it has a unique entry value and a unique
3004      // backedge value.
3005      Value *BEValueV = 0, *StartValueV = 0;
3006      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3007        Value *V = PN->getIncomingValue(i);
3008        if (L->contains(PN->getIncomingBlock(i))) {
3009          if (!BEValueV) {
3010            BEValueV = V;
3011          } else if (BEValueV != V) {
3012            BEValueV = 0;
3013            break;
3014          }
3015        } else if (!StartValueV) {
3016          StartValueV = V;
3017        } else if (StartValueV != V) {
3018          StartValueV = 0;
3019          break;
3020        }
3021      }
3022      if (BEValueV && StartValueV) {
3023        // While we are analyzing this PHI node, handle its value symbolically.
3024        const SCEV *SymbolicName = getUnknown(PN);
3025        assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
3026               "PHI node already processed?");
3027        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3028
3029        // Using this symbolic name for the PHI, analyze the value coming around
3030        // the back-edge.
3031        const SCEV *BEValue = getSCEV(BEValueV);
3032
3033        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3034        // has a special value for the first iteration of the loop.
3035
3036        // If the value coming around the backedge is an add with the symbolic
3037        // value we just inserted, then we found a simple induction variable!
3038        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3039          // If there is a single occurrence of the symbolic value, replace it
3040          // with a recurrence.
3041          unsigned FoundIndex = Add->getNumOperands();
3042          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3043            if (Add->getOperand(i) == SymbolicName)
3044              if (FoundIndex == e) {
3045                FoundIndex = i;
3046                break;
3047              }
3048
3049          if (FoundIndex != Add->getNumOperands()) {
3050            // Create an add with everything but the specified operand.
3051            SmallVector<const SCEV *, 8> Ops;
3052            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3053              if (i != FoundIndex)
3054                Ops.push_back(Add->getOperand(i));
3055            const SCEV *Accum = getAddExpr(Ops);
3056
3057            // This is not a valid addrec if the step amount is varying each
3058            // loop iteration, but is not itself an addrec in this loop.
3059            if (isLoopInvariant(Accum, L) ||
3060                (isa<SCEVAddRecExpr>(Accum) &&
3061                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3062              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3063
3064              // If the increment doesn't overflow, then neither the addrec nor
3065              // the post-increment will overflow.
3066              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3067                if (OBO->hasNoUnsignedWrap())
3068                  Flags = setFlags(Flags, SCEV::FlagNUW);
3069                if (OBO->hasNoSignedWrap())
3070                  Flags = setFlags(Flags, SCEV::FlagNSW);
3071              } else if (const GEPOperator *GEP =
3072                         dyn_cast<GEPOperator>(BEValueV)) {
3073                // If the increment is an inbounds GEP, then we know the address
3074                // space cannot be wrapped around. We cannot make any guarantee
3075                // about signed or unsigned overflow because pointers are
3076                // unsigned but we may have a negative index from the base
3077                // pointer.
3078                if (GEP->isInBounds())
3079                  Flags = setFlags(Flags, SCEV::FlagNW);
3080              }
3081
3082              const SCEV *StartVal = getSCEV(StartValueV);
3083              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3084
3085              // Since the no-wrap flags are on the increment, they apply to the
3086              // post-incremented value as well.
3087              if (isLoopInvariant(Accum, L))
3088                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3089                                    Accum, L, Flags);
3090
3091              // Okay, for the entire analysis of this edge we assumed the PHI
3092              // to be symbolic.  We now need to go back and purge all of the
3093              // entries for the scalars that use the symbolic expression.
3094              ForgetSymbolicName(PN, SymbolicName);
3095              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3096              return PHISCEV;
3097            }
3098          }
3099        } else if (const SCEVAddRecExpr *AddRec =
3100                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3101          // Otherwise, this could be a loop like this:
3102          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3103          // In this case, j = {1,+,1}  and BEValue is j.
3104          // Because the other in-value of i (0) fits the evolution of BEValue
3105          // i really is an addrec evolution.
3106          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3107            const SCEV *StartVal = getSCEV(StartValueV);
3108
3109            // If StartVal = j.start - j.stride, we can use StartVal as the
3110            // initial step of the addrec evolution.
3111            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3112                                         AddRec->getOperand(1))) {
3113              // FIXME: For constant StartVal, we should be able to infer
3114              // no-wrap flags.
3115              const SCEV *PHISCEV =
3116                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3117                              SCEV::FlagAnyWrap);
3118
3119              // Okay, for the entire analysis of this edge we assumed the PHI
3120              // to be symbolic.  We now need to go back and purge all of the
3121              // entries for the scalars that use the symbolic expression.
3122              ForgetSymbolicName(PN, SymbolicName);
3123              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3124              return PHISCEV;
3125            }
3126          }
3127        }
3128      }
3129    }
3130
3131  // If the PHI has a single incoming value, follow that value, unless the
3132  // PHI's incoming blocks are in a different loop, in which case doing so
3133  // risks breaking LCSSA form. Instcombine would normally zap these, but
3134  // it doesn't have DominatorTree information, so it may miss cases.
3135  if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
3136    if (LI->replacementPreservesLCSSAForm(PN, V))
3137      return getSCEV(V);
3138
3139  // If it's not a loop phi, we can't handle it yet.
3140  return getUnknown(PN);
3141}
3142
3143/// createNodeForGEP - Expand GEP instructions into add and multiply
3144/// operations. This allows them to be analyzed by regular SCEV code.
3145///
3146const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3147
3148  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3149  // Add expression, because the Instruction may be guarded by control flow
3150  // and the no-overflow bits may not be valid for the expression in any
3151  // context.
3152  bool isInBounds = GEP->isInBounds();
3153
3154  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3155  Value *Base = GEP->getOperand(0);
3156  // Don't attempt to analyze GEPs over unsized objects.
3157  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3158    return getUnknown(GEP);
3159  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3160  gep_type_iterator GTI = gep_type_begin(GEP);
3161  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3162                                      E = GEP->op_end();
3163       I != E; ++I) {
3164    Value *Index = *I;
3165    // Compute the (potentially symbolic) offset in bytes for this index.
3166    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3167      // For a struct, add the member offset.
3168      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3169      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3170
3171      // Add the field offset to the running total offset.
3172      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3173    } else {
3174      // For an array, add the element offset, explicitly scaled.
3175      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3176      const SCEV *IndexS = getSCEV(Index);
3177      // Getelementptr indices are signed.
3178      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3179
3180      // Multiply the index by the element size to compute the element offset.
3181      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3182                                           isInBounds ? SCEV::FlagNSW :
3183                                           SCEV::FlagAnyWrap);
3184
3185      // Add the element offset to the running total offset.
3186      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3187    }
3188  }
3189
3190  // Get the SCEV for the GEP base.
3191  const SCEV *BaseS = getSCEV(Base);
3192
3193  // Add the total offset from all the GEP indices to the base.
3194  return getAddExpr(BaseS, TotalOffset,
3195                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3196}
3197
3198/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3199/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3200/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3201/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3202uint32_t
3203ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3204  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3205    return C->getValue()->getValue().countTrailingZeros();
3206
3207  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3208    return std::min(GetMinTrailingZeros(T->getOperand()),
3209                    (uint32_t)getTypeSizeInBits(T->getType()));
3210
3211  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3212    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3213    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3214             getTypeSizeInBits(E->getType()) : OpRes;
3215  }
3216
3217  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3218    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3219    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3220             getTypeSizeInBits(E->getType()) : OpRes;
3221  }
3222
3223  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3224    // The result is the min of all operands results.
3225    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3226    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3227      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3228    return MinOpRes;
3229  }
3230
3231  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3232    // The result is the sum of all operands results.
3233    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3234    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3235    for (unsigned i = 1, e = M->getNumOperands();
3236         SumOpRes != BitWidth && i != e; ++i)
3237      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3238                          BitWidth);
3239    return SumOpRes;
3240  }
3241
3242  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3243    // The result is the min of all operands results.
3244    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3245    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3246      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3247    return MinOpRes;
3248  }
3249
3250  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3251    // The result is the min of all operands results.
3252    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3253    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3254      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3255    return MinOpRes;
3256  }
3257
3258  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3259    // The result is the min of all operands results.
3260    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3261    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3262      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3263    return MinOpRes;
3264  }
3265
3266  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3267    // For a SCEVUnknown, ask ValueTracking.
3268    unsigned BitWidth = getTypeSizeInBits(U->getType());
3269    APInt Mask = APInt::getAllOnesValue(BitWidth);
3270    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3271    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
3272    return Zeros.countTrailingOnes();
3273  }
3274
3275  // SCEVUDivExpr
3276  return 0;
3277}
3278
3279/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3280///
3281ConstantRange
3282ScalarEvolution::getUnsignedRange(const SCEV *S) {
3283  // See if we've computed this range already.
3284  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3285  if (I != UnsignedRanges.end())
3286    return I->second;
3287
3288  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3289    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3290
3291  unsigned BitWidth = getTypeSizeInBits(S->getType());
3292  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3293
3294  // If the value has known zeros, the maximum unsigned value will have those
3295  // known zeros as well.
3296  uint32_t TZ = GetMinTrailingZeros(S);
3297  if (TZ != 0)
3298    ConservativeResult =
3299      ConstantRange(APInt::getMinValue(BitWidth),
3300                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3301
3302  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3303    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3304    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3305      X = X.add(getUnsignedRange(Add->getOperand(i)));
3306    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3307  }
3308
3309  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3310    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3311    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3312      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3313    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3314  }
3315
3316  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3317    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3318    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3319      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3320    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3321  }
3322
3323  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3324    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3325    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3326      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3327    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3328  }
3329
3330  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3331    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3332    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3333    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3334  }
3335
3336  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3337    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3338    return setUnsignedRange(ZExt,
3339      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3340  }
3341
3342  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3343    ConstantRange X = getUnsignedRange(SExt->getOperand());
3344    return setUnsignedRange(SExt,
3345      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3346  }
3347
3348  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3349    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3350    return setUnsignedRange(Trunc,
3351      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3352  }
3353
3354  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3355    // If there's no unsigned wrap, the value will never be less than its
3356    // initial value.
3357    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3358      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3359        if (!C->getValue()->isZero())
3360          ConservativeResult =
3361            ConservativeResult.intersectWith(
3362              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3363
3364    // TODO: non-affine addrec
3365    if (AddRec->isAffine()) {
3366      Type *Ty = AddRec->getType();
3367      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3368      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3369          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3370        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3371
3372        const SCEV *Start = AddRec->getStart();
3373        const SCEV *Step = AddRec->getStepRecurrence(*this);
3374
3375        ConstantRange StartRange = getUnsignedRange(Start);
3376        ConstantRange StepRange = getSignedRange(Step);
3377        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3378        ConstantRange EndRange =
3379          StartRange.add(MaxBECountRange.multiply(StepRange));
3380
3381        // Check for overflow. This must be done with ConstantRange arithmetic
3382        // because we could be called from within the ScalarEvolution overflow
3383        // checking code.
3384        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3385        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3386        ConstantRange ExtMaxBECountRange =
3387          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3388        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3389        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3390            ExtEndRange)
3391          return setUnsignedRange(AddRec, ConservativeResult);
3392
3393        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3394                                   EndRange.getUnsignedMin());
3395        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3396                                   EndRange.getUnsignedMax());
3397        if (Min.isMinValue() && Max.isMaxValue())
3398          return setUnsignedRange(AddRec, ConservativeResult);
3399        return setUnsignedRange(AddRec,
3400          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3401      }
3402    }
3403
3404    return setUnsignedRange(AddRec, ConservativeResult);
3405  }
3406
3407  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3408    // For a SCEVUnknown, ask ValueTracking.
3409    APInt Mask = APInt::getAllOnesValue(BitWidth);
3410    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3411    ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3412    if (Ones == ~Zeros + 1)
3413      return setUnsignedRange(U, ConservativeResult);
3414    return setUnsignedRange(U,
3415      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3416  }
3417
3418  return setUnsignedRange(S, ConservativeResult);
3419}
3420
3421/// getSignedRange - Determine the signed range for a particular SCEV.
3422///
3423ConstantRange
3424ScalarEvolution::getSignedRange(const SCEV *S) {
3425  // See if we've computed this range already.
3426  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3427  if (I != SignedRanges.end())
3428    return I->second;
3429
3430  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3431    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3432
3433  unsigned BitWidth = getTypeSizeInBits(S->getType());
3434  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3435
3436  // If the value has known zeros, the maximum signed value will have those
3437  // known zeros as well.
3438  uint32_t TZ = GetMinTrailingZeros(S);
3439  if (TZ != 0)
3440    ConservativeResult =
3441      ConstantRange(APInt::getSignedMinValue(BitWidth),
3442                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3443
3444  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3445    ConstantRange X = getSignedRange(Add->getOperand(0));
3446    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3447      X = X.add(getSignedRange(Add->getOperand(i)));
3448    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3449  }
3450
3451  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3452    ConstantRange X = getSignedRange(Mul->getOperand(0));
3453    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3454      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3455    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3456  }
3457
3458  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3459    ConstantRange X = getSignedRange(SMax->getOperand(0));
3460    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3461      X = X.smax(getSignedRange(SMax->getOperand(i)));
3462    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3463  }
3464
3465  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3466    ConstantRange X = getSignedRange(UMax->getOperand(0));
3467    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3468      X = X.umax(getSignedRange(UMax->getOperand(i)));
3469    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3470  }
3471
3472  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3473    ConstantRange X = getSignedRange(UDiv->getLHS());
3474    ConstantRange Y = getSignedRange(UDiv->getRHS());
3475    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3476  }
3477
3478  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3479    ConstantRange X = getSignedRange(ZExt->getOperand());
3480    return setSignedRange(ZExt,
3481      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3482  }
3483
3484  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3485    ConstantRange X = getSignedRange(SExt->getOperand());
3486    return setSignedRange(SExt,
3487      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3488  }
3489
3490  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3491    ConstantRange X = getSignedRange(Trunc->getOperand());
3492    return setSignedRange(Trunc,
3493      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3494  }
3495
3496  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3497    // If there's no signed wrap, and all the operands have the same sign or
3498    // zero, the value won't ever change sign.
3499    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3500      bool AllNonNeg = true;
3501      bool AllNonPos = true;
3502      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3503        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3504        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3505      }
3506      if (AllNonNeg)
3507        ConservativeResult = ConservativeResult.intersectWith(
3508          ConstantRange(APInt(BitWidth, 0),
3509                        APInt::getSignedMinValue(BitWidth)));
3510      else if (AllNonPos)
3511        ConservativeResult = ConservativeResult.intersectWith(
3512          ConstantRange(APInt::getSignedMinValue(BitWidth),
3513                        APInt(BitWidth, 1)));
3514    }
3515
3516    // TODO: non-affine addrec
3517    if (AddRec->isAffine()) {
3518      Type *Ty = AddRec->getType();
3519      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3520      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3521          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3522        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3523
3524        const SCEV *Start = AddRec->getStart();
3525        const SCEV *Step = AddRec->getStepRecurrence(*this);
3526
3527        ConstantRange StartRange = getSignedRange(Start);
3528        ConstantRange StepRange = getSignedRange(Step);
3529        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3530        ConstantRange EndRange =
3531          StartRange.add(MaxBECountRange.multiply(StepRange));
3532
3533        // Check for overflow. This must be done with ConstantRange arithmetic
3534        // because we could be called from within the ScalarEvolution overflow
3535        // checking code.
3536        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3537        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3538        ConstantRange ExtMaxBECountRange =
3539          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3540        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3541        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3542            ExtEndRange)
3543          return setSignedRange(AddRec, ConservativeResult);
3544
3545        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3546                                   EndRange.getSignedMin());
3547        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3548                                   EndRange.getSignedMax());
3549        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3550          return setSignedRange(AddRec, ConservativeResult);
3551        return setSignedRange(AddRec,
3552          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3553      }
3554    }
3555
3556    return setSignedRange(AddRec, ConservativeResult);
3557  }
3558
3559  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3560    // For a SCEVUnknown, ask ValueTracking.
