ValueTracking.cpp revision fb384d61c78b60787ed65475d8403aee65023962
1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Metadata.h"
24#include "llvm/Operator.h"
25#include "llvm/DataLayout.h"
26#include "llvm/Support/ConstantRange.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/PatternMatch.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include <cstring>
32using namespace llvm;
33using namespace llvm::PatternMatch;
34
35const unsigned MaxDepth = 6;
36
37/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38/// unknown returns 0).  For vector types, returns the element type's bitwidth.
39static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
40  if (unsigned BitWidth = Ty->getScalarSizeInBits())
41    return BitWidth;
42  assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43  return TD ? TD->getPointerSizeInBits() : 0;
44}
45
46static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
47                                    APInt &KnownZero, APInt &KnownOne,
48                                    APInt &KnownZero2, APInt &KnownOne2,
49                                    const DataLayout *TD, unsigned Depth) {
50  if (!Add) {
51    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52      // We know that the top bits of C-X are clear if X contains less bits
53      // than C (i.e. no wrap-around can happen).  For example, 20-X is
54      // positive if we can prove that X is >= 0 and < 16.
55      if (!CLHS->getValue().isNegative()) {
56        unsigned BitWidth = KnownZero.getBitWidth();
57        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58        // NLZ can't be BitWidth with no sign bit
59        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
60        llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61
62        // If all of the MaskV bits are known to be zero, then we know the
63        // output top bits are zero, because we now know that the output is
64        // from [0-C].
65        if ((KnownZero2 & MaskV) == MaskV) {
66          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67          // Top bits known zero.
68          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
69        }
70      }
71    }
72  }
73
74  unsigned BitWidth = KnownZero.getBitWidth();
75
76  // If one of the operands has trailing zeros, then the bits that the
77  // other operand has in those bit positions will be preserved in the
78  // result. For an add, this works with either operand. For a subtract,
79  // this only works if the known zeros are in the right operand.
80  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
81  llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
82  assert((LHSKnownZero & LHSKnownOne) == 0 &&
83         "Bits known to be one AND zero?");
84  unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86  llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88  unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90  // Determine which operand has more trailing zeros, and use that
91  // many bits from the other operand.
92  if (LHSKnownZeroOut > RHSKnownZeroOut) {
93    if (Add) {
94      APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95      KnownZero |= KnownZero2 & Mask;
96      KnownOne  |= KnownOne2 & Mask;
97    } else {
98      // If the known zeros are in the left operand for a subtract,
99      // fall back to the minimum known zeros in both operands.
100      KnownZero |= APInt::getLowBitsSet(BitWidth,
101                                        std::min(LHSKnownZeroOut,
102                                                 RHSKnownZeroOut));
103    }
104  } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105    APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106    KnownZero |= LHSKnownZero & Mask;
107    KnownOne  |= LHSKnownOne & Mask;
108  }
109
110  // Are we still trying to solve for the sign bit?
111  if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
112    if (NSW) {
113      if (Add) {
114        // Adding two positive numbers can't wrap into negative
115        if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116          KnownZero |= APInt::getSignBit(BitWidth);
117        // and adding two negative numbers can't wrap into positive.
118        else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119          KnownOne |= APInt::getSignBit(BitWidth);
120      } else {
121        // Subtracting a negative number from a positive one can't wrap
122        if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123          KnownZero |= APInt::getSignBit(BitWidth);
124        // neither can subtracting a positive number from a negative one.
125        else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126          KnownOne |= APInt::getSignBit(BitWidth);
127      }
128    }
129  }
130}
131
132static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133                                 APInt &KnownZero, APInt &KnownOne,
134                                 APInt &KnownZero2, APInt &KnownOne2,
135                                 const DataLayout *TD, unsigned Depth) {
136  unsigned BitWidth = KnownZero.getBitWidth();
137  ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138  ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140  assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142  bool isKnownNegative = false;
143  bool isKnownNonNegative = false;
144  // If the multiplication is known not to overflow, compute the sign bit.
145  if (NSW) {
146    if (Op0 == Op1) {
147      // The product of a number with itself is non-negative.
148      isKnownNonNegative = true;
149    } else {
150      bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151      bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152      bool isKnownNegativeOp1 = KnownOne.isNegative();
153      bool isKnownNegativeOp0 = KnownOne2.isNegative();
154      // The product of two numbers with the same sign is non-negative.
155      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157      // The product of a negative number and a non-negative number is either
158      // negative or zero.
159      if (!isKnownNonNegative)
160        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161                           isKnownNonZero(Op0, TD, Depth)) ||
162                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163                           isKnownNonZero(Op1, TD, Depth));
164    }
165  }
166
167  // If low bits are zero in either operand, output low known-0 bits.
168  // Also compute a conserative estimate for high known-0 bits.
169  // More trickiness is possible, but this is sufficient for the
170  // interesting case of alignment computation.
171  KnownOne.clearAllBits();
172  unsigned TrailZ = KnownZero.countTrailingOnes() +
173                    KnownZero2.countTrailingOnes();
174  unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
175                             KnownZero2.countLeadingOnes(),
176                             BitWidth) - BitWidth;
177
178  TrailZ = std::min(TrailZ, BitWidth);
179  LeadZ = std::min(LeadZ, BitWidth);
180  KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181              APInt::getHighBitsSet(BitWidth, LeadZ);
182
183  // Only make use of no-wrap flags if we failed to compute the sign bit
184  // directly.  This matters if the multiplication always overflows, in
185  // which case we prefer to follow the result of the direct computation,
186  // though as the program is invoking undefined behaviour we can choose
187  // whatever we like here.
188  if (isKnownNonNegative && !KnownOne.isNegative())
189    KnownZero.setBit(BitWidth - 1);
190  else if (isKnownNegative && !KnownZero.isNegative())
191    KnownOne.setBit(BitWidth - 1);
192}
193
194void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195  unsigned BitWidth = KnownZero.getBitWidth();
196  unsigned NumRanges = Ranges.getNumOperands() / 2;
197  assert(NumRanges >= 1);
198
199  // Use the high end of the ranges to find leading zeros.
200  unsigned MinLeadingZeros = BitWidth;
201  for (unsigned i = 0; i < NumRanges; ++i) {
202    ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203    ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204    ConstantRange Range(Lower->getValue(), Upper->getValue());
205    if (Range.isWrappedSet())
206      MinLeadingZeros = 0; // -1 has no zeros
207    unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208    MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209  }
210
211  KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
212}
213/// ComputeMaskedBits - Determine which of the bits are known to be either zero
214/// or one and return them in the KnownZero/KnownOne bit sets.
215///
216/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
217/// we cannot optimize based on the assumption that it is zero without changing
218/// it to be an explicit zero.  If we don't change it to zero, other code could
219/// optimized based on the contradictory assumption that it is non-zero.
220/// Because instcombine aggressively folds operations with undef args anyway,
221/// this won't lose us code quality.
222///
223/// This function is defined on values with integer type, values with pointer
224/// type (but only if TD is non-null), and vectors of integers.  In the case
225/// where V is a vector, known zero, and known one values are the
226/// same width as the vector element, and the bit is set only if it is true
227/// for all of the elements in the vector.
228void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229                             const DataLayout *TD, unsigned Depth) {
230  assert(V && "No Value?");
231  assert(Depth <= MaxDepth && "Limit Search Depth");
232  unsigned BitWidth = KnownZero.getBitWidth();
233
234  assert((V->getType()->isIntOrIntVectorTy() ||
235          V->getType()->getScalarType()->isPointerTy()) &&
236         "Not integer or pointer type!");
237  assert((!TD ||
238          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239         (!V->getType()->isIntOrIntVectorTy() ||
240          V->getType()->getScalarSizeInBits() == BitWidth) &&
241         KnownZero.getBitWidth() == BitWidth &&
242         KnownOne.getBitWidth() == BitWidth &&
243         "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246    // We know all of the bits for a constant!
