ScalarEvolutionExpander.cpp revision f8d0578e4cbd5922696c92f5068c5513d8e8d60e
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace llvm;
23
24/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
25/// which must be possible with a noop cast, doing what we can to share
26/// the casts.
27Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
28  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
29  assert((Op == Instruction::BitCast ||
30          Op == Instruction::PtrToInt ||
31          Op == Instruction::IntToPtr) &&
32         "InsertNoopCastOfTo cannot perform non-noop casts!");
33  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
34         "InsertNoopCastOfTo cannot change sizes!");
35
36  // Short-circuit unnecessary bitcasts.
37  if (Op == Instruction::BitCast && V->getType() == Ty)
38    return V;
39
40  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
41  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
42      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
43    if (CastInst *CI = dyn_cast<CastInst>(V))
44      if ((CI->getOpcode() == Instruction::PtrToInt ||
45           CI->getOpcode() == Instruction::IntToPtr) &&
46          SE.getTypeSizeInBits(CI->getType()) ==
47          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
48        return CI->getOperand(0);
49    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
50      if ((CE->getOpcode() == Instruction::PtrToInt ||
51           CE->getOpcode() == Instruction::IntToPtr) &&
52          SE.getTypeSizeInBits(CE->getType()) ==
53          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
54        return CE->getOperand(0);
55  }
56
57  if (Constant *C = dyn_cast<Constant>(V))
58    return ConstantExpr::getCast(Op, C, Ty);
59
60  if (Argument *A = dyn_cast<Argument>(V)) {
61    // Check to see if there is already a cast!
62    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
63         UI != E; ++UI)
64      if ((*UI)->getType() == Ty)
65        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
66          if (CI->getOpcode() == Op) {
67            // If the cast isn't the first instruction of the function, move it.
68            if (BasicBlock::iterator(CI) !=
69                A->getParent()->getEntryBlock().begin()) {
70              // Recreate the cast at the beginning of the entry block.
71              // The old cast is left in place in case it is being used
72              // as an insert point.
73              Instruction *NewCI =
74                CastInst::Create(Op, V, Ty, "",
75                                 A->getParent()->getEntryBlock().begin());
76              NewCI->takeName(CI);
77              CI->replaceAllUsesWith(NewCI);
78              return NewCI;
79            }
80            return CI;
81          }
82
83    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
84                                      A->getParent()->getEntryBlock().begin());
85    rememberInstruction(I);
86    return I;
87  }
88
89  Instruction *I = cast<Instruction>(V);
90
91  // Check to see if there is already a cast.  If there is, use it.
92  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
93       UI != E; ++UI) {
94    if ((*UI)->getType() == Ty)
95      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
96        if (CI->getOpcode() == Op) {
97          BasicBlock::iterator It = I; ++It;
98          if (isa<InvokeInst>(I))
99            It = cast<InvokeInst>(I)->getNormalDest()->begin();
100          while (isa<PHINode>(It)) ++It;
101          if (It != BasicBlock::iterator(CI)) {
102            // Recreate the cast after the user.
103            // The old cast is left in place in case it is being used
104            // as an insert point.
105            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
106            NewCI->takeName(CI);
107            CI->replaceAllUsesWith(NewCI);
108            rememberInstruction(NewCI);
109            return NewCI;
110          }
111          rememberInstruction(CI);
112          return CI;
113        }
114  }
115  BasicBlock::iterator IP = I; ++IP;
116  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
117    IP = II->getNormalDest()->begin();
118  while (isa<PHINode>(IP)) ++IP;
119  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
120  rememberInstruction(CI);
121  return CI;
122}
123
124/// InsertBinop - Insert the specified binary operator, doing a small amount
125/// of work to avoid inserting an obviously redundant operation.
126Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
127                                 Value *LHS, Value *RHS) {
128  // Fold a binop with constant operands.
129  if (Constant *CLHS = dyn_cast<Constant>(LHS))
130    if (Constant *CRHS = dyn_cast<Constant>(RHS))
131      return ConstantExpr::get(Opcode, CLHS, CRHS);
132
133  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
134  unsigned ScanLimit = 6;
135  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
136  // Scanning starts from the last instruction before the insertion point.
137  BasicBlock::iterator IP = Builder.GetInsertPoint();
138  if (IP != BlockBegin) {
139    --IP;
140    for (; ScanLimit; --IP, --ScanLimit) {
141      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
142      // generated code.
143      if (isa<DbgInfoIntrinsic>(IP))
144        ScanLimit++;
145      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
146          IP->getOperand(1) == RHS)
147        return IP;
148      if (IP == BlockBegin) break;
149    }
150  }
151
152  // Save the original insertion point so we can restore it when we're done.
153  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
154  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
155
156  // Move the insertion point out of as many loops as we can.
157  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
158    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
159    BasicBlock *Preheader = L->getLoopPreheader();
160    if (!Preheader) break;
161
162    // Ok, move up a level.
163    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
164  }
165
166  // If we haven't found this binop, insert it.
167  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
168  rememberInstruction(BO);
169
170  // Restore the original insert point.
171  if (SaveInsertBB)
172    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
173
174  return BO;
175}
176
177/// FactorOutConstant - Test if S is divisible by Factor, using signed
178/// division. If so, update S with Factor divided out and return true.
179/// S need not be evenly divisible if a reasonable remainder can be
180/// computed.
181/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
182/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
183/// check to see if the divide was folded.
