ScalarEvolutionExpander.cpp revision deff621abdd48bd70434bd4d7ef30f08ddba1cd8
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace llvm;
23
24/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
25/// which must be possible with a noop cast, doing what we can to share
26/// the casts.
27Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
28  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
29  assert((Op == Instruction::BitCast ||
30          Op == Instruction::PtrToInt ||
31          Op == Instruction::IntToPtr) &&
32         "InsertNoopCastOfTo cannot perform non-noop casts!");
33  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
34         "InsertNoopCastOfTo cannot change sizes!");
35
36  // Short-circuit unnecessary bitcasts.
37  if (Op == Instruction::BitCast && V->getType() == Ty)
38    return V;
39
40  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
41  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
42      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
43    if (CastInst *CI = dyn_cast<CastInst>(V))
44      if ((CI->getOpcode() == Instruction::PtrToInt ||
45           CI->getOpcode() == Instruction::IntToPtr) &&
46          SE.getTypeSizeInBits(CI->getType()) ==
47          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
48        return CI->getOperand(0);
49    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
50      if ((CE->getOpcode() == Instruction::PtrToInt ||
51           CE->getOpcode() == Instruction::IntToPtr) &&
52          SE.getTypeSizeInBits(CE->getType()) ==
53          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
54        return CE->getOperand(0);
55  }
56
57  if (Constant *C = dyn_cast<Constant>(V))
58    return ConstantExpr::getCast(Op, C, Ty);
59
60  if (Argument *A = dyn_cast<Argument>(V)) {
61    // Check to see if there is already a cast!
62    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
63         UI != E; ++UI)
64      if ((*UI)->getType() == Ty)
65        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
66          if (CI->getOpcode() == Op) {
67            // If the cast isn't the first instruction of the function, move it.
68            if (BasicBlock::iterator(CI) !=
69                A->getParent()->getEntryBlock().begin()) {
70              // Recreate the cast at the beginning of the entry block.
71              // The old cast is left in place in case it is being used
72              // as an insert point.
73              Instruction *NewCI =
74                CastInst::Create(Op, V, Ty, "",
75                                 A->getParent()->getEntryBlock().begin());
76              NewCI->takeName(CI);
77              CI->replaceAllUsesWith(NewCI);
78              return NewCI;
79            }
80            return CI;
81          }
82
83    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
84                                      A->getParent()->getEntryBlock().begin());
85    rememberInstruction(I);
86    return I;
87  }
88
89  Instruction *I = cast<Instruction>(V);
90
91  // Check to see if there is already a cast.  If there is, use it.
92  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
93       UI != E; ++UI) {
94    if ((*UI)->getType() == Ty)
95      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
96        if (CI->getOpcode() == Op) {
97          BasicBlock::iterator It = I; ++It;
98          if (isa<InvokeInst>(I))
99            It = cast<InvokeInst>(I)->getNormalDest()->begin();
100          while (isa<PHINode>(It)) ++It;
101          if (It != BasicBlock::iterator(CI)) {
102            // Recreate the cast after the user.
103            // The old cast is left in place in case it is being used
104            // as an insert point.
105            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
106            NewCI->takeName(CI);
107            CI->replaceAllUsesWith(NewCI);
108            rememberInstruction(NewCI);
109            return NewCI;
110          }
111          rememberInstruction(CI);
112          return CI;
113        }
114  }
115  BasicBlock::iterator IP = I; ++IP;
116  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
117    IP = II->getNormalDest()->begin();
118  while (isa<PHINode>(IP)) ++IP;
119  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
120  rememberInstruction(CI);
121  return CI;
122}
123
124/// InsertBinop - Insert the specified binary operator, doing a small amount
125/// of work to avoid inserting an obviously redundant operation.
126Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
127                                 Value *LHS, Value *RHS) {
128  // Fold a binop with constant operands.
129  if (Constant *CLHS = dyn_cast<Constant>(LHS))
130    if (Constant *CRHS = dyn_cast<Constant>(RHS))
131      return ConstantExpr::get(Opcode, CLHS, CRHS);
132
133  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
134  unsigned ScanLimit = 6;
135  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
136  // Scanning starts from the last instruction before the insertion point.
137  BasicBlock::iterator IP = Builder.GetInsertPoint();
138  if (IP != BlockBegin) {
139    --IP;
140    for (; ScanLimit; --IP, --ScanLimit) {
141      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
142      // generated code.
143      if (isa<DbgInfoIntrinsic>(IP))
144        ScanLimit++;
145      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
146          IP->getOperand(1) == RHS)
147        return IP;
148      if (IP == BlockBegin) break;
149    }
150  }
151
152  // Save the original insertion point so we can restore it when we're done.
153  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
154  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
155
156  // Move the insertion point out of as many loops as we can.
157  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
158    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
159    BasicBlock *Preheader = L->getLoopPreheader();
160    if (!Preheader) break;
161
162    // Ok, move up a level.
163    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
164  }
165
166  // If we haven't found this binop, insert it.
167  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
168  rememberInstruction(BO);
169
170  // Restore the original insert point.
171  if (SaveInsertBB)
172    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
173
174  return BO;
175}
176
177/// FactorOutConstant - Test if S is divisible by Factor, using signed
178/// division. If so, update S with Factor divided out and return true.
179/// S need not be evenly divisible if a reasonable remainder can be
180/// computed.
181/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
182/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
183/// check to see if the divide was folded.
