ScalarEvolutionExpander.cpp revision 409443b1c6415e55c2bd4f0662e14cbc52d16686
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/Analysis/LoopInfo.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/IR/LLVMContext.h"
23#include "llvm/Support/Debug.h"
24
25using namespace llvm;
26
27/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
28/// reusing an existing cast if a suitable one exists, moving an existing
29/// cast if a suitable one exists but isn't in the right place, or
30/// creating a new one.
31Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
32                                       Instruction::CastOps Op,
33                                       BasicBlock::iterator IP) {
34  // This function must be called with the builder having a valid insertion
35  // point. It doesn't need to be the actual IP where the uses of the returned
36  // cast will be added, but it must dominate such IP.
37  // We use this precondition to produce a cast that will dominate all its
38  // uses. In particular, this is crucial for the case where the builder's
39  // insertion point *is* the point where we were asked to put the cast.
40  // Since we don't know the builder's insertion point is actually
41  // where the uses will be added (only that it dominates it), we are
42  // not allowed to move it.
43  BasicBlock::iterator BIP = Builder.GetInsertPoint();
44
45  Instruction *Ret = NULL;
46
47  // Check to see if there is already a cast!
48  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
49       UI != E; ++UI) {
50    User *U = *UI;
51    if (U->getType() == Ty)
52      if (CastInst *CI = dyn_cast<CastInst>(U))
53        if (CI->getOpcode() == Op) {
54          // If the cast isn't where we want it, create a new cast at IP.
55          // Likewise, do not reuse a cast at BIP because it must dominate
56          // instructions that might be inserted before BIP.
57          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
58            // Create a new cast, and leave the old cast in place in case
59            // it is being used as an insert point. Clear its operand
60            // so that it doesn't hold anything live.
61            Ret = CastInst::Create(Op, V, Ty, "", IP);
62            Ret->takeName(CI);
63            CI->replaceAllUsesWith(Ret);
64            CI->setOperand(0, UndefValue::get(V->getType()));
65            break;
66          }
67          Ret = CI;
68          break;
69        }
70  }
71
72  // Create a new cast.
73  if (!Ret)
74    Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
75
76  // We assert at the end of the function since IP might point to an
77  // instruction with different dominance properties than a cast
78  // (an invoke for example) and not dominate BIP (but the cast does).
79  assert(SE.DT->dominates(Ret, BIP));
80
81  rememberInstruction(Ret);
82  return Ret;
83}
84
85/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
86/// which must be possible with a noop cast, doing what we can to share
87/// the casts.
88Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
89  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
90  assert((Op == Instruction::BitCast ||
91          Op == Instruction::PtrToInt ||
92          Op == Instruction::IntToPtr) &&
93         "InsertNoopCastOfTo cannot perform non-noop casts!");
94  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
95         "InsertNoopCastOfTo cannot change sizes!");
96
97  // Short-circuit unnecessary bitcasts.
98  if (Op == Instruction::BitCast) {
99    if (V->getType() == Ty)
100      return V;
101    if (CastInst *CI = dyn_cast<CastInst>(V)) {
102      if (CI->getOperand(0)->getType() == Ty)
103        return CI->getOperand(0);
104    }
105  }
106  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
107  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
108      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
109    if (CastInst *CI = dyn_cast<CastInst>(V))
110      if ((CI->getOpcode() == Instruction::PtrToInt ||
111           CI->getOpcode() == Instruction::IntToPtr) &&
112          SE.getTypeSizeInBits(CI->getType()) ==
113          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
114        return CI->getOperand(0);
115    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
116      if ((CE->getOpcode() == Instruction::PtrToInt ||
117           CE->getOpcode() == Instruction::IntToPtr) &&
118          SE.getTypeSizeInBits(CE->getType()) ==
119          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
120        return CE->getOperand(0);
121  }
122
123  // Fold a cast of a constant.
124  if (Constant *C = dyn_cast<Constant>(V))
125    return ConstantExpr::getCast(Op, C, Ty);
126
127  // Cast the argument at the beginning of the entry block, after
128  // any bitcasts of other arguments.
129  if (Argument *A = dyn_cast<Argument>(V)) {
130    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131    while ((isa<BitCastInst>(IP) &&
132            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133            cast<BitCastInst>(IP)->getOperand(0) != A) ||
134           isa<DbgInfoIntrinsic>(IP) ||
135           isa<LandingPadInst>(IP))
136      ++IP;
137    return ReuseOrCreateCast(A, Ty, Op, IP);
138  }
139
140  // Cast the instruction immediately after the instruction.
141  Instruction *I = cast<Instruction>(V);
142  BasicBlock::iterator IP = I; ++IP;
143  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
144    IP = II->getNormalDest()->begin();
145  while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
146    ++IP;
147  return ReuseOrCreateCast(I, Ty, Op, IP);
148}
149
150/// InsertBinop - Insert the specified binary operator, doing a small amount
151/// of work to avoid inserting an obviously redundant operation.
152Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
153                                 Value *LHS, Value *RHS) {
154  // Fold a binop with constant operands.
155  if (Constant *CLHS = dyn_cast<Constant>(LHS))
156    if (Constant *CRHS = dyn_cast<Constant>(RHS))
157      return ConstantExpr::get(Opcode, CLHS, CRHS);
158
159  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
160  unsigned ScanLimit = 6;
161  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
162  // Scanning starts from the last instruction before the insertion point.
163  BasicBlock::iterator IP = Builder.GetInsertPoint();
164  if (IP != BlockBegin) {
165    --IP;
166    for (; ScanLimit; --IP, --ScanLimit) {
167      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
168      // generated code.
169      if (isa<DbgInfoIntrinsic>(IP))
170        ScanLimit++;
171      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
172          IP->getOperand(1) == RHS)
173        return IP;
174      if (IP == BlockBegin) break;
175    }
176  }
177
178  // Save the original insertion point so we can restore it when we're done.
179  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
180  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
181
182  // Move the insertion point out of as many loops as we can.
183  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
184    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
185    BasicBlock *Preheader = L->getLoopPreheader();
186    if (!Preheader) break;
187
188    // Ok, move up a level.
189    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
190  }
191
192  // If we haven't found this binop, insert it.
193  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
194  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
195  rememberInstruction(BO);
196
197  // Restore the original insert point.
198  if (SaveInsertBB)
199    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
200
201  return BO;
202}
203
204/// FactorOutConstant - Test if S is divisible by Factor, using signed
205/// division. If so, update S with Factor divided out and return true.
206/// S need not be evenly divisible if a reasonable remainder can be
207/// computed.
208/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
209/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
210/// check to see if the divide was folded.
211static bool FactorOutConstant(const SCEV *&S,
212                              const SCEV *&Remainder,
213                              const SCEV *Factor,
214                              ScalarEvolution &SE,
215                              const DataLayout *TD) {
216  // Everything is divisible by one.
217  if (Factor->isOne())
218    return true;
219
220  // x/x == 1.
221  if (S == Factor) {
222    S = SE.getConstant(S->getType(), 1);
223    return true;
224  }
225
226  // For a Constant, check for a multiple of the given factor.
227  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
228    // 0/x == 0.
229    if (C->isZero())
230      return true;
231    // Check for divisibility.