247    KnownOne = CI->getValue();
248    KnownZero = ~KnownOne;
249    return;
250  }
251  // Null and aggregate-zero are all-zeros.
252  if (isa<ConstantPointerNull>(V) ||
253      isa<ConstantAggregateZero>(V)) {
254    KnownOne.clearAllBits();
255    KnownZero = APInt::getAllOnesValue(BitWidth);
256    return;
257  }
258  // Handle a constant vector by taking the intersection of the known bits of
259  // each element.  There is no real need to handle ConstantVector here, because
260  // we don't handle undef in any particularly useful way.
261  if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262    // We know that CDS must be a vector of integers. Take the intersection of
263    // each element.
264    KnownZero.setAllBits(); KnownOne.setAllBits();
265    APInt Elt(KnownZero.getBitWidth(), 0);
266    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267      Elt = CDS->getElementAsInteger(i);
268      KnownZero &= ~Elt;
269      KnownOne &= Elt;
270    }
271    return;
272  }
273
274  // The address of an aligned GlobalValue has trailing zeros.
275  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276    unsigned Align = GV->getAlignment();
277    if (Align == 0 && TD) {
278      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279        Type *ObjectType = GVar->getType()->getElementType();
280        if (ObjectType->isSized()) {
281          // If the object is defined in the current Module, we'll be giving
282          // it the preferred alignment. Otherwise, we have to assume that it
283          // may only have the minimum ABI alignment.
284          if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285            Align = TD->getPreferredAlignment(GVar);
286          else
287            Align = TD->getABITypeAlignment(ObjectType);
288        }
289      }
290    }
291    if (Align > 0)
292      KnownZero = APInt::getLowBitsSet(BitWidth,
293                                       CountTrailingZeros_32(Align));
294    else
295      KnownZero.clearAllBits();
296    KnownOne.clearAllBits();
297    return;
298  }
299  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300  // the bits of its aliasee.
301  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302    if (GA->mayBeOverridden()) {
303      KnownZero.clearAllBits(); KnownOne.clearAllBits();
304    } else {
305      ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306    }
307    return;
308  }
309
310  if (Argument *A = dyn_cast<Argument>(V)) {
311    unsigned Align = 0;
312
313    if (A->hasByValAttr()) {
314      // Get alignment information off byval arguments if specified in the IR.
315      Align = A->getParamAlignment();
316    } else if (TD && A->hasStructRetAttr()) {
317      // An sret parameter has at least the ABI alignment of the return type.
318      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319      if (EltTy->isSized())
320        Align = TD->getABITypeAlignment(EltTy);
321    }
322
323    if (Align)
324      KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
325    return;
326  }
327
328  // Start out not knowing anything.
329  KnownZero.clearAllBits(); KnownOne.clearAllBits();
330
331  if (Depth == MaxDepth)
332    return;  // Limit search depth.
333
334  Operator *I = dyn_cast<Operator>(V);
335  if (!I) return;
336
337  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
338  switch (I->getOpcode()) {
339  default: break;
340  case Instruction::Load:
341    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
342      computeMaskedBitsLoad(*MD, KnownZero);
343    return;
344  case Instruction::And: {
345    // If either the LHS or the RHS are Zero, the result is zero.
346    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
348    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
349    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
350
351    // Output known-1 bits are only known if set in both the LHS & RHS.
352    KnownOne &= KnownOne2;
353    // Output known-0 are known to be clear if zero in either the LHS | RHS.
354    KnownZero |= KnownZero2;
355    return;
356  }
357  case Instruction::Or: {
358    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
359    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
360    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
361    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
362
363    // Output known-0 bits are only known if clear in both the LHS & RHS.
364    KnownZero &= KnownZero2;
365    // Output known-1 are known to be set if set in either the LHS | RHS.
366    KnownOne |= KnownOne2;
367    return;
368  }
369  case Instruction::Xor: {
370    ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
371    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
372    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
373    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
374
375    // Output known-0 bits are known if clear or set in both the LHS & RHS.
376    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
377    // Output known-1 are known to be set if set in only one of the LHS, RHS.
378    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
379    KnownZero = KnownZeroOut;
380    return;
381  }
382  case Instruction::Mul: {
383    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
384    ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
385                         KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
386    break;
387  }
388  case Instruction::UDiv: {
389    // For the purposes of computing leading zeros we can conservatively
390    // treat a udiv as a logical right shift by the power of 2 known to
391    // be less than the denominator.
392    ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
393    unsigned LeadZ = KnownZero2.countLeadingOnes();
394
395    KnownOne2.clearAllBits();
396    KnownZero2.clearAllBits();
397    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
398    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
399    if (RHSUnknownLeadingOnes != BitWidth)
400      LeadZ = std::min(BitWidth,
401                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
402
403    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
404    return;
405  }
406  case Instruction::Select:
407    ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
408    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
409                      Depth+1);
410    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
411    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
412
413    // Only known if known in both the LHS and RHS.
414    KnownOne &= KnownOne2;
415    KnownZero &= KnownZero2;
416    return;
417  case Instruction::FPTrunc:
418  case Instruction::FPExt:
419  case Instruction::FPToUI:
420  case Instruction::FPToSI:
421  case Instruction::SIToFP:
422  case Instruction::UIToFP:
423    return; // Can't work with floating point.
424  case Instruction::PtrToInt:
425  case Instruction::IntToPtr:
426    // We can't handle these if we don't know the pointer size.
427    if (!TD) return;
428    // FALL THROUGH and handle them the same as zext/trunc.
429  case Instruction::ZExt:
430  case Instruction::Trunc: {
431    Type *SrcTy = I->getOperand(0)->getType();
432
433    unsigned SrcBitWidth;
434    // Note that we handle pointer operands here because of inttoptr/ptrtoint
435    // which fall through here.
436    if (SrcTy->isPointerTy())
437      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
438    else
439      SrcBitWidth = SrcTy->getScalarSizeInBits();
440
441    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
442    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
443    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
444    KnownZero = KnownZero.zextOrTrunc(BitWidth);
445    KnownOne = KnownOne.zextOrTrunc(BitWidth);
446    // Any top bits are known to be zero.
447    if (BitWidth > SrcBitWidth)
448      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
449    return;
450  }
451  case Instruction::BitCast: {
452    Type *SrcTy = I->getOperand(0)->getType();
453    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
454        // TODO: For now, not handling conversions like:
455        // (bitcast i64 %x to <2 x i32>)
456        !I->getType()->isVectorTy()) {
457      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
458      return;
459    }
460    break;
461  }
462  case Instruction::SExt: {
463    // Compute the bits in the result that are not present in the input.
464    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
465
466    KnownZero = KnownZero.trunc(SrcBitWidth);
467    KnownOne = KnownOne.trunc(SrcBitWidth);
468    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
469    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
470    KnownZero = KnownZero.zext(BitWidth);
471    KnownOne = KnownOne.zext(BitWidth);
472
473    // If the sign bit of the input is known set or clear, then we know the
474    // top bits of the result.
475    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
476      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
477    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
478      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
479    return;
480  }
481  case Instruction::Shl:
482    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
483    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
484      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
485      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
486      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
487      KnownZero <<= ShiftAmt;
488      KnownOne  <<= ShiftAmt;
489      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
490      return;
491    }
492    break;
493  case Instruction::LShr:
494    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
495    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
496      // Compute the new bits that are at the top now.
