ScalarEvolutionExpander.cpp revision 1d826a76f591afea445489b9a5485c345e66bf87
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Target/TargetData.h"
20#include "llvm/ADT/STLExtras.h"
21using namespace llvm;
22
23/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
24/// which must be possible with a noop cast, doing what we can to share
25/// the casts.
26Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
27  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
28  assert((Op == Instruction::BitCast ||
29          Op == Instruction::PtrToInt ||
30          Op == Instruction::IntToPtr) &&
31         "InsertNoopCastOfTo cannot perform non-noop casts!");
32  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
33         "InsertNoopCastOfTo cannot change sizes!");
34
35  // Short-circuit unnecessary bitcasts.
36  if (Op == Instruction::BitCast && V->getType() == Ty)
37    return V;
38
39  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
40  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
41      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
42    if (CastInst *CI = dyn_cast<CastInst>(V))
43      if ((CI->getOpcode() == Instruction::PtrToInt ||
44           CI->getOpcode() == Instruction::IntToPtr) &&
45          SE.getTypeSizeInBits(CI->getType()) ==
46          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
47        return CI->getOperand(0);
48    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
49      if ((CE->getOpcode() == Instruction::PtrToInt ||
50           CE->getOpcode() == Instruction::IntToPtr) &&
51          SE.getTypeSizeInBits(CE->getType()) ==
52          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
53        return CE->getOperand(0);
54  }
55
56  if (Constant *C = dyn_cast<Constant>(V))
57    return ConstantExpr::getCast(Op, C, Ty);
58
59  if (Argument *A = dyn_cast<Argument>(V)) {
60    // Check to see if there is already a cast!
61    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
62         UI != E; ++UI)
63      if ((*UI)->getType() == Ty)
64        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
65          if (CI->getOpcode() == Op) {
66            // If the cast isn't the first instruction of the function, move it.
67            if (BasicBlock::iterator(CI) !=
68                A->getParent()->getEntryBlock().begin()) {
69              // Recreate the cast at the beginning of the entry block.
70              // The old cast is left in place in case it is being used
71              // as an insert point.
72              Instruction *NewCI =
73                CastInst::Create(Op, V, Ty, "",
74                                 A->getParent()->getEntryBlock().begin());
75              NewCI->takeName(CI);
76              CI->replaceAllUsesWith(NewCI);
77              return NewCI;
78            }
79            return CI;
80          }
81
82    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
83                                      A->getParent()->getEntryBlock().begin());
84    rememberInstruction(I);
85    return I;
86  }
87
88  Instruction *I = cast<Instruction>(V);
89
90  // Check to see if there is already a cast.  If there is, use it.
91  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
92       UI != E; ++UI) {
93    if ((*UI)->getType() == Ty)
94      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
95        if (CI->getOpcode() == Op) {
96          BasicBlock::iterator It = I; ++It;
97          if (isa<InvokeInst>(I))
98            It = cast<InvokeInst>(I)->getNormalDest()->begin();
99          while (isa<PHINode>(It)) ++It;
100          if (It != BasicBlock::iterator(CI)) {
101            // Recreate the cast after the user.
102            // The old cast is left in place in case it is being used
103            // as an insert point.
104            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
105            NewCI->takeName(CI);
106            CI->replaceAllUsesWith(NewCI);
107            rememberInstruction(NewCI);
108            return NewCI;
109          }
110          rememberInstruction(CI);
111          return CI;
112        }
113  }
114  BasicBlock::iterator IP = I; ++IP;
115  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
116    IP = II->getNormalDest()->begin();
117  while (isa<PHINode>(IP)) ++IP;
118  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
119  rememberInstruction(CI);
120  return CI;
121}
122
123/// InsertBinop - Insert the specified binary operator, doing a small amount
124/// of work to avoid inserting an obviously redundant operation.
125Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
126                                 Value *LHS, Value *RHS) {
127  // Fold a binop with constant operands.
128  if (Constant *CLHS = dyn_cast<Constant>(LHS))
129    if (Constant *CRHS = dyn_cast<Constant>(RHS))
130      return ConstantExpr::get(Opcode, CLHS, CRHS);
131
132  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
133  unsigned ScanLimit = 6;
134  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
135  // Scanning starts from the last instruction before the insertion point.
136  BasicBlock::iterator IP = Builder.GetInsertPoint();
137  if (IP != BlockBegin) {
138    --IP;
139    for (; ScanLimit; --IP, --ScanLimit) {
140      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
141          IP->getOperand(1) == RHS)
142        return IP;
143      if (IP == BlockBegin) break;
144    }
145  }
146
147  // If we haven't found this binop, insert it.