232    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
233      ConstantInt *CI =
234        ConstantInt::get(SE.getContext(),
235                         C->getValue()->getValue().sdiv(
236                                                   FC->getValue()->getValue()));
237      // If the quotient is zero and the remainder is non-zero, reject
238      // the value at this scale. It will be considered for subsequent
239      // smaller scales.
240      if (!CI->isZero()) {
241        const SCEV *Div = SE.getConstant(CI);
242        S = Div;
243        Remainder =
244          SE.getAddExpr(Remainder,
245                        SE.getConstant(C->getValue()->getValue().srem(
246                                                  FC->getValue()->getValue())));
247        return true;
248      }
249    }
250  }
251
252  // In a Mul, check if there is a constant operand which is a multiple
253  // of the given factor.
254  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
255    if (TD) {
256      // With DataLayout, the size is known. Check if there is a constant
257      // operand which is a multiple of the given factor. If so, we can
258      // factor it.
259      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
260      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
261        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
262          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
263          NewMulOps[0] =
264            SE.getConstant(C->getValue()->getValue().sdiv(
265                                                   FC->getValue()->getValue()));
266          S = SE.getMulExpr(NewMulOps);
267          return true;
268        }
269    } else {
270      // Without DataLayout, check if Factor can be factored out of any of the
271      // Mul's operands. If so, we can just remove it.
272      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
273        const SCEV *SOp = M->getOperand(i);
274        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
275        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
276            Remainder->isZero()) {
277          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
278          NewMulOps[i] = SOp;
279          S = SE.getMulExpr(NewMulOps);
280          return true;
281        }
282      }
283    }
284  }
285
286  // In an AddRec, check if both start and step are divisible.
287  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
288    const SCEV *Step = A->getStepRecurrence(SE);
289    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
290    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
291      return false;
292    if (!StepRem->isZero())
293      return false;
294    const SCEV *Start = A->getStart();
295    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
296      return false;
297    // FIXME: can use A->getNoWrapFlags(FlagNW)
298    S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
299    return true;
300  }
301
302  return false;
303}
304
305/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
306/// is the number of SCEVAddRecExprs present, which are kept at the end of
307/// the list.
308///
309static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
310                                Type *Ty,
311                                ScalarEvolution &SE) {
312  unsigned NumAddRecs = 0;
313  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
314    ++NumAddRecs;
315  // Group Ops into non-addrecs and addrecs.
316  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
317  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
318  // Let ScalarEvolution sort and simplify the non-addrecs list.
319  const SCEV *Sum = NoAddRecs.empty() ?
320                    SE.getConstant(Ty, 0) :
321                    SE.getAddExpr(NoAddRecs);
322  // If it returned an add, use the operands. Otherwise it simplified
323  // the sum into a single value, so just use that.
324  Ops.clear();
325  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
326    Ops.append(Add->op_begin(), Add->op_end());
327  else if (!Sum->isZero())
328    Ops.push_back(Sum);
329  // Then append the addrecs.
330  Ops.append(AddRecs.begin(), AddRecs.end());
331}
332
333/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
334/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
335/// This helps expose more opportunities for folding parts of the expressions
336/// into GEP indices.
337///
338static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
339                         Type *Ty,
340                         ScalarEvolution &SE) {
341  // Find the addrecs.
342  SmallVector<const SCEV *, 8> AddRecs;
343  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
344    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
345      const SCEV *Start = A->getStart();
346      if (Start->isZero()) break;
347      const SCEV *Zero = SE.getConstant(Ty, 0);
348      AddRecs.push_back(SE.getAddRecExpr(Zero,
349                                         A->getStepRecurrence(SE),
350                                         A->getLoop(),
351                                         // FIXME: A->getNoWrapFlags(FlagNW)
352                                         SCEV::FlagAnyWrap));
353      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
354        Ops[i] = Zero;
355        Ops.append(Add->op_begin(), Add->op_end());
356        e += Add->getNumOperands();
357      } else {
358        Ops[i] = Start;
359      }
360    }
361  if (!AddRecs.empty()) {
362    // Add the addrecs onto the end of the list.
363    Ops.append(AddRecs.begin(), AddRecs.end());
364    // Resort the operand list, moving any constants to the front.
365    SimplifyAddOperands(Ops, Ty, SE);
366  }
367}
368
369/// expandAddToGEP - Expand an addition expression with a pointer type into
370/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
371/// BasicAliasAnalysis and other passes analyze the result. See the rules
372/// for getelementptr vs. inttoptr in
373/// http://llvm.org/docs/LangRef.html#pointeraliasing
374/// for details.
375///
376/// Design note: The correctness of using getelementptr here depends on
377/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
378/// they may introduce pointer arithmetic which may not be safely converted
379/// into getelementptr.
380///
381/// Design note: It might seem desirable for this function to be more
382/// loop-aware. If some of the indices are loop-invariant while others
383/// aren't, it might seem desirable to emit multiple GEPs, keeping the
384/// loop-invariant portions of the overall computation outside the loop.
385/// However, there are a few reasons this is not done here. Hoisting simple
386/// arithmetic is a low-level optimization that often isn't very
387/// important until late in the optimization process. In fact, passes
388/// like InstructionCombining will combine GEPs, even if it means
389/// pushing loop-invariant computation down into loops, so even if the
390/// GEPs were split here, the work would quickly be undone. The
391/// LoopStrengthReduction pass, which is usually run quite late (and
392/// after the last InstructionCombining pass), takes care of hoisting
393/// loop-invariant portions of expressions, after considering what
394/// can be folded using target addressing modes.
395///
396Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
397                                    const SCEV *const *op_end,
398                                    PointerType *PTy,
399                                    Type *Ty,
400                                    Value *V) {
401  Type *ElTy = PTy->getElementType();
402  SmallVector<Value *, 4> GepIndices;
403  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
404  bool AnyNonZeroIndices = false;
405
406  // Split AddRecs up into parts as either of the parts may be usable
407  // without the other.
408  SplitAddRecs(Ops, Ty, SE);
409
410  // Descend down the pointer's type and attempt to convert the other
411  // operands into GEP indices, at each level. The first index in a GEP
412  // indexes into the array implied by the pointer operand; the rest of
413  // the indices index into the element or field type selected by the
414  // preceding index.
415  for (;;) {
416    // If the scale size is not 0, attempt to factor out a scale for
417    // array indexing.
418    SmallVector<const SCEV *, 8> ScaledOps;
419    if (ElTy->isSized()) {
420      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
421      if (!ElSize->isZero()) {
422        SmallVector<const SCEV *, 8> NewOps;
423        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
424          const SCEV *Op = Ops[i];
425          const SCEV *Remainder = SE.getConstant(Ty, 0);
426          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
427            // Op now has ElSize factored out.
428            ScaledOps.push_back(Op);
429            if (!Remainder->isZero())
430              NewOps.push_back(Remainder);
431            AnyNonZeroIndices = true;
432          } else {
433            // The operand was not divisible, so add it to the list of operands
434            // we'll scan next iteration.
435            NewOps.push_back(Ops[i]);
436          }
437        }
438        // If we made any changes, update Ops.