497      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
498
499      // Unsigned shift right.
500      ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
501      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
502      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
503      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
504      // high bits known zero.
505      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
506      return;
507    }
508    break;
509  case Instruction::AShr:
510    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
511    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
512      // Compute the new bits that are at the top now.
513      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
514
515      // Signed shift right.
516      ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
517      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
518      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
519      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
520
521      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
522      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
523        KnownZero |= HighBits;
524      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
525        KnownOne |= HighBits;
526      return;
527    }
528    break;
529  case Instruction::Sub: {
530    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
531    ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
532                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
533                            Depth);
534    break;
535  }
536  case Instruction::Add: {
537    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
538    ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
539                            KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
540                            Depth);
541    break;
542  }
543  case Instruction::SRem:
544    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
545      APInt RA = Rem->getValue().abs();
546      if (RA.isPowerOf2()) {
547        APInt LowBits = RA - 1;
548        ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
549
550        // The low bits of the first operand are unchanged by the srem.
551        KnownZero = KnownZero2 & LowBits;
552        KnownOne = KnownOne2 & LowBits;
553
554        // If the first operand is non-negative or has all low bits zero, then
555        // the upper bits are all zero.
556        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
557          KnownZero |= ~LowBits;
558
559        // If the first operand is negative and not all low bits are zero, then
560        // the upper bits are all one.
561        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
562          KnownOne |= ~LowBits;
563
564        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
565      }
566    }
567
568    // The sign bit is the LHS's sign bit, except when the result of the
569    // remainder is zero.
570    if (KnownZero.isNonNegative()) {
571      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
572      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
573                        Depth+1);
574      // If it's known zero, our sign bit is also zero.
575      if (LHSKnownZero.isNegative())
576        KnownZero.setBit(BitWidth - 1);
577    }
578
579    break;
580  case Instruction::URem: {
581    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
582      APInt RA = Rem->getValue();
583      if (RA.isPowerOf2()) {
584        APInt LowBits = (RA - 1);
585        ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
586                          Depth+1);
587        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
588        KnownZero |= ~LowBits;
589        KnownOne &= LowBits;
590        break;
591      }
592    }
593
594    // Since the result is less than or equal to either operand, any leading
595    // zero bits in either operand must also exist in the result.
596    ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
597    ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
598
599    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
600                                KnownZero2.countLeadingOnes());
601    KnownOne.clearAllBits();
602    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
603    break;
604  }
605
606  case Instruction::Alloca: {
607    AllocaInst *AI = cast<AllocaInst>(V);
608    unsigned Align = AI->getAlignment();
609    if (Align == 0 && TD)
610      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
611
612    if (Align > 0)
613      KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
614    break;
615  }
616  case Instruction::GetElementPtr: {
617    // Analyze all of the subscripts of this getelementptr instruction
618    // to determine if we can prove known low zero bits.
619    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
620    ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
621                      Depth+1);
622    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
623
624    gep_type_iterator GTI = gep_type_begin(I);
625    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
626      Value *Index = I->getOperand(i);
627      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
628        // Handle struct member offset arithmetic.
629        if (!TD) return;
630        const StructLayout *SL = TD->getStructLayout(STy);
631        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
632        uint64_t Offset = SL->getElementOffset(Idx);
633        TrailZ = std::min(TrailZ,
634                          CountTrailingZeros_64(Offset));
635      } else {
636        // Handle array index arithmetic.
637        Type *IndexedTy = GTI.getIndexedType();
638        if (!IndexedTy->isSized()) return;
639        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
640        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
641        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
642        ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
643        TrailZ = std::min(TrailZ,
644                          unsigned(CountTrailingZeros_64(TypeSize) +
645                                   LocalKnownZero.countTrailingOnes()));
646      }
647    }
648
649    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
650    break;
651  }
652  case Instruction::PHI: {
653    PHINode *P = cast<PHINode>(I);
654    // Handle the case of a simple two-predecessor recurrence PHI.
655    // There's a lot more that could theoretically be done here, but
656    // this is sufficient to catch some interesting cases.
657    if (P->getNumIncomingValues() == 2) {
658      for (unsigned i = 0; i != 2; ++i) {
659        Value *L = P->getIncomingValue(i);
660        Value *R = P->getIncomingValue(!i);
661        Operator *LU = dyn_cast<Operator>(L);
662        if (!LU)
663          continue;
664        unsigned Opcode = LU->getOpcode();
665        // Check for operations that have the property that if
666        // both their operands have low zero bits, the result
667        // will have low zero bits.
668        if (Opcode == Instruction::Add ||
669            Opcode == Instruction::Sub ||
670            Opcode == Instruction::And ||
671            Opcode == Instruction::Or ||
672            Opcode == Instruction::Mul) {
673          Value *LL = LU->getOperand(0);
674          Value *LR = LU->getOperand(1);
675          // Find a recurrence.
676          if (LL == I)
677            L = LR;
678          else if (LR == I)
679            L = LL;
680          else
681            break;
682          // Ok, we have a PHI of the form L op= R. Check for low
683          // zero bits.
684          ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
685
686          // We need to take the minimum number of known bits
687          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
688          ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
689
690          KnownZero = APInt::getLowBitsSet(BitWidth,
691                                           std::min(KnownZero2.countTrailingOnes(),
692                                                    KnownZero3.countTrailingOnes()));
693          break;
694        }
695      }
696    }
697
698    // Unreachable blocks may have zero-operand PHI nodes.
699    if (P->getNumIncomingValues() == 0)
700      return;
701
702    // Otherwise take the unions of the known bit sets of the operands,
703    // taking conservative care to avoid excessive recursion.
704    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
705      // Skip if every incoming value references to ourself.
706      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
707        break;
708
709      KnownZero = APInt::getAllOnesValue(BitWidth);
710      KnownOne = APInt::getAllOnesValue(BitWidth);
711      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
712        // Skip direct self references.
713        if (P->getIncomingValue(i) == P) continue;
714
715        KnownZero2 = APInt(BitWidth, 0);
716        KnownOne2 = APInt(BitWidth, 0);
717        // Recurse, but cap the recursion to one level, because we don't
718        // want to waste time spinning around in loops.
719        ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
720                          MaxDepth-1);
721        KnownZero &= KnownZero2;
722        KnownOne &= KnownOne2;
723        // If all bits have been ruled out, there's no need to check
724        // more operands.
725        if (!KnownZero && !KnownOne)
726          break;
727      }
728    }
729    break;
730  }
731  case Instruction::Call:
732    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
733      switch (II->getIntrinsicID()) {
734      default: break;
735      case Intrinsic::ctlz:
736      case Intrinsic::cttz: {
737        unsigned LowBits = Log2_32(BitWidth)+1;
738        // If this call is undefined for 0, the result will be less than 2^n.
739        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
740          LowBits -= 1;
741        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
742        break;
743      }
744      case Intrinsic::ctpop: {
745        unsigned LowBits = Log2_32(BitWidth)+1;
746        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
747        break;
748      }
749      case Intrinsic::x86_sse42_crc32_64_8:
750      case Intrinsic::x86_sse42_crc32_64_64:
751        KnownZero = APInt::getHighBitsSet(64, 32);
752        break;
753      }
754    }
755    break;
756  case Instruction::ExtractValue:
757    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
758      ExtractValueInst *EVI = cast<ExtractValueInst>(I);
759      if (EVI->getNumIndices() != 1) break;
760      if (EVI->getIndices()[0] == 0) {
761        switch (II->getIntrinsicID()) {
762        default: break;
763        case Intrinsic::uadd_with_overflow:
764        case Intrinsic::sadd_with_overflow:
765          ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
766                                  II->getArgOperand(1), false, KnownZero,
767                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
768          break;
769        case Intrinsic::usub_with_overflow:
770        case Intrinsic::ssub_with_overflow:
771          ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
772                                  II->getArgOperand(1), false, KnownZero,
773                                  KnownOne, KnownZero2, KnownOne2, TD, Depth);
774          break;
775        case Intrinsic::umul_with_overflow:
776        case Intrinsic::smul_with_overflow:
777          ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
778                               false, KnownZero, KnownOne,
779                               KnownZero2, KnownOne2, TD, Depth);
780          break;
781        }
782      }
783    }
784  }
785}
786
787/// ComputeSignBit - Determine whether the sign bit is known to be zero or
788/// one.  Convenience wrapper around ComputeMaskedBits.
