ScalarEvolutionExpander.cpp revision fb5a3419f351056e0f599699d276bcab412d2cce
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Target/TargetData.h"
19using namespace llvm;
20
21/// InsertCastOfTo - Insert a cast of V to the specified type, doing what
22/// we can to share the casts.
23Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
24                                    const Type *Ty) {
25  // Short-circuit unnecessary bitcasts.
26  if (opcode == Instruction::BitCast && V->getType() == Ty)
27    return V;
28
29  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
30  if ((opcode == Instruction::PtrToInt || opcode == Instruction::IntToPtr) &&
31      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
32    if (CastInst *CI = dyn_cast<CastInst>(V))
33      if ((CI->getOpcode() == Instruction::PtrToInt ||
34           CI->getOpcode() == Instruction::IntToPtr) &&
35          SE.getTypeSizeInBits(CI->getType()) ==
36          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
37        return CI->getOperand(0);
38    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
39      if ((CE->getOpcode() == Instruction::PtrToInt ||
40           CE->getOpcode() == Instruction::IntToPtr) &&
41          SE.getTypeSizeInBits(CE->getType()) ==
42          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
43        return CE->getOperand(0);
44  }
45
46  // FIXME: keep track of the cast instruction.
47  if (Constant *C = dyn_cast<Constant>(V))
48    return ConstantExpr::getCast(opcode, C, Ty);
49
50  if (Argument *A = dyn_cast<Argument>(V)) {
51    // Check to see if there is already a cast!
52    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
53         UI != E; ++UI) {
54      if ((*UI)->getType() == Ty)
55        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
56          if (CI->getOpcode() == opcode) {
57            // If the cast isn't the first instruction of the function, move it.
58            if (BasicBlock::iterator(CI) !=
59                A->getParent()->getEntryBlock().begin()) {
60              // If the CastInst is the insert point, change the insert point.
61              if (CI == InsertPt) ++InsertPt;
62              // Splice the cast at the beginning of the entry block.
63              CI->moveBefore(A->getParent()->getEntryBlock().begin());
64            }
65            return CI;
66          }
67    }
68    Instruction *I = CastInst::Create(opcode, V, Ty, V->getName(),
69                                      A->getParent()->getEntryBlock().begin());
70    InsertedValues.insert(I);
71    return I;
72  }
73
74  Instruction *I = cast<Instruction>(V);
75
76  // Check to see if there is already a cast.  If there is, use it.
77  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
78       UI != E; ++UI) {
79    if ((*UI)->getType() == Ty)
80      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
81        if (CI->getOpcode() == opcode) {
82          BasicBlock::iterator It = I; ++It;
83          if (isa<InvokeInst>(I))
84            It = cast<InvokeInst>(I)->getNormalDest()->begin();
85          while (isa<PHINode>(It)) ++It;
86          if (It != BasicBlock::iterator(CI)) {
87            // If the CastInst is the insert point, change the insert point.
88            if (CI == InsertPt) ++InsertPt;
89            // Splice the cast immediately after the operand in question.
90            CI->moveBefore(It);
91          }
92          return CI;
93        }
94  }
95  BasicBlock::iterator IP = I; ++IP;
96  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
97    IP = II->getNormalDest()->begin();
98  while (isa<PHINode>(IP)) ++IP;
99  Instruction *CI = CastInst::Create(opcode, V, Ty, V->getName(), IP);
100  InsertedValues.insert(CI);
101  return CI;
102}
103
104/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
105/// which must be possible with a noop cast.
106Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
107  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
108  assert((Op == Instruction::BitCast ||
109          Op == Instruction::PtrToInt ||
110          Op == Instruction::IntToPtr) &&
111         "InsertNoopCastOfTo cannot perform non-noop casts!");
112  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
113         "InsertNoopCastOfTo cannot change sizes!");
114  return InsertCastOfTo(Op, V, Ty);
115}
116
117/// InsertBinop - Insert the specified binary operator, doing a small amount
118/// of work to avoid inserting an obviously redundant operation.
119Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
120                                 Value *RHS, BasicBlock::iterator InsertPt) {
121  // Fold a binop with constant operands.
122  if (Constant *CLHS = dyn_cast<Constant>(LHS))
123    if (Constant *CRHS = dyn_cast<Constant>(RHS))
124      return ConstantExpr::get(Opcode, CLHS, CRHS);
125
126  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
127  unsigned ScanLimit = 6;
128  BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
129  if (InsertPt != BlockBegin) {
130    // Scanning starts from the last instruction before InsertPt.