439        if (!ScaledOps.empty()) {
440          Ops = NewOps;
441          SimplifyAddOperands(Ops, Ty, SE);
442        }
443      }
444    }
445
446    // Record the scaled array index for this level of the type. If
447    // we didn't find any operands that could be factored, tentatively
448    // assume that element zero was selected (since the zero offset
449    // would obviously be folded away).
450    Value *Scaled = ScaledOps.empty() ?
451                    Constant::getNullValue(Ty) :
452                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
453    GepIndices.push_back(Scaled);
454
455    // Collect struct field index operands.
456    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
457      bool FoundFieldNo = false;
458      // An empty struct has no fields.
459      if (STy->getNumElements() == 0) break;
460      if (SE.TD) {
461        // With DataLayout, field offsets are known. See if a constant offset
462        // falls within any of the struct fields.
463        if (Ops.empty()) break;
464        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
465          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
466            const StructLayout &SL = *SE.TD->getStructLayout(STy);
467            uint64_t FullOffset = C->getValue()->getZExtValue();
468            if (FullOffset < SL.getSizeInBytes()) {
469              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
470              GepIndices.push_back(
471                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
472              ElTy = STy->getTypeAtIndex(ElIdx);
473              Ops[0] =
474                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
475              AnyNonZeroIndices = true;
476              FoundFieldNo = true;
477            }
478          }
479      } else {
480        // Without DataLayout, just check for an offsetof expression of the
481        // appropriate struct type.
482        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
483          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
484            Type *CTy;
485            Constant *FieldNo;
486            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
487              GepIndices.push_back(FieldNo);
488              ElTy =
489                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
490              Ops[i] = SE.getConstant(Ty, 0);
491              AnyNonZeroIndices = true;
492              FoundFieldNo = true;
493              break;
494            }
495          }
496      }
497      // If no struct field offsets were found, tentatively assume that
498      // field zero was selected (since the zero offset would obviously
499      // be folded away).
500      if (!FoundFieldNo) {
501        ElTy = STy->getTypeAtIndex(0u);
502        GepIndices.push_back(
503          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
504      }
505    }
506
507    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
508      ElTy = ATy->getElementType();
509    else
510      break;
511  }
512
513  // If none of the operands were convertible to proper GEP indices, cast
514  // the base to i8* and do an ugly getelementptr with that. It's still
515  // better than ptrtoint+arithmetic+inttoptr at least.
516  if (!AnyNonZeroIndices) {
517    // Cast the base to i8*.
518    V = InsertNoopCastOfTo(V,
519       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
520
521    assert(!isa<Instruction>(V) ||
522           SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
523
524    // Expand the operands for a plain byte offset.
525    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
526
527    // Fold a GEP with constant operands.
528    if (Constant *CLHS = dyn_cast<Constant>(V))
529      if (Constant *CRHS = dyn_cast<Constant>(Idx))
530        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
531
532    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
533    unsigned ScanLimit = 6;
534    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
535    // Scanning starts from the last instruction before the insertion point.
536    BasicBlock::iterator IP = Builder.GetInsertPoint();
537    if (IP != BlockBegin) {
538      --IP;
539      for (; ScanLimit; --IP, --ScanLimit) {
540        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
541        // generated code.
542        if (isa<DbgInfoIntrinsic>(IP))
543          ScanLimit++;
544        if (IP->getOpcode() == Instruction::GetElementPtr &&
545            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
546          return IP;
547        if (IP == BlockBegin) break;
548      }
549    }
550
551    // Save the original insertion point so we can restore it when we're done.
552    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
553    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
554
555    // Move the insertion point out of as many loops as we can.
556    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
557      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
558      BasicBlock *Preheader = L->getLoopPreheader();
559      if (!Preheader) break;
560
561      // Ok, move up a level.
562      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
563    }
564
565    // Emit a GEP.
566    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
567    rememberInstruction(GEP);
568
569    // Restore the original insert point.
570    if (SaveInsertBB)
571      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
572
573    return GEP;
574  }
575
576  // Save the original insertion point so we can restore it when we're done.
577  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
578  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
579
580  // Move the insertion point out of as many loops as we can.
581  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
582    if (!L->isLoopInvariant(V)) break;
583
584    bool AnyIndexNotLoopInvariant = false;
585    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
586         E = GepIndices.end(); I != E; ++I)
587      if (!L->isLoopInvariant(*I)) {
588        AnyIndexNotLoopInvariant = true;
589        break;
590      }
591    if (AnyIndexNotLoopInvariant)
592      break;
593
594    BasicBlock *Preheader = L->getLoopPreheader();
595    if (!Preheader) break;
596
597    // Ok, move up a level.
598    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
599  }
600
601  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
602  // because ScalarEvolution may have changed the address arithmetic to
603  // compute a value which is beyond the end of the allocated object.
604  Value *Casted = V;
605  if (V->getType() != PTy)
606    Casted = InsertNoopCastOfTo(Casted, PTy);
607  Value *GEP = Builder.CreateGEP(Casted,
608                                 GepIndices,
609                                 "scevgep");
610  Ops.push_back(SE.getUnknown(GEP));
611  rememberInstruction(GEP);
612
613  // Restore the original insert point.
614  if (SaveInsertBB)
615    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
616
617  return expand(SE.getAddExpr(Ops));
618}
619
620/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
621/// SCEV expansion. If they are nested, this is the most nested. If they are
622/// neighboring, pick the later.
623static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
624                                        DominatorTree &DT) {
625  if (!A) return B;
626  if (!B) return A;
627  if (A->contains(B)) return B;
628  if (B->contains(A)) return A;
629  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
630  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
631  return A; // Arbitrarily break the tie.
632}
633
634/// getRelevantLoop - Get the most relevant loop associated with the given
635/// expression, according to PickMostRelevantLoop.
636const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
637  // Test whether we've already computed the most relevant loop for this SCEV.
638  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
639    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
640  if (!Pair.second)
641    return Pair.first->second;
642
643  if (isa<SCEVConstant>(S))
644    // A constant has no relevant loops.
645    return 0;
646  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
647    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
648      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
649    // A non-instruction has no relevant loops.
650    return 0;
651  }
652  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
653    const Loop *L = 0;
654    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
655      L = AR->getLoop();
656    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
657         I != E; ++I)
658      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
659    return RelevantLoops[N] = L;
660  }
661  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
662    const Loop *Result = getRelevantLoop(C->getOperand());
663    return RelevantLoops[C] = Result;
664  }
665  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
666    const Loop *Result =
667      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
668                           getRelevantLoop(D->getRHS()),
669                           *SE.DT);
670    return RelevantLoops[D] = Result;
671  }
672  llvm_unreachable("Unexpected SCEV type!");
673}
674
675namespace {
676
677/// LoopCompare - Compare loops by PickMostRelevantLoop.
678class LoopCompare {
679  DominatorTree &DT;
680public:
681  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
682
683  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
684                  std::pair<const Loop *, const SCEV *> RHS) const {
685    // Keep pointer operands sorted at the end.
686    if (LHS.second->getType()->isPointerTy() !=
687        RHS.second->getType()->isPointerTy())
688      return LHS.second->getType()->isPointerTy();
689
690    // Compare loops with PickMostRelevantLoop.