184static bool FactorOutConstant(const SCEV *&S,
185                              const SCEV *&Remainder,
186                              const SCEV *Factor,
187                              ScalarEvolution &SE,
188                              const TargetData *TD) {
189  // Everything is divisible by one.
190  if (Factor->isOne())
191    return true;
192
193  // x/x == 1.
194  if (S == Factor) {
195    S = SE.getConstant(S->getType(), 1);
196    return true;
197  }
198
199  // For a Constant, check for a multiple of the given factor.
200  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
201    // 0/x == 0.
202    if (C->isZero())
203      return true;
204    // Check for divisibility.
205    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
206      ConstantInt *CI =
207        ConstantInt::get(SE.getContext(),
208                         C->getValue()->getValue().sdiv(
209                                                   FC->getValue()->getValue()));
210      // If the quotient is zero and the remainder is non-zero, reject
211      // the value at this scale. It will be considered for subsequent
212      // smaller scales.
213      if (!CI->isZero()) {
214        const SCEV *Div = SE.getConstant(CI);
215        S = Div;
216        Remainder =
217          SE.getAddExpr(Remainder,
218                        SE.getConstant(C->getValue()->getValue().srem(
219                                                  FC->getValue()->getValue())));
220        return true;
221      }
222    }
223  }
224
225  // In a Mul, check if there is a constant operand which is a multiple
226  // of the given factor.
227  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
228    if (TD) {
229      // With TargetData, the size is known. Check if there is a constant
230      // operand which is a multiple of the given factor. If so, we can
231      // factor it.
232      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
233      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
234        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
235          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
236          NewMulOps[0] =
237            SE.getConstant(C->getValue()->getValue().sdiv(
238                                                   FC->getValue()->getValue()));
239          S = SE.getMulExpr(NewMulOps);
240          return true;
241        }
242    } else {
243      // Without TargetData, check if Factor can be factored out of any of the
244      // Mul's operands. If so, we can just remove it.
245      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
246        const SCEV *SOp = M->getOperand(i);
247        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
248        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
249            Remainder->isZero()) {
250          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
251          NewMulOps[i] = SOp;
252          S = SE.getMulExpr(NewMulOps);
253          return true;
254        }
255      }
256    }
257  }
258
259  // In an AddRec, check if both start and step are divisible.
260  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
261    const SCEV *Step = A->getStepRecurrence(SE);
262    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
263    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
264      return false;
265    if (!StepRem->isZero())
266      return false;
267    const SCEV *Start = A->getStart();
268    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
269      return false;
270    S = SE.getAddRecExpr(Start, Step, A->getLoop());
271    return true;
272  }
273
274  return false;
275}
276
277/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
278/// is the number of SCEVAddRecExprs present, which are kept at the end of
279/// the list.
280///
281static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
282                                const Type *Ty,
283                                ScalarEvolution &SE) {
284  unsigned NumAddRecs = 0;
285  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
286    ++NumAddRecs;
287  // Group Ops into non-addrecs and addrecs.
288  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
289  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
290  // Let ScalarEvolution sort and simplify the non-addrecs list.
291  const SCEV *Sum = NoAddRecs.empty() ?
292                    SE.getConstant(Ty, 0) :
293                    SE.getAddExpr(NoAddRecs);
294  // If it returned an add, use the operands. Otherwise it simplified
295  // the sum into a single value, so just use that.
296  Ops.clear();
297  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
298    Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
299  else if (!Sum->isZero())
300    Ops.push_back(Sum);
301  // Then append the addrecs.
302  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
303}
304
305/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
306/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
307/// This helps expose more opportunities for folding parts of the expressions
308/// into GEP indices.
309///
310static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
311                         const Type *Ty,
312                         ScalarEvolution &SE) {
313  // Find the addrecs.
314  SmallVector<const SCEV *, 8> AddRecs;
315  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
316    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
317      const SCEV *Start = A->getStart();
318      if (Start->isZero()) break;
319      const SCEV *Zero = SE.getConstant(Ty, 0);
320      AddRecs.push_back(SE.getAddRecExpr(Zero,
321                                         A->getStepRecurrence(SE),
322                                         A->getLoop()));
323      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
324        Ops[i] = Zero;
325        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
326        e += Add->getNumOperands();
327      } else {
328        Ops[i] = Start;
329      }
330    }
331  if (!AddRecs.empty()) {
332    // Add the addrecs onto the end of the list.
333    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
334    // Resort the operand list, moving any constants to the front.
335    SimplifyAddOperands(Ops, Ty, SE);
336  }
337}
338
339/// expandAddToGEP - Expand an addition expression with a pointer type into
340/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
341/// BasicAliasAnalysis and other passes analyze the result. See the rules
342/// for getelementptr vs. inttoptr in
343/// http://llvm.org/docs/LangRef.html#pointeraliasing
344/// for details.
345///
346/// Design note: The correctness of using getelementptr here depends on
347/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
348/// they may introduce pointer arithmetic which may not be safely converted
349/// into getelementptr.
350///
351/// Design note: It might seem desirable for this function to be more
352/// loop-aware. If some of the indices are loop-invariant while others
353/// aren't, it might seem desirable to emit multiple GEPs, keeping the
354/// loop-invariant portions of the overall computation outside the loop.