3561    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3562      return setSignedRange(U, ConservativeResult);
3563    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3564    if (NS == 1)
3565      return setSignedRange(U, ConservativeResult);
3566    return setSignedRange(U, ConservativeResult.intersectWith(
3567      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3568                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3569  }
3570
3571  return setSignedRange(S, ConservativeResult);
3572}
3573
3574/// createSCEV - We know that there is no SCEV for the specified value.
3575/// Analyze the expression.
3576///
3577const SCEV *ScalarEvolution::createSCEV(Value *V) {
3578  if (!isSCEVable(V->getType()))
3579    return getUnknown(V);
3580
3581  unsigned Opcode = Instruction::UserOp1;
3582  if (Instruction *I = dyn_cast<Instruction>(V)) {
3583    Opcode = I->getOpcode();
3584
3585    // Don't attempt to analyze instructions in blocks that aren't
3586    // reachable. Such instructions don't matter, and they aren't required
3587    // to obey basic rules for definitions dominating uses which this
3588    // analysis depends on.
3589    if (!DT->isReachableFromEntry(I->getParent()))
3590      return getUnknown(V);
3591  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3592    Opcode = CE->getOpcode();
3593  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3594    return getConstant(CI);
3595  else if (isa<ConstantPointerNull>(V))
3596    return getConstant(V->getType(), 0);
3597  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3598    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3599  else
3600    return getUnknown(V);
3601
3602  Operator *U = cast<Operator>(V);
3603  switch (Opcode) {
3604  case Instruction::Add: {
3605    // The simple thing to do would be to just call getSCEV on both operands
3606    // and call getAddExpr with the result. However if we're looking at a
3607    // bunch of things all added together, this can be quite inefficient,
3608    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3609    // Instead, gather up all the operands and make a single getAddExpr call.
3610    // LLVM IR canonical form means we need only traverse the left operands.
3611    //
3612    // Don't apply this instruction's NSW or NUW flags to the new
3613    // expression. The instruction may be guarded by control flow that the
3614    // no-wrap behavior depends on. Non-control-equivalent instructions can be
3615    // mapped to the same SCEV expression, and it would be incorrect to transfer
3616    // NSW/NUW semantics to those operations.
3617    SmallVector<const SCEV *, 4> AddOps;
3618    AddOps.push_back(getSCEV(U->getOperand(1)));
3619    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3620      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3621      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3622        break;
3623      U = cast<Operator>(Op);
3624      const SCEV *Op1 = getSCEV(U->getOperand(1));
3625      if (Opcode == Instruction::Sub)
3626        AddOps.push_back(getNegativeSCEV(Op1));
3627      else
3628        AddOps.push_back(Op1);
3629    }
3630    AddOps.push_back(getSCEV(U->getOperand(0)));
3631    return getAddExpr(AddOps);
3632  }
3633  case Instruction::Mul: {
3634    // Don't transfer NSW/NUW for the same reason as AddExpr.
3635    SmallVector<const SCEV *, 4> MulOps;
3636    MulOps.push_back(getSCEV(U->getOperand(1)));
3637    for (Value *Op = U->getOperand(0);
3638         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3639         Op = U->getOperand(0)) {
3640      U = cast<Operator>(Op);
3641      MulOps.push_back(getSCEV(U->getOperand(1)));
3642    }
3643    MulOps.push_back(getSCEV(U->getOperand(0)));
3644    return getMulExpr(MulOps);
3645  }
3646  case Instruction::UDiv:
3647    return getUDivExpr(getSCEV(U->getOperand(0)),
3648                       getSCEV(U->getOperand(1)));
3649  case Instruction::Sub:
3650    return getMinusSCEV(getSCEV(U->getOperand(0)),
3651                        getSCEV(U->getOperand(1)));
3652  case Instruction::And:
3653    // For an expression like x&255 that merely masks off the high bits,
3654    // use zext(trunc(x)) as the SCEV expression.
3655    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3656      if (CI->isNullValue())
3657        return getSCEV(U->getOperand(1));
3658      if (CI->isAllOnesValue())
3659        return getSCEV(U->getOperand(0));
3660      const APInt &A = CI->getValue();
3661
3662      // Instcombine's ShrinkDemandedConstant may strip bits out of
3663      // constants, obscuring what would otherwise be a low-bits mask.
3664      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3665      // knew about to reconstruct a low-bits mask value.
3666      unsigned LZ = A.countLeadingZeros();
3667      unsigned BitWidth = A.getBitWidth();
3668      APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3669      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3670      ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3671
3672      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3673
3674      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3675        return
3676          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3677                                IntegerType::get(getContext(), BitWidth - LZ)),
3678                            U->getType());
3679    }
3680    break;
3681
3682  case Instruction::Or:
3683    // If the RHS of the Or is a constant, we may have something like:
3684    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3685    // optimizations will transparently handle this case.
3686    //
3687    // In order for this transformation to be safe, the LHS must be of the
3688    // form X*(2^n) and the Or constant must be less than 2^n.
3689    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3690      const SCEV *LHS = getSCEV(U->getOperand(0));
3691      const APInt &CIVal = CI->getValue();
3692      if (GetMinTrailingZeros(LHS) >=
3693          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3694        // Build a plain add SCEV.
3695        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3696        // If the LHS of the add was an addrec and it has no-wrap flags,
3697        // transfer the no-wrap flags, since an or won't introduce a wrap.
3698        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3699          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3700          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3701            OldAR->getNoWrapFlags());
3702        }
3703        return S;
3704      }
3705    }
3706    break;
3707  case Instruction::Xor:
3708    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3709      // If the RHS of the xor is a signbit, then this is just an add.
3710      // Instcombine turns add of signbit into xor as a strength reduction step.
3711      if (CI->getValue().isSignBit())
3712        return getAddExpr(getSCEV(U->getOperand(0)),
3713                          getSCEV(U->getOperand(1)));
3714
3715      // If the RHS of xor is -1, then this is a not operation.
3716      if (CI->isAllOnesValue())
3717        return getNotSCEV(getSCEV(U->getOperand(0)));
3718
3719      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3720      // This is a variant of the check for xor with -1, and it handles
3721      // the case where instcombine has trimmed non-demanded bits out
3722      // of an xor with -1.
3723      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3724        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3725          if (BO->getOpcode() == Instruction::And &&
3726              LCI->getValue() == CI->getValue())
3727            if (const SCEVZeroExtendExpr *Z =
3728                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3729              Type *UTy = U->getType();
3730              const SCEV *Z0 = Z->getOperand();
3731              Type *Z0Ty = Z0->getType();
3732              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3733
3734              // If C is a low-bits mask, the zero extend is serving to
3735              // mask off the high bits. Complement the operand and
3736              // re-apply the zext.
3737              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3738                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3739
3740              // If C is a single bit, it may be in the sign-bit position
3741              // before the zero-extend. In this case, represent the xor
3742              // using an add, which is equivalent, and re-apply the zext.
3743              APInt Trunc = CI->getValue().trunc(Z0TySize);
3744              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3745                  Trunc.isSignBit())
3746                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3747                                         UTy);
3748            }
3749    }
3750    break;
3751
3752  case Instruction::Shl:
3753    // Turn shift left of a constant amount into a multiply.
3754    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3755      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3756
3757      // If the shift count is not less than the bitwidth, the result of
3758      // the shift is undefined. Don't try to analyze it, because the
3759      // resolution chosen here may differ from the resolution chosen in
3760      // other parts of the compiler.
3761      if (SA->getValue().uge(BitWidth))
3762        break;
3763
3764      Constant *X = ConstantInt::get(getContext(),
3765        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3766      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3767    }
3768    break;
3769
3770  case Instruction::LShr:
3771    // Turn logical shift right of a constant into a unsigned divide.
3772    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3773      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3774
3775      // If the shift count is not less than the bitwidth, the result of
3776      // the shift is undefined. Don't try to analyze it, because the
3777      // resolution chosen here may differ from the resolution chosen in
3778      // other parts of the compiler.
3779      if (SA->getValue().uge(BitWidth))
3780        break;
3781
3782      Constant *X = ConstantInt::get(getContext(),
3783        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3784      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3785    }
3786    break;
3787
3788  case Instruction::AShr:
3789    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3790    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3791      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3792        if (L->getOpcode() == Instruction::Shl &&
3793            L->getOperand(1) == U->getOperand(1)) {
3794          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3795
3796          // If the shift count is not less than the bitwidth, the result of
3797          // the shift is undefined. Don't try to analyze it, because the
3798          // resolution chosen here may differ from the resolution chosen in
3799          // other parts of the compiler.
3800          if (CI->getValue().uge(BitWidth))
3801            break;
3802
3803          uint64_t Amt = BitWidth - CI->getZExtValue();
3804          if (Amt == BitWidth)
3805            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3806          return
3807            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3808                                              IntegerType::get(getContext(),
3809                                                               Amt)),
3810                              U->getType());
3811        }
3812    break;
3813
3814  case Instruction::Trunc:
3815    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3816
3817  case Instruction::ZExt:
3818    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3819
3820  case Instruction::SExt:
3821    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3822
3823  case Instruction::BitCast:
3824    // BitCasts are no-op casts so we just eliminate the cast.
3825    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3826      return getSCEV(U->getOperand(0));
3827    break;
3828
3829  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3830  // lead to pointer expressions which cannot safely be expanded to GEPs,
3831  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3832  // simplifying integer expressions.
3833
3834  case Instruction::GetElementPtr:
3835    return createNodeForGEP(cast<GEPOperator>(U));
3836
3837  case Instruction::PHI:
3838    return createNodeForPHI(cast<PHINode>(U));
3839
3840  case Instruction::Select:
3841    // This could be a smax or umax that was lowered earlier.
3842    // Try to recover it.
3843    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3844      Value *LHS = ICI->getOperand(0);
3845      Value *RHS = ICI->getOperand(1);
3846      switch (ICI->getPredicate()) {
3847      case ICmpInst::ICMP_SLT:
3848      case ICmpInst::ICMP_SLE:
3849        std::swap(LHS, RHS);
3850        // fall through
3851      case ICmpInst::ICMP_SGT:
3852      case ICmpInst::ICMP_SGE:
3853        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3854        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3855        if (LHS->getType() == U->getType()) {
3856          const SCEV *LS = getSCEV(LHS);
3857          const SCEV *RS = getSCEV(RHS);
3858          const SCEV *LA = getSCEV(U->getOperand(1));
3859          const SCEV *RA = getSCEV(U->getOperand(2));
3860          const SCEV *LDiff = getMinusSCEV(LA, LS);
3861          const SCEV *RDiff = getMinusSCEV(RA, RS);
3862          if (LDiff == RDiff)
3863            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3864          LDiff = getMinusSCEV(LA, RS);
3865          RDiff = getMinusSCEV(RA, LS);
3866          if (LDiff == RDiff)
3867            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3868        }
3869        break;
3870      case ICmpInst::ICMP_ULT:
3871      case ICmpInst::ICMP_ULE:
3872        std::swap(LHS, RHS);
3873        // fall through
3874      case ICmpInst::ICMP_UGT:
3875      case ICmpInst::ICMP_UGE:
3876        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3877        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3878        if (LHS->getType() == U->getType()) {
3879          const SCEV *LS = getSCEV(LHS);
3880          const SCEV *RS = getSCEV(RHS);
3881          const SCEV *LA = getSCEV(U->getOperand(1));
3882          const SCEV *RA = getSCEV(U->getOperand(2));
3883          const SCEV *LDiff = getMinusSCEV(LA, LS);
3884          const SCEV *RDiff = getMinusSCEV(RA, RS);
3885          if (LDiff == RDiff)
3886            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3887          LDiff = getMinusSCEV(LA, RS);
3888          RDiff = getMinusSCEV(RA, LS);
3889          if (LDiff == RDiff)
3890            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3891        }
3892        break;
3893      case ICmpInst::ICMP_NE:
3894        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3895        if (LHS->getType() == U->getType() &&
3896            isa<ConstantInt>(RHS) &&
3897            cast<ConstantInt>(RHS)->isZero()) {
3898          const SCEV *One = getConstant(LHS->getType(), 1);
3899          const SCEV *LS = getSCEV(LHS);
3900          const SCEV *LA = getSCEV(U->getOperand(1));
3901          const SCEV *RA = getSCEV(U->getOperand(2));
3902          const SCEV *LDiff = getMinusSCEV(LA, LS);
3903          const SCEV *RDiff = getMinusSCEV(RA, One);
3904          if (LDiff == RDiff)
3905            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3906        }
3907        break;
3908      case ICmpInst::ICMP_EQ:
3909        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3910        if (LHS->getType() == U->getType() &&
3911            isa<ConstantInt>(RHS) &&
3912            cast<ConstantInt>(RHS)->isZero()) {
3913          const SCEV *One = getConstant(LHS->getType(), 1);
3914          const SCEV *LS = getSCEV(LHS);
3915          const SCEV *LA = getSCEV(U->getOperand(1));
3916          const SCEV *RA = getSCEV(U->getOperand(2));
3917          const SCEV *LDiff = getMinusSCEV(LA, One);
3918          const SCEV *RDiff = getMinusSCEV(RA, LS);
3919          if (LDiff == RDiff)
3920            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3921        }
3922        break;
3923      default:
3924        break;
3925      }
3926    }
3927
3928  default: // We cannot analyze this expression.
3929    break;
3930  }
3931
3932  return getUnknown(V);
3933}
3934
3935
3936
3937//===----------------------------------------------------------------------===//
3938//                   Iteration Count Computation Code
3939//
3940
3941/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3942/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
3943/// or not constant. Will also return 0 if the maximum trip count is very large
3944/// (>= 2^32)
3945unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
3946                                                    BasicBlock *ExitBlock) {
3947  const SCEVConstant *ExitCount =
3948    dyn_cast<SCEVConstant>(getExitCount(L, ExitBlock));
3949  if (!ExitCount)
3950    return 0;
3951
3952  ConstantInt *ExitConst = ExitCount->getValue();
3953
3954  // Guard against huge trip counts.
3955  if (ExitConst->getValue().getActiveBits() > 32)
3956    return 0;
3957
3958  // In case of integer overflow, this returns 0, which is correct.
3959  return ((unsigned)ExitConst->getZExtValue()) + 1;
3960}
3961
3962/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3963/// trip count of this loop as a normal unsigned value, if possible. This
3964/// means that the actual trip count is always a multiple of the returned
3965/// value (don't forget the trip count could very well be zero as well!).
3966///
3967/// Returns 1 if the trip count is unknown or not guaranteed to be the
3968/// multiple of a constant (which is also the case if the trip count is simply
3969/// constant, use getSmallConstantTripCount for that case), Will also return 1
3970/// if the trip count is very large (>= 2^32).
3971unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
3972                                                       BasicBlock *ExitBlock) {
3973  const SCEV *ExitCount = getExitCount(L, ExitBlock);
3974  if (ExitCount == getCouldNotCompute())
3975    return 1;
3976
3977  // Get the trip count from the BE count by adding 1.
3978  const SCEV *TCMul = getAddExpr(ExitCount,
3979                                 getConstant(ExitCount->getType(), 1));
3980  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3981  // to factor simple cases.
3982  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3983    TCMul = Mul->getOperand(0);
3984
3985  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3986  if (!MulC)
3987    return 1;
3988
3989  ConstantInt *Result = MulC->getValue();
3990
3991  // Guard against huge trip counts.
3992  if (!Result || Result->getValue().getActiveBits() > 32)
3993    return 1;
3994
3995  return (unsigned)Result->getZExtValue();
3996}
3997
3998// getExitCount - Get the expression for the number of loop iterations for which
3999// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
4000// SCEVCouldNotCompute.
4001const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4002  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4003}
4004
4005/// getBackedgeTakenCount - If the specified loop has a predictable
4006/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4007/// object. The backedge-taken count is the number of times the loop header
4008/// will be branched to from within the loop. This is one less than the
4009/// trip count of the loop, since it doesn't count the first iteration,
4010/// when the header is branched to from outside the loop.