691    if (LHS.first != RHS.first)
692      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
693
694    // If one operand is a non-constant negative and the other is not,
695    // put the non-constant negative on the right so that a sub can
696    // be used instead of a negate and add.
697    if (LHS.second->isNonConstantNegative()) {
698      if (!RHS.second->isNonConstantNegative())
699        return false;
700    } else if (RHS.second->isNonConstantNegative())
701      return true;
702
703    // Otherwise they are equivalent according to this comparison.
704    return false;
705  }
706};
707
708}
709
710Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
711  Type *Ty = SE.getEffectiveSCEVType(S->getType());
712
713  // Collect all the add operands in a loop, along with their associated loops.
714  // Iterate in reverse so that constants are emitted last, all else equal, and
715  // so that pointer operands are inserted first, which the code below relies on
716  // to form more involved GEPs.
717  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
718  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
719       E(S->op_begin()); I != E; ++I)
720    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
721
722  // Sort by loop. Use a stable sort so that constants follow non-constants and
723  // pointer operands precede non-pointer operands.
724  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
725
726  // Emit instructions to add all the operands. Hoist as much as possible
727  // out of loops, and form meaningful getelementptrs where possible.
728  Value *Sum = 0;
729  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
730       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
731    const Loop *CurLoop = I->first;
732    const SCEV *Op = I->second;
733    if (!Sum) {
734      // This is the first operand. Just expand it.
735      Sum = expand(Op);
736      ++I;
737    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
738      // The running sum expression is a pointer. Try to form a getelementptr
739      // at this level with that as the base.
740      SmallVector<const SCEV *, 4> NewOps;
741      for (; I != E && I->first == CurLoop; ++I) {
742        // If the operand is SCEVUnknown and not instructions, peek through
743        // it, to enable more of it to be folded into the GEP.
744        const SCEV *X = I->second;
745        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
746          if (!isa<Instruction>(U->getValue()))
747            X = SE.getSCEV(U->getValue());
748        NewOps.push_back(X);
749      }
750      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
751    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
752      // The running sum is an integer, and there's a pointer at this level.
753      // Try to form a getelementptr. If the running sum is instructions,
754      // use a SCEVUnknown to avoid re-analyzing them.
755      SmallVector<const SCEV *, 4> NewOps;
756      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
757                                               SE.getSCEV(Sum));
758      for (++I; I != E && I->first == CurLoop; ++I)
759        NewOps.push_back(I->second);
760      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
761    } else if (Op->isNonConstantNegative()) {
762      // Instead of doing a negate and add, just do a subtract.
763      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
764      Sum = InsertNoopCastOfTo(Sum, Ty);
765      Sum = InsertBinop(Instruction::Sub, Sum, W);
766      ++I;
767    } else {
768      // A simple add.
769      Value *W = expandCodeFor(Op, Ty);
770      Sum = InsertNoopCastOfTo(Sum, Ty);
771      // Canonicalize a constant to the RHS.
772      if (isa<Constant>(Sum)) std::swap(Sum, W);
773      Sum = InsertBinop(Instruction::Add, Sum, W);
774      ++I;
775    }
776  }
777
778  return Sum;
779}
780
781Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
782  Type *Ty = SE.getEffectiveSCEVType(S->getType());
783
784  // Collect all the mul operands in a loop, along with their associated loops.
785  // Iterate in reverse so that constants are emitted last, all else equal.
786  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
787  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
788       E(S->op_begin()); I != E; ++I)
789    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
790
791  // Sort by loop. Use a stable sort so that constants follow non-constants.
792  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
793
794  // Emit instructions to mul all the operands. Hoist as much as possible
795  // out of loops.
796  Value *Prod = 0;
797  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
798       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
799    const SCEV *Op = I->second;
800    if (!Prod) {
801      // This is the first operand. Just expand it.
802      Prod = expand(Op);
803      ++I;
804    } else if (Op->isAllOnesValue()) {
805      // Instead of doing a multiply by negative one, just do a negate.
806      Prod = InsertNoopCastOfTo(Prod, Ty);
807      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
808      ++I;
809    } else {
810      // A simple mul.
811      Value *W = expandCodeFor(Op, Ty);
812      Prod = InsertNoopCastOfTo(Prod, Ty);
813      // Canonicalize a constant to the RHS.
814      if (isa<Constant>(Prod)) std::swap(Prod, W);
815      Prod = InsertBinop(Instruction::Mul, Prod, W);
816      ++I;
817    }
818  }
819
820  return Prod;
821}
822
823Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
824  Type *Ty = SE.getEffectiveSCEVType(S->getType());
825
826  Value *LHS = expandCodeFor(S->getLHS(), Ty);
827  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
828    const APInt &RHS = SC->getValue()->getValue();
829    if (RHS.isPowerOf2())
830      return InsertBinop(Instruction::LShr, LHS,
831                         ConstantInt::get(Ty, RHS.logBase2()));
832  }
833
834  Value *RHS = expandCodeFor(S->getRHS(), Ty);
835  return InsertBinop(Instruction::UDiv, LHS, RHS);
836}
837
838/// Move parts of Base into Rest to leave Base with the minimal
839/// expression that provides a pointer operand suitable for a
840/// GEP expansion.
841static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
842                              ScalarEvolution &SE) {
843  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
844    Base = A->getStart();
845    Rest = SE.getAddExpr(Rest,
846                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
847                                          A->getStepRecurrence(SE),
848                                          A->getLoop(),
849                                          // FIXME: A->getNoWrapFlags(FlagNW)
850                                          SCEV::FlagAnyWrap));
851  }
852  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
853    Base = A->getOperand(A->getNumOperands()-1);
854    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
855    NewAddOps.back() = Rest;
856    Rest = SE.getAddExpr(NewAddOps);
857    ExposePointerBase(Base, Rest, SE);
858  }
859}
860
861/// Determine if this is a well-behaved chain of instructions leading back to
862/// the PHI. If so, it may be reused by expanded expressions.
863bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
864                                         const Loop *L) {
865  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
866      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
867    return false;
868  // If any of the operands don't dominate the insert position, bail.
869  // Addrec operands are always loop-invariant, so this can only happen
870  // if there are instructions which haven't been hoisted.
871  if (L == IVIncInsertLoop) {
872    for (User::op_iterator OI = IncV->op_begin()+1,
873           OE = IncV->op_end(); OI != OE; ++OI)
874      if (Instruction *OInst = dyn_cast<Instruction>(OI))
875        if (!SE.DT->dominates(OInst, IVIncInsertPos))
876          return false;
877  }
878  // Advance to the next instruction.
879  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
880  if (!IncV)
881    return false;
882
883  if (IncV->mayHaveSideEffects())
884    return false;
885
886  if (IncV != PN)
887    return true;
888
889  return isNormalAddRecExprPHI(PN, IncV, L);
890}
891
892/// getIVIncOperand returns an induction variable increment's induction
893/// variable operand.
894///
895/// If allowScale is set, any type of GEP is allowed as long as the nonIV
896/// operands dominate InsertPos.