148  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
149  rememberInstruction(BO);
150  return BO;
151}
152
153/// FactorOutConstant - Test if S is divisible by Factor, using signed
154/// division. If so, update S with Factor divided out and return true.
155/// S need not be evenly divisble if a reasonable remainder can be
156/// computed.
157/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
158/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
159/// check to see if the divide was folded.
160static bool FactorOutConstant(const SCEV *&S,
161                              const SCEV *&Remainder,
162                              const SCEV *Factor,
163                              ScalarEvolution &SE,
164                              const TargetData *TD) {
165  // Everything is divisible by one.
166  if (Factor->isOne())
167    return true;
168
169  // x/x == 1.
170  if (S == Factor) {
171    S = SE.getIntegerSCEV(1, S->getType());
172    return true;
173  }
174
175  // For a Constant, check for a multiple of the given factor.
176  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
177    // 0/x == 0.
178    if (C->isZero())
179      return true;
180    // Check for divisibility.
181    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
182      ConstantInt *CI =
183        ConstantInt::get(SE.getContext(),
184                         C->getValue()->getValue().sdiv(
185                                                   FC->getValue()->getValue()));
186      // If the quotient is zero and the remainder is non-zero, reject
187      // the value at this scale. It will be considered for subsequent
188      // smaller scales.
189      if (!CI->isZero()) {
190        const SCEV *Div = SE.getConstant(CI);
191        S = Div;
192        Remainder =
193          SE.getAddExpr(Remainder,
194                        SE.getConstant(C->getValue()->getValue().srem(
195                                                  FC->getValue()->getValue())));
196        return true;
197      }
198    }
199  }
200
201  // In a Mul, check if there is a constant operand which is a multiple
202  // of the given factor.
203  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
204    if (TD) {
205      // With TargetData, the size is known. Check if there is a constant
206      // operand which is a multiple of the given factor. If so, we can
207      // factor it.
208      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
209      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
210        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
211          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
212          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
213                                                 MOperands.end());
214          NewMulOps[0] =
215            SE.getConstant(C->getValue()->getValue().sdiv(
216                                                   FC->getValue()->getValue()));
217          S = SE.getMulExpr(NewMulOps);
218          return true;
219        }
220    } else {
221      // Without TargetData, check if Factor can be factored out of any of the
222      // Mul's operands. If so, we can just remove it.
223      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
224        const SCEV *SOp = M->getOperand(i);
225        const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
226        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
227            Remainder->isZero()) {
228          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
229          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
230                                                 MOperands.end());
231          NewMulOps[i] = SOp;
232          S = SE.getMulExpr(NewMulOps);
233          return true;
234        }
235      }
236    }
237  }
238
239  // In an AddRec, check if both start and step are divisible.
240  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
241    const SCEV *Step = A->getStepRecurrence(SE);
242    const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
243    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
244      return false;
245    if (!StepRem->isZero())
246      return false;
247    const SCEV *Start = A->getStart();
248    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
249      return false;
250    S = SE.getAddRecExpr(Start, Step, A->getLoop());
251    return true;
252  }
253
254  return false;
255}
256
257/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
258/// is the number of SCEVAddRecExprs present, which are kept at the end of
259/// the list.
260///
261static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
262                                const Type *Ty,
263                                ScalarEvolution &SE) {
264  unsigned NumAddRecs = 0;
265  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
266    ++NumAddRecs;
267  // Group Ops into non-addrecs and addrecs.
268  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
269  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
270  // Let ScalarEvolution sort and simplify the non-addrecs list.
271  const SCEV *Sum = NoAddRecs.empty() ?
272                    SE.getIntegerSCEV(0, Ty) :
273                    SE.getAddExpr(NoAddRecs);
274  // If it returned an add, use the operands. Otherwise it simplified
275  // the sum into a single value, so just use that.
276  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
277    Ops = Add->getOperands();
278  else {
279    Ops.clear();
280    if (!Sum->isZero())
281      Ops.push_back(Sum);
282  }
283  // Then append the addrecs.
284  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
285}
286
287/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
288/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
289/// This helps expose more opportunities for folding parts of the expressions
290/// into GEP indices.
291///
292static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
293                         const Type *Ty,
294                         ScalarEvolution &SE) {
295  // Find the addrecs.
