ValueTracking.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/IR/CallSite.h"
20#include "llvm/IR/ConstantRange.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/GetElementPtrTypeIterator.h"
24#include "llvm/IR/GlobalAlias.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Metadata.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/IR/PatternMatch.h"
32#include "llvm/Support/MathExtras.h"
33#include <cstring>
34using namespace llvm;
35using namespace llvm::PatternMatch;
36
37const unsigned MaxDepth = 6;
38
39/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
40/// unknown returns 0).  For vector types, returns the element type's bitwidth.
41static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
42  if (unsigned BitWidth = Ty->getScalarSizeInBits())
43    return BitWidth;
44
45  return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
46}
47
48static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
49                                   APInt &KnownZero, APInt &KnownOne,
50                                   APInt &KnownZero2, APInt &KnownOne2,
51                                   const DataLayout *TD, unsigned Depth) {
52  if (!Add) {
53    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
54      // We know that the top bits of C-X are clear if X contains less bits
55      // than C (i.e. no wrap-around can happen).  For example, 20-X is
56      // positive if we can prove that X is >= 0 and < 16.
57      if (!CLHS->getValue().isNegative()) {
58        unsigned BitWidth = KnownZero.getBitWidth();
59        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
60        // NLZ can't be BitWidth with no sign bit
61        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
62        llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
63
64        // If all of the MaskV bits are known to be zero, then we know the
65        // output top bits are zero, because we now know that the output is
66        // from [0-C].
67        if ((KnownZero2 & MaskV) == MaskV) {
68          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
69          // Top bits known zero.
70          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
71        }
72      }
73    }
74  }
75
76  unsigned BitWidth = KnownZero.getBitWidth();
77
78  // If one of the operands has trailing zeros, then the bits that the
79  // other operand has in those bit positions will be preserved in the
80  // result. For an add, this works with either operand. For a subtract,
81  // this only works if the known zeros are in the right operand.
82  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
83  llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
84  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86  llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
88
89  // Determine which operand has more trailing zeros, and use that
90  // many bits from the other operand.
91  if (LHSKnownZeroOut > RHSKnownZeroOut) {
92    if (Add) {
93      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
94      KnownZero |= KnownZero2 & Mask;
95      KnownOne  |= KnownOne2 & Mask;
96    } else {
97      // If the known zeros are in the left operand for a subtract,
98      // fall back to the minimum known zeros in both operands.
99      KnownZero |= APInt::getLowBitsSet(BitWidth,
100                                        std::min(LHSKnownZeroOut,
101                                                 RHSKnownZeroOut));
102    }
103  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
104    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
105    KnownZero |= LHSKnownZero & Mask;
106    KnownOne  |= LHSKnownOne & Mask;
107  }
108
109  // Are we still trying to solve for the sign bit?
110  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
111    if (NSW) {
112      if (Add) {
113        // Adding two positive numbers can't wrap into negative
114        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
115          KnownZero |= APInt::getSignBit(BitWidth);
116        // and adding two negative numbers can't wrap into positive.
117        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
118          KnownOne |= APInt::getSignBit(BitWidth);
119      } else {
120        // Subtracting a negative number from a positive one can't wrap
121        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
122          KnownZero |= APInt::getSignBit(BitWidth);
123        // neither can subtracting a positive number from a negative one.
124        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
125          KnownOne |= APInt::getSignBit(BitWidth);
126      }
127    }
128  }
129}
130
131static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
132                                APInt &KnownZero, APInt &KnownOne,
133                                APInt &KnownZero2, APInt &KnownOne2,
134                                const DataLayout *TD, unsigned Depth) {
135  unsigned BitWidth = KnownZero.getBitWidth();
136  computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
137  computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
138
139  bool isKnownNegative = false;
140  bool isKnownNonNegative = false;
141  // If the multiplication is known not to overflow, compute the sign bit.
142  if (NSW) {
143    if (Op0 == Op1) {
144      // The product of a number with itself is non-negative.
145      isKnownNonNegative = true;
146    } else {
147      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
148      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
149      bool isKnownNegativeOp1 = KnownOne.isNegative();
150      bool isKnownNegativeOp0 = KnownOne2.isNegative();
151      // The product of two numbers with the same sign is non-negative.
152      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
153        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
154      // The product of a negative number and a non-negative number is either
155      // negative or zero.
156      if (!isKnownNonNegative)
157        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
158                           isKnownNonZero(Op0, TD, Depth)) ||
159                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
160                           isKnownNonZero(Op1, TD, Depth));
161    }
162  }
163
164  // If low bits are zero in either operand, output low known-0 bits.
165  // Also compute a conserative estimate for high known-0 bits.
166  // More trickiness is possible, but this is sufficient for the
167  // interesting case of alignment computation.
168  KnownOne.clearAllBits();
169  unsigned TrailZ = KnownZero.countTrailingOnes() +
170                    KnownZero2.countTrailingOnes();
171  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
172                             KnownZero2.countLeadingOnes(),
173                             BitWidth) - BitWidth;
174
175  TrailZ = std::min(TrailZ, BitWidth);
176  LeadZ = std::min(LeadZ, BitWidth);
177  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
178              APInt::getHighBitsSet(BitWidth, LeadZ);
179
180  // Only make use of no-wrap flags if we failed to compute the sign bit
181  // directly.  This matters if the multiplication always overflows, in
182  // which case we prefer to follow the result of the direct computation,
183  // though as the program is invoking undefined behaviour we can choose
184  // whatever we like here.
185  if (isKnownNonNegative && !KnownOne.isNegative())
186    KnownZero.setBit(BitWidth - 1);
187  else if (isKnownNegative && !KnownZero.isNegative())
188    KnownOne.setBit(BitWidth - 1);
189}
190
191void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
192                                             APInt &KnownZero) {
193  unsigned BitWidth = KnownZero.getBitWidth();
194  unsigned NumRanges = Ranges.getNumOperands() / 2;
195  assert(NumRanges >= 1);
196
197  // Use the high end of the ranges to find leading zeros.
198  unsigned MinLeadingZeros = BitWidth;
199  for (unsigned i = 0; i < NumRanges; ++i) {
200    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
201    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
202    ConstantRange Range(Lower->getValue(), Upper->getValue());
203    if (Range.isWrappedSet())
204      MinLeadingZeros = 0; // -1 has no zeros
205    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
206    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
207  }
208
209  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
210}
211
212/// Determine which bits of V are known to be either zero or one and return
213/// them in the KnownZero/KnownOne bit sets.
214///
215/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
216/// we cannot optimize based on the assumption that it is zero without changing
217/// it to be an explicit zero.  If we don't change it to zero, other code could
218/// optimized based on the contradictory assumption that it is non-zero.
219/// Because instcombine aggressively folds operations with undef args anyway,
220/// this won't lose us code quality.
221///
222/// This function is defined on values with integer type, values with pointer
223/// type (but only if TD is non-null), and vectors of integers.  In the case
224/// where V is a vector, known zero, and known one values are the
225/// same width as the vector element, and the bit is set only if it is true
226/// for all of the elements in the vector.
227void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
228                            const DataLayout *TD, unsigned Depth) {
229  assert(V && "No Value?");
230  assert(Depth <= MaxDepth && "Limit Search Depth");
231  unsigned BitWidth = KnownZero.getBitWidth();
232
233  assert((V->getType()->isIntOrIntVectorTy() ||
234          V->getType()->getScalarType()->isPointerTy()) &&
235         "Not integer or pointer type!");
236  assert((!TD ||
237          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
238         (!V->getType()->isIntOrIntVectorTy() ||
239          V->getType()->getScalarSizeInBits() == BitWidth) &&
240         KnownZero.getBitWidth() == BitWidth &&
241         KnownOne.getBitWidth() == BitWidth &&
242         "V, KnownOne and KnownZero should have same BitWidth");
243
244  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
245    // We know all of the bits for a constant!
246    KnownOne = CI->getValue();
247    KnownZero = ~KnownOne;
248    return;
249  }
250  // Null and aggregate-zero are all-zeros.