897///
898/// If allowScale is not set, ensure that a GEP increment conforms to one of the
899/// simple patterns generated by getAddRecExprPHILiterally and
900/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
901Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
902                                           Instruction *InsertPos,
903                                           bool allowScale) {
904  if (IncV == InsertPos)
905    return NULL;
906
907  switch (IncV->getOpcode()) {
908  default:
909    return NULL;
910  // Check for a simple Add/Sub or GEP of a loop invariant step.
911  case Instruction::Add:
912  case Instruction::Sub: {
913    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
914    if (!OInst || SE.DT->dominates(OInst, InsertPos))
915      return dyn_cast<Instruction>(IncV->getOperand(0));
916    return NULL;
917  }
918  case Instruction::BitCast:
919    return dyn_cast<Instruction>(IncV->getOperand(0));
920  case Instruction::GetElementPtr:
921    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
922         I != E; ++I) {
923      if (isa<Constant>(*I))
924        continue;
925      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
926        if (!SE.DT->dominates(OInst, InsertPos))
927          return NULL;
928      }
929      if (allowScale) {
930        // allow any kind of GEP as long as it can be hoisted.
931        continue;
932      }
933      // This must be a pointer addition of constants (pretty), which is already
934      // handled, or some number of address-size elements (ugly). Ugly geps
935      // have 2 operands. i1* is used by the expander to represent an
936      // address-size element.
937      if (IncV->getNumOperands() != 2)
938        return NULL;
939      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
940      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
941          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
942        return NULL;
943      break;
944    }
945    return dyn_cast<Instruction>(IncV->getOperand(0));
946  }
947}
948
949/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
950/// it available to other uses in this loop. Recursively hoist any operands,
951/// until we reach a value that dominates InsertPos.
952bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
953  if (SE.DT->dominates(IncV, InsertPos))
954      return true;
955
956  // InsertPos must itself dominate IncV so that IncV's new position satisfies
957  // its existing users.
958  if (isa<PHINode>(InsertPos)
959      || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
960    return false;
961
962  // Check that the chain of IV operands leading back to Phi can be hoisted.
963  SmallVector<Instruction*, 4> IVIncs;
964  for(;;) {
965    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
966    if (!Oper)
967      return false;
968    // IncV is safe to hoist.
969    IVIncs.push_back(IncV);
970    IncV = Oper;
971    if (SE.DT->dominates(IncV, InsertPos))
972      break;
973  }
974  for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
975         E = IVIncs.rend(); I != E; ++I) {
976    (*I)->moveBefore(InsertPos);
977  }
978  return true;
979}
980
981/// Determine if this cyclic phi is in a form that would have been generated by
982/// LSR. We don't care if the phi was actually expanded in this pass, as long
983/// as it is in a low-cost form, for example, no implied multiplication. This
984/// should match any patterns generated by getAddRecExprPHILiterally and
985/// expandAddtoGEP.
986bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
987                                           const Loop *L) {
988  for(Instruction *IVOper = IncV;
989      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
990                                /*allowScale=*/false));) {
991    if (IVOper == PN)
992      return true;
993  }
994  return false;
995}
996
997/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
998/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
999/// need to materialize IV increments elsewhere to handle difficult situations.
1000Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1001                                 Type *ExpandTy, Type *IntTy,
1002                                 bool useSubtract) {
1003  Value *IncV;
1004  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1005  if (ExpandTy->isPointerTy()) {
1006    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1007    // If the step isn't constant, don't use an implicitly scaled GEP, because
1008    // that would require a multiply inside the loop.
1009    if (!isa<ConstantInt>(StepV))
1010      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1011                                  GEPPtrTy->getAddressSpace());
1012    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1013    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1014    if (IncV->getType() != PN->getType()) {
1015      IncV = Builder.CreateBitCast(IncV, PN->getType());
1016      rememberInstruction(IncV);
1017    }
1018  } else {
1019    IncV = useSubtract ?
1020      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1021      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1022    rememberInstruction(IncV);
1023  }
1024  return IncV;
1025}
1026
1027/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1028/// the base addrec, which is the addrec without any non-loop-dominating
1029/// values, and return the PHI.
1030PHINode *
1031SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1032                                        const Loop *L,
1033                                        Type *ExpandTy,
1034                                        Type *IntTy) {
1035  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1036
1037  // Reuse a previously-inserted PHI, if present.
1038  BasicBlock *LatchBlock = L->getLoopLatch();
1039  if (LatchBlock) {
1040    for (BasicBlock::iterator I = L->getHeader()->begin();
1041         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1042      if (!SE.isSCEVable(PN->getType()) ||
1043          (SE.getEffectiveSCEVType(PN->getType()) !=
1044           SE.getEffectiveSCEVType(Normalized->getType())) ||
1045          SE.getSCEV(PN) != Normalized)
1046        continue;
1047
1048      Instruction *IncV =
1049        cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1050
1051      if (LSRMode) {
1052        if (!isExpandedAddRecExprPHI(PN, IncV, L))
1053          continue;
1054        if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
1055          continue;
1056      }
1057      else {
1058        if (!isNormalAddRecExprPHI(PN, IncV, L))
1059          continue;
1060        if (L == IVIncInsertLoop)
1061          do {
1062            if (SE.DT->dominates(IncV, IVIncInsertPos))
1063              break;
1064            // Make sure the increment is where we want it. But don't move it
1065            // down past a potential existing post-inc user.
1066            IncV->moveBefore(IVIncInsertPos);
1067            IVIncInsertPos = IncV;
1068            IncV = cast<Instruction>(IncV->getOperand(0));
1069          } while (IncV != PN);
1070      }
1071      // Ok, the add recurrence looks usable.
1072      // Remember this PHI, even in post-inc mode.
1073      InsertedValues.insert(PN);
1074      // Remember the increment.
1075      rememberInstruction(IncV);
1076      return PN;
1077    }
1078  }
1079
1080  // Save the original insertion point so we can restore it when we're done.
1081  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1082  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1083
1084  // Another AddRec may need to be recursively expanded below. For example, if
1085  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1086  // loop. Remove this loop from the PostIncLoops set before expanding such
1087  // AddRecs. Otherwise, we cannot find a valid position for the step
1088  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1089  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1090  // so it's not worth implementing SmallPtrSet::swap.
1091  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1092  PostIncLoops.clear();
1093
1094  // Expand code for the start value.
1095  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1096                                L->getHeader()->begin());
1097
1098  // StartV must be hoisted into L's preheader to dominate the new phi.
1099  assert(!isa<Instruction>(StartV) ||
1100         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
1101                                  L->getHeader()));
1102
1103  // Expand code for the step value. Do this before creating the PHI so that PHI
1104  // reuse code doesn't see an incomplete PHI.
1105  const SCEV *Step = Normalized->getStepRecurrence(SE);
1106  // If the stride is negative, insert a sub instead of an add for the increment
1107  // (unless it's a constant, because subtracts of constants are canonicalized
1108  // to adds).
1109  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1110  if (useSubtract)
1111    Step = SE.getNegativeSCEV(Step);
1112  // Expand the step somewhere that dominates the loop header.
1113  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1114
1115  // Create the PHI.
1116  BasicBlock *Header = L->getHeader();
1117  Builder.SetInsertPoint(Header, Header->begin());
1118  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1119  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1120                                  Twine(IVName) + ".iv");
1121  rememberInstruction(PN);
1122
1123  // Create the step instructions and populate the PHI.