4011///
4012/// Note that it is not valid to call this method on a loop without a
4013/// loop-invariant backedge-taken count (see
4014/// hasLoopInvariantBackedgeTakenCount).
4015///
4016const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4017  return getBackedgeTakenInfo(L).getExact(this);
4018}
4019
4020/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4021/// return the least SCEV value that is known never to be less than the
4022/// actual backedge taken count.
4023const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4024  return getBackedgeTakenInfo(L).getMax(this);
4025}
4026
4027/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4028/// onto the given Worklist.
4029static void
4030PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4031  BasicBlock *Header = L->getHeader();
4032
4033  // Push all Loop-header PHIs onto the Worklist stack.
4034  for (BasicBlock::iterator I = Header->begin();
4035       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4036    Worklist.push_back(PN);
4037}
4038
4039const ScalarEvolution::BackedgeTakenInfo &
4040ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4041  // Initially insert an invalid entry for this loop. If the insertion
4042  // succeeds, proceed to actually compute a backedge-taken count and
4043  // update the value. The temporary CouldNotCompute value tells SCEV
4044  // code elsewhere that it shouldn't attempt to request a new
4045  // backedge-taken count, which could result in infinite recursion.
4046  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4047    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4048  if (!Pair.second)
4049    return Pair.first->second;
4050
4051  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4052  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4053  // must be cleared in this scope.
4054  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4055
4056  if (Result.getExact(this) != getCouldNotCompute()) {
4057    assert(isLoopInvariant(Result.getExact(this), L) &&
4058           isLoopInvariant(Result.getMax(this), L) &&
4059           "Computed backedge-taken count isn't loop invariant for loop!");
4060    ++NumTripCountsComputed;
4061  }
4062  else if (Result.getMax(this) == getCouldNotCompute() &&
4063           isa<PHINode>(L->getHeader()->begin())) {
4064    // Only count loops that have phi nodes as not being computable.
4065    ++NumTripCountsNotComputed;
4066  }
4067
4068  // Now that we know more about the trip count for this loop, forget any
4069  // existing SCEV values for PHI nodes in this loop since they are only
4070  // conservative estimates made without the benefit of trip count
4071  // information. This is similar to the code in forgetLoop, except that
4072  // it handles SCEVUnknown PHI nodes specially.
4073  if (Result.hasAnyInfo()) {
4074    SmallVector<Instruction *, 16> Worklist;
4075    PushLoopPHIs(L, Worklist);
4076
4077    SmallPtrSet<Instruction *, 8> Visited;
4078    while (!Worklist.empty()) {
4079      Instruction *I = Worklist.pop_back_val();
4080      if (!Visited.insert(I)) continue;
4081
4082      ValueExprMapType::iterator It =
4083        ValueExprMap.find(static_cast<Value *>(I));
4084      if (It != ValueExprMap.end()) {
4085        const SCEV *Old = It->second;
4086
4087        // SCEVUnknown for a PHI either means that it has an unrecognized
4088        // structure, or it's a PHI that's in the progress of being computed
4089        // by createNodeForPHI.  In the former case, additional loop trip
4090        // count information isn't going to change anything. In the later
4091        // case, createNodeForPHI will perform the necessary updates on its
4092        // own when it gets to that point.
4093        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4094          forgetMemoizedResults(Old);
4095          ValueExprMap.erase(It);
4096        }
4097        if (PHINode *PN = dyn_cast<PHINode>(I))
4098          ConstantEvolutionLoopExitValue.erase(PN);
4099      }
4100
4101      PushDefUseChildren(I, Worklist);
4102    }
4103  }
4104
4105  // Re-lookup the insert position, since the call to
4106  // ComputeBackedgeTakenCount above could result in a
4107  // recusive call to getBackedgeTakenInfo (on a different
4108  // loop), which would invalidate the iterator computed
4109  // earlier.
4110  return BackedgeTakenCounts.find(L)->second = Result;
4111}
4112
4113/// forgetLoop - This method should be called by the client when it has
4114/// changed a loop in a way that may effect ScalarEvolution's ability to
4115/// compute a trip count, or if the loop is deleted.
4116void ScalarEvolution::forgetLoop(const Loop *L) {
4117  // Drop any stored trip count value.
4118  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4119    BackedgeTakenCounts.find(L);
4120  if (BTCPos != BackedgeTakenCounts.end()) {
4121    BTCPos->second.clear();
4122    BackedgeTakenCounts.erase(BTCPos);
4123  }
4124
4125  // Drop information about expressions based on loop-header PHIs.
4126  SmallVector<Instruction *, 16> Worklist;
4127  PushLoopPHIs(L, Worklist);
4128
4129  SmallPtrSet<Instruction *, 8> Visited;
4130  while (!Worklist.empty()) {
4131    Instruction *I = Worklist.pop_back_val();
4132    if (!Visited.insert(I)) continue;
4133
4134    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4135    if (It != ValueExprMap.end()) {
4136      forgetMemoizedResults(It->second);
4137      ValueExprMap.erase(It);
4138      if (PHINode *PN = dyn_cast<PHINode>(I))
4139        ConstantEvolutionLoopExitValue.erase(PN);
4140    }
4141
4142    PushDefUseChildren(I, Worklist);
4143  }
4144
4145  // Forget all contained loops too, to avoid dangling entries in the
4146  // ValuesAtScopes map.
4147  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4148    forgetLoop(*I);
4149}
4150
4151/// forgetValue - This method should be called by the client when it has
4152/// changed a value in a way that may effect its value, or which may
4153/// disconnect it from a def-use chain linking it to a loop.
4154void ScalarEvolution::forgetValue(Value *V) {
4155  Instruction *I = dyn_cast<Instruction>(V);
4156  if (!I) return;
4157
4158  // Drop information about expressions based on loop-header PHIs.
4159  SmallVector<Instruction *, 16> Worklist;
4160  Worklist.push_back(I);
4161
4162  SmallPtrSet<Instruction *, 8> Visited;
4163  while (!Worklist.empty()) {
4164    I = Worklist.pop_back_val();
4165    if (!Visited.insert(I)) continue;
4166
4167    ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
4168    if (It != ValueExprMap.end()) {
4169      forgetMemoizedResults(It->second);
4170      ValueExprMap.erase(It);
4171      if (PHINode *PN = dyn_cast<PHINode>(I))
4172        ConstantEvolutionLoopExitValue.erase(PN);
4173    }
4174
4175    PushDefUseChildren(I, Worklist);
4176  }
4177}
4178
4179/// getExact - Get the exact loop backedge taken count considering all loop
4180/// exits. A computable result can only be return for loops with a single exit.
4181/// Returning the minimum taken count among all exits is incorrect because one
4182/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4183/// the limit of each loop test is never skipped. This is a valid assumption as
4184/// long as the loop exits via that test. For precise results, it is the
4185/// caller's responsibility to specify the relevant loop exit using
4186/// getExact(ExitingBlock, SE).
4187const SCEV *
4188ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4189  // If any exits were not computable, the loop is not computable.
4190  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4191
4192  // We need exactly one computable exit.
4193  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4194  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4195
4196  const SCEV *BECount = 0;
4197  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4198       ENT != 0; ENT = ENT->getNextExit()) {
4199
4200    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4201
4202    if (!BECount)
4203      BECount = ENT->ExactNotTaken;
4204    else if (BECount != ENT->ExactNotTaken)
4205      return SE->getCouldNotCompute();
4206  }
4207  assert(BECount && "Invalid not taken count for loop exit");
4208  return BECount;
4209}
4210
4211/// getExact - Get the exact not taken count for this loop exit.
4212const SCEV *
4213ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4214                                             ScalarEvolution *SE) const {
4215  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4216       ENT != 0; ENT = ENT->getNextExit()) {
4217
4218    if (ENT->ExitingBlock == ExitingBlock)
4219      return ENT->ExactNotTaken;
4220  }
4221  return SE->getCouldNotCompute();
4222}
4223
4224/// getMax - Get the max backedge taken count for the loop.
4225const SCEV *
4226ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4227  return Max ? Max : SE->getCouldNotCompute();
4228}
4229
4230/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4231/// computable exit into a persistent ExitNotTakenInfo array.
4232ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4233  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4234  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4235
4236  if (!Complete)
4237    ExitNotTaken.setIncomplete();
4238
4239  unsigned NumExits = ExitCounts.size();
4240  if (NumExits == 0) return;
4241
4242  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4243  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4244  if (NumExits == 1) return;
4245
4246  // Handle the rare case of multiple computable exits.
4247  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4248
4249  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4250  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4251    PrevENT->setNextExit(ENT);
4252    ENT->ExitingBlock = ExitCounts[i].first;
4253    ENT->ExactNotTaken = ExitCounts[i].second;
4254  }
4255}
4256
4257/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4258void ScalarEvolution::BackedgeTakenInfo::clear() {
4259  ExitNotTaken.ExitingBlock = 0;
4260  ExitNotTaken.ExactNotTaken = 0;
4261  delete[] ExitNotTaken.getNextExit();
4262}
4263
4264/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4265/// of the specified loop will execute.
4266ScalarEvolution::BackedgeTakenInfo
4267ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4268  SmallVector<BasicBlock *, 8> ExitingBlocks;
4269  L->getExitingBlocks(ExitingBlocks);
4270
4271  // Examine all exits and pick the most conservative values.
4272  const SCEV *MaxBECount = getCouldNotCompute();
4273  bool CouldComputeBECount = true;
4274  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4275  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4276    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4277    if (EL.Exact == getCouldNotCompute())
4278      // We couldn't compute an exact value for this exit, so
4279      // we won't be able to compute an exact value for the loop.
4280      CouldComputeBECount = false;
4281    else
4282      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4283
4284    if (MaxBECount == getCouldNotCompute())
4285      MaxBECount = EL.Max;
4286    else if (EL.Max != getCouldNotCompute()) {
4287      // We cannot take the "min" MaxBECount, because non-unit stride loops may
4288      // skip some loop tests. Taking the max over the exits is sufficiently
4289      // conservative.  TODO: We could do better taking into consideration
4290      // that (1) the loop has unit stride (2) the last loop test is
4291      // less-than/greater-than (3) any loop test is less-than/greater-than AND
4292      // falls-through some constant times less then the other tests.
4293      MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4294    }
4295  }
4296
4297  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4298}
4299
4300/// ComputeExitLimit - Compute the number of times the backedge of the specified
4301/// loop will execute if it exits via the specified block.
4302ScalarEvolution::ExitLimit
4303ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4304
4305  // Okay, we've chosen an exiting block.  See what condition causes us to
4306  // exit at this block.
4307  //
4308  // FIXME: we should be able to handle switch instructions (with a single exit)
4309  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4310  if (ExitBr == 0) return getCouldNotCompute();
4311  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4312
4313  // At this point, we know we have a conditional branch that determines whether
4314  // the loop is exited.  However, we don't know if the branch is executed each
4315  // time through the loop.  If not, then the execution count of the branch will
4316  // not be equal to the trip count of the loop.
4317  //
4318  // Currently we check for this by checking to see if the Exit branch goes to
4319  // the loop header.  If so, we know it will always execute the same number of
4320  // times as the loop.  We also handle the case where the exit block *is* the
4321  // loop header.  This is common for un-rotated loops.
4322  //
4323  // If both of those tests fail, walk up the unique predecessor chain to the
4324  // header, stopping if there is an edge that doesn't exit the loop. If the
4325  // header is reached, the execution count of the branch will be equal to the
4326  // trip count of the loop.
4327  //
4328  //  More extensive analysis could be done to handle more cases here.
4329  //
4330  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4331      ExitBr->getSuccessor(1) != L->getHeader() &&
4332      ExitBr->getParent() != L->getHeader()) {
4333    // The simple checks failed, try climbing the unique predecessor chain
4334    // up to the header.
4335    bool Ok = false;
4336    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4337      BasicBlock *Pred = BB->getUniquePredecessor();
4338      if (!Pred)
4339        return getCouldNotCompute();
4340      TerminatorInst *PredTerm = Pred->getTerminator();
4341      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4342        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4343        if (PredSucc == BB)
4344          continue;
4345        // If the predecessor has a successor that isn't BB and isn't
4346        // outside the loop, assume the worst.
4347        if (L->contains(PredSucc))
4348          return getCouldNotCompute();
4349      }
4350      if (Pred == L->getHeader()) {
4351        Ok = true;
4352        break;
4353      }
4354      BB = Pred;
4355    }
4356    if (!Ok)
4357      return getCouldNotCompute();
4358  }
4359
4360  // Proceed to the next level to examine the exit condition expression.
4361  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4362                                  ExitBr->getSuccessor(0),
4363                                  ExitBr->getSuccessor(1));
4364}
4365
4366/// ComputeExitLimitFromCond - Compute the number of times the
4367/// backedge of the specified loop will execute if its exit condition
4368/// were a conditional branch of ExitCond, TBB, and FBB.
4369ScalarEvolution::ExitLimit
4370ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4371                                          Value *ExitCond,
4372                                          BasicBlock *TBB,
4373                                          BasicBlock *FBB) {
4374  // Check if the controlling expression for this loop is an And or Or.
4375  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4376    if (BO->getOpcode() == Instruction::And) {
4377      // Recurse on the operands of the and.
4378      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4379      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4380      const SCEV *BECount = getCouldNotCompute();
4381      const SCEV *MaxBECount = getCouldNotCompute();
4382      if (L->contains(TBB)) {
4383        // Both conditions must be true for the loop to continue executing.
4384        // Choose the less conservative count.
4385        if (EL0.Exact == getCouldNotCompute() ||
4386            EL1.Exact == getCouldNotCompute())
4387          BECount = getCouldNotCompute();
4388        else
4389          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4390        if (EL0.Max == getCouldNotCompute())
4391          MaxBECount = EL1.Max;
4392        else if (EL1.Max == getCouldNotCompute())
4393          MaxBECount = EL0.Max;
4394        else
4395          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4396      } else {
4397        // Both conditions must be true at the same time for the loop to exit.
4398        // For now, be conservative.
4399        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4400        if (EL0.Max == EL1.Max)
4401          MaxBECount = EL0.Max;
4402        if (EL0.Exact == EL1.Exact)
4403          BECount = EL0.Exact;
4404      }
4405
4406      return ExitLimit(BECount, MaxBECount);
4407    }
4408    if (BO->getOpcode() == Instruction::Or) {
4409      // Recurse on the operands of the or.
4410      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4411      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4412      const SCEV *BECount = getCouldNotCompute();
4413      const SCEV *MaxBECount = getCouldNotCompute();
4414      if (L->contains(FBB)) {
4415        // Both conditions must be false for the loop to continue executing.
4416        // Choose the less conservative count.
4417        if (EL0.Exact == getCouldNotCompute() ||
4418            EL1.Exact == getCouldNotCompute())
4419          BECount = getCouldNotCompute();
4420        else
4421          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4422        if (EL0.Max == getCouldNotCompute())
4423          MaxBECount = EL1.Max;
4424        else if (EL1.Max == getCouldNotCompute())
4425          MaxBECount = EL0.Max;
4426        else
4427          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4428      } else {
4429        // Both conditions must be false at the same time for the loop to exit.
4430        // For now, be conservative.
4431        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4432        if (EL0.Max == EL1.Max)
4433          MaxBECount = EL0.Max;
4434        if (EL0.Exact == EL1.Exact)
4435          BECount = EL0.Exact;
4436      }
4437
4438      return ExitLimit(BECount, MaxBECount);
4439    }
4440  }
4441
4442  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4443  // Proceed to the next level to examine the icmp.
4444  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4445    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4446
4447  // Check for a constant condition. These are normally stripped out by
4448  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4449  // preserve the CFG and is temporarily leaving constant conditions
4450  // in place.
4451  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4452    if (L->contains(FBB) == !CI->getZExtValue())
4453      // The backedge is always taken.
4454      return getCouldNotCompute();
4455    else
4456      // The backedge is never taken.
4457      return getConstant(CI->getType(), 0);
4458  }
4459
4460  // If it's not an integer or pointer comparison then compute it the hard way.