355/// However, there are a few reasons this is not done here. Hoisting simple
356/// arithmetic is a low-level optimization that often isn't very
357/// important until late in the optimization process. In fact, passes
358/// like InstructionCombining will combine GEPs, even if it means
359/// pushing loop-invariant computation down into loops, so even if the
360/// GEPs were split here, the work would quickly be undone. The
361/// LoopStrengthReduction pass, which is usually run quite late (and
362/// after the last InstructionCombining pass), takes care of hoisting
363/// loop-invariant portions of expressions, after considering what
364/// can be folded using target addressing modes.
365///
366Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
367                                    const SCEV *const *op_end,
368                                    const PointerType *PTy,
369                                    const Type *Ty,
370                                    Value *V) {
371  const Type *ElTy = PTy->getElementType();
372  SmallVector<Value *, 4> GepIndices;
373  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
374  bool AnyNonZeroIndices = false;
375
376  // Split AddRecs up into parts as either of the parts may be usable
377  // without the other.
378  SplitAddRecs(Ops, Ty, SE);
379
380  // Descend down the pointer's type and attempt to convert the other
381  // operands into GEP indices, at each level. The first index in a GEP
382  // indexes into the array implied by the pointer operand; the rest of
383  // the indices index into the element or field type selected by the
384  // preceding index.
385  for (;;) {
386    // If the scale size is not 0, attempt to factor out a scale for
387    // array indexing.
388    SmallVector<const SCEV *, 8> ScaledOps;
389    if (ElTy->isSized()) {
390      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
391      if (!ElSize->isZero()) {
392        SmallVector<const SCEV *, 8> NewOps;
393        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
394          const SCEV *Op = Ops[i];
395          const SCEV *Remainder = SE.getConstant(Ty, 0);
396          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
397            // Op now has ElSize factored out.
398            ScaledOps.push_back(Op);
399            if (!Remainder->isZero())
400              NewOps.push_back(Remainder);
401            AnyNonZeroIndices = true;
402          } else {
403            // The operand was not divisible, so add it to the list of operands
404            // we'll scan next iteration.
405            NewOps.push_back(Ops[i]);
406          }
407        }
408        // If we made any changes, update Ops.
409        if (!ScaledOps.empty()) {
410          Ops = NewOps;
411          SimplifyAddOperands(Ops, Ty, SE);
412        }
413      }
414    }
415
416    // Record the scaled array index for this level of the type. If
417    // we didn't find any operands that could be factored, tentatively
418    // assume that element zero was selected (since the zero offset
419    // would obviously be folded away).
420    Value *Scaled = ScaledOps.empty() ?
421                    Constant::getNullValue(Ty) :
422                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
423    GepIndices.push_back(Scaled);
424
425    // Collect struct field index operands.
426    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
427      bool FoundFieldNo = false;
428      // An empty struct has no fields.
429      if (STy->getNumElements() == 0) break;
430      if (SE.TD) {
431        // With TargetData, field offsets are known. See if a constant offset
432        // falls within any of the struct fields.
433        if (Ops.empty()) break;
434        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
435          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
436            const StructLayout &SL = *SE.TD->getStructLayout(STy);
437            uint64_t FullOffset = C->getValue()->getZExtValue();
438            if (FullOffset < SL.getSizeInBytes()) {
439              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
440              GepIndices.push_back(
441                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
442              ElTy = STy->getTypeAtIndex(ElIdx);
443              Ops[0] =
444                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
445              AnyNonZeroIndices = true;
446              FoundFieldNo = true;
447            }
448          }
449      } else {
450        // Without TargetData, just check for an offsetof expression of the
451        // appropriate struct type.
452        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
453          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
454            const Type *CTy;
455            Constant *FieldNo;
456            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
457              GepIndices.push_back(FieldNo);
458              ElTy =
459                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
460              Ops[i] = SE.getConstant(Ty, 0);
461              AnyNonZeroIndices = true;
462              FoundFieldNo = true;
463              break;
464            }
465          }
466      }
467      // If no struct field offsets were found, tentatively assume that
468      // field zero was selected (since the zero offset would obviously
469      // be folded away).
470      if (!FoundFieldNo) {
471        ElTy = STy->getTypeAtIndex(0u);
472        GepIndices.push_back(
473          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
474      }
475    }
476
477    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
478      ElTy = ATy->getElementType();
479    else
480      break;
481  }
482
483  // If none of the operands were convertible to proper GEP indices, cast
484  // the base to i8* and do an ugly getelementptr with that. It's still
485  // better than ptrtoint+arithmetic+inttoptr at least.
486  if (!AnyNonZeroIndices) {
487    // Cast the base to i8*.
488    V = InsertNoopCastOfTo(V,
489       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
490
491    // Expand the operands for a plain byte offset.
492    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
493
494    // Fold a GEP with constant operands.
495    if (Constant *CLHS = dyn_cast<Constant>(V))
496      if (Constant *CRHS = dyn_cast<Constant>(Idx))
497        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
498
499    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
500    unsigned ScanLimit = 6;
501    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
502    // Scanning starts from the last instruction before the insertion point.
503    BasicBlock::iterator IP = Builder.GetInsertPoint();
504    if (IP != BlockBegin) {
505      --IP;
506      for (; ScanLimit; --IP, --ScanLimit) {
507        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
508        // generated code.
509        if (isa<DbgInfoIntrinsic>(IP))
510          ScanLimit++;
511        if (IP->getOpcode() == Instruction::GetElementPtr &&
512            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
513          return IP;
514        if (IP == BlockBegin) break;
515      }
516    }
517
518    // Save the original insertion point so we can restore it when we're done.
