LLParser.cpp revision 1df9859c40492511b8aa4321eb76496005d3b75b
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Update auto-upgraded malloc calls to "malloc".
43  // FIXME: Remove in LLVM 3.0.
44  if (MallocF) {
45    MallocF->setName("malloc");
46    // If setName() does not set the name to "malloc", then there is already a
47    // declaration of "malloc".  In that case, iterate over all calls to MallocF
48    // and get them to call the declared "malloc" instead.
49    if (MallocF->getName() != "malloc") {
50      Constant *RealMallocF = M->getFunction("malloc");
51      if (RealMallocF->getType() != MallocF->getType())
52        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
53      MallocF->replaceAllUsesWith(RealMallocF);
54      MallocF->eraseFromParent();
55      MallocF = NULL;
56    }
57  }
58
59
60  // If there are entries in ForwardRefBlockAddresses at this point, they are
61  // references after the function was defined.  Resolve those now.
62  while (!ForwardRefBlockAddresses.empty()) {
63    // Okay, we are referencing an already-parsed function, resolve them now.
64    Function *TheFn = 0;
65    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
66    if (Fn.Kind == ValID::t_GlobalName)
67      TheFn = M->getFunction(Fn.StrVal);
68    else if (Fn.UIntVal < NumberedVals.size())
69      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
70
71    if (TheFn == 0)
72      return Error(Fn.Loc, "unknown function referenced by blockaddress");
73
74    // Resolve all these references.
75    if (ResolveForwardRefBlockAddresses(TheFn,
76                                      ForwardRefBlockAddresses.begin()->second,
77                                        0))
78      return true;
79
80    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
81  }
82
83
84  if (!ForwardRefTypes.empty())
85    return Error(ForwardRefTypes.begin()->second.second,
86                 "use of undefined type named '" +
87                 ForwardRefTypes.begin()->first + "'");
88  if (!ForwardRefTypeIDs.empty())
89    return Error(ForwardRefTypeIDs.begin()->second.second,
90                 "use of undefined type '%" +
91                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
92
93  if (!ForwardRefVals.empty())
94    return Error(ForwardRefVals.begin()->second.second,
95                 "use of undefined value '@" + ForwardRefVals.begin()->first +
96                 "'");
97
98  if (!ForwardRefValIDs.empty())
99    return Error(ForwardRefValIDs.begin()->second.second,
100                 "use of undefined value '@" +
101                 utostr(ForwardRefValIDs.begin()->first) + "'");
102
103  if (!ForwardRefMDNodes.empty())
104    return Error(ForwardRefMDNodes.begin()->second.second,
105                 "use of undefined metadata '!" +
106                 utostr(ForwardRefMDNodes.begin()->first) + "'");
107
108
109  // Look for intrinsic functions and CallInst that need to be upgraded
110  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
111    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
112
113  // Check debug info intrinsics.
114  CheckDebugInfoIntrinsics(M);
115  return false;
116}
117
118bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
119                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
120                                               PerFunctionState *PFS) {
121  // Loop over all the references, resolving them.
122  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
123    BasicBlock *Res;
124    if (PFS) {
125      if (Refs[i].first.Kind == ValID::t_LocalName)
126        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
127      else
128        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
129    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
130      return Error(Refs[i].first.Loc,
131       "cannot take address of numeric label after the function is defined");
132    } else {
133      Res = dyn_cast_or_null<BasicBlock>(
134                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
135    }
136
137    if (Res == 0)
138      return Error(Refs[i].first.Loc,
139                   "referenced value is not a basic block");
140
141    // Get the BlockAddress for this and update references to use it.
142    BlockAddress *BA = BlockAddress::get(TheFn, Res);
143    Refs[i].second->replaceAllUsesWith(BA);
144    Refs[i].second->eraseFromParent();
145  }
146  return false;
147}
148
149
150//===----------------------------------------------------------------------===//
151// Top-Level Entities
152//===----------------------------------------------------------------------===//
153
154bool LLParser::ParseTopLevelEntities() {
155  while (1) {
156    switch (Lex.getKind()) {
157    default:         return TokError("expected top-level entity");
158    case lltok::Eof: return false;
159    //case lltok::kw_define:
160    case lltok::kw_declare: if (ParseDeclare()) return true; break;
161    case lltok::kw_define:  if (ParseDefine()) return true; break;
162    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
163    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
164    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
165    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
166    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
167    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
168    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
169    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
170    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
171    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
172    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
173
174    // The Global variable production with no name can have many different
175    // optional leading prefixes, the production is:
176    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
177    //               OptionalAddrSpace ('constant'|'global') ...
178    case lltok::kw_private :       // OptionalLinkage
179    case lltok::kw_linker_private: // OptionalLinkage
180    case lltok::kw_internal:       // OptionalLinkage
181    case lltok::kw_weak:           // OptionalLinkage
182    case lltok::kw_weak_odr:       // OptionalLinkage
183    case lltok::kw_linkonce:       // OptionalLinkage
184    case lltok::kw_linkonce_odr:   // OptionalLinkage
185    case lltok::kw_appending:      // OptionalLinkage
186    case lltok::kw_dllexport:      // OptionalLinkage
187    case lltok::kw_common:         // OptionalLinkage
188    case lltok::kw_dllimport:      // OptionalLinkage
189    case lltok::kw_extern_weak:    // OptionalLinkage
190    case lltok::kw_external: {     // OptionalLinkage
191      unsigned Linkage, Visibility;
192      if (ParseOptionalLinkage(Linkage) ||
193          ParseOptionalVisibility(Visibility) ||
194          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
195        return true;
196      break;
197    }
198    case lltok::kw_default:       // OptionalVisibility
199    case lltok::kw_hidden:        // OptionalVisibility
200    case lltok::kw_protected: {   // OptionalVisibility
201      unsigned Visibility;
202      if (ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), 0, false, Visibility))
204        return true;
205      break;
206    }
207
208    case lltok::kw_thread_local:  // OptionalThreadLocal
209    case lltok::kw_addrspace:     // OptionalAddrSpace
210    case lltok::kw_constant:      // GlobalType
211    case lltok::kw_global:        // GlobalType
212      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
213      break;
214    }
215  }
216}
217
218
219/// toplevelentity
220///   ::= 'module' 'asm' STRINGCONSTANT
221bool LLParser::ParseModuleAsm() {
222  assert(Lex.getKind() == lltok::kw_module);
223  Lex.Lex();
224
225  std::string AsmStr;
226  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
227      ParseStringConstant(AsmStr)) return true;
228
229  const std::string &AsmSoFar = M->getModuleInlineAsm();
230  if (AsmSoFar.empty())
231    M->setModuleInlineAsm(AsmStr);
232  else
233    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
234  return false;
235}
236
237/// toplevelentity
238///   ::= 'target' 'triple' '=' STRINGCONSTANT
239///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
240bool LLParser::ParseTargetDefinition() {
241  assert(Lex.getKind() == lltok::kw_target);
242  std::string Str;
243  switch (Lex.Lex()) {
244  default: return TokError("unknown target property");
245  case lltok::kw_triple:
246    Lex.Lex();
247    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
248        ParseStringConstant(Str))
249      return true;
250    M->setTargetTriple(Str);
251    return false;
252  case lltok::kw_datalayout:
253    Lex.Lex();
254    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
255        ParseStringConstant(Str))
256      return true;
257    M->setDataLayout(Str);
258    return false;
259  }
260}
261
262/// toplevelentity
263///   ::= 'deplibs' '=' '[' ']'
264///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
265bool LLParser::ParseDepLibs() {
266  assert(Lex.getKind() == lltok::kw_deplibs);
267  Lex.Lex();
268  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
269      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
270    return true;
271
272  if (EatIfPresent(lltok::rsquare))
273    return false;
274
275  std::string Str;
276  if (ParseStringConstant(Str)) return true;
277  M->addLibrary(Str);
278
279  while (EatIfPresent(lltok::comma)) {
280    if (ParseStringConstant(Str)) return true;
281    M->addLibrary(Str);
282  }
283
284  return ParseToken(lltok::rsquare, "expected ']' at end of list");
285}
286
287/// ParseUnnamedType:
288///   ::= 'type' type
289///   ::= LocalVarID '=' 'type' type
290bool LLParser::ParseUnnamedType() {
291  unsigned TypeID = NumberedTypes.size();
292
293  // Handle the LocalVarID form.
294  if (Lex.getKind() == lltok::LocalVarID) {
295    if (Lex.getUIntVal() != TypeID)
296      return Error(Lex.getLoc(), "type expected to be numbered '%" +
297                   utostr(TypeID) + "'");
298    Lex.Lex(); // eat LocalVarID;
299
300    if (ParseToken(lltok::equal, "expected '=' after name"))
301      return true;
302  }
303
304  assert(Lex.getKind() == lltok::kw_type);
305  LocTy TypeLoc = Lex.getLoc();
306  Lex.Lex(); // eat kw_type
307
308  PATypeHolder Ty(Type::getVoidTy(Context));
309  if (ParseType(Ty)) return true;
310
311  // See if this type was previously referenced.
312  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
313    FI = ForwardRefTypeIDs.find(TypeID);
314  if (FI != ForwardRefTypeIDs.end()) {
315    if (FI->second.first.get() == Ty)
316      return Error(TypeLoc, "self referential type is invalid");
317
318    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
319    Ty = FI->second.first.get();
320    ForwardRefTypeIDs.erase(FI);
321  }
322
323  NumberedTypes.push_back(Ty);
324
325  return false;
326}
327
328/// toplevelentity
329///   ::= LocalVar '=' 'type' type
330bool LLParser::ParseNamedType() {
331  std::string Name = Lex.getStrVal();
332  LocTy NameLoc = Lex.getLoc();
333  Lex.Lex();  // eat LocalVar.
334
335  PATypeHolder Ty(Type::getVoidTy(Context));
336
337  if (ParseToken(lltok::equal, "expected '=' after name") ||
338      ParseToken(lltok::kw_type, "expected 'type' after name") ||
339      ParseType(Ty))
340    return true;
341
342  // Set the type name, checking for conflicts as we do so.
343  bool AlreadyExists = M->addTypeName(Name, Ty);
344  if (!AlreadyExists) return false;
345
346  // See if this type is a forward reference.  We need to eagerly resolve
347  // types to allow recursive type redefinitions below.
348  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
349  FI = ForwardRefTypes.find(Name);
350  if (FI != ForwardRefTypes.end()) {
351    if (FI->second.first.get() == Ty)
352      return Error(NameLoc, "self referential type is invalid");
353
354    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
355    Ty = FI->second.first.get();
356    ForwardRefTypes.erase(FI);
357  }
358
359  // Inserting a name that is already defined, get the existing name.
360  const Type *Existing = M->getTypeByName(Name);
361  assert(Existing && "Conflict but no matching type?!");
362
363  // Otherwise, this is an attempt to redefine a type. That's okay if
364  // the redefinition is identical to the original.
365  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
366  if (Existing == Ty) return false;
367
368  // Any other kind of (non-equivalent) redefinition is an error.
369  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
370               Ty->getDescription() + "'");
371}
372
373
374/// toplevelentity
375///   ::= 'declare' FunctionHeader
376bool LLParser::ParseDeclare() {
377  assert(Lex.getKind() == lltok::kw_declare);
378  Lex.Lex();
379
380  Function *F;
381  return ParseFunctionHeader(F, false);
382}
383
384/// toplevelentity
385///   ::= 'define' FunctionHeader '{' ...
386bool LLParser::ParseDefine() {
387  assert(Lex.getKind() == lltok::kw_define);
388  Lex.Lex();
389
390  Function *F;
391  return ParseFunctionHeader(F, true) ||
392         ParseFunctionBody(*F);
393}
394
395/// ParseGlobalType
396///   ::= 'constant'
397///   ::= 'global'
398bool LLParser::ParseGlobalType(bool &IsConstant) {
399  if (Lex.getKind() == lltok::kw_constant)
400    IsConstant = true;
401  else if (Lex.getKind() == lltok::kw_global)
402    IsConstant = false;
403  else {
404    IsConstant = false;
405    return TokError("expected 'global' or 'constant'");
406  }
407  Lex.Lex();
408  return false;
409}
410
411/// ParseUnnamedGlobal:
412///   OptionalVisibility ALIAS ...
413///   OptionalLinkage OptionalVisibility ...   -> global variable
414///   GlobalID '=' OptionalVisibility ALIAS ...
415///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
416bool LLParser::ParseUnnamedGlobal() {
417  unsigned VarID = NumberedVals.size();
418  std::string Name;
419  LocTy NameLoc = Lex.getLoc();
420
421  // Handle the GlobalID form.
422  if (Lex.getKind() == lltok::GlobalID) {
423    if (Lex.getUIntVal() != VarID)
424      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
425                   utostr(VarID) + "'");
426    Lex.Lex(); // eat GlobalID;
427
428    if (ParseToken(lltok::equal, "expected '=' after name"))
429      return true;
430  }
431
432  bool HasLinkage;
433  unsigned Linkage, Visibility;
434  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
435      ParseOptionalVisibility(Visibility))
436    return true;
437
438  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440  return ParseAlias(Name, NameLoc, Visibility);
441}
442
443/// ParseNamedGlobal:
444///   GlobalVar '=' OptionalVisibility ALIAS ...
445///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
446bool LLParser::ParseNamedGlobal() {
447  assert(Lex.getKind() == lltok::GlobalVar);
448  LocTy NameLoc = Lex.getLoc();
449  std::string Name = Lex.getStrVal();
450  Lex.Lex();
451
452  bool HasLinkage;
453  unsigned Linkage, Visibility;
454  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
455      ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464// MDString:
465//   ::= '!' STRINGCONSTANT
466bool LLParser::ParseMDString(MDString *&Result) {
467  std::string Str;
468  if (ParseStringConstant(Str)) return true;
469  Result = MDString::get(Context, Str);
470  return false;
471}
472
473// MDNode:
474//   ::= '!' MDNodeNumber
475bool LLParser::ParseMDNodeID(MDNode *&Result) {
476  // !{ ..., !42, ... }
477  unsigned MID = 0;
478  if (ParseUInt32(MID)) return true;
479
480  // Check existing MDNode.
481  if (MID < NumberedMetadata.size() && NumberedMetadata[MID] != 0) {
482    Result = NumberedMetadata[MID];
483    return false;
484  }
485
486  // Create MDNode forward reference.
487
488  // FIXME: This is not unique enough!
489  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
490  Value *V = MDString::get(Context, FwdRefName);
491  MDNode *FwdNode = MDNode::get(Context, &V, 1);
492  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
493
494  if (NumberedMetadata.size() <= MID)
495    NumberedMetadata.resize(MID+1);
496  NumberedMetadata[MID] = FwdNode;
497  Result = FwdNode;
498  return false;
499}
500
501/// ParseNamedMetadata:
502///   !foo = !{ !1, !2 }
503bool LLParser::ParseNamedMetadata() {
504  assert(Lex.getKind() == lltok::MetadataVar);
505  std::string Name = Lex.getStrVal();
506  Lex.Lex();
507
508  if (ParseToken(lltok::equal, "expected '=' here") ||
509      ParseToken(lltok::exclaim, "Expected '!' here") ||
510      ParseToken(lltok::lbrace, "Expected '{' here"))
511    return true;
512
513  SmallVector<MDNode *, 8> Elts;
514  do {
515    // Null is a special case since it is typeless.