4461  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4462}
4463
4464/// ComputeExitLimitFromICmp - Compute the number of times the
4465/// backedge of the specified loop will execute if its exit condition
4466/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4467ScalarEvolution::ExitLimit
4468ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4469                                          ICmpInst *ExitCond,
4470                                          BasicBlock *TBB,
4471                                          BasicBlock *FBB) {
4472
4473  // If the condition was exit on true, convert the condition to exit on false
4474  ICmpInst::Predicate Cond;
4475  if (!L->contains(FBB))
4476    Cond = ExitCond->getPredicate();
4477  else
4478    Cond = ExitCond->getInversePredicate();
4479
4480  // Handle common loops like: for (X = "string"; *X; ++X)
4481  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4482    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4483      ExitLimit ItCnt =
4484        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4485      if (ItCnt.hasAnyInfo())
4486        return ItCnt;
4487    }
4488
4489  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4490  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4491
4492  // Try to evaluate any dependencies out of the loop.
4493  LHS = getSCEVAtScope(LHS, L);
4494  RHS = getSCEVAtScope(RHS, L);
4495
4496  // At this point, we would like to compute how many iterations of the
4497  // loop the predicate will return true for these inputs.
4498  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4499    // If there is a loop-invariant, force it into the RHS.
4500    std::swap(LHS, RHS);
4501    Cond = ICmpInst::getSwappedPredicate(Cond);
4502  }
4503
4504  // Simplify the operands before analyzing them.
4505  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4506
4507  // If we have a comparison of a chrec against a constant, try to use value
4508  // ranges to answer this query.
4509  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4510    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4511      if (AddRec->getLoop() == L) {
4512        // Form the constant range.
4513        ConstantRange CompRange(
4514            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4515
4516        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4517        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4518      }
4519
4520  switch (Cond) {
4521  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4522    // Convert to: while (X-Y != 0)
4523    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4524    if (EL.hasAnyInfo()) return EL;
4525    break;
4526  }
4527  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4528    // Convert to: while (X-Y == 0)
4529    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4530    if (EL.hasAnyInfo()) return EL;
4531    break;
4532  }
4533  case ICmpInst::ICMP_SLT: {
4534    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4535    if (EL.hasAnyInfo()) return EL;
4536    break;
4537  }
4538  case ICmpInst::ICMP_SGT: {
4539    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4540                                             getNotSCEV(RHS), L, true);
4541    if (EL.hasAnyInfo()) return EL;
4542    break;
4543  }
4544  case ICmpInst::ICMP_ULT: {
4545    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4546    if (EL.hasAnyInfo()) return EL;
4547    break;
4548  }
4549  case ICmpInst::ICMP_UGT: {
4550    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4551                                             getNotSCEV(RHS), L, false);
4552    if (EL.hasAnyInfo()) return EL;
4553    break;
4554  }
4555  default:
4556#if 0
4557    dbgs() << "ComputeBackedgeTakenCount ";
4558    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4559      dbgs() << "[unsigned] ";
4560    dbgs() << *LHS << "   "
4561         << Instruction::getOpcodeName(Instruction::ICmp)
4562         << "   " << *RHS << "\n";
4563#endif
4564    break;
4565  }
4566  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4567}
4568
4569static ConstantInt *
4570EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4571                                ScalarEvolution &SE) {
4572  const SCEV *InVal = SE.getConstant(C);
4573  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4574  assert(isa<SCEVConstant>(Val) &&
4575         "Evaluation of SCEV at constant didn't fold correctly?");
4576  return cast<SCEVConstant>(Val)->getValue();
4577}
4578
4579/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4580/// and a GEP expression (missing the pointer index) indexing into it, return
4581/// the addressed element of the initializer or null if the index expression is
4582/// invalid.
4583static Constant *
4584GetAddressedElementFromGlobal(GlobalVariable *GV,
4585                              const std::vector<ConstantInt*> &Indices) {
4586  Constant *Init = GV->getInitializer();
4587  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4588    uint64_t Idx = Indices[i]->getZExtValue();
4589    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4590      assert(Idx < CS->getNumOperands() && "Bad struct index!");
4591      Init = cast<Constant>(CS->getOperand(Idx));
4592    } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4593      if (Idx >= CA->getNumOperands()) return 0;  // Bogus program
4594      Init = cast<Constant>(CA->getOperand(Idx));
4595    } else if (isa<ConstantAggregateZero>(Init)) {
4596      if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
4597        assert(Idx < STy->getNumElements() && "Bad struct index!");
4598        Init = Constant::getNullValue(STy->getElementType(Idx));
4599      } else if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4600        if (Idx >= ATy->getNumElements()) return 0;  // Bogus program
4601        Init = Constant::getNullValue(ATy->getElementType());
4602      } else {
4603        llvm_unreachable("Unknown constant aggregate type!");
4604      }
4605      return 0;
4606    } else {
4607      return 0; // Unknown initializer type
4608    }
4609  }
4610  return Init;
4611}
4612
4613/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4614/// 'icmp op load X, cst', try to see if we can compute the backedge
4615/// execution count.
4616ScalarEvolution::ExitLimit
4617ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4618  LoadInst *LI,
4619  Constant *RHS,
4620  const Loop *L,
4621  ICmpInst::Predicate predicate) {
4622
4623  if (LI->isVolatile()) return getCouldNotCompute();
4624
4625  // Check to see if the loaded pointer is a getelementptr of a global.
4626  // TODO: Use SCEV instead of manually grubbing with GEPs.
4627  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4628  if (!GEP) return getCouldNotCompute();
4629
4630  // Make sure that it is really a constant global we are gepping, with an
4631  // initializer, and make sure the first IDX is really 0.
4632  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4633  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4634      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4635      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4636    return getCouldNotCompute();
4637
4638  // Okay, we allow one non-constant index into the GEP instruction.
4639  Value *VarIdx = 0;
4640  std::vector<ConstantInt*> Indexes;
4641  unsigned VarIdxNum = 0;
4642  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4643    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4644      Indexes.push_back(CI);
4645    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4646      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4647      VarIdx = GEP->getOperand(i);
4648      VarIdxNum = i-2;
4649      Indexes.push_back(0);
4650    }
4651
4652  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4653  // Check to see if X is a loop variant variable value now.
4654  const SCEV *Idx = getSCEV(VarIdx);
4655  Idx = getSCEVAtScope(Idx, L);
4656
4657  // We can only recognize very limited forms of loop index expressions, in
4658  // particular, only affine AddRec's like {C1,+,C2}.
4659  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4660  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4661      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4662      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4663    return getCouldNotCompute();
4664
4665  unsigned MaxSteps = MaxBruteForceIterations;
4666  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4667    ConstantInt *ItCst = ConstantInt::get(
4668                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4669    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4670
4671    // Form the GEP offset.
4672    Indexes[VarIdxNum] = Val;
4673
4674    Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4675    if (Result == 0) break;  // Cannot compute!
4676
4677    // Evaluate the condition for this iteration.
4678    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4679    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4680    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4681#if 0
4682      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4683             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4684             << "***\n";
4685#endif
4686      ++NumArrayLenItCounts;
4687      return getConstant(ItCst);   // Found terminating iteration!
4688    }
4689  }
4690  return getCouldNotCompute();
4691}
4692
4693
4694/// CanConstantFold - Return true if we can constant fold an instruction of the
4695/// specified type, assuming that all operands were constants.
4696static bool CanConstantFold(const Instruction *I) {
4697  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4698      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4699      isa<LoadInst>(I))
4700    return true;
4701
4702  if (const CallInst *CI = dyn_cast<CallInst>(I))
4703    if (const Function *F = CI->getCalledFunction())
4704      return canConstantFoldCallTo(F);
4705  return false;
4706}
4707
4708/// Determine whether this instruction can constant evolve within this loop
4709/// assuming its operands can all constant evolve.
4710static bool canConstantEvolve(Instruction *I, const Loop *L) {
4711  // An instruction outside of the loop can't be derived from a loop PHI.
4712  if (!L->contains(I)) return false;
4713
4714  if (isa<PHINode>(I)) {
4715    if (L->getHeader() == I->getParent())
4716      return true;
4717    else
4718      // We don't currently keep track of the control flow needed to evaluate
4719      // PHIs, so we cannot handle PHIs inside of loops.
4720      return false;
4721  }
4722
4723  // If we won't be able to constant fold this expression even if the operands
4724  // are constants, bail early.
4725  return CanConstantFold(I);
4726}
4727
4728/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4729/// recursing through each instruction operand until reaching a loop header phi.
4730static PHINode *
4731getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4732                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4733
4734  // Otherwise, we can evaluate this instruction if all of its operands are
4735  // constant or derived from a PHI node themselves.
4736  PHINode *PHI = 0;
4737  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4738         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4739
4740    if (isa<Constant>(*OpI)) continue;
4741
4742    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4743    if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4744
4745    PHINode *P = dyn_cast<PHINode>(OpInst);
4746    if (!P)
4747      // If this operand is already visited, reuse the prior result.
4748      // We may have P != PHI if this is the deepest point at which the
4749      // inconsistent paths meet.
4750      P = PHIMap.lookup(OpInst);
4751    if (!P) {
4752      // Recurse and memoize the results, whether a phi is found or not.
4753      // This recursive call invalidates pointers into PHIMap.
4754      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4755      PHIMap[OpInst] = P;
4756    }
4757    if (P == 0) return 0;        // Not evolving from PHI
4758    if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
4759    PHI = P;
4760  }
4761  // This is a expression evolving from a constant PHI!
4762  return PHI;
4763}
4764
4765/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4766/// in the loop that V is derived from.  We allow arbitrary operations along the
4767/// way, but the operands of an operation must either be constants or a value
4768/// derived from a constant PHI.  If this expression does not fit with these
4769/// constraints, return null.
4770static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4771  Instruction *I = dyn_cast<Instruction>(V);
4772  if (I == 0 || !canConstantEvolve(I, L)) return 0;
4773
4774  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4775    return PN;
4776  }
4777
4778  // Record non-constant instructions contained by the loop.
4779  DenseMap<Instruction *, PHINode *> PHIMap;
4780  return getConstantEvolvingPHIOperands(I, L, PHIMap);
4781}
4782
4783/// EvaluateExpression - Given an expression that passes the
4784/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4785/// in the loop has the value PHIVal.  If we can't fold this expression for some
4786/// reason, return null.
4787static Constant *EvaluateExpression(Value *V, const Loop *L,
4788                                    DenseMap<Instruction *, Constant *> &Vals,
4789                                    const TargetData *TD,
4790                                    const TargetLibraryInfo *TLI) {
4791  // Convenient constant check, but redundant for recursive calls.
4792  if (Constant *C = dyn_cast<Constant>(V)) return C;
4793  Instruction *I = dyn_cast<Instruction>(V);
4794  if (!I) return 0;
4795
4796  if (Constant *C = Vals.lookup(I)) return C;
4797
4798  // An instruction inside the loop depends on a value outside the loop that we
4799  // weren't given a mapping for, or a value such as a call inside the loop.
4800  if (!canConstantEvolve(I, L)) return 0;
4801
4802  // An unmapped PHI can be due to a branch or another loop inside this loop,
4803  // or due to this not being the initial iteration through a loop where we
4804  // couldn't compute the evolution of this particular PHI last time.
4805  if (isa<PHINode>(I)) return 0;
4806
4807  std::vector<Constant*> Operands(I->getNumOperands());
4808
4809  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4810    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4811    if (!Operand) {
4812      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4813      if (!Operands[i]) return 0;
4814      continue;
4815    }
4816    Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
4817    Vals[Operand] = C;
4818    if (!C) return 0;
4819    Operands[i] = C;
4820  }
4821
4822  if (CmpInst *CI = dyn_cast<CmpInst>(I))
4823    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4824                                           Operands[1], TD, TLI);
4825  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4826    if (!LI->isVolatile())
4827      return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4828  }
4829  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4830                                  TLI);
4831}
4832
4833/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4834/// in the header of its containing loop, we know the loop executes a
4835/// constant number of times, and the PHI node is just a recurrence
4836/// involving constants, fold it.
4837Constant *
4838ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4839                                                   const APInt &BEs,
4840                                                   const Loop *L) {
4841  DenseMap<PHINode*, Constant*>::const_iterator I =
4842    ConstantEvolutionLoopExitValue.find(PN);
4843  if (I != ConstantEvolutionLoopExitValue.end())
4844    return I->second;
4845
4846  if (BEs.ugt(MaxBruteForceIterations))
4847    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4848
4849  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4850
4851  DenseMap<Instruction *, Constant *> CurrentIterVals;
4852  BasicBlock *Header = L->getHeader();
4853  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4854
4855  // Since the loop is canonicalized, the PHI node must have two entries.  One
4856  // entry must be a constant (coming in from outside of the loop), and the
4857  // second must be derived from the same PHI.
4858  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4859  PHINode *PHI = 0;
4860  for (BasicBlock::iterator I = Header->begin();
4861       (PHI = dyn_cast<PHINode>(I)); ++I) {
4862    Constant *StartCST =
4863      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4864    if (StartCST == 0) continue;
4865    CurrentIterVals[PHI] = StartCST;
4866  }
4867  if (!CurrentIterVals.count(PN))
4868    return RetVal = 0;
4869
4870  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4871
4872  // Execute the loop symbolically to determine the exit value.
4873  if (BEs.getActiveBits() >= 32)
4874    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4875
4876  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4877  unsigned IterationNum = 0;
4878  for (; ; ++IterationNum) {
4879    if (IterationNum == NumIterations)
4880      return RetVal = CurrentIterVals[PN];  // Got exit value!
4881
4882    // Compute the value of the PHIs for the next iteration.
4883    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4884    DenseMap<Instruction *, Constant *> NextIterVals;
4885    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4886                                           TLI);
4887    if (NextPHI == 0)
4888      return 0;        // Couldn't evaluate!
4889    NextIterVals[PN] = NextPHI;
4890
4891    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4892
4893    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
4894    // cease to be able to evaluate one of them or if they stop evolving,
4895    // because that doesn't necessarily prevent us from computing PN.
4896    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4897    for (DenseMap<Instruction *, Constant *>::const_iterator
4898           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4899      PHINode *PHI = dyn_cast<PHINode>(I->first);
4900      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4901      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4902    }
4903    // We use two distinct loops because EvaluateExpression may invalidate any
4904    // iterators into CurrentIterVals.
4905    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4906             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4907      PHINode *PHI = I->first;
4908      Constant *&NextPHI = NextIterVals[PHI];
4909      if (!NextPHI) {   // Not already computed.
4910        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4911        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4912      }
4913      if (NextPHI != I->second)
4914        StoppedEvolving = false;
4915    }
4916
4917    // If all entries in CurrentIterVals == NextIterVals then we can stop
4918    // iterating, the loop can't continue to change.
4919    if (StoppedEvolving)
4920      return RetVal = CurrentIterVals[PN];
4921
4922    CurrentIterVals.swap(NextIterVals);
4923  }
4924}
4925
4926/// ComputeExitCountExhaustively - If the loop is known to execute a
4927/// constant number of times (the condition evolves only from constants),
4928/// try to evaluate a few iterations of the loop until we get the exit
4929/// condition gets a value of ExitWhen (true or false).  If we cannot
4930/// evaluate the trip count of the loop, return getCouldNotCompute().
4931const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4932                                                          Value *Cond,
4933                                                          bool ExitWhen) {
4934  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4935  if (PN == 0) return getCouldNotCompute();
4936
4937  // If the loop is canonicalized, the PHI will have exactly two entries.
4938  // That's the only form we support here.
4939  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4940
4941  DenseMap<Instruction *, Constant *> CurrentIterVals;
4942  BasicBlock *Header = L->getHeader();
4943  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4944
4945  // One entry must be a constant (coming in from outside of the loop), and the
4946  // second must be derived from the same PHI.
4947  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4948  PHINode *PHI = 0;
4949  for (BasicBlock::iterator I = Header->begin();
4950       (PHI = dyn_cast<PHINode>(I)); ++I) {
4951    Constant *StartCST =
4952      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4953    if (StartCST == 0) continue;
4954    CurrentIterVals[PHI] = StartCST;
4955  }
4956  if (!CurrentIterVals.count(PN))
4957    return getCouldNotCompute();
4958
4959  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4960  // the loop symbolically to determine when the condition gets a value of
4961  // "ExitWhen".