184static bool FactorOutConstant(const SCEV *&S,
185                              const SCEV *&Remainder,
186                              const SCEV *Factor,
187                              ScalarEvolution &SE,
188                              const TargetData *TD) {
189  // Everything is divisible by one.
190  if (Factor->isOne())
191    return true;
192
193  // x/x == 1.
194  if (S == Factor) {
195    S = SE.getIntegerSCEV(1, S->getType());
196    return true;
197  }
198
199  // For a Constant, check for a multiple of the given factor.
200  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
201    // 0/x == 0.
202    if (C->isZero())
203      return true;
204    // Check for divisibility.
205    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
206      ConstantInt *CI =
207        ConstantInt::get(SE.getContext(),
208                         C->getValue()->getValue().sdiv(
209                                                   FC->getValue()->getValue()));
210      // If the quotient is zero and the remainder is non-zero, reject
211      // the value at this scale. It will be considered for subsequent
212      // smaller scales.
213      if (!CI->isZero()) {
214        const SCEV *Div = SE.getConstant(CI);
215        S = Div;
216        Remainder =
217          SE.getAddExpr(Remainder,
218                        SE.getConstant(C->getValue()->getValue().srem(
219                                                  FC->getValue()->getValue())));
220        return true;
221      }
222    }
223  }
224
225  // In a Mul, check if there is a constant operand which is a multiple
226  // of the given factor.
227  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
228    if (TD) {
229      // With TargetData, the size is known. Check if there is a constant
230      // operand which is a multiple of the given factor. If so, we can
231      // factor it.
232      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
233      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
234        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
235          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
236          NewMulOps[0] =
237            SE.getConstant(C->getValue()->getValue().sdiv(
238                                                   FC->getValue()->getValue()));
239          S = SE.getMulExpr(NewMulOps);
240          return true;
241        }
242    } else {
243      // Without TargetData, check if Factor can be factored out of any of the
244      // Mul's operands. If so, we can just remove it.
245      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
246        const SCEV *SOp = M->getOperand(i);
247        const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
248        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
249            Remainder->isZero()) {
250          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
251          NewMulOps[i] = SOp;
252          S = SE.getMulExpr(NewMulOps);
253          return true;
254        }
255      }
256    }
257  }
258
259  // In an AddRec, check if both start and step are divisible.
260  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
261    const SCEV *Step = A->getStepRecurrence(SE);
262    const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
263    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
264      return false;
265    if (!StepRem->isZero())
266      return false;
267    const SCEV *Start = A->getStart();
268    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
269      return false;
270    S = SE.getAddRecExpr(Start, Step, A->getLoop());
271    return true;
272  }
273
274  return false;
275}
276
277/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
278/// is the number of SCEVAddRecExprs present, which are kept at the end of
279/// the list.
280///
281static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
282                                const Type *Ty,
283                                ScalarEvolution &SE) {
284  unsigned NumAddRecs = 0;
285  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
286    ++NumAddRecs;
287  // Group Ops into non-addrecs and addrecs.
288  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
289  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
290  // Let ScalarEvolution sort and simplify the non-addrecs list.
291  const SCEV *Sum = NoAddRecs.empty() ?
292                    SE.getIntegerSCEV(0, Ty) :
293                    SE.getAddExpr(NoAddRecs);
294  // If it returned an add, use the operands. Otherwise it simplified
295  // the sum into a single value, so just use that.
296  Ops.clear();
297  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
298    Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
299  else if (!Sum->isZero())
300    Ops.push_back(Sum);
301  // Then append the addrecs.
302  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
303}
304
305/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
306/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
307/// This helps expose more opportunities for folding parts of the expressions
308/// into GEP indices.
309///
310static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
311                         const Type *Ty,
312                         ScalarEvolution &SE) {
313  // Find the addrecs.
314  SmallVector<const SCEV *, 8> AddRecs;
315  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
316    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
317      const SCEV *Start = A->getStart();
318      if (Start->isZero()) break;
319      const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
320      AddRecs.push_back(SE.getAddRecExpr(Zero,
321                                         A->getStepRecurrence(SE),
322                                         A->getLoop()));
323      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
324        Ops[i] = Zero;
325        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
326        e += Add->getNumOperands();
327      } else {
328        Ops[i] = Start;
329      }
330    }
331  if (!AddRecs.empty()) {
332    // Add the addrecs onto the end of the list.
333    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
334    // Resort the operand list, moving any constants to the front.
335    SimplifyAddOperands(Ops, Ty, SE);
336  }
337}
338
339/// expandAddToGEP - Expand an addition expression with a pointer type into
340/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
341/// BasicAliasAnalysis and other passes analyze the result. See the rules
342/// for getelementptr vs. inttoptr in
343/// http://llvm.org/docs/LangRef.html#pointeraliasing
344/// for details.
345///
346/// Design note: The correctness of using getelementptr here depends on
347/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
348/// they may introduce pointer arithmetic which may not be safely converted
349/// into getelementptr.
350///
351/// Design note: It might seem desirable for this function to be more
352/// loop-aware. If some of the indices are loop-invariant while others
353/// aren't, it might seem desirable to emit multiple GEPs, keeping the
354/// loop-invariant portions of the overall computation outside the loop.
355/// However, there are a few reasons this is not done here. Hoisting simple
356/// arithmetic is a low-level optimization that often isn't very
357/// important until late in the optimization process. In fact, passes
358/// like InstructionCombining will combine GEPs, even if it means
359/// pushing loop-invariant computation down into loops, so even if the
360/// GEPs were split here, the work would quickly be undone. The
361/// LoopStrengthReduction pass, which is usually run quite late (and
362/// after the last InstructionCombining pass), takes care of hoisting
363/// loop-invariant portions of expressions, after considering what
364/// can be folded using target addressing modes.
