ScalarEvolutionExpander.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/LLVMContext.h"
25#include "llvm/Support/Debug.h"
26
27using namespace llvm;
28
29/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
30/// reusing an existing cast if a suitable one exists, moving an existing
31/// cast if a suitable one exists but isn't in the right place, or
32/// creating a new one.
33Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
34                                       Instruction::CastOps Op,
35                                       BasicBlock::iterator IP) {
36  // This function must be called with the builder having a valid insertion
37  // point. It doesn't need to be the actual IP where the uses of the returned
38  // cast will be added, but it must dominate such IP.
39  // We use this precondition to produce a cast that will dominate all its
40  // uses. In particular, this is crucial for the case where the builder's
41  // insertion point *is* the point where we were asked to put the cast.
42  // Since we don't know the builder's insertion point is actually
43  // where the uses will be added (only that it dominates it), we are
44  // not allowed to move it.
45  BasicBlock::iterator BIP = Builder.GetInsertPoint();
46
47  Instruction *Ret = nullptr;
48
49  // Check to see if there is already a cast!
50  for (User *U : V->users())
51    if (U->getType() == Ty)
52      if (CastInst *CI = dyn_cast<CastInst>(U))
53        if (CI->getOpcode() == Op) {
54          // If the cast isn't where we want it, create a new cast at IP.
55          // Likewise, do not reuse a cast at BIP because it must dominate
56          // instructions that might be inserted before BIP.
57          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
58            // Create a new cast, and leave the old cast in place in case
59            // it is being used as an insert point. Clear its operand
60            // so that it doesn't hold anything live.
61            Ret = CastInst::Create(Op, V, Ty, "", IP);
62            Ret->takeName(CI);
63            CI->replaceAllUsesWith(Ret);
64            CI->setOperand(0, UndefValue::get(V->getType()));
65            break;
66          }
67          Ret = CI;
68          break;
69        }
70
71  // Create a new cast.
72  if (!Ret)
73    Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
74
75  // We assert at the end of the function since IP might point to an
76  // instruction with different dominance properties than a cast
77  // (an invoke for example) and not dominate BIP (but the cast does).
78  assert(SE.DT->dominates(Ret, BIP));
79
80  rememberInstruction(Ret);
81  return Ret;
82}
83
84/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
85/// which must be possible with a noop cast, doing what we can to share
86/// the casts.
87Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
88  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
89  assert((Op == Instruction::BitCast ||
90          Op == Instruction::PtrToInt ||
91          Op == Instruction::IntToPtr) &&
92         "InsertNoopCastOfTo cannot perform non-noop casts!");
93  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
94         "InsertNoopCastOfTo cannot change sizes!");
95
96  // Short-circuit unnecessary bitcasts.
97  if (Op == Instruction::BitCast) {
98    if (V->getType() == Ty)
99      return V;
100    if (CastInst *CI = dyn_cast<CastInst>(V)) {
101      if (CI->getOperand(0)->getType() == Ty)
102        return CI->getOperand(0);
103    }
104  }
105  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
106  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
107      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
108    if (CastInst *CI = dyn_cast<CastInst>(V))
109      if ((CI->getOpcode() == Instruction::PtrToInt ||
110           CI->getOpcode() == Instruction::IntToPtr) &&
111          SE.getTypeSizeInBits(CI->getType()) ==
112          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
113        return CI->getOperand(0);
114    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
115      if ((CE->getOpcode() == Instruction::PtrToInt ||
116           CE->getOpcode() == Instruction::IntToPtr) &&
117          SE.getTypeSizeInBits(CE->getType()) ==
118          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
119        return CE->getOperand(0);
120  }
121
122  // Fold a cast of a constant.
123  if (Constant *C = dyn_cast<Constant>(V))
124    return ConstantExpr::getCast(Op, C, Ty);
125
126  // Cast the argument at the beginning of the entry block, after
127  // any bitcasts of other arguments.
128  if (Argument *A = dyn_cast<Argument>(V)) {
129    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
130    while ((isa<BitCastInst>(IP) &&
131            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
132            cast<BitCastInst>(IP)->getOperand(0) != A) ||
133           isa<DbgInfoIntrinsic>(IP) ||
134           isa<LandingPadInst>(IP))
135      ++IP;
136    return ReuseOrCreateCast(A, Ty, Op, IP);
137  }
138
139  // Cast the instruction immediately after the instruction.
140  Instruction *I = cast<Instruction>(V);
141  BasicBlock::iterator IP = I; ++IP;
142  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
143    IP = II->getNormalDest()->begin();
144  while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
145    ++IP;
146  return ReuseOrCreateCast(I, Ty, Op, IP);
147}
148
149/// InsertBinop - Insert the specified binary operator, doing a small amount
150/// of work to avoid inserting an obviously redundant operation.
151Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
152                                 Value *LHS, Value *RHS) {
153  // Fold a binop with constant operands.
154  if (Constant *CLHS = dyn_cast<Constant>(LHS))
155    if (Constant *CRHS = dyn_cast<Constant>(RHS))
156      return ConstantExpr::get(Opcode, CLHS, CRHS);
157
158  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
159  unsigned ScanLimit = 6;
160  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
161  // Scanning starts from the last instruction before the insertion point.
162  BasicBlock::iterator IP = Builder.GetInsertPoint();
163  if (IP != BlockBegin) {
164    --IP;
165    for (; ScanLimit; --IP, --ScanLimit) {
166      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
167      // generated code.
168      if (isa<DbgInfoIntrinsic>(IP))
169        ScanLimit++;
170      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
171          IP->getOperand(1) == RHS)
172        return IP;
173      if (IP == BlockBegin) break;
174    }
175  }
176
177  // Save the original insertion point so we can restore it when we're done.
178  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
179  BuilderType::InsertPointGuard Guard(Builder);
180
181  // Move the insertion point out of as many loops as we can.
182  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
183    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
184    BasicBlock *Preheader = L->getLoopPreheader();
185    if (!Preheader) break;
186
187    // Ok, move up a level.
188    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
189  }
190
191  // If we haven't found this binop, insert it.
192  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
193  BO->setDebugLoc(Loc);
194  rememberInstruction(BO);
195
196  return BO;
197}
198
199/// FactorOutConstant - Test if S is divisible by Factor, using signed
200/// division. If so, update S with Factor divided out and return true.
201/// S need not be evenly divisible if a reasonable remainder can be
202/// computed.
203/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
204/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
205/// check to see if the divide was folded.
206static bool FactorOutConstant(const SCEV *&S,
207                              const SCEV *&Remainder,
208                              const SCEV *Factor,
209                              ScalarEvolution &SE,
210                              const DataLayout *DL) {
211  // Everything is divisible by one.
212  if (Factor->isOne())
213    return true;
214
215  // x/x == 1.
216  if (S == Factor) {
217    S = SE.getConstant(S->getType(), 1);
218    return true;
219  }
220
221  // For a Constant, check for a multiple of the given factor.
222  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
223    // 0/x == 0.
224    if (C->isZero())
225      return true;
226    // Check for divisibility.
227    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
228      ConstantInt *CI =
229        ConstantInt::get(SE.getContext(),
230                         C->getValue()->getValue().sdiv(
231                                                   FC->getValue()->getValue()));
232      // If the quotient is zero and the remainder is non-zero, reject
233      // the value at this scale. It will be considered for subsequent
234      // smaller scales.
235      if (!CI->isZero()) {
236        const SCEV *Div = SE.getConstant(CI);
237        S = Div;
238        Remainder =
239          SE.getAddExpr(Remainder,
240                        SE.getConstant(C->getValue()->getValue().srem(
241                                                  FC->getValue()->getValue())));
242        return true;
243      }
244    }
245  }
246
247  // In a Mul, check if there is a constant operand which is a multiple
248  // of the given factor.