296  SmallVector<const SCEV *, 8> AddRecs;
297  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
298    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
299      const SCEV *Start = A->getStart();
300      if (Start->isZero()) break;
301      const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
302      AddRecs.push_back(SE.getAddRecExpr(Zero,
303                                         A->getStepRecurrence(SE),
304                                         A->getLoop()));
305      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
306        Ops[i] = Zero;
307        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
308        e += Add->getNumOperands();
309      } else {
310        Ops[i] = Start;
311      }
312    }
313  if (!AddRecs.empty()) {
314    // Add the addrecs onto the end of the list.
315    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
316    // Resort the operand list, moving any constants to the front.
317    SimplifyAddOperands(Ops, Ty, SE);
318  }
319}
320
321/// expandAddToGEP - Expand an addition expression with a pointer type into
322/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
323/// BasicAliasAnalysis and other passes analyze the result. See the rules
324/// for getelementptr vs. inttoptr in
325/// http://llvm.org/docs/LangRef.html#pointeraliasing
326/// for details.
327///
328/// Design note: The correctness of using getelementptr here depends on
329/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
330/// they may introduce pointer arithmetic which may not be safely converted
331/// into getelementptr.
332///
333/// Design note: It might seem desirable for this function to be more
334/// loop-aware. If some of the indices are loop-invariant while others
335/// aren't, it might seem desirable to emit multiple GEPs, keeping the
336/// loop-invariant portions of the overall computation outside the loop.
337/// However, there are a few reasons this is not done here. Hoisting simple
338/// arithmetic is a low-level optimization that often isn't very
339/// important until late in the optimization process. In fact, passes
340/// like InstructionCombining will combine GEPs, even if it means
341/// pushing loop-invariant computation down into loops, so even if the
342/// GEPs were split here, the work would quickly be undone. The
343/// LoopStrengthReduction pass, which is usually run quite late (and
344/// after the last InstructionCombining pass), takes care of hoisting
345/// loop-invariant portions of expressions, after considering what
346/// can be folded using target addressing modes.
347///
348Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
349                                    const SCEV *const *op_end,
350                                    const PointerType *PTy,
351                                    const Type *Ty,
352                                    Value *V) {
353  const Type *ElTy = PTy->getElementType();
354  SmallVector<Value *, 4> GepIndices;
355  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
356  bool AnyNonZeroIndices = false;
357
358  // Split AddRecs up into parts as either of the parts may be usable
359  // without the other.
360  SplitAddRecs(Ops, Ty, SE);
361
362  // Descend down the pointer's type and attempt to convert the other
363  // operands into GEP indices, at each level. The first index in a GEP
364  // indexes into the array implied by the pointer operand; the rest of
365  // the indices index into the element or field type selected by the
366  // preceding index.
367  for (;;) {
368    // If the scale size is not 0, attempt to factor out a scale for
369    // array indexing.
370    SmallVector<const SCEV *, 8> ScaledOps;
371    if (ElTy->isSized()) {
372      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
373      if (!ElSize->isZero()) {
374        SmallVector<const SCEV *, 8> NewOps;
375        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
376          const SCEV *Op = Ops[i];
377          const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
378          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
379            // Op now has ElSize factored out.
380            ScaledOps.push_back(Op);
381            if (!Remainder->isZero())
382              NewOps.push_back(Remainder);
383            AnyNonZeroIndices = true;
384          } else {
385            // The operand was not divisible, so add it to the list of operands
386            // we'll scan next iteration.
387            NewOps.push_back(Ops[i]);
388          }
389        }
390        // If we made any changes, update Ops.
391        if (!ScaledOps.empty()) {
392          Ops = NewOps;
393          SimplifyAddOperands(Ops, Ty, SE);
394        }
395      }
396    }
397
398    // Record the scaled array index for this level of the type. If
399    // we didn't find any operands that could be factored, tentatively
400    // assume that element zero was selected (since the zero offset
401    // would obviously be folded away).
402    Value *Scaled = ScaledOps.empty() ?
403                    Constant::getNullValue(Ty) :
404                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
405    GepIndices.push_back(Scaled);
406
407    // Collect struct field index operands.
408    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
409      bool FoundFieldNo = false;
410      // An empty struct has no fields.
411      if (STy->getNumElements() == 0) break;
412      if (SE.TD) {
413        // With TargetData, field offsets are known. See if a constant offset
414        // falls within any of the struct fields.
415        if (Ops.empty()) break;
416        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
417          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
418            const StructLayout &SL = *SE.TD->getStructLayout(STy);
419            uint64_t FullOffset = C->getValue()->getZExtValue();
420            if (FullOffset < SL.getSizeInBytes()) {
421              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
422              GepIndices.push_back(
423                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
424              ElTy = STy->getTypeAtIndex(ElIdx);
425              Ops[0] =
426                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
427              AnyNonZeroIndices = true;
428              FoundFieldNo = true;
429            }
430          }
431      } else {
432        // Without TargetData, just check for an offsetof expression of the
433        // appropriate struct type.