365///
366Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
367                                    const SCEV *const *op_end,
368                                    const PointerType *PTy,
369                                    const Type *Ty,
370                                    Value *V) {
371  const Type *ElTy = PTy->getElementType();
372  SmallVector<Value *, 4> GepIndices;
373  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
374  bool AnyNonZeroIndices = false;
375
376  // Split AddRecs up into parts as either of the parts may be usable
377  // without the other.
378  SplitAddRecs(Ops, Ty, SE);
379
380  // Descend down the pointer's type and attempt to convert the other
381  // operands into GEP indices, at each level. The first index in a GEP
382  // indexes into the array implied by the pointer operand; the rest of
383  // the indices index into the element or field type selected by the
384  // preceding index.
385  for (;;) {
386    // If the scale size is not 0, attempt to factor out a scale for
387    // array indexing.
388    SmallVector<const SCEV *, 8> ScaledOps;
389    if (ElTy->isSized()) {
390      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
391      if (!ElSize->isZero()) {
392        SmallVector<const SCEV *, 8> NewOps;
393        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
394          const SCEV *Op = Ops[i];
395          const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
396          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
397            // Op now has ElSize factored out.
398            ScaledOps.push_back(Op);
399            if (!Remainder->isZero())
400              NewOps.push_back(Remainder);
401            AnyNonZeroIndices = true;
402          } else {
403            // The operand was not divisible, so add it to the list of operands
404            // we'll scan next iteration.
405            NewOps.push_back(Ops[i]);
406          }
407        }
408        // If we made any changes, update Ops.
409        if (!ScaledOps.empty()) {
410          Ops = NewOps;
411          SimplifyAddOperands(Ops, Ty, SE);
412        }
413      }
414    }
415
416    // Record the scaled array index for this level of the type. If
417    // we didn't find any operands that could be factored, tentatively
418    // assume that element zero was selected (since the zero offset
419    // would obviously be folded away).
420    Value *Scaled = ScaledOps.empty() ?
421                    Constant::getNullValue(Ty) :
422                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
423    GepIndices.push_back(Scaled);
424
425    // Collect struct field index operands.
426    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
427      bool FoundFieldNo = false;
428      // An empty struct has no fields.
429      if (STy->getNumElements() == 0) break;
430      if (SE.TD) {
431        // With TargetData, field offsets are known. See if a constant offset
432        // falls within any of the struct fields.
433        if (Ops.empty()) break;
434        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
435          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
436            const StructLayout &SL = *SE.TD->getStructLayout(STy);
437            uint64_t FullOffset = C->getValue()->getZExtValue();
438            if (FullOffset < SL.getSizeInBytes()) {
439              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
440              GepIndices.push_back(
441                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
442              ElTy = STy->getTypeAtIndex(ElIdx);
443              Ops[0] =
444                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
445              AnyNonZeroIndices = true;
446              FoundFieldNo = true;
447            }
448          }
449      } else {
450        // Without TargetData, just check for an offsetof expression of the
451        // appropriate struct type.
452        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
453          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
454            const Type *CTy;
455            Constant *FieldNo;
456            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
457              GepIndices.push_back(FieldNo);
458              ElTy =
459                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
460              Ops[i] = SE.getConstant(Ty, 0);
461              AnyNonZeroIndices = true;
462              FoundFieldNo = true;
463              break;
464            }
465          }
466      }
467      // If no struct field offsets were found, tentatively assume that
468      // field zero was selected (since the zero offset would obviously
469      // be folded away).
470      if (!FoundFieldNo) {
471        ElTy = STy->getTypeAtIndex(0u);
472        GepIndices.push_back(
473          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
474      }
475    }
476
477    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
478      ElTy = ATy->getElementType();
479    else
480      break;
481  }
482
483  // If none of the operands were convertible to proper GEP indices, cast
484  // the base to i8* and do an ugly getelementptr with that. It's still
485  // better than ptrtoint+arithmetic+inttoptr at least.
486  if (!AnyNonZeroIndices) {
487    // Cast the base to i8*.
488    V = InsertNoopCastOfTo(V,
489       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
490
491    // Expand the operands for a plain byte offset.
492    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
493
494    // Fold a GEP with constant operands.
495    if (Constant *CLHS = dyn_cast<Constant>(V))
496      if (Constant *CRHS = dyn_cast<Constant>(Idx))
497        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
498
499    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
500    unsigned ScanLimit = 6;
501    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
502    // Scanning starts from the last instruction before the insertion point.
503    BasicBlock::iterator IP = Builder.GetInsertPoint();
504    if (IP != BlockBegin) {
505      --IP;
506      for (; ScanLimit; --IP, --ScanLimit) {
507        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
508        // generated code.
509        if (isa<DbgInfoIntrinsic>(IP))
510          ScanLimit++;
511        if (IP->getOpcode() == Instruction::GetElementPtr &&
512            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
513          return IP;
514        if (IP == BlockBegin) break;
515      }
516    }
517
518    // Save the original insertion point so we can restore it when we're done.
519    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
520    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
521
522    // Move the insertion point out of as many loops as we can.
523    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
524      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
525      BasicBlock *Preheader = L->getLoopPreheader();
526      if (!Preheader) break;
527
528      // Ok, move up a level.