516    if (EatIfPresent(lltok::kw_null)) {
517      Elts.push_back(0);
518      continue;
519    }
520
521    if (ParseToken(lltok::exclaim, "Expected '!' here"))
522      return true;
523
524    MDNode *N = 0;
525    if (ParseMDNodeID(N)) return true;
526    Elts.push_back(N);
527  } while (EatIfPresent(lltok::comma));
528
529  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
530    return true;
531
532  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
533  return false;
534}
535
536/// ParseStandaloneMetadata:
537///   !42 = !{...}
538bool LLParser::ParseStandaloneMetadata() {
539  assert(Lex.getKind() == lltok::exclaim);
540  Lex.Lex();
541  unsigned MetadataID = 0;
542
543  LocTy TyLoc;
544  PATypeHolder Ty(Type::getVoidTy(Context));
545  SmallVector<Value *, 16> Elts;
546  if (ParseUInt32(MetadataID) ||
547      ParseToken(lltok::equal, "expected '=' here") ||
548      ParseType(Ty, TyLoc) ||
549      ParseToken(lltok::exclaim, "Expected '!' here") ||
550      ParseToken(lltok::lbrace, "Expected '{' here") ||
551      ParseMDNodeVector(Elts, NULL) ||
552      ParseToken(lltok::rbrace, "expected end of metadata node"))
553    return true;
554
555  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
556
557  // See if this was forward referenced, if so, handle it.
558  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
559    FI = ForwardRefMDNodes.find(MetadataID);
560  if (FI != ForwardRefMDNodes.end()) {
561    FI->second.first->replaceAllUsesWith(Init);
562    ForwardRefMDNodes.erase(FI);
563
564    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
565  } else {
566    if (MetadataID >= NumberedMetadata.size())
567      NumberedMetadata.resize(MetadataID+1);
568
569    if (NumberedMetadata[MetadataID] != 0)
570      return TokError("Metadata id is already used");
571    NumberedMetadata[MetadataID] = Init;
572  }
573
574  return false;
575}
576
577/// ParseAlias:
578///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
579/// Aliasee
580///   ::= TypeAndValue
581///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
582///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
583///
584/// Everything through visibility has already been parsed.
585///
586bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
587                          unsigned Visibility) {
588  assert(Lex.getKind() == lltok::kw_alias);
589  Lex.Lex();
590  unsigned Linkage;
591  LocTy LinkageLoc = Lex.getLoc();
592  if (ParseOptionalLinkage(Linkage))
593    return true;
594
595  if (Linkage != GlobalValue::ExternalLinkage &&
596      Linkage != GlobalValue::WeakAnyLinkage &&
597      Linkage != GlobalValue::WeakODRLinkage &&
598      Linkage != GlobalValue::InternalLinkage &&
599      Linkage != GlobalValue::PrivateLinkage &&
600      Linkage != GlobalValue::LinkerPrivateLinkage)
601    return Error(LinkageLoc, "invalid linkage type for alias");
602
603  Constant *Aliasee;
604  LocTy AliaseeLoc = Lex.getLoc();
605  if (Lex.getKind() != lltok::kw_bitcast &&
606      Lex.getKind() != lltok::kw_getelementptr) {
607    if (ParseGlobalTypeAndValue(Aliasee)) return true;
608  } else {
609    // The bitcast dest type is not present, it is implied by the dest type.
610    ValID ID;
611    if (ParseValID(ID)) return true;
612    if (ID.Kind != ValID::t_Constant)
613      return Error(AliaseeLoc, "invalid aliasee");
614    Aliasee = ID.ConstantVal;
615  }
616
617  if (!Aliasee->getType()->isPointerTy())
618    return Error(AliaseeLoc, "alias must have pointer type");
619
620  // Okay, create the alias but do not insert it into the module yet.
621  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
622                                    (GlobalValue::LinkageTypes)Linkage, Name,
623                                    Aliasee);
624  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
625
626  // See if this value already exists in the symbol table.  If so, it is either
627  // a redefinition or a definition of a forward reference.
628  if (GlobalValue *Val = M->getNamedValue(Name)) {
629    // See if this was a redefinition.  If so, there is no entry in
630    // ForwardRefVals.
631    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
632      I = ForwardRefVals.find(Name);
633    if (I == ForwardRefVals.end())
634      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
635
636    // Otherwise, this was a definition of forward ref.  Verify that types
637    // agree.
638    if (Val->getType() != GA->getType())
639      return Error(NameLoc,
640              "forward reference and definition of alias have different types");
641
642    // If they agree, just RAUW the old value with the alias and remove the
643    // forward ref info.
644    Val->replaceAllUsesWith(GA);
645    Val->eraseFromParent();
646    ForwardRefVals.erase(I);
647  }
648
649  // Insert into the module, we know its name won't collide now.
650  M->getAliasList().push_back(GA);
651  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
652
653  return false;
654}
655
656/// ParseGlobal
657///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
658///       OptionalAddrSpace GlobalType Type Const
659///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
660///       OptionalAddrSpace GlobalType Type Const
661///
662/// Everything through visibility has been parsed already.
663///
664bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
665                           unsigned Linkage, bool HasLinkage,
666                           unsigned Visibility) {
667  unsigned AddrSpace;
668  bool ThreadLocal, IsConstant;
669  LocTy TyLoc;
670
671  PATypeHolder Ty(Type::getVoidTy(Context));
672  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
673      ParseOptionalAddrSpace(AddrSpace) ||
674      ParseGlobalType(IsConstant) ||
675      ParseType(Ty, TyLoc))
676    return true;
677
678  // If the linkage is specified and is external, then no initializer is
679  // present.
680  Constant *Init = 0;
681  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
682                      Linkage != GlobalValue::ExternalWeakLinkage &&
683                      Linkage != GlobalValue::ExternalLinkage)) {
684    if (ParseGlobalValue(Ty, Init))
685      return true;
686  }
687
688  if (Ty->isFunctionTy() || Ty->isLabelTy())
689    return Error(TyLoc, "invalid type for global variable");
690
691  GlobalVariable *GV = 0;
692
693  // See if the global was forward referenced, if so, use the global.
694  if (!Name.empty()) {
695    if (GlobalValue *GVal = M->getNamedValue(Name)) {
696      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
697        return Error(NameLoc, "redefinition of global '@" + Name + "'");
698      GV = cast<GlobalVariable>(GVal);
699    }
700  } else {
701    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
702      I = ForwardRefValIDs.find(NumberedVals.size());
703    if (I != ForwardRefValIDs.end()) {
704      GV = cast<GlobalVariable>(I->second.first);
705      ForwardRefValIDs.erase(I);
706    }
707  }
708
709  if (GV == 0) {
710    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
711                            Name, 0, false, AddrSpace);
712  } else {
713    if (GV->getType()->getElementType() != Ty)
714      return Error(TyLoc,
715            "forward reference and definition of global have different types");
716
717    // Move the forward-reference to the correct spot in the module.
718    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
719  }
720
721  if (Name.empty())
722    NumberedVals.push_back(GV);
723
724  // Set the parsed properties on the global.
725  if (Init)
726    GV->setInitializer(Init);
727  GV->setConstant(IsConstant);
728  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
729  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
730  GV->setThreadLocal(ThreadLocal);
731
732  // Parse attributes on the global.
733  while (Lex.getKind() == lltok::comma) {
734    Lex.Lex();
735
736    if (Lex.getKind() == lltok::kw_section) {
737      Lex.Lex();
738      GV->setSection(Lex.getStrVal());
739      if (ParseToken(lltok::StringConstant, "expected global section string"))
740        return true;
741    } else if (Lex.getKind() == lltok::kw_align) {
742      unsigned Alignment;
743      if (ParseOptionalAlignment(Alignment)) return true;
744      GV->setAlignment(Alignment);
745    } else {
746      TokError("unknown global variable property!");
747    }
748  }
749
750  return false;
751}
752
753
754//===----------------------------------------------------------------------===//
755// GlobalValue Reference/Resolution Routines.
756//===----------------------------------------------------------------------===//
757
758/// GetGlobalVal - Get a value with the specified name or ID, creating a
759/// forward reference record if needed.  This can return null if the value
760/// exists but does not have the right type.
761GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
762                                    LocTy Loc) {
763  const PointerType *PTy = dyn_cast<PointerType>(Ty);
764  if (PTy == 0) {
765    Error(Loc, "global variable reference must have pointer type");
766    return 0;
767  }
768
769  // Look this name up in the normal function symbol table.
770  GlobalValue *Val =
771    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
772
773  // If this is a forward reference for the value, see if we already created a
774  // forward ref record.
775  if (Val == 0) {
776    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
777      I = ForwardRefVals.find(Name);
778    if (I != ForwardRefVals.end())
779      Val = I->second.first;
780  }
781
782  // If we have the value in the symbol table or fwd-ref table, return it.
783  if (Val) {
784    if (Val->getType() == Ty) return Val;
785    Error(Loc, "'@" + Name + "' defined with type '" +
786          Val->getType()->getDescription() + "'");
787    return 0;
788  }
789
790  // Otherwise, create a new forward reference for this value and remember it.
791  GlobalValue *FwdVal;
792  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
793    // Function types can return opaque but functions can't.
794    if (isa<OpaqueType>(FT->getReturnType())) {
795      Error(Loc, "function may not return opaque type");
796      return 0;
797    }
798
799    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
800  } else {
801    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
802                                GlobalValue::ExternalWeakLinkage, 0, Name);
803  }
804
805  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
806  return FwdVal;
807}
808
809GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
810  const PointerType *PTy = dyn_cast<PointerType>(Ty);
811  if (PTy == 0) {
812    Error(Loc, "global variable reference must have pointer type");
813    return 0;
814  }
815
816  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
817
818  // If this is a forward reference for the value, see if we already created a
819  // forward ref record.
820  if (Val == 0) {
821    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
822      I = ForwardRefValIDs.find(ID);
823    if (I != ForwardRefValIDs.end())
824      Val = I->second.first;
825  }
826
827  // If we have the value in the symbol table or fwd-ref table, return it.
828  if (Val) {
829    if (Val->getType() == Ty) return Val;
830    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
831          Val->getType()->getDescription() + "'");
832    return 0;
833  }
834
835  // Otherwise, create a new forward reference for this value and remember it.
836  GlobalValue *FwdVal;
837  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
838    // Function types can return opaque but functions can't.
839    if (isa<OpaqueType>(FT->getReturnType())) {
840      Error(Loc, "function may not return opaque type");
841      return 0;
842    }
843    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
844  } else {
845    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
846                                GlobalValue::ExternalWeakLinkage, 0, "");
847  }
848
849  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
850  return FwdVal;
851}
852
853
854//===----------------------------------------------------------------------===//
855// Helper Routines.
856//===----------------------------------------------------------------------===//
857
858/// ParseToken - If the current token has the specified kind, eat it and return
859/// success.  Otherwise, emit the specified error and return failure.
860bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
861  if (Lex.getKind() != T)
862    return TokError(ErrMsg);
863  Lex.Lex();
864  return false;
865}
866
867/// ParseStringConstant
868///   ::= StringConstant
869bool LLParser::ParseStringConstant(std::string &Result) {
870  if (Lex.getKind() != lltok::StringConstant)
871    return TokError("expected string constant");
872  Result = Lex.getStrVal();
873  Lex.Lex();
874  return false;
875}
876
877/// ParseUInt32
878///   ::= uint32
879bool LLParser::ParseUInt32(unsigned &Val) {
880  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
881    return TokError("expected integer");
882  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
883  if (Val64 != unsigned(Val64))
884    return TokError("expected 32-bit integer (too large)");
885  Val = Val64;
886  Lex.Lex();
887  return false;
888}
889
890
891/// ParseOptionalAddrSpace
892///   := /*empty*/
893///   := 'addrspace' '(' uint32 ')'
894bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
895  AddrSpace = 0;
896  if (!EatIfPresent(lltok::kw_addrspace))
897    return false;
898  return ParseToken(lltok::lparen, "expected '(' in address space") ||
899         ParseUInt32(AddrSpace) ||
900         ParseToken(lltok::rparen, "expected ')' in address space");
901}
902
903/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
904/// indicates what kind of attribute list this is: 0: function arg, 1: result,
905/// 2: function attr.
906/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
907bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
908  Attrs = Attribute::None;
909  LocTy AttrLoc = Lex.getLoc();
910
911  while (1) {
912    switch (Lex.getKind()) {
913    case lltok::kw_sext:
914    case lltok::kw_zext:
915      // Treat these as signext/zeroext if they occur in the argument list after
916      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
917      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
918      // expr.
919      // FIXME: REMOVE THIS IN LLVM 3.0
920      if (AttrKind == 3) {
921        if (Lex.getKind() == lltok::kw_sext)
922          Attrs |= Attribute::SExt;
923        else
924          Attrs |= Attribute::ZExt;
925        break;
926      }
927      // FALL THROUGH.
928    default:  // End of attributes.
929      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
930        return Error(AttrLoc, "invalid use of function-only attribute");
931
932      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
933        return Error(AttrLoc, "invalid use of parameter-only attribute");
934
935      return false;
936    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
937    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
938    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
939    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
940    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
941    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
942    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
943    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
944
945    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
946    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
947    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
948    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
949    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
950    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
951    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
952    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
953    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
954    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
955    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
956    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
957    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
958
959    case lltok::kw_alignstack: {
960      unsigned Alignment;
961      if (ParseOptionalStackAlignment(Alignment))
962        return true;
963      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
964      continue;
965    }
966
967    case lltok::kw_align: {
968      unsigned Alignment;
969      if (ParseOptionalAlignment(Alignment))
970        return true;
971      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
972      continue;
973    }
974
975    }
976    Lex.Lex();
977  }
978}
979
980/// ParseOptionalLinkage
981///   ::= /*empty*/
982///   ::= 'private'
983///   ::= 'linker_private'
984///   ::= 'internal'
985///   ::= 'weak'
986///   ::= 'weak_odr'
987///   ::= 'linkonce'
988///   ::= 'linkonce_odr'
989///   ::= 'appending'
990///   ::= 'dllexport'
991///   ::= 'common'
992///   ::= 'dllimport'
993///   ::= 'extern_weak'
994///   ::= 'external'
995bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
996  HasLinkage = false;
997  switch (Lex.getKind()) {
998  default:                       Res=GlobalValue::ExternalLinkage; return false;
999  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1000  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1001  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1002  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1003  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1004  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1005  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1006  case lltok::kw_available_externally:
1007    Res = GlobalValue::AvailableExternallyLinkage;
1008    break;
1009  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1010  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1011  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1012  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1013  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1014  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1015  }
1016  Lex.Lex();
1017  HasLinkage = true;
1018  return false;
1019}
1020
1021/// ParseOptionalVisibility
1022///   ::= /*empty*/
1023///   ::= 'default'
1024///   ::= 'hidden'
1025///   ::= 'protected'
1026///
1027bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1028  switch (Lex.getKind()) {
1029  default:                  Res = GlobalValue::DefaultVisibility; return false;
1030  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1031  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1032  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1033  }
1034  Lex.Lex();
1035  return false;
1036}
1037
1038/// ParseOptionalCallingConv
1039///   ::= /*empty*/
1040///   ::= 'ccc'
1041///   ::= 'fastcc'
1042///   ::= 'coldcc'
1043///   ::= 'x86_stdcallcc'
1044///   ::= 'x86_fastcallcc'
1045///   ::= 'arm_apcscc'
1046///   ::= 'arm_aapcscc'
1047///   ::= 'arm_aapcs_vfpcc'
1048///   ::= 'msp430_intrcc'
1049///   ::= 'cc' UINT
1050///
1051bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1052  switch (Lex.getKind()) {
1053  default:                       CC = CallingConv::C; return false;
1054  case lltok::kw_ccc:            CC = CallingConv::C; break;
1055  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1056  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1057  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1058  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1059  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1060  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1061  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1062  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1063  case lltok::kw_cc: {
1064      unsigned ArbitraryCC;
1065      Lex.Lex();
1066      if (ParseUInt32(ArbitraryCC)) {
1067        return true;
1068      } else
1069        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1070        return false;
1071    }
1072    break;
1073  }
1074
1075  Lex.Lex();
1076  return false;
1077}
1078
1079/// ParseInstructionMetadata
1080///   ::= !dbg !42 (',' !dbg !57)*
1081bool LLParser::
1082ParseInstructionMetadata(SmallVectorImpl<std::pair<unsigned,
1083                                                 MDNode *> > &Result){
1084  do {
1085    if (Lex.getKind() != lltok::MetadataVar)
1086      return TokError("expected metadata after comma");
1087
1088    std::string Name = Lex.getStrVal();
1089    Lex.Lex();
1090
1091    MDNode *Node;
1092    if (ParseToken(lltok::exclaim, "expected '!' here") ||
1093        ParseMDNodeID(Node))
1094      return true;
1095
1096    unsigned MDK = M->getMDKindID(Name.c_str());
1097    Result.push_back(std::make_pair(MDK, Node));
1098
1099    // If this is the end of the list, we're done.