131    BasicBlock::iterator IP = InsertPt;
132    --IP;
133    for (; ScanLimit; --IP, --ScanLimit) {
134      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
135          IP->getOperand(1) == RHS)
136        return IP;
137      if (IP == BlockBegin) break;
138    }
139  }
140
141  // If we haven't found this binop, insert it.
142  Instruction *BO = BinaryOperator::Create(Opcode, LHS, RHS, "tmp", InsertPt);
143  InsertedValues.insert(BO);
144  return BO;
145}
146
147/// FactorOutConstant - Test if S is evenly divisible by Factor, using signed
148/// division. If so, update S with Factor divided out and return true.
149/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
150/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
151/// check to see if the divide was folded.
152static bool FactorOutConstant(SCEVHandle &S,
153                              const APInt &Factor,
154                              ScalarEvolution &SE) {
155  // Everything is divisible by one.
156  if (Factor == 1)
157    return true;
158
159  // For a Constant, check for a multiple of the given factor.
160  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
161    if (!C->getValue()->getValue().srem(Factor)) {
162      ConstantInt *CI =
163        ConstantInt::get(C->getValue()->getValue().sdiv(Factor));
164      SCEVHandle Div = SE.getConstant(CI);
165      S = Div;
166      return true;
167    }
168
169  // In a Mul, check if there is a constant operand which is a multiple
170  // of the given factor.
171  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S))
172    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
173      if (!C->getValue()->getValue().srem(Factor)) {
174        std::vector<SCEVHandle> NewMulOps(M->getOperands());
175        NewMulOps[0] =
176          SE.getConstant(C->getValue()->getValue().sdiv(Factor));
177        S = SE.getMulExpr(NewMulOps);
178        return true;
179      }
180
181  // In an AddRec, check if both start and step are divisible.
182  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
183    SCEVHandle Start = A->getStart();
184    if (!FactorOutConstant(Start, Factor, SE))
185      return false;
186    SCEVHandle Step = A->getStepRecurrence(SE);
187    if (!FactorOutConstant(Step, Factor, SE))
188      return false;
189    S = SE.getAddRecExpr(Start, Step, A->getLoop());
190    return true;
191  }
192
193  return false;
194}
195
196/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
197/// instead of using ptrtoint+arithmetic+inttoptr. This helps
198/// BasicAliasAnalysis analyze the result. However, it suffers from the
199/// underlying bug described in PR2831. Addition in LLVM currently always
200/// has two's complement wrapping guaranteed. However, the semantics for
201/// getelementptr overflow are ambiguous. In the common case though, this
202/// expansion gets used when a GEP in the original code has been converted
203/// into integer arithmetic, in which case the resulting code will be no
204/// more undefined than it was originally.
205///
206/// Design note: It might seem desirable for this function to be more
207/// loop-aware. If some of the indices are loop-invariant while others
208/// aren't, it might seem desirable to emit multiple GEPs, keeping the
209/// loop-invariant portions of the overall computation outside the loop.
210/// However, there are a few reasons this is not done here. Hoisting simple
211/// arithmetic is a low-level optimization that often isn't very
212/// important until late in the optimization process. In fact, passes
213/// like InstructionCombining will combine GEPs, even if it means
214/// pushing loop-invariant computation down into loops, so even if the
215/// GEPs were split here, the work would quickly be undone. The
216/// LoopStrengthReduction pass, which is usually run quite late (and
217/// after the last InstructionCombining pass), takes care of hoisting
218/// loop-invariant portions of expressions, after considering what
219/// can be folded using target addressing modes.
220///
221Value *SCEVExpander::expandAddToGEP(const SCEVHandle *op_begin,
222                                    const SCEVHandle *op_end,
223                                    const PointerType *PTy,
224                                    const Type *Ty,
225                                    Value *V) {
226  const Type *ElTy = PTy->getElementType();
227  SmallVector<Value *, 4> GepIndices;
228  std::vector<SCEVHandle> Ops(op_begin, op_end);
229  bool AnyNonZeroIndices = false;
230
231  // Decend down the pointer's type and attempt to convert the other
232  // operands into GEP indices, at each level. The first index in a GEP
233  // indexes into the array implied by the pointer operand; the rest of
234  // the indices index into the element or field type selected by the
235  // preceding index.
236  for (;;) {
237    APInt ElSize = APInt(SE.getTypeSizeInBits(Ty),
238                         ElTy->isSized() ?  SE.TD->getTypeAllocSize(ElTy) : 0);
239    std::vector<SCEVHandle> NewOps;
240    std::vector<SCEVHandle> ScaledOps;
241    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
242      // Split AddRecs up into parts as either of the parts may be usable
243      // without the other.