4962
4963  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4964  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
4965    ConstantInt *CondVal =
4966      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4967                                                       TD, TLI));
4968
4969    // Couldn't symbolically evaluate.
4970    if (!CondVal) return getCouldNotCompute();
4971
4972    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4973      ++NumBruteForceTripCountsComputed;
4974      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4975    }
4976
4977    // Update all the PHI nodes for the next iteration.
4978    DenseMap<Instruction *, Constant *> NextIterVals;
4979
4980    // Create a list of which PHIs we need to compute. We want to do this before
4981    // calling EvaluateExpression on them because that may invalidate iterators
4982    // into CurrentIterVals.
4983    SmallVector<PHINode *, 8> PHIsToCompute;
4984    for (DenseMap<Instruction *, Constant *>::const_iterator
4985           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4986      PHINode *PHI = dyn_cast<PHINode>(I->first);
4987      if (!PHI || PHI->getParent() != Header) continue;
4988      PHIsToCompute.push_back(PHI);
4989    }
4990    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4991             E = PHIsToCompute.end(); I != E; ++I) {
4992      PHINode *PHI = *I;
4993      Constant *&NextPHI = NextIterVals[PHI];
4994      if (NextPHI) continue;    // Already computed!
4995
4996      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4997      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4998    }
4999    CurrentIterVals.swap(NextIterVals);
5000  }
5001
5002  // Too many iterations were needed to evaluate.
5003  return getCouldNotCompute();
5004}
5005
5006/// getSCEVAtScope - Return a SCEV expression for the specified value
5007/// at the specified scope in the program.  The L value specifies a loop
5008/// nest to evaluate the expression at, where null is the top-level or a
5009/// specified loop is immediately inside of the loop.
5010///
5011/// This method can be used to compute the exit value for a variable defined
5012/// in a loop by querying what the value will hold in the parent loop.
5013///
5014/// In the case that a relevant loop exit value cannot be computed, the
5015/// original value V is returned.
5016const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5017  // Check to see if we've folded this expression at this loop before.
5018  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
5019  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
5020    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
5021  if (!Pair.second)
5022    return Pair.first->second ? Pair.first->second : V;
5023
5024  // Otherwise compute it.
5025  const SCEV *C = computeSCEVAtScope(V, L);
5026  ValuesAtScopes[V][L] = C;
5027  return C;
5028}
5029
5030/// This builds up a Constant using the ConstantExpr interface.  That way, we
5031/// will return Constants for objects which aren't represented by a
5032/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5033/// Returns NULL if the SCEV isn't representable as a Constant.
5034static Constant *BuildConstantFromSCEV(const SCEV *V) {
5035  switch (V->getSCEVType()) {
5036    default:  // TODO: smax, umax.
5037    case scCouldNotCompute:
5038    case scAddRecExpr:
5039      break;
5040    case scConstant:
5041      return cast<SCEVConstant>(V)->getValue();
5042    case scUnknown:
5043      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5044    case scSignExtend: {
5045      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5046      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5047        return ConstantExpr::getSExt(CastOp, SS->getType());
5048      break;
5049    }
5050    case scZeroExtend: {
5051      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5052      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5053        return ConstantExpr::getZExt(CastOp, SZ->getType());
5054      break;
5055    }
5056    case scTruncate: {
5057      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5058      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5059        return ConstantExpr::getTrunc(CastOp, ST->getType());
5060      break;
5061    }
5062    case scAddExpr: {
5063      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5064      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5065        if (C->getType()->isPointerTy())
5066          C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5067        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5068          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5069          if (!C2) return 0;
5070
5071          // First pointer!
5072          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5073            std::swap(C, C2);
5074            // The offsets have been converted to bytes.  We can add bytes to an
5075            // i8* by GEP with the byte count in the first index.
5076            C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5077          }
5078
5079          // Don't bother trying to sum two pointers. We probably can't
5080          // statically compute a load that results from it anyway.
5081          if (C2->getType()->isPointerTy())
5082            return 0;
5083
5084          if (C->getType()->isPointerTy()) {
5085            if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5086              C2 = ConstantExpr::getIntegerCast(
5087                  C2, Type::getInt32Ty(C->getContext()), true);
5088            C = ConstantExpr::getGetElementPtr(C, C2);
5089          } else
5090            C = ConstantExpr::getAdd(C, C2);
5091        }
5092        return C;
5093      }
5094      break;
5095    }
5096    case scMulExpr: {
5097      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5098      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5099        // Don't bother with pointers at all.
5100        if (C->getType()->isPointerTy()) return 0;
5101        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5102          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5103          if (!C2 || C2->getType()->isPointerTy()) return 0;
5104          C = ConstantExpr::getMul(C, C2);
5105        }
5106        return C;
5107      }
5108      break;
5109    }
5110    case scUDivExpr: {
5111      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5112      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5113        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5114          if (LHS->getType() == RHS->getType())
5115            return ConstantExpr::getUDiv(LHS, RHS);
5116      break;
5117    }
5118  }
5119  return 0;
5120}
5121
5122const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5123  if (isa<SCEVConstant>(V)) return V;
5124
5125  // If this instruction is evolved from a constant-evolving PHI, compute the
5126  // exit value from the loop without using SCEVs.
5127  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5128    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5129      const Loop *LI = (*this->LI)[I->getParent()];
5130      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5131        if (PHINode *PN = dyn_cast<PHINode>(I))
5132          if (PN->getParent() == LI->getHeader()) {
5133            // Okay, there is no closed form solution for the PHI node.  Check
5134            // to see if the loop that contains it has a known backedge-taken
5135            // count.  If so, we may be able to force computation of the exit
5136            // value.
5137            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5138            if (const SCEVConstant *BTCC =
5139                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5140              // Okay, we know how many times the containing loop executes.  If
5141              // this is a constant evolving PHI node, get the final value at
5142              // the specified iteration number.
5143              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5144                                                   BTCC->getValue()->getValue(),
5145                                                               LI);
5146              if (RV) return getSCEV(RV);
5147            }
5148          }
5149
5150      // Okay, this is an expression that we cannot symbolically evaluate
5151      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5152      // the arguments into constants, and if so, try to constant propagate the
5153      // result.  This is particularly useful for computing loop exit values.
5154      if (CanConstantFold(I)) {
5155        SmallVector<Constant *, 4> Operands;
5156        bool MadeImprovement = false;
5157        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5158          Value *Op = I->getOperand(i);
5159          if (Constant *C = dyn_cast<Constant>(Op)) {
5160            Operands.push_back(C);
5161            continue;
5162          }
5163
5164          // If any of the operands is non-constant and if they are
5165          // non-integer and non-pointer, don't even try to analyze them
5166          // with scev techniques.
5167          if (!isSCEVable(Op->getType()))
5168            return V;
5169
5170          const SCEV *OrigV = getSCEV(Op);
5171          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5172          MadeImprovement |= OrigV != OpV;
5173
5174          Constant *C = BuildConstantFromSCEV(OpV);
5175          if (!C) return V;
5176          if (C->getType() != Op->getType())
5177            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5178                                                              Op->getType(),
5179                                                              false),
5180                                      C, Op->getType());
5181          Operands.push_back(C);
5182        }
5183
5184        // Check to see if getSCEVAtScope actually made an improvement.
5185        if (MadeImprovement) {
5186          Constant *C = 0;
5187          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5188            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5189                                                Operands[0], Operands[1], TD,
5190                                                TLI);
5191          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5192            if (!LI->isVolatile())
5193              C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5194          } else
5195            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5196                                         Operands, TD, TLI);
5197          if (!C) return V;
5198          return getSCEV(C);
5199        }
5200      }
5201    }
5202
5203    // This is some other type of SCEVUnknown, just return it.
5204    return V;
5205  }
5206
5207  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5208    // Avoid performing the look-up in the common case where the specified
5209    // expression has no loop-variant portions.
5210    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5211      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5212      if (OpAtScope != Comm->getOperand(i)) {
5213        // Okay, at least one of these operands is loop variant but might be
5214        // foldable.  Build a new instance of the folded commutative expression.
5215        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5216                                            Comm->op_begin()+i);
5217        NewOps.push_back(OpAtScope);
5218
5219        for (++i; i != e; ++i) {
5220          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5221          NewOps.push_back(OpAtScope);
5222        }
5223        if (isa<SCEVAddExpr>(Comm))
5224          return getAddExpr(NewOps);
5225        if (isa<SCEVMulExpr>(Comm))
5226          return getMulExpr(NewOps);
5227        if (isa<SCEVSMaxExpr>(Comm))
5228          return getSMaxExpr(NewOps);
5229        if (isa<SCEVUMaxExpr>(Comm))
5230          return getUMaxExpr(NewOps);
5231        llvm_unreachable("Unknown commutative SCEV type!");
5232      }
5233    }
5234    // If we got here, all operands are loop invariant.
5235    return Comm;
5236  }
5237
5238  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5239    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5240    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5241    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5242      return Div;   // must be loop invariant
5243    return getUDivExpr(LHS, RHS);
5244  }
5245
5246  // If this is a loop recurrence for a loop that does not contain L, then we
5247  // are dealing with the final value computed by the loop.
5248  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5249    // First, attempt to evaluate each operand.
5250    // Avoid performing the look-up in the common case where the specified
5251    // expression has no loop-variant portions.
5252    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5253      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5254      if (OpAtScope == AddRec->getOperand(i))
5255        continue;
5256
5257      // Okay, at least one of these operands is loop variant but might be
5258      // foldable.  Build a new instance of the folded commutative expression.
5259      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5260                                          AddRec->op_begin()+i);
5261      NewOps.push_back(OpAtScope);
5262      for (++i; i != e; ++i)
5263        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5264
5265      const SCEV *FoldedRec =
5266        getAddRecExpr(NewOps, AddRec->getLoop(),
5267                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5268      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5269      // The addrec may be folded to a nonrecurrence, for example, if the
5270      // induction variable is multiplied by zero after constant folding. Go
5271      // ahead and return the folded value.
5272      if (!AddRec)
5273        return FoldedRec;
5274      break;
5275    }
5276
5277    // If the scope is outside the addrec's loop, evaluate it by using the
5278    // loop exit value of the addrec.
5279    if (!AddRec->getLoop()->contains(L)) {
5280      // To evaluate this recurrence, we need to know how many times the AddRec
5281      // loop iterates.  Compute this now.
5282      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5283      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5284
5285      // Then, evaluate the AddRec.
5286      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5287    }
5288
5289    return AddRec;
5290  }
5291
5292  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5293    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5294    if (Op == Cast->getOperand())
5295      return Cast;  // must be loop invariant
5296    return getZeroExtendExpr(Op, Cast->getType());
5297  }
5298
5299  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5300    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5301    if (Op == Cast->getOperand())
5302      return Cast;  // must be loop invariant
5303    return getSignExtendExpr(Op, Cast->getType());
5304  }
5305
5306  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5307    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5308    if (Op == Cast->getOperand())
5309      return Cast;  // must be loop invariant
5310    return getTruncateExpr(Op, Cast->getType());
5311  }
5312
5313  llvm_unreachable("Unknown SCEV type!");
5314  return 0;
5315}
5316
5317/// getSCEVAtScope - This is a convenience function which does
5318/// getSCEVAtScope(getSCEV(V), L).
5319const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5320  return getSCEVAtScope(getSCEV(V), L);
5321}
5322
5323/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5324/// following equation:
5325///
5326///     A * X = B (mod N)
5327///
5328/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5329/// A and B isn't important.
5330///
5331/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5332static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5333                                               ScalarEvolution &SE) {
5334  uint32_t BW = A.getBitWidth();
5335  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5336  assert(A != 0 && "A must be non-zero.");
5337
5338  // 1. D = gcd(A, N)
5339  //
5340  // The gcd of A and N may have only one prime factor: 2. The number of
5341  // trailing zeros in A is its multiplicity
5342  uint32_t Mult2 = A.countTrailingZeros();
5343  // D = 2^Mult2
5344
5345  // 2. Check if B is divisible by D.
5346  //
5347  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5348  // is not less than multiplicity of this prime factor for D.
5349  if (B.countTrailingZeros() < Mult2)
5350    return SE.getCouldNotCompute();
5351
5352  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5353  // modulo (N / D).
5354  //
5355  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5356  // bit width during computations.
5357  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5358  APInt Mod(BW + 1, 0);
5359  Mod.setBit(BW - Mult2);  // Mod = N / D
5360  APInt I = AD.multiplicativeInverse(Mod);
5361
5362  // 4. Compute the minimum unsigned root of the equation:
5363  // I * (B / D) mod (N / D)
5364  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5365
5366  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5367  // bits.
5368  return SE.getConstant(Result.trunc(BW));
5369}
5370
5371/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5372/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5373/// might be the same) or two SCEVCouldNotCompute objects.
5374///
5375static std::pair<const SCEV *,const SCEV *>
5376SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5377  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5378  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5379  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5380  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5381
5382  // We currently can only solve this if the coefficients are constants.
5383  if (!LC || !MC || !NC) {
5384    const SCEV *CNC = SE.getCouldNotCompute();
5385    return std::make_pair(CNC, CNC);
5386  }
5387
5388  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5389  const APInt &L = LC->getValue()->getValue();
5390  const APInt &M = MC->getValue()->getValue();
5391  const APInt &N = NC->getValue()->getValue();
5392  APInt Two(BitWidth, 2);
5393  APInt Four(BitWidth, 4);
5394
5395  {
5396    using namespace APIntOps;
5397    const APInt& C = L;
5398    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5399    // The B coefficient is M-N/2
5400    APInt B(M);
5401    B -= sdiv(N,Two);
5402
5403    // The A coefficient is N/2
5404    APInt A(N.sdiv(Two));
5405
5406    // Compute the B^2-4ac term.
5407    APInt SqrtTerm(B);
5408    SqrtTerm *= B;
5409    SqrtTerm -= Four * (A * C);
5410
5411    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5412    // integer value or else APInt::sqrt() will assert.
5413    APInt SqrtVal(SqrtTerm.sqrt());
5414
5415    // Compute the two solutions for the quadratic formula.
5416    // The divisions must be performed as signed divisions.
5417    APInt NegB(-B);
5418    APInt TwoA(A << 1);
5419    if (TwoA.isMinValue()) {
5420      const SCEV *CNC = SE.getCouldNotCompute();
5421      return std::make_pair(CNC, CNC);
5422    }
5423
5424    LLVMContext &Context = SE.getContext();
5425
5426    ConstantInt *Solution1 =
5427      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5428    ConstantInt *Solution2 =
5429      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5430
5431    return std::make_pair(SE.getConstant(Solution1),
5432                          SE.getConstant(Solution2));
5433  } // end APIntOps namespace
5434}
5435
5436/// HowFarToZero - Return the number of times a backedge comparing the specified
5437/// value to zero will execute.  If not computable, return CouldNotCompute.
5438///
5439/// This is only used for loops with a "x != y" exit test. The exit condition is
5440/// now expressed as a single expression, V = x-y. So the exit test is
5441/// effectively V != 0.  We know and take advantage of the fact that this
5442/// expression only being used in a comparison by zero context.
5443ScalarEvolution::ExitLimit
5444ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5445  // If the value is a constant
5446  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5447    // If the value is already zero, the branch will execute zero times.
5448    if (C->getValue()->isZero()) return C;
5449    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5450  }
5451
5452  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5453  if (!AddRec || AddRec->getLoop() != L)
5454    return getCouldNotCompute();
5455
5456  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5457  // the quadratic equation to solve it.
5458  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5459    std::pair<const SCEV *,const SCEV *> Roots =
5460      SolveQuadraticEquation(AddRec, *this);
5461    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5462    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5463    if (R1 && R2) {
5464#if 0
5465      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5466             << "  sol#2: " << *R2 << "\n";
5467#endif
5468      // Pick the smallest positive root value.