249  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
250    if (DL) {
251      // With DataLayout, the size is known. Check if there is a constant
252      // operand which is a multiple of the given factor. If so, we can
253      // factor it.
254      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
255      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
256        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
257          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
258          NewMulOps[0] =
259            SE.getConstant(C->getValue()->getValue().sdiv(
260                                                   FC->getValue()->getValue()));
261          S = SE.getMulExpr(NewMulOps);
262          return true;
263        }
264    } else {
265      // Without DataLayout, check if Factor can be factored out of any of the
266      // Mul's operands. If so, we can just remove it.
267      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
268        const SCEV *SOp = M->getOperand(i);
269        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
270        if (FactorOutConstant(SOp, Remainder, Factor, SE, DL) &&
271            Remainder->isZero()) {
272          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
273          NewMulOps[i] = SOp;
274          S = SE.getMulExpr(NewMulOps);
275          return true;
276        }
277      }
278    }
279  }
280
281  // In an AddRec, check if both start and step are divisible.
282  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
283    const SCEV *Step = A->getStepRecurrence(SE);
284    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
285    if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
286      return false;
287    if (!StepRem->isZero())
288      return false;
289    const SCEV *Start = A->getStart();
290    if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
291      return false;
292    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
293                         A->getNoWrapFlags(SCEV::FlagNW));
294    return true;
295  }
296
297  return false;
298}
299
300/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
301/// is the number of SCEVAddRecExprs present, which are kept at the end of
302/// the list.
303///
304static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
305                                Type *Ty,
306                                ScalarEvolution &SE) {
307  unsigned NumAddRecs = 0;
308  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
309    ++NumAddRecs;
310  // Group Ops into non-addrecs and addrecs.
311  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
312  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
313  // Let ScalarEvolution sort and simplify the non-addrecs list.
314  const SCEV *Sum = NoAddRecs.empty() ?
315                    SE.getConstant(Ty, 0) :
316                    SE.getAddExpr(NoAddRecs);
317  // If it returned an add, use the operands. Otherwise it simplified
318  // the sum into a single value, so just use that.
319  Ops.clear();
320  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
321    Ops.append(Add->op_begin(), Add->op_end());
322  else if (!Sum->isZero())
323    Ops.push_back(Sum);
324  // Then append the addrecs.
325  Ops.append(AddRecs.begin(), AddRecs.end());
326}
327
328/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
329/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
330/// This helps expose more opportunities for folding parts of the expressions
331/// into GEP indices.
332///
333static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
334                         Type *Ty,
335                         ScalarEvolution &SE) {
336  // Find the addrecs.
337  SmallVector<const SCEV *, 8> AddRecs;
338  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
339    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
340      const SCEV *Start = A->getStart();
341      if (Start->isZero()) break;
342      const SCEV *Zero = SE.getConstant(Ty, 0);
343      AddRecs.push_back(SE.getAddRecExpr(Zero,
344                                         A->getStepRecurrence(SE),
345                                         A->getLoop(),
346                                         A->getNoWrapFlags(SCEV::FlagNW)));
347      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
348        Ops[i] = Zero;
349        Ops.append(Add->op_begin(), Add->op_end());
350        e += Add->getNumOperands();
351      } else {
352        Ops[i] = Start;
353      }
354    }
355  if (!AddRecs.empty()) {
356    // Add the addrecs onto the end of the list.
357    Ops.append(AddRecs.begin(), AddRecs.end());
358    // Resort the operand list, moving any constants to the front.
359    SimplifyAddOperands(Ops, Ty, SE);
360  }
361}
362
363/// expandAddToGEP - Expand an addition expression with a pointer type into
364/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
365/// BasicAliasAnalysis and other passes analyze the result. See the rules
366/// for getelementptr vs. inttoptr in
367/// http://llvm.org/docs/LangRef.html#pointeraliasing
368/// for details.
369///
370/// Design note: The correctness of using getelementptr here depends on
371/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
372/// they may introduce pointer arithmetic which may not be safely converted
373/// into getelementptr.
374///
375/// Design note: It might seem desirable for this function to be more
376/// loop-aware. If some of the indices are loop-invariant while others
377/// aren't, it might seem desirable to emit multiple GEPs, keeping the
378/// loop-invariant portions of the overall computation outside the loop.
379/// However, there are a few reasons this is not done here. Hoisting simple
380/// arithmetic is a low-level optimization that often isn't very
381/// important until late in the optimization process. In fact, passes
382/// like InstructionCombining will combine GEPs, even if it means
383/// pushing loop-invariant computation down into loops, so even if the
384/// GEPs were split here, the work would quickly be undone. The
385/// LoopStrengthReduction pass, which is usually run quite late (and
386/// after the last InstructionCombining pass), takes care of hoisting
387/// loop-invariant portions of expressions, after considering what
388/// can be folded using target addressing modes.
389///
390Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
391                                    const SCEV *const *op_end,
392                                    PointerType *PTy,
393                                    Type *Ty,
394                                    Value *V) {
395  Type *ElTy = PTy->getElementType();
396  SmallVector<Value *, 4> GepIndices;
397  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
398  bool AnyNonZeroIndices = false;
399
400  // Split AddRecs up into parts as either of the parts may be usable
401  // without the other.
402  SplitAddRecs(Ops, Ty, SE);
403
404  Type *IntPtrTy = SE.DL
405                 ? SE.DL->getIntPtrType(PTy)
406                 : Type::getInt64Ty(PTy->getContext());
407
408  // Descend down the pointer's type and attempt to convert the other
409  // operands into GEP indices, at each level. The first index in a GEP
410  // indexes into the array implied by the pointer operand; the rest of
411  // the indices index into the element or field type selected by the
412  // preceding index.
413  for (;;) {
414    // If the scale size is not 0, attempt to factor out a scale for
415    // array indexing.
416    SmallVector<const SCEV *, 8> ScaledOps;
417    if (ElTy->isSized()) {
418      const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
419      if (!ElSize->isZero()) {
420        SmallVector<const SCEV *, 8> NewOps;
421        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
422          const SCEV *Op = Ops[i];
423          const SCEV *Remainder = SE.getConstant(Ty, 0);
424          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.DL)) {
425            // Op now has ElSize factored out.
426            ScaledOps.push_back(Op);
427            if (!Remainder->isZero())
428              NewOps.push_back(Remainder);
429            AnyNonZeroIndices = true;
430          } else {
431            // The operand was not divisible, so add it to the list of operands
432            // we'll scan next iteration.
433            NewOps.push_back(Ops[i]);
434          }
435        }
436        // If we made any changes, update Ops.
437        if (!ScaledOps.empty()) {
438          Ops = NewOps;
439          SimplifyAddOperands(Ops, Ty, SE);
440        }
441      }
442    }
443
444    // Record the scaled array index for this level of the type. If
445    // we didn't find any operands that could be factored, tentatively
446    // assume that element zero was selected (since the zero offset
447    // would obviously be folded away).
448    Value *Scaled = ScaledOps.empty() ?
449                    Constant::getNullValue(Ty) :
450                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
451    GepIndices.push_back(Scaled);
452
453    // Collect struct field index operands.
454    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
455      bool FoundFieldNo = false;
456      // An empty struct has no fields.
457      if (STy->getNumElements() == 0) break;
458      if (SE.DL) {
459        // With DataLayout, field offsets are known. See if a constant offset
460        // falls within any of the struct fields.