519    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
520    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
521
522    // Move the insertion point out of as many loops as we can.
523    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
524      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
525      BasicBlock *Preheader = L->getLoopPreheader();
526      if (!Preheader) break;
527
528      // Ok, move up a level.
529      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
530    }
531
532    // Emit a GEP.
533    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
534    rememberInstruction(GEP);
535
536    // Restore the original insert point.
537    if (SaveInsertBB)
538      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
539
540    return GEP;
541  }
542
543  // Save the original insertion point so we can restore it when we're done.
544  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
545  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
546
547  // Move the insertion point out of as many loops as we can.
548  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
549    if (!L->isLoopInvariant(V)) break;
550
551    bool AnyIndexNotLoopInvariant = false;
552    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
553         E = GepIndices.end(); I != E; ++I)
554      if (!L->isLoopInvariant(*I)) {
555        AnyIndexNotLoopInvariant = true;
556        break;
557      }
558    if (AnyIndexNotLoopInvariant)
559      break;
560
561    BasicBlock *Preheader = L->getLoopPreheader();
562    if (!Preheader) break;
563
564    // Ok, move up a level.
565    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
566  }
567
568  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
569  // because ScalarEvolution may have changed the address arithmetic to
570  // compute a value which is beyond the end of the allocated object.
571  Value *Casted = V;
572  if (V->getType() != PTy)
573    Casted = InsertNoopCastOfTo(Casted, PTy);
574  Value *GEP = Builder.CreateGEP(Casted,
575                                 GepIndices.begin(),
576                                 GepIndices.end(),
577                                 "scevgep");
578  Ops.push_back(SE.getUnknown(GEP));
579  rememberInstruction(GEP);
580
581  // Restore the original insert point.
582  if (SaveInsertBB)
583    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
584
585  return expand(SE.getAddExpr(Ops));
586}
587
588/// isNonConstantNegative - Return true if the specified scev is negated, but
589/// not a constant.
590static bool isNonConstantNegative(const SCEV *F) {
591  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
592  if (!Mul) return false;
593
594  // If there is a constant factor, it will be first.
595  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
596  if (!SC) return false;
597
598  // Return true if the value is negative, this matches things like (-42 * V).
599  return SC->getValue()->getValue().isNegative();
600}
601
602/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603/// SCEV expansion. If they are nested, this is the most nested. If they are
604/// neighboring, pick the later.
605static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
606                                        DominatorTree &DT) {
607  if (!A) return B;
608  if (!B) return A;
609  if (A->contains(B)) return B;
610  if (B->contains(A)) return A;
611  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
612  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
613  return A; // Arbitrarily break the tie.
614}
615
616/// GetRelevantLoop - Get the most relevant loop associated with the given
617/// expression, according to PickMostRelevantLoop.
618static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
619                                   DominatorTree &DT) {
620  if (isa<SCEVConstant>(S))
621    return 0;
622  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
623    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
624      return LI.getLoopFor(I->getParent());
625    return 0;
626  }
627  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
628    const Loop *L = 0;
629    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
630      L = AR->getLoop();
631    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
632         I != E; ++I)
633      L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
634    return L;
635  }
636  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
637    return GetRelevantLoop(C->getOperand(), LI, DT);
638  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
639    return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
640                                GetRelevantLoop(D->getRHS(), LI, DT),
641                                DT);
642  llvm_unreachable("Unexpected SCEV type!");
643}
644
645namespace {
646
647/// LoopCompare - Compare loops by PickMostRelevantLoop.
648class LoopCompare {
649  DominatorTree &DT;
650public:
651  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
652
653  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
654                  std::pair<const Loop *, const SCEV *> RHS) const {
655    // Compare loops with PickMostRelevantLoop.
656    if (LHS.first != RHS.first)
657      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
658
659    // If one operand is a non-constant negative and the other is not,
660    // put the non-constant negative on the right so that a sub can
661    // be used instead of a negate and add.
662    if (isNonConstantNegative(LHS.second)) {
663      if (!isNonConstantNegative(RHS.second))
664        return false;
665    } else if (isNonConstantNegative(RHS.second))
666      return true;
667
668    // Otherwise they are equivalent according to this comparison.
669    return false;
670  }
671};
672
673}
674
675Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
676  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
677
678  // Collect all the add operands in a loop, along with their associated loops.
679  // Iterate in reverse so that constants are emitted last, all else equal, and
680  // so that pointer operands are inserted first, which the code below relies on
681  // to form more involved GEPs.
682  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
683  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
684       E(S->op_begin()); I != E; ++I)
685    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
686                                         *I));
687
688  // Sort by loop. Use a stable sort so that constants follow non-constants and
689  // pointer operands precede non-pointer operands.
690  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
691
692  // Emit instructions to add all the operands. Hoist as much as possible
693  // out of loops, and form meaningful getelementptrs where possible.
694  Value *Sum = 0;
695  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
696       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
697    const Loop *CurLoop = I->first;
698    const SCEV *Op = I->second;
699    if (!Sum) {
700      // This is the first operand. Just expand it.
701      Sum = expand(Op);
702      ++I;
703    } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
704      // The running sum expression is a pointer. Try to form a getelementptr
705      // at this level with that as the base.