251  if (isa<ConstantPointerNull>(V) ||
252      isa<ConstantAggregateZero>(V)) {
253    KnownOne.clearAllBits();
254    KnownZero = APInt::getAllOnesValue(BitWidth);
255    return;
256  }
257  // Handle a constant vector by taking the intersection of the known bits of
258  // each element.  There is no real need to handle ConstantVector here, because
259  // we don't handle undef in any particularly useful way.
260  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
261    // We know that CDS must be a vector of integers. Take the intersection of
262    // each element.
263    KnownZero.setAllBits(); KnownOne.setAllBits();
264    APInt Elt(KnownZero.getBitWidth(), 0);
265    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
266      Elt = CDS->getElementAsInteger(i);
267      KnownZero &= ~Elt;
268      KnownOne &= Elt;
269    }
270    return;
271  }
272
273  // The address of an aligned GlobalValue has trailing zeros.
274  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
275    unsigned Align = GV->getAlignment();
276    if (Align == 0 && TD) {
277      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
278        Type *ObjectType = GVar->getType()->getElementType();
279        if (ObjectType->isSized()) {
280          // If the object is defined in the current Module, we'll be giving
281          // it the preferred alignment. Otherwise, we have to assume that it
282          // may only have the minimum ABI alignment.
283          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
284            Align = TD->getPreferredAlignment(GVar);
285          else
286            Align = TD->getABITypeAlignment(ObjectType);
287        }
288      }
289    }
290    if (Align > 0)
291      KnownZero = APInt::getLowBitsSet(BitWidth,
292                                       countTrailingZeros(Align));
293    else
294      KnownZero.clearAllBits();
295    KnownOne.clearAllBits();
296    return;
297  }
298  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
299  // the bits of its aliasee.
300  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
301    if (GA->mayBeOverridden()) {
302      KnownZero.clearAllBits(); KnownOne.clearAllBits();
303    } else {
304      computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
305    }
306    return;
307  }
308
309  if (Argument *A = dyn_cast<Argument>(V)) {
310    unsigned Align = 0;
311
312    if (A->hasByValOrInAllocaAttr()) {
313      // Get alignment information off byval/inalloca arguments if specified in
314      // the IR.
315      Align = A->getParamAlignment();
316    } else if (TD && A->hasStructRetAttr()) {
317      // An sret parameter has at least the ABI alignment of the return type.
318      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319      if (EltTy->isSized())
320        Align = TD->getABITypeAlignment(EltTy);
321    }
322
323    if (Align)
324      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
325    return;
326  }
327
328  // Start out not knowing anything.
329  KnownZero.clearAllBits(); KnownOne.clearAllBits();
330
331  if (Depth == MaxDepth)
332    return;  // Limit search depth.
333
334  Operator *I = dyn_cast<Operator>(V);
335  if (!I) return;
336
337  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338  switch (I->getOpcode()) {
339  default: break;
340  case Instruction::Load:
341    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
342      computeKnownBitsFromRangeMetadata(*MD, KnownZero);
343    break;
344  case Instruction::And: {
345    // If either the LHS or the RHS are Zero, the result is zero.
346    computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348
349    // Output known-1 bits are only known if set in both the LHS & RHS.
350    KnownOne &= KnownOne2;
351    // Output known-0 are known to be clear if zero in either the LHS | RHS.
352    KnownZero |= KnownZero2;
353    break;
354  }
355  case Instruction::Or: {
356    computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
357    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
358
359    // Output known-0 bits are only known if clear in both the LHS & RHS.
360    KnownZero &= KnownZero2;
361    // Output known-1 are known to be set if set in either the LHS | RHS.
362    KnownOne |= KnownOne2;
363    break;
364  }
365  case Instruction::Xor: {
366    computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
367    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
368
369    // Output known-0 bits are known if clear or set in both the LHS & RHS.
370    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
371    // Output known-1 are known to be set if set in only one of the LHS, RHS.
372    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
373    KnownZero = KnownZeroOut;
374    break;
375  }
376  case Instruction::Mul: {
377    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
378    computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
379                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
380    break;
381  }
382  case Instruction::UDiv: {
383    // For the purposes of computing leading zeros we can conservatively
384    // treat a udiv as a logical right shift by the power of 2 known to
385    // be less than the denominator.
386    computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
387    unsigned LeadZ = KnownZero2.countLeadingOnes();
388
389    KnownOne2.clearAllBits();
390    KnownZero2.clearAllBits();
391    computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
392    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
393    if (RHSUnknownLeadingOnes != BitWidth)
394      LeadZ = std::min(BitWidth,
395                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
396
397    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
398    break;
399  }
400  case Instruction::Select:
401    computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
402    computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
403                      Depth+1);
404
405    // Only known if known in both the LHS and RHS.
406    KnownOne &= KnownOne2;
407    KnownZero &= KnownZero2;
408    break;
409  case Instruction::FPTrunc:
410  case Instruction::FPExt:
411  case Instruction::FPToUI:
412  case Instruction::FPToSI:
413  case Instruction::SIToFP:
414  case Instruction::UIToFP:
415    break; // Can't work with floating point.
416  case Instruction::PtrToInt:
417  case Instruction::IntToPtr:
418    // We can't handle these if we don't know the pointer size.
419    if (!TD) break;
420    // FALL THROUGH and handle them the same as zext/trunc.
421  case Instruction::ZExt:
422  case Instruction::Trunc: {
423    Type *SrcTy = I->getOperand(0)->getType();
424
425    unsigned SrcBitWidth;
426    // Note that we handle pointer operands here because of inttoptr/ptrtoint
427    // which fall through here.
428    if(TD) {
429      SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
430    } else {
431      SrcBitWidth = SrcTy->getScalarSizeInBits();
432      if (!SrcBitWidth) break;
433    }
434
435    assert(SrcBitWidth && "SrcBitWidth can't be zero");
436    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
437    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
438    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
439    KnownZero = KnownZero.zextOrTrunc(BitWidth);
440    KnownOne = KnownOne.zextOrTrunc(BitWidth);
441    // Any top bits are known to be zero.
442    if (BitWidth > SrcBitWidth)
443      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
444    break;
445  }
446  case Instruction::BitCast: {
447    Type *SrcTy = I->getOperand(0)->getType();
448    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
449        // TODO: For now, not handling conversions like:
450        // (bitcast i64 %x to <2 x i32>)
451        !I->getType()->isVectorTy()) {
452      computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
453      break;
454    }
455    break;
456  }
457  case Instruction::SExt: {
458    // Compute the bits in the result that are not present in the input.
459    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
460
461    KnownZero = KnownZero.trunc(SrcBitWidth);
462    KnownOne = KnownOne.trunc(SrcBitWidth);
463    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
464    KnownZero = KnownZero.zext(BitWidth);
465    KnownOne = KnownOne.zext(BitWidth);
466
467    // If the sign bit of the input is known set or clear, then we know the
468    // top bits of the result.
469    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
470      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
471    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
472      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
473    break;
474  }
475  case Instruction::Shl:
476    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
477    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
478      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
479      computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
480      KnownZero <<= ShiftAmt;
481      KnownOne  <<= ShiftAmt;
482      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
483      break;
484    }
485    break;
486  case Instruction::LShr:
487    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
488    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
489      // Compute the new bits that are at the top now.
490      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
491
492      // Unsigned shift right.
493      computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
494      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
495      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
496      // high bits known zero.
497      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
498      break;
499    }
500    break;
501  case Instruction::AShr:
502    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
503    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
504      // Compute the new bits that are at the top now.
505      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
506
507      // Signed shift right.
508      computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
509      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
510      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
511
512      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
513      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
514        KnownZero |= HighBits;
515      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
516        KnownOne |= HighBits;
517      break;
518    }
519    break;
520  case Instruction::Sub: {
521    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
522    computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
523                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
524                            Depth);
525    break;
526  }
527  case Instruction::Add: {
528    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
529    computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
530                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
531                            Depth);
532    break;
533  }
534  case Instruction::SRem:
535    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
536      APInt RA = Rem->getValue().abs();
537      if (RA.isPowerOf2()) {
538        APInt LowBits = RA - 1;
539        computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
540
541        // The low bits of the first operand are unchanged by the srem.
542        KnownZero = KnownZero2 & LowBits;
543        KnownOne = KnownOne2 & LowBits;
544
545        // If the first operand is non-negative or has all low bits zero, then
546        // the upper bits are all zero.