461        if (Ops.empty()) break;
462        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
463          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
464            const StructLayout &SL = *SE.DL->getStructLayout(STy);
465            uint64_t FullOffset = C->getValue()->getZExtValue();
466            if (FullOffset < SL.getSizeInBytes()) {
467              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
468              GepIndices.push_back(
469                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
470              ElTy = STy->getTypeAtIndex(ElIdx);
471              Ops[0] =
472                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
473              AnyNonZeroIndices = true;
474              FoundFieldNo = true;
475            }
476          }
477      } else {
478        // Without DataLayout, just check for an offsetof expression of the
479        // appropriate struct type.
480        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
481          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
482            Type *CTy;
483            Constant *FieldNo;
484            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
485              GepIndices.push_back(FieldNo);
486              ElTy =
487                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
488              Ops[i] = SE.getConstant(Ty, 0);
489              AnyNonZeroIndices = true;
490              FoundFieldNo = true;
491              break;
492            }
493          }
494      }
495      // If no struct field offsets were found, tentatively assume that
496      // field zero was selected (since the zero offset would obviously
497      // be folded away).
498      if (!FoundFieldNo) {
499        ElTy = STy->getTypeAtIndex(0u);
500        GepIndices.push_back(
501          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
502      }
503    }
504
505    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
506      ElTy = ATy->getElementType();
507    else
508      break;
509  }
510
511  // If none of the operands were convertible to proper GEP indices, cast
512  // the base to i8* and do an ugly getelementptr with that. It's still
513  // better than ptrtoint+arithmetic+inttoptr at least.
514  if (!AnyNonZeroIndices) {
515    // Cast the base to i8*.
516    V = InsertNoopCastOfTo(V,
517       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
518
519    assert(!isa<Instruction>(V) ||
520           SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
521
522    // Expand the operands for a plain byte offset.
523    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
524
525    // Fold a GEP with constant operands.
526    if (Constant *CLHS = dyn_cast<Constant>(V))
527      if (Constant *CRHS = dyn_cast<Constant>(Idx))
528        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
529
530    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
531    unsigned ScanLimit = 6;
532    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
533    // Scanning starts from the last instruction before the insertion point.
534    BasicBlock::iterator IP = Builder.GetInsertPoint();
535    if (IP != BlockBegin) {
536      --IP;
537      for (; ScanLimit; --IP, --ScanLimit) {
538        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
539        // generated code.
540        if (isa<DbgInfoIntrinsic>(IP))
541          ScanLimit++;
542        if (IP->getOpcode() == Instruction::GetElementPtr &&
543            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
544          return IP;
545        if (IP == BlockBegin) break;
546      }
547    }
548
549    // Save the original insertion point so we can restore it when we're done.
550    BuilderType::InsertPointGuard Guard(Builder);
551
552    // Move the insertion point out of as many loops as we can.
553    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
554      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
555      BasicBlock *Preheader = L->getLoopPreheader();
556      if (!Preheader) break;
557
558      // Ok, move up a level.
559      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
560    }
561
562    // Emit a GEP.
563    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
564    rememberInstruction(GEP);
565
566    return GEP;
567  }
568
569  // Save the original insertion point so we can restore it when we're done.
570  BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();
571
572  // Move the insertion point out of as many loops as we can.
573  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
574    if (!L->isLoopInvariant(V)) break;
575
576    bool AnyIndexNotLoopInvariant = false;
577    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
578         E = GepIndices.end(); I != E; ++I)
579      if (!L->isLoopInvariant(*I)) {
580        AnyIndexNotLoopInvariant = true;
581        break;
582      }
583    if (AnyIndexNotLoopInvariant)
584      break;
585
586    BasicBlock *Preheader = L->getLoopPreheader();
587    if (!Preheader) break;
588
589    // Ok, move up a level.
590    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
591  }
592
593  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
594  // because ScalarEvolution may have changed the address arithmetic to
595  // compute a value which is beyond the end of the allocated object.
596  Value *Casted = V;
597  if (V->getType() != PTy)
598    Casted = InsertNoopCastOfTo(Casted, PTy);
599  Value *GEP = Builder.CreateGEP(Casted,
600                                 GepIndices,
601                                 "scevgep");
602  Ops.push_back(SE.getUnknown(GEP));
603  rememberInstruction(GEP);
604
605  // Restore the original insert point.
606  Builder.restoreIP(SaveInsertPt);
607
608  return expand(SE.getAddExpr(Ops));
609}
610
611/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
612/// SCEV expansion. If they are nested, this is the most nested. If they are
613/// neighboring, pick the later.
614static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
615                                        DominatorTree &DT) {
616  if (!A) return B;
617  if (!B) return A;
618  if (A->contains(B)) return B;
619  if (B->contains(A)) return A;
620  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
621  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
622  return A; // Arbitrarily break the tie.
623}
624
625/// getRelevantLoop - Get the most relevant loop associated with the given
626/// expression, according to PickMostRelevantLoop.
627const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
628  // Test whether we've already computed the most relevant loop for this SCEV.
629  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
630    RelevantLoops.insert(std::make_pair(S, nullptr));
631  if (!Pair.second)
632    return Pair.first->second;
633
634  if (isa<SCEVConstant>(S))
635    // A constant has no relevant loops.
636    return nullptr;
637  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
638    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
639      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
640    // A non-instruction has no relevant loops.
641    return nullptr;
642  }
643  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
644    const Loop *L = nullptr;
645    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
646      L = AR->getLoop();
647    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
648         I != E; ++I)
649      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
650    return RelevantLoops[N] = L;
651  }
652  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
653    const Loop *Result = getRelevantLoop(C->getOperand());
654    return RelevantLoops[C] = Result;
655  }
656  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
657    const Loop *Result =
658      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
659                           getRelevantLoop(D->getRHS()),
660                           *SE.DT);
661    return RelevantLoops[D] = Result;
662  }
663  llvm_unreachable("Unexpected SCEV type!");
664}
665
666namespace {
667
668/// LoopCompare - Compare loops by PickMostRelevantLoop.
669class LoopCompare {
670  DominatorTree &DT;
671public:
672  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
673
674  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
675                  std::pair<const Loop *, const SCEV *> RHS) const {
676    // Keep pointer operands sorted at the end.
677    if (LHS.second->getType()->isPointerTy() !=
678        RHS.second->getType()->isPointerTy())
679      return LHS.second->getType()->isPointerTy();
680
681    // Compare loops with PickMostRelevantLoop.
682    if (LHS.first != RHS.first)
683      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
684
685    // If one operand is a non-constant negative and the other is not,
686    // put the non-constant negative on the right so that a sub can
687    // be used instead of a negate and add.
688    if (LHS.second->isNonConstantNegative()) {
689      if (!RHS.second->isNonConstantNegative())
690        return false;
691    } else if (RHS.second->isNonConstantNegative())
692      return true;
693
694    // Otherwise they are equivalent according to this comparison.
695    return false;
696  }
697};
698
699}
700
701Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
702  Type *Ty = SE.getEffectiveSCEVType(S->getType());
703
704  // Collect all the add operands in a loop, along with their associated loops.
705  // Iterate in reverse so that constants are emitted last, all else equal, and
706  // so that pointer operands are inserted first, which the code below relies on
707  // to form more involved GEPs.
708  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
709  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
710       E(S->op_begin()); I != E; ++I)
711    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
712
713  // Sort by loop. Use a stable sort so that constants follow non-constants and
714  // pointer operands precede non-pointer operands.
715  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
716
717  // Emit instructions to add all the operands. Hoist as much as possible
718  // out of loops, and form meaningful getelementptrs where possible.
719  Value *Sum = nullptr;
720  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
721       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
722    const Loop *CurLoop = I->first;
723    const SCEV *Op = I->second;
724    if (!Sum) {
725      // This is the first operand. Just expand it.