1100  } while (EatIfPresent(lltok::comma));
1101  return false;
1102}
1103
1104/// ParseOptionalAlignment
1105///   ::= /* empty */
1106///   ::= 'align' 4
1107bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1108  Alignment = 0;
1109  if (!EatIfPresent(lltok::kw_align))
1110    return false;
1111  LocTy AlignLoc = Lex.getLoc();
1112  if (ParseUInt32(Alignment)) return true;
1113  if (!isPowerOf2_32(Alignment))
1114    return Error(AlignLoc, "alignment is not a power of two");
1115  return false;
1116}
1117
1118/// ParseOptionalCommaAlign
1119///   ::=
1120///   ::= ',' align 4
1121///
1122/// This returns with AteExtraComma set to true if it ate an excess comma at the
1123/// end.
1124bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1125                                       bool &AteExtraComma) {
1126  AteExtraComma = false;
1127  while (EatIfPresent(lltok::comma)) {
1128    // Metadata at the end is an early exit.
1129    if (Lex.getKind() == lltok::MetadataVar) {
1130      AteExtraComma = true;
1131      return false;
1132    }
1133
1134    if (Lex.getKind() == lltok::kw_align) {
1135      if (ParseOptionalAlignment(Alignment)) return true;
1136    } else
1137      return true;
1138  }
1139
1140  return false;
1141}
1142
1143/// ParseOptionalStackAlignment
1144///   ::= /* empty */
1145///   ::= 'alignstack' '(' 4 ')'
1146bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1147  Alignment = 0;
1148  if (!EatIfPresent(lltok::kw_alignstack))
1149    return false;
1150  LocTy ParenLoc = Lex.getLoc();
1151  if (!EatIfPresent(lltok::lparen))
1152    return Error(ParenLoc, "expected '('");
1153  LocTy AlignLoc = Lex.getLoc();
1154  if (ParseUInt32(Alignment)) return true;
1155  ParenLoc = Lex.getLoc();
1156  if (!EatIfPresent(lltok::rparen))
1157    return Error(ParenLoc, "expected ')'");
1158  if (!isPowerOf2_32(Alignment))
1159    return Error(AlignLoc, "stack alignment is not a power of two");
1160  return false;
1161}
1162
1163/// ParseIndexList - This parses the index list for an insert/extractvalue
1164/// instruction.  This sets AteExtraComma in the case where we eat an extra
1165/// comma at the end of the line and find that it is followed by metadata.
1166/// Clients that don't allow metadata can call the version of this function that
1167/// only takes one argument.
1168///
1169/// ParseIndexList
1170///    ::=  (',' uint32)+
1171///
1172bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1173                              bool &AteExtraComma) {
1174  AteExtraComma = false;
1175
1176  if (Lex.getKind() != lltok::comma)
1177    return TokError("expected ',' as start of index list");
1178
1179  while (EatIfPresent(lltok::comma)) {
1180    if (Lex.getKind() == lltok::MetadataVar) {
1181      AteExtraComma = true;
1182      return false;
1183    }
1184    unsigned Idx;
1185    if (ParseUInt32(Idx)) return true;
1186    Indices.push_back(Idx);
1187  }
1188
1189  return false;
1190}
1191
1192//===----------------------------------------------------------------------===//
1193// Type Parsing.
1194//===----------------------------------------------------------------------===//
1195
1196/// ParseType - Parse and resolve a full type.
1197bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1198  LocTy TypeLoc = Lex.getLoc();
1199  if (ParseTypeRec(Result)) return true;
1200
1201  // Verify no unresolved uprefs.
1202  if (!UpRefs.empty())
1203    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1204
1205  if (!AllowVoid && Result.get()->isVoidTy())
1206    return Error(TypeLoc, "void type only allowed for function results");
1207
1208  return false;
1209}
1210
1211/// HandleUpRefs - Every time we finish a new layer of types, this function is
1212/// called.  It loops through the UpRefs vector, which is a list of the
1213/// currently active types.  For each type, if the up-reference is contained in
1214/// the newly completed type, we decrement the level count.  When the level
1215/// count reaches zero, the up-referenced type is the type that is passed in:
1216/// thus we can complete the cycle.
1217///
1218PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1219  // If Ty isn't abstract, or if there are no up-references in it, then there is
1220  // nothing to resolve here.
1221  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1222
1223  PATypeHolder Ty(ty);
1224#if 0
1225  dbgs() << "Type '" << Ty->getDescription()
1226         << "' newly formed.  Resolving upreferences.\n"
1227         << UpRefs.size() << " upreferences active!\n";
1228#endif
1229
1230  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1231  // to zero), we resolve them all together before we resolve them to Ty.  At
1232  // the end of the loop, if there is anything to resolve to Ty, it will be in
1233  // this variable.
1234  OpaqueType *TypeToResolve = 0;
1235
1236  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1237    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1238    bool ContainsType =
1239      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1240                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1241
1242#if 0
1243    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1244           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1245           << (ContainsType ? "true" : "false")
1246           << " level=" << UpRefs[i].NestingLevel << "\n";
1247#endif
1248    if (!ContainsType)
1249      continue;
1250
1251    // Decrement level of upreference
1252    unsigned Level = --UpRefs[i].NestingLevel;
1253    UpRefs[i].LastContainedTy = Ty;
1254
1255    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1256    if (Level != 0)
1257      continue;
1258
1259#if 0
1260    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1261#endif
1262    if (!TypeToResolve)
1263      TypeToResolve = UpRefs[i].UpRefTy;
1264    else
1265      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1266    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1267    --i;                                // Do not skip the next element.
1268  }
1269
1270  if (TypeToResolve)
1271    TypeToResolve->refineAbstractTypeTo(Ty);
1272
1273  return Ty;
1274}
1275
1276
1277/// ParseTypeRec - The recursive function used to process the internal
1278/// implementation details of types.
1279bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1280  switch (Lex.getKind()) {
1281  default:
1282    return TokError("expected type");
1283  case lltok::Type:
1284    // TypeRec ::= 'float' | 'void' (etc)
1285    Result = Lex.getTyVal();
1286    Lex.Lex();
1287    break;
1288  case lltok::kw_opaque:
1289    // TypeRec ::= 'opaque'
1290    Result = OpaqueType::get(Context);
1291    Lex.Lex();
1292    break;
1293  case lltok::lbrace:
1294    // TypeRec ::= '{' ... '}'
1295    if (ParseStructType(Result, false))
1296      return true;
1297    break;
1298  case lltok::kw_union:
1299    // TypeRec ::= 'union' '{' ... '}'
1300    if (ParseUnionType(Result))
1301      return true;
1302    break;
1303  case lltok::lsquare:
1304    // TypeRec ::= '[' ... ']'
1305    Lex.Lex(); // eat the lsquare.
1306    if (ParseArrayVectorType(Result, false))
1307      return true;
1308    break;
1309  case lltok::less: // Either vector or packed struct.
1310    // TypeRec ::= '<' ... '>'
1311    Lex.Lex();
1312    if (Lex.getKind() == lltok::lbrace) {
1313      if (ParseStructType(Result, true) ||
1314          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1315        return true;
1316    } else if (ParseArrayVectorType(Result, true))
1317      return true;
1318    break;
1319  case lltok::LocalVar:
1320  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1321    // TypeRec ::= %foo
1322    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1323      Result = T;
1324    } else {
1325      Result = OpaqueType::get(Context);
1326      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1327                                            std::make_pair(Result,
1328                                                           Lex.getLoc())));
1329      M->addTypeName(Lex.getStrVal(), Result.get());
1330    }
1331    Lex.Lex();
1332    break;
1333
1334  case lltok::LocalVarID:
1335    // TypeRec ::= %4
1336    if (Lex.getUIntVal() < NumberedTypes.size())
1337      Result = NumberedTypes[Lex.getUIntVal()];
1338    else {
1339      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1340        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1341      if (I != ForwardRefTypeIDs.end())
1342        Result = I->second.first;
1343      else {
1344        Result = OpaqueType::get(Context);
1345        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1346                                                std::make_pair(Result,
1347                                                               Lex.getLoc())));
1348      }
1349    }
1350    Lex.Lex();
1351    break;
1352  case lltok::backslash: {
1353    // TypeRec ::= '\' 4
1354    Lex.Lex();
1355    unsigned Val;
1356    if (ParseUInt32(Val)) return true;
1357    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1358    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1359    Result = OT;
1360    break;
1361  }
1362  }
1363
1364  // Parse the type suffixes.
1365  while (1) {
1366    switch (Lex.getKind()) {
1367    // End of type.
1368    default: return false;
1369
1370    // TypeRec ::= TypeRec '*'
1371    case lltok::star:
1372      if (Result.get()->isLabelTy())
1373        return TokError("basic block pointers are invalid");
1374      if (Result.get()->isVoidTy())
1375        return TokError("pointers to void are invalid; use i8* instead");
1376      if (!PointerType::isValidElementType(Result.get()))
1377        return TokError("pointer to this type is invalid");
1378      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1379      Lex.Lex();
1380      break;
1381
1382    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1383    case lltok::kw_addrspace: {
1384      if (Result.get()->isLabelTy())
1385        return TokError("basic block pointers are invalid");
1386      if (Result.get()->isVoidTy())
1387        return TokError("pointers to void are invalid; use i8* instead");
1388      if (!PointerType::isValidElementType(Result.get()))
1389        return TokError("pointer to this type is invalid");
1390      unsigned AddrSpace;
1391      if (ParseOptionalAddrSpace(AddrSpace) ||
1392          ParseToken(lltok::star, "expected '*' in address space"))
1393        return true;
1394
1395      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1396      break;
1397    }
1398
1399    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1400    case lltok::lparen:
1401      if (ParseFunctionType(Result))
1402        return true;
1403      break;
1404    }
1405  }
1406}
1407
1408/// ParseParameterList
1409///    ::= '(' ')'
1410///    ::= '(' Arg (',' Arg)* ')'
1411///  Arg
1412///    ::= Type OptionalAttributes Value OptionalAttributes
1413bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1414                                  PerFunctionState &PFS) {
1415  if (ParseToken(lltok::lparen, "expected '(' in call"))
1416    return true;
1417
1418  while (Lex.getKind() != lltok::rparen) {
1419    // If this isn't the first argument, we need a comma.
1420    if (!ArgList.empty() &&
1421        ParseToken(lltok::comma, "expected ',' in argument list"))
1422      return true;
1423
1424    // Parse the argument.
1425    LocTy ArgLoc;
1426    PATypeHolder ArgTy(Type::getVoidTy(Context));
1427    unsigned ArgAttrs1 = Attribute::None;
1428    unsigned ArgAttrs2 = Attribute::None;
1429    Value *V;
1430    if (ParseType(ArgTy, ArgLoc))
1431      return true;
1432
1433    // Otherwise, handle normal operands.
1434    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1435        ParseValue(ArgTy, V, PFS) ||
1436        // FIXME: Should not allow attributes after the argument, remove this
1437        // in LLVM 3.0.
1438        ParseOptionalAttrs(ArgAttrs2, 3))
1439      return true;
1440    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1441  }
1442
1443  Lex.Lex();  // Lex the ')'.
1444  return false;
1445}
1446
1447
1448
1449/// ParseArgumentList - Parse the argument list for a function type or function
1450/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1451///   ::= '(' ArgTypeListI ')'
1452/// ArgTypeListI
1453///   ::= /*empty*/
1454///   ::= '...'
1455///   ::= ArgTypeList ',' '...'
1456///   ::= ArgType (',' ArgType)*
1457///
1458bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1459                                 bool &isVarArg, bool inType) {
1460  isVarArg = false;
1461  assert(Lex.getKind() == lltok::lparen);
1462  Lex.Lex(); // eat the (.
1463
1464  if (Lex.getKind() == lltok::rparen) {
1465    // empty
1466  } else if (Lex.getKind() == lltok::dotdotdot) {
1467    isVarArg = true;
1468    Lex.Lex();
1469  } else {
1470    LocTy TypeLoc = Lex.getLoc();
1471    PATypeHolder ArgTy(Type::getVoidTy(Context));
1472    unsigned Attrs;
1473    std::string Name;
1474
1475    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1476    // types (such as a function returning a pointer to itself).  If parsing a
1477    // function prototype, we require fully resolved types.
1478    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1479        ParseOptionalAttrs(Attrs, 0)) return true;
1480
1481    if (ArgTy->isVoidTy())
1482      return Error(TypeLoc, "argument can not have void type");
1483
1484    if (Lex.getKind() == lltok::LocalVar ||
1485        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1486      Name = Lex.getStrVal();
1487      Lex.Lex();
1488    }
1489
1490    if (!FunctionType::isValidArgumentType(ArgTy))
1491      return Error(TypeLoc, "invalid type for function argument");
1492
1493    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1494
1495    while (EatIfPresent(lltok::comma)) {
1496      // Handle ... at end of arg list.
1497      if (EatIfPresent(lltok::dotdotdot)) {
1498        isVarArg = true;
1499        break;
1500      }
1501
1502      // Otherwise must be an argument type.
1503      TypeLoc = Lex.getLoc();
1504      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1505          ParseOptionalAttrs(Attrs, 0)) return true;
1506
1507      if (ArgTy->isVoidTy())
1508        return Error(TypeLoc, "argument can not have void type");
1509
1510      if (Lex.getKind() == lltok::LocalVar ||
1511          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1512        Name = Lex.getStrVal();
1513        Lex.Lex();
1514      } else {
1515        Name = "";
1516      }
1517
1518      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1519        return Error(TypeLoc, "invalid type for function argument");
1520
1521      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1522    }
1523  }
1524
1525  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1526}
1527
1528/// ParseFunctionType
1529///  ::= Type ArgumentList OptionalAttrs
1530bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1531  assert(Lex.getKind() == lltok::lparen);
1532
1533  if (!FunctionType::isValidReturnType(Result))
1534    return TokError("invalid function return type");
1535
1536  std::vector<ArgInfo> ArgList;
1537  bool isVarArg;
1538  unsigned Attrs;
1539  if (ParseArgumentList(ArgList, isVarArg, true) ||
1540      // FIXME: Allow, but ignore attributes on function types!
1541      // FIXME: Remove in LLVM 3.0
1542      ParseOptionalAttrs(Attrs, 2))
1543    return true;
1544
1545  // Reject names on the arguments lists.