434        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
435          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
436            const Type *CTy;
437            Constant *FieldNo;
438            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
439              GepIndices.push_back(FieldNo);
440              ElTy =
441                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
442              Ops[i] = SE.getConstant(Ty, 0);
443              AnyNonZeroIndices = true;
444              FoundFieldNo = true;
445              break;
446            }
447          }
448      }
449      // If no struct field offsets were found, tentatively assume that
450      // field zero was selected (since the zero offset would obviously
451      // be folded away).
452      if (!FoundFieldNo) {
453        ElTy = STy->getTypeAtIndex(0u);
454        GepIndices.push_back(
455          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
456      }
457    }
458
459    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
460      ElTy = ATy->getElementType();
461    else
462      break;
463  }
464
465  // If none of the operands were convertable to proper GEP indices, cast
466  // the base to i8* and do an ugly getelementptr with that. It's still
467  // better than ptrtoint+arithmetic+inttoptr at least.
468  if (!AnyNonZeroIndices) {
469    // Cast the base to i8*.
470    V = InsertNoopCastOfTo(V,
471       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
472
473    // Expand the operands for a plain byte offset.
474    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
475
476    // Fold a GEP with constant operands.
477    if (Constant *CLHS = dyn_cast<Constant>(V))
478      if (Constant *CRHS = dyn_cast<Constant>(Idx))
479        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
480
481    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
482    unsigned ScanLimit = 6;
483    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
484    // Scanning starts from the last instruction before the insertion point.
485    BasicBlock::iterator IP = Builder.GetInsertPoint();
486    if (IP != BlockBegin) {
487      --IP;
488      for (; ScanLimit; --IP, --ScanLimit) {
489        if (IP->getOpcode() == Instruction::GetElementPtr &&
490            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
491          return IP;
492        if (IP == BlockBegin) break;
493      }
494    }
495
496    // Emit a GEP.
497    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
498    rememberInstruction(GEP);
499    return GEP;
500  }
501
502  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
503  // because ScalarEvolution may have changed the address arithmetic to
504  // compute a value which is beyond the end of the allocated object.
505  Value *Casted = V;
506  if (V->getType() != PTy)
507    Casted = InsertNoopCastOfTo(Casted, PTy);
508  Value *GEP = Builder.CreateGEP(Casted,
509                                 GepIndices.begin(),
510                                 GepIndices.end(),
511                                 "scevgep");
512  Ops.push_back(SE.getUnknown(GEP));
513  rememberInstruction(GEP);
514  return expand(SE.getAddExpr(Ops));
515}
516
517/// isNonConstantNegative - Return true if the specified scev is negated, but
518/// not a constant.
519static bool isNonConstantNegative(const SCEV *F) {
520  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
521  if (!Mul) return false;
522
523  // If there is a constant factor, it will be first.
524  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
525  if (!SC) return false;
526
527  // Return true if the value is negative, this matches things like (-42 * V).
528  return SC->getValue()->getValue().isNegative();
529}
530
531Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
532  int NumOperands = S->getNumOperands();
533  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
534
535  // Find the index of an operand to start with. Choose the operand with
536  // pointer type, if there is one, or the last operand otherwise.
537  int PIdx = 0;
538  for (; PIdx != NumOperands - 1; ++PIdx)
539    if (isa<PointerType>(S->getOperand(PIdx)->getType())) break;
540
541  // Expand code for the operand that we chose.
542  Value *V = expand(S->getOperand(PIdx));
543
544  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
545  // comments on expandAddToGEP for details.
546  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
547    // Take the operand at PIdx out of the list.
548    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
549    SmallVector<const SCEV *, 8> NewOps;
550    NewOps.insert(NewOps.end(), Ops.begin(), Ops.begin() + PIdx);
551    NewOps.insert(NewOps.end(), Ops.begin() + PIdx + 1, Ops.end());
552    // Make a GEP.
553    return expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, V);
554  }
555
556  // Otherwise, we'll expand the rest of the SCEVAddExpr as plain integer
557  // arithmetic.