726      Sum = expand(Op);
727      ++I;
728    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
729      // The running sum expression is a pointer. Try to form a getelementptr
730      // at this level with that as the base.
731      SmallVector<const SCEV *, 4> NewOps;
732      for (; I != E && I->first == CurLoop; ++I) {
733        // If the operand is SCEVUnknown and not instructions, peek through
734        // it, to enable more of it to be folded into the GEP.
735        const SCEV *X = I->second;
736        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
737          if (!isa<Instruction>(U->getValue()))
738            X = SE.getSCEV(U->getValue());
739        NewOps.push_back(X);
740      }
741      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
742    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
743      // The running sum is an integer, and there's a pointer at this level.
744      // Try to form a getelementptr. If the running sum is instructions,
745      // use a SCEVUnknown to avoid re-analyzing them.
746      SmallVector<const SCEV *, 4> NewOps;
747      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
748                                               SE.getSCEV(Sum));
749      for (++I; I != E && I->first == CurLoop; ++I)
750        NewOps.push_back(I->second);
751      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
752    } else if (Op->isNonConstantNegative()) {
753      // Instead of doing a negate and add, just do a subtract.
754      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
755      Sum = InsertNoopCastOfTo(Sum, Ty);
756      Sum = InsertBinop(Instruction::Sub, Sum, W);
757      ++I;
758    } else {
759      // A simple add.
760      Value *W = expandCodeFor(Op, Ty);
761      Sum = InsertNoopCastOfTo(Sum, Ty);
762      // Canonicalize a constant to the RHS.
763      if (isa<Constant>(Sum)) std::swap(Sum, W);
764      Sum = InsertBinop(Instruction::Add, Sum, W);
765      ++I;
766    }
767  }
768
769  return Sum;
770}
771
772Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
773  Type *Ty = SE.getEffectiveSCEVType(S->getType());
774
775  // Collect all the mul operands in a loop, along with their associated loops.
776  // Iterate in reverse so that constants are emitted last, all else equal.
777  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
778  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
779       E(S->op_begin()); I != E; ++I)
780    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
781
782  // Sort by loop. Use a stable sort so that constants follow non-constants.
783  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
784
785  // Emit instructions to mul all the operands. Hoist as much as possible
786  // out of loops.
787  Value *Prod = nullptr;
788  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
789       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
790    const SCEV *Op = I->second;
791    if (!Prod) {
792      // This is the first operand. Just expand it.
793      Prod = expand(Op);
794      ++I;
795    } else if (Op->isAllOnesValue()) {
796      // Instead of doing a multiply by negative one, just do a negate.
797      Prod = InsertNoopCastOfTo(Prod, Ty);
798      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
799      ++I;
800    } else {
801      // A simple mul.
802      Value *W = expandCodeFor(Op, Ty);
803      Prod = InsertNoopCastOfTo(Prod, Ty);
804      // Canonicalize a constant to the RHS.
805      if (isa<Constant>(Prod)) std::swap(Prod, W);
806      Prod = InsertBinop(Instruction::Mul, Prod, W);
807      ++I;
808    }
809  }
810
811  return Prod;
812}
813
814Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
815  Type *Ty = SE.getEffectiveSCEVType(S->getType());
816
817  Value *LHS = expandCodeFor(S->getLHS(), Ty);
818  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
819    const APInt &RHS = SC->getValue()->getValue();
820    if (RHS.isPowerOf2())
821      return InsertBinop(Instruction::LShr, LHS,
822                         ConstantInt::get(Ty, RHS.logBase2()));
823  }
824
825  Value *RHS = expandCodeFor(S->getRHS(), Ty);
826  return InsertBinop(Instruction::UDiv, LHS, RHS);
827}
828
829/// Move parts of Base into Rest to leave Base with the minimal
830/// expression that provides a pointer operand suitable for a
831/// GEP expansion.
832static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
833                              ScalarEvolution &SE) {
834  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
835    Base = A->getStart();
836    Rest = SE.getAddExpr(Rest,
837                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
838                                          A->getStepRecurrence(SE),
839                                          A->getLoop(),
840                                          A->getNoWrapFlags(SCEV::FlagNW)));
841  }
842  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
843    Base = A->getOperand(A->getNumOperands()-1);
844    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
845    NewAddOps.back() = Rest;
846    Rest = SE.getAddExpr(NewAddOps);
847    ExposePointerBase(Base, Rest, SE);
848  }
849}
850
851/// Determine if this is a well-behaved chain of instructions leading back to
852/// the PHI. If so, it may be reused by expanded expressions.
853bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
854                                         const Loop *L) {
855  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
856      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
857    return false;
858  // If any of the operands don't dominate the insert position, bail.
859  // Addrec operands are always loop-invariant, so this can only happen
860  // if there are instructions which haven't been hoisted.
861  if (L == IVIncInsertLoop) {
862    for (User::op_iterator OI = IncV->op_begin()+1,
863           OE = IncV->op_end(); OI != OE; ++OI)
864      if (Instruction *OInst = dyn_cast<Instruction>(OI))
865        if (!SE.DT->dominates(OInst, IVIncInsertPos))
866          return false;
867  }
868  // Advance to the next instruction.
869  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
870  if (!IncV)
871    return false;
872
873  if (IncV->mayHaveSideEffects())
874    return false;
875
876  if (IncV != PN)
877    return true;
878
879  return isNormalAddRecExprPHI(PN, IncV, L);
880}
881
882/// getIVIncOperand returns an induction variable increment's induction
883/// variable operand.
884///
885/// If allowScale is set, any type of GEP is allowed as long as the nonIV
886/// operands dominate InsertPos.
887///
888/// If allowScale is not set, ensure that a GEP increment conforms to one of the
889/// simple patterns generated by getAddRecExprPHILiterally and
890/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
891Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
892                                           Instruction *InsertPos,
893                                           bool allowScale) {
894  if (IncV == InsertPos)
895    return nullptr;
896
897  switch (IncV->getOpcode()) {
898  default:
899    return nullptr;
900  // Check for a simple Add/Sub or GEP of a loop invariant step.
901  case Instruction::Add:
902  case Instruction::Sub: {
903    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
904    if (!OInst || SE.DT->dominates(OInst, InsertPos))
905      return dyn_cast<Instruction>(IncV->getOperand(0));
906    return nullptr;
907  }
908  case Instruction::BitCast:
909    return dyn_cast<Instruction>(IncV->getOperand(0));
910  case Instruction::GetElementPtr:
911    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
912         I != E; ++I) {
913      if (isa<Constant>(*I))
914        continue;
915      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
916        if (!SE.DT->dominates(OInst, InsertPos))
917          return nullptr;
918      }
919      if (allowScale) {
920        // allow any kind of GEP as long as it can be hoisted.
921        continue;
922      }
923      // This must be a pointer addition of constants (pretty), which is already
924      // handled, or some number of address-size elements (ugly). Ugly geps
925      // have 2 operands. i1* is used by the expander to represent an
926      // address-size element.
927      if (IncV->getNumOperands() != 2)
928        return nullptr;
929      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
930      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
931          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
932        return nullptr;
933      break;
934    }
935    return dyn_cast<Instruction>(IncV->getOperand(0));
936  }
937}
938
939/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
940/// it available to other uses in this loop. Recursively hoist any operands,
941/// until we reach a value that dominates InsertPos.
942bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
943  if (SE.DT->dominates(IncV, InsertPos))
944      return true;
945
946  // InsertPos must itself dominate IncV so that IncV's new position satisfies
947  // its existing users.
948  if (isa<PHINode>(InsertPos)
949      || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
950    return false;
951
952  // Check that the chain of IV operands leading back to Phi can be hoisted.