547        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
548          KnownZero |= ~LowBits;
549
550        // If the first operand is negative and not all low bits are zero, then
551        // the upper bits are all one.
552        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
553          KnownOne |= ~LowBits;
554
555        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
556      }
557    }
558
559    // The sign bit is the LHS's sign bit, except when the result of the
560    // remainder is zero.
561    if (KnownZero.isNonNegative()) {
562      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
563      computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
564                       Depth+1);
565      // If it's known zero, our sign bit is also zero.
566      if (LHSKnownZero.isNegative())
567        KnownZero.setBit(BitWidth - 1);
568    }
569
570    break;
571  case Instruction::URem: {
572    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
573      APInt RA = Rem->getValue();
574      if (RA.isPowerOf2()) {
575        APInt LowBits = (RA - 1);
576        computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
577                         Depth+1);
578        KnownZero |= ~LowBits;
579        KnownOne &= LowBits;
580        break;
581      }
582    }
583
584    // Since the result is less than or equal to either operand, any leading
585    // zero bits in either operand must also exist in the result.
586    computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
587    computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
588
589    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
590                                KnownZero2.countLeadingOnes());
591    KnownOne.clearAllBits();
592    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
593    break;
594  }
595
596  case Instruction::Alloca: {
597    AllocaInst *AI = cast<AllocaInst>(V);
598    unsigned Align = AI->getAlignment();
599    if (Align == 0 && TD)
600      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
601
602    if (Align > 0)
603      KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
604    break;
605  }
606  case Instruction::GetElementPtr: {
607    // Analyze all of the subscripts of this getelementptr instruction
608    // to determine if we can prove known low zero bits.
609    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
610    computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
611                     Depth+1);
612    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
613
614    gep_type_iterator GTI = gep_type_begin(I);
615    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
616      Value *Index = I->getOperand(i);
617      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
618        // Handle struct member offset arithmetic.
619        if (!TD) {
620          TrailZ = 0;
621          break;
622        }
623
624        // Handle case when index is vector zeroinitializer
625        Constant *CIndex = cast<Constant>(Index);
626        if (CIndex->isZeroValue())
627          continue;
628
629        if (CIndex->getType()->isVectorTy())
630          Index = CIndex->getSplatValue();
631
632        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
633        const StructLayout *SL = TD->getStructLayout(STy);
634        uint64_t Offset = SL->getElementOffset(Idx);
635        TrailZ = std::min<unsigned>(TrailZ,
636                                    countTrailingZeros(Offset));
637      } else {
638        // Handle array index arithmetic.
639        Type *IndexedTy = GTI.getIndexedType();
640        if (!IndexedTy->isSized()) {
641          TrailZ = 0;
642          break;
643        }
644        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
645        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
646        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
647        computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
648        TrailZ = std::min(TrailZ,
649                          unsigned(countTrailingZeros(TypeSize) +
650                                   LocalKnownZero.countTrailingOnes()));
651      }
652    }
653
654    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
655    break;
656  }
657  case Instruction::PHI: {
658    PHINode *P = cast<PHINode>(I);
659    // Handle the case of a simple two-predecessor recurrence PHI.
660    // There's a lot more that could theoretically be done here, but
661    // this is sufficient to catch some interesting cases.
662    if (P->getNumIncomingValues() == 2) {
663      for (unsigned i = 0; i != 2; ++i) {
664        Value *L = P->getIncomingValue(i);
665        Value *R = P->getIncomingValue(!i);
666        Operator *LU = dyn_cast<Operator>(L);
667        if (!LU)
668          continue;
669        unsigned Opcode = LU->getOpcode();
670        // Check for operations that have the property that if
671        // both their operands have low zero bits, the result
672        // will have low zero bits.
673        if (Opcode == Instruction::Add ||
674            Opcode == Instruction::Sub ||
675            Opcode == Instruction::And ||
676            Opcode == Instruction::Or ||
677            Opcode == Instruction::Mul) {
678          Value *LL = LU->getOperand(0);
679          Value *LR = LU->getOperand(1);
680          // Find a recurrence.
681          if (LL == I)
682            L = LR;
683          else if (LR == I)
684            L = LL;
685          else
686            break;
687          // Ok, we have a PHI of the form L op= R. Check for low
688          // zero bits.
689          computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
690
691          // We need to take the minimum number of known bits
692          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
693          computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
694
695          KnownZero = APInt::getLowBitsSet(BitWidth,
696                                           std::min(KnownZero2.countTrailingOnes(),
697                                                    KnownZero3.countTrailingOnes()));
698          break;
699        }
700      }
701    }
702
703    // Unreachable blocks may have zero-operand PHI nodes.
704    if (P->getNumIncomingValues() == 0)
705      break;
706
707    // Otherwise take the unions of the known bit sets of the operands,
708    // taking conservative care to avoid excessive recursion.
709    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
710      // Skip if every incoming value references to ourself.
711      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
712        break;
713
714      KnownZero = APInt::getAllOnesValue(BitWidth);
715      KnownOne = APInt::getAllOnesValue(BitWidth);
716      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
717        // Skip direct self references.
718        if (P->getIncomingValue(i) == P) continue;
719
720        KnownZero2 = APInt(BitWidth, 0);
721        KnownOne2 = APInt(BitWidth, 0);
722        // Recurse, but cap the recursion to one level, because we don't
723        // want to waste time spinning around in loops.
724        computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
725                         MaxDepth-1);
726        KnownZero &= KnownZero2;
727        KnownOne &= KnownOne2;
728        // If all bits have been ruled out, there's no need to check
729        // more operands.
730        if (!KnownZero && !KnownOne)
731          break;
732      }
733    }
734    break;
735  }
736  case Instruction::Call:
737  case Instruction::Invoke:
738    if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
739      computeKnownBitsFromRangeMetadata(*MD, KnownZero);
740    // If a range metadata is attached to this IntrinsicInst, intersect the
741    // explicit range specified by the metadata and the implicit range of
742    // the intrinsic.
743    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
744      switch (II->getIntrinsicID()) {
745      default: break;
746      case Intrinsic::ctlz:
747      case Intrinsic::cttz: {
748        unsigned LowBits = Log2_32(BitWidth)+1;
749        // If this call is undefined for 0, the result will be less than 2^n.
750        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
751          LowBits -= 1;
752        KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
753        break;
754      }
755      case Intrinsic::ctpop: {
756        unsigned LowBits = Log2_32(BitWidth)+1;
757        KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
758        break;
759      }
760      case Intrinsic::x86_sse42_crc32_64_64:
761        KnownZero |= APInt::getHighBitsSet(64, 32);
762        break;
763      }
764    }
765    break;
766  case Instruction::ExtractValue:
767    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
768      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
769      if (EVI->getNumIndices() != 1) break;
770      if (EVI->getIndices()[0] == 0) {
771        switch (II->getIntrinsicID()) {
772        default: break;
773        case Intrinsic::uadd_with_overflow:
774        case Intrinsic::sadd_with_overflow:
775          computeKnownBitsAddSub(true, II->getArgOperand(0),
776                                 II->getArgOperand(1), false, KnownZero,
777                                 KnownOne, KnownZero2, KnownOne2, TD, Depth);
778          break;
779        case Intrinsic::usub_with_overflow:
780        case Intrinsic::ssub_with_overflow:
781          computeKnownBitsAddSub(false, II->getArgOperand(0),
782                                 II->getArgOperand(1), false, KnownZero,
783                                 KnownOne, KnownZero2, KnownOne2, TD, Depth);
784          break;
785        case Intrinsic::umul_with_overflow:
786        case Intrinsic::smul_with_overflow:
787          computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
788                              false, KnownZero, KnownOne,
789                              KnownZero2, KnownOne2, TD, Depth);
790          break;
791        }
792      }
793    }
794  }
795
796  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
797}
798
799/// ComputeSignBit - Determine whether the sign bit is known to be zero or
800/// one.  Convenience wrapper around computeKnownBits.