558  V = InsertNoopCastOfTo(V, Ty);
559
560  // Emit a bunch of add instructions
561  for (int i = NumOperands-1; i >= 0; --i) {
562    if (i == PIdx) continue;
563    const SCEV *Op = S->getOperand(i);
564    if (isNonConstantNegative(Op)) {
565      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
566      V = InsertBinop(Instruction::Sub, V, W);
567    } else {
568      Value *W = expandCodeFor(Op, Ty);
569      V = InsertBinop(Instruction::Add, V, W);
570    }
571  }
572  return V;
573}
574
575Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
576  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
577  int FirstOp = 0;  // Set if we should emit a subtract.
578  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
579    if (SC->getValue()->isAllOnesValue())
580      FirstOp = 1;
581
582  int i = S->getNumOperands()-2;
583  Value *V = expandCodeFor(S->getOperand(i+1), Ty);
584
585  // Emit a bunch of multiply instructions
586  for (; i >= FirstOp; --i) {
587    Value *W = expandCodeFor(S->getOperand(i), Ty);
588    V = InsertBinop(Instruction::Mul, V, W);
589  }
590
591  // -1 * ...  --->  0 - ...
592  if (FirstOp == 1)
593    V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
594  return V;
595}
596
597Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
598  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
599
600  Value *LHS = expandCodeFor(S->getLHS(), Ty);
601  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
602    const APInt &RHS = SC->getValue()->getValue();
603    if (RHS.isPowerOf2())
604      return InsertBinop(Instruction::LShr, LHS,
605                         ConstantInt::get(Ty, RHS.logBase2()));
606  }
607
608  Value *RHS = expandCodeFor(S->getRHS(), Ty);
609  return InsertBinop(Instruction::UDiv, LHS, RHS);
610}
611
612/// Move parts of Base into Rest to leave Base with the minimal
613/// expression that provides a pointer operand suitable for a
614/// GEP expansion.
615static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
616                              ScalarEvolution &SE) {
617  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
618    Base = A->getStart();
619    Rest = SE.getAddExpr(Rest,
620                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
621                                          A->getStepRecurrence(SE),
622                                          A->getLoop()));
623  }
624  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
625    Base = A->getOperand(A->getNumOperands()-1);
626    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
627    NewAddOps.back() = Rest;
628    Rest = SE.getAddExpr(NewAddOps);
629    ExposePointerBase(Base, Rest, SE);
630  }
631}
632
633/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
634/// the base addrec, which is the addrec without any non-loop-dominating
635/// values, and return the PHI.
636PHINode *
637SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
638                                        const Loop *L,
639                                        const Type *ExpandTy,
640                                        const Type *IntTy) {
641  // Reuse a previously-inserted PHI, if present.
642  for (BasicBlock::iterator I = L->getHeader()->begin();
643       PHINode *PN = dyn_cast<PHINode>(I); ++I)
644    if (SE.isSCEVable(PN->getType()) &&
645        (SE.getEffectiveSCEVType(PN->getType()) ==
646         SE.getEffectiveSCEVType(Normalized->getType())) &&
647        SE.getSCEV(PN) == Normalized)
648      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
649        // Remember this PHI, even in post-inc mode.
650        InsertedValues.insert(PN);
651        // Remember the increment.
652        Instruction *IncV =
653          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)
654                                  ->stripPointerCasts());
655        rememberInstruction(IncV);
656        // Make sure the increment is where we want it. But don't move it
657        // down past a potential existing post-inc user.
658        if (L == IVIncInsertLoop && !SE.DT->dominates(IncV, IVIncInsertPos))
659          IncV->moveBefore(IVIncInsertPos);
660        return PN;
661      }
662
663  // Save the original insertion point so we can restore it when we're done.
664  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
665  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
666
667  // Expand code for the start value.
668  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
669                                L->getHeader()->begin());
670
671  // Expand code for the step value. Insert instructions right before the
672  // terminator corresponding to the back-edge. Do this before creating the PHI
673  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
674  // negative, insert a sub instead of an add for the increment (unless it's a
675  // constant, because subtracts of constants are canonicalized to adds).
676  const SCEV *Step = Normalized->getStepRecurrence(SE);
677  bool isPointer = isa<PointerType>(ExpandTy);
678  bool isNegative = !isPointer && isNonConstantNegative(Step);
679  if (isNegative)
680    Step = SE.getNegativeSCEV(Step);
681  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
682
683  // Create the PHI.
684  Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
685  PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
686  rememberInstruction(PN);
687
688  // Create the step instructions and populate the PHI.
689  BasicBlock *Header = L->getHeader();
690  for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
691       HPI != HPE; ++HPI) {
692    BasicBlock *Pred = *HPI;
693
694    // Add a start value.