953  SmallVector<Instruction*, 4> IVIncs;
954  for(;;) {
955    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
956    if (!Oper)
957      return false;
958    // IncV is safe to hoist.
959    IVIncs.push_back(IncV);
960    IncV = Oper;
961    if (SE.DT->dominates(IncV, InsertPos))
962      break;
963  }
964  for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
965         E = IVIncs.rend(); I != E; ++I) {
966    (*I)->moveBefore(InsertPos);
967  }
968  return true;
969}
970
971/// Determine if this cyclic phi is in a form that would have been generated by
972/// LSR. We don't care if the phi was actually expanded in this pass, as long
973/// as it is in a low-cost form, for example, no implied multiplication. This
974/// should match any patterns generated by getAddRecExprPHILiterally and
975/// expandAddtoGEP.
976bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
977                                           const Loop *L) {
978  for(Instruction *IVOper = IncV;
979      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
980                                /*allowScale=*/false));) {
981    if (IVOper == PN)
982      return true;
983  }
984  return false;
985}
986
987/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
988/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
989/// need to materialize IV increments elsewhere to handle difficult situations.
990Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
991                                 Type *ExpandTy, Type *IntTy,
992                                 bool useSubtract) {
993  Value *IncV;
994  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
995  if (ExpandTy->isPointerTy()) {
996    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
997    // If the step isn't constant, don't use an implicitly scaled GEP, because
998    // that would require a multiply inside the loop.
999    if (!isa<ConstantInt>(StepV))
1000      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1001                                  GEPPtrTy->getAddressSpace());
1002    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1003    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1004    if (IncV->getType() != PN->getType()) {
1005      IncV = Builder.CreateBitCast(IncV, PN->getType());
1006      rememberInstruction(IncV);
1007    }
1008  } else {
1009    IncV = useSubtract ?
1010      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1011      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1012    rememberInstruction(IncV);
1013  }
1014  return IncV;
1015}
1016
1017/// \brief Hoist the addrec instruction chain rooted in the loop phi above the
1018/// position. This routine assumes that this is possible (has been checked).
1019static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1020                           Instruction *Pos, PHINode *LoopPhi) {
1021  do {
1022    if (DT->dominates(InstToHoist, Pos))
1023      break;
1024    // Make sure the increment is where we want it. But don't move it
1025    // down past a potential existing post-inc user.
1026    InstToHoist->moveBefore(Pos);
1027    Pos = InstToHoist;
1028    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1029  } while (InstToHoist != LoopPhi);
1030}
1031
1032/// \brief Check whether we can cheaply express the requested SCEV in terms of
1033/// the available PHI SCEV by truncation and/or invertion of the step.
1034static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1035                                    const SCEVAddRecExpr *Phi,
1036                                    const SCEVAddRecExpr *Requested,
1037                                    bool &InvertStep) {
1038  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1039  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1040
1041  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1042    return false;
1043
1044  // Try truncate it if necessary.
1045  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1046  if (!Phi)
1047    return false;
1048
1049  // Check whether truncation will help.
1050  if (Phi == Requested) {
1051    InvertStep = false;
1052    return true;
1053  }
1054
1055  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1056  if (SE.getAddExpr(Requested->getStart(),
1057                    SE.getNegativeSCEV(Requested)) == Phi) {
1058    InvertStep = true;
1059    return true;
1060  }
1061
1062  return false;
1063}
1064
1065/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1066/// the base addrec, which is the addrec without any non-loop-dominating
1067/// values, and return the PHI.
1068PHINode *
1069SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1070                                        const Loop *L,
1071                                        Type *ExpandTy,
1072                                        Type *IntTy,
1073                                        Type *&TruncTy,
1074                                        bool &InvertStep) {
1075  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1076
1077  // Reuse a previously-inserted PHI, if present.
1078  BasicBlock *LatchBlock = L->getLoopLatch();
1079  if (LatchBlock) {
1080    PHINode *AddRecPhiMatch = nullptr;
1081    Instruction *IncV = nullptr;
1082    TruncTy = nullptr;
1083    InvertStep = false;
1084
1085    // Only try partially matching scevs that need truncation and/or
1086    // step-inversion if we know this loop is outside the current loop.
1087    bool TryNonMatchingSCEV = IVIncInsertLoop &&
1088      SE.DT->properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1089
1090    for (BasicBlock::iterator I = L->getHeader()->begin();
1091         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1092      if (!SE.isSCEVable(PN->getType()))
1093        continue;
1094
1095      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
1096      if (!PhiSCEV)
1097        continue;
1098
1099      bool IsMatchingSCEV = PhiSCEV == Normalized;
1100      // We only handle truncation and inversion of phi recurrences for the
1101      // expanded expression if the expanded expression's loop dominates the
1102      // loop we insert to. Check now, so we can bail out early.
1103      if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1104          continue;
1105
1106      Instruction *TempIncV =
1107          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1108
1109      // Check whether we can reuse this PHI node.
1110      if (LSRMode) {
1111        if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
1112          continue;
1113        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1114          continue;
1115      } else {
1116        if (!isNormalAddRecExprPHI(PN, TempIncV, L))
1117          continue;
1118      }
1119
1120      // Stop if we have found an exact match SCEV.
1121      if (IsMatchingSCEV) {
1122        IncV = TempIncV;
1123        TruncTy = nullptr;
1124        InvertStep = false;
1125        AddRecPhiMatch = PN;
1126        break;
1127      }
1128
1129      // Try whether the phi can be translated into the requested form
1130      // (truncated and/or offset by a constant).
1131      if ((!TruncTy || InvertStep) &&
1132          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1133        // Record the phi node. But don't stop we might find an exact match
1134        // later.
1135        AddRecPhiMatch = PN;
1136        IncV = TempIncV;
1137        TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1138      }
1139    }
1140
1141    if (AddRecPhiMatch) {
1142      // Potentially, move the increment. We have made sure in
1143      // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1144      if (L == IVIncInsertLoop)
1145        hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1146
1147      // Ok, the add recurrence looks usable.
1148      // Remember this PHI, even in post-inc mode.
1149      InsertedValues.insert(AddRecPhiMatch);
1150      // Remember the increment.
1151      rememberInstruction(IncV);
1152      return AddRecPhiMatch;
1153    }
1154  }
1155
1156  // Save the original insertion point so we can restore it when we're done.
1157  BuilderType::InsertPointGuard Guard(Builder);
1158
1159  // Another AddRec may need to be recursively expanded below. For example, if
1160  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1161  // loop. Remove this loop from the PostIncLoops set before expanding such
1162  // AddRecs. Otherwise, we cannot find a valid position for the step
1163  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1164  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1165  // so it's not worth implementing SmallPtrSet::swap.
1166  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1167  PostIncLoops.clear();
1168
1169  // Expand code for the start value.
1170  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1171                                L->getHeader()->begin());
1172
1173  // StartV must be hoisted into L's preheader to dominate the new phi.
1174  assert(!isa<Instruction>(StartV) ||
1175         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
1176                                  L->getHeader()));
1177
1178  // Expand code for the step value. Do this before creating the PHI so that PHI
1179  // reuse code doesn't see an incomplete PHI.
1180  const SCEV *Step = Normalized->getStepRecurrence(SE);
1181  // If the stride is negative, insert a sub instead of an add for the increment
1182  // (unless it's a constant, because subtracts of constants are canonicalized
1183  // to adds).
1184  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1185  if (useSubtract)
1186    Step = SE.getNegativeSCEV(Step);
1187  // Expand the step somewhere that dominates the loop header.
1188  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1189
1190  // Create the PHI.