529      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
530    }
531
532    // Emit a GEP.
533    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
534    rememberInstruction(GEP);
535
536    // Restore the original insert point.
537    if (SaveInsertBB)
538      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
539
540    return GEP;
541  }
542
543  // Save the original insertion point so we can restore it when we're done.
544  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
545  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
546
547  // Move the insertion point out of as many loops as we can.
548  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
549    if (!L->isLoopInvariant(V)) break;
550
551    bool AnyIndexNotLoopInvariant = false;
552    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
553         E = GepIndices.end(); I != E; ++I)
554      if (!L->isLoopInvariant(*I)) {
555        AnyIndexNotLoopInvariant = true;
556        break;
557      }
558    if (AnyIndexNotLoopInvariant)
559      break;
560
561    BasicBlock *Preheader = L->getLoopPreheader();
562    if (!Preheader) break;
563
564    // Ok, move up a level.
565    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
566  }
567
568  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
569  // because ScalarEvolution may have changed the address arithmetic to
570  // compute a value which is beyond the end of the allocated object.
571  Value *Casted = V;
572  if (V->getType() != PTy)
573    Casted = InsertNoopCastOfTo(Casted, PTy);
574  Value *GEP = Builder.CreateGEP(Casted,
575                                 GepIndices.begin(),
576                                 GepIndices.end(),
577                                 "scevgep");
578  Ops.push_back(SE.getUnknown(GEP));
579  rememberInstruction(GEP);
580
581  // Restore the original insert point.
582  if (SaveInsertBB)
583    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
584
585  return expand(SE.getAddExpr(Ops));
586}
587
588/// isNonConstantNegative - Return true if the specified scev is negated, but
589/// not a constant.
590static bool isNonConstantNegative(const SCEV *F) {
591  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
592  if (!Mul) return false;
593
594  // If there is a constant factor, it will be first.
595  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
596  if (!SC) return false;
597
598  // Return true if the value is negative, this matches things like (-42 * V).
599  return SC->getValue()->getValue().isNegative();
600}
601
602/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603/// SCEV expansion. If they are nested, this is the most nested. If they are
604/// neighboring, pick the later.
605static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
606                                        DominatorTree &DT) {
607  if (!A) return B;
608  if (!B) return A;
609  if (A->contains(B)) return B;
610  if (B->contains(A)) return A;
611  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
612  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
613  return A; // Arbitrarily break the tie.
614}
615
616/// GetRelevantLoop - Get the most relevant loop associated with the given
617/// expression, according to PickMostRelevantLoop.
618static const Loop *GetRelevantLoop(const SCEV *S, LoopInfo &LI,
619                                   DominatorTree &DT) {
620  if (isa<SCEVConstant>(S))
621    return 0;
622  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
623    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
624      return LI.getLoopFor(I->getParent());
625    return 0;
626  }
627  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
628    const Loop *L = 0;
629    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
630      L = AR->getLoop();
631    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
632         I != E; ++I)
633      L = PickMostRelevantLoop(L, GetRelevantLoop(*I, LI, DT), DT);
634    return L;
635  }
636  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
637    return GetRelevantLoop(C->getOperand(), LI, DT);
638  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S))
639    return PickMostRelevantLoop(GetRelevantLoop(D->getLHS(), LI, DT),
640                                GetRelevantLoop(D->getRHS(), LI, DT),
641                                DT);
642  llvm_unreachable("Unexpected SCEV type!");
643}
644
645/// LoopCompare - Compare loops by PickMostRelevantLoop.
646class LoopCompare {
647  DominatorTree &DT;
648public:
649  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
650
651  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
652                  std::pair<const Loop *, const SCEV *> RHS) const {
653    // Compare loops with PickMostRelevantLoop.
654    if (LHS.first != RHS.first)
655      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
656
657    // If one operand is a non-constant negative and the other is not,
658    // put the non-constant negative on the right so that a sub can
659    // be used instead of a negate and add.
660    if (isNonConstantNegative(LHS.second)) {
661      if (!isNonConstantNegative(RHS.second))
662        return false;
663    } else if (isNonConstantNegative(RHS.second))
664      return true;
665
666    // Otherwise they are equivalent according to this comparison.
667    return false;
668  }
669};
670
671Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
672  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
673
674  // Collect all the add operands in a loop, along with their associated loops.
675  // Iterate in reverse so that constants are emitted last, all else equal, and
676  // so that pointer operands are inserted first, which the code below relies on
677  // to form more involved GEPs.
678  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
679  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
680       E(S->op_begin()); I != E; ++I)
681    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
682                                         *I));
683
684  // Sort by loop. Use a stable sort so that constants follow non-constants and
685  // pointer operands precede non-pointer operands.
686  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
687
688  // Emit instructions to add all the operands. Hoist as much as possible
689  // out of loops, and form meaningful getelementptrs where possible.
690  Value *Sum = 0;
691  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
692       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
693    const Loop *CurLoop = I->first;
694    const SCEV *Op = I->second;
695    if (!Sum) {
696      // This is the first operand. Just expand it.
697      Sum = expand(Op);
698      ++I;
699    } else if (const PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
700      // The running sum expression is a pointer. Try to form a getelementptr
701      // at this level with that as the base.
702      SmallVector<const SCEV *, 4> NewOps;
703      for (; I != E && I->first == CurLoop; ++I)
704        NewOps.push_back(I->second);
705      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
706    } else if (const PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
707      // The running sum is an integer, and there's a pointer at this level.