5469      if (ConstantInt *CB =
5470          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5471                                                      R1->getValue(),
5472                                                      R2->getValue()))) {
5473        if (CB->getZExtValue() == false)
5474          std::swap(R1, R2);   // R1 is the minimum root now.
5475
5476        // We can only use this value if the chrec ends up with an exact zero
5477        // value at this index.  When solving for "X*X != 5", for example, we
5478        // should not accept a root of 2.
5479        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5480        if (Val->isZero())
5481          return R1;  // We found a quadratic root!
5482      }
5483    }
5484    return getCouldNotCompute();
5485  }
5486
5487  // Otherwise we can only handle this if it is affine.
5488  if (!AddRec->isAffine())
5489    return getCouldNotCompute();
5490
5491  // If this is an affine expression, the execution count of this branch is
5492  // the minimum unsigned root of the following equation:
5493  //
5494  //     Start + Step*N = 0 (mod 2^BW)
5495  //
5496  // equivalent to:
5497  //
5498  //             Step*N = -Start (mod 2^BW)
5499  //
5500  // where BW is the common bit width of Start and Step.
5501
5502  // Get the initial value for the loop.
5503  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5504  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5505
5506  // For now we handle only constant steps.
5507  //
5508  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5509  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5510  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5511  // We have not yet seen any such cases.
5512  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5513  if (StepC == 0)
5514    return getCouldNotCompute();
5515
5516  // For positive steps (counting up until unsigned overflow):
5517  //   N = -Start/Step (as unsigned)
5518  // For negative steps (counting down to zero):
5519  //   N = Start/-Step
5520  // First compute the unsigned distance from zero in the direction of Step.
5521  bool CountDown = StepC->getValue()->getValue().isNegative();
5522  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5523
5524  // Handle unitary steps, which cannot wraparound.
5525  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5526  //   N = Distance (as unsigned)
5527  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5528    ConstantRange CR = getUnsignedRange(Start);
5529    const SCEV *MaxBECount;
5530    if (!CountDown && CR.getUnsignedMin().isMinValue())
5531      // When counting up, the worst starting value is 1, not 0.
5532      MaxBECount = CR.getUnsignedMax().isMinValue()
5533        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5534        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5535    else
5536      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5537                                         : -CR.getUnsignedMin());
5538    return ExitLimit(Distance, MaxBECount);
5539  }
5540
5541  // If the recurrence is known not to wraparound, unsigned divide computes the
5542  // back edge count. We know that the value will either become zero (and thus
5543  // the loop terminates), that the loop will terminate through some other exit
5544  // condition first, or that the loop has undefined behavior.  This means
5545  // we can't "miss" the exit value, even with nonunit stride.
5546  //
5547  // FIXME: Prove that loops always exhibits *acceptable* undefined
5548  // behavior. Loops must exhibit defined behavior until a wrapped value is
5549  // actually used. So the trip count computed by udiv could be smaller than the
5550  // number of well-defined iterations.
5551  if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5552    // FIXME: We really want an "isexact" bit for udiv.
5553    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5554  }
5555  // Then, try to solve the above equation provided that Start is constant.
5556  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5557    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5558                                        -StartC->getValue()->getValue(),
5559                                        *this);
5560  return getCouldNotCompute();
5561}
5562
5563/// HowFarToNonZero - Return the number of times a backedge checking the
5564/// specified value for nonzero will execute.  If not computable, return
5565/// CouldNotCompute
5566ScalarEvolution::ExitLimit
5567ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5568  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5569  // handle them yet except for the trivial case.  This could be expanded in the
5570  // future as needed.
5571
5572  // If the value is a constant, check to see if it is known to be non-zero
5573  // already.  If so, the backedge will execute zero times.
5574  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5575    if (!C->getValue()->isNullValue())
5576      return getConstant(C->getType(), 0);
5577    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5578  }
5579
5580  // We could implement others, but I really doubt anyone writes loops like
5581  // this, and if they did, they would already be constant folded.
5582  return getCouldNotCompute();
5583}
5584
5585/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5586/// (which may not be an immediate predecessor) which has exactly one
5587/// successor from which BB is reachable, or null if no such block is
5588/// found.
5589///
5590std::pair<BasicBlock *, BasicBlock *>
5591ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5592  // If the block has a unique predecessor, then there is no path from the
5593  // predecessor to the block that does not go through the direct edge
5594  // from the predecessor to the block.
5595  if (BasicBlock *Pred = BB->getSinglePredecessor())
5596    return std::make_pair(Pred, BB);
5597
5598  // A loop's header is defined to be a block that dominates the loop.
5599  // If the header has a unique predecessor outside the loop, it must be
5600  // a block that has exactly one successor that can reach the loop.
5601  if (Loop *L = LI->getLoopFor(BB))
5602    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5603
5604  return std::pair<BasicBlock *, BasicBlock *>();
5605}
5606
5607/// HasSameValue - SCEV structural equivalence is usually sufficient for
5608/// testing whether two expressions are equal, however for the purposes of
5609/// looking for a condition guarding a loop, it can be useful to be a little
5610/// more general, since a front-end may have replicated the controlling
5611/// expression.
5612///
5613static bool HasSameValue(const SCEV *A, const SCEV *B) {
5614  // Quick check to see if they are the same SCEV.
5615  if (A == B) return true;
5616
5617  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5618  // two different instructions with the same value. Check for this case.
5619  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5620    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5621      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5622        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5623          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5624            return true;
5625
5626  // Otherwise assume they may have a different value.
5627  return false;
5628}
5629
5630/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5631/// predicate Pred. Return true iff any changes were made.
5632///
5633bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5634                                           const SCEV *&LHS, const SCEV *&RHS) {
5635  bool Changed = false;
5636
5637  // Canonicalize a constant to the right side.
5638  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5639    // Check for both operands constant.
5640    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5641      if (ConstantExpr::getICmp(Pred,
5642                                LHSC->getValue(),
5643                                RHSC->getValue())->isNullValue())
5644        goto trivially_false;
5645      else
5646        goto trivially_true;
5647    }
5648    // Otherwise swap the operands to put the constant on the right.
5649    std::swap(LHS, RHS);
5650    Pred = ICmpInst::getSwappedPredicate(Pred);
5651    Changed = true;
5652  }
5653
5654  // If we're comparing an addrec with a value which is loop-invariant in the
5655  // addrec's loop, put the addrec on the left. Also make a dominance check,
5656  // as both operands could be addrecs loop-invariant in each other's loop.
5657  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5658    const Loop *L = AR->getLoop();
5659    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5660      std::swap(LHS, RHS);
5661      Pred = ICmpInst::getSwappedPredicate(Pred);
5662      Changed = true;
5663    }
5664  }
5665
5666  // If there's a constant operand, canonicalize comparisons with boundary
5667  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5668  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5669    const APInt &RA = RC->getValue()->getValue();
5670    switch (Pred) {
5671    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5672    case ICmpInst::ICMP_EQ:
5673    case ICmpInst::ICMP_NE:
5674      break;
5675    case ICmpInst::ICMP_UGE:
5676      if ((RA - 1).isMinValue()) {
5677        Pred = ICmpInst::ICMP_NE;
5678        RHS = getConstant(RA - 1);
5679        Changed = true;
5680        break;
5681      }
5682      if (RA.isMaxValue()) {
5683        Pred = ICmpInst::ICMP_EQ;
5684        Changed = true;
5685        break;
5686      }
5687      if (RA.isMinValue()) goto trivially_true;
5688
5689      Pred = ICmpInst::ICMP_UGT;
5690      RHS = getConstant(RA - 1);
5691      Changed = true;
5692      break;
5693    case ICmpInst::ICMP_ULE:
5694      if ((RA + 1).isMaxValue()) {
5695        Pred = ICmpInst::ICMP_NE;
5696        RHS = getConstant(RA + 1);
5697        Changed = true;
5698        break;
5699      }
5700      if (RA.isMinValue()) {
5701        Pred = ICmpInst::ICMP_EQ;
5702        Changed = true;
5703        break;
5704      }
5705      if (RA.isMaxValue()) goto trivially_true;
5706
5707      Pred = ICmpInst::ICMP_ULT;
5708      RHS = getConstant(RA + 1);
5709      Changed = true;
5710      break;
5711    case ICmpInst::ICMP_SGE:
5712      if ((RA - 1).isMinSignedValue()) {
5713        Pred = ICmpInst::ICMP_NE;
5714        RHS = getConstant(RA - 1);
5715        Changed = true;
5716        break;
5717      }
5718      if (RA.isMaxSignedValue()) {
5719        Pred = ICmpInst::ICMP_EQ;
5720        Changed = true;
5721        break;
5722      }
5723      if (RA.isMinSignedValue()) goto trivially_true;
5724
5725      Pred = ICmpInst::ICMP_SGT;
5726      RHS = getConstant(RA - 1);
5727      Changed = true;
5728      break;
5729    case ICmpInst::ICMP_SLE:
5730      if ((RA + 1).isMaxSignedValue()) {
5731        Pred = ICmpInst::ICMP_NE;
5732        RHS = getConstant(RA + 1);
5733        Changed = true;
5734        break;
5735      }
5736      if (RA.isMinSignedValue()) {
5737        Pred = ICmpInst::ICMP_EQ;
5738        Changed = true;
5739        break;
5740      }
5741      if (RA.isMaxSignedValue()) goto trivially_true;
5742
5743      Pred = ICmpInst::ICMP_SLT;
5744      RHS = getConstant(RA + 1);
5745      Changed = true;
5746      break;
5747    case ICmpInst::ICMP_UGT:
5748      if (RA.isMinValue()) {
5749        Pred = ICmpInst::ICMP_NE;
5750        Changed = true;
5751        break;
5752      }
5753      if ((RA + 1).isMaxValue()) {
5754        Pred = ICmpInst::ICMP_EQ;
5755        RHS = getConstant(RA + 1);
5756        Changed = true;
5757        break;
5758      }
5759      if (RA.isMaxValue()) goto trivially_false;
5760      break;
5761    case ICmpInst::ICMP_ULT:
5762      if (RA.isMaxValue()) {
5763        Pred = ICmpInst::ICMP_NE;
5764        Changed = true;
5765        break;
5766      }
5767      if ((RA - 1).isMinValue()) {
5768        Pred = ICmpInst::ICMP_EQ;
5769        RHS = getConstant(RA - 1);
5770        Changed = true;
5771        break;
5772      }
5773      if (RA.isMinValue()) goto trivially_false;
5774      break;
5775    case ICmpInst::ICMP_SGT:
5776      if (RA.isMinSignedValue()) {
5777        Pred = ICmpInst::ICMP_NE;
5778        Changed = true;
5779        break;
5780      }
5781      if ((RA + 1).isMaxSignedValue()) {
5782        Pred = ICmpInst::ICMP_EQ;
5783        RHS = getConstant(RA + 1);
5784        Changed = true;
5785        break;
5786      }
5787      if (RA.isMaxSignedValue()) goto trivially_false;
5788      break;
5789    case ICmpInst::ICMP_SLT:
5790      if (RA.isMaxSignedValue()) {
5791        Pred = ICmpInst::ICMP_NE;
5792        Changed = true;
5793        break;
5794      }
5795      if ((RA - 1).isMinSignedValue()) {
5796       Pred = ICmpInst::ICMP_EQ;
5797       RHS = getConstant(RA - 1);
5798        Changed = true;
5799       break;
5800      }
5801      if (RA.isMinSignedValue()) goto trivially_false;
5802      break;
5803    }
5804  }
5805
5806  // Check for obvious equality.
5807  if (HasSameValue(LHS, RHS)) {
5808    if (ICmpInst::isTrueWhenEqual(Pred))
5809      goto trivially_true;
5810    if (ICmpInst::isFalseWhenEqual(Pred))
5811      goto trivially_false;
5812  }
5813
5814  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5815  // adding or subtracting 1 from one of the operands.
5816  switch (Pred) {
5817  case ICmpInst::ICMP_SLE:
5818    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5819      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5820                       SCEV::FlagNSW);
5821      Pred = ICmpInst::ICMP_SLT;
5822      Changed = true;
5823    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5824      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5825                       SCEV::FlagNSW);
5826      Pred = ICmpInst::ICMP_SLT;
5827      Changed = true;
5828    }
5829    break;
5830  case ICmpInst::ICMP_SGE:
5831    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5832      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5833                       SCEV::FlagNSW);
5834      Pred = ICmpInst::ICMP_SGT;
5835      Changed = true;
5836    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5837      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5838                       SCEV::FlagNSW);
5839      Pred = ICmpInst::ICMP_SGT;
5840      Changed = true;
5841    }
5842    break;
5843  case ICmpInst::ICMP_ULE:
5844    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5845      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5846                       SCEV::FlagNUW);
5847      Pred = ICmpInst::ICMP_ULT;
5848      Changed = true;
5849    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5850      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5851                       SCEV::FlagNUW);
5852      Pred = ICmpInst::ICMP_ULT;
5853      Changed = true;
5854    }
5855    break;
5856  case ICmpInst::ICMP_UGE:
5857    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5858      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5859                       SCEV::FlagNUW);
5860      Pred = ICmpInst::ICMP_UGT;
5861      Changed = true;
5862    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5863      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5864                       SCEV::FlagNUW);
5865      Pred = ICmpInst::ICMP_UGT;
5866      Changed = true;
5867    }
5868    break;
5869  default:
5870    break;
5871  }
5872
5873  // TODO: More simplifications are possible here.
5874
5875  return Changed;
5876
5877trivially_true:
5878  // Return 0 == 0.
5879  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5880  Pred = ICmpInst::ICMP_EQ;
5881  return true;
5882
5883trivially_false:
5884  // Return 0 != 0.
5885  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5886  Pred = ICmpInst::ICMP_NE;
5887  return true;
5888}
5889
5890bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5891  return getSignedRange(S).getSignedMax().isNegative();
5892}
5893
5894bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5895  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5896}
5897
5898bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5899  return !getSignedRange(S).getSignedMin().isNegative();
5900}
5901
5902bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5903  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5904}
5905
5906bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5907  return isKnownNegative(S) || isKnownPositive(S);
5908}
5909
5910bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5911                                       const SCEV *LHS, const SCEV *RHS) {
5912  // Canonicalize the inputs first.
5913  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5914
5915  // If LHS or RHS is an addrec, check to see if the condition is true in
5916  // every iteration of the loop.
5917  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5918    if (isLoopEntryGuardedByCond(
5919          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5920        isLoopBackedgeGuardedByCond(
5921          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5922      return true;
5923  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5924    if (isLoopEntryGuardedByCond(
5925          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5926        isLoopBackedgeGuardedByCond(
5927          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5928      return true;
5929
5930  // Otherwise see what can be done with known constant ranges.
5931  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5932}
5933
5934bool
5935ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5936                                            const SCEV *LHS, const SCEV *RHS) {
5937  if (HasSameValue(LHS, RHS))
5938    return ICmpInst::isTrueWhenEqual(Pred);
5939
5940  // This code is split out from isKnownPredicate because it is called from
5941  // within isLoopEntryGuardedByCond.