1546  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1547    if (!ArgList[i].Name.empty())
1548      return Error(ArgList[i].Loc, "argument name invalid in function type");
1549    if (!ArgList[i].Attrs != 0) {
1550      // Allow but ignore attributes on function types; this permits
1551      // auto-upgrade.
1552      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1553    }
1554  }
1555
1556  std::vector<const Type*> ArgListTy;
1557  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1558    ArgListTy.push_back(ArgList[i].Type);
1559
1560  Result = HandleUpRefs(FunctionType::get(Result.get(),
1561                                                ArgListTy, isVarArg));
1562  return false;
1563}
1564
1565/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1566///   TypeRec
1567///     ::= '{' '}'
1568///     ::= '{' TypeRec (',' TypeRec)* '}'
1569///     ::= '<' '{' '}' '>'
1570///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1571bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1572  assert(Lex.getKind() == lltok::lbrace);
1573  Lex.Lex(); // Consume the '{'
1574
1575  if (EatIfPresent(lltok::rbrace)) {
1576    Result = StructType::get(Context, Packed);
1577    return false;
1578  }
1579
1580  std::vector<PATypeHolder> ParamsList;
1581  LocTy EltTyLoc = Lex.getLoc();
1582  if (ParseTypeRec(Result)) return true;
1583  ParamsList.push_back(Result);
1584
1585  if (Result->isVoidTy())
1586    return Error(EltTyLoc, "struct element can not have void type");
1587  if (!StructType::isValidElementType(Result))
1588    return Error(EltTyLoc, "invalid element type for struct");
1589
1590  while (EatIfPresent(lltok::comma)) {
1591    EltTyLoc = Lex.getLoc();
1592    if (ParseTypeRec(Result)) return true;
1593
1594    if (Result->isVoidTy())
1595      return Error(EltTyLoc, "struct element can not have void type");
1596    if (!StructType::isValidElementType(Result))
1597      return Error(EltTyLoc, "invalid element type for struct");
1598
1599    ParamsList.push_back(Result);
1600  }
1601
1602  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1603    return true;
1604
1605  std::vector<const Type*> ParamsListTy;
1606  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1607    ParamsListTy.push_back(ParamsList[i].get());
1608  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1609  return false;
1610}
1611
1612/// ParseUnionType
1613///   TypeRec
1614///     ::= 'union' '{' TypeRec (',' TypeRec)* '}'
1615bool LLParser::ParseUnionType(PATypeHolder &Result) {
1616  assert(Lex.getKind() == lltok::kw_union);
1617  Lex.Lex(); // Consume the 'union'
1618
1619  if (ParseToken(lltok::lbrace, "'{' expected after 'union'")) return true;
1620
1621  SmallVector<PATypeHolder, 8> ParamsList;
1622  do {
1623    LocTy EltTyLoc = Lex.getLoc();
1624    if (ParseTypeRec(Result)) return true;
1625    ParamsList.push_back(Result);
1626
1627    if (Result->isVoidTy())
1628      return Error(EltTyLoc, "union element can not have void type");
1629    if (!UnionType::isValidElementType(Result))
1630      return Error(EltTyLoc, "invalid element type for union");
1631
1632  } while (EatIfPresent(lltok::comma)) ;
1633
1634  if (ParseToken(lltok::rbrace, "expected '}' at end of union"))
1635    return true;
1636
1637  SmallVector<const Type*, 8> ParamsListTy;
1638  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1639    ParamsListTy.push_back(ParamsList[i].get());
1640  Result = HandleUpRefs(UnionType::get(&ParamsListTy[0], ParamsListTy.size()));
1641  return false;
1642}
1643
1644/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1645/// token has already been consumed.
1646///   TypeRec
1647///     ::= '[' APSINTVAL 'x' Types ']'
1648///     ::= '<' APSINTVAL 'x' Types '>'
1649bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1650  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1651      Lex.getAPSIntVal().getBitWidth() > 64)
1652    return TokError("expected number in address space");
1653
1654  LocTy SizeLoc = Lex.getLoc();
1655  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1656  Lex.Lex();
1657
1658  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1659      return true;
1660
1661  LocTy TypeLoc = Lex.getLoc();
1662  PATypeHolder EltTy(Type::getVoidTy(Context));
1663  if (ParseTypeRec(EltTy)) return true;
1664
1665  if (EltTy->isVoidTy())
1666    return Error(TypeLoc, "array and vector element type cannot be void");
1667
1668  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1669                 "expected end of sequential type"))
1670    return true;
1671
1672  if (isVector) {
1673    if (Size == 0)
1674      return Error(SizeLoc, "zero element vector is illegal");
1675    if ((unsigned)Size != Size)
1676      return Error(SizeLoc, "size too large for vector");
1677    if (!VectorType::isValidElementType(EltTy))
1678      return Error(TypeLoc, "vector element type must be fp or integer");
1679    Result = VectorType::get(EltTy, unsigned(Size));
1680  } else {
1681    if (!ArrayType::isValidElementType(EltTy))
1682      return Error(TypeLoc, "invalid array element type");
1683    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1684  }
1685  return false;
1686}
1687
1688//===----------------------------------------------------------------------===//
1689// Function Semantic Analysis.
1690//===----------------------------------------------------------------------===//
1691
1692LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1693                                             int functionNumber)
1694  : P(p), F(f), FunctionNumber(functionNumber) {
1695
1696  // Insert unnamed arguments into the NumberedVals list.
1697  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1698       AI != E; ++AI)
1699    if (!AI->hasName())
1700      NumberedVals.push_back(AI);
1701}
1702
1703LLParser::PerFunctionState::~PerFunctionState() {
1704  // If there were any forward referenced non-basicblock values, delete them.
1705  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1706       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1707    if (!isa<BasicBlock>(I->second.first)) {
1708      I->second.first->replaceAllUsesWith(
1709                           UndefValue::get(I->second.first->getType()));
1710      delete I->second.first;
1711      I->second.first = 0;
1712    }
1713
1714  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1715       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1716    if (!isa<BasicBlock>(I->second.first)) {
1717      I->second.first->replaceAllUsesWith(
1718                           UndefValue::get(I->second.first->getType()));
1719      delete I->second.first;
1720      I->second.first = 0;
1721    }
1722}
1723
1724bool LLParser::PerFunctionState::FinishFunction() {
1725  // Check to see if someone took the address of labels in this block.
1726  if (!P.ForwardRefBlockAddresses.empty()) {
1727    ValID FunctionID;
1728    if (!F.getName().empty()) {
1729      FunctionID.Kind = ValID::t_GlobalName;
1730      FunctionID.StrVal = F.getName();
1731    } else {
1732      FunctionID.Kind = ValID::t_GlobalID;
1733      FunctionID.UIntVal = FunctionNumber;
1734    }
1735
1736    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1737      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1738    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1739      // Resolve all these references.
1740      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1741        return true;
1742
1743      P.ForwardRefBlockAddresses.erase(FRBAI);
1744    }
1745  }
1746
1747  if (!ForwardRefVals.empty())
1748    return P.Error(ForwardRefVals.begin()->second.second,
1749                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1750                   "'");
1751  if (!ForwardRefValIDs.empty())
1752    return P.Error(ForwardRefValIDs.begin()->second.second,
1753                   "use of undefined value '%" +
1754                   utostr(ForwardRefValIDs.begin()->first) + "'");
1755  return false;
1756}
1757
1758
1759/// GetVal - Get a value with the specified name or ID, creating a
1760/// forward reference record if needed.  This can return null if the value
1761/// exists but does not have the right type.
1762Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1763                                          const Type *Ty, LocTy Loc) {
1764  // Look this name up in the normal function symbol table.
1765  Value *Val = F.getValueSymbolTable().lookup(Name);
1766
1767  // If this is a forward reference for the value, see if we already created a
1768  // forward ref record.
1769  if (Val == 0) {
1770    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1771      I = ForwardRefVals.find(Name);
1772    if (I != ForwardRefVals.end())
1773      Val = I->second.first;
1774  }
1775
1776  // If we have the value in the symbol table or fwd-ref table, return it.
1777  if (Val) {
1778    if (Val->getType() == Ty) return Val;
1779    if (Ty->isLabelTy())
1780      P.Error(Loc, "'%" + Name + "' is not a basic block");
1781    else
1782      P.Error(Loc, "'%" + Name + "' defined with type '" +
1783              Val->getType()->getDescription() + "'");
1784    return 0;
1785  }
1786
1787  // Don't make placeholders with invalid type.
1788  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
1789    P.Error(Loc, "invalid use of a non-first-class type");
1790    return 0;
1791  }
1792
1793  // Otherwise, create a new forward reference for this value and remember it.
1794  Value *FwdVal;
1795  if (Ty->isLabelTy())
1796    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1797  else
1798    FwdVal = new Argument(Ty, Name);
1799
1800  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1801  return FwdVal;
1802}
1803
1804Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1805                                          LocTy Loc) {
1806  // Look this name up in the normal function symbol table.
1807  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1808
1809  // If this is a forward reference for the value, see if we already created a
1810  // forward ref record.
1811  if (Val == 0) {
1812    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1813      I = ForwardRefValIDs.find(ID);
1814    if (I != ForwardRefValIDs.end())
1815      Val = I->second.first;
1816  }
1817
1818  // If we have the value in the symbol table or fwd-ref table, return it.
1819  if (Val) {
1820    if (Val->getType() == Ty) return Val;
1821    if (Ty->isLabelTy())
1822      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1823    else
1824      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1825              Val->getType()->getDescription() + "'");
1826    return 0;
1827  }
1828
1829  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && !Ty->isLabelTy()) {
1830    P.Error(Loc, "invalid use of a non-first-class type");
1831    return 0;
1832  }
1833
1834  // Otherwise, create a new forward reference for this value and remember it.
1835  Value *FwdVal;
1836  if (Ty->isLabelTy())
1837    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1838  else
1839    FwdVal = new Argument(Ty);
1840
1841  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1842  return FwdVal;
1843}
1844
1845/// SetInstName - After an instruction is parsed and inserted into its
1846/// basic block, this installs its name.
1847bool LLParser::PerFunctionState::SetInstName(int NameID,
1848                                             const std::string &NameStr,
1849                                             LocTy NameLoc, Instruction *Inst) {
1850  // If this instruction has void type, it cannot have a name or ID specified.
1851  if (Inst->getType()->isVoidTy()) {
1852    if (NameID != -1 || !NameStr.empty())
1853      return P.Error(NameLoc, "instructions returning void cannot have a name");
1854    return false;
1855  }
1856
1857  // If this was a numbered instruction, verify that the instruction is the
1858  // expected value and resolve any forward references.
1859  if (NameStr.empty()) {
1860    // If neither a name nor an ID was specified, just use the next ID.
1861    if (NameID == -1)
1862      NameID = NumberedVals.size();
1863
1864    if (unsigned(NameID) != NumberedVals.size())
1865      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1866                     utostr(NumberedVals.size()) + "'");
1867
1868    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1869      ForwardRefValIDs.find(NameID);
1870    if (FI != ForwardRefValIDs.end()) {
1871      if (FI->second.first->getType() != Inst->getType())
1872        return P.Error(NameLoc, "instruction forward referenced with type '" +
1873                       FI->second.first->getType()->getDescription() + "'");
1874      FI->second.first->replaceAllUsesWith(Inst);
1875      delete FI->second.first;
1876      ForwardRefValIDs.erase(FI);
1877    }
1878
1879    NumberedVals.push_back(Inst);
1880    return false;
1881  }
1882
1883  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1884  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1885    FI = ForwardRefVals.find(NameStr);
1886  if (FI != ForwardRefVals.end()) {
1887    if (FI->second.first->getType() != Inst->getType())
1888      return P.Error(NameLoc, "instruction forward referenced with type '" +
1889                     FI->second.first->getType()->getDescription() + "'");
1890    FI->second.first->replaceAllUsesWith(Inst);
1891    delete FI->second.first;
1892    ForwardRefVals.erase(FI);
1893  }
1894
1895  // Set the name on the instruction.
1896  Inst->setName(NameStr);
1897
1898  if (Inst->getNameStr() != NameStr)
1899    return P.Error(NameLoc, "multiple definition of local value named '" +
1900                   NameStr + "'");
1901  return false;
1902}
1903
1904/// GetBB - Get a basic block with the specified name or ID, creating a
1905/// forward reference record if needed.
1906BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1907                                              LocTy Loc) {
1908  return cast_or_null<BasicBlock>(GetVal(Name,
1909                                        Type::getLabelTy(F.getContext()), Loc));
1910}
1911
1912BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1913  return cast_or_null<BasicBlock>(GetVal(ID,
1914                                        Type::getLabelTy(F.getContext()), Loc));
1915}
1916
1917/// DefineBB - Define the specified basic block, which is either named or
1918/// unnamed.  If there is an error, this returns null otherwise it returns
1919/// the block being defined.
1920BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1921                                                 LocTy Loc) {
1922  BasicBlock *BB;
1923  if (Name.empty())
1924    BB = GetBB(NumberedVals.size(), Loc);
1925  else
1926    BB = GetBB(Name, Loc);
1927  if (BB == 0) return 0; // Already diagnosed error.
1928
1929  // Move the block to the end of the function.  Forward ref'd blocks are
1930  // inserted wherever they happen to be referenced.
1931  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1932
1933  // Remove the block from forward ref sets.
1934  if (Name.empty()) {
1935    ForwardRefValIDs.erase(NumberedVals.size());
1936    NumberedVals.push_back(BB);
1937  } else {
1938    // BB forward references are already in the function symbol table.
1939    ForwardRefVals.erase(Name);
1940  }
1941
1942  return BB;
1943}
1944
1945//===----------------------------------------------------------------------===//
1946// Constants.
1947//===----------------------------------------------------------------------===//
1948
1949/// ParseValID - Parse an abstract value that doesn't necessarily have a
1950/// type implied.  For example, if we parse "4" we don't know what integer type
1951/// it has.  The value will later be combined with its type and checked for
1952/// sanity.  PFS is used to convert function-local operands of metadata (since
1953/// metadata operands are not just parsed here but also converted to values).
1954/// PFS can be null when we are not parsing metadata values inside a function.