789void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
790                          const DataLayout *TD, unsigned Depth) {
791  unsigned BitWidth = getBitWidth(V->getType(), TD);
792  if (!BitWidth) {
793    KnownZero = false;
794    KnownOne = false;
795    return;
796  }
797  APInt ZeroBits(BitWidth, 0);
798  APInt OneBits(BitWidth, 0);
799  ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
800  KnownOne = OneBits[BitWidth - 1];
801  KnownZero = ZeroBits[BitWidth - 1];
802}
803
804/// isPowerOfTwo - Return true if the given value is known to have exactly one
805/// bit set when defined. For vectors return true if every element is known to
806/// be a power of two when defined.  Supports values with integer or pointer
807/// types and vectors of integers.
808bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero,
809                        unsigned Depth) {
810  if (Constant *C = dyn_cast<Constant>(V)) {
811    if (C->isNullValue())
812      return OrZero;
813    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
814      return CI->getValue().isPowerOf2();
815    // TODO: Handle vector constants.
816  }
817
818  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
819  // it is shifted off the end then the result is undefined.
820  if (match(V, m_Shl(m_One(), m_Value())))
821    return true;
822
823  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
824  // bottom.  If it is shifted off the bottom then the result is undefined.
825  if (match(V, m_LShr(m_SignBit(), m_Value())))
826    return true;
827
828  // The remaining tests are all recursive, so bail out if we hit the limit.
829  if (Depth++ == MaxDepth)
830    return false;
831
832  Value *X = 0, *Y = 0;
833  // A shift of a power of two is a power of two or zero.
834  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
835                 match(V, m_Shr(m_Value(X), m_Value()))))
836    return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
837
838  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
839    return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
840
841  if (SelectInst *SI = dyn_cast<SelectInst>(V))
842    return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
843      isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
844
845  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
846    // A power of two and'd with anything is a power of two or zero.
847    if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
848        isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
849      return true;
850    // X & (-X) is always a power of two or zero.
851    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
852      return true;
853    return false;
854  }
855
856  // An exact divide or right shift can only shift off zero bits, so the result
857  // is a power of two only if the first operand is a power of two and not
858  // copying a sign bit (sdiv int_min, 2).
859  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
860      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
861    return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
862  }
863
864  return false;
865}
866
867/// isKnownNonZero - Return true if the given value is known to be non-zero
868/// when defined.  For vectors return true if every element is known to be
869/// non-zero when defined.  Supports values with integer or pointer type and
870/// vectors of integers.
871bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
872  if (Constant *C = dyn_cast<Constant>(V)) {
873    if (C->isNullValue())
874      return false;
875    if (isa<ConstantInt>(C))
876      // Must be non-zero due to null test above.
877      return true;
878    // TODO: Handle vectors
879    return false;
880  }
881
882  // The remaining tests are all recursive, so bail out if we hit the limit.
883  if (Depth++ >= MaxDepth)
884    return false;
885
886  unsigned BitWidth = getBitWidth(V->getType(), TD);
887
888  // X | Y != 0 if X != 0 or Y != 0.
889  Value *X = 0, *Y = 0;
890  if (match(V, m_Or(m_Value(X), m_Value(Y))))
891    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
892
893  // ext X != 0 if X != 0.
894  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
895    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
896
897  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
898  // if the lowest bit is shifted off the end.
899  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
900    // shl nuw can't remove any non-zero bits.
901    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
902    if (BO->hasNoUnsignedWrap())
903      return isKnownNonZero(X, TD, Depth);
904
905    APInt KnownZero(BitWidth, 0);
906    APInt KnownOne(BitWidth, 0);
907    ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
908    if (KnownOne[0])
909      return true;
910  }
911  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
912  // defined if the sign bit is shifted off the end.
913  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
914    // shr exact can only shift out zero bits.
915    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
916    if (BO->isExact())
917      return isKnownNonZero(X, TD, Depth);
918
919    bool XKnownNonNegative, XKnownNegative;
920    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
921    if (XKnownNegative)
922      return true;
923  }
924  // div exact can only produce a zero if the dividend is zero.
925  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
926    return isKnownNonZero(X, TD, Depth);
927  }
928  // X + Y.
929  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
930    bool XKnownNonNegative, XKnownNegative;
931    bool YKnownNonNegative, YKnownNegative;
932    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
933    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
934
935    // If X and Y are both non-negative (as signed values) then their sum is not
936    // zero unless both X and Y are zero.
937    if (XKnownNonNegative && YKnownNonNegative)
938      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
939        return true;
940
941    // If X and Y are both negative (as signed values) then their sum is not
942    // zero unless both X and Y equal INT_MIN.
943    if (BitWidth && XKnownNegative && YKnownNegative) {
944      APInt KnownZero(BitWidth, 0);
945      APInt KnownOne(BitWidth, 0);
946      APInt Mask = APInt::getSignedMaxValue(BitWidth);
947      // The sign bit of X is set.  If some other bit is set then X is not equal
948      // to INT_MIN.
949      ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
950      if ((KnownOne & Mask) != 0)
951        return true;
952      // The sign bit of Y is set.  If some other bit is set then Y is not equal
953      // to INT_MIN.
954      ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
955      if ((KnownOne & Mask) != 0)
956        return true;
957    }
958
959    // The sum of a non-negative number and a power of two is not zero.
960    if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
961      return true;
962    if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
963      return true;
964  }
965  // X * Y.
966  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
967    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
968    // If X and Y are non-zero then so is X * Y as long as the multiplication
969    // does not overflow.
970    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
971        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
972      return true;
973  }
974  // (C ? X : Y) != 0 if X != 0 and Y != 0.
975  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
976    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
977        isKnownNonZero(SI->getFalseValue(), TD, Depth))
978      return true;
979  }
980
981  if (!BitWidth) return false;
982  APInt KnownZero(BitWidth, 0);
983  APInt KnownOne(BitWidth, 0);
984  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
985  return KnownOne != 0;
986}
987
988/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
989/// this predicate to simplify operations downstream.  Mask is known to be zero
990/// for bits that V cannot have.
991///
992/// This function is defined on values with integer type, values with pointer
993/// type (but only if TD is non-null), and vectors of integers.  In the case
994/// where V is a vector, the mask, known zero, and known one values are the
995/// same width as the vector element, and the bit is set only if it is true
996/// for all of the elements in the vector.
997bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
998                             const DataLayout *TD, unsigned Depth) {
999  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1000  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1001  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1002  return (KnownZero & Mask) == Mask;
1003}
1004
1005
1006
1007/// ComputeNumSignBits - Return the number of times the sign bit of the
1008/// register is replicated into the other bits.  We know that at least 1 bit
1009/// is always equal to the sign bit (itself), but other cases can give us
1010/// information.  For example, immediately after an "ashr X, 2", we know that
1011/// the top 3 bits are all equal to each other, so we return 3.