244      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i]))
245        if (!A->getStart()->isZero()) {
246          SCEVHandle Start = A->getStart();
247          Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
248                                         A->getStepRecurrence(SE),
249                                         A->getLoop()));
250          Ops[i] = Start;
251          ++e;
252        }
253      // If the scale size is not 0, attempt to factor out a scale.
254      if (ElSize != 0) {
255        SCEVHandle Op = Ops[i];
256        if (FactorOutConstant(Op, ElSize, SE)) {
257          ScaledOps.push_back(Op); // Op now has ElSize factored out.
258          continue;
259        }
260      }
261      // If the operand was not divisible, add it to the list of operands
262      // we'll scan next iteration.
263      NewOps.push_back(Ops[i]);
264    }
265    Ops = NewOps;
266    AnyNonZeroIndices |= !ScaledOps.empty();
267    Value *Scaled = ScaledOps.empty() ?
268                    Constant::getNullValue(Ty) :
269                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
270    GepIndices.push_back(Scaled);
271
272    // Collect struct field index operands.
273    if (!Ops.empty())
274      while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
275        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
276          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
277            const StructLayout &SL = *SE.TD->getStructLayout(STy);
278            uint64_t FullOffset = C->getValue()->getZExtValue();
279            if (FullOffset < SL.getSizeInBytes()) {
280              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
281              GepIndices.push_back(ConstantInt::get(Type::Int32Ty, ElIdx));
282              ElTy = STy->getTypeAtIndex(ElIdx);
283              Ops[0] =
284                SE.getConstant(ConstantInt::get(Ty,
285                                                FullOffset -
286                                                  SL.getElementOffset(ElIdx)));
287              AnyNonZeroIndices = true;
288              continue;
289            }
290          }
291        break;
292      }
293
294    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) {
295      ElTy = ATy->getElementType();
296      continue;
297    }
298    break;
299  }
300
301  // If none of the operands were convertable to proper GEP indices, cast
302  // the base to i8* and do an ugly getelementptr with that. It's still
303  // better than ptrtoint+arithmetic+inttoptr at least.
304  if (!AnyNonZeroIndices) {
305    V = InsertNoopCastOfTo(V,
306                           Type::Int8Ty->getPointerTo(PTy->getAddressSpace()));
307    Value *Idx = expand(SE.getAddExpr(Ops));
308    Idx = InsertNoopCastOfTo(Idx, Ty);
309
310    // Fold a GEP with constant operands.
311    if (Constant *CLHS = dyn_cast<Constant>(V))
312      if (Constant *CRHS = dyn_cast<Constant>(Idx))
313        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
314
315    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
316    unsigned ScanLimit = 6;
317    BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
318    if (InsertPt != BlockBegin) {
319      // Scanning starts from the last instruction before InsertPt.
320      BasicBlock::iterator IP = InsertPt;
321      --IP;
322      for (; ScanLimit; --IP, --ScanLimit) {
323        if (IP->getOpcode() == Instruction::GetElementPtr &&
324            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
325          return IP;
326        if (IP == BlockBegin) break;
327      }
328    }
329
330    Value *GEP = GetElementPtrInst::Create(V, Idx, "scevgep", InsertPt);
331    InsertedValues.insert(GEP);
332    return GEP;
333  }
334
335  // Insert a pretty getelementptr.
336  Value *GEP = GetElementPtrInst::Create(V,
337                                         GepIndices.begin(),
338                                         GepIndices.end(),
339                                         "scevgep", InsertPt);
340  Ops.push_back(SE.getUnknown(GEP));
341  InsertedValues.insert(GEP);
342  return expand(SE.getAddExpr(Ops));
343}
344
345Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
346  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
347  Value *V = expand(S->getOperand(S->getNumOperands()-1));
348
349  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
350  // comments on expandAddToGEP for details.
351  if (SE.TD)
352    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
353      const std::vector<SCEVHandle> &Ops = S->getOperands();
354      return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1],
355                            PTy, Ty, V);
356    }
357
358  V = InsertNoopCastOfTo(V, Ty);
359
360  // Emit a bunch of add instructions
361  for (int i = S->getNumOperands()-2; i >= 0; --i) {
362    Value *W = expand(S->getOperand(i));
363    W = InsertNoopCastOfTo(W, Ty);
364    V = InsertBinop(Instruction::Add, V, W, InsertPt);
365  }
366  return V;
367}
368
369Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
370  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
371  int FirstOp = 0;  // Set if we should emit a subtract.