1124  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1125    BasicBlock *Pred = *HPI;
1126
1127    // Add a start value.
1128    if (!L->contains(Pred)) {
1129      PN->addIncoming(StartV, Pred);
1130      continue;
1131    }
1132
1133    // Create a step value and add it to the PHI.
1134    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1135    // instructions at IVIncInsertPos.
1136    Instruction *InsertPos = L == IVIncInsertLoop ?
1137      IVIncInsertPos : Pred->getTerminator();
1138    Builder.SetInsertPoint(InsertPos);
1139    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1140    if (isa<OverflowingBinaryOperator>(IncV)) {
1141      if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
1142        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1143      if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
1144        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1145    }
1146    PN->addIncoming(IncV, Pred);
1147  }
1148
1149  // Restore the original insert point.
1150  if (SaveInsertBB)
1151    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1152
1153  // After expanding subexpressions, restore the PostIncLoops set so the caller
1154  // can ensure that IVIncrement dominates the current uses.
1155  PostIncLoops = SavedPostIncLoops;
1156
1157  // Remember this PHI, even in post-inc mode.
1158  InsertedValues.insert(PN);
1159
1160  return PN;
1161}
1162
1163Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1164  Type *STy = S->getType();
1165  Type *IntTy = SE.getEffectiveSCEVType(STy);
1166  const Loop *L = S->getLoop();
1167
1168  // Determine a normalized form of this expression, which is the expression
1169  // before any post-inc adjustment is made.
1170  const SCEVAddRecExpr *Normalized = S;
1171  if (PostIncLoops.count(L)) {
1172    PostIncLoopSet Loops;
1173    Loops.insert(L);
1174    Normalized =
1175      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1176                                                  Loops, SE, *SE.DT));
1177  }
1178
1179  // Strip off any non-loop-dominating component from the addrec start.
1180  const SCEV *Start = Normalized->getStart();
1181  const SCEV *PostLoopOffset = 0;
1182  if (!SE.properlyDominates(Start, L->getHeader())) {
1183    PostLoopOffset = Start;
1184    Start = SE.getConstant(Normalized->getType(), 0);
1185    Normalized = cast<SCEVAddRecExpr>(
1186      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1187                       Normalized->getLoop(),
1188                       // FIXME: Normalized->getNoWrapFlags(FlagNW)
1189                       SCEV::FlagAnyWrap));
1190  }
1191
1192  // Strip off any non-loop-dominating component from the addrec step.
1193  const SCEV *Step = Normalized->getStepRecurrence(SE);
1194  const SCEV *PostLoopScale = 0;
1195  if (!SE.dominates(Step, L->getHeader())) {
1196    PostLoopScale = Step;
1197    Step = SE.getConstant(Normalized->getType(), 1);
1198    Normalized =
1199      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1200                                            Normalized->getLoop(),
1201                                            // FIXME: Normalized
1202                                            // ->getNoWrapFlags(FlagNW)
1203                                            SCEV::FlagAnyWrap));
1204  }
1205
1206  // Expand the core addrec. If we need post-loop scaling, force it to
1207  // expand to an integer type to avoid the need for additional casting.
1208  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1209  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1210
1211  // Accommodate post-inc mode, if necessary.
1212  Value *Result;
1213  if (!PostIncLoops.count(L))
1214    Result = PN;
1215  else {
1216    // In PostInc mode, use the post-incremented value.
1217    BasicBlock *LatchBlock = L->getLoopLatch();
1218    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1219    Result = PN->getIncomingValueForBlock(LatchBlock);
1220
1221    // For an expansion to use the postinc form, the client must call
1222    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1223    // or dominated by IVIncInsertPos.
1224    if (isa<Instruction>(Result)
1225        && !SE.DT->dominates(cast<Instruction>(Result),
1226                             Builder.GetInsertPoint())) {
1227      // The induction variable's postinc expansion does not dominate this use.
1228      // IVUsers tries to prevent this case, so it is rare. However, it can
1229      // happen when an IVUser outside the loop is not dominated by the latch
1230      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1231      // all cases. Consider a phi outide whose operand is replaced during
1232      // expansion with the value of the postinc user. Without fundamentally
1233      // changing the way postinc users are tracked, the only remedy is
1234      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1235      // but hopefully expandCodeFor handles that.
1236      bool useSubtract =
1237        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1238      if (useSubtract)
1239        Step = SE.getNegativeSCEV(Step);
1240      // Expand the step somewhere that dominates the loop header.
1241      BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1242      BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1243      Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1244      // Restore the insertion point to the place where the caller has
1245      // determined dominates all uses.
1246      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1247      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1248    }
1249  }
1250
1251  // Re-apply any non-loop-dominating scale.
1252  if (PostLoopScale) {
1253    Result = InsertNoopCastOfTo(Result, IntTy);
1254    Result = Builder.CreateMul(Result,
1255                               expandCodeFor(PostLoopScale, IntTy));
1256    rememberInstruction(Result);
1257  }
1258
1259  // Re-apply any non-loop-dominating offset.
1260  if (PostLoopOffset) {
1261    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1262      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1263      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1264    } else {
1265      Result = InsertNoopCastOfTo(Result, IntTy);
1266      Result = Builder.CreateAdd(Result,
1267                                 expandCodeFor(PostLoopOffset, IntTy));
1268      rememberInstruction(Result);
1269    }
1270  }
1271
1272  return Result;
1273}
1274
1275Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1276  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1277
1278  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1279  const Loop *L = S->getLoop();
1280
1281  // First check for an existing canonical IV in a suitable type.
1282  PHINode *CanonicalIV = 0;
1283  if (PHINode *PN = L->getCanonicalInductionVariable())
1284    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1285      CanonicalIV = PN;
1286
1287  // Rewrite an AddRec in terms of the canonical induction variable, if
1288  // its type is more narrow.
1289  if (CanonicalIV &&
1290      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1291      SE.getTypeSizeInBits(Ty)) {
1292    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1293    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1294      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1295    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1296                                       // FIXME: S->getNoWrapFlags(FlagNW)
1297                                       SCEV::FlagAnyWrap));
1298    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1299    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1300    BasicBlock::iterator NewInsertPt =
1301      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1302    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1303           isa<LandingPadInst>(NewInsertPt))
1304      ++NewInsertPt;
1305    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1306                      NewInsertPt);
1307    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1308    return V;
1309  }
1310
1311  // {X,+,F} --> X + {0,+,F}
1312  if (!S->getStart()->isZero()) {
1313    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1314    NewOps[0] = SE.getConstant(Ty, 0);
1315    // FIXME: can use S->getNoWrapFlags()
1316    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1317
1318    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1319    // comments on expandAddToGEP for details.
1320    const SCEV *Base = S->getStart();
1321    const SCEV *RestArray[1] = { Rest };
1322    // Dig into the expression to find the pointer base for a GEP.
1323    ExposePointerBase(Base, RestArray[0], SE);
1324    // If we found a pointer, expand the AddRec with a GEP.
1325    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1326      // Make sure the Base isn't something exotic, such as a multiplied
1327      // or divided pointer value. In those cases, the result type isn't
1328      // actually a pointer type.