1012///
1013/// 'Op' must have a scalar integer type.
1014///
1015unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
1016                                  unsigned Depth) {
1017  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1018         "ComputeNumSignBits requires a DataLayout object to operate "
1019         "on non-integer values!");
1020  Type *Ty = V->getType();
1021  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1022                         Ty->getScalarSizeInBits();
1023  unsigned Tmp, Tmp2;
1024  unsigned FirstAnswer = 1;
1025
1026  // Note that ConstantInt is handled by the general ComputeMaskedBits case
1027  // below.
1028
1029  if (Depth == 6)
1030    return 1;  // Limit search depth.
1031
1032  Operator *U = dyn_cast<Operator>(V);
1033  switch (Operator::getOpcode(V)) {
1034  default: break;
1035  case Instruction::SExt:
1036    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1037    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1038
1039  case Instruction::AShr: {
1040    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1041    // ashr X, C   -> adds C sign bits.  Vectors too.
1042    const APInt *ShAmt;
1043    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1044      Tmp += ShAmt->getZExtValue();
1045      if (Tmp > TyBits) Tmp = TyBits;
1046    }
1047    return Tmp;
1048  }
1049  case Instruction::Shl: {
1050    const APInt *ShAmt;
1051    if (match(U->getOperand(1), m_APInt(ShAmt))) {
1052      // shl destroys sign bits.
1053      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1054      Tmp2 = ShAmt->getZExtValue();
1055      if (Tmp2 >= TyBits ||      // Bad shift.
1056          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1057      return Tmp - Tmp2;
1058    }
1059    break;
1060  }
1061  case Instruction::And:
1062  case Instruction::Or:
1063  case Instruction::Xor:    // NOT is handled here.
1064    // Logical binary ops preserve the number of sign bits at the worst.
1065    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1066    if (Tmp != 1) {
1067      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1068      FirstAnswer = std::min(Tmp, Tmp2);
1069      // We computed what we know about the sign bits as our first
1070      // answer. Now proceed to the generic code that uses
1071      // ComputeMaskedBits, and pick whichever answer is better.
1072    }
1073    break;
1074
1075  case Instruction::Select:
1076    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1077    if (Tmp == 1) return 1;  // Early out.
1078    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1079    return std::min(Tmp, Tmp2);
1080
1081  case Instruction::Add:
1082    // Add can have at most one carry bit.  Thus we know that the output
1083    // is, at worst, one more bit than the inputs.
1084    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1085    if (Tmp == 1) return 1;  // Early out.
1086
1087    // Special case decrementing a value (ADD X, -1):
1088    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1089      if (CRHS->isAllOnesValue()) {
1090        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1091        ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1092
1093        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1094        // sign bits set.
1095        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1096          return TyBits;
1097
1098        // If we are subtracting one from a positive number, there is no carry
1099        // out of the result.
1100        if (KnownZero.isNegative())
1101          return Tmp;
1102      }
1103
1104    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1105    if (Tmp2 == 1) return 1;
1106    return std::min(Tmp, Tmp2)-1;
1107
1108  case Instruction::Sub:
1109    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1110    if (Tmp2 == 1) return 1;
1111
1112    // Handle NEG.
1113    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1114      if (CLHS->isNullValue()) {
1115        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1116        ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1117        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1118        // sign bits set.
1119        if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1120          return TyBits;
1121
1122        // If the input is known to be positive (the sign bit is known clear),
1123        // the output of the NEG has the same number of sign bits as the input.
1124        if (KnownZero.isNegative())
1125          return Tmp2;
1126
1127        // Otherwise, we treat this like a SUB.
1128      }
1129
1130    // Sub can have at most one carry bit.  Thus we know that the output
1131    // is, at worst, one more bit than the inputs.
1132    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1133    if (Tmp == 1) return 1;  // Early out.
1134    return std::min(Tmp, Tmp2)-1;
1135
1136  case Instruction::PHI: {
1137    PHINode *PN = cast<PHINode>(U);
1138    // Don't analyze large in-degree PHIs.
1139    if (PN->getNumIncomingValues() > 4) break;
1140
1141    // Take the minimum of all incoming values.  This can't infinitely loop
1142    // because of our depth threshold.
1143    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1144    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1145      if (Tmp == 1) return Tmp;
1146      Tmp = std::min(Tmp,
1147                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1148    }
1149    return Tmp;
1150  }
1151
1152  case Instruction::Trunc:
1153    // FIXME: it's tricky to do anything useful for this, but it is an important
1154    // case for targets like X86.
1155    break;
1156  }
1157
1158  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1159  // use this information.
1160  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1161  APInt Mask;
1162  ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1163
1164  if (KnownZero.isNegative()) {        // sign bit is 0
1165    Mask = KnownZero;
1166  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1167    Mask = KnownOne;
1168  } else {
1169    // Nothing known.
1170    return FirstAnswer;
1171  }
1172
1173  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1174  // the number of identical bits in the top of the input value.
1175  Mask = ~Mask;
1176  Mask <<= Mask.getBitWidth()-TyBits;
1177  // Return # leading zeros.  We use 'min' here in case Val was zero before
1178  // shifting.  We don't want to return '64' as for an i32 "0".
1179  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1180}
1181
1182/// ComputeMultiple - This function computes the integer multiple of Base that
1183/// equals V.  If successful, it returns true and returns the multiple in
1184/// Multiple.  If unsuccessful, it returns false. It looks
1185/// through SExt instructions only if LookThroughSExt is true.
1186bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1187                           bool LookThroughSExt, unsigned Depth) {
1188  const unsigned MaxDepth = 6;
1189
1190  assert(V && "No Value?");
1191  assert(Depth <= MaxDepth && "Limit Search Depth");
1192  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1193
1194  Type *T = V->getType();
1195
1196  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1197
1198  if (Base == 0)
1199    return false;
1200
1201  if (Base == 1) {
1202    Multiple = V;
1203    return true;
1204  }
1205
1206  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1207  Constant *BaseVal = ConstantInt::get(T, Base);
1208  if (CO && CO == BaseVal) {
1209    // Multiple is 1.
1210    Multiple = ConstantInt::get(T, 1);
1211    return true;
1212  }
1213
1214  if (CI && CI->getZExtValue() % Base == 0) {
1215    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1216    return true;
1217  }
1218
1219  if (Depth == MaxDepth) return false;  // Limit search depth.