801void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
802                          const DataLayout *TD, unsigned Depth) {
803  unsigned BitWidth = getBitWidth(V->getType(), TD);
804  if (!BitWidth) {
805    KnownZero = false;
806    KnownOne = false;
807    return;
808  }
809  APInt ZeroBits(BitWidth, 0);
810  APInt OneBits(BitWidth, 0);
811  computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
812  KnownOne = OneBits[BitWidth - 1];
813  KnownZero = ZeroBits[BitWidth - 1];
814}
815
816/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
817/// bit set when defined. For vectors return true if every element is known to
818/// be a power of two when defined.  Supports values with integer or pointer
819/// types and vectors of integers.
820bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
821  if (Constant *C = dyn_cast<Constant>(V)) {
822    if (C->isNullValue())
823      return OrZero;
824    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
825      return CI->getValue().isPowerOf2();
826    // TODO: Handle vector constants.
827  }
828
829  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
830  // it is shifted off the end then the result is undefined.
831  if (match(V, m_Shl(m_One(), m_Value())))
832    return true;
833
834  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
835  // bottom.  If it is shifted off the bottom then the result is undefined.
836  if (match(V, m_LShr(m_SignBit(), m_Value())))
837    return true;
838
839  // The remaining tests are all recursive, so bail out if we hit the limit.
840  if (Depth++ == MaxDepth)
841    return false;
842
843  Value *X = nullptr, *Y = nullptr;
844  // A shift of a power of two is a power of two or zero.
845  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
846                 match(V, m_Shr(m_Value(X), m_Value()))))
847    return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
848
849  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
850    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
851
852  if (SelectInst *SI = dyn_cast<SelectInst>(V))
853    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
854      isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
855
856  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
857    // A power of two and'd with anything is a power of two or zero.
858    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
859        isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
860      return true;
861    // X & (-X) is always a power of two or zero.
862    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
863      return true;
864    return false;
865  }
866
867  // Adding a power-of-two or zero to the same power-of-two or zero yields
868  // either the original power-of-two, a larger power-of-two or zero.
869  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
870    OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
871    if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
872      if (match(X, m_And(m_Specific(Y), m_Value())) ||
873          match(X, m_And(m_Value(), m_Specific(Y))))
874        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
875          return true;
876      if (match(Y, m_And(m_Specific(X), m_Value())) ||
877          match(Y, m_And(m_Value(), m_Specific(X))))
878        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
879          return true;
880
881      unsigned BitWidth = V->getType()->getScalarSizeInBits();
882      APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
883      computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
884
885      APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
886      computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
887      // If i8 V is a power of two or zero:
888      //  ZeroBits: 1 1 1 0 1 1 1 1
889      // ~ZeroBits: 0 0 0 1 0 0 0 0
890      if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
891        // If OrZero isn't set, we cannot give back a zero result.
892        // Make sure either the LHS or RHS has a bit set.
893        if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
894          return true;
895    }
896  }
897
898  // An exact divide or right shift can only shift off zero bits, so the result
899  // is a power of two only if the first operand is a power of two and not
900  // copying a sign bit (sdiv int_min, 2).
901  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
902      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
903    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
904  }
905
906  return false;
907}
908
909/// \brief Test whether a GEP's result is known to be non-null.
910///
911/// Uses properties inherent in a GEP to try to determine whether it is known
912/// to be non-null.
913///
914/// Currently this routine does not support vector GEPs.
915static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
916                              unsigned Depth) {
917  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
918    return false;
919
920  // FIXME: Support vector-GEPs.
921  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
922
923  // If the base pointer is non-null, we cannot walk to a null address with an
924  // inbounds GEP in address space zero.
925  if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
926    return true;
927
928  // Past this, if we don't have DataLayout, we can't do much.
929  if (!DL)
930    return false;
931
932  // Walk the GEP operands and see if any operand introduces a non-zero offset.
933  // If so, then the GEP cannot produce a null pointer, as doing so would
934  // inherently violate the inbounds contract within address space zero.
935  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
936       GTI != GTE; ++GTI) {
937    // Struct types are easy -- they must always be indexed by a constant.
938    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
939      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
940      unsigned ElementIdx = OpC->getZExtValue();
941      const StructLayout *SL = DL->getStructLayout(STy);
942      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
943      if (ElementOffset > 0)
944        return true;
945      continue;
946    }
947
948    // If we have a zero-sized type, the index doesn't matter. Keep looping.
949    if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
950      continue;
951
952    // Fast path the constant operand case both for efficiency and so we don't
953    // increment Depth when just zipping down an all-constant GEP.
954    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
955      if (!OpC->isZero())
956        return true;
957      continue;
958    }
959
960    // We post-increment Depth here because while isKnownNonZero increments it
961    // as well, when we pop back up that increment won't persist. We don't want
962    // to recurse 10k times just because we have 10k GEP operands. We don't
963    // bail completely out because we want to handle constant GEPs regardless
964    // of depth.
965    if (Depth++ >= MaxDepth)
966      continue;
967
968    if (isKnownNonZero(GTI.getOperand(), DL, Depth))
969      return true;
970  }
971
972  return false;
973}
974
975/// isKnownNonZero - Return true if the given value is known to be non-zero
976/// when defined.  For vectors return true if every element is known to be
977/// non-zero when defined.  Supports values with integer or pointer type and
978/// vectors of integers.
979bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
980  if (Constant *C = dyn_cast<Constant>(V)) {
981    if (C->isNullValue())
982      return false;
983    if (isa<ConstantInt>(C))
984      // Must be non-zero due to null test above.
985      return true;
986    // TODO: Handle vectors
987    return false;
988  }
989
990  // The remaining tests are all recursive, so bail out if we hit the limit.
991  if (Depth++ >= MaxDepth)
992    return false;
993
994  // Check for pointer simplifications.
995  if (V->getType()->isPointerTy()) {
996    if (isKnownNonNull(V))
997      return true;
998    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
999      if (isGEPKnownNonNull(GEP, TD, Depth))
1000        return true;
1001  }
1002
1003  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
1004
1005  // X | Y != 0 if X != 0 or Y != 0.
1006  Value *X = nullptr, *Y = nullptr;
1007  if (match(V, m_Or(m_Value(X), m_Value(Y))))
1008    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1009
1010  // ext X != 0 if X != 0.
1011  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1012    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1013
1014  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1015  // if the lowest bit is shifted off the end.
1016  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1017    // shl nuw can't remove any non-zero bits.
1018    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1019    if (BO->hasNoUnsignedWrap())
1020      return isKnownNonZero(X, TD, Depth);
1021
1022    APInt KnownZero(BitWidth, 0);
1023    APInt KnownOne(BitWidth, 0);
1024    computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
1025    if (KnownOne[0])
1026      return true;
1027  }
1028  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1029  // defined if the sign bit is shifted off the end.
1030  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1031    // shr exact can only shift out zero bits.
1032    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1033    if (BO->isExact())
1034      return isKnownNonZero(X, TD, Depth);
1035
1036    bool XKnownNonNegative, XKnownNegative;
1037    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1038    if (XKnownNegative)
1039      return true;
1040  }
1041  // div exact can only produce a zero if the dividend is zero.
1042  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1043    return isKnownNonZero(X, TD, Depth);
1044  }
1045  // X + Y.
1046  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1047    bool XKnownNonNegative, XKnownNegative;
1048    bool YKnownNonNegative, YKnownNegative;
1049    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1050    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1051
1052    // If X and Y are both non-negative (as signed values) then their sum is not
1053    // zero unless both X and Y are zero.
1054    if (XKnownNonNegative && YKnownNonNegative)
1055      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1056        return true;
1057
1058    // If X and Y are both negative (as signed values) then their sum is not
1059    // zero unless both X and Y equal INT_MIN.
1060    if (BitWidth && XKnownNegative && YKnownNegative) {
1061      APInt KnownZero(BitWidth, 0);
1062      APInt KnownOne(BitWidth, 0);
1063      APInt Mask = APInt::getSignedMaxValue(BitWidth);
1064      // The sign bit of X is set.  If some other bit is set then X is not equal
1065      // to INT_MIN.
1066      computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
1067      if ((KnownOne & Mask) != 0)
1068        return true;
1069      // The sign bit of Y is set.  If some other bit is set then Y is not equal
1070      // to INT_MIN.