1329      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1330        Value *StartV = expand(Base);
1331        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1332        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1333      }
1334    }
1335
1336    // Just do a normal add. Pre-expand the operands to suppress folding.
1337    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1338                                SE.getUnknown(expand(Rest))));
1339  }
1340
1341  // If we don't yet have a canonical IV, create one.
1342  if (!CanonicalIV) {
1343    // Create and insert the PHI node for the induction variable in the
1344    // specified loop.
1345    BasicBlock *Header = L->getHeader();
1346    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1347    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1348                                  Header->begin());
1349    rememberInstruction(CanonicalIV);
1350
1351    Constant *One = ConstantInt::get(Ty, 1);
1352    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1353      BasicBlock *HP = *HPI;
1354      if (L->contains(HP)) {
1355        // Insert a unit add instruction right before the terminator
1356        // corresponding to the back-edge.
1357        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1358                                                     "indvar.next",
1359                                                     HP->getTerminator());
1360        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1361        rememberInstruction(Add);
1362        CanonicalIV->addIncoming(Add, HP);
1363      } else {
1364        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1365      }
1366    }
1367  }
1368
1369  // {0,+,1} --> Insert a canonical induction variable into the loop!
1370  if (S->isAffine() && S->getOperand(1)->isOne()) {
1371    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1372           "IVs with types different from the canonical IV should "
1373           "already have been handled!");
1374    return CanonicalIV;
1375  }
1376
1377  // {0,+,F} --> {0,+,1} * F
1378
1379  // If this is a simple linear addrec, emit it now as a special case.
1380  if (S->isAffine())    // {0,+,F} --> i*F
1381    return
1382      expand(SE.getTruncateOrNoop(
1383        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1384                      SE.getNoopOrAnyExtend(S->getOperand(1),
1385                                            CanonicalIV->getType())),
1386        Ty));
1387
1388  // If this is a chain of recurrences, turn it into a closed form, using the
1389  // folders, then expandCodeFor the closed form.  This allows the folders to
1390  // simplify the expression without having to build a bunch of special code
1391  // into this folder.
1392  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1393
1394  // Promote S up to the canonical IV type, if the cast is foldable.
1395  const SCEV *NewS = S;
1396  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1397  if (isa<SCEVAddRecExpr>(Ext))
1398    NewS = Ext;
1399
1400  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1401  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1402
1403  // Truncate the result down to the original type, if needed.
1404  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1405  return expand(T);
1406}
1407
1408Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1409  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1410  Value *V = expandCodeFor(S->getOperand(),
1411                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1412  Value *I = Builder.CreateTrunc(V, Ty);
1413  rememberInstruction(I);
1414  return I;
1415}
1416
1417Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1418  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1419  Value *V = expandCodeFor(S->getOperand(),
1420                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1421  Value *I = Builder.CreateZExt(V, Ty);
1422  rememberInstruction(I);
1423  return I;
1424}
1425
1426Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1427  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1428  Value *V = expandCodeFor(S->getOperand(),
1429                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1430  Value *I = Builder.CreateSExt(V, Ty);
1431  rememberInstruction(I);
1432  return I;
1433}
1434
1435Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1436  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1437  Type *Ty = LHS->getType();
1438  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1439    // In the case of mixed integer and pointer types, do the
1440    // rest of the comparisons as integer.
1441    if (S->getOperand(i)->getType() != Ty) {
1442      Ty = SE.getEffectiveSCEVType(Ty);
1443      LHS = InsertNoopCastOfTo(LHS, Ty);
1444    }
1445    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1446    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1447    rememberInstruction(ICmp);
1448    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1449    rememberInstruction(Sel);
1450    LHS = Sel;
1451  }
1452  // In the case of mixed integer and pointer types, cast the
1453  // final result back to the pointer type.
1454  if (LHS->getType() != S->getType())
1455    LHS = InsertNoopCastOfTo(LHS, S->getType());
1456  return LHS;
1457}
1458
1459Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1460  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1461  Type *Ty = LHS->getType();
1462  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1463    // In the case of mixed integer and pointer types, do the
1464    // rest of the comparisons as integer.
1465    if (S->getOperand(i)->getType() != Ty) {
1466      Ty = SE.getEffectiveSCEVType(Ty);
1467      LHS = InsertNoopCastOfTo(LHS, Ty);
1468    }
1469    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1470    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1471    rememberInstruction(ICmp);
1472    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1473    rememberInstruction(Sel);
1474    LHS = Sel;
1475  }
1476  // In the case of mixed integer and pointer types, cast the
1477  // final result back to the pointer type.
1478  if (LHS->getType() != S->getType())
1479    LHS = InsertNoopCastOfTo(LHS, S->getType());
1480  return LHS;
1481}
1482
1483Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1484                                   Instruction *IP) {
1485  Builder.SetInsertPoint(IP->getParent(), IP);
1486  return expandCodeFor(SH, Ty);
1487}
1488
1489Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1490  // Expand the code for this SCEV.
1491  Value *V = expand(SH);
1492  if (Ty) {
1493    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1494           "non-trivial casts should be done with the SCEVs directly!");
1495    V = InsertNoopCastOfTo(V, Ty);
1496  }
1497  return V;
1498}
1499
1500Value *SCEVExpander::expand(const SCEV *S) {
1501  // Compute an insertion point for this SCEV object. Hoist the instructions
1502  // as far out in the loop nest as possible.
1503  Instruction *InsertPt = Builder.GetInsertPoint();
1504  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1505       L = L->getParentLoop())
1506    if (SE.isLoopInvariant(S, L)) {
1507      if (!L) break;
1508      if (BasicBlock *Preheader = L->getLoopPreheader())
1509        InsertPt = Preheader->getTerminator();
1510      else {
1511        // LSR sets the insertion point for AddRec start/step values to the
1512        // block start to simplify value reuse, even though it's an invalid
1513        // position. SCEVExpander must correct for this in all cases.
1514        InsertPt = L->getHeader()->getFirstInsertionPt();
1515      }
1516    } else {
1517      // If the SCEV is computable at this level, insert it into the header
1518      // after the PHIs (and after any other instructions that we've inserted
1519      // there) so that it is guaranteed to dominate any user inside the loop.
1520      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1521        InsertPt = L->getHeader()->getFirstInsertionPt();
1522      while (InsertPt != Builder.GetInsertPoint()
1523             && (isInsertedInstruction(InsertPt)
1524                 || isa<DbgInfoIntrinsic>(InsertPt))) {
1525        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1526      }
1527      break;
1528    }
1529
1530  // Check to see if we already expanded this here.
1531  std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
1532    I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1533  if (I != InsertedExpressions.end())
1534    return I->second;
1535
1536  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1537  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1538  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1539
1540  // Expand the expression into instructions.
1541  Value *V = visit(S);
1542
1543  // Remember the expanded value for this SCEV at this location.
1544  //
1545  // This is independent of PostIncLoops. The mapped value simply materializes
1546  // the expression at this insertion point. If the mapped value happened to be
1547  // a postinc expansion, it could be reused by a non postinc user, but only if
1548  // its insertion point was already at the head of the loop.