1955bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1956  ID.Loc = Lex.getLoc();
1957  switch (Lex.getKind()) {
1958  default: return TokError("expected value token");
1959  case lltok::GlobalID:  // @42
1960    ID.UIntVal = Lex.getUIntVal();
1961    ID.Kind = ValID::t_GlobalID;
1962    break;
1963  case lltok::GlobalVar:  // @foo
1964    ID.StrVal = Lex.getStrVal();
1965    ID.Kind = ValID::t_GlobalName;
1966    break;
1967  case lltok::LocalVarID:  // %42
1968    ID.UIntVal = Lex.getUIntVal();
1969    ID.Kind = ValID::t_LocalID;
1970    break;
1971  case lltok::LocalVar:  // %foo
1972  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1973    ID.StrVal = Lex.getStrVal();
1974    ID.Kind = ValID::t_LocalName;
1975    break;
1976  case lltok::exclaim:   // !{...} MDNode, !"foo" MDString
1977    Lex.Lex();
1978
1979    if (EatIfPresent(lltok::lbrace)) {
1980      SmallVector<Value*, 16> Elts;
1981      if (ParseMDNodeVector(Elts, PFS) ||
1982          ParseToken(lltok::rbrace, "expected end of metadata node"))
1983        return true;
1984
1985      ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
1986      ID.Kind = ValID::t_MDNode;
1987      return false;
1988    }
1989
1990    // Standalone metadata reference
1991    // !{ ..., !42, ... }
1992    if (Lex.getKind() == lltok::APSInt) {
1993      if (ParseMDNodeID(ID.MDNodeVal)) return true;
1994      ID.Kind = ValID::t_MDNode;
1995      return false;
1996    }
1997
1998    // MDString:
1999    //   ::= '!' STRINGCONSTANT
2000    if (ParseMDString(ID.MDStringVal)) return true;
2001    ID.Kind = ValID::t_MDString;
2002    return false;
2003  case lltok::APSInt:
2004    ID.APSIntVal = Lex.getAPSIntVal();
2005    ID.Kind = ValID::t_APSInt;
2006    break;
2007  case lltok::APFloat:
2008    ID.APFloatVal = Lex.getAPFloatVal();
2009    ID.Kind = ValID::t_APFloat;
2010    break;
2011  case lltok::kw_true:
2012    ID.ConstantVal = ConstantInt::getTrue(Context);
2013    ID.Kind = ValID::t_Constant;
2014    break;
2015  case lltok::kw_false:
2016    ID.ConstantVal = ConstantInt::getFalse(Context);
2017    ID.Kind = ValID::t_Constant;
2018    break;
2019  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2020  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2021  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2022
2023  case lltok::lbrace: {
2024    // ValID ::= '{' ConstVector '}'
2025    Lex.Lex();
2026    SmallVector<Constant*, 16> Elts;
2027    if (ParseGlobalValueVector(Elts) ||
2028        ParseToken(lltok::rbrace, "expected end of struct constant"))
2029      return true;
2030
2031    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2032                                         Elts.size(), false);
2033    ID.Kind = ValID::t_Constant;
2034    return false;
2035  }
2036  case lltok::less: {
2037    // ValID ::= '<' ConstVector '>'         --> Vector.
2038    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2039    Lex.Lex();
2040    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2041
2042    SmallVector<Constant*, 16> Elts;
2043    LocTy FirstEltLoc = Lex.getLoc();
2044    if (ParseGlobalValueVector(Elts) ||
2045        (isPackedStruct &&
2046         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2047        ParseToken(lltok::greater, "expected end of constant"))
2048      return true;
2049
2050    if (isPackedStruct) {
2051      ID.ConstantVal =
2052        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2053      ID.Kind = ValID::t_Constant;
2054      return false;
2055    }
2056
2057    if (Elts.empty())
2058      return Error(ID.Loc, "constant vector must not be empty");
2059
2060    if (!Elts[0]->getType()->isIntegerTy() &&
2061        !Elts[0]->getType()->isFloatingPointTy())
2062      return Error(FirstEltLoc,
2063                   "vector elements must have integer or floating point type");
2064
2065    // Verify that all the vector elements have the same type.
2066    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2067      if (Elts[i]->getType() != Elts[0]->getType())
2068        return Error(FirstEltLoc,
2069                     "vector element #" + utostr(i) +
2070                    " is not of type '" + Elts[0]->getType()->getDescription());
2071
2072    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2073    ID.Kind = ValID::t_Constant;
2074    return false;
2075  }
2076  case lltok::lsquare: {   // Array Constant
2077    Lex.Lex();
2078    SmallVector<Constant*, 16> Elts;
2079    LocTy FirstEltLoc = Lex.getLoc();
2080    if (ParseGlobalValueVector(Elts) ||
2081        ParseToken(lltok::rsquare, "expected end of array constant"))
2082      return true;
2083
2084    // Handle empty element.
2085    if (Elts.empty()) {
2086      // Use undef instead of an array because it's inconvenient to determine
2087      // the element type at this point, there being no elements to examine.
2088      ID.Kind = ValID::t_EmptyArray;
2089      return false;
2090    }
2091
2092    if (!Elts[0]->getType()->isFirstClassType())
2093      return Error(FirstEltLoc, "invalid array element type: " +
2094                   Elts[0]->getType()->getDescription());
2095
2096    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2097
2098    // Verify all elements are correct type!
2099    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2100      if (Elts[i]->getType() != Elts[0]->getType())
2101        return Error(FirstEltLoc,
2102                     "array element #" + utostr(i) +
2103                     " is not of type '" +Elts[0]->getType()->getDescription());
2104    }
2105
2106    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2107    ID.Kind = ValID::t_Constant;
2108    return false;
2109  }
2110  case lltok::kw_c:  // c "foo"
2111    Lex.Lex();
2112    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2113    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2114    ID.Kind = ValID::t_Constant;
2115    return false;
2116
2117  case lltok::kw_asm: {
2118    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2119    bool HasSideEffect, AlignStack;
2120    Lex.Lex();
2121    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2122        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2123        ParseStringConstant(ID.StrVal) ||
2124        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2125        ParseToken(lltok::StringConstant, "expected constraint string"))
2126      return true;
2127    ID.StrVal2 = Lex.getStrVal();
2128    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2129    ID.Kind = ValID::t_InlineAsm;
2130    return false;
2131  }
2132
2133  case lltok::kw_blockaddress: {
2134    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2135    Lex.Lex();
2136
2137    ValID Fn, Label;
2138    LocTy FnLoc, LabelLoc;
2139
2140    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2141        ParseValID(Fn) ||
2142        ParseToken(lltok::comma, "expected comma in block address expression")||
2143        ParseValID(Label) ||
2144        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2145      return true;
2146
2147    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2148      return Error(Fn.Loc, "expected function name in blockaddress");
2149    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2150      return Error(Label.Loc, "expected basic block name in blockaddress");
2151
2152    // Make a global variable as a placeholder for this reference.
2153    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2154                                           false, GlobalValue::InternalLinkage,
2155                                                0, "");
2156    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2157    ID.ConstantVal = FwdRef;
2158    ID.Kind = ValID::t_Constant;
2159    return false;
2160  }
2161
2162  case lltok::kw_trunc:
2163  case lltok::kw_zext:
2164  case lltok::kw_sext:
2165  case lltok::kw_fptrunc:
2166  case lltok::kw_fpext:
2167  case lltok::kw_bitcast:
2168  case lltok::kw_uitofp:
2169  case lltok::kw_sitofp:
2170  case lltok::kw_fptoui:
2171  case lltok::kw_fptosi:
2172  case lltok::kw_inttoptr:
2173  case lltok::kw_ptrtoint: {
2174    unsigned Opc = Lex.getUIntVal();
2175    PATypeHolder DestTy(Type::getVoidTy(Context));
2176    Constant *SrcVal;
2177    Lex.Lex();
2178    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2179        ParseGlobalTypeAndValue(SrcVal) ||
2180        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2181        ParseType(DestTy) ||
2182        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2183      return true;
2184    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2185      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2186                   SrcVal->getType()->getDescription() + "' to '" +
2187                   DestTy->getDescription() + "'");
2188    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2189                                                 SrcVal, DestTy);
2190    ID.Kind = ValID::t_Constant;
2191    return false;
2192  }
2193  case lltok::kw_extractvalue: {
2194    Lex.Lex();
2195    Constant *Val;
2196    SmallVector<unsigned, 4> Indices;
2197    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2198        ParseGlobalTypeAndValue(Val) ||
2199        ParseIndexList(Indices) ||
2200        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2201      return true;
2202
2203    if (!Val->getType()->isAggregateType())
2204      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2205    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2206                                          Indices.end()))
2207      return Error(ID.Loc, "invalid indices for extractvalue");
2208    ID.ConstantVal =
2209      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2210    ID.Kind = ValID::t_Constant;
2211    return false;
2212  }
2213  case lltok::kw_insertvalue: {
2214    Lex.Lex();
2215    Constant *Val0, *Val1;
2216    SmallVector<unsigned, 4> Indices;
2217    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2218        ParseGlobalTypeAndValue(Val0) ||
2219        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2220        ParseGlobalTypeAndValue(Val1) ||
2221        ParseIndexList(Indices) ||
2222        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2223      return true;
2224    if (!Val0->getType()->isAggregateType())
2225      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2226    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2227                                          Indices.end()))
2228      return Error(ID.Loc, "invalid indices for insertvalue");
2229    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2230                       Indices.data(), Indices.size());
2231    ID.Kind = ValID::t_Constant;
2232    return false;
2233  }
2234  case lltok::kw_icmp:
2235  case lltok::kw_fcmp: {
2236    unsigned PredVal, Opc = Lex.getUIntVal();
2237    Constant *Val0, *Val1;
2238    Lex.Lex();
2239    if (ParseCmpPredicate(PredVal, Opc) ||
2240        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2241        ParseGlobalTypeAndValue(Val0) ||
2242        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2243        ParseGlobalTypeAndValue(Val1) ||
2244        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2245      return true;
2246
2247    if (Val0->getType() != Val1->getType())
2248      return Error(ID.Loc, "compare operands must have the same type");
2249
2250    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2251
2252    if (Opc == Instruction::FCmp) {
2253      if (!Val0->getType()->isFPOrFPVectorTy())
2254        return Error(ID.Loc, "fcmp requires floating point operands");
2255      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2256    } else {
2257      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2258      if (!Val0->getType()->isIntOrIntVectorTy() &&
2259          !Val0->getType()->isPointerTy())
2260        return Error(ID.Loc, "icmp requires pointer or integer operands");
2261      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2262    }
2263    ID.Kind = ValID::t_Constant;
2264    return false;
2265  }
2266
2267  // Binary Operators.
2268  case lltok::kw_add:
2269  case lltok::kw_fadd:
2270  case lltok::kw_sub:
2271  case lltok::kw_fsub:
2272  case lltok::kw_mul:
2273  case lltok::kw_fmul:
2274  case lltok::kw_udiv:
2275  case lltok::kw_sdiv:
2276  case lltok::kw_fdiv:
2277  case lltok::kw_urem:
2278  case lltok::kw_srem:
2279  case lltok::kw_frem: {
2280    bool NUW = false;
2281    bool NSW = false;
2282    bool Exact = false;
2283    unsigned Opc = Lex.getUIntVal();
2284    Constant *Val0, *Val1;
2285    Lex.Lex();
2286    LocTy ModifierLoc = Lex.getLoc();
2287    if (Opc == Instruction::Add ||
2288        Opc == Instruction::Sub ||
2289        Opc == Instruction::Mul) {
2290      if (EatIfPresent(lltok::kw_nuw))
2291        NUW = true;
2292      if (EatIfPresent(lltok::kw_nsw)) {
2293        NSW = true;
2294        if (EatIfPresent(lltok::kw_nuw))
2295          NUW = true;
2296      }
2297    } else if (Opc == Instruction::SDiv) {
2298      if (EatIfPresent(lltok::kw_exact))
2299        Exact = true;
2300    }
2301    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2302        ParseGlobalTypeAndValue(Val0) ||
2303        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2304        ParseGlobalTypeAndValue(Val1) ||
2305        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2306      return true;
2307    if (Val0->getType() != Val1->getType())
2308      return Error(ID.Loc, "operands of constexpr must have same type");
2309    if (!Val0->getType()->isIntOrIntVectorTy()) {
2310      if (NUW)
2311        return Error(ModifierLoc, "nuw only applies to integer operations");
2312      if (NSW)
2313        return Error(ModifierLoc, "nsw only applies to integer operations");
2314    }
2315    // API compatibility: Accept either integer or floating-point types with
2316    // add, sub, and mul.
2317    if (!Val0->getType()->isIntOrIntVectorTy() &&
2318        !Val0->getType()->isFPOrFPVectorTy())
2319      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2320    unsigned Flags = 0;
2321    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2322    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2323    if (Exact) Flags |= SDivOperator::IsExact;
2324    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2325    ID.ConstantVal = C;
2326    ID.Kind = ValID::t_Constant;
2327    return false;
2328  }
2329
2330  // Logical Operations
2331  case lltok::kw_shl:
2332  case lltok::kw_lshr:
2333  case lltok::kw_ashr:
2334  case lltok::kw_and:
2335  case lltok::kw_or:
2336  case lltok::kw_xor: {
2337    unsigned Opc = Lex.getUIntVal();
2338    Constant *Val0, *Val1;
2339    Lex.Lex();
2340    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2341        ParseGlobalTypeAndValue(Val0) ||
2342        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2343        ParseGlobalTypeAndValue(Val1) ||
2344        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2345      return true;
2346    if (Val0->getType() != Val1->getType())
2347      return Error(ID.Loc, "operands of constexpr must have same type");
2348    if (!Val0->getType()->isIntOrIntVectorTy())
2349      return Error(ID.Loc,
2350                   "constexpr requires integer or integer vector operands");
2351    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2352    ID.Kind = ValID::t_Constant;
2353    return false;
2354  }
2355
2356  case lltok::kw_getelementptr:
2357  case lltok::kw_shufflevector:
2358  case lltok::kw_insertelement:
2359  case lltok::kw_extractelement:
2360  case lltok::kw_select: {
2361    unsigned Opc = Lex.getUIntVal();
2362    SmallVector<Constant*, 16> Elts;
2363    bool InBounds = false;
2364    Lex.Lex();
2365    if (Opc == Instruction::GetElementPtr)
2366      InBounds = EatIfPresent(lltok::kw_inbounds);
2367    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2368        ParseGlobalValueVector(Elts) ||
2369        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2370      return true;
2371
2372    if (Opc == Instruction::GetElementPtr) {
2373      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2374        return Error(ID.Loc, "getelementptr requires pointer operand");
2375
2376      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2377                                             (Value**)(Elts.data() + 1),
2378                                             Elts.size() - 1))
2379        return Error(ID.Loc, "invalid indices for getelementptr");
2380      ID.ConstantVal = InBounds ?
2381        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2382                                               Elts.data() + 1,
2383                                               Elts.size() - 1) :
2384        ConstantExpr::getGetElementPtr(Elts[0],
2385                                       Elts.data() + 1, Elts.size() - 1);
2386    } else if (Opc == Instruction::Select) {
2387      if (Elts.size() != 3)
2388        return Error(ID.Loc, "expected three operands to select");
2389      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2390                                                              Elts[2]))
2391        return Error(ID.Loc, Reason);
2392      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2393    } else if (Opc == Instruction::ShuffleVector) {
2394      if (Elts.size() != 3)
2395        return Error(ID.Loc, "expected three operands to shufflevector");
2396      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2397        return Error(ID.Loc, "invalid operands to shufflevector");
2398      ID.ConstantVal =
2399                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2400    } else if (Opc == Instruction::ExtractElement) {
2401      if (Elts.size() != 2)
2402        return Error(ID.Loc, "expected two operands to extractelement");
2403      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2404        return Error(ID.Loc, "invalid extractelement operands");
2405      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2406    } else {
2407      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2408      if (Elts.size() != 3)
2409      return Error(ID.Loc, "expected three operands to insertelement");
2410      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2411        return Error(ID.Loc, "invalid insertelement operands");
2412      ID.ConstantVal =
2413                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2414    }
2415
2416    ID.Kind = ValID::t_Constant;
2417    return false;
2418  }
2419  }
2420
2421  Lex.Lex();
2422  return false;
2423}
2424
2425/// ParseGlobalValue - Parse a global value with the specified type.
2426bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2427  C = 0;
2428  ValID ID;
2429  Value *V = NULL;
2430  bool Parsed = ParseValID(ID) ||
2431                ConvertValIDToValue(Ty, ID, V, NULL);
2432  if (V && !(C = dyn_cast<Constant>(V)))
2433    return Error(ID.Loc, "global values must be constants");
2434  return Parsed;
2435}
2436
2437bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2438  PATypeHolder Type(Type::getVoidTy(Context));
2439  return ParseType(Type) ||
2440         ParseGlobalValue(Type, V);
2441}
2442
2443/// ParseGlobalValueVector
2444///   ::= /*empty*/
2445///   ::= TypeAndValue (',' TypeAndValue)*
2446bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2447  // Empty list.