708      // Try to form a getelementptr. If the running sum is instructions,
709      // use a SCEVUnknown to avoid re-analyzing them.
710      SmallVector<const SCEV *, 4> NewOps;
711      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
712                                               SE.getSCEV(Sum));
713      for (++I; I != E && I->first == CurLoop; ++I)
714        NewOps.push_back(I->second);
715      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
716    } else if (isNonConstantNegative(Op)) {
717      // Instead of doing a negate and add, just do a subtract.
718      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
719      Sum = InsertNoopCastOfTo(Sum, Ty);
720      Sum = InsertBinop(Instruction::Sub, Sum, W);
721      ++I;
722    } else {
723      // A simple add.
724      Value *W = expandCodeFor(Op, Ty);
725      Sum = InsertNoopCastOfTo(Sum, Ty);
726      // Canonicalize a constant to the RHS.
727      if (isa<Constant>(Sum)) std::swap(Sum, W);
728      Sum = InsertBinop(Instruction::Add, Sum, W);
729      ++I;
730    }
731  }
732
733  return Sum;
734}
735
736Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
737  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
738
739  // Collect all the mul operands in a loop, along with their associated loops.
740  // Iterate in reverse so that constants are emitted last, all else equal.
741  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
742  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
743       E(S->op_begin()); I != E; ++I)
744    OpsAndLoops.push_back(std::make_pair(GetRelevantLoop(*I, *SE.LI, *SE.DT),
745                                         *I));
746
747  // Sort by loop. Use a stable sort so that constants follow non-constants.
748  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
749
750  // Emit instructions to mul all the operands. Hoist as much as possible
751  // out of loops.
752  Value *Prod = 0;
753  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
754       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
755    const SCEV *Op = I->second;
756    if (!Prod) {
757      // This is the first operand. Just expand it.
758      Prod = expand(Op);
759      ++I;
760    } else if (Op->isAllOnesValue()) {
761      // Instead of doing a multiply by negative one, just do a negate.
762      Prod = InsertNoopCastOfTo(Prod, Ty);
763      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
764      ++I;
765    } else {
766      // A simple mul.
767      Value *W = expandCodeFor(Op, Ty);
768      Prod = InsertNoopCastOfTo(Prod, Ty);
769      // Canonicalize a constant to the RHS.
770      if (isa<Constant>(Prod)) std::swap(Prod, W);
771      Prod = InsertBinop(Instruction::Mul, Prod, W);
772      ++I;
773    }
774  }
775
776  return Prod;
777}
778
779Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
780  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
781
782  Value *LHS = expandCodeFor(S->getLHS(), Ty);
783  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
784    const APInt &RHS = SC->getValue()->getValue();
785    if (RHS.isPowerOf2())
786      return InsertBinop(Instruction::LShr, LHS,
787                         ConstantInt::get(Ty, RHS.logBase2()));
788  }
789
790  Value *RHS = expandCodeFor(S->getRHS(), Ty);
791  return InsertBinop(Instruction::UDiv, LHS, RHS);
792}
793
794/// Move parts of Base into Rest to leave Base with the minimal
795/// expression that provides a pointer operand suitable for a
796/// GEP expansion.
797static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
798                              ScalarEvolution &SE) {
799  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
800    Base = A->getStart();
801    Rest = SE.getAddExpr(Rest,
802                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
803                                          A->getStepRecurrence(SE),
804                                          A->getLoop()));
805  }
806  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
807    Base = A->getOperand(A->getNumOperands()-1);
808    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
809    NewAddOps.back() = Rest;
810    Rest = SE.getAddExpr(NewAddOps);
811    ExposePointerBase(Base, Rest, SE);
812  }
813}
814
815/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
816/// the base addrec, which is the addrec without any non-loop-dominating
817/// values, and return the PHI.
818PHINode *
819SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
820                                        const Loop *L,
821                                        const Type *ExpandTy,
822                                        const Type *IntTy) {
823  // Reuse a previously-inserted PHI, if present.
824  for (BasicBlock::iterator I = L->getHeader()->begin();
825       PHINode *PN = dyn_cast<PHINode>(I); ++I)
826    if (SE.isSCEVable(PN->getType()) &&
827        (SE.getEffectiveSCEVType(PN->getType()) ==
828         SE.getEffectiveSCEVType(Normalized->getType())) &&
829        SE.getSCEV(PN) == Normalized)
830      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
831        Instruction *IncV =
832          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
833
834        // Determine if this is a well-behaved chain of instructions leading
835        // back to the PHI. It probably will be, if we're scanning an inner
836        // loop already visited by LSR for example, but it wouldn't have
837        // to be.
838        do {
839          if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV)) {
840            IncV = 0;
841            break;
842          }
843          // If any of the operands don't dominate the insert position, bail.
844          // Addrec operands are always loop-invariant, so this can only happen
845          // if there are instructions which haven't been hoisted.
846          for (User::op_iterator OI = IncV->op_begin()+1,
847               OE = IncV->op_end(); OI != OE; ++OI)
848            if (Instruction *OInst = dyn_cast<Instruction>(OI))
849              if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
850                IncV = 0;
851                break;
852              }
853          if (!IncV)
854            break;
855          // Advance to the next instruction.
856          IncV = dyn_cast<Instruction>(IncV->getOperand(0));
857          if (!IncV)
858            break;
859          if (IncV->mayHaveSideEffects()) {
860            IncV = 0;
861            break;
862          }
863        } while (IncV != PN);
864
865        if (IncV) {
866          // Ok, the add recurrence looks usable.