1071      computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
1072      if ((KnownOne & Mask) != 0)
1073        return true;
1074    }
1075
1076    // The sum of a non-negative number and a power of two is not zero.
1077    if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
1078      return true;
1079    if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
1080      return true;
1081  }
1082  // X * Y.
1083  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1084    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1085    // If X and Y are non-zero then so is X * Y as long as the multiplication
1086    // does not overflow.
1087    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1088        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1089      return true;
1090  }
1091  // (C ? X : Y) != 0 if X != 0 and Y != 0.
1092  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1093    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1094        isKnownNonZero(SI->getFalseValue(), TD, Depth))
1095      return true;
1096  }
1097
1098  if (!BitWidth) return false;
1099  APInt KnownZero(BitWidth, 0);
1100  APInt KnownOne(BitWidth, 0);
1101  computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
1102  return KnownOne != 0;
1103}
1104
1105/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1106/// this predicate to simplify operations downstream.  Mask is known to be zero
1107/// for bits that V cannot have.
1108///
1109/// This function is defined on values with integer type, values with pointer
1110/// type (but only if TD is non-null), and vectors of integers.  In the case
1111/// where V is a vector, the mask, known zero, and known one values are the
1112/// same width as the vector element, and the bit is set only if it is true
1113/// for all of the elements in the vector.
1114bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
1115                             const DataLayout *TD, unsigned Depth) {
1116  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1117  computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
1118  return (KnownZero & Mask) == Mask;
1119}
1120
1121
1122
1123/// ComputeNumSignBits - Return the number of times the sign bit of the
1124/// register is replicated into the other bits.  We know that at least 1 bit
1125/// is always equal to the sign bit (itself), but other cases can give us
1126/// information.  For example, immediately after an "ashr X, 2", we know that
1127/// the top 3 bits are all equal to each other, so we return 3.
1128///
1129/// 'Op' must have a scalar integer type.
1130///
1131unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1132                                  unsigned Depth) {
1133  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1134         "ComputeNumSignBits requires a DataLayout object to operate "
1135         "on non-integer values!");
1136  Type *Ty = V->getType();
1137  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1138                         Ty->getScalarSizeInBits();
1139  unsigned Tmp, Tmp2;
1140  unsigned FirstAnswer = 1;
1141
1142  // Note that ConstantInt is handled by the general computeKnownBits case
1143  // below.
1144
1145  if (Depth == 6)
1146    return 1;  // Limit search depth.
1147
1148  Operator *U = dyn_cast<Operator>(V);
1149  switch (Operator::getOpcode(V)) {
1150  default: break;
1151  case Instruction::SExt:
1152    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1153    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1154
1155  case Instruction::AShr: {
1156    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1157    // ashr X, C   -> adds C sign bits.  Vectors too.
1158    const APInt *ShAmt;
1159    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1160      Tmp += ShAmt->getZExtValue();
1161      if (Tmp > TyBits) Tmp = TyBits;
1162    }
1163    return Tmp;
1164  }
1165  case Instruction::Shl: {
1166    const APInt *ShAmt;
1167    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1168      // shl destroys sign bits.
1169      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1170      Tmp2 = ShAmt->getZExtValue();
1171      if (Tmp2 >= TyBits ||      // Bad shift.
1172          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1173      return Tmp - Tmp2;
1174    }
1175    break;
1176  }
1177  case Instruction::And:
1178  case Instruction::Or:
1179  case Instruction::Xor:    // NOT is handled here.
1180    // Logical binary ops preserve the number of sign bits at the worst.
1181    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1182    if (Tmp != 1) {
1183      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1184      FirstAnswer = std::min(Tmp, Tmp2);
1185      // We computed what we know about the sign bits as our first
1186      // answer. Now proceed to the generic code that uses
1187      // computeKnownBits, and pick whichever answer is better.
1188    }
1189    break;
1190
1191  case Instruction::Select:
1192    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1193    if (Tmp == 1) return 1;  // Early out.
1194    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1195    return std::min(Tmp, Tmp2);
1196
1197  case Instruction::Add:
1198    // Add can have at most one carry bit.  Thus we know that the output
1199    // is, at worst, one more bit than the inputs.
1200    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1201    if (Tmp == 1) return 1;  // Early out.
1202
1203    // Special case decrementing a value (ADD X, -1):
1204    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1205      if (CRHS->isAllOnesValue()) {
1206        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1207        computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1208
1209        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1210        // sign bits set.
1211        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1212          return TyBits;
1213
1214        // If we are subtracting one from a positive number, there is no carry
1215        // out of the result.
1216        if (KnownZero.isNegative())
1217          return Tmp;
1218      }
1219
1220    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1221    if (Tmp2 == 1) return 1;
1222    return std::min(Tmp, Tmp2)-1;
1223
1224  case Instruction::Sub:
1225    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1226    if (Tmp2 == 1) return 1;
1227
1228    // Handle NEG.
1229    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1230      if (CLHS->isNullValue()) {
1231        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1232        computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1233        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1234        // sign bits set.
1235        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1236          return TyBits;
1237
1238        // If the input is known to be positive (the sign bit is known clear),
1239        // the output of the NEG has the same number of sign bits as the input.
1240        if (KnownZero.isNegative())
1241          return Tmp2;
1242
1243        // Otherwise, we treat this like a SUB.
1244      }
1245
1246    // Sub can have at most one carry bit.  Thus we know that the output
1247    // is, at worst, one more bit than the inputs.
1248    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1249    if (Tmp == 1) return 1;  // Early out.
1250    return std::min(Tmp, Tmp2)-1;
1251
1252  case Instruction::PHI: {
1253    PHINode *PN = cast<PHINode>(U);
1254    // Don't analyze large in-degree PHIs.
1255    if (PN->getNumIncomingValues() > 4) break;
1256
1257    // Take the minimum of all incoming values.  This can't infinitely loop
1258    // because of our depth threshold.
1259    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1260    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1261      if (Tmp == 1) return Tmp;
1262      Tmp = std::min(Tmp,
1263                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1264    }
1265    return Tmp;
1266  }
1267
1268  case Instruction::Trunc:
1269    // FIXME: it's tricky to do anything useful for this, but it is an important
1270    // case for targets like X86.
1271    break;
1272  }
1273
1274  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1275  // use this information.
1276  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1277  APInt Mask;
1278  computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
1279
1280  if (KnownZero.isNegative()) {        // sign bit is 0
1281    Mask = KnownZero;
1282  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1283    Mask = KnownOne;
1284  } else {
1285    // Nothing known.
1286    return FirstAnswer;
1287  }
1288
1289  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1290  // the number of identical bits in the top of the input value.
1291  Mask = ~Mask;
1292  Mask <<= Mask.getBitWidth()-TyBits;
1293  // Return # leading zeros.  We use 'min' here in case Val was zero before
1294  // shifting.  We don't want to return '64' as for an i32 "0".
1295  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1296}
1297
1298/// ComputeMultiple - This function computes the integer multiple of Base that
1299/// equals V.  If successful, it returns true and returns the multiple in
1300/// Multiple.  If unsuccessful, it returns false. It looks
1301/// through SExt instructions only if LookThroughSExt is true.
1302bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1303                           bool LookThroughSExt, unsigned Depth) {
1304  const unsigned MaxDepth = 6;
1305
1306  assert(V && "No Value?");
1307  assert(Depth <= MaxDepth && "Limit Search Depth");
1308  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1309
1310  Type *T = V->getType();
1311
1312  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1313
1314  if (Base == 0)
1315    return false;
1316
1317  if (Base == 1) {
1318    Multiple = V;
1319    return true;
1320  }
1321
1322  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1323  Constant *BaseVal = ConstantInt::get(T, Base);
1324  if (CO && CO == BaseVal) {
1325    // Multiple is 1.
1326    Multiple = ConstantInt::get(T, 1);
1327    return true;
1328  }
1329
1330  if (CI && CI->getZExtValue() % Base == 0) {
1331    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1332    return true;
1333  }
1334
1335  if (Depth == MaxDepth) return false;  // Limit search depth.