2448  if (Lex.getKind() == lltok::rbrace ||
2449      Lex.getKind() == lltok::rsquare ||
2450      Lex.getKind() == lltok::greater ||
2451      Lex.getKind() == lltok::rparen)
2452    return false;
2453
2454  Constant *C;
2455  if (ParseGlobalTypeAndValue(C)) return true;
2456  Elts.push_back(C);
2457
2458  while (EatIfPresent(lltok::comma)) {
2459    if (ParseGlobalTypeAndValue(C)) return true;
2460    Elts.push_back(C);
2461  }
2462
2463  return false;
2464}
2465
2466
2467//===----------------------------------------------------------------------===//
2468// Function Parsing.
2469//===----------------------------------------------------------------------===//
2470
2471bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2472                                   PerFunctionState *PFS) {
2473  if (Ty->isFunctionTy())
2474    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2475
2476  switch (ID.Kind) {
2477  default: llvm_unreachable("Unknown ValID!");
2478  case ValID::t_LocalID:
2479    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2480    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2481    return (V == 0);
2482  case ValID::t_LocalName:
2483    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2484    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2485    return (V == 0);
2486  case ValID::t_InlineAsm: {
2487    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2488    const FunctionType *FTy =
2489      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2490    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2491      return Error(ID.Loc, "invalid type for inline asm constraint string");
2492    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2493    return false;
2494  }
2495  case ValID::t_MDNode:
2496    if (!Ty->isMetadataTy())
2497      return Error(ID.Loc, "metadata value must have metadata type");
2498    V = ID.MDNodeVal;
2499    return false;
2500  case ValID::t_MDString:
2501    if (!Ty->isMetadataTy())
2502      return Error(ID.Loc, "metadata value must have metadata type");
2503    V = ID.MDStringVal;
2504    return false;
2505  case ValID::t_GlobalName:
2506    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2507    return V == 0;
2508  case ValID::t_GlobalID:
2509    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2510    return V == 0;
2511  case ValID::t_APSInt:
2512    if (!Ty->isIntegerTy())
2513      return Error(ID.Loc, "integer constant must have integer type");
2514    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2515    V = ConstantInt::get(Context, ID.APSIntVal);
2516    return false;
2517  case ValID::t_APFloat:
2518    if (!Ty->isFloatingPointTy() ||
2519        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2520      return Error(ID.Loc, "floating point constant invalid for type");
2521
2522    // The lexer has no type info, so builds all float and double FP constants
2523    // as double.  Fix this here.  Long double does not need this.
2524    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2525        Ty->isFloatTy()) {
2526      bool Ignored;
2527      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2528                            &Ignored);
2529    }
2530    V = ConstantFP::get(Context, ID.APFloatVal);
2531
2532    if (V->getType() != Ty)
2533      return Error(ID.Loc, "floating point constant does not have type '" +
2534                   Ty->getDescription() + "'");
2535
2536    return false;
2537  case ValID::t_Null:
2538    if (!Ty->isPointerTy())
2539      return Error(ID.Loc, "null must be a pointer type");
2540    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2541    return false;
2542  case ValID::t_Undef:
2543    // FIXME: LabelTy should not be a first-class type.
2544    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2545        !isa<OpaqueType>(Ty))
2546      return Error(ID.Loc, "invalid type for undef constant");
2547    V = UndefValue::get(Ty);
2548    return false;
2549  case ValID::t_EmptyArray:
2550    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2551      return Error(ID.Loc, "invalid empty array initializer");
2552    V = UndefValue::get(Ty);
2553    return false;
2554  case ValID::t_Zero:
2555    // FIXME: LabelTy should not be a first-class type.
2556    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2557      return Error(ID.Loc, "invalid type for null constant");
2558    V = Constant::getNullValue(Ty);
2559    return false;
2560  case ValID::t_Constant:
2561    if (ID.ConstantVal->getType() != Ty) {
2562      // Allow a constant struct with a single member to be converted
2563      // to a union, if the union has a member which is the same type
2564      // as the struct member.
2565      if (const UnionType* utype = dyn_cast<UnionType>(Ty)) {
2566        return ParseUnionValue(utype, ID, V);
2567      }
2568
2569      return Error(ID.Loc, "constant expression type mismatch");
2570    }
2571
2572    V = ID.ConstantVal;
2573    return false;
2574  }
2575}
2576
2577bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2578  V = 0;
2579  ValID ID;
2580  return ParseValID(ID, &PFS) ||
2581         ConvertValIDToValue(Ty, ID, V, &PFS);
2582}
2583
2584bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2585  PATypeHolder T(Type::getVoidTy(Context));
2586  return ParseType(T) ||
2587         ParseValue(T, V, PFS);
2588}
2589
2590bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2591                                      PerFunctionState &PFS) {
2592  Value *V;
2593  Loc = Lex.getLoc();
2594  if (ParseTypeAndValue(V, PFS)) return true;
2595  if (!isa<BasicBlock>(V))
2596    return Error(Loc, "expected a basic block");
2597  BB = cast<BasicBlock>(V);
2598  return false;
2599}
2600
2601bool LLParser::ParseUnionValue(const UnionType* utype, ValID &ID, Value *&V) {
2602  if (const StructType* stype = dyn_cast<StructType>(ID.ConstantVal->getType())) {
2603    if (stype->getNumContainedTypes() != 1)
2604      return Error(ID.Loc, "constant expression type mismatch");
2605    int index = utype->getElementTypeIndex(stype->getContainedType(0));
2606    if (index < 0)
2607      return Error(ID.Loc, "initializer type is not a member of the union");
2608
2609    V = ConstantUnion::get(
2610        utype, cast<Constant>(ID.ConstantVal->getOperand(0)));
2611    return false;
2612  }
2613
2614  return Error(ID.Loc, "constant expression type mismatch");
2615}
2616
2617
2618/// FunctionHeader
2619///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2620///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2621///       OptionalAlign OptGC
2622bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2623  // Parse the linkage.
2624  LocTy LinkageLoc = Lex.getLoc();
2625  unsigned Linkage;
2626
2627  unsigned Visibility, RetAttrs;
2628  CallingConv::ID CC;
2629  PATypeHolder RetType(Type::getVoidTy(Context));
2630  LocTy RetTypeLoc = Lex.getLoc();
2631  if (ParseOptionalLinkage(Linkage) ||
2632      ParseOptionalVisibility(Visibility) ||
2633      ParseOptionalCallingConv(CC) ||
2634      ParseOptionalAttrs(RetAttrs, 1) ||
2635      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2636    return true;
2637
2638  // Verify that the linkage is ok.
2639  switch ((GlobalValue::LinkageTypes)Linkage) {
2640  case GlobalValue::ExternalLinkage:
2641    break; // always ok.
2642  case GlobalValue::DLLImportLinkage:
2643  case GlobalValue::ExternalWeakLinkage:
2644    if (isDefine)
2645      return Error(LinkageLoc, "invalid linkage for function definition");
2646    break;
2647  case GlobalValue::PrivateLinkage:
2648  case GlobalValue::LinkerPrivateLinkage:
2649  case GlobalValue::InternalLinkage:
2650  case GlobalValue::AvailableExternallyLinkage:
2651  case GlobalValue::LinkOnceAnyLinkage:
2652  case GlobalValue::LinkOnceODRLinkage:
2653  case GlobalValue::WeakAnyLinkage:
2654  case GlobalValue::WeakODRLinkage:
2655  case GlobalValue::DLLExportLinkage:
2656    if (!isDefine)
2657      return Error(LinkageLoc, "invalid linkage for function declaration");
2658    break;
2659  case GlobalValue::AppendingLinkage:
2660  case GlobalValue::CommonLinkage:
2661    return Error(LinkageLoc, "invalid function linkage type");
2662  }
2663
2664  if (!FunctionType::isValidReturnType(RetType) ||
2665      isa<OpaqueType>(RetType))
2666    return Error(RetTypeLoc, "invalid function return type");
2667
2668  LocTy NameLoc = Lex.getLoc();
2669
2670  std::string FunctionName;
2671  if (Lex.getKind() == lltok::GlobalVar) {
2672    FunctionName = Lex.getStrVal();
2673  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2674    unsigned NameID = Lex.getUIntVal();
2675
2676    if (NameID != NumberedVals.size())
2677      return TokError("function expected to be numbered '%" +
2678                      utostr(NumberedVals.size()) + "'");
2679  } else {
2680    return TokError("expected function name");
2681  }
2682
2683  Lex.Lex();
2684
2685  if (Lex.getKind() != lltok::lparen)
2686    return TokError("expected '(' in function argument list");
2687
2688  std::vector<ArgInfo> ArgList;
2689  bool isVarArg;
2690  unsigned FuncAttrs;
2691  std::string Section;
2692  unsigned Alignment;
2693  std::string GC;
2694
2695  if (ParseArgumentList(ArgList, isVarArg, false) ||
2696      ParseOptionalAttrs(FuncAttrs, 2) ||
2697      (EatIfPresent(lltok::kw_section) &&
2698       ParseStringConstant(Section)) ||
2699      ParseOptionalAlignment(Alignment) ||
2700      (EatIfPresent(lltok::kw_gc) &&
2701       ParseStringConstant(GC)))
2702    return true;
2703
2704  // If the alignment was parsed as an attribute, move to the alignment field.
2705  if (FuncAttrs & Attribute::Alignment) {
2706    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2707    FuncAttrs &= ~Attribute::Alignment;
2708  }
2709
2710  // Okay, if we got here, the function is syntactically valid.  Convert types
2711  // and do semantic checks.
2712  std::vector<const Type*> ParamTypeList;
2713  SmallVector<AttributeWithIndex, 8> Attrs;
2714  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2715  // attributes.
2716  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2717  if (FuncAttrs & ObsoleteFuncAttrs) {
2718    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2719    FuncAttrs &= ~ObsoleteFuncAttrs;
2720  }
2721
2722  if (RetAttrs != Attribute::None)
2723    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2724
2725  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2726    ParamTypeList.push_back(ArgList[i].Type);
2727    if (ArgList[i].Attrs != Attribute::None)
2728      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2729  }
2730
2731  if (FuncAttrs != Attribute::None)
2732    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2733
2734  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2735
2736  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2737    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2738
2739  const FunctionType *FT =
2740    FunctionType::get(RetType, ParamTypeList, isVarArg);
2741  const PointerType *PFT = PointerType::getUnqual(FT);
2742
2743  Fn = 0;
2744  if (!FunctionName.empty()) {
2745    // If this was a definition of a forward reference, remove the definition
2746    // from the forward reference table and fill in the forward ref.
2747    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2748      ForwardRefVals.find(FunctionName);
2749    if (FRVI != ForwardRefVals.end()) {
2750      Fn = M->getFunction(FunctionName);
2751      ForwardRefVals.erase(FRVI);
2752    } else if ((Fn = M->getFunction(FunctionName))) {
2753      // If this function already exists in the symbol table, then it is
2754      // multiply defined.  We accept a few cases for old backwards compat.
2755      // FIXME: Remove this stuff for LLVM 3.0.
2756      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2757          (!Fn->isDeclaration() && isDefine)) {
2758        // If the redefinition has different type or different attributes,
2759        // reject it.  If both have bodies, reject it.
2760        return Error(NameLoc, "invalid redefinition of function '" +
2761                     FunctionName + "'");
2762      } else if (Fn->isDeclaration()) {
2763        // Make sure to strip off any argument names so we can't get conflicts.
2764        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2765             AI != AE; ++AI)
2766          AI->setName("");
2767      }
2768    } else if (M->getNamedValue(FunctionName)) {
2769      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2770    }
2771
2772  } else {
2773    // If this is a definition of a forward referenced function, make sure the
2774    // types agree.
2775    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2776      = ForwardRefValIDs.find(NumberedVals.size());
2777    if (I != ForwardRefValIDs.end()) {
2778      Fn = cast<Function>(I->second.first);
2779      if (Fn->getType() != PFT)
2780        return Error(NameLoc, "type of definition and forward reference of '@" +
2781                     utostr(NumberedVals.size()) +"' disagree");
2782      ForwardRefValIDs.erase(I);
2783    }
2784  }
2785
2786  if (Fn == 0)
2787    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2788  else // Move the forward-reference to the correct spot in the module.
2789    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2790
2791  if (FunctionName.empty())
2792    NumberedVals.push_back(Fn);
2793
2794  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2795  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2796  Fn->setCallingConv(CC);
2797  Fn->setAttributes(PAL);
2798  Fn->setAlignment(Alignment);
2799  Fn->setSection(Section);
2800  if (!GC.empty()) Fn->setGC(GC.c_str());
2801
2802  // Add all of the arguments we parsed to the function.
2803  Function::arg_iterator ArgIt = Fn->arg_begin();
2804  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2805    // If we run out of arguments in the Function prototype, exit early.
2806    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2807    if (ArgIt == Fn->arg_end()) break;
2808
2809    // If the argument has a name, insert it into the argument symbol table.
2810    if (ArgList[i].Name.empty()) continue;
2811
2812    // Set the name, if it conflicted, it will be auto-renamed.
2813    ArgIt->setName(ArgList[i].Name);
2814
2815    if (ArgIt->getNameStr() != ArgList[i].Name)
2816      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2817                   ArgList[i].Name + "'");
2818  }
2819
2820  return false;
2821}
2822
2823
2824/// ParseFunctionBody
2825///   ::= '{' BasicBlock+ '}'
2826///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2827///
2828bool LLParser::ParseFunctionBody(Function &Fn) {
2829  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2830    return TokError("expected '{' in function body");
2831  Lex.Lex();  // eat the {.
2832
2833  int FunctionNumber = -1;
2834  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2835
2836  PerFunctionState PFS(*this, Fn, FunctionNumber);
2837
2838  // We need at least one basic block.
2839  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2840    return TokError("function body requires at least one basic block");
2841
2842  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2843    if (ParseBasicBlock(PFS)) return true;
2844
2845  // Eat the }.
2846  Lex.Lex();
2847
2848  // Verify function is ok.
2849  return PFS.FinishFunction();
2850}
2851
2852/// ParseBasicBlock
2853///   ::= LabelStr? Instruction*
2854bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2855  // If this basic block starts out with a name, remember it.
2856  std::string Name;
2857  LocTy NameLoc = Lex.getLoc();
2858  if (Lex.getKind() == lltok::LabelStr) {
2859    Name = Lex.getStrVal();
2860    Lex.Lex();
2861  }
2862
2863  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2864  if (BB == 0) return true;
2865
2866  std::string NameStr;
2867
2868  // Parse the instructions in this block until we get a terminator.
2869  Instruction *Inst;
2870  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2871  do {
2872    // This instruction may have three possibilities for a name: a) none
2873    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2874    LocTy NameLoc = Lex.getLoc();
2875    int NameID = -1;
2876    NameStr = "";
2877
2878    if (Lex.getKind() == lltok::LocalVarID) {
2879      NameID = Lex.getUIntVal();
2880      Lex.Lex();
2881      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2882        return true;
2883    } else if (Lex.getKind() == lltok::LocalVar ||
2884               // FIXME: REMOVE IN LLVM 3.0
2885               Lex.getKind() == lltok::StringConstant) {
2886      NameStr = Lex.getStrVal();
2887      Lex.Lex();
2888      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2889        return true;
2890    }
2891
2892    switch (ParseInstruction(Inst, BB, PFS)) {
2893    default: assert(0 && "Unknown ParseInstruction result!");
2894    case InstError: return true;
2895    case InstNormal:
2896      // With a normal result, we check to see if the instruction is followed by
2897      // a comma and metadata.