867          // Remember this PHI, even in post-inc mode.
868          InsertedValues.insert(PN);
869          // Remember the increment.
870          IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
871          rememberInstruction(IncV);
872          if (L == IVIncInsertLoop)
873            do {
874              if (SE.DT->dominates(IncV, IVIncInsertPos))
875                break;
876              // Make sure the increment is where we want it. But don't move it
877              // down past a potential existing post-inc user.
878              IncV->moveBefore(IVIncInsertPos);
879              IVIncInsertPos = IncV;
880              IncV = cast<Instruction>(IncV->getOperand(0));
881            } while (IncV != PN);
882          return PN;
883        }
884      }
885
886  // Save the original insertion point so we can restore it when we're done.
887  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
888  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
889
890  // Expand code for the start value.
891  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
892                                L->getHeader()->begin());
893
894  // Expand code for the step value. Insert instructions right before the
895  // terminator corresponding to the back-edge. Do this before creating the PHI
896  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
897  // negative, insert a sub instead of an add for the increment (unless it's a
898  // constant, because subtracts of constants are canonicalized to adds).
899  const SCEV *Step = Normalized->getStepRecurrence(SE);
900  bool isPointer = ExpandTy->isPointerTy();
901  bool isNegative = !isPointer && isNonConstantNegative(Step);
902  if (isNegative)
903    Step = SE.getNegativeSCEV(Step);
904  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
905
906  // Create the PHI.
907  Builder.SetInsertPoint(L->getHeader(), L->getHeader()->begin());
908  PHINode *PN = Builder.CreatePHI(ExpandTy, "lsr.iv");
909  rememberInstruction(PN);
910
911  // Create the step instructions and populate the PHI.
912  BasicBlock *Header = L->getHeader();
913  for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
914       HPI != HPE; ++HPI) {
915    BasicBlock *Pred = *HPI;
916
917    // Add a start value.
918    if (!L->contains(Pred)) {
919      PN->addIncoming(StartV, Pred);
920      continue;
921    }
922
923    // Create a step value and add it to the PHI. If IVIncInsertLoop is
924    // non-null and equal to the addrec's loop, insert the instructions
925    // at IVIncInsertPos.
926    Instruction *InsertPos = L == IVIncInsertLoop ?
927      IVIncInsertPos : Pred->getTerminator();
928    Builder.SetInsertPoint(InsertPos->getParent(), InsertPos);
929    Value *IncV;
930    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
931    if (isPointer) {
932      const PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
933      // If the step isn't constant, don't use an implicitly scaled GEP, because
934      // that would require a multiply inside the loop.
935      if (!isa<ConstantInt>(StepV))
936        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
937                                    GEPPtrTy->getAddressSpace());
938      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
939      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
940      if (IncV->getType() != PN->getType()) {
941        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
942        rememberInstruction(IncV);
943      }
944    } else {
945      IncV = isNegative ?
946        Builder.CreateSub(PN, StepV, "lsr.iv.next") :
947        Builder.CreateAdd(PN, StepV, "lsr.iv.next");
948      rememberInstruction(IncV);
949    }
950    PN->addIncoming(IncV, Pred);
951  }
952
953  // Restore the original insert point.
954  if (SaveInsertBB)
955    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
956
957  // Remember this PHI, even in post-inc mode.
958  InsertedValues.insert(PN);
959
960  return PN;
961}
962
963Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
964  const Type *STy = S->getType();
965  const Type *IntTy = SE.getEffectiveSCEVType(STy);
966  const Loop *L = S->getLoop();
967
968  // Determine a normalized form of this expression, which is the expression
969  // before any post-inc adjustment is made.
970  const SCEVAddRecExpr *Normalized = S;
971  if (PostIncLoops.count(L)) {
972    PostIncLoopSet Loops;
973    Loops.insert(L);
974    Normalized =
975      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
976                                                  Loops, SE, *SE.DT));
977  }
978
979  // Strip off any non-loop-dominating component from the addrec start.
980  const SCEV *Start = Normalized->getStart();
981  const SCEV *PostLoopOffset = 0;
982  if (!Start->properlyDominates(L->getHeader(), SE.DT)) {
983    PostLoopOffset = Start;
984    Start = SE.getIntegerSCEV(0, Normalized->getType());
985    Normalized =
986      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start,
987                                            Normalized->getStepRecurrence(SE),
988                                            Normalized->getLoop()));
989  }
990
991  // Strip off any non-loop-dominating component from the addrec step.
992  const SCEV *Step = Normalized->getStepRecurrence(SE);
993  const SCEV *PostLoopScale = 0;
994  if (!Step->hasComputableLoopEvolution(L) &&
995      !Step->dominates(L->getHeader(), SE.DT)) {
996    PostLoopScale = Step;
997    Step = SE.getIntegerSCEV(1, Normalized->getType());
998    Normalized =
999      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1000                                            Normalized->getLoop()));
1001  }
1002
1003  // Expand the core addrec. If we need post-loop scaling, force it to
1004  // expand to an integer type to avoid the need for additional casting.
1005  const Type *ExpandTy = PostLoopScale ? IntTy : STy;
1006  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1007
1008  // Accommodate post-inc mode, if necessary.
1009  Value *Result;
1010  if (!PostIncLoops.count(L))
1011    Result = PN;
1012  else {
1013    // In PostInc mode, use the post-incremented value.