695    if (!L->contains(Pred)) {
696      PN->addIncoming(StartV, Pred);
697      continue;
698    }
699
700    // Create a step value and add it to the PHI. If IVIncInsertLoop is
701    // non-null and equal to the addrec's loop, insert the instructions
702    // at IVIncInsertPos.
703    Instruction *InsertPos = L == IVIncInsertLoop ?
704      IVIncInsertPos : Pred->getTerminator();
705    Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
706    Value *IncV;
707    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
708    if (isPointer) {
709      const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
710      // If the step isn't constant, don't use an implicitly scaled GEP, because
711      // that would require a multiply inside the loop.
712      if (!isa<ConstantInt>(StepV))
713        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
714                                    GEPPtrTy->getAddressSpace());
715      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
716      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
717      if (IncV->getType() != PN->getType()) {
718        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
719        rememberInstruction(IncV);
720      }
721    } else {
722      IncV = isNegative ?
723        Builder.CreateSub(PN, StepV, "lsr.iv.next") :
724        Builder.CreateAdd(PN, StepV, "lsr.iv.next");
725      rememberInstruction(IncV);
726    }
727    PN->addIncoming(IncV, Pred);
728  }
729
730  // Restore the original insert point.
731  if (SaveInsertBB)
732    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
733
734  // Remember this PHI, even in post-inc mode.
735  InsertedValues.insert(PN);
736
737  return PN;
738}
739
740Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
741  const Type *STy = S->getType();
742  const Type *IntTy = SE.getEffectiveSCEVType(STy);
743  const Loop *L = S->getLoop();
744
745  // Determine a normalized form of this expression, which is the expression
746  // before any post-inc adjustment is made.
747  const SCEVAddRecExpr *Normalized = S;
748  if (L == PostIncLoop) {
749    const SCEV *Step = S->getStepRecurrence(SE);
750    Normalized = cast<SCEVAddRecExpr>(SE.getMinusSCEV(S, Step));
751  }
752
753  // Strip off any non-loop-dominating component from the addrec start.
754  const SCEV *Start = Normalized->getStart();
755  const SCEV *PostLoopOffset = 0;
756  if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
757    PostLoopOffset = Start;
758    Start = SE.getIntegerSCEV(0, Normalized->getType());
759    Normalized =
760      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
761                                            Normalized->getStepRecurrence(SE),
762                                            Normalized->getLoop()));
763  }
764
765  // Strip off any non-loop-dominating component from the addrec step.
766  const SCEV *Step = Normalized->getStepRecurrence(SE);
767  const SCEV *PostLoopScale = 0;
768  if (!Step->hasComputableLoopEvolution(L) &&
769      !Step->dominates(L->getHeader(), SE.DT)) {
770    PostLoopScale = Step;
771    Step = SE.getIntegerSCEV(1, Normalized->getType());
772    Normalized =
773      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
774                                            Normalized->getLoop()));
775  }
776
777  // Expand the core addrec. If we need post-loop scaling, force it to
778  // expand to an integer type to avoid the need for additional casting.
779  const Type *ExpandTy = PostLoopScale ? IntTy : STy;
780  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
781
782  // Accomodate post-inc mode, if necessary.
783  Value *Result;
784  if (L != PostIncLoop)
785    Result = PN;
786  else {
787    // In PostInc mode, use the post-incremented value.
788    BasicBlock *LatchBlock = L->getLoopLatch();
789    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
790    Result = PN->getIncomingValueForBlock(LatchBlock);
791  }
792
793  // Re-apply any non-loop-dominating scale.
794  if (PostLoopScale) {
795    Result = InsertNoopCastOfTo(Result, IntTy);
796    Result = Builder.CreateMul(Result,
797                               expandCodeFor(PostLoopScale, IntTy));
798    rememberInstruction(Result);
799  }
800
801  // Re-apply any non-loop-dominating offset.
802  if (PostLoopOffset) {
803    if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
804      const SCEV *const OffsetArray[1] = { PostLoopOffset };
805      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
806    } else {
807      Result = InsertNoopCastOfTo(Result, IntTy);
808      Result = Builder.CreateAdd(Result,
809                                 expandCodeFor(PostLoopOffset, IntTy));
810      rememberInstruction(Result);
811    }
812  }
813
814  return Result;
815}
816
817Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
818  if (!CanonicalMode) return expandAddRecExprLiterally(S);
819
820  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
821  const Loop *L = S->getLoop();
822
823  // First check for an existing canonical IV in a suitable type.