5942  switch (Pred) {
5943  default:
5944    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5945    break;
5946  case ICmpInst::ICMP_SGT:
5947    Pred = ICmpInst::ICMP_SLT;
5948    std::swap(LHS, RHS);
5949  case ICmpInst::ICMP_SLT: {
5950    ConstantRange LHSRange = getSignedRange(LHS);
5951    ConstantRange RHSRange = getSignedRange(RHS);
5952    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5953      return true;
5954    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5955      return false;
5956    break;
5957  }
5958  case ICmpInst::ICMP_SGE:
5959    Pred = ICmpInst::ICMP_SLE;
5960    std::swap(LHS, RHS);
5961  case ICmpInst::ICMP_SLE: {
5962    ConstantRange LHSRange = getSignedRange(LHS);
5963    ConstantRange RHSRange = getSignedRange(RHS);
5964    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5965      return true;
5966    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5967      return false;
5968    break;
5969  }
5970  case ICmpInst::ICMP_UGT:
5971    Pred = ICmpInst::ICMP_ULT;
5972    std::swap(LHS, RHS);
5973  case ICmpInst::ICMP_ULT: {
5974    ConstantRange LHSRange = getUnsignedRange(LHS);
5975    ConstantRange RHSRange = getUnsignedRange(RHS);
5976    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5977      return true;
5978    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5979      return false;
5980    break;
5981  }
5982  case ICmpInst::ICMP_UGE:
5983    Pred = ICmpInst::ICMP_ULE;
5984    std::swap(LHS, RHS);
5985  case ICmpInst::ICMP_ULE: {
5986    ConstantRange LHSRange = getUnsignedRange(LHS);
5987    ConstantRange RHSRange = getUnsignedRange(RHS);
5988    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5989      return true;
5990    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5991      return false;
5992    break;
5993  }
5994  case ICmpInst::ICMP_NE: {
5995    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5996      return true;
5997    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5998      return true;
5999
6000    const SCEV *Diff = getMinusSCEV(LHS, RHS);
6001    if (isKnownNonZero(Diff))
6002      return true;
6003    break;
6004  }
6005  case ICmpInst::ICMP_EQ:
6006    // The check at the top of the function catches the case where
6007    // the values are known to be equal.
6008    break;
6009  }
6010  return false;
6011}
6012
6013/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6014/// protected by a conditional between LHS and RHS.  This is used to
6015/// to eliminate casts.
6016bool
6017ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6018                                             ICmpInst::Predicate Pred,
6019                                             const SCEV *LHS, const SCEV *RHS) {
6020  // Interpret a null as meaning no loop, where there is obviously no guard
6021  // (interprocedural conditions notwithstanding).
6022  if (!L) return true;
6023
6024  BasicBlock *Latch = L->getLoopLatch();
6025  if (!Latch)
6026    return false;
6027
6028  BranchInst *LoopContinuePredicate =
6029    dyn_cast<BranchInst>(Latch->getTerminator());
6030  if (!LoopContinuePredicate ||
6031      LoopContinuePredicate->isUnconditional())
6032    return false;
6033
6034  return isImpliedCond(Pred, LHS, RHS,
6035                       LoopContinuePredicate->getCondition(),
6036                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6037}
6038
6039/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6040/// by a conditional between LHS and RHS.  This is used to help avoid max
6041/// expressions in loop trip counts, and to eliminate casts.
6042bool
6043ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6044                                          ICmpInst::Predicate Pred,
6045                                          const SCEV *LHS, const SCEV *RHS) {
6046  // Interpret a null as meaning no loop, where there is obviously no guard
6047  // (interprocedural conditions notwithstanding).
6048  if (!L) return false;
6049
6050  // Starting at the loop predecessor, climb up the predecessor chain, as long
6051  // as there are predecessors that can be found that have unique successors
6052  // leading to the original header.
6053  for (std::pair<BasicBlock *, BasicBlock *>
6054         Pair(L->getLoopPredecessor(), L->getHeader());
6055       Pair.first;
6056       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6057
6058    BranchInst *LoopEntryPredicate =
6059      dyn_cast<BranchInst>(Pair.first->getTerminator());
6060    if (!LoopEntryPredicate ||
6061        LoopEntryPredicate->isUnconditional())
6062      continue;
6063
6064    if (isImpliedCond(Pred, LHS, RHS,
6065                      LoopEntryPredicate->getCondition(),
6066                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6067      return true;
6068  }
6069
6070  return false;
6071}
6072
6073/// isImpliedCond - Test whether the condition described by Pred, LHS,
6074/// and RHS is true whenever the given Cond value evaluates to true.
6075bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6076                                    const SCEV *LHS, const SCEV *RHS,
6077                                    Value *FoundCondValue,
6078                                    bool Inverse) {
6079  // Recursively handle And and Or conditions.
6080  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6081    if (BO->getOpcode() == Instruction::And) {
6082      if (!Inverse)
6083        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6084               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6085    } else if (BO->getOpcode() == Instruction::Or) {
6086      if (Inverse)
6087        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6088               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6089    }
6090  }
6091
6092  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6093  if (!ICI) return false;
6094
6095  // Bail if the ICmp's operands' types are wider than the needed type
6096  // before attempting to call getSCEV on them. This avoids infinite
6097  // recursion, since the analysis of widening casts can require loop
6098  // exit condition information for overflow checking, which would
6099  // lead back here.
6100  if (getTypeSizeInBits(LHS->getType()) <
6101      getTypeSizeInBits(ICI->getOperand(0)->getType()))
6102    return false;
6103
6104  // Now that we found a conditional branch that dominates the loop, check to
6105  // see if it is the comparison we are looking for.
6106  ICmpInst::Predicate FoundPred;
6107  if (Inverse)
6108    FoundPred = ICI->getInversePredicate();
6109  else
6110    FoundPred = ICI->getPredicate();
6111
6112  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6113  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6114
6115  // Balance the types. The case where FoundLHS' type is wider than
6116  // LHS' type is checked for above.
6117  if (getTypeSizeInBits(LHS->getType()) >
6118      getTypeSizeInBits(FoundLHS->getType())) {
6119    if (CmpInst::isSigned(Pred)) {
6120      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6121      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6122    } else {
6123      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6124      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6125    }
6126  }
6127
6128  // Canonicalize the query to match the way instcombine will have
6129  // canonicalized the comparison.
6130  if (SimplifyICmpOperands(Pred, LHS, RHS))
6131    if (LHS == RHS)
6132      return CmpInst::isTrueWhenEqual(Pred);
6133  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6134    if (FoundLHS == FoundRHS)
6135      return CmpInst::isFalseWhenEqual(Pred);
6136
6137  // Check to see if we can make the LHS or RHS match.
6138  if (LHS == FoundRHS || RHS == FoundLHS) {
6139    if (isa<SCEVConstant>(RHS)) {
6140      std::swap(FoundLHS, FoundRHS);
6141      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6142    } else {
6143      std::swap(LHS, RHS);
6144      Pred = ICmpInst::getSwappedPredicate(Pred);
6145    }
6146  }
6147
6148  // Check whether the found predicate is the same as the desired predicate.
6149  if (FoundPred == Pred)
6150    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6151
6152  // Check whether swapping the found predicate makes it the same as the
6153  // desired predicate.
6154  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6155    if (isa<SCEVConstant>(RHS))
6156      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6157    else
6158      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6159                                   RHS, LHS, FoundLHS, FoundRHS);
6160  }
6161
6162  // Check whether the actual condition is beyond sufficient.
6163  if (FoundPred == ICmpInst::ICMP_EQ)
6164    if (ICmpInst::isTrueWhenEqual(Pred))
6165      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6166        return true;
6167  if (Pred == ICmpInst::ICMP_NE)
6168    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6169      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6170        return true;
6171
6172  // Otherwise assume the worst.
6173  return false;
6174}
6175
6176/// isImpliedCondOperands - Test whether the condition described by Pred,
6177/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6178/// and FoundRHS is true.
6179bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6180                                            const SCEV *LHS, const SCEV *RHS,
6181                                            const SCEV *FoundLHS,
6182                                            const SCEV *FoundRHS) {
6183  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6184                                     FoundLHS, FoundRHS) ||
6185         // ~x < ~y --> x > y
6186         isImpliedCondOperandsHelper(Pred, LHS, RHS,
6187                                     getNotSCEV(FoundRHS),
6188                                     getNotSCEV(FoundLHS));
6189}
6190
6191/// isImpliedCondOperandsHelper - Test whether the condition described by
6192/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6193/// FoundLHS, and FoundRHS is true.
6194bool
6195ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6196                                             const SCEV *LHS, const SCEV *RHS,
6197                                             const SCEV *FoundLHS,
6198                                             const SCEV *FoundRHS) {
6199  switch (Pred) {
6200  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6201  case ICmpInst::ICMP_EQ:
6202  case ICmpInst::ICMP_NE:
6203    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6204      return true;
6205    break;
6206  case ICmpInst::ICMP_SLT:
6207  case ICmpInst::ICMP_SLE:
6208    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6209        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6210      return true;
6211    break;
6212  case ICmpInst::ICMP_SGT:
6213  case ICmpInst::ICMP_SGE:
6214    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6215        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6216      return true;
6217    break;
6218  case ICmpInst::ICMP_ULT:
6219  case ICmpInst::ICMP_ULE:
6220    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6221        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6222      return true;
6223    break;
6224  case ICmpInst::ICMP_UGT:
6225  case ICmpInst::ICMP_UGE:
6226    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6227        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6228      return true;
6229    break;
6230  }
6231
6232  return false;
6233}
6234
6235/// getBECount - Subtract the end and start values and divide by the step,
6236/// rounding up, to get the number of times the backedge is executed. Return
6237/// CouldNotCompute if an intermediate computation overflows.
6238const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
6239                                        const SCEV *End,
6240                                        const SCEV *Step,
6241                                        bool NoWrap) {
6242  assert(!isKnownNegative(Step) &&
6243         "This code doesn't handle negative strides yet!");
6244
6245  Type *Ty = Start->getType();
6246
6247  // When Start == End, we have an exact BECount == 0. Short-circuit this case
6248  // here because SCEV may not be able to determine that the unsigned division
6249  // after rounding is zero.
6250  if (Start == End)
6251    return getConstant(Ty, 0);
6252
6253  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
6254  const SCEV *Diff = getMinusSCEV(End, Start);
6255  const SCEV *RoundUp = getAddExpr(Step, NegOne);
6256
6257  // Add an adjustment to the difference between End and Start so that
6258  // the division will effectively round up.
6259  const SCEV *Add = getAddExpr(Diff, RoundUp);
6260
6261  if (!NoWrap) {
6262    // Check Add for unsigned overflow.
6263    // TODO: More sophisticated things could be done here.
6264    Type *WideTy = IntegerType::get(getContext(),
6265                                          getTypeSizeInBits(Ty) + 1);
6266    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6267    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6268    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6269    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6270      return getCouldNotCompute();
6271  }
6272
6273  return getUDivExpr(Add, Step);
6274}
6275
6276/// HowManyLessThans - Return the number of times a backedge containing the
6277/// specified less-than comparison will execute.  If not computable, return
6278/// CouldNotCompute.
6279ScalarEvolution::ExitLimit
6280ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6281                                  const Loop *L, bool isSigned) {
6282  // Only handle:  "ADDREC < LoopInvariant".
6283  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
6284
6285  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
6286  if (!AddRec || AddRec->getLoop() != L)
6287    return getCouldNotCompute();
6288
6289  // Check to see if we have a flag which makes analysis easy.
6290  bool NoWrap = isSigned ?
6291    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6292    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
6293
6294  if (AddRec->isAffine()) {
6295    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
6296    const SCEV *Step = AddRec->getStepRecurrence(*this);
6297
6298    if (Step->isZero())
6299      return getCouldNotCompute();
6300    if (Step->isOne()) {
6301      // With unit stride, the iteration never steps past the limit value.
6302    } else if (isKnownPositive(Step)) {
6303      // Test whether a positive iteration can step past the limit
6304      // value and past the maximum value for its type in a single step.
6305      // Note that it's not sufficient to check NoWrap here, because even
6306      // though the value after a wrap is undefined, it's not undefined
6307      // behavior, so if wrap does occur, the loop could either terminate or
6308      // loop infinitely, but in either case, the loop is guaranteed to
6309      // iterate at least until the iteration where the wrapping occurs.
6310      const SCEV *One = getConstant(Step->getType(), 1);
6311      if (isSigned) {
6312        APInt Max = APInt::getSignedMaxValue(BitWidth);
6313        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6314              .slt(getSignedRange(RHS).getSignedMax()))
6315          return getCouldNotCompute();
6316      } else {
6317        APInt Max = APInt::getMaxValue(BitWidth);
6318        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6319              .ult(getUnsignedRange(RHS).getUnsignedMax()))
6320          return getCouldNotCompute();
6321      }
6322    } else
6323      // TODO: Handle negative strides here and below.
6324      return getCouldNotCompute();
6325
6326    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6327    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
6328    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
6329    // treat m-n as signed nor unsigned due to overflow possibility.
6330
6331    // First, we get the value of the LHS in the first iteration: n
6332    const SCEV *Start = AddRec->getOperand(0);
6333
6334    // Determine the minimum constant start value.
6335    const SCEV *MinStart = getConstant(isSigned ?
6336      getSignedRange(Start).getSignedMin() :
6337      getUnsignedRange(Start).getUnsignedMin());
6338
6339    // If we know that the condition is true in order to enter the loop,
6340    // then we know that it will run exactly (m-n)/s times. Otherwise, we
6341    // only know that it will execute (max(m,n)-n)/s times. In both cases,
6342    // the division must round up.
6343    const SCEV *End = RHS;
6344    if (!isLoopEntryGuardedByCond(L,
6345                                  isSigned ? ICmpInst::ICMP_SLT :
6346                                             ICmpInst::ICMP_ULT,
6347                                  getMinusSCEV(Start, Step), RHS))
6348      End = isSigned ? getSMaxExpr(RHS, Start)
6349                     : getUMaxExpr(RHS, Start);
6350
6351    // Determine the maximum constant end value.
6352    const SCEV *MaxEnd = getConstant(isSigned ?
6353      getSignedRange(End).getSignedMax() :
6354      getUnsignedRange(End).getUnsignedMax());
6355
6356    // If MaxEnd is within a step of the maximum integer value in its type,
6357    // adjust it down to the minimum value which would produce the same effect.
6358    // This allows the subsequent ceiling division of (N+(step-1))/step to
6359    // compute the correct value.
6360    const SCEV *StepMinusOne = getMinusSCEV(Step,
6361                                            getConstant(Step->getType(), 1));
6362    MaxEnd = isSigned ?
6363      getSMinExpr(MaxEnd,
6364                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6365                               StepMinusOne)) :
6366      getUMinExpr(MaxEnd,
6367                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6368                               StepMinusOne));
6369
6370    // Finally, we subtract these two values and divide, rounding up, to get
6371    // the number of times the backedge is executed.
6372    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6373
6374    // The maximum backedge count is similar, except using the minimum start
6375    // value and the maximum end value.
6376    // If we already have an exact constant BECount, use it instead.
6377    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6378      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6379
6380    // If the stride is nonconstant, and NoWrap == true, then
6381    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6382    // exact BECount and invalid MaxBECount, which should be avoided to catch
6383    // more optimization opportunities.
6384    if (isa<SCEVCouldNotCompute>(MaxBECount))
6385      MaxBECount = BECount;
6386
6387    return ExitLimit(BECount, MaxBECount);
6388  }
6389
6390  return getCouldNotCompute();
6391}
6392
6393/// getNumIterationsInRange - Return the number of iterations of this loop that
6394/// produce values in the specified constant range.  Another way of looking at
6395/// this is that it returns the first iteration number where the value is not in
6396/// the condition, thus computing the exit count. If the iteration count can't
6397/// be computed, an instance of SCEVCouldNotCompute is returned.
6398const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6399                                                    ScalarEvolution &SE) const {
6400  if (Range.isFullSet())  // Infinite loop.
6401    return SE.getCouldNotCompute();
6402
6403  // If the start is a non-zero constant, shift the range to simplify things.
6404  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6405    if (!SC->getValue()->isZero()) {
6406      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6407      Operands[0] = SE.getConstant(SC->getType(), 0);
6408      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6409                                             getNoWrapFlags(FlagNW));
6410      if (const SCEVAddRecExpr *ShiftedAddRec =
6411            dyn_cast<SCEVAddRecExpr>(Shifted))
6412        return ShiftedAddRec->getNumIterationsInRange(
6413                           Range.subtract(SC->getValue()->getValue()), SE);
6414      // This is strange and shouldn't happen.
6415      return SE.getCouldNotCompute();
6416    }
6417
6418  // The only time we can solve this is when we have all constant indices.
6419  // Otherwise, we cannot determine the overflow conditions.
6420  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6421    if (!isa<SCEVConstant>(getOperand(i)))
6422      return SE.getCouldNotCompute();
6423
6424
6425  // Okay at this point we know that all elements of the chrec are constants and
6426  // that the start element is zero.