706      SmallVector<const SCEV *, 4> NewOps;
707      for (; I != E && I->first == CurLoop; ++I)
708        NewOps.push_back(I->second);
709      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
710    } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
711      // The running sum is an integer, and there's a pointer at this level.
712      // Try to form a getelementptr. If the running sum is instructions,
713      // use a SCEVUnknown to avoid re-analyzing them.
714      SmallVector<const SCEV *, 4> NewOps;
715      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
716                                               SE.getSCEV(Sum));
717      for (++I; I != E && I->first == CurLoop; ++I)
718        NewOps.push_back(I->second);
719      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
720    } else if (isNonConstantNegative(Op)) {
721      // Instead of doing a negate and add, just do a subtract.
722      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
723      Sum = InsertNoopCastOfTo(Sum, Ty);
724      Sum = InsertBinop(Instruction::Sub, Sum, W);
725      ++I;
726    } else {
727      // A simple add.
728      Value *W = expandCodeFor(Op, Ty);
729      Sum = InsertNoopCastOfTo(Sum, Ty);
730      // Canonicalize a constant to the RHS.
731      if (isa<Constant>(Sum)) std::swap(Sum, W);
732      Sum = InsertBinop(Instruction::Add, Sum, W);
733      ++I;
734    }
735  }
736
737  return Sum;
738}
739
740Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
741  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
742
743  // Collect all the mul operands in a loop, along with their associated loops.
744  // Iterate in reverse so that constants are emitted last, all else equal.
745  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
746  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
747       E(S->op_begin()); I != E; ++I)
748    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
749                                         *I));
750
751  // Sort by loop. Use a stable sort so that constants follow non-constants.
752  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
753
754  // Emit instructions to mul all the operands. Hoist as much as possible
755  // out of loops.
756  Value *Prod = 0;
757  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
758       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
759    const SCEV *Op = I->second;
760    if (!Prod) {
761      // This is the first operand. Just expand it.
762      Prod = expand(Op);
763      ++I;
764    } else if (Op->isAllOnesValue()) {
765      // Instead of doing a multiply by negative one, just do a negate.
766      Prod = InsertNoopCastOfTo(Prod, Ty);
767      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
768      ++I;
769    } else {
770      // A simple mul.
771      Value *W = expandCodeFor(Op, Ty);
772      Prod = InsertNoopCastOfTo(Prod, Ty);
773      // Canonicalize a constant to the RHS.
774      if (isa<Constant>(Prod)) std::swap(Prod, W);
775      Prod = InsertBinop(Instruction::Mul, Prod, W);
776      ++I;
777    }
778  }
779
780  return Prod;
781}
782
783Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
784  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
785
786  Value *LHS = expandCodeFor(S->getLHS(), Ty);
787  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
788    const APInt &RHS = SC->getValue()->getValue();
789    if (RHS.isPowerOf2())
790      return InsertBinop(Instruction::LShr, LHS,
791                         ConstantInt::get(Ty, RHS.logBase2()));
792  }
793
794  Value *RHS = expandCodeFor(S->getRHS(), Ty);
795  return InsertBinop(Instruction::UDiv, LHS, RHS);
796}
797
798/// Move parts of Base into Rest to leave Base with the minimal
799/// expression that provides a pointer operand suitable for a
800/// GEP expansion.
801static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
802                              ScalarEvolution &SE) {
803  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
804    Base = A->getStart();
805    Rest = SE.getAddExpr(Rest,
806                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
807                                          A->getStepRecurrence(SE),
808                                          A->getLoop()));
809  }
810  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
811    Base = A->getOperand(A->getNumOperands()-1);
812    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
813    NewAddOps.back() = Rest;
814    Rest = SE.getAddExpr(NewAddOps);
815    ExposePointerBase(Base, Rest, SE);
816  }
817}
818
819/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
820/// the base addrec, which is the addrec without any non-loop-dominating
821/// values, and return the PHI.
822PHINode *
823SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
824                                        const Loop *L,
825                                        const Type *ExpandTy,
826                                        const Type *IntTy) {
827  // Reuse a previously-inserted PHI, if present.
828  for (BasicBlock::iterator I = L->getHeader()->begin();
829       PHINode *PN = dyn_cast<PHINode>(I); ++I)
830    if (SE.isSCEVable(PN->getType()) &&
831        (SE.getEffectiveSCEVType(PN->getType()) ==
832         SE.getEffectiveSCEVType(Normalized->getType())) &&
833        SE.getSCEV(PN) == Normalized)
834      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
835        Instruction *IncV =
836          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
837
838        // Determine if this is a well-behaved chain of instructions leading
839        // back to the PHI. It probably will be, if we're scanning an inner
840        // loop already visited by LSR for example, but it wouldn't have
841        // to be.
842        do {
843          if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) {
844            IncV = 0;
845            break;
846          }
847          // If any of the operands don't dominate the insert position, bail.
848          // Addrec operands are always loop-invariant, so this can only happen
849          // if there are instructions which haven't been hoisted.
850          for (User::op_iterator OI = IncV->op_begin()+1,
851               OE = IncV->op_end(); OI != OE; ++OI)
852            if (Instruction *OInst = dyn_cast<Instruction>(OI))
853              if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
854                IncV = 0;
855                break;
856              }
857          if (!IncV)
858            break;
859          // Advance to the next instruction.