1191  BasicBlock *Header = L->getHeader();
1192  Builder.SetInsertPoint(Header, Header->begin());
1193  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1194  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1195                                  Twine(IVName) + ".iv");
1196  rememberInstruction(PN);
1197
1198  // Create the step instructions and populate the PHI.
1199  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1200    BasicBlock *Pred = *HPI;
1201
1202    // Add a start value.
1203    if (!L->contains(Pred)) {
1204      PN->addIncoming(StartV, Pred);
1205      continue;
1206    }
1207
1208    // Create a step value and add it to the PHI.
1209    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1210    // instructions at IVIncInsertPos.
1211    Instruction *InsertPos = L == IVIncInsertLoop ?
1212      IVIncInsertPos : Pred->getTerminator();
1213    Builder.SetInsertPoint(InsertPos);
1214    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1215    if (isa<OverflowingBinaryOperator>(IncV)) {
1216      if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
1217        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1218      if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
1219        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1220    }
1221    PN->addIncoming(IncV, Pred);
1222  }
1223
1224  // After expanding subexpressions, restore the PostIncLoops set so the caller
1225  // can ensure that IVIncrement dominates the current uses.
1226  PostIncLoops = SavedPostIncLoops;
1227
1228  // Remember this PHI, even in post-inc mode.
1229  InsertedValues.insert(PN);
1230
1231  return PN;
1232}
1233
1234Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1235  Type *STy = S->getType();
1236  Type *IntTy = SE.getEffectiveSCEVType(STy);
1237  const Loop *L = S->getLoop();
1238
1239  // Determine a normalized form of this expression, which is the expression
1240  // before any post-inc adjustment is made.
1241  const SCEVAddRecExpr *Normalized = S;
1242  if (PostIncLoops.count(L)) {
1243    PostIncLoopSet Loops;
1244    Loops.insert(L);
1245    Normalized =
1246      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, nullptr,
1247                                                  nullptr, Loops, SE, *SE.DT));
1248  }
1249
1250  // Strip off any non-loop-dominating component from the addrec start.
1251  const SCEV *Start = Normalized->getStart();
1252  const SCEV *PostLoopOffset = nullptr;
1253  if (!SE.properlyDominates(Start, L->getHeader())) {
1254    PostLoopOffset = Start;
1255    Start = SE.getConstant(Normalized->getType(), 0);
1256    Normalized = cast<SCEVAddRecExpr>(
1257      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1258                       Normalized->getLoop(),
1259                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
1260  }
1261
1262  // Strip off any non-loop-dominating component from the addrec step.
1263  const SCEV *Step = Normalized->getStepRecurrence(SE);
1264  const SCEV *PostLoopScale = nullptr;
1265  if (!SE.dominates(Step, L->getHeader())) {
1266    PostLoopScale = Step;
1267    Step = SE.getConstant(Normalized->getType(), 1);
1268    Normalized =
1269      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1270                             Start, Step, Normalized->getLoop(),
1271                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
1272  }
1273
1274  // Expand the core addrec. If we need post-loop scaling, force it to
1275  // expand to an integer type to avoid the need for additional casting.
1276  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1277  // In some cases, we decide to reuse an existing phi node but need to truncate
1278  // it and/or invert the step.
1279  Type *TruncTy = nullptr;
1280  bool InvertStep = false;
1281  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
1282                                          TruncTy, InvertStep);
1283
1284  // Accommodate post-inc mode, if necessary.
1285  Value *Result;
1286  if (!PostIncLoops.count(L))
1287    Result = PN;
1288  else {
1289    // In PostInc mode, use the post-incremented value.
1290    BasicBlock *LatchBlock = L->getLoopLatch();
1291    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1292    Result = PN->getIncomingValueForBlock(LatchBlock);
1293
1294    // For an expansion to use the postinc form, the client must call
1295    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1296    // or dominated by IVIncInsertPos.
1297    if (isa<Instruction>(Result)
1298        && !SE.DT->dominates(cast<Instruction>(Result),
1299                             Builder.GetInsertPoint())) {
1300      // The induction variable's postinc expansion does not dominate this use.
1301      // IVUsers tries to prevent this case, so it is rare. However, it can
1302      // happen when an IVUser outside the loop is not dominated by the latch
1303      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1304      // all cases. Consider a phi outide whose operand is replaced during
1305      // expansion with the value of the postinc user. Without fundamentally
1306      // changing the way postinc users are tracked, the only remedy is
1307      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1308      // but hopefully expandCodeFor handles that.
1309      bool useSubtract =
1310        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1311      if (useSubtract)
1312        Step = SE.getNegativeSCEV(Step);
1313      Value *StepV;
1314      {
1315        // Expand the step somewhere that dominates the loop header.
1316        BuilderType::InsertPointGuard Guard(Builder);
1317        StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1318      }
1319      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1320    }
1321  }
1322
1323  // We have decided to reuse an induction variable of a dominating loop. Apply
1324  // truncation and/or invertion of the step.
1325  if (TruncTy) {
1326    Type *ResTy = Result->getType();
1327    // Normalize the result type.
1328    if (ResTy != SE.getEffectiveSCEVType(ResTy))
1329      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1330    // Truncate the result.
1331    if (TruncTy != Result->getType()) {
1332      Result = Builder.CreateTrunc(Result, TruncTy);
1333      rememberInstruction(Result);
1334    }
1335    // Invert the result.
1336    if (InvertStep) {
1337      Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1338                                 Result);
1339      rememberInstruction(Result);
1340    }
1341  }
1342
1343  // Re-apply any non-loop-dominating scale.
1344  if (PostLoopScale) {
1345    assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1346    Result = InsertNoopCastOfTo(Result, IntTy);
1347    Result = Builder.CreateMul(Result,
1348                               expandCodeFor(PostLoopScale, IntTy));
1349    rememberInstruction(Result);
1350  }
1351
1352  // Re-apply any non-loop-dominating offset.
1353  if (PostLoopOffset) {
1354    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1355      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1356      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1357    } else {
1358      Result = InsertNoopCastOfTo(Result, IntTy);
1359      Result = Builder.CreateAdd(Result,
1360                                 expandCodeFor(PostLoopOffset, IntTy));
1361      rememberInstruction(Result);
1362    }
1363  }
1364
1365  return Result;
1366}
1367
1368Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1369  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1370
1371  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1372  const Loop *L = S->getLoop();
1373
1374  // First check for an existing canonical IV in a suitable type.
1375  PHINode *CanonicalIV = nullptr;
1376  if (PHINode *PN = L->getCanonicalInductionVariable())
1377    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1378      CanonicalIV = PN;
1379
1380  // Rewrite an AddRec in terms of the canonical induction variable, if
1381  // its type is more narrow.
1382  if (CanonicalIV &&
1383      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1384      SE.getTypeSizeInBits(Ty)) {
1385    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1386    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1387      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1388    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1389                                       S->getNoWrapFlags(SCEV::FlagNW)));
1390    BasicBlock::iterator NewInsertPt =
1391      std::next(BasicBlock::iterator(cast<Instruction>(V)));
1392    BuilderType::InsertPointGuard Guard(Builder);
1393    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1394           isa<LandingPadInst>(NewInsertPt))
1395      ++NewInsertPt;
1396    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1397                      NewInsertPt);
1398    return V;
1399  }
1400
1401  // {X,+,F} --> X + {0,+,F}
1402  if (!S->getStart()->isZero()) {
1403    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1404    NewOps[0] = SE.getConstant(Ty, 0);
1405    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1406                                        S->getNoWrapFlags(SCEV::FlagNW));
1407
1408    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1409    // comments on expandAddToGEP for details.