1014    BasicBlock *LatchBlock = L->getLoopLatch();
1015    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1016    Result = PN->getIncomingValueForBlock(LatchBlock);
1017  }
1018
1019  // Re-apply any non-loop-dominating scale.
1020  if (PostLoopScale) {
1021    Result = InsertNoopCastOfTo(Result, IntTy);
1022    Result = Builder.CreateMul(Result,
1023                               expandCodeFor(PostLoopScale, IntTy));
1024    rememberInstruction(Result);
1025  }
1026
1027  // Re-apply any non-loop-dominating offset.
1028  if (PostLoopOffset) {
1029    if (const PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1030      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1031      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1032    } else {
1033      Result = InsertNoopCastOfTo(Result, IntTy);
1034      Result = Builder.CreateAdd(Result,
1035                                 expandCodeFor(PostLoopOffset, IntTy));
1036      rememberInstruction(Result);
1037    }
1038  }
1039
1040  return Result;
1041}
1042
1043Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1044  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1045
1046  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1047  const Loop *L = S->getLoop();
1048
1049  // First check for an existing canonical IV in a suitable type.
1050  PHINode *CanonicalIV = 0;
1051  if (PHINode *PN = L->getCanonicalInductionVariable())
1052    if (SE.isSCEVable(PN->getType()) &&
1053        SE.getEffectiveSCEVType(PN->getType())->isIntegerTy() &&
1054        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1055      CanonicalIV = PN;
1056
1057  // Rewrite an AddRec in terms of the canonical induction variable, if
1058  // its type is more narrow.
1059  if (CanonicalIV &&
1060      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1061      SE.getTypeSizeInBits(Ty)) {
1062    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1063    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1064      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1065    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
1066    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1067    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1068    BasicBlock::iterator NewInsertPt =
1069      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1070    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
1071    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1072                      NewInsertPt);
1073    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1074    return V;
1075  }
1076
1077  // {X,+,F} --> X + {0,+,F}
1078  if (!S->getStart()->isZero()) {
1079    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1080    NewOps[0] = SE.getIntegerSCEV(0, Ty);
1081    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
1082
1083    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1084    // comments on expandAddToGEP for details.
1085    const SCEV *Base = S->getStart();
1086    const SCEV *RestArray[1] = { Rest };
1087    // Dig into the expression to find the pointer base for a GEP.
1088    ExposePointerBase(Base, RestArray[0], SE);
1089    // If we found a pointer, expand the AddRec with a GEP.
1090    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1091      // Make sure the Base isn't something exotic, such as a multiplied
1092      // or divided pointer value. In those cases, the result type isn't
1093      // actually a pointer type.
1094      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1095        Value *StartV = expand(Base);
1096        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1097        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1098      }
1099    }
1100
1101    // Just do a normal add. Pre-expand the operands to suppress folding.
1102    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1103                                SE.getUnknown(expand(Rest))));
1104  }
1105
1106  // {0,+,1} --> Insert a canonical induction variable into the loop!
1107  if (S->isAffine() &&
1108      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
1109    // If there's a canonical IV, just use it.
1110    if (CanonicalIV) {
1111      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1112             "IVs with types different from the canonical IV should "
1113             "already have been handled!");
1114      return CanonicalIV;
1115    }
1116
1117    // Create and insert the PHI node for the induction variable in the
1118    // specified loop.
1119    BasicBlock *Header = L->getHeader();
1120    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
1121    rememberInstruction(PN);
1122
1123    Constant *One = ConstantInt::get(Ty, 1);
1124    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
1125         HPI != HPE; ++HPI)
1126      if (L->contains(*HPI)) {
1127        // Insert a unit add instruction right before the terminator
1128        // corresponding to the back-edge.
1129        Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
1130                                                     (*HPI)->getTerminator());
1131        rememberInstruction(Add);
1132        PN->addIncoming(Add, *HPI);
1133      } else {
1134        PN->addIncoming(Constant::getNullValue(Ty), *HPI);
1135      }
1136  }
1137
1138  // {0,+,F} --> {0,+,1} * F
1139  // Get the canonical induction variable I for this loop.
1140  Value *I = CanonicalIV ?
1141             CanonicalIV :
1142             getOrInsertCanonicalInductionVariable(L, Ty);
1143
1144  // If this is a simple linear addrec, emit it now as a special case.
1145  if (S->isAffine())    // {0,+,F} --> i*F
1146    return
1147      expand(SE.getTruncateOrNoop(
1148        SE.getMulExpr(SE.getUnknown(I),
1149                      SE.getNoopOrAnyExtend(S->getOperand(1),
1150                                            I->getType())),
1151        Ty));
1152
1153  // If this is a chain of recurrences, turn it into a closed form, using the
1154  // folders, then expandCodeFor the closed form.  This allows the folders to
1155  // simplify the expression without having to build a bunch of special code
1156  // into this folder.
1157  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
1158
1159  // Promote S up to the canonical IV type, if the cast is foldable.
1160  const SCEV *NewS = S;
1161  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
1162  if (isa<SCEVAddRecExpr>(Ext))
1163    NewS = Ext;
1164
1165  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1166  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1167
1168  // Truncate the result down to the original type, if needed.