1549  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1550
1551  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1552  return V;
1553}
1554
1555void SCEVExpander::rememberInstruction(Value *I) {
1556  if (!PostIncLoops.empty())
1557    InsertedPostIncValues.insert(I);
1558  else
1559    InsertedValues.insert(I);
1560}
1561
1562void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1563  Builder.SetInsertPoint(BB, I);
1564}
1565
1566/// getOrInsertCanonicalInductionVariable - This method returns the
1567/// canonical induction variable of the specified type for the specified
1568/// loop (inserting one if there is none).  A canonical induction variable
1569/// starts at zero and steps by one on each iteration.
1570PHINode *
1571SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1572                                                    Type *Ty) {
1573  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1574
1575  // Build a SCEV for {0,+,1}<L>.
1576  // Conservatively use FlagAnyWrap for now.
1577  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1578                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1579
1580  // Emit code for it.
1581  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1582  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1583  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1584  if (SaveInsertBB)
1585    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1586
1587  return V;
1588}
1589
1590/// Sort values by integer width for replaceCongruentIVs.
1591static bool width_descending(Value *lhs, Value *rhs) {
1592  // Put pointers at the back and make sure pointer < pointer = false.
1593  if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
1594    return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
1595  return rhs->getType()->getPrimitiveSizeInBits()
1596    < lhs->getType()->getPrimitiveSizeInBits();
1597}
1598
1599/// replaceCongruentIVs - Check for congruent phis in this loop header and
1600/// replace them with their most canonical representative. Return the number of
1601/// phis eliminated.
1602///
1603/// This does not depend on any SCEVExpander state but should be used in
1604/// the same context that SCEVExpander is used.
1605unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1606                                           SmallVectorImpl<WeakVH> &DeadInsts,
1607                                           const TargetTransformInfo *TTI) {
1608  // Find integer phis in order of increasing width.
1609  SmallVector<PHINode*, 8> Phis;
1610  for (BasicBlock::iterator I = L->getHeader()->begin();
1611       PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
1612    Phis.push_back(Phi);
1613  }
1614  if (TTI)
1615    std::sort(Phis.begin(), Phis.end(), width_descending);
1616
1617  unsigned NumElim = 0;
1618  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1619  // Process phis from wide to narrow. Mapping wide phis to the their truncation
1620  // so narrow phis can reuse them.
1621  for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
1622         PEnd = Phis.end(); PIter != PEnd; ++PIter) {
1623    PHINode *Phi = *PIter;
1624
1625    // Fold constant phis. They may be congruent to other constant phis and
1626    // would confuse the logic below that expects proper IVs.
1627    if (Value *V = Phi->hasConstantValue()) {
1628      Phi->replaceAllUsesWith(V);
1629      DeadInsts.push_back(Phi);
1630      ++NumElim;
1631      DEBUG_WITH_TYPE(DebugType, dbgs()
1632                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1633      continue;
1634    }
1635
1636    if (!SE.isSCEVable(Phi->getType()))
1637      continue;
1638
1639    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1640    if (!OrigPhiRef) {
1641      OrigPhiRef = Phi;
1642      if (Phi->getType()->isIntegerTy() && TTI
1643          && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1644        // This phi can be freely truncated to the narrowest phi type. Map the
1645        // truncated expression to it so it will be reused for narrow types.
1646        const SCEV *TruncExpr =
1647          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1648        ExprToIVMap[TruncExpr] = Phi;
1649      }
1650      continue;
1651    }
1652
1653    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1654    // sense.
1655    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1656      continue;
1657
1658    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1659      Instruction *OrigInc =
1660        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1661      Instruction *IsomorphicInc =
1662        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1663
1664      // If this phi has the same width but is more canonical, replace the
1665      // original with it. As part of the "more canonical" determination,
1666      // respect a prior decision to use an IV chain.
1667      if (OrigPhiRef->getType() == Phi->getType()
1668          && !(ChainedPhis.count(Phi)
1669               || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
1670          && (ChainedPhis.count(Phi)
1671              || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1672        std::swap(OrigPhiRef, Phi);
1673        std::swap(OrigInc, IsomorphicInc);
1674      }
1675      // Replacing the congruent phi is sufficient because acyclic redundancy
1676      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1677      // that a phi is congruent, it's often the head of an IV user cycle that
1678      // is isomorphic with the original phi. It's worth eagerly cleaning up the
1679      // common case of a single IV increment so that DeleteDeadPHIs can remove
1680      // cycles that had postinc uses.
1681      const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
1682                                                   IsomorphicInc->getType());
1683      if (OrigInc != IsomorphicInc
1684          && TruncExpr == SE.getSCEV(IsomorphicInc)
1685          && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
1686              || hoistIVInc(OrigInc, IsomorphicInc))) {
1687        DEBUG_WITH_TYPE(DebugType, dbgs()
1688                        << "INDVARS: Eliminated congruent iv.inc: "
1689                        << *IsomorphicInc << '\n');
1690        Value *NewInc = OrigInc;
1691        if (OrigInc->getType() != IsomorphicInc->getType()) {
1692          Instruction *IP = isa<PHINode>(OrigInc)
1693            ? (Instruction*)L->getHeader()->getFirstInsertionPt()
1694            : OrigInc->getNextNode();
1695          IRBuilder<> Builder(IP);
1696          Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1697          NewInc = Builder.
1698            CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1699        }
1700        IsomorphicInc->replaceAllUsesWith(NewInc);
1701        DeadInsts.push_back(IsomorphicInc);
1702      }
1703    }
1704    DEBUG_WITH_TYPE(DebugType, dbgs()
1705                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1706    ++NumElim;
1707    Value *NewIV = OrigPhiRef;
1708    if (OrigPhiRef->getType() != Phi->getType()) {
1709      IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
1710      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1711      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1712    }
1713    Phi->replaceAllUsesWith(NewIV);
1714    DeadInsts.push_back(Phi);
1715  }
1716  return NumElim;
1717}
1718
1719namespace {
1720// Search for a SCEV subexpression that is not safe to expand.  Any expression
1721// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
1722// UDiv expressions. We don't know if the UDiv is derived from an IR divide
1723// instruction, but the important thing is that we prove the denominator is
1724// nonzero before expansion.
1725//
1726// IVUsers already checks that IV-derived expressions are safe. So this check is
1727// only needed when the expression includes some subexpression that is not IV
1728// derived.
1729//
1730// Currently, we only allow division by a nonzero constant here. If this is
1731// inadequate, we could easily allow division by SCEVUnknown by using
1732// ValueTracking to check isKnownNonZero().
1733struct SCEVFindUnsafe {
1734  bool IsUnsafe;
1735
1736  SCEVFindUnsafe(): IsUnsafe(false) {}
1737
1738  bool follow(const SCEV *S) {
1739    const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S);
1740    if (!D)
1741      return true;
1742    const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
1743    if (SC && !SC->getValue()->isZero())
1744      return true;
1745    IsUnsafe = true;
1746    return false;
1747  }
1748  bool isDone() const { return IsUnsafe; }
1749};
1750}
1751
1752namespace llvm {
1753bool isSafeToExpand(const SCEV *S) {
1754  SCEVFindUnsafe Search;
1755  visitAll(S, Search);
1756  return !Search.IsUnsafe;
1757}
1758}
1759