860          IncV = dyn_cast<Instruction>(IncV->getOperand(0));
861          if (!IncV)
862            break;
863          if (IncV->mayHaveSideEffects()) {
864            IncV = 0;
865            break;
866          }
867        } while (IncV != PN);
868
869        if (IncV) {
870          // Ok, the add recurrence looks usable.
871          // Remember this PHI, even in post-inc mode.
872          InsertedValues.insert(PN);
873          // Remember the increment.
874          IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
875          rememberInstruction(IncV);
876          if (L == IVIncInsertLoop)
877            do {
878              if (SE.DT->dominates(IncV, IVIncInsertPos))
879                break;
880              // Make sure the increment is where we want it. But don't move it
881              // down past a potential existing post-inc user.
882              IncV->moveBefore(IVIncInsertPos);
883              IVIncInsertPos = IncV;
884              IncV = cast<Instruction>(IncV->getOperand(0));
885            } while (IncV != PN);
886          return PN;
887        }
888      }
889
890  // Save the original insertion point so we can restore it when we're done.
891  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
892  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
893
894  // Expand code for the start value.
895  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
896                                L->getHeader()->begin());
897
898  // Expand code for the step value. Insert instructions right before the
899  // terminator corresponding to the back-edge. Do this before creating the PHI
900  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
901  // negative, insert a sub instead of an add for the increment (unless it's a
902  // constant, because subtracts of constants are canonicalized to adds).
903  const SCEV *Step = Normalized->getStepRecurrence(SE);
904  bool isPointer = ExpandTy->isPointerTy();
905  bool isNegative = !isPointer && isNonConstantNegative(Step);
906  if (isNegative)
907    Step = SE.getNegativeSCEV(Step);
908  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
909
910  // Create the PHI.
911  Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
912  PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
913  rememberInstruction(PN);
914
915  // Create the step instructions and populate the PHI.
916  BasicBlock *Header = L->getHeader();
917  for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
918       HPI != HPE; ++HPI) {
919    BasicBlock *Pred = *HPI;
920
921    // Add a start value.
922    if (!L->contains(Pred)) {
923      PN->addIncoming(StartV, Pred);
924      continue;
925    }
926
927    // Create a step value and add it to the PHI. If IVIncInsertLoop is
928    // non-null and equal to the addrec's loop, insert the instructions
929    // at IVIncInsertPos.
930    Instruction *InsertPos = L == IVIncInsertLoop ?
931      IVIncInsertPos : Pred->getTerminator();
932    Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
933    Value *IncV;
934    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
935    if (isPointer) {
936      const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
937      // If the step isn't constant, don't use an implicitly scaled GEP, because
938      // that would require a multiply inside the loop.
939      if (!isa<ConstantInt>(StepV))
940        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
941                                    GEPPtrTy->getAddressSpace());
942      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
943      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
944      if (IncV->getType() != PN->getType()) {
945        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
946        rememberInstruction(IncV);
947      }
948    } else {
949      IncV = isNegative ?
950        Builder.CreateSub(PN, StepV, "lsr.iv.next") :
951        Builder.CreateAdd(PN, StepV, "lsr.iv.next");
952      rememberInstruction(IncV);
953    }
954    PN->addIncoming(IncV, Pred);
955  }
956
957  // Restore the original insert point.
958  if (SaveInsertBB)
959    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
960
961  // Remember this PHI, even in post-inc mode.
962  InsertedValues.insert(PN);
963
964  return PN;
965}
966
967Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
968  const Type *STy = S->getType();
969  const Type *IntTy = SE.getEffectiveSCEVType(STy);
970  const Loop *L = S->getLoop();
971
972  // Determine a normalized form of this expression, which is the expression
973  // before any post-inc adjustment is made.
974  const SCEVAddRecExpr *Normalized = S;
975  if (PostIncLoops.count(L)) {
976    PostIncLoopSet Loops;
977    Loops.insert(L);
978    Normalized =
979      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
980                                                  Loops, SE, *SE.DT));
981  }
982
983  // Strip off any non-loop-dominating component from the addrec start.
984  const SCEV *Start = Normalized->getStart();
985  const SCEV *PostLoopOffset = 0;
986  if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
987    PostLoopOffset = Start;
988    Start = SE.getConstant(Normalized->getType(), 0);
989    Normalized =
990      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
991                                            Normalized->getStepRecurrence(SE),
992                                            Normalized->getLoop()));
993  }
994
995  // Strip off any non-loop-dominating component from the addrec step.
996  const SCEV *Step = Normalized->getStepRecurrence(SE);
997  const SCEV *PostLoopScale = 0;
998  if (!Step->dominates(L->getHeader(), SE.DT)) {
999    PostLoopScale = Step;
1000    Step = SE.getConstant(Normalized->getType(), 1);
1001    Normalized =
1002      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1003                                            Normalized->getLoop()));
1004  }
1005
1006  // Expand the core addrec. If we need post-loop scaling, force it to
1007  // expand to an integer type to avoid the need for additional casting.
1008  const Type *ExpandTy = PostLoopScale ? IntTy : STy;
1009  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1010
1011  // Accommodate post-inc mode, if necessary.
1012  Value *Result;
1013  if (!PostIncLoops.count(L))
1014    Result = PN;
1015  else {
1016    // In PostInc mode, use the post-incremented value.
1017    BasicBlock *LatchBlock = L->getLoopLatch();
1018    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1019    Result = PN->getIncomingValueForBlock(LatchBlock);
1020  }
1021
1022  // Re-apply any non-loop-dominating scale.