1410    const SCEV *Base = S->getStart();
1411    const SCEV *RestArray[1] = { Rest };
1412    // Dig into the expression to find the pointer base for a GEP.
1413    ExposePointerBase(Base, RestArray[0], SE);
1414    // If we found a pointer, expand the AddRec with a GEP.
1415    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1416      // Make sure the Base isn't something exotic, such as a multiplied
1417      // or divided pointer value. In those cases, the result type isn't
1418      // actually a pointer type.
1419      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1420        Value *StartV = expand(Base);
1421        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1422        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1423      }
1424    }
1425
1426    // Just do a normal add. Pre-expand the operands to suppress folding.
1427    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1428                                SE.getUnknown(expand(Rest))));
1429  }
1430
1431  // If we don't yet have a canonical IV, create one.
1432  if (!CanonicalIV) {
1433    // Create and insert the PHI node for the induction variable in the
1434    // specified loop.
1435    BasicBlock *Header = L->getHeader();
1436    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1437    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1438                                  Header->begin());
1439    rememberInstruction(CanonicalIV);
1440
1441    SmallSet<BasicBlock *, 4> PredSeen;
1442    Constant *One = ConstantInt::get(Ty, 1);
1443    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1444      BasicBlock *HP = *HPI;
1445      if (!PredSeen.insert(HP))
1446        continue;
1447
1448      if (L->contains(HP)) {
1449        // Insert a unit add instruction right before the terminator
1450        // corresponding to the back-edge.
1451        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1452                                                     "indvar.next",
1453                                                     HP->getTerminator());
1454        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1455        rememberInstruction(Add);
1456        CanonicalIV->addIncoming(Add, HP);
1457      } else {
1458        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1459      }
1460    }
1461  }
1462
1463  // {0,+,1} --> Insert a canonical induction variable into the loop!
1464  if (S->isAffine() && S->getOperand(1)->isOne()) {
1465    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1466           "IVs with types different from the canonical IV should "
1467           "already have been handled!");
1468    return CanonicalIV;
1469  }
1470
1471  // {0,+,F} --> {0,+,1} * F
1472
1473  // If this is a simple linear addrec, emit it now as a special case.
1474  if (S->isAffine())    // {0,+,F} --> i*F
1475    return
1476      expand(SE.getTruncateOrNoop(
1477        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1478                      SE.getNoopOrAnyExtend(S->getOperand(1),
1479                                            CanonicalIV->getType())),
1480        Ty));
1481
1482  // If this is a chain of recurrences, turn it into a closed form, using the
1483  // folders, then expandCodeFor the closed form.  This allows the folders to
1484  // simplify the expression without having to build a bunch of special code
1485  // into this folder.
1486  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1487
1488  // Promote S up to the canonical IV type, if the cast is foldable.
1489  const SCEV *NewS = S;
1490  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1491  if (isa<SCEVAddRecExpr>(Ext))
1492    NewS = Ext;
1493
1494  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1495  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1496
1497  // Truncate the result down to the original type, if needed.
1498  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1499  return expand(T);
1500}
1501
1502Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1503  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1504  Value *V = expandCodeFor(S->getOperand(),
1505                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1506  Value *I = Builder.CreateTrunc(V, Ty);
1507  rememberInstruction(I);
1508  return I;
1509}
1510
1511Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1512  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1513  Value *V = expandCodeFor(S->getOperand(),
1514                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1515  Value *I = Builder.CreateZExt(V, Ty);
1516  rememberInstruction(I);
1517  return I;
1518}
1519
1520Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1521  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1522  Value *V = expandCodeFor(S->getOperand(),
1523                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1524  Value *I = Builder.CreateSExt(V, Ty);
1525  rememberInstruction(I);
1526  return I;
1527}
1528
1529Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1530  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1531  Type *Ty = LHS->getType();
1532  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1533    // In the case of mixed integer and pointer types, do the
1534    // rest of the comparisons as integer.
1535    if (S->getOperand(i)->getType() != Ty) {
1536      Ty = SE.getEffectiveSCEVType(Ty);
1537      LHS = InsertNoopCastOfTo(LHS, Ty);
1538    }
1539    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1540    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1541    rememberInstruction(ICmp);
1542    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1543    rememberInstruction(Sel);
1544    LHS = Sel;
1545  }
1546  // In the case of mixed integer and pointer types, cast the
1547  // final result back to the pointer type.
1548  if (LHS->getType() != S->getType())
1549    LHS = InsertNoopCastOfTo(LHS, S->getType());
1550  return LHS;
1551}
1552
1553Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1554  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1555  Type *Ty = LHS->getType();
1556  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1557    // In the case of mixed integer and pointer types, do the
1558    // rest of the comparisons as integer.
1559    if (S->getOperand(i)->getType() != Ty) {
1560      Ty = SE.getEffectiveSCEVType(Ty);
1561      LHS = InsertNoopCastOfTo(LHS, Ty);
1562    }
1563    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1564    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1565    rememberInstruction(ICmp);
1566    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1567    rememberInstruction(Sel);
1568    LHS = Sel;
1569  }
1570  // In the case of mixed integer and pointer types, cast the
1571  // final result back to the pointer type.
1572  if (LHS->getType() != S->getType())
1573    LHS = InsertNoopCastOfTo(LHS, S->getType());
1574  return LHS;
1575}
1576
1577Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1578                                   Instruction *IP) {
1579  Builder.SetInsertPoint(IP->getParent(), IP);
1580  return expandCodeFor(SH, Ty);
1581}
1582
1583Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1584  // Expand the code for this SCEV.
1585  Value *V = expand(SH);
1586  if (Ty) {
1587    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1588           "non-trivial casts should be done with the SCEVs directly!");
1589    V = InsertNoopCastOfTo(V, Ty);
1590  }
1591  return V;
1592}
1593
1594Value *SCEVExpander::expand(const SCEV *S) {
1595  // Compute an insertion point for this SCEV object. Hoist the instructions
1596  // as far out in the loop nest as possible.
1597  Instruction *InsertPt = Builder.GetInsertPoint();
1598  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1599       L = L->getParentLoop())
1600    if (SE.isLoopInvariant(S, L)) {
1601      if (!L) break;
1602      if (BasicBlock *Preheader = L->getLoopPreheader())
1603        InsertPt = Preheader->getTerminator();
1604      else {
1605        // LSR sets the insertion point for AddRec start/step values to the
1606        // block start to simplify value reuse, even though it's an invalid
1607        // position. SCEVExpander must correct for this in all cases.
1608        InsertPt = L->getHeader()->getFirstInsertionPt();
1609      }
1610    } else {
1611      // If the SCEV is computable at this level, insert it into the header
1612      // after the PHIs (and after any other instructions that we've inserted
1613      // there) so that it is guaranteed to dominate any user inside the loop.
1614      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1615        InsertPt = L->getHeader()->getFirstInsertionPt();
1616      while (InsertPt != Builder.GetInsertPoint()
1617             && (isInsertedInstruction(InsertPt)
1618                 || isa<DbgInfoIntrinsic>(InsertPt))) {
1619        InsertPt = std::next(BasicBlock::iterator(InsertPt));
1620      }
1621      break;
1622    }
1623
1624  // Check to see if we already expanded this here.
1625  std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
1626    I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1627  if (I != InsertedExpressions.end())
1628    return I->second;
1629
1630  BuilderType::InsertPointGuard Guard(Builder);
1631  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1632
1633  // Expand the expression into instructions.
1634  Value *V = visit(S);
1635
1636  // Remember the expanded value for this SCEV at this location.
1637  //
1638  // This is independent of PostIncLoops. The mapped value simply materializes
1639  // the expression at this insertion point. If the mapped value happened to be
1640  // a postinc expansion, it could be reused by a non-postinc user, but only if
1641  // its insertion point was already at the head of the loop.