2898      if (EatIfPresent(lltok::comma))
2899        if (ParseInstructionMetadata(MetadataOnInst))
2900          return true;
2901      break;
2902    case InstExtraComma:
2903      // If the instruction parser ate an extra comma at the end of it, it
2904      // *must* be followed by metadata.
2905      if (ParseInstructionMetadata(MetadataOnInst))
2906        return true;
2907      break;
2908    }
2909
2910    // Set metadata attached with this instruction.
2911    for (unsigned i = 0, e = MetadataOnInst.size(); i != e; ++i)
2912      Inst->setMetadata(MetadataOnInst[i].first, MetadataOnInst[i].second);
2913    MetadataOnInst.clear();
2914
2915    BB->getInstList().push_back(Inst);
2916
2917    // Set the name on the instruction.
2918    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2919  } while (!isa<TerminatorInst>(Inst));
2920
2921  return false;
2922}
2923
2924//===----------------------------------------------------------------------===//
2925// Instruction Parsing.
2926//===----------------------------------------------------------------------===//
2927
2928/// ParseInstruction - Parse one of the many different instructions.
2929///
2930int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2931                               PerFunctionState &PFS) {
2932  lltok::Kind Token = Lex.getKind();
2933  if (Token == lltok::Eof)
2934    return TokError("found end of file when expecting more instructions");
2935  LocTy Loc = Lex.getLoc();
2936  unsigned KeywordVal = Lex.getUIntVal();
2937  Lex.Lex();  // Eat the keyword.
2938
2939  switch (Token) {
2940  default:                    return Error(Loc, "expected instruction opcode");
2941  // Terminator Instructions.
2942  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2943  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2944  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2945  case lltok::kw_br:          return ParseBr(Inst, PFS);
2946  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2947  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2948  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2949  // Binary Operators.
2950  case lltok::kw_add:
2951  case lltok::kw_sub:
2952  case lltok::kw_mul: {
2953    bool NUW = false;
2954    bool NSW = false;
2955    LocTy ModifierLoc = Lex.getLoc();
2956    if (EatIfPresent(lltok::kw_nuw))
2957      NUW = true;
2958    if (EatIfPresent(lltok::kw_nsw)) {
2959      NSW = true;
2960      if (EatIfPresent(lltok::kw_nuw))
2961        NUW = true;
2962    }
2963    // API compatibility: Accept either integer or floating-point types.
2964    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2965    if (!Result) {
2966      if (!Inst->getType()->isIntOrIntVectorTy()) {
2967        if (NUW)
2968          return Error(ModifierLoc, "nuw only applies to integer operations");
2969        if (NSW)
2970          return Error(ModifierLoc, "nsw only applies to integer operations");
2971      }
2972      if (NUW)
2973        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2974      if (NSW)
2975        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2976    }
2977    return Result;
2978  }
2979  case lltok::kw_fadd:
2980  case lltok::kw_fsub:
2981  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2982
2983  case lltok::kw_sdiv: {
2984    bool Exact = false;
2985    if (EatIfPresent(lltok::kw_exact))
2986      Exact = true;
2987    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2988    if (!Result)
2989      if (Exact)
2990        cast<BinaryOperator>(Inst)->setIsExact(true);
2991    return Result;
2992  }
2993
2994  case lltok::kw_udiv:
2995  case lltok::kw_urem:
2996  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2997  case lltok::kw_fdiv:
2998  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2999  case lltok::kw_shl:
3000  case lltok::kw_lshr:
3001  case lltok::kw_ashr:
3002  case lltok::kw_and:
3003  case lltok::kw_or:
3004  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3005  case lltok::kw_icmp:
3006  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3007  // Casts.
3008  case lltok::kw_trunc:
3009  case lltok::kw_zext:
3010  case lltok::kw_sext:
3011  case lltok::kw_fptrunc:
3012  case lltok::kw_fpext:
3013  case lltok::kw_bitcast:
3014  case lltok::kw_uitofp:
3015  case lltok::kw_sitofp:
3016  case lltok::kw_fptoui:
3017  case lltok::kw_fptosi:
3018  case lltok::kw_inttoptr:
3019  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3020  // Other.
3021  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3022  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3023  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3024  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3025  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3026  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3027  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3028  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3029  // Memory.
3030  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3031  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3032  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3033  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3034  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3035  case lltok::kw_volatile:
3036    if (EatIfPresent(lltok::kw_load))
3037      return ParseLoad(Inst, PFS, true);
3038    else if (EatIfPresent(lltok::kw_store))
3039      return ParseStore(Inst, PFS, true);
3040    else
3041      return TokError("expected 'load' or 'store'");
3042  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3043  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3044  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3045  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3046  }
3047}
3048
3049/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3050bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3051  if (Opc == Instruction::FCmp) {
3052    switch (Lex.getKind()) {
3053    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3054    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3055    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3056    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3057    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3058    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3059    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3060    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3061    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3062    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3063    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3064    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3065    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3066    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3067    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3068    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3069    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3070    }
3071  } else {
3072    switch (Lex.getKind()) {
3073    default: TokError("expected icmp predicate (e.g. 'eq')");
3074    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3075    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3076    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3077    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3078    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3079    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3080    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3081    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3082    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3083    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3084    }
3085  }
3086  Lex.Lex();
3087  return false;
3088}
3089
3090//===----------------------------------------------------------------------===//
3091// Terminator Instructions.
3092//===----------------------------------------------------------------------===//
3093
3094/// ParseRet - Parse a return instruction.
3095///   ::= 'ret' void (',' !dbg, !1)*
3096///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3097///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3098///         [[obsolete: LLVM 3.0]]
3099int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3100                       PerFunctionState &PFS) {
3101  PATypeHolder Ty(Type::getVoidTy(Context));
3102  if (ParseType(Ty, true /*void allowed*/)) return true;
3103
3104  if (Ty->isVoidTy()) {
3105    Inst = ReturnInst::Create(Context);
3106    return false;
3107  }
3108
3109  Value *RV;
3110  if (ParseValue(Ty, RV, PFS)) return true;
3111
3112  bool ExtraComma = false;
3113  if (EatIfPresent(lltok::comma)) {
3114    // Parse optional custom metadata, e.g. !dbg
3115    if (Lex.getKind() == lltok::MetadataVar) {
3116      ExtraComma = true;
3117    } else {
3118      // The normal case is one return value.
3119      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3120      // use of 'ret {i32,i32} {i32 1, i32 2}'
3121      SmallVector<Value*, 8> RVs;
3122      RVs.push_back(RV);
3123
3124      do {
3125        // If optional custom metadata, e.g. !dbg is seen then this is the
3126        // end of MRV.
3127        if (Lex.getKind() == lltok::MetadataVar)
3128          break;
3129        if (ParseTypeAndValue(RV, PFS)) return true;
3130        RVs.push_back(RV);
3131      } while (EatIfPresent(lltok::comma));
3132
3133      RV = UndefValue::get(PFS.getFunction().getReturnType());
3134      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3135        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3136        BB->getInstList().push_back(I);
3137        RV = I;
3138      }
3139    }
3140  }
3141
3142  Inst = ReturnInst::Create(Context, RV);
3143  return ExtraComma ? InstExtraComma : InstNormal;
3144}
3145
3146
3147/// ParseBr
3148///   ::= 'br' TypeAndValue
3149///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3150bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3151  LocTy Loc, Loc2;
3152  Value *Op0;
3153  BasicBlock *Op1, *Op2;
3154  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3155
3156  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3157    Inst = BranchInst::Create(BB);
3158    return false;
3159  }
3160
3161  if (Op0->getType() != Type::getInt1Ty(Context))
3162    return Error(Loc, "branch condition must have 'i1' type");
3163
3164  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3165      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3166      ParseToken(lltok::comma, "expected ',' after true destination") ||
3167      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3168    return true;
3169
3170  Inst = BranchInst::Create(Op1, Op2, Op0);
3171  return false;
3172}
3173
3174/// ParseSwitch
3175///  Instruction
3176///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3177///  JumpTable
3178///    ::= (TypeAndValue ',' TypeAndValue)*
3179bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3180  LocTy CondLoc, BBLoc;
3181  Value *Cond;
3182  BasicBlock *DefaultBB;
3183  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3184      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3185      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3186      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3187    return true;
3188
3189  if (!Cond->getType()->isIntegerTy())
3190    return Error(CondLoc, "switch condition must have integer type");
3191
3192  // Parse the jump table pairs.
3193  SmallPtrSet<Value*, 32> SeenCases;
3194  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3195  while (Lex.getKind() != lltok::rsquare) {
3196    Value *Constant;
3197    BasicBlock *DestBB;
3198
3199    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3200        ParseToken(lltok::comma, "expected ',' after case value") ||
3201        ParseTypeAndBasicBlock(DestBB, PFS))
3202      return true;
3203
3204    if (!SeenCases.insert(Constant))
3205      return Error(CondLoc, "duplicate case value in switch");
3206    if (!isa<ConstantInt>(Constant))
3207      return Error(CondLoc, "case value is not a constant integer");
3208
3209    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3210  }
3211
3212  Lex.Lex();  // Eat the ']'.
3213
3214  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3215  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3216    SI->addCase(Table[i].first, Table[i].second);
3217  Inst = SI;
3218  return false;
3219}
3220
3221/// ParseIndirectBr
3222///  Instruction
3223///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3224bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3225  LocTy AddrLoc;
3226  Value *Address;
3227  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3228      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3229      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3230    return true;
3231
3232  if (!Address->getType()->isPointerTy())
3233    return Error(AddrLoc, "indirectbr address must have pointer type");
3234
3235  // Parse the destination list.
3236  SmallVector<BasicBlock*, 16> DestList;
3237
3238  if (Lex.getKind() != lltok::rsquare) {
3239    BasicBlock *DestBB;
3240    if (ParseTypeAndBasicBlock(DestBB, PFS))
3241      return true;
3242    DestList.push_back(DestBB);
3243
3244    while (EatIfPresent(lltok::comma)) {
3245      if (ParseTypeAndBasicBlock(DestBB, PFS))
3246        return true;
3247      DestList.push_back(DestBB);
3248    }
3249  }
3250
3251  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3252    return true;
3253
3254  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3255  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3256    IBI->addDestination(DestList[i]);
3257  Inst = IBI;
3258  return false;
3259}
3260
3261
3262/// ParseInvoke
3263///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3264///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3265bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3266  LocTy CallLoc = Lex.getLoc();
3267  unsigned RetAttrs, FnAttrs;
3268  CallingConv::ID CC;
3269  PATypeHolder RetType(Type::getVoidTy(Context));
3270  LocTy RetTypeLoc;
3271  ValID CalleeID;
3272  SmallVector<ParamInfo, 16> ArgList;
3273
3274  BasicBlock *NormalBB, *UnwindBB;
3275  if (ParseOptionalCallingConv(CC) ||
3276      ParseOptionalAttrs(RetAttrs, 1) ||
3277      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3278      ParseValID(CalleeID) ||
3279      ParseParameterList(ArgList, PFS) ||
3280      ParseOptionalAttrs(FnAttrs, 2) ||
3281      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3282      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3283      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3284      ParseTypeAndBasicBlock(UnwindBB, PFS))
3285    return true;
3286
3287  // If RetType is a non-function pointer type, then this is the short syntax
3288  // for the call, which means that RetType is just the return type.  Infer the
3289  // rest of the function argument types from the arguments that are present.
3290  const PointerType *PFTy = 0;
3291  const FunctionType *Ty = 0;
3292  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3293      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3294    // Pull out the types of all of the arguments...
3295    std::vector<const Type*> ParamTypes;
3296    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3297      ParamTypes.push_back(ArgList[i].V->getType());
3298
3299    if (!FunctionType::isValidReturnType(RetType))
3300      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3301
3302    Ty = FunctionType::get(RetType, ParamTypes, false);
3303    PFTy = PointerType::getUnqual(Ty);
3304  }
3305
3306  // Look up the callee.
3307  Value *Callee;
3308  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3309
3310  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3311  // function attributes.
3312  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3313  if (FnAttrs & ObsoleteFuncAttrs) {
3314    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3315    FnAttrs &= ~ObsoleteFuncAttrs;
3316  }
3317
3318  // Set up the Attributes for the function.
3319  SmallVector<AttributeWithIndex, 8> Attrs;
3320  if (RetAttrs != Attribute::None)
3321    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3322
3323  SmallVector<Value*, 8> Args;
3324
3325  // Loop through FunctionType's arguments and ensure they are specified
3326  // correctly.  Also, gather any parameter attributes.
3327  FunctionType::param_iterator I = Ty->param_begin();
3328  FunctionType::param_iterator E = Ty->param_end();
3329  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3330    const Type *ExpectedTy = 0;
3331    if (I != E) {
3332      ExpectedTy = *I++;
3333    } else if (!Ty->isVarArg()) {
3334      return Error(ArgList[i].Loc, "too many arguments specified");
3335    }
3336
3337    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3338      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3339                   ExpectedTy->getDescription() + "'");
3340    Args.push_back(ArgList[i].V);
3341    if (ArgList[i].Attrs != Attribute::None)
3342      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3343  }
3344
3345  if (I != E)
3346    return Error(CallLoc, "not enough parameters specified for call");
3347
3348  if (FnAttrs != Attribute::None)
3349    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3350
3351  // Finish off the Attributes and check them
3352  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3353
3354  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3355                                      Args.begin(), Args.end());
3356  II->setCallingConv(CC);
3357  II->setAttributes(PAL);
3358  Inst = II;
3359  return false;
3360}
3361
3362
3363
3364//===----------------------------------------------------------------------===//
3365// Binary Operators.
3366//===----------------------------------------------------------------------===//
3367
3368/// ParseArithmetic
3369///  ::= ArithmeticOps TypeAndValue ',' Value
3370///
3371/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3372/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3373bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3374                               unsigned Opc, unsigned OperandType) {
3375  LocTy Loc; Value *LHS, *RHS;
3376  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3377      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3378      ParseValue(LHS->getType(), RHS, PFS))
3379    return true;
3380
3381  bool Valid;
3382  switch (OperandType) {
3383  default: llvm_unreachable("Unknown operand type!");
3384  case 0: // int or FP.
3385    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3386            LHS->getType()->isFPOrFPVectorTy();
3387    break;
3388  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3389  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3390  }
3391
3392  if (!Valid)
3393    return Error(Loc, "invalid operand type for instruction");
3394
3395  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3396  return false;
3397}
3398
3399/// ParseLogical
3400///  ::= ArithmeticOps TypeAndValue ',' Value {
3401bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3402                            unsigned Opc) {
3403  LocTy Loc; Value *LHS, *RHS;
3404  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3405      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3406      ParseValue(LHS->getType(), RHS, PFS))
3407    return true;
3408
3409  if (!LHS->getType()->isIntOrIntVectorTy())
3410    return Error(Loc,"instruction requires integer or integer vector operands");
3411
3412  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3413  return false;
3414}
3415
3416
3417/// ParseCompare
3418///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3419///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3420bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3421                            unsigned Opc) {
3422  // Parse the integer/fp comparison predicate.