1023  if (PostLoopScale) {
1024    Result = InsertNoopCastOfTo(Result, IntTy);
1025    Result = Builder.CreateMul(Result,
1026                               expandCodeFor(PostLoopScale, IntTy));
1027    rememberInstruction(Result);
1028  }
1029
1030  // Re-apply any non-loop-dominating offset.
1031  if (PostLoopOffset) {
1032    if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1033      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1034      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1035    } else {
1036      Result = InsertNoopCastOfTo(Result, IntTy);
1037      Result = Builder.CreateAdd(Result,
1038                                 expandCodeFor(PostLoopOffset, IntTy));
1039      rememberInstruction(Result);
1040    }
1041  }
1042
1043  return Result;
1044}
1045
1046Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1047  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1048
1049  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1050  const Loop *L = S->getLoop();
1051
1052  // First check for an existing canonical IV in a suitable type.
1053  PHINode *CanonicalIV = 0;
1054  if (PHINode *PN = L->getCanonicalInductionVariable())
1055    if (SE.isSCEVable(PN->getType()) &&
1056        SE.getEffectiveSCEVType(PN->getType())->isIntegerTy() &&
1057        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1058      CanonicalIV = PN;
1059
1060  // Rewrite an AddRec in terms of the canonical induction variable, if
1061  // its type is more narrow.
1062  if (CanonicalIV &&
1063      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1064      SE.getTypeSizeInBits(Ty)) {
1065    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1066    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1067      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1068    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
1069    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1070    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1071    BasicBlock::iterator NewInsertPt =
1072      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1073    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
1074    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1075                      NewInsertPt);
1076    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1077    return V;
1078  }
1079
1080  // {X,+,F} --> X + {0,+,F}
1081  if (!S->getStart()->isZero()) {
1082    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1083    NewOps[0] = SE.getConstant(Ty, 0);
1084    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
1085
1086    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1087    // comments on expandAddToGEP for details.
1088    const SCEV *Base = S->getStart();
1089    const SCEV *RestArray[1] = { Rest };
1090    // Dig into the expression to find the pointer base for a GEP.
1091    ExposePointerBase(Base, RestArray[0], SE);
1092    // If we found a pointer, expand the AddRec with a GEP.
1093    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1094      // Make sure the Base isn't something exotic, such as a multiplied
1095      // or divided pointer value. In those cases, the result type isn't
1096      // actually a pointer type.
1097      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1098        Value *StartV = expand(Base);
1099        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1100        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1101      }
1102    }
1103
1104    // Just do a normal add. Pre-expand the operands to suppress folding.
1105    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1106                                SE.getUnknown(expand(Rest))));
1107  }
1108
1109  // {0,+,1} --> Insert a canonical induction variable into the loop!
1110  if (S->isAffine() &&
1111      S->getOperand(1) == SE.getConstant(Ty, 1)) {
1112    // If there's a canonical IV, just use it.
1113    if (CanonicalIV) {
1114      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1115             "IVs with types different from the canonical IV should "
1116             "already have been handled!");
1117      return CanonicalIV;
1118    }
1119
1120    // Create and insert the PHI node for the induction variable in the
1121    // specified loop.
1122    BasicBlock *Header = L->getHeader();
1123    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
1124    rememberInstruction(PN);
1125
1126    Constant *One = ConstantInt::get(Ty, 1);
1127    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
1128         HPI != HPE; ++HPI)
1129      if (L->contains(*HPI)) {
1130        // Insert a unit add instruction right before the terminator
1131        // corresponding to the back-edge.
1132        Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
1133                                                     (*HPI)->getTerminator());
1134        rememberInstruction(Add);
1135        PN->addIncoming(Add, *HPI);
1136      } else {
1137        PN->addIncoming(Constant::getNullValue(Ty), *HPI);
1138      }
1139  }
1140
1141  // {0,+,F} --> {0,+,1} * F
1142  // Get the canonical induction variable I for this loop.
1143  Value *I = CanonicalIV ?
1144             CanonicalIV :
1145             getOrInsertCanonicalInductionVariable(L, Ty);
1146
1147  // If this is a simple linear addrec, emit it now as a special case.
1148  if (S->isAffine())    // {0,+,F} --> i*F
1149    return
1150      expand(SE.getTruncateOrNoop(
1151        SE.getMulExpr(SE.getUnknown(I),
1152                      SE.getNoopOrAnyExtend(S->getOperand(1),
1153                                            I->getType())),
1154        Ty));
1155
1156  // If this is a chain of recurrences, turn it into a closed form, using the
1157  // folders, then expandCodeFor the closed form.  This allows the folders to
1158  // simplify the expression without having to build a bunch of special code
1159  // into this folder.
1160  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
1161
1162  // Promote S up to the canonical IV type, if the cast is foldable.
1163  const SCEV *NewS = S;
1164  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
1165  if (isa<SCEVAddRecExpr>(Ext))
1166    NewS = Ext;
1167
1168  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1169  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1170
1171  // Truncate the result down to the original type, if needed.