1220
1221  Operator *I = dyn_cast<Operator>(V);
1222  if (!I) return false;
1223
1224  switch (I->getOpcode()) {
1225  default: break;
1226  case Instruction::SExt:
1227    if (!LookThroughSExt) return false;
1228    // otherwise fall through to ZExt
1229  case Instruction::ZExt:
1230    return ComputeMultiple(I->getOperand(0), Base, Multiple,
1231                           LookThroughSExt, Depth+1);
1232  case Instruction::Shl:
1233  case Instruction::Mul: {
1234    Value *Op0 = I->getOperand(0);
1235    Value *Op1 = I->getOperand(1);
1236
1237    if (I->getOpcode() == Instruction::Shl) {
1238      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1239      if (!Op1CI) return false;
1240      // Turn Op0 << Op1 into Op0 * 2^Op1
1241      APInt Op1Int = Op1CI->getValue();
1242      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1243      APInt API(Op1Int.getBitWidth(), 0);
1244      API.setBit(BitToSet);
1245      Op1 = ConstantInt::get(V->getContext(), API);
1246    }
1247
1248    Value *Mul0 = NULL;
1249    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1250      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1251        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1252          if (Op1C->getType()->getPrimitiveSizeInBits() <
1253              MulC->getType()->getPrimitiveSizeInBits())
1254            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1255          if (Op1C->getType()->getPrimitiveSizeInBits() >
1256              MulC->getType()->getPrimitiveSizeInBits())
1257            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1258
1259          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1260          Multiple = ConstantExpr::getMul(MulC, Op1C);
1261          return true;
1262        }
1263
1264      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1265        if (Mul0CI->getValue() == 1) {
1266          // V == Base * Op1, so return Op1
1267          Multiple = Op1;
1268          return true;
1269        }
1270    }
1271
1272    Value *Mul1 = NULL;
1273    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1274      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1275        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1276          if (Op0C->getType()->getPrimitiveSizeInBits() <
1277              MulC->getType()->getPrimitiveSizeInBits())
1278            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1279          if (Op0C->getType()->getPrimitiveSizeInBits() >
1280              MulC->getType()->getPrimitiveSizeInBits())
1281            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1282
1283          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1284          Multiple = ConstantExpr::getMul(MulC, Op0C);
1285          return true;
1286        }
1287
1288      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1289        if (Mul1CI->getValue() == 1) {
1290          // V == Base * Op0, so return Op0
1291          Multiple = Op0;
1292          return true;
1293        }
1294    }
1295  }
1296  }
1297
1298  // We could not determine if V is a multiple of Base.
1299  return false;
1300}
1301
1302/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1303/// value is never equal to -0.0.
1304///
1305/// NOTE: this function will need to be revisited when we support non-default
1306/// rounding modes!
1307///
1308bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1309  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1310    return !CFP->getValueAPF().isNegZero();
1311
1312  if (Depth == 6)
1313    return 1;  // Limit search depth.
1314
1315  const Operator *I = dyn_cast<Operator>(V);
1316  if (I == 0) return false;
1317
1318  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1319  if (I->getOpcode() == Instruction::FAdd &&
1320      isa<ConstantFP>(I->getOperand(1)) &&
1321      cast<ConstantFP>(I->getOperand(1))->isNullValue())
1322    return true;
1323
1324  // sitofp and uitofp turn into +0.0 for zero.
1325  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1326    return true;
1327
1328  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1329    // sqrt(-0.0) = -0.0, no other negative results are possible.
1330    if (II->getIntrinsicID() == Intrinsic::sqrt)
1331      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1332
1333  if (const CallInst *CI = dyn_cast<CallInst>(I))
1334    if (const Function *F = CI->getCalledFunction()) {
1335      if (F->isDeclaration()) {
1336        // abs(x) != -0.0
1337        if (F->getName() == "abs") return true;
1338        // fabs[lf](x) != -0.0
1339        if (F->getName() == "fabs") return true;
1340        if (F->getName() == "fabsf") return true;
1341        if (F->getName() == "fabsl") return true;
1342        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1343            F->getName() == "sqrtl")
1344          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1345      }
1346    }
1347
1348  return false;
1349}
1350
1351/// isBytewiseValue - If the specified value can be set by repeating the same
1352/// byte in memory, return the i8 value that it is represented with.  This is
1353/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1354/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1355/// byte store (e.g. i16 0x1234), return null.
1356Value *llvm::isBytewiseValue(Value *V) {
1357  // All byte-wide stores are splatable, even of arbitrary variables.
1358  if (V->getType()->isIntegerTy(8)) return V;
1359
1360  // Handle 'null' ConstantArrayZero etc.
1361  if (Constant *C = dyn_cast<Constant>(V))
1362    if (C->isNullValue())
1363      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1364
1365  // Constant float and double values can be handled as integer values if the
1366  // corresponding integer value is "byteable".  An important case is 0.0.
1367  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1368    if (CFP->getType()->isFloatTy())
1369      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1370    if (CFP->getType()->isDoubleTy())
1371      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1372    // Don't handle long double formats, which have strange constraints.
1373  }
1374
1375  // We can handle constant integers that are power of two in size and a
1376  // multiple of 8 bits.
1377  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1378    unsigned Width = CI->getBitWidth();
1379    if (isPowerOf2_32(Width) && Width > 8) {
1380      // We can handle this value if the recursive binary decomposition is the
1381      // same at all levels.
1382      APInt Val = CI->getValue();
1383      APInt Val2;
1384      while (Val.getBitWidth() != 8) {
1385        unsigned NextWidth = Val.getBitWidth()/2;
1386        Val2  = Val.lshr(NextWidth);
1387        Val2 = Val2.trunc(Val.getBitWidth()/2);
1388        Val = Val.trunc(Val.getBitWidth()/2);
1389
1390        // If the top/bottom halves aren't the same, reject it.
1391        if (Val != Val2)
1392          return 0;
1393      }
1394      return ConstantInt::get(V->getContext(), Val);
1395    }
1396  }
1397
1398  // A ConstantDataArray/Vector is splatable if all its members are equal and
1399  // also splatable.
1400  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1401    Value *Elt = CA->getElementAsConstant(0);
1402    Value *Val = isBytewiseValue(Elt);
1403    if (!Val)
1404      return 0;
1405
1406    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1407      if (CA->getElementAsConstant(I) != Elt)
1408        return 0;
1409
1410    return Val;
1411  }
1412
1413  // Conceptually, we could handle things like:
1414  //   %a = zext i8 %X to i16
1415  //   %b = shl i16 %a, 8
1416  //   %c = or i16 %a, %b
1417  // but until there is an example that actually needs this, it doesn't seem
1418  // worth worrying about.
1419  return 0;
1420}
1421
1422
1423// This is the recursive version of BuildSubAggregate. It takes a few different
1424// arguments. Idxs is the index within the nested struct From that we are
1425// looking at now (which is of type IndexedType). IdxSkip is the number of
1426// indices from Idxs that should be left out when inserting into the resulting
1427// struct. To is the result struct built so far, new insertvalue instructions
1428// build on that.
1429static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1430                                SmallVector<unsigned, 10> &Idxs,
1431                                unsigned IdxSkip,
1432                                Instruction *InsertBefore) {
1433  llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1434  if (STy) {
1435    // Save the original To argument so we can modify it
1436    Value *OrigTo = To;
1437    // General case, the type indexed by Idxs is a struct
1438    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1439      // Process each struct element recursively
1440      Idxs.push_back(i);
1441      Value *PrevTo = To;
1442      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1443                             InsertBefore);
1444      Idxs.pop_back();
1445      if (!To) {
1446        // Couldn't find any inserted value for this index? Cleanup
1447        while (PrevTo != OrigTo) {
1448          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1449          PrevTo = Del->getAggregateOperand();
1450          Del->eraseFromParent();
1451        }
1452        // Stop processing elements
1453        break;
1454      }
1455    }
1456    // If we successfully found a value for each of our subaggregates
1457    if (To)
1458      return To;
1459  }
1460  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1461  // the struct's elements had a value that was inserted directly. In the latter
1462  // case, perhaps we can't determine each of the subelements individually, but
1463  // we might be able to find the complete struct somewhere.
1464
1465  // Find the value that is at that particular spot
1466  Value *V = FindInsertedValue(From, Idxs);
1467
1468  if (!V)
1469    return NULL;
1470
1471  // Insert the value in the new (sub) aggregrate
1472  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1473                                       "tmp", InsertBefore);
1474}
1475
1476// This helper takes a nested struct and extracts a part of it (which is again a
1477// struct) into a new value. For example, given the struct:
1478// { a, { b, { c, d }, e } }
1479// and the indices "1, 1" this returns
1480// { c, d }.
1481//
1482// It does this by inserting an insertvalue for each element in the resulting
1483// struct, as opposed to just inserting a single struct. This will only work if
1484// each of the elements of the substruct are known (ie, inserted into From by an
1485// insertvalue instruction somewhere).