3423  LocTy Loc;
3424  unsigned Pred;
3425  Value *LHS, *RHS;
3426  if (ParseCmpPredicate(Pred, Opc) ||
3427      ParseTypeAndValue(LHS, Loc, PFS) ||
3428      ParseToken(lltok::comma, "expected ',' after compare value") ||
3429      ParseValue(LHS->getType(), RHS, PFS))
3430    return true;
3431
3432  if (Opc == Instruction::FCmp) {
3433    if (!LHS->getType()->isFPOrFPVectorTy())
3434      return Error(Loc, "fcmp requires floating point operands");
3435    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3436  } else {
3437    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3438    if (!LHS->getType()->isIntOrIntVectorTy() &&
3439        !LHS->getType()->isPointerTy())
3440      return Error(Loc, "icmp requires integer operands");
3441    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3442  }
3443  return false;
3444}
3445
3446//===----------------------------------------------------------------------===//
3447// Other Instructions.
3448//===----------------------------------------------------------------------===//
3449
3450
3451/// ParseCast
3452///   ::= CastOpc TypeAndValue 'to' Type
3453bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3454                         unsigned Opc) {
3455  LocTy Loc;  Value *Op;
3456  PATypeHolder DestTy(Type::getVoidTy(Context));
3457  if (ParseTypeAndValue(Op, Loc, PFS) ||
3458      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3459      ParseType(DestTy))
3460    return true;
3461
3462  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3463    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3464    return Error(Loc, "invalid cast opcode for cast from '" +
3465                 Op->getType()->getDescription() + "' to '" +
3466                 DestTy->getDescription() + "'");
3467  }
3468  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3469  return false;
3470}
3471
3472/// ParseSelect
3473///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3474bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3475  LocTy Loc;
3476  Value *Op0, *Op1, *Op2;
3477  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3478      ParseToken(lltok::comma, "expected ',' after select condition") ||
3479      ParseTypeAndValue(Op1, PFS) ||
3480      ParseToken(lltok::comma, "expected ',' after select value") ||
3481      ParseTypeAndValue(Op2, PFS))
3482    return true;
3483
3484  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3485    return Error(Loc, Reason);
3486
3487  Inst = SelectInst::Create(Op0, Op1, Op2);
3488  return false;
3489}
3490
3491/// ParseVA_Arg
3492///   ::= 'va_arg' TypeAndValue ',' Type
3493bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3494  Value *Op;
3495  PATypeHolder EltTy(Type::getVoidTy(Context));
3496  LocTy TypeLoc;
3497  if (ParseTypeAndValue(Op, PFS) ||
3498      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3499      ParseType(EltTy, TypeLoc))
3500    return true;
3501
3502  if (!EltTy->isFirstClassType())
3503    return Error(TypeLoc, "va_arg requires operand with first class type");
3504
3505  Inst = new VAArgInst(Op, EltTy);
3506  return false;
3507}
3508
3509/// ParseExtractElement
3510///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3511bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3512  LocTy Loc;
3513  Value *Op0, *Op1;
3514  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3515      ParseToken(lltok::comma, "expected ',' after extract value") ||
3516      ParseTypeAndValue(Op1, PFS))
3517    return true;
3518
3519  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3520    return Error(Loc, "invalid extractelement operands");
3521
3522  Inst = ExtractElementInst::Create(Op0, Op1);
3523  return false;
3524}
3525
3526/// ParseInsertElement
3527///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3528bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3529  LocTy Loc;
3530  Value *Op0, *Op1, *Op2;
3531  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3532      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3533      ParseTypeAndValue(Op1, PFS) ||
3534      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3535      ParseTypeAndValue(Op2, PFS))
3536    return true;
3537
3538  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3539    return Error(Loc, "invalid insertelement operands");
3540
3541  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3542  return false;
3543}
3544
3545/// ParseShuffleVector
3546///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3547bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3548  LocTy Loc;
3549  Value *Op0, *Op1, *Op2;
3550  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3551      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3552      ParseTypeAndValue(Op1, PFS) ||
3553      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3554      ParseTypeAndValue(Op2, PFS))
3555    return true;
3556
3557  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3558    return Error(Loc, "invalid extractelement operands");
3559
3560  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3561  return false;
3562}
3563
3564/// ParsePHI
3565///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3566int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3567  PATypeHolder Ty(Type::getVoidTy(Context));
3568  Value *Op0, *Op1;
3569  LocTy TypeLoc = Lex.getLoc();
3570
3571  if (ParseType(Ty) ||
3572      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3573      ParseValue(Ty, Op0, PFS) ||
3574      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3575      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3576      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3577    return true;
3578
3579  bool AteExtraComma = false;
3580  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3581  while (1) {
3582    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3583
3584    if (!EatIfPresent(lltok::comma))
3585      break;
3586
3587    if (Lex.getKind() == lltok::MetadataVar) {
3588      AteExtraComma = true;
3589      break;
3590    }
3591
3592    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3593        ParseValue(Ty, Op0, PFS) ||
3594        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3595        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3596        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3597      return true;
3598  }
3599
3600  if (!Ty->isFirstClassType())
3601    return Error(TypeLoc, "phi node must have first class type");
3602
3603  PHINode *PN = PHINode::Create(Ty);
3604  PN->reserveOperandSpace(PHIVals.size());
3605  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3606    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3607  Inst = PN;
3608  return AteExtraComma ? InstExtraComma : InstNormal;
3609}
3610
3611/// ParseCall
3612///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3613///       ParameterList OptionalAttrs
3614bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3615                         bool isTail) {
3616  unsigned RetAttrs, FnAttrs;
3617  CallingConv::ID CC;
3618  PATypeHolder RetType(Type::getVoidTy(Context));
3619  LocTy RetTypeLoc;
3620  ValID CalleeID;
3621  SmallVector<ParamInfo, 16> ArgList;
3622  LocTy CallLoc = Lex.getLoc();
3623
3624  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3625      ParseOptionalCallingConv(CC) ||
3626      ParseOptionalAttrs(RetAttrs, 1) ||
3627      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3628      ParseValID(CalleeID) ||
3629      ParseParameterList(ArgList, PFS) ||
3630      ParseOptionalAttrs(FnAttrs, 2))
3631    return true;
3632
3633  // If RetType is a non-function pointer type, then this is the short syntax
3634  // for the call, which means that RetType is just the return type.  Infer the
3635  // rest of the function argument types from the arguments that are present.
3636  const PointerType *PFTy = 0;
3637  const FunctionType *Ty = 0;
3638  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3639      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3640    // Pull out the types of all of the arguments...
3641    std::vector<const Type*> ParamTypes;
3642    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3643      ParamTypes.push_back(ArgList[i].V->getType());
3644
3645    if (!FunctionType::isValidReturnType(RetType))
3646      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3647
3648    Ty = FunctionType::get(RetType, ParamTypes, false);
3649    PFTy = PointerType::getUnqual(Ty);
3650  }
3651
3652  // Look up the callee.
3653  Value *Callee;
3654  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3655
3656  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3657  // function attributes.
3658  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3659  if (FnAttrs & ObsoleteFuncAttrs) {
3660    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3661    FnAttrs &= ~ObsoleteFuncAttrs;
3662  }
3663
3664  // Set up the Attributes for the function.
3665  SmallVector<AttributeWithIndex, 8> Attrs;
3666  if (RetAttrs != Attribute::None)
3667    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3668
3669  SmallVector<Value*, 8> Args;
3670
3671  // Loop through FunctionType's arguments and ensure they are specified
3672  // correctly.  Also, gather any parameter attributes.
3673  FunctionType::param_iterator I = Ty->param_begin();
3674  FunctionType::param_iterator E = Ty->param_end();
3675  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3676    const Type *ExpectedTy = 0;
3677    if (I != E) {
3678      ExpectedTy = *I++;
3679    } else if (!Ty->isVarArg()) {
3680      return Error(ArgList[i].Loc, "too many arguments specified");
3681    }
3682
3683    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3684      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3685                   ExpectedTy->getDescription() + "'");
3686    Args.push_back(ArgList[i].V);
3687    if (ArgList[i].Attrs != Attribute::None)
3688      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3689  }
3690
3691  if (I != E)
3692    return Error(CallLoc, "not enough parameters specified for call");
3693
3694  if (FnAttrs != Attribute::None)
3695    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3696
3697  // Finish off the Attributes and check them
3698  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3699
3700  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3701  CI->setTailCall(isTail);
3702  CI->setCallingConv(CC);
3703  CI->setAttributes(PAL);
3704  Inst = CI;
3705  return false;
3706}
3707
3708//===----------------------------------------------------------------------===//
3709// Memory Instructions.
3710//===----------------------------------------------------------------------===//
3711
3712/// ParseAlloc
3713///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3714///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3715int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3716                         BasicBlock* BB, bool isAlloca) {
3717  PATypeHolder Ty(Type::getVoidTy(Context));
3718  Value *Size = 0;
3719  LocTy SizeLoc;
3720  unsigned Alignment = 0;
3721  if (ParseType(Ty)) return true;
3722
3723  bool AteExtraComma = false;
3724  if (EatIfPresent(lltok::comma)) {
3725    if (Lex.getKind() == lltok::kw_align) {
3726      if (ParseOptionalAlignment(Alignment)) return true;
3727    } else if (Lex.getKind() == lltok::MetadataVar) {
3728      AteExtraComma = true;
3729    } else {
3730      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3731          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3732        return true;
3733    }
3734  }
3735
3736  if (Size && !Size->getType()->isIntegerTy(32))
3737    return Error(SizeLoc, "element count must be i32");
3738
3739  if (isAlloca) {
3740    Inst = new AllocaInst(Ty, Size, Alignment);
3741    return AteExtraComma ? InstExtraComma : InstNormal;
3742  }
3743
3744  // Autoupgrade old malloc instruction to malloc call.
3745  // FIXME: Remove in LLVM 3.0.
3746  const Type *IntPtrTy = Type::getInt32Ty(Context);
3747  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3748  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3749  if (!MallocF)
3750    // Prototype malloc as "void *(int32)".
3751    // This function is renamed as "malloc" in ValidateEndOfModule().
3752    MallocF = cast<Function>(
3753       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3754  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3755return AteExtraComma ? InstExtraComma : InstNormal;
3756}
3757
3758/// ParseFree
3759///   ::= 'free' TypeAndValue
3760bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3761                         BasicBlock* BB) {
3762  Value *Val; LocTy Loc;
3763  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3764  if (!Val->getType()->isPointerTy())
3765    return Error(Loc, "operand to free must be a pointer");
3766  Inst = CallInst::CreateFree(Val, BB);
3767  return false;
3768}
3769
3770/// ParseLoad
3771///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3772int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3773                        bool isVolatile) {
3774  Value *Val; LocTy Loc;
3775  unsigned Alignment = 0;
3776  bool AteExtraComma = false;
3777  if (ParseTypeAndValue(Val, Loc, PFS) ||
3778      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3779    return true;
3780
3781  if (!Val->getType()->isPointerTy() ||
3782      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3783    return Error(Loc, "load operand must be a pointer to a first class type");
3784
3785  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3786  return AteExtraComma ? InstExtraComma : InstNormal;
3787}
3788
3789/// ParseStore
3790///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3791int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3792                         bool isVolatile) {
3793  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3794  unsigned Alignment = 0;
3795  bool AteExtraComma = false;
3796  if (ParseTypeAndValue(Val, Loc, PFS) ||
3797      ParseToken(lltok::comma, "expected ',' after store operand") ||
3798      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3799      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3800    return true;
3801
3802  if (!Ptr->getType()->isPointerTy())
3803    return Error(PtrLoc, "store operand must be a pointer");
3804  if (!Val->getType()->isFirstClassType())
3805    return Error(Loc, "store operand must be a first class value");
3806  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3807    return Error(Loc, "stored value and pointer type do not match");
3808
3809  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3810  return AteExtraComma ? InstExtraComma : InstNormal;
3811}
3812
3813/// ParseGetResult
3814///   ::= 'getresult' TypeAndValue ',' i32
3815/// FIXME: Remove support for getresult in LLVM 3.0
3816bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3817  Value *Val; LocTy ValLoc, EltLoc;
3818  unsigned Element;
3819  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3820      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3821      ParseUInt32(Element, EltLoc))
3822    return true;
3823
3824  if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3825    return Error(ValLoc, "getresult inst requires an aggregate operand");
3826  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3827    return Error(EltLoc, "invalid getresult index for value");
3828  Inst = ExtractValueInst::Create(Val, Element);
3829  return false;
3830}
3831
3832/// ParseGetElementPtr
3833///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3834int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3835  Value *Ptr, *Val; LocTy Loc, EltLoc;
3836
3837  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3838
3839  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3840
3841  if (!Ptr->getType()->isPointerTy())
3842    return Error(Loc, "base of getelementptr must be a pointer");
3843
3844  SmallVector<Value*, 16> Indices;
3845  bool AteExtraComma = false;
3846  while (EatIfPresent(lltok::comma)) {
3847    if (Lex.getKind() == lltok::MetadataVar) {
3848      AteExtraComma = true;
3849      break;
3850    }
3851    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3852    if (!Val->getType()->isIntegerTy())
3853      return Error(EltLoc, "getelementptr index must be an integer");
3854    Indices.push_back(Val);
3855  }
3856
3857  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3858                                         Indices.begin(), Indices.end()))
3859    return Error(Loc, "invalid getelementptr indices");
3860  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3861  if (InBounds)
3862    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3863  return AteExtraComma ? InstExtraComma : InstNormal;
3864}
3865
3866/// ParseExtractValue
3867///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3868int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3869  Value *Val; LocTy Loc;
3870  SmallVector<unsigned, 4> Indices;
3871  bool AteExtraComma;
3872  if (ParseTypeAndValue(Val, Loc, PFS) ||
3873      ParseIndexList(Indices, AteExtraComma))
3874    return true;
3875
3876  if (!Val->getType()->isAggregateType())
3877    return Error(Loc, "extractvalue operand must be aggregate type");
3878
3879  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3880                                        Indices.end()))
3881    return Error(Loc, "invalid indices for extractvalue");
3882  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3883  return AteExtraComma ? InstExtraComma : InstNormal;
3884}
3885
3886/// ParseInsertValue
3887///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3888int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3889  Value *Val0, *Val1; LocTy Loc0, Loc1;
3890  SmallVector<unsigned, 4> Indices;
3891  bool AteExtraComma;
3892  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3893      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3894      ParseTypeAndValue(Val1, Loc1, PFS) ||
3895      ParseIndexList(Indices, AteExtraComma))
3896    return true;
3897
3898  if (!Val0->getType()->isAggregateType())
3899    return Error(Loc0, "insertvalue operand must be aggregate type");
3900
3901  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3902                                        Indices.end()))
3903    return Error(Loc0, "invalid indices for insertvalue");
3904  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3905  return AteExtraComma ? InstExtraComma : InstNormal;
3906}
3907
3908//===----------------------------------------------------------------------===//
3909// Embedded metadata.
3910//===----------------------------------------------------------------------===//
3911
3912/// ParseMDNodeVector
3913///   ::= Element (',' Element)*
3914/// Element
3915///   ::= 'null' | TypeAndValue
3916bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3917                                 PerFunctionState *PFS) {
3918  do {
3919    // Null is a special case since it is typeless.
3920    if (EatIfPresent(lltok::kw_null)) {
3921      Elts.push_back(0);
3922      continue;
3923    }
3924
3925    Value *V = 0;
3926    PATypeHolder Ty(Type::getVoidTy(Context));
3927    ValID ID;
3928    if (ParseType(Ty) || ParseValID(ID, PFS) ||
3929        ConvertValIDToValue(Ty, ID, V, PFS))
3930      return true;
3931
3932    Elts.push_back(V);
3933  } while (EatIfPresent(lltok::comma));
3934
3935  return false;
3936}
3937