1642  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1643  return V;
1644}
1645
1646void SCEVExpander::rememberInstruction(Value *I) {
1647  if (!PostIncLoops.empty())
1648    InsertedPostIncValues.insert(I);
1649  else
1650    InsertedValues.insert(I);
1651}
1652
1653/// getOrInsertCanonicalInductionVariable - This method returns the
1654/// canonical induction variable of the specified type for the specified
1655/// loop (inserting one if there is none).  A canonical induction variable
1656/// starts at zero and steps by one on each iteration.
1657PHINode *
1658SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1659                                                    Type *Ty) {
1660  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1661
1662  // Build a SCEV for {0,+,1}<L>.
1663  // Conservatively use FlagAnyWrap for now.
1664  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1665                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1666
1667  // Emit code for it.
1668  BuilderType::InsertPointGuard Guard(Builder);
1669  PHINode *V = cast<PHINode>(expandCodeFor(H, nullptr,
1670                                           L->getHeader()->begin()));
1671
1672  return V;
1673}
1674
1675/// replaceCongruentIVs - Check for congruent phis in this loop header and
1676/// replace them with their most canonical representative. Return the number of
1677/// phis eliminated.
1678///
1679/// This does not depend on any SCEVExpander state but should be used in
1680/// the same context that SCEVExpander is used.
1681unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1682                                           SmallVectorImpl<WeakVH> &DeadInsts,
1683                                           const TargetTransformInfo *TTI) {
1684  // Find integer phis in order of increasing width.
1685  SmallVector<PHINode*, 8> Phis;
1686  for (BasicBlock::iterator I = L->getHeader()->begin();
1687       PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
1688    Phis.push_back(Phi);
1689  }
1690  if (TTI)
1691    std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
1692      // Put pointers at the back and make sure pointer < pointer = false.
1693      if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1694        return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1695      return RHS->getType()->getPrimitiveSizeInBits() <
1696             LHS->getType()->getPrimitiveSizeInBits();
1697    });
1698
1699  unsigned NumElim = 0;
1700  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1701  // Process phis from wide to narrow. Mapping wide phis to the their truncation
1702  // so narrow phis can reuse them.
1703  for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
1704         PEnd = Phis.end(); PIter != PEnd; ++PIter) {
1705    PHINode *Phi = *PIter;
1706
1707    // Fold constant phis. They may be congruent to other constant phis and
1708    // would confuse the logic below that expects proper IVs.
1709    if (Value *V = Phi->hasConstantValue()) {
1710      Phi->replaceAllUsesWith(V);
1711      DeadInsts.push_back(Phi);
1712      ++NumElim;
1713      DEBUG_WITH_TYPE(DebugType, dbgs()
1714                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1715      continue;
1716    }
1717
1718    if (!SE.isSCEVable(Phi->getType()))
1719      continue;
1720
1721    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1722    if (!OrigPhiRef) {
1723      OrigPhiRef = Phi;
1724      if (Phi->getType()->isIntegerTy() && TTI
1725          && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1726        // This phi can be freely truncated to the narrowest phi type. Map the
1727        // truncated expression to it so it will be reused for narrow types.
1728        const SCEV *TruncExpr =
1729          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1730        ExprToIVMap[TruncExpr] = Phi;
1731      }
1732      continue;
1733    }
1734
1735    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1736    // sense.
1737    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1738      continue;
1739
1740    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1741      Instruction *OrigInc =
1742        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1743      Instruction *IsomorphicInc =
1744        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1745
1746      // If this phi has the same width but is more canonical, replace the
1747      // original with it. As part of the "more canonical" determination,
1748      // respect a prior decision to use an IV chain.
1749      if (OrigPhiRef->getType() == Phi->getType()
1750          && !(ChainedPhis.count(Phi)
1751               || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
1752          && (ChainedPhis.count(Phi)
1753              || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1754        std::swap(OrigPhiRef, Phi);
1755        std::swap(OrigInc, IsomorphicInc);
1756      }
1757      // Replacing the congruent phi is sufficient because acyclic redundancy
1758      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1759      // that a phi is congruent, it's often the head of an IV user cycle that
1760      // is isomorphic with the original phi. It's worth eagerly cleaning up the
1761      // common case of a single IV increment so that DeleteDeadPHIs can remove
1762      // cycles that had postinc uses.
1763      const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
1764                                                   IsomorphicInc->getType());
1765      if (OrigInc != IsomorphicInc
1766          && TruncExpr == SE.getSCEV(IsomorphicInc)
1767          && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
1768              || hoistIVInc(OrigInc, IsomorphicInc))) {
1769        DEBUG_WITH_TYPE(DebugType, dbgs()
1770                        << "INDVARS: Eliminated congruent iv.inc: "
1771                        << *IsomorphicInc << '\n');
1772        Value *NewInc = OrigInc;
1773        if (OrigInc->getType() != IsomorphicInc->getType()) {
1774          Instruction *IP = isa<PHINode>(OrigInc)
1775            ? (Instruction*)L->getHeader()->getFirstInsertionPt()
1776            : OrigInc->getNextNode();
1777          IRBuilder<> Builder(IP);
1778          Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1779          NewInc = Builder.
1780            CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1781        }
1782        IsomorphicInc->replaceAllUsesWith(NewInc);
1783        DeadInsts.push_back(IsomorphicInc);
1784      }
1785    }
1786    DEBUG_WITH_TYPE(DebugType, dbgs()
1787                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1788    ++NumElim;
1789    Value *NewIV = OrigPhiRef;
1790    if (OrigPhiRef->getType() != Phi->getType()) {
1791      IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
1792      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1793      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1794    }
1795    Phi->replaceAllUsesWith(NewIV);
1796    DeadInsts.push_back(Phi);
1797  }
1798  return NumElim;
1799}
1800
1801namespace {
1802// Search for a SCEV subexpression that is not safe to expand.  Any expression
1803// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
1804// UDiv expressions. We don't know if the UDiv is derived from an IR divide
1805// instruction, but the important thing is that we prove the denominator is
1806// nonzero before expansion.
1807//
1808// IVUsers already checks that IV-derived expressions are safe. So this check is
1809// only needed when the expression includes some subexpression that is not IV
1810// derived.
1811//
1812// Currently, we only allow division by a nonzero constant here. If this is
1813// inadequate, we could easily allow division by SCEVUnknown by using
1814// ValueTracking to check isKnownNonZero().
1815//
1816// We cannot generally expand recurrences unless the step dominates the loop
1817// header. The expander handles the special case of affine recurrences by
1818// scaling the recurrence outside the loop, but this technique isn't generally
1819// applicable. Expanding a nested recurrence outside a loop requires computing
1820// binomial coefficients. This could be done, but the recurrence has to be in a
1821// perfectly reduced form, which can't be guaranteed.
1822struct SCEVFindUnsafe {
1823  ScalarEvolution &SE;
1824  bool IsUnsafe;
1825
1826  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
1827
1828  bool follow(const SCEV *S) {
1829    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1830      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
1831      if (!SC || SC->getValue()->isZero()) {
1832        IsUnsafe = true;
1833        return false;
1834      }
1835    }
1836    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1837      const SCEV *Step = AR->getStepRecurrence(SE);
1838      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
1839        IsUnsafe = true;
1840        return false;
1841      }
1842    }
1843    return true;
1844  }
1845  bool isDone() const { return IsUnsafe; }
1846};
1847}
1848
1849namespace llvm {
1850bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
1851  SCEVFindUnsafe Search(SE);
1852  visitAll(S, Search);
1853  return !Search.IsUnsafe;
1854}
1855}
1856