1486//
1487// All inserted insertvalue instructions are inserted before InsertBefore
1488static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1489                                Instruction *InsertBefore) {
1490  assert(InsertBefore && "Must have someplace to insert!");
1491  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1492                                                             idx_range);
1493  Value *To = UndefValue::get(IndexedType);
1494  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1495  unsigned IdxSkip = Idxs.size();
1496
1497  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1498}
1499
1500/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1501/// the scalar value indexed is already around as a register, for example if it
1502/// were inserted directly into the aggregrate.
1503///
1504/// If InsertBefore is not null, this function will duplicate (modified)
1505/// insertvalues when a part of a nested struct is extracted.
1506Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1507                               Instruction *InsertBefore) {
1508  // Nothing to index? Just return V then (this is useful at the end of our
1509  // recursion).
1510  if (idx_range.empty())
1511    return V;
1512  // We have indices, so V should have an indexable type.
1513  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1514         "Not looking at a struct or array?");
1515  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1516         "Invalid indices for type?");
1517
1518  if (Constant *C = dyn_cast<Constant>(V)) {
1519    C = C->getAggregateElement(idx_range[0]);
1520    if (C == 0) return 0;
1521    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1522  }
1523
1524  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1525    // Loop the indices for the insertvalue instruction in parallel with the
1526    // requested indices
1527    const unsigned *req_idx = idx_range.begin();
1528    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1529         i != e; ++i, ++req_idx) {
1530      if (req_idx == idx_range.end()) {
1531        // We can't handle this without inserting insertvalues
1532        if (!InsertBefore)
1533          return 0;
1534
1535        // The requested index identifies a part of a nested aggregate. Handle
1536        // this specially. For example,
1537        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1538        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1539        // %C = extractvalue {i32, { i32, i32 } } %B, 1
1540        // This can be changed into
1541        // %A = insertvalue {i32, i32 } undef, i32 10, 0
1542        // %C = insertvalue {i32, i32 } %A, i32 11, 1
1543        // which allows the unused 0,0 element from the nested struct to be
1544        // removed.
1545        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1546                                 InsertBefore);
1547      }
1548
1549      // This insert value inserts something else than what we are looking for.
1550      // See if the (aggregrate) value inserted into has the value we are
1551      // looking for, then.
1552      if (*req_idx != *i)
1553        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1554                                 InsertBefore);
1555    }
1556    // If we end up here, the indices of the insertvalue match with those
1557    // requested (though possibly only partially). Now we recursively look at
1558    // the inserted value, passing any remaining indices.
1559    return FindInsertedValue(I->getInsertedValueOperand(),
1560                             makeArrayRef(req_idx, idx_range.end()),
1561                             InsertBefore);
1562  }
1563
1564  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1565    // If we're extracting a value from an aggregrate that was extracted from
1566    // something else, we can extract from that something else directly instead.
1567    // However, we will need to chain I's indices with the requested indices.
1568
1569    // Calculate the number of indices required
1570    unsigned size = I->getNumIndices() + idx_range.size();
1571    // Allocate some space to put the new indices in
1572    SmallVector<unsigned, 5> Idxs;
1573    Idxs.reserve(size);
1574    // Add indices from the extract value instruction
1575    Idxs.append(I->idx_begin(), I->idx_end());
1576
1577    // Add requested indices
1578    Idxs.append(idx_range.begin(), idx_range.end());
1579
1580    assert(Idxs.size() == size
1581           && "Number of indices added not correct?");
1582
1583    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1584  }
1585  // Otherwise, we don't know (such as, extracting from a function return value
1586  // or load instruction)
1587  return 0;
1588}
1589
1590/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1591/// it can be expressed as a base pointer plus a constant offset.  Return the
1592/// base and offset to the caller.
1593Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1594                                              const DataLayout &TD) {
1595  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1596  if (PtrOp == 0 || Ptr->getType()->isVectorTy())
1597    return Ptr;
1598
1599  // Just look through bitcasts.
1600  if (PtrOp->getOpcode() == Instruction::BitCast)
1601    return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1602
1603  // If this is a GEP with constant indices, we can look through it.
1604  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1605  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1606
1607  gep_type_iterator GTI = gep_type_begin(GEP);
1608  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1609       ++I, ++GTI) {
1610    ConstantInt *OpC = cast<ConstantInt>(*I);
1611    if (OpC->isZero()) continue;
1612
1613    // Handle a struct and array indices which add their offset to the pointer.
1614    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1615      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1616    } else {
1617      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1618      Offset += OpC->getSExtValue()*Size;
1619    }
1620  }
1621
1622  // Re-sign extend from the pointer size if needed to get overflow edge cases
1623  // right.
1624  unsigned PtrSize = TD.getPointerSizeInBits();
1625  if (PtrSize < 64)
1626    Offset = SignExtend64(Offset, PtrSize);
1627
1628  return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1629}
1630
1631
1632/// getConstantStringInfo - This function computes the length of a
1633/// null-terminated C string pointed to by V.  If successful, it returns true
1634/// and returns the string in Str.  If unsuccessful, it returns false.
1635bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1636                                 uint64_t Offset, bool TrimAtNul) {
1637  assert(V);
1638
1639  // Look through bitcast instructions and geps.
1640  V = V->stripPointerCasts();
1641
1642  // If the value is a GEP instructionor  constant expression, treat it as an
1643  // offset.
1644  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1645    // Make sure the GEP has exactly three arguments.
1646    if (GEP->getNumOperands() != 3)
1647      return false;
1648
1649    // Make sure the index-ee is a pointer to array of i8.
1650    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1651    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1652    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1653      return false;
1654
1655    // Check to make sure that the first operand of the GEP is an integer and
1656    // has value 0 so that we are sure we're indexing into the initializer.
1657    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1658    if (FirstIdx == 0 || !FirstIdx->isZero())
1659      return false;
1660
1661    // If the second index isn't a ConstantInt, then this is a variable index
1662    // into the array.  If this occurs, we can't say anything meaningful about
1663    // the string.
1664    uint64_t StartIdx = 0;
1665    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1666      StartIdx = CI->getZExtValue();
1667    else
1668      return false;
1669    return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1670  }
1671
1672  // The GEP instruction, constant or instruction, must reference a global
1673  // variable that is a constant and is initialized. The referenced constant
1674  // initializer is the array that we'll use for optimization.
1675  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1676  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1677    return false;
1678
1679  // Handle the all-zeros case
1680  if (GV->getInitializer()->isNullValue()) {
1681    // This is a degenerate case. The initializer is constant zero so the
1682    // length of the string must be zero.
1683    Str = "";
1684    return true;
1685  }
1686
1687  // Must be a Constant Array
1688  const ConstantDataArray *Array =
1689    dyn_cast<ConstantDataArray>(GV->getInitializer());
1690  if (Array == 0 || !Array->isString())
1691    return false;
1692
1693  // Get the number of elements in the array
1694  uint64_t NumElts = Array->getType()->getArrayNumElements();
1695
1696  // Start out with the entire array in the StringRef.
1697  Str = Array->getAsString();
1698
1699  if (Offset > NumElts)
1700    return false;
1701
1702  // Skip over 'offset' bytes.
1703  Str = Str.substr(Offset);
1704
1705  if (TrimAtNul) {
1706    // Trim off the \0 and anything after it.  If the array is not nul
1707    // terminated, we just return the whole end of string.  The client may know
1708    // some other way that the string is length-bound.
1709    Str = Str.substr(0, Str.find('\0'));
1710  }
1711  return true;
1712}
1713
1714// These next two are very similar to the above, but also look through PHI
1715// nodes.