824  PHINode *CanonicalIV = 0;
825  if (PHINode *PN = L->getCanonicalInductionVariable())
826    if (SE.isSCEVable(PN->getType()) &&
827        isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
828        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
829      CanonicalIV = PN;
830
831  // Rewrite an AddRec in terms of the canonical induction variable, if
832  // its type is more narrow.
833  if (CanonicalIV &&
834      SE.getTypeSizeInBits(CanonicalIV->getType()) >
835      SE.getTypeSizeInBits(Ty)) {
836    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
837    SmallVector<const SCEV *, 4> NewOps(Ops.size());
838    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
839      NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
840    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
841    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
842    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
843    BasicBlock::iterator NewInsertPt =
844      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
845    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
846    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
847                      NewInsertPt);
848    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
849    return V;
850  }
851
852  // {X,+,F} --> X + {0,+,F}
853  if (!S->getStart()->isZero()) {
854    const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
855    SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
856    NewOps[0] = SE.getIntegerSCEV(0, Ty);
857    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
858
859    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
860    // comments on expandAddToGEP for details.
861    const SCEV *Base = S->getStart();
862    const SCEV *RestArray[1] = { Rest };
863    // Dig into the expression to find the pointer base for a GEP.
864    ExposePointerBase(Base, RestArray[0], SE);
865    // If we found a pointer, expand the AddRec with a GEP.
866    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
867      // Make sure the Base isn't something exotic, such as a multiplied
868      // or divided pointer value. In those cases, the result type isn't
869      // actually a pointer type.
870      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
871        Value *StartV = expand(Base);
872        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
873        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
874      }
875    }
876
877    // Just do a normal add. Pre-expand the operands to suppress folding.
878    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
879                                SE.getUnknown(expand(Rest))));
880  }
881
882  // {0,+,1} --> Insert a canonical induction variable into the loop!
883  if (S->isAffine() &&
884      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
885    // If there's a canonical IV, just use it.
886    if (CanonicalIV) {
887      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
888             "IVs with types different from the canonical IV should "
889             "already have been handled!");
890      return CanonicalIV;
891    }
892
893    // Create and insert the PHI node for the induction variable in the
894    // specified loop.
895    BasicBlock *Header = L->getHeader();
896    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
897    rememberInstruction(PN);
898
899    Constant *One = ConstantInt::get(Ty, 1);
900    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
901         HPI != HPE; ++HPI)
902      if (L->contains(*HPI)) {
903        // Insert a unit add instruction right before the terminator
904        // corresponding to the back-edge.
905        Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
906                                                     (*HPI)->getTerminator());
907        rememberInstruction(Add);
908        PN->addIncoming(Add, *HPI);
909      } else {
910        PN->addIncoming(Constant::getNullValue(Ty), *HPI);
911      }
912  }
913
914  // {0,+,F} --> {0,+,1} * F
915  // Get the canonical induction variable I for this loop.
916  Value *I = CanonicalIV ?
917             CanonicalIV :
918             getOrInsertCanonicalInductionVariable(L, Ty);
919
920  // If this is a simple linear addrec, emit it now as a special case.
921  if (S->isAffine())    // {0,+,F} --> i*F
922    return
923      expand(SE.getTruncateOrNoop(
924        SE.getMulExpr(SE.getUnknown(I),
925                      SE.getNoopOrAnyExtend(S->getOperand(1),
926                                            I->getType())),
927        Ty));
928
929  // If this is a chain of recurrences, turn it into a closed form, using the
930  // folders, then expandCodeFor the closed form.  This allows the folders to
931  // simplify the expression without having to build a bunch of special code
932  // into this folder.
933  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
934
935  // Promote S up to the canonical IV type, if the cast is foldable.
936  const SCEV *NewS = S;
937  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
938  if (isa<SCEVAddRecExpr>(Ext))
939    NewS = Ext;
940
941  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
942  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
943
944  // Truncate the result down to the original type, if needed.
945  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
946  return expand(T);
947}
948
949Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
950  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
951  Value *V = expandCodeFor(S->getOperand(),
952                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
953  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
954  rememberInstruction(I);
955  return I;
956}
957
958Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
959  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
960  Value *V = expandCodeFor(S->getOperand(),
961                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
962  Value *I = Builder.CreateZExt(V, Ty, "tmp");
963  rememberInstruction(I);
964  return I;
965}
966
967Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
968  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
969  Value *V = expandCodeFor(S->getOperand(),
970                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
971  Value *I = Builder.CreateSExt(V, Ty, "tmp");
972  rememberInstruction(I);
973  return I;
974}
975
976Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
977  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
978  const Type *Ty = LHS->getType();
979  for (int i = S->getNumOperands()-2; i >= 0; --i) {
980    // In the case of mixed integer and pointer types, do the
981    // rest of the comparisons as integer.