1336
1337  Operator *I = dyn_cast<Operator>(V);
1338  if (!I) return false;
1339
1340  switch (I->getOpcode()) {
1341  default: break;
1342  case Instruction::SExt:
1343    if (!LookThroughSExt) return false;
1344    // otherwise fall through to ZExt
1345  case Instruction::ZExt:
1346    return ComputeMultiple(I->getOperand(0), Base, Multiple,
1347                           LookThroughSExt, Depth+1);
1348  case Instruction::Shl:
1349  case Instruction::Mul: {
1350    Value *Op0 = I->getOperand(0);
1351    Value *Op1 = I->getOperand(1);
1352
1353    if (I->getOpcode() == Instruction::Shl) {
1354      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1355      if (!Op1CI) return false;
1356      // Turn Op0 << Op1 into Op0 * 2^Op1
1357      APInt Op1Int = Op1CI->getValue();
1358      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1359      APInt API(Op1Int.getBitWidth(), 0);
1360      API.setBit(BitToSet);
1361      Op1 = ConstantInt::get(V->getContext(), API);
1362    }
1363
1364    Value *Mul0 = nullptr;
1365    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1366      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1367        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1368          if (Op1C->getType()->getPrimitiveSizeInBits() <
1369              MulC->getType()->getPrimitiveSizeInBits())
1370            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1371          if (Op1C->getType()->getPrimitiveSizeInBits() >
1372              MulC->getType()->getPrimitiveSizeInBits())
1373            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1374
1375          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1376          Multiple = ConstantExpr::getMul(MulC, Op1C);
1377          return true;
1378        }
1379
1380      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1381        if (Mul0CI->getValue() == 1) {
1382          // V == Base * Op1, so return Op1
1383          Multiple = Op1;
1384          return true;
1385        }
1386    }
1387
1388    Value *Mul1 = nullptr;
1389    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1390      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1391        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1392          if (Op0C->getType()->getPrimitiveSizeInBits() <
1393              MulC->getType()->getPrimitiveSizeInBits())
1394            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1395          if (Op0C->getType()->getPrimitiveSizeInBits() >
1396              MulC->getType()->getPrimitiveSizeInBits())
1397            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1398
1399          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1400          Multiple = ConstantExpr::getMul(MulC, Op0C);
1401          return true;
1402        }
1403
1404      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1405        if (Mul1CI->getValue() == 1) {
1406          // V == Base * Op0, so return Op0
1407          Multiple = Op0;
1408          return true;
1409        }
1410    }
1411  }
1412  }
1413
1414  // We could not determine if V is a multiple of Base.
1415  return false;
1416}
1417
1418/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1419/// value is never equal to -0.0.
1420///
1421/// NOTE: this function will need to be revisited when we support non-default
1422/// rounding modes!
1423///
1424bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1425  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1426    return !CFP->getValueAPF().isNegZero();
1427
1428  if (Depth == 6)
1429    return 1;  // Limit search depth.
1430
1431  const Operator *I = dyn_cast<Operator>(V);
1432  if (!I) return false;
1433
1434  // Check if the nsz fast-math flag is set
1435  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1436    if (FPO->hasNoSignedZeros())
1437      return true;
1438
1439  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1440  if (I->getOpcode() == Instruction::FAdd)
1441    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1442      if (CFP->isNullValue())
1443        return true;
1444
1445  // sitofp and uitofp turn into +0.0 for zero.
1446  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1447    return true;
1448
1449  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1450    // sqrt(-0.0) = -0.0, no other negative results are possible.
1451    if (II->getIntrinsicID() == Intrinsic::sqrt)
1452      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1453
1454  if (const CallInst *CI = dyn_cast<CallInst>(I))
1455    if (const Function *F = CI->getCalledFunction()) {
1456      if (F->isDeclaration()) {
1457        // abs(x) != -0.0
1458        if (F->getName() == "abs") return true;
1459        // fabs[lf](x) != -0.0
1460        if (F->getName() == "fabs") return true;
1461        if (F->getName() == "fabsf") return true;
1462        if (F->getName() == "fabsl") return true;
1463        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1464            F->getName() == "sqrtl")
1465          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1466      }
1467    }
1468
1469  return false;
1470}
1471
1472/// isBytewiseValue - If the specified value can be set by repeating the same
1473/// byte in memory, return the i8 value that it is represented with.  This is
1474/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1475/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1476/// byte store (e.g. i16 0x1234), return null.
1477Value *llvm::isBytewiseValue(Value *V) {
1478  // All byte-wide stores are splatable, even of arbitrary variables.
1479  if (V->getType()->isIntegerTy(8)) return V;
1480
1481  // Handle 'null' ConstantArrayZero etc.
1482  if (Constant *C = dyn_cast<Constant>(V))
1483    if (C->isNullValue())
1484      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1485
1486  // Constant float and double values can be handled as integer values if the
1487  // corresponding integer value is "byteable".  An important case is 0.0.
1488  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1489    if (CFP->getType()->isFloatTy())
1490      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1491    if (CFP->getType()->isDoubleTy())
1492      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1493    // Don't handle long double formats, which have strange constraints.
1494  }
1495
1496  // We can handle constant integers that are power of two in size and a
1497  // multiple of 8 bits.
1498  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1499    unsigned Width = CI->getBitWidth();
1500    if (isPowerOf2_32(Width) && Width > 8) {
1501      // We can handle this value if the recursive binary decomposition is the
1502      // same at all levels.
1503      APInt Val = CI->getValue();
1504      APInt Val2;
1505      while (Val.getBitWidth() != 8) {
1506        unsigned NextWidth = Val.getBitWidth()/2;
1507        Val2  = Val.lshr(NextWidth);
1508        Val2 = Val2.trunc(Val.getBitWidth()/2);
1509        Val = Val.trunc(Val.getBitWidth()/2);
1510
1511        // If the top/bottom halves aren't the same, reject it.
1512        if (Val != Val2)
1513          return nullptr;
1514      }
1515      return ConstantInt::get(V->getContext(), Val);
1516    }
1517  }
1518
1519  // A ConstantDataArray/Vector is splatable if all its members are equal and
1520  // also splatable.
1521  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1522    Value *Elt = CA->getElementAsConstant(0);
1523    Value *Val = isBytewiseValue(Elt);
1524    if (!Val)
1525      return nullptr;
1526
1527    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1528      if (CA->getElementAsConstant(I) != Elt)
1529        return nullptr;
1530
1531    return Val;
1532  }
1533
1534  // Conceptually, we could handle things like:
1535  //   %a = zext i8 %X to i16
1536  //   %b = shl i16 %a, 8
1537  //   %c = or i16 %a, %b
1538  // but until there is an example that actually needs this, it doesn't seem
1539  // worth worrying about.
1540  return nullptr;
1541}
1542
1543
1544// This is the recursive version of BuildSubAggregate. It takes a few different
1545// arguments. Idxs is the index within the nested struct From that we are
1546// looking at now (which is of type IndexedType). IdxSkip is the number of
1547// indices from Idxs that should be left out when inserting into the resulting
1548// struct. To is the result struct built so far, new insertvalue instructions
1549// build on that.
1550static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1551                                SmallVectorImpl<unsigned> &Idxs,
1552                                unsigned IdxSkip,
1553                                Instruction *InsertBefore) {
1554  llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
1555  if (STy) {
1556    // Save the original To argument so we can modify it
1557    Value *OrigTo = To;
1558    // General case, the type indexed by Idxs is a struct
1559    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1560      // Process each struct element recursively
1561      Idxs.push_back(i);
1562      Value *PrevTo = To;
1563      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1564                             InsertBefore);
1565      Idxs.pop_back();
1566      if (!To) {
1567        // Couldn't find any inserted value for this index? Cleanup
1568        while (PrevTo != OrigTo) {
1569          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1570          PrevTo = Del->getAggregateOperand();
1571          Del->eraseFromParent();
1572        }
1573        // Stop processing elements
1574        break;
1575      }
1576    }
1577    // If we successfully found a value for each of our subaggregates
1578    if (To)
1579      return To;
1580  }
1581  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1582  // the struct's elements had a value that was inserted directly. In the latter
1583  // case, perhaps we can't determine each of the subelements individually, but
1584  // we might be able to find the complete struct somewhere.
