LLParser.cpp revision 2333e29be441d9d55920651e0b2add23ab0c1613
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  return false;
124}
125
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
194    case lltok::kw_appending:           // OptionalLinkage
195    case lltok::kw_dllexport:           // OptionalLinkage
196    case lltok::kw_common:              // OptionalLinkage
197    case lltok::kw_dllimport:           // OptionalLinkage
198    case lltok::kw_extern_weak:         // OptionalLinkage
199    case lltok::kw_external: {          // OptionalLinkage
200      unsigned Linkage, Visibility;
201      if (ParseOptionalLinkage(Linkage) ||
202          ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
204        return true;
205      break;
206    }
207    case lltok::kw_default:       // OptionalVisibility
208    case lltok::kw_hidden:        // OptionalVisibility
209    case lltok::kw_protected: {   // OptionalVisibility
210      unsigned Visibility;
211      if (ParseOptionalVisibility(Visibility) ||
212          ParseGlobal("", SMLoc(), 0, false, Visibility))
213        return true;
214      break;
215    }
216
217    case lltok::kw_thread_local:  // OptionalThreadLocal
218    case lltok::kw_addrspace:     // OptionalAddrSpace
219    case lltok::kw_constant:      // GlobalType
220    case lltok::kw_global:        // GlobalType
221      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
222      break;
223    }
224  }
225}
226
227
228/// toplevelentity
229///   ::= 'module' 'asm' STRINGCONSTANT
230bool LLParser::ParseModuleAsm() {
231  assert(Lex.getKind() == lltok::kw_module);
232  Lex.Lex();
233
234  std::string AsmStr;
235  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
236      ParseStringConstant(AsmStr)) return true;
237
238  M->appendModuleInlineAsm(AsmStr);
239  return false;
240}
241
242/// toplevelentity
243///   ::= 'target' 'triple' '=' STRINGCONSTANT
244///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
245bool LLParser::ParseTargetDefinition() {
246  assert(Lex.getKind() == lltok::kw_target);
247  std::string Str;
248  switch (Lex.Lex()) {
249  default: return TokError("unknown target property");
250  case lltok::kw_triple:
251    Lex.Lex();
252    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
253        ParseStringConstant(Str))
254      return true;
255    M->setTargetTriple(Str);
256    return false;
257  case lltok::kw_datalayout:
258    Lex.Lex();
259    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
260        ParseStringConstant(Str))
261      return true;
262    M->setDataLayout(Str);
263    return false;
264  }
265}
266
267/// toplevelentity
268///   ::= 'deplibs' '=' '[' ']'
269///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
270bool LLParser::ParseDepLibs() {
271  assert(Lex.getKind() == lltok::kw_deplibs);
272  Lex.Lex();
273  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
274      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
275    return true;
276
277  if (EatIfPresent(lltok::rsquare))
278    return false;
279
280  std::string Str;
281  if (ParseStringConstant(Str)) return true;
282  M->addLibrary(Str);
283
284  while (EatIfPresent(lltok::comma)) {
285    if (ParseStringConstant(Str)) return true;
286    M->addLibrary(Str);
287  }
288
289  return ParseToken(lltok::rsquare, "expected ']' at end of list");
290}
291
292/// ParseUnnamedType:
293///   ::= LocalVarID '=' 'type' type
294bool LLParser::ParseUnnamedType() {
295  LocTy TypeLoc = Lex.getLoc();
296  unsigned TypeID = Lex.getUIntVal();
297  Lex.Lex(); // eat LocalVarID;
298
299  if (ParseToken(lltok::equal, "expected '=' after name") ||
300      ParseToken(lltok::kw_type, "expected 'type' after '='"))
301    return true;
302
303  if (TypeID >= NumberedTypes.size())
304    NumberedTypes.resize(TypeID+1);
305
306  Type *Result = 0;
307  if (ParseStructDefinition(TypeLoc, "",
308                            NumberedTypes[TypeID], Result)) return true;
309
310  if (!isa<StructType>(Result)) {
311    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
312    if (Entry.first)
313      return Error(TypeLoc, "non-struct types may not be recursive");
314    Entry.first = Result;
315    Entry.second = SMLoc();
316  }
317
318  return false;
319}
320
321
322/// toplevelentity
323///   ::= LocalVar '=' 'type' type
324bool LLParser::ParseNamedType() {
325  std::string Name = Lex.getStrVal();
326  LocTy NameLoc = Lex.getLoc();
327  Lex.Lex();  // eat LocalVar.
328
329  if (ParseToken(lltok::equal, "expected '=' after name") ||
330      ParseToken(lltok::kw_type, "expected 'type' after name"))
331    return true;
332
333  Type *Result = 0;
334  if (ParseStructDefinition(NameLoc, Name,
335                            NamedTypes[Name], Result)) return true;
336
337  if (!isa<StructType>(Result)) {
338    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
339    if (Entry.first)
340      return Error(NameLoc, "non-struct types may not be recursive");
341    Entry.first = Result;
342    Entry.second = SMLoc();
343  }
344
345  return false;
346}
347
348
349/// toplevelentity
350///   ::= 'declare' FunctionHeader
351bool LLParser::ParseDeclare