982    if (S->getOperand(i)->getType() != Ty) {
983      Ty = SE.getEffectiveSCEVType(Ty);
984      LHS = InsertNoopCastOfTo(LHS, Ty);
985    }
986    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
987    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
988    rememberInstruction(ICmp);
989    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
990    rememberInstruction(Sel);
991    LHS = Sel;
992  }
993  // In the case of mixed integer and pointer types, cast the
994  // final result back to the pointer type.
995  if (LHS->getType() != S->getType())
996    LHS = InsertNoopCastOfTo(LHS, S->getType());
997  return LHS;
998}
999
1000Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1001  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1002  const Type *Ty = LHS->getType();
1003  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1004    // In the case of mixed integer and pointer types, do the
1005    // rest of the comparisons as integer.
1006    if (S->getOperand(i)->getType() != Ty) {
1007      Ty = SE.getEffectiveSCEVType(Ty);
1008      LHS = InsertNoopCastOfTo(LHS, Ty);
1009    }
1010    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1011    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1012    rememberInstruction(ICmp);
1013    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1014    rememberInstruction(Sel);
1015    LHS = Sel;
1016  }
1017  // In the case of mixed integer and pointer types, cast the
1018  // final result back to the pointer type.
1019  if (LHS->getType() != S->getType())
1020    LHS = InsertNoopCastOfTo(LHS, S->getType());
1021  return LHS;
1022}
1023
1024Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
1025  // Expand the code for this SCEV.
1026  Value *V = expand(SH);
1027  if (Ty) {
1028    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1029           "non-trivial casts should be done with the SCEVs directly!");
1030    V = InsertNoopCastOfTo(V, Ty);
1031  }
1032  return V;
1033}
1034
1035Value *SCEVExpander::expand(const SCEV *S) {
1036  // Compute an insertion point for this SCEV object. Hoist the instructions
1037  // as far out in the loop nest as possible.
1038  Instruction *InsertPt = Builder.GetInsertPoint();
1039  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1040       L = L->getParentLoop())
1041    if (S->isLoopInvariant(L)) {
1042      if (!L) break;
1043      if (BasicBlock *Preheader = L->getLoopPreheader())
1044        InsertPt = Preheader->getTerminator();
1045    } else {
1046      // If the SCEV is computable at this level, insert it into the header
1047      // after the PHIs (and after any other instructions that we've inserted
1048      // there) so that it is guaranteed to dominate any user inside the loop.
1049      if (L && S->hasComputableLoopEvolution(L))
1050        InsertPt = L->getHeader()->getFirstNonPHI();
1051      while (isInsertedInstruction(InsertPt))
1052        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1053      break;
1054    }
1055
1056  // Check to see if we already expanded this here.
1057  std::map<std::pair<const SCEV *, Instruction *>,
1058           AssertingVH<Value> >::iterator I =
1059    InsertedExpressions.find(std::make_pair(S, InsertPt));
1060  if (I != InsertedExpressions.end())
1061    return I->second;
1062
1063  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1064  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1065  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1066
1067  // Expand the expression into instructions.
1068  Value *V = visit(S);
1069
1070  // Remember the expanded value for this SCEV at this location.
1071  if (!PostIncLoop)
1072    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1073
1074  Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
1075  return V;
1076}
1077
1078void SCEVExpander::rememberInstruction(Value *I) {
1079  if (!PostIncLoop)
1080    InsertedValues.insert(I);
1081
1082  // If we just claimed an existing instruction and that instruction had
1083  // been the insert point, adjust the insert point forward so that
1084  // subsequently inserted code will be dominated.
1085  if (Builder.GetInsertPoint() == I) {
1086    BasicBlock::iterator It = cast<Instruction>(I);
1087    do { ++It; } while (isInsertedInstruction(It));
1088    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1089  }
1090}
1091
1092/// getOrInsertCanonicalInductionVariable - This method returns the
1093/// canonical induction variable of the specified type for the specified
1094/// loop (inserting one if there is none).  A canonical induction variable
1095/// starts at zero and steps by one on each iteration.
1096Value *
1097SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1098                                                    const Type *Ty) {
1099  assert(Ty->isInteger() && "Can only insert integer induction variables!");
1100  const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
1101                                   SE.getIntegerSCEV(1, Ty), L);
1102  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1103  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1104  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
1105  if (SaveInsertBB)
1106    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
1107  return V;
1108}
1109