1585
1586  // Find the value that is at that particular spot
1587  Value *V = FindInsertedValue(From, Idxs);
1588
1589  if (!V)
1590    return nullptr;
1591
1592  // Insert the value in the new (sub) aggregrate
1593  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1594                                       "tmp", InsertBefore);
1595}
1596
1597// This helper takes a nested struct and extracts a part of it (which is again a
1598// struct) into a new value. For example, given the struct:
1599// { a, { b, { c, d }, e } }
1600// and the indices "1, 1" this returns
1601// { c, d }.
1602//
1603// It does this by inserting an insertvalue for each element in the resulting
1604// struct, as opposed to just inserting a single struct. This will only work if
1605// each of the elements of the substruct are known (ie, inserted into From by an
1606// insertvalue instruction somewhere).
1607//
1608// All inserted insertvalue instructions are inserted before InsertBefore
1609static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1610                                Instruction *InsertBefore) {
1611  assert(InsertBefore && "Must have someplace to insert!");
1612  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1613                                                             idx_range);
1614  Value *To = UndefValue::get(IndexedType);
1615  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1616  unsigned IdxSkip = Idxs.size();
1617
1618  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1619}
1620
1621/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1622/// the scalar value indexed is already around as a register, for example if it
1623/// were inserted directly into the aggregrate.
1624///
1625/// If InsertBefore is not null, this function will duplicate (modified)
1626/// insertvalues when a part of a nested struct is extracted.
1627Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1628                               Instruction *InsertBefore) {
1629  // Nothing to index? Just return V then (this is useful at the end of our
1630  // recursion).
1631  if (idx_range.empty())
1632    return V;
1633  // We have indices, so V should have an indexable type.
1634  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1635         "Not looking at a struct or array?");
1636  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1637         "Invalid indices for type?");
1638
1639  if (Constant *C = dyn_cast<Constant>(V)) {
1640    C = C->getAggregateElement(idx_range[0]);
1641    if (!C) return nullptr;
1642    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1643  }
1644
1645  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1646    // Loop the indices for the insertvalue instruction in parallel with the
1647    // requested indices
1648    const unsigned *req_idx = idx_range.begin();
1649    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1650         i != e; ++i, ++req_idx) {
1651      if (req_idx == idx_range.end()) {
1652        // We can't handle this without inserting insertvalues
1653        if (!InsertBefore)
1654          return nullptr;
1655
1656        // The requested index identifies a part of a nested aggregate. Handle
1657        // this specially. For example,
1658        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1659        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1660        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1661        // This can be changed into
1662        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1663        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1664        // which allows the unused 0,0 element from the nested struct to be
1665        // removed.
1666        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1667                                 InsertBefore);
1668      }
1669
1670      // This insert value inserts something else than what we are looking for.
1671      // See if the (aggregrate) value inserted into has the value we are
1672      // looking for, then.
1673      if (*req_idx != *i)
1674        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1675                                 InsertBefore);
1676    }
1677    // If we end up here, the indices of the insertvalue match with those
1678    // requested (though possibly only partially). Now we recursively look at
1679    // the inserted value, passing any remaining indices.
1680    return FindInsertedValue(I->getInsertedValueOperand(),
1681                             makeArrayRef(req_idx, idx_range.end()),
1682                             InsertBefore);
1683  }
1684
1685  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1686    // If we're extracting a value from an aggregrate that was extracted from
1687    // something else, we can extract from that something else directly instead.
1688    // However, we will need to chain I's indices with the requested indices.
1689
1690    // Calculate the number of indices required
1691    unsigned size = I->getNumIndices() + idx_range.size();
1692    // Allocate some space to put the new indices in
1693    SmallVector<unsigned, 5> Idxs;
1694    Idxs.reserve(size);
1695    // Add indices from the extract value instruction
1696    Idxs.append(I->idx_begin(), I->idx_end());
1697
1698    // Add requested indices
1699    Idxs.append(idx_range.begin(), idx_range.end());
1700
1701    assert(Idxs.size() == size
1702           && "Number of indices added not correct?");
1703
1704    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1705  }
1706  // Otherwise, we don't know (such as, extracting from a function return value
1707  // or load instruction)
1708  return nullptr;
1709}
1710
1711/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1712/// it can be expressed as a base pointer plus a constant offset.  Return the
1713/// base and offset to the caller.
1714Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1715                                              const DataLayout *DL) {
1716  // Without DataLayout, conservatively assume 64-bit offsets, which is
1717  // the widest we support.
1718  unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
1719  APInt ByteOffset(BitWidth, 0);
1720  while (1) {
1721    if (Ptr->getType()->isVectorTy())
1722      break;
1723
1724    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1725      if (DL) {
1726        APInt GEPOffset(BitWidth, 0);
1727        if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
1728          break;
1729
1730        ByteOffset += GEPOffset;
1731      }
1732
1733      Ptr = GEP->getPointerOperand();
1734    } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1735      Ptr = cast<Operator>(Ptr)->getOperand(0);
1736    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1737      if (GA->mayBeOverridden())
1738        break;
1739      Ptr = GA->getAliasee();
1740    } else {
1741      break;
1742    }
1743  }
1744  Offset = ByteOffset.getSExtValue();
1745  return Ptr;
1746}
1747
1748
1749/// getConstantStringInfo - This function computes the length of a
1750/// null-terminated C string pointed to by V.  If successful, it returns true
1751/// and returns the string in Str.  If unsuccessful, it returns false.
1752bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1753                                 uint64_t Offset, bool TrimAtNul) {
1754  assert(V);
1755
1756  // Look through bitcast instructions and geps.
1757  V = V->stripPointerCasts();
1758
1759  // If the value is a GEP instructionor  constant expression, treat it as an
1760  // offset.
1761  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1762    // Make sure the GEP has exactly three arguments.
1763    if (GEP->getNumOperands() != 3)
1764      return false;
1765
1766    // Make sure the index-ee is a pointer to array of i8.
1767    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1768    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1769    if (!AT || !AT->getElementType()->isIntegerTy(8))
1770      return false;
1771
1772    // Check to make sure that the first operand of the GEP is an integer and
1773    // has value 0 so that we are sure we're indexing into the initializer.
1774    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1775    if (!FirstIdx || !FirstIdx->isZero())
1776      return false;
1777
1778    // If the second index isn't a ConstantInt, then this is a variable index
1779    // into the array.  If this occurs, we can't say anything meaningful about
1780    // the string.
1781    uint64_t StartIdx = 0;
1782    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1783      StartIdx = CI->getZExtValue();
1784    else
1785      return false;
1786    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1787  }
1788
1789  // The GEP instruction, constant or instruction, must reference a global
1790  // variable that is a constant and is initialized. The referenced constant
1791  // initializer is the array that we'll use for optimization.
1792  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1793  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1794    return false;
1795
1796  // Handle the all-zeros case
1797  if (GV->getInitializer()->isNullValue()) {
1798    // This is a degenerate case. The initializer is constant zero so the
1799    // length of the string must be zero.
1800    Str = "";
1801    return true;
1802  }
1803
1804  // Must be a Constant Array
1805  const ConstantDataArray *Array =
1806    dyn_cast<ConstantDataArray>(GV->getInitializer());
1807  if (!Array || !Array->isString())
1808    return false;
1809
1810  // Get the number of elements in the array
1811  uint64_t NumElts = Array->getType()->getArrayNumElements();
1812
1813  // Start out with the entire array in the StringRef.
1814  Str = Array->getAsString();
1815
1816  if (Offset > NumElts)
1817    return false;
1818
1819  // Skip over 'offset' bytes.
1820  Str = Str.substr(Offset);
1821
1822  if (TrimAtNul) {
1823    // Trim off the \0 and anything after it.  If the array is not nul
1824    // terminated, we just return the whole end of string.  The client may know
1825    // some other way that the string is length-bound.
1826    Str = Str.substr(0, Str.find('\0'));
1827  }
1828  return true;
1829}
1830
1831// These next two are very similar to the above, but also look through PHI
1832// nodes.
1833// TODO: See if we can integrate these two together.
1834
1835/// GetStringLengthH - If we can compute the length of the string pointed to by
1836/// the specified pointer, return 'len+1'.  If we can't, return 0.
1837static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1838  // Look through noop bitcast instructions.
1839  V = V->stripPointerCasts();
1840
1841  // If this is a PHI node, there are two cases: either we have already seen it
1842  // or we haven't.