1716// TODO: See if we can integrate these two together.
1717
1718/// GetStringLengthH - If we can compute the length of the string pointed to by
1719/// the specified pointer, return 'len+1'.  If we can't, return 0.
1720static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1721  // Look through noop bitcast instructions.
1722  V = V->stripPointerCasts();
1723
1724  // If this is a PHI node, there are two cases: either we have already seen it
1725  // or we haven't.
1726  if (PHINode *PN = dyn_cast<PHINode>(V)) {
1727    if (!PHIs.insert(PN))
1728      return ~0ULL;  // already in the set.
1729
1730    // If it was new, see if all the input strings are the same length.
1731    uint64_t LenSoFar = ~0ULL;
1732    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1733      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1734      if (Len == 0) return 0; // Unknown length -> unknown.
1735
1736      if (Len == ~0ULL) continue;
1737
1738      if (Len != LenSoFar && LenSoFar != ~0ULL)
1739        return 0;    // Disagree -> unknown.
1740      LenSoFar = Len;
1741    }
1742
1743    // Success, all agree.
1744    return LenSoFar;
1745  }
1746
1747  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1748  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1749    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1750    if (Len1 == 0) return 0;
1751    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1752    if (Len2 == 0) return 0;
1753    if (Len1 == ~0ULL) return Len2;
1754    if (Len2 == ~0ULL) return Len1;
1755    if (Len1 != Len2) return 0;
1756    return Len1;
1757  }
1758
1759  // Otherwise, see if we can read the string.
1760  StringRef StrData;
1761  if (!getConstantStringInfo(V, StrData))
1762    return 0;
1763
1764  return StrData.size()+1;
1765}
1766
1767/// GetStringLength - If we can compute the length of the string pointed to by
1768/// the specified pointer, return 'len+1'.  If we can't, return 0.
1769uint64_t llvm::GetStringLength(Value *V) {
1770  if (!V->getType()->isPointerTy()) return 0;
1771
1772  SmallPtrSet<PHINode*, 32> PHIs;
1773  uint64_t Len = GetStringLengthH(V, PHIs);
1774  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1775  // an empty string as a length.
1776  return Len == ~0ULL ? 1 : Len;
1777}
1778
1779Value *
1780llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
1781  if (!V->getType()->isPointerTy())
1782    return V;
1783  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1784    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1785      V = GEP->getPointerOperand();
1786    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1787      V = cast<Operator>(V)->getOperand(0);
1788    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1789      if (GA->mayBeOverridden())
1790        return V;
1791      V = GA->getAliasee();
1792    } else {
1793      // See if InstructionSimplify knows any relevant tricks.
1794      if (Instruction *I = dyn_cast<Instruction>(V))
1795        // TODO: Acquire a DominatorTree and use it.
1796        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1797          V = Simplified;
1798          continue;
1799        }
1800
1801      return V;
1802    }
1803    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1804  }
1805  return V;
1806}
1807
1808void
1809llvm::GetUnderlyingObjects(Value *V,
1810                           SmallVectorImpl<Value *> &Objects,
1811                           const DataLayout *TD,
1812                           unsigned MaxLookup) {
1813  SmallPtrSet<Value *, 4> Visited;
1814  SmallVector<Value *, 4> Worklist;
1815  Worklist.push_back(V);
1816  do {
1817    Value *P = Worklist.pop_back_val();
1818    P = GetUnderlyingObject(P, TD, MaxLookup);
1819
1820    if (!Visited.insert(P))
1821      continue;
1822
1823    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1824      Worklist.push_back(SI->getTrueValue());
1825      Worklist.push_back(SI->getFalseValue());
1826      continue;
1827    }
1828
1829    if (PHINode *PN = dyn_cast<PHINode>(P)) {
1830      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1831        Worklist.push_back(PN->getIncomingValue(i));
1832      continue;
1833    }
1834
1835    Objects.push_back(P);
1836  } while (!Worklist.empty());
1837}
1838
1839/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1840/// are lifetime markers.
1841///
1842bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1843  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1844       UI != UE; ++UI) {
1845    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1846    if (!II) return false;
1847
1848    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1849        II->getIntrinsicID() != Intrinsic::lifetime_end)
1850      return false;
1851  }
1852  return true;
1853}
1854
1855bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1856                                        const DataLayout *TD) {
1857  const Operator *Inst = dyn_cast<Operator>(V);
1858  if (!Inst)
1859    return false;
1860
1861  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1862    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1863      if (C->canTrap())
1864        return false;
1865
1866  switch (Inst->getOpcode()) {
1867  default:
1868    return true;
1869  case Instruction::UDiv:
1870  case Instruction::URem:
1871    // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1872    return isKnownNonZero(Inst->getOperand(1), TD);
1873  case Instruction::SDiv:
1874  case Instruction::SRem: {
1875    Value *Op = Inst->getOperand(1);
1876    // x / y is undefined if y == 0
1877    if (!isKnownNonZero(Op, TD))
1878      return false;
1879    // x / y might be undefined if y == -1
1880    unsigned BitWidth = getBitWidth(Op->getType(), TD);
1881    if (BitWidth == 0)
1882      return false;
1883    APInt KnownZero(BitWidth, 0);
1884    APInt KnownOne(BitWidth, 0);
1885    ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1886    return !!KnownZero;
1887  }
1888  case Instruction::Load: {
1889    const LoadInst *LI = cast<LoadInst>(Inst);
1890    if (!LI->isUnordered())
1891      return false;
1892    return LI->getPointerOperand()->isDereferenceablePointer();
1893  }
1894  case Instruction::Call: {
1895   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1896     switch (II->getIntrinsicID()) {
1897       // These synthetic intrinsics have no side-effects, and just mark
1898       // information about their operands.
1899       // FIXME: There are other no-op synthetic instructions that potentially
1900       // should be considered at least *safe* to speculate...
1901       case Intrinsic::dbg_declare:
1902       case Intrinsic::dbg_value:
1903         return true;
1904
1905       case Intrinsic::bswap:
1906       case Intrinsic::ctlz:
1907       case Intrinsic::ctpop:
1908       case Intrinsic::cttz:
1909       case Intrinsic::objectsize:
1910       case Intrinsic::sadd_with_overflow:
1911       case Intrinsic::smul_with_overflow:
1912       case Intrinsic::ssub_with_overflow:
1913       case Intrinsic::uadd_with_overflow:
1914       case Intrinsic::umul_with_overflow:
1915       case Intrinsic::usub_with_overflow:
1916         return true;
1917       // TODO: some fp intrinsics are marked as having the same error handling
1918       // as libm. They're safe to speculate when they won't error.
1919       // TODO: are convert_{from,to}_fp16 safe?
1920       // TODO: can we list target-specific intrinsics here?
1921       default: break;
1922     }
1923   }
1924    return false; // The called function could have undefined behavior or
1925                  // side-effects, even if marked readnone nounwind.
1926  }
1927  case Instruction::VAArg:
1928  case Instruction::Alloca:
1929  case Instruction::Invoke:
1930  case Instruction::PHI:
1931  case Instruction::Store:
1932  case Instruction::Ret:
1933  case Instruction::Br:
1934  case Instruction::IndirectBr:
1935  case Instruction::Switch:
1936  case Instruction::Unreachable:
1937  case Instruction::Fence:
1938  case Instruction::LandingPad:
1939  case Instruction::AtomicRMW:
1940  case Instruction::AtomicCmpXchg:
1941  case Instruction::Resume:
1942    return false; // Misc instructions which have effects
1943  }
1944}
1945