1169  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1170  return expand(T);
1171}
1172
1173Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1174  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1175  Value *V = expandCodeFor(S->getOperand(),
1176                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1177  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1178  rememberInstruction(I);
1179  return I;
1180}
1181
1182Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1183  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1184  Value *V = expandCodeFor(S->getOperand(),
1185                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1186  Value *I = Builder.CreateZExt(V, Ty, "tmp");
1187  rememberInstruction(I);
1188  return I;
1189}
1190
1191Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1192  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
1193  Value *V = expandCodeFor(S->getOperand(),
1194                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1195  Value *I = Builder.CreateSExt(V, Ty, "tmp");
1196  rememberInstruction(I);
1197  return I;
1198}
1199
1200Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1201  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1202  const Type *Ty = LHS->getType();
1203  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1204    // In the case of mixed integer and pointer types, do the
1205    // rest of the comparisons as integer.
1206    if (S->getOperand(i)->getType() != Ty) {
1207      Ty = SE.getEffectiveSCEVType(Ty);
1208      LHS = InsertNoopCastOfTo(LHS, Ty);
1209    }
1210    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1211    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1212    rememberInstruction(ICmp);
1213    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1214    rememberInstruction(Sel);
1215    LHS = Sel;
1216  }
1217  // In the case of mixed integer and pointer types, cast the
1218  // final result back to the pointer type.
1219  if (LHS->getType() != S->getType())
1220    LHS = InsertNoopCastOfTo(LHS, S->getType());
1221  return LHS;
1222}
1223
1224Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1225  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1226  const Type *Ty = LHS->getType();
1227  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1228    // In the case of mixed integer and pointer types, do the
1229    // rest of the comparisons as integer.
1230    if (S->getOperand(i)->getType() != Ty) {
1231      Ty = SE.getEffectiveSCEVType(Ty);
1232      LHS = InsertNoopCastOfTo(LHS, Ty);
1233    }
1234    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1235    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1236    rememberInstruction(ICmp);
1237    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1238    rememberInstruction(Sel);
1239    LHS = Sel;
1240  }
1241  // In the case of mixed integer and pointer types, cast the
1242  // final result back to the pointer type.
1243  if (LHS->getType() != S->getType())
1244    LHS = InsertNoopCastOfTo(LHS, S->getType());
1245  return LHS;
1246}
1247
1248Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty,
1249                                   Instruction *I) {
1250  BasicBlock::iterator IP = I;
1251  while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1252    ++IP;
1253  Builder.SetInsertPoint(IP->getParent(), IP);
1254  return expandCodeFor(SH, Ty);
1255}
1256
1257Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
1258  // Expand the code for this SCEV.
1259  Value *V = expand(SH);
1260  if (Ty) {
1261    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1262           "non-trivial casts should be done with the SCEVs directly!");
1263    V = InsertNoopCastOfTo(V, Ty);
1264  }
1265  return V;
1266}
1267
1268Value *SCEVExpander::expand(const SCEV *S) {
1269  // Compute an insertion point for this SCEV object. Hoist the instructions
1270  // as far out in the loop nest as possible.
1271  Instruction *InsertPt = Builder.GetInsertPoint();
1272  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1273       L = L->getParentLoop())
1274    if (S->isLoopInvariant(L)) {
1275      if (!L) break;
1276      if (BasicBlock *Preheader = L->getLoopPreheader())
1277        InsertPt = Preheader->getTerminator();
1278    } else {
1279      // If the SCEV is computable at this level, insert it into the header
1280      // after the PHIs (and after any other instructions that we've inserted
1281      // there) so that it is guaranteed to dominate any user inside the loop.
1282      if (L && S->hasComputableLoopEvolution(L) && !PostIncLoops.count(L))
1283        InsertPt = L->getHeader()->getFirstNonPHI();
1284      while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1285        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1286      break;
1287    }
1288
1289  // Check to see if we already expanded this here.
1290  std::map<std::pair<const SCEV *, Instruction *>,
1291           AssertingVH<Value> >::iterator I =
1292    InsertedExpressions.find(std::make_pair(S, InsertPt));
1293  if (I != InsertedExpressions.end())
1294    return I->second;
1295
1296  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1297  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1298  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1299
1300  // Expand the expression into instructions.
1301  Value *V = visit(S);
1302
1303  // Remember the expanded value for this SCEV at this location.
1304  if (PostIncLoops.empty())
1305    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1306
1307  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1308  return V;
1309}
1310
1311void SCEVExpander::rememberInstruction(Value *I) {
1312  if (PostIncLoops.empty())
1313    InsertedValues.insert(I);
1314
1315  // If we just claimed an existing instruction and that instruction had
1316  // been the insert point, adjust the insert point forward so that
1317  // subsequently inserted code will be dominated.
1318  if (Builder.GetInsertPoint() == I) {
1319    BasicBlock::iterator It = cast<Instruction>(I);
1320    do { ++It; } while (isInsertedInstruction(It) ||
1321                        isa<DbgInfoIntrinsic>(It));
1322    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1323  }
1324}
1325
1326void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1327  // If we acquired more instructions since the old insert point was saved,
1328  // advance past them.
1329  while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1330
1331  Builder.SetInsertPoint(BB, I);
1332}
1333
1334/// getOrInsertCanonicalInductionVariable - This method returns the
1335/// canonical induction variable of the specified type for the specified
1336/// loop (inserting one if there is none).  A canonical induction variable
1337/// starts at zero and steps by one on each iteration.
1338Value *
1339SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1340                                                    const Type *Ty) {
1341  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1342  const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
1343                                   SE.getIntegerSCEV(1, Ty), L);
1344  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1345  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1346  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
1347  if (SaveInsertBB)
1348    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1349  return V;
1350}
1351