1843  if (PHINode *PN = dyn_cast<PHINode>(V)) {
1844    if (!PHIs.insert(PN))
1845      return ~0ULL;  // already in the set.
1846
1847    // If it was new, see if all the input strings are the same length.
1848    uint64_t LenSoFar = ~0ULL;
1849    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1850      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1851      if (Len == 0) return 0; // Unknown length -> unknown.
1852
1853      if (Len == ~0ULL) continue;
1854
1855      if (Len != LenSoFar && LenSoFar != ~0ULL)
1856        return 0;    // Disagree -> unknown.
1857      LenSoFar = Len;
1858    }
1859
1860    // Success, all agree.
1861    return LenSoFar;
1862  }
1863
1864  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1865  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1866    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1867    if (Len1 == 0) return 0;
1868    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1869    if (Len2 == 0) return 0;
1870    if (Len1 == ~0ULL) return Len2;
1871    if (Len2 == ~0ULL) return Len1;
1872    if (Len1 != Len2) return 0;
1873    return Len1;
1874  }
1875
1876  // Otherwise, see if we can read the string.
1877  StringRef StrData;
1878  if (!getConstantStringInfo(V, StrData))
1879    return 0;
1880
1881  return StrData.size()+1;
1882}
1883
1884/// GetStringLength - If we can compute the length of the string pointed to by
1885/// the specified pointer, return 'len+1'.  If we can't, return 0.
1886uint64_t llvm::GetStringLength(Value *V) {
1887  if (!V->getType()->isPointerTy()) return 0;
1888
1889  SmallPtrSet<PHINode*, 32> PHIs;
1890  uint64_t Len = GetStringLengthH(V, PHIs);
1891  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1892  // an empty string as a length.
1893  return Len == ~0ULL ? 1 : Len;
1894}
1895
1896Value *
1897llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1898  if (!V->getType()->isPointerTy())
1899    return V;
1900  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1901    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1902      V = GEP->getPointerOperand();
1903    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1904      V = cast<Operator>(V)->getOperand(0);
1905    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1906      if (GA->mayBeOverridden())
1907        return V;
1908      V = GA->getAliasee();
1909    } else {
1910      // See if InstructionSimplify knows any relevant tricks.
1911      if (Instruction *I = dyn_cast<Instruction>(V))
1912        // TODO: Acquire a DominatorTree and use it.
1913        if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
1914          V = Simplified;
1915          continue;
1916        }
1917
1918      return V;
1919    }
1920    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1921  }
1922  return V;
1923}
1924
1925void
1926llvm::GetUnderlyingObjects(Value *V,
1927                           SmallVectorImpl<Value *> &Objects,
1928                           const DataLayout *TD,
1929                           unsigned MaxLookup) {
1930  SmallPtrSet<Value *, 4> Visited;
1931  SmallVector<Value *, 4> Worklist;
1932  Worklist.push_back(V);
1933  do {
1934    Value *P = Worklist.pop_back_val();
1935    P = GetUnderlyingObject(P, TD, MaxLookup);
1936
1937    if (!Visited.insert(P))
1938      continue;
1939
1940    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1941      Worklist.push_back(SI->getTrueValue());
1942      Worklist.push_back(SI->getFalseValue());
1943      continue;
1944    }
1945
1946    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1947      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1948        Worklist.push_back(PN->getIncomingValue(i));
1949      continue;
1950    }
1951
1952    Objects.push_back(P);
1953  } while (!Worklist.empty());
1954}
1955
1956/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1957/// are lifetime markers.
1958///
1959bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1960  for (const User *U : V->users()) {
1961    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1962    if (!II) return false;
1963
1964    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1965        II->getIntrinsicID() != Intrinsic::lifetime_end)
1966      return false;
1967  }
1968  return true;
1969}
1970
1971bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1972                                        const DataLayout *TD) {
1973  const Operator *Inst = dyn_cast<Operator>(V);
1974  if (!Inst)
1975    return false;
1976
1977  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1978    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1979      if (C->canTrap())
1980        return false;
1981
1982  switch (Inst->getOpcode()) {
1983  default:
1984    return true;
1985  case Instruction::UDiv:
1986  case Instruction::URem:
1987    // x / y is undefined if y == 0, but calculations like x / 3 are safe.
1988    return isKnownNonZero(Inst->getOperand(1), TD);
1989  case Instruction::SDiv:
1990  case Instruction::SRem: {
1991    Value *Op = Inst->getOperand(1);
1992    // x / y is undefined if y == 0
1993    if (!isKnownNonZero(Op, TD))
1994      return false;
1995    // x / y might be undefined if y == -1
1996    unsigned BitWidth = getBitWidth(Op->getType(), TD);
1997    if (BitWidth == 0)
1998      return false;
1999    APInt KnownZero(BitWidth, 0);
2000    APInt KnownOne(BitWidth, 0);
2001    computeKnownBits(Op, KnownZero, KnownOne, TD);
2002    return !!KnownZero;
2003  }
2004  case Instruction::Load: {
2005    const LoadInst *LI = cast<LoadInst>(Inst);
2006    if (!LI->isUnordered() ||
2007        // Speculative load may create a race that did not exist in the source.
2008        LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
2009      return false;
2010    return LI->getPointerOperand()->isDereferenceablePointer(TD);
2011  }
2012  case Instruction::Call: {
2013   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2014     switch (II->getIntrinsicID()) {
2015       // These synthetic intrinsics have no side-effects and just mark
2016       // information about their operands.
2017       // FIXME: There are other no-op synthetic instructions that potentially
2018       // should be considered at least *safe* to speculate...
2019       case Intrinsic::dbg_declare:
2020       case Intrinsic::dbg_value:
2021         return true;
2022
2023       case Intrinsic::bswap:
2024       case Intrinsic::ctlz:
2025       case Intrinsic::ctpop:
2026       case Intrinsic::cttz:
2027       case Intrinsic::objectsize:
2028       case Intrinsic::sadd_with_overflow:
2029       case Intrinsic::smul_with_overflow:
2030       case Intrinsic::ssub_with_overflow:
2031       case Intrinsic::uadd_with_overflow:
2032       case Intrinsic::umul_with_overflow:
2033       case Intrinsic::usub_with_overflow:
2034         return true;
2035       // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2036       // errno like libm sqrt would.
2037       case Intrinsic::sqrt:
2038       case Intrinsic::fma:
2039       case Intrinsic::fmuladd:
2040         return true;
2041       // TODO: some fp intrinsics are marked as having the same error handling
2042       // as libm. They're safe to speculate when they won't error.
2043       // TODO: are convert_{from,to}_fp16 safe?
2044       // TODO: can we list target-specific intrinsics here?
2045       default: break;
2046     }
2047   }
2048    return false; // The called function could have undefined behavior or
2049                  // side-effects, even if marked readnone nounwind.
2050  }
2051  case Instruction::VAArg:
2052  case Instruction::Alloca:
2053  case Instruction::Invoke:
2054  case Instruction::PHI:
2055  case Instruction::Store:
2056  case Instruction::Ret:
2057  case Instruction::Br:
2058  case Instruction::IndirectBr:
2059  case Instruction::Switch:
2060  case Instruction::Unreachable:
2061  case Instruction::Fence:
2062  case Instruction::LandingPad:
2063  case Instruction::AtomicRMW:
2064  case Instruction::AtomicCmpXchg:
2065  case Instruction::Resume:
2066    return false; // Misc instructions which have effects
2067  }
2068}
2069
2070/// isKnownNonNull - Return true if we know that the specified value is never
2071/// null.
2072bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
2073  // Alloca never returns null, malloc might.
2074  if (isa<AllocaInst>(V)) return true;
2075
2076  // A byval, inalloca, or nonnull argument is never null.
2077  if (const Argument *A = dyn_cast<Argument>(V))
2078    return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
2079
2080  // Global values are not null unless extern weak.
2081  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2082    return !GV->hasExternalWeakLinkage();
2083
2084  if (ImmutableCallSite CS = V)
2085    if (CS.paramHasAttr(0, Attribute::NonNull))
2086      return true;
2087
2088  // operator new never returns null.
2089  if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2090    return true;
2091
2092  return false;
2093}
2094