372  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
373    if (SC->getValue()->isAllOnesValue())
374      FirstOp = 1;
375
376  int i = S->getNumOperands()-2;
377  Value *V = expand(S->getOperand(i+1));
378  V = InsertNoopCastOfTo(V, Ty);
379
380  // Emit a bunch of multiply instructions
381  for (; i >= FirstOp; --i) {
382    Value *W = expand(S->getOperand(i));
383    W = InsertNoopCastOfTo(W, Ty);
384    V = InsertBinop(Instruction::Mul, V, W, InsertPt);
385  }
386
387  // -1 * ...  --->  0 - ...
388  if (FirstOp == 1)
389    V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V, InsertPt);
390  return V;
391}
392
393Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
394  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
395
396  Value *LHS = expand(S->getLHS());
397  LHS = InsertNoopCastOfTo(LHS, Ty);
398  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
399    const APInt &RHS = SC->getValue()->getValue();
400    if (RHS.isPowerOf2())
401      return InsertBinop(Instruction::LShr, LHS,
402                         ConstantInt::get(Ty, RHS.logBase2()),
403                         InsertPt);
404  }
405
406  Value *RHS = expand(S->getRHS());
407  RHS = InsertNoopCastOfTo(RHS, Ty);
408  return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
409}
410
411/// Move parts of Base into Rest to leave Base with the minimal
412/// expression that provides a pointer operand suitable for a
413/// GEP expansion.
414static void ExposePointerBase(SCEVHandle &Base, SCEVHandle &Rest,
415                              ScalarEvolution &SE) {
416  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
417    Base = A->getStart();
418    Rest = SE.getAddExpr(Rest,
419                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
420                                          A->getStepRecurrence(SE),
421                                          A->getLoop()));
422  }
423  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
424    Base = A->getOperand(A->getNumOperands()-1);
425    std::vector<SCEVHandle> NewAddOps(A->op_begin(), A->op_end());
426    NewAddOps.back() = Rest;
427    Rest = SE.getAddExpr(NewAddOps);
428    ExposePointerBase(Base, Rest, SE);
429  }
430}
431
432Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
433  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
434  const Loop *L = S->getLoop();
435
436  // {X,+,F} --> X + {0,+,F}
437  if (!S->getStart()->isZero()) {
438    std::vector<SCEVHandle> NewOps(S->getOperands());
439    NewOps[0] = SE.getIntegerSCEV(0, Ty);
440    SCEVHandle Rest = SE.getAddRecExpr(NewOps, L);
441
442    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
443    // comments on expandAddToGEP for details.
444    if (SE.TD) {
445      SCEVHandle Base = S->getStart();
446      SCEVHandle RestArray[1] = Rest;
447      // Dig into the expression to find the pointer base for a GEP.
448      ExposePointerBase(Base, RestArray[0], SE);
449      // If we found a pointer, expand the AddRec with a GEP.
450      if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
451        Value *StartV = expand(Base);
452        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
453        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
454      }
455    }
456
457    Value *RestV = expand(Rest);
458    return expand(SE.getAddExpr(S->getStart(), SE.getUnknown(RestV)));
459  }
460
461  // {0,+,1} --> Insert a canonical induction variable into the loop!
462  if (S->isAffine() &&
463      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
464    // Create and insert the PHI node for the induction variable in the
465    // specified loop.
466    BasicBlock *Header = L->getHeader();
467    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
468    InsertedValues.insert(PN);
469    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
470
471    pred_iterator HPI = pred_begin(Header);
472    assert(HPI != pred_end(Header) && "Loop with zero preds???");
473    if (!L->contains(*HPI)) ++HPI;
474    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
475           "No backedge in loop?");
476
477    // Insert a unit add instruction right before the terminator corresponding
478    // to the back-edge.
479    Constant *One = ConstantInt::get(Ty, 1);
480    Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
481                                                 (*HPI)->getTerminator());
482    InsertedValues.insert(Add);
483
484    pred_iterator PI = pred_begin(Header);
485    if (*PI == L->getLoopPreheader())
486      ++PI;
487    PN->addIncoming(Add, *PI);
488    return PN;
489  }
490
491  // Get the canonical induction variable I for this loop.
492  Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
493
494  // If this is a simple linear addrec, emit it now as a special case.
495  if (S->isAffine()) {   // {0,+,F} --> i*F
496    Value *F = expand(S->getOperand(1));
497    F = InsertNoopCastOfTo(F, Ty);
498
499    // IF the step is by one, just return the inserted IV.