1172  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1173  return expand(T);
1174}
1175
1176Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1177  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1178  Value *V = expandCodeFor(S->getOperand(),
1179                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1180  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1181  rememberInstruction(I);
1182  return I;
1183}
1184
1185Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1186  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1187  Value *V = expandCodeFor(S->getOperand(),
1188                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1189  Value *I = Builder.CreateZExt(V, Ty, "tmp");
1190  rememberInstruction(I);
1191  return I;
1192}
1193
1194Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1195  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1196  Value *V = expandCodeFor(S->getOperand(),
1197                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1198  Value *I = Builder.CreateSExt(V, Ty, "tmp");
1199  rememberInstruction(I);
1200  return I;
1201}
1202
1203Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1204  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1205  const Type *Ty = LHS->getType();
1206  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1207    // In the case of mixed integer and pointer types, do the
1208    // rest of the comparisons as integer.
1209    if (S->getOperand(i)->getType() != Ty) {
1210      Ty = SE.getEffectiveSCEVType(Ty);
1211      LHS = InsertNoopCastOfTo(LHS, Ty);
1212    }
1213    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1214    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1215    rememberInstruction(ICmp);
1216    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1217    rememberInstruction(Sel);
1218    LHS = Sel;
1219  }
1220  // In the case of mixed integer and pointer types, cast the
1221  // final result back to the pointer type.
1222  if (LHS->getType() != S->getType())
1223    LHS = InsertNoopCastOfTo(LHS, S->getType());
1224  return LHS;
1225}
1226
1227Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1228  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1229  const Type *Ty = LHS->getType();
1230  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1231    // In the case of mixed integer and pointer types, do the
1232    // rest of the comparisons as integer.
1233    if (S->getOperand(i)->getType() != Ty) {
1234      Ty = SE.getEffectiveSCEVType(Ty);
1235      LHS = InsertNoopCastOfTo(LHS, Ty);
1236    }
1237    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1238    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1239    rememberInstruction(ICmp);
1240    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1241    rememberInstruction(Sel);
1242    LHS = Sel;
1243  }
1244  // In the case of mixed integer and pointer types, cast the
1245  // final result back to the pointer type.
1246  if (LHS->getType() != S->getType())
1247    LHS = InsertNoopCastOfTo(LHS, S->getType());
1248  return LHS;
1249}
1250
1251Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty,
1252                                   Instruction *I) {
1253  BasicBlock::iterator IP = I;
1254  while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1255    ++IP;
1256  Builder.SetInsertPoint(IP->getParent(), IP);
1257  return expandCodeFor(SH, Ty);
1258}
1259
1260Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
1261  // Expand the code for this SCEV.
1262  Value *V = expand(SH);
1263  if (Ty) {
1264    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1265           "non-trivial casts should be done with the SCEVs directly!");
1266    V = InsertNoopCastOfTo(V, Ty);
1267  }
1268  return V;
1269}
1270
1271Value *SCEVExpander::expand(const SCEV *S) {
1272  // Compute an insertion point for this SCEV object. Hoist the instructions
1273  // as far out in the loop nest as possible.
1274  Instruction *InsertPt = Builder.GetInsertPoint();
1275  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1276       L = L->getParentLoop())
1277    if (S->isLoopInvariant(L)) {
1278      if (!L) break;
1279      if (BasicBlock *Preheader = L->getLoopPreheader())
1280        InsertPt = Preheader->getTerminator();
1281    } else {
1282      // If the SCEV is computable at this level, insert it into the header
1283      // after the PHIs (and after any other instructions that we've inserted
1284      // there) so that it is guaranteed to dominate any user inside the loop.
1285      if (L && S->hasComputableLoopEvolution(L) && !PostIncLoops.count(L))
1286        InsertPt = L->getHeader()->getFirstNonPHI();
1287      while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1288        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1289      break;
1290    }
1291
1292  // Check to see if we already expanded this here.
1293  std::map<std::pair<const SCEV *, Instruction *>,
1294           AssertingVH<Value> >::iterator I =
1295    InsertedExpressions.find(std::make_pair(S, InsertPt));
1296  if (I != InsertedExpressions.end())
1297    return I->second;
1298
1299  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1300  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1301  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1302
1303  // Expand the expression into instructions.
1304  Value *V = visit(S);
1305
1306  // Remember the expanded value for this SCEV at this location.
1307  if (PostIncLoops.empty())
1308    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1309
1310  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1311  return V;
1312}
1313
1314void SCEVExpander::rememberInstruction(Value *I) {
1315  if (PostIncLoops.empty())
1316    InsertedValues.insert(I);
1317
1318  // If we just claimed an existing instruction and that instruction had
1319  // been the insert point, adjust the insert point forward so that
1320  // subsequently inserted code will be dominated.
1321  if (Builder.GetInsertPoint() == I) {
1322    BasicBlock::iterator It = cast<Instruction>(I);
1323    do { ++It; } while (isInsertedInstruction(It) ||
1324                        isa<DbgInfoIntrinsic>(It));
1325    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1326  }
1327}
1328
1329void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1330  // If we acquired more instructions since the old insert point was saved,
1331  // advance past them.
1332  while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1333
1334  Builder.SetInsertPoint(BB, I);
1335}
1336
1337/// getOrInsertCanonicalInductionVariable - This method returns the
1338/// canonical induction variable of the specified type for the specified
1339/// loop (inserting one if there is none).  A canonical induction variable
1340/// starts at zero and steps by one on each iteration.
1341Value *
1342SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1343                                                    const Type *Ty) {
1344  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1345  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1346                                   SE.getConstant(Ty, 1), L);
1347  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1348  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1349  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
1350  if (SaveInsertBB)
1351    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1352  return V;
1353}
1354