6427
6428  // First check to see if the range contains zero.  If not, the first
6429  // iteration exits.
6430  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6431  if (!Range.contains(APInt(BitWidth, 0)))
6432    return SE.getConstant(getType(), 0);
6433
6434  if (isAffine()) {
6435    // If this is an affine expression then we have this situation:
6436    //   Solve {0,+,A} in Range  ===  Ax in Range
6437
6438    // We know that zero is in the range.  If A is positive then we know that
6439    // the upper value of the range must be the first possible exit value.
6440    // If A is negative then the lower of the range is the last possible loop
6441    // value.  Also note that we already checked for a full range.
6442    APInt One(BitWidth,1);
6443    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6444    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6445
6446    // The exit value should be (End+A)/A.
6447    APInt ExitVal = (End + A).udiv(A);
6448    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6449
6450    // Evaluate at the exit value.  If we really did fall out of the valid
6451    // range, then we computed our trip count, otherwise wrap around or other
6452    // things must have happened.
6453    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6454    if (Range.contains(Val->getValue()))
6455      return SE.getCouldNotCompute();  // Something strange happened
6456
6457    // Ensure that the previous value is in the range.  This is a sanity check.
6458    assert(Range.contains(
6459           EvaluateConstantChrecAtConstant(this,
6460           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6461           "Linear scev computation is off in a bad way!");
6462    return SE.getConstant(ExitValue);
6463  } else if (isQuadratic()) {
6464    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6465    // quadratic equation to solve it.  To do this, we must frame our problem in
6466    // terms of figuring out when zero is crossed, instead of when
6467    // Range.getUpper() is crossed.
6468    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6469    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6470    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6471                                             // getNoWrapFlags(FlagNW)
6472                                             FlagAnyWrap);
6473
6474    // Next, solve the constructed addrec
6475    std::pair<const SCEV *,const SCEV *> Roots =
6476      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6477    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6478    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6479    if (R1) {
6480      // Pick the smallest positive root value.
6481      if (ConstantInt *CB =
6482          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6483                         R1->getValue(), R2->getValue()))) {
6484        if (CB->getZExtValue() == false)
6485          std::swap(R1, R2);   // R1 is the minimum root now.
6486
6487        // Make sure the root is not off by one.  The returned iteration should
6488        // not be in the range, but the previous one should be.  When solving
6489        // for "X*X < 5", for example, we should not return a root of 2.
6490        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6491                                                             R1->getValue(),
6492                                                             SE);
6493        if (Range.contains(R1Val->getValue())) {
6494          // The next iteration must be out of the range...
6495          ConstantInt *NextVal =
6496                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6497
6498          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6499          if (!Range.contains(R1Val->getValue()))
6500            return SE.getConstant(NextVal);
6501          return SE.getCouldNotCompute();  // Something strange happened
6502        }
6503
6504        // If R1 was not in the range, then it is a good return value.  Make
6505        // sure that R1-1 WAS in the range though, just in case.
6506        ConstantInt *NextVal =
6507               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6508        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6509        if (Range.contains(R1Val->getValue()))
6510          return R1;
6511        return SE.getCouldNotCompute();  // Something strange happened
6512      }
6513    }
6514  }
6515
6516  return SE.getCouldNotCompute();
6517}
6518
6519
6520
6521//===----------------------------------------------------------------------===//
6522//                   SCEVCallbackVH Class Implementation
6523//===----------------------------------------------------------------------===//
6524
6525void ScalarEvolution::SCEVCallbackVH::deleted() {
6526  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6527  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6528    SE->ConstantEvolutionLoopExitValue.erase(PN);
6529  SE->ValueExprMap.erase(getValPtr());
6530  // this now dangles!
6531}
6532
6533void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6534  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6535
6536  // Forget all the expressions associated with users of the old value,
6537  // so that future queries will recompute the expressions using the new
6538  // value.
6539  Value *Old = getValPtr();
6540  SmallVector<User *, 16> Worklist;
6541  SmallPtrSet<User *, 8> Visited;
6542  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6543       UI != UE; ++UI)
6544    Worklist.push_back(*UI);
6545  while (!Worklist.empty()) {
6546    User *U = Worklist.pop_back_val();
6547    // Deleting the Old value will cause this to dangle. Postpone
6548    // that until everything else is done.
6549    if (U == Old)
6550      continue;
6551    if (!Visited.insert(U))
6552      continue;
6553    if (PHINode *PN = dyn_cast<PHINode>(U))
6554      SE->ConstantEvolutionLoopExitValue.erase(PN);
6555    SE->ValueExprMap.erase(U);
6556    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6557         UI != UE; ++UI)
6558      Worklist.push_back(*UI);
6559  }
6560  // Delete the Old value.
6561  if (PHINode *PN = dyn_cast<PHINode>(Old))
6562    SE->ConstantEvolutionLoopExitValue.erase(PN);
6563  SE->ValueExprMap.erase(Old);
6564  // this now dangles!
6565}
6566
6567ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6568  : CallbackVH(V), SE(se) {}
6569
6570//===----------------------------------------------------------------------===//
6571//                   ScalarEvolution Class Implementation
6572//===----------------------------------------------------------------------===//
6573
6574ScalarEvolution::ScalarEvolution()
6575  : FunctionPass(ID), FirstUnknown(0) {
6576  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6577}
6578
6579bool ScalarEvolution::runOnFunction(Function &F) {
6580  this->F = &F;
6581  LI = &getAnalysis<LoopInfo>();
6582  TD = getAnalysisIfAvailable<TargetData>();
6583  TLI = &getAnalysis<TargetLibraryInfo>();
6584  DT = &getAnalysis<DominatorTree>();
6585  return false;
6586}
6587
6588void ScalarEvolution::releaseMemory() {
6589  // Iterate through all the SCEVUnknown instances and call their
6590  // destructors, so that they release their references to their values.
6591  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6592    U->~SCEVUnknown();
6593  FirstUnknown = 0;
6594
6595  ValueExprMap.clear();
6596
6597  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6598  // that a loop had multiple computable exits.
6599  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6600         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6601       I != E; ++I) {
6602    I->second.clear();
6603  }
6604
6605  BackedgeTakenCounts.clear();
6606  ConstantEvolutionLoopExitValue.clear();
6607  ValuesAtScopes.clear();
6608  LoopDispositions.clear();
6609  BlockDispositions.clear();
6610  UnsignedRanges.clear();
6611  SignedRanges.clear();
6612  UniqueSCEVs.clear();
6613  SCEVAllocator.Reset();
6614}
6615
6616void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6617  AU.setPreservesAll();
6618  AU.addRequiredTransitive<LoopInfo>();
6619  AU.addRequiredTransitive<DominatorTree>();
6620  AU.addRequired<TargetLibraryInfo>();
6621}
6622
6623bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6624  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6625}
6626
6627static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6628                          const Loop *L) {
6629  // Print all inner loops first
6630  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6631    PrintLoopInfo(OS, SE, *I);
6632
6633  OS << "Loop ";
6634  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6635  OS << ": ";
6636
6637  SmallVector<BasicBlock *, 8> ExitBlocks;
6638  L->getExitBlocks(ExitBlocks);
6639  if (ExitBlocks.size() != 1)
6640    OS << "<multiple exits> ";
6641
6642  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6643    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6644  } else {
6645    OS << "Unpredictable backedge-taken count. ";
6646  }
6647
6648  OS << "\n"
6649        "Loop ";
6650  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6651  OS << ": ";
6652
6653  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6654    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6655  } else {
6656    OS << "Unpredictable max backedge-taken count. ";
6657  }
6658
6659  OS << "\n";
6660}
6661
6662void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6663  // ScalarEvolution's implementation of the print method is to print
6664  // out SCEV values of all instructions that are interesting. Doing
6665  // this potentially causes it to create new SCEV objects though,
6666  // which technically conflicts with the const qualifier. This isn't
6667  // observable from outside the class though, so casting away the
6668  // const isn't dangerous.
6669  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6670
6671  OS << "Classifying expressions for: ";
6672  WriteAsOperand(OS, F, /*PrintType=*/false);
6673  OS << "\n";
6674  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6675    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6676      OS << *I << '\n';
6677      OS << "  -->  ";
6678      const SCEV *SV = SE.getSCEV(&*I);
6679      SV->print(OS);
6680
6681      const Loop *L = LI->getLoopFor((*I).getParent());
6682
6683      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6684      if (AtUse != SV) {
6685        OS << "  -->  ";
6686        AtUse->print(OS);
6687      }
6688
6689      if (L) {
6690        OS << "\t\t" "Exits: ";
6691        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6692        if (!SE.isLoopInvariant(ExitValue, L)) {
6693          OS << "<<Unknown>>";
6694        } else {
6695          OS << *ExitValue;
6696        }
6697      }
6698
6699      OS << "\n";
6700    }
6701
6702  OS << "Determining loop execution counts for: ";
6703  WriteAsOperand(OS, F, /*PrintType=*/false);
6704  OS << "\n";
6705  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6706    PrintLoopInfo(OS, &SE, *I);
6707}
6708
6709ScalarEvolution::LoopDisposition
6710ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6711  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6712  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6713    Values.insert(std::make_pair(L, LoopVariant));
6714  if (!Pair.second)
6715    return Pair.first->second;
6716
6717  LoopDisposition D = computeLoopDisposition(S, L);
6718  return LoopDispositions[S][L] = D;
6719}
6720
6721ScalarEvolution::LoopDisposition
6722ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6723  switch (S->getSCEVType()) {
6724  case scConstant:
6725    return LoopInvariant;
6726  case scTruncate:
6727  case scZeroExtend:
6728  case scSignExtend:
6729    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6730  case scAddRecExpr: {
6731    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6732
6733    // If L is the addrec's loop, it's computable.
6734    if (AR->getLoop() == L)
6735      return LoopComputable;
6736
6737    // Add recurrences are never invariant in the function-body (null loop).
6738    if (!L)
6739      return LoopVariant;
6740
6741    // This recurrence is variant w.r.t. L if L contains AR's loop.
6742    if (L->contains(AR->getLoop()))
6743      return LoopVariant;
6744
6745    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6746    if (AR->getLoop()->contains(L))
6747      return LoopInvariant;
6748
6749    // This recurrence is variant w.r.t. L if any of its operands
6750    // are variant.
6751    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6752         I != E; ++I)
6753      if (!isLoopInvariant(*I, L))
6754        return LoopVariant;
6755
6756    // Otherwise it's loop-invariant.
6757    return LoopInvariant;
6758  }
6759  case scAddExpr:
6760  case scMulExpr:
6761  case scUMaxExpr:
6762  case scSMaxExpr: {
6763    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6764    bool HasVarying = false;
6765    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6766         I != E; ++I) {
6767      LoopDisposition D = getLoopDisposition(*I, L);
6768      if (D == LoopVariant)
6769        return LoopVariant;
6770      if (D == LoopComputable)
6771        HasVarying = true;
6772    }
6773    return HasVarying ? LoopComputable : LoopInvariant;
6774  }
6775  case scUDivExpr: {
6776    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6777    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6778    if (LD == LoopVariant)
6779      return LoopVariant;
6780    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6781    if (RD == LoopVariant)
6782      return LoopVariant;
6783    return (LD == LoopInvariant && RD == LoopInvariant) ?
6784           LoopInvariant : LoopComputable;
6785  }
6786  case scUnknown:
6787    // All non-instruction values are loop invariant.  All instructions are loop
6788    // invariant if they are not contained in the specified loop.
6789    // Instructions are never considered invariant in the function body
6790    // (null loop) because they are defined within the "loop".
6791    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6792      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6793    return LoopInvariant;
6794  case scCouldNotCompute:
6795    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6796    return LoopVariant;
6797  default: break;
6798  }
6799  llvm_unreachable("Unknown SCEV kind!");
6800  return LoopVariant;
6801}
6802
6803bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6804  return getLoopDisposition(S, L) == LoopInvariant;
6805}
6806
6807bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6808  return getLoopDisposition(S, L) == LoopComputable;
6809}
6810
6811ScalarEvolution::BlockDisposition
6812ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6813  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6814  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6815    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6816  if (!Pair.second)
6817    return Pair.first->second;
6818
6819  BlockDisposition D = computeBlockDisposition(S, BB);
6820  return BlockDispositions[S][BB] = D;
6821}
6822
6823ScalarEvolution::BlockDisposition
6824ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6825  switch (S->getSCEVType()) {
6826  case scConstant:
6827    return ProperlyDominatesBlock;
6828  case scTruncate:
6829  case scZeroExtend:
6830  case scSignExtend:
6831    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6832  case scAddRecExpr: {
6833    // This uses a "dominates" query instead of "properly dominates" query
6834    // to test for proper dominance too, because the instruction which
6835    // produces the addrec's value is a PHI, and a PHI effectively properly
6836    // dominates its entire containing block.
6837    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6838    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6839      return DoesNotDominateBlock;
6840  }
6841  // FALL THROUGH into SCEVNAryExpr handling.
6842  case scAddExpr:
6843  case scMulExpr:
6844  case scUMaxExpr:
6845  case scSMaxExpr: {
6846    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6847    bool Proper = true;
6848    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6849         I != E; ++I) {
6850      BlockDisposition D = getBlockDisposition(*I, BB);
6851      if (D == DoesNotDominateBlock)
6852        return DoesNotDominateBlock;
6853      if (D == DominatesBlock)
6854        Proper = false;
6855    }
6856    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6857  }
6858  case scUDivExpr: {
6859    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6860    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6861    BlockDisposition LD = getBlockDisposition(LHS, BB);
6862    if (LD == DoesNotDominateBlock)
6863      return DoesNotDominateBlock;
6864    BlockDisposition RD = getBlockDisposition(RHS, BB);
6865    if (RD == DoesNotDominateBlock)
6866      return DoesNotDominateBlock;
6867    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6868      ProperlyDominatesBlock : DominatesBlock;
6869  }
6870  case scUnknown:
6871    if (Instruction *I =
6872          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6873      if (I->getParent() == BB)
6874        return DominatesBlock;
6875      if (DT->properlyDominates(I->getParent(), BB))
6876        return ProperlyDominatesBlock;
6877      return DoesNotDominateBlock;
6878    }
6879    return ProperlyDominatesBlock;
6880  case scCouldNotCompute:
6881    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6882    return DoesNotDominateBlock;
6883  default: break;
6884  }
6885  llvm_unreachable("Unknown SCEV kind!");
6886  return DoesNotDominateBlock;
6887}
6888
6889bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6890  return getBlockDisposition(S, BB) >= DominatesBlock;
6891}
6892
6893bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6894  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6895}
6896
6897bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6898  switch (S->getSCEVType()) {
6899  case scConstant:
6900    return false;
6901  case scTruncate:
6902  case scZeroExtend:
6903  case scSignExtend: {
6904    const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6905    const SCEV *CastOp = Cast->getOperand();
6906    return Op == CastOp || hasOperand(CastOp, Op);
6907  }
6908  case scAddRecExpr:
6909  case scAddExpr:
6910  case scMulExpr:
6911  case scUMaxExpr:
6912  case scSMaxExpr: {
6913    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6914    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6915         I != E; ++I) {
6916      const SCEV *NAryOp = *I;
6917      if (NAryOp == Op || hasOperand(NAryOp, Op))
6918        return true;
6919    }
6920    return false;
6921  }
6922  case scUDivExpr: {
6923    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6924    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6925    return LHS == Op || hasOperand(LHS, Op) ||
6926           RHS == Op || hasOperand(RHS, Op);
6927  }
6928  case scUnknown:
6929    return false;
6930  case scCouldNotCompute:
6931    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6932    return false;
6933  default: break;
6934  }
6935  llvm_unreachable("Unknown SCEV kind!");
6936  return false;
6937}
6938
6939void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6940  ValuesAtScopes.erase(S);
6941  LoopDispositions.erase(S);
6942  BlockDispositions.erase(S);
6943  UnsignedRanges.erase(S);
6944  SignedRanges.erase(S);
6945}
6946