500    if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
501      if (CI->getValue() == 1)
502        return I;
503
504    // If the insert point is directly inside of the loop, emit the multiply at
505    // the insert point.  Otherwise, L is a loop that is a parent of the insert
506    // point loop.  If we can, move the multiply to the outer most loop that it
507    // is safe to be in.
508    BasicBlock::iterator MulInsertPt = getInsertionPoint();
509    Loop *InsertPtLoop = SE.LI->getLoopFor(MulInsertPt->getParent());
510    if (InsertPtLoop != L && InsertPtLoop &&
511        L->contains(InsertPtLoop->getHeader())) {
512      do {
513        // If we cannot hoist the multiply out of this loop, don't.
514        if (!InsertPtLoop->isLoopInvariant(F)) break;
515
516        BasicBlock *InsertPtLoopPH = InsertPtLoop->getLoopPreheader();
517
518        // If this loop hasn't got a preheader, we aren't able to hoist the
519        // multiply.
520        if (!InsertPtLoopPH)
521          break;
522
523        // Otherwise, move the insert point to the preheader.
524        MulInsertPt = InsertPtLoopPH->getTerminator();
525        InsertPtLoop = InsertPtLoop->getParentLoop();
526      } while (InsertPtLoop != L);
527    }
528
529    return InsertBinop(Instruction::Mul, I, F, MulInsertPt);
530  }
531
532  // If this is a chain of recurrences, turn it into a closed form, using the
533  // folders, then expandCodeFor the closed form.  This allows the folders to
534  // simplify the expression without having to build a bunch of special code
535  // into this folder.
536  SCEVHandle IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
537
538  SCEVHandle V = S->evaluateAtIteration(IH, SE);
539  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
540
541  return expand(V);
542}
543
544Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
545  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
546  Value *V = expand(S->getOperand());
547  V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
548  Instruction *I = new TruncInst(V, Ty, "tmp.", InsertPt);
549  InsertedValues.insert(I);
550  return I;
551}
552
553Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
554  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
555  Value *V = expand(S->getOperand());
556  V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
557  Instruction *I = new ZExtInst(V, Ty, "tmp.", InsertPt);
558  InsertedValues.insert(I);
559  return I;
560}
561
562Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
563  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
564  Value *V = expand(S->getOperand());
565  V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
566  Instruction *I = new SExtInst(V, Ty, "tmp.", InsertPt);
567  InsertedValues.insert(I);
568  return I;
569}
570
571Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
572  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
573  Value *LHS = expand(S->getOperand(0));
574  LHS = InsertNoopCastOfTo(LHS, Ty);
575  for (unsigned i = 1; i < S->getNumOperands(); ++i) {
576    Value *RHS = expand(S->getOperand(i));
577    RHS = InsertNoopCastOfTo(RHS, Ty);
578    Instruction *ICmp =
579      new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS, "tmp", InsertPt);
580    InsertedValues.insert(ICmp);
581    Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "smax", InsertPt);
582    InsertedValues.insert(Sel);
583    LHS = Sel;
584  }
585  return LHS;
586}
587
588Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
589  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
590  Value *LHS = expand(S->getOperand(0));
591  LHS = InsertNoopCastOfTo(LHS, Ty);
592  for (unsigned i = 1; i < S->getNumOperands(); ++i) {
593    Value *RHS = expand(S->getOperand(i));
594    RHS = InsertNoopCastOfTo(RHS, Ty);
595    Instruction *ICmp =
596      new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS, "tmp", InsertPt);
597    InsertedValues.insert(ICmp);
598    Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "umax", InsertPt);
599    InsertedValues.insert(Sel);
600    LHS = Sel;
601  }
602  return LHS;
603}
604
605Value *SCEVExpander::expandCodeFor(SCEVHandle SH, const Type *Ty) {
606  // Expand the code for this SCEV.
607  Value *V = expand(SH);
608  if (Ty) {
609    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
610           "non-trivial casts should be done with the SCEVs directly!");
611    V = InsertNoopCastOfTo(V, Ty);
612  }
613  return V;
614}
615
616Value *SCEVExpander::expand(const SCEV *S) {
617  // Check to see if we already expanded this.
618  std::map<SCEVHandle, AssertingVH<Value> >::iterator I = InsertedExpressions.find(S);
619  if (I != InsertedExpressions.end())
620    return I->second;
621
622  Value *V = visit(S);
623  InsertedExpressions[S] = V;
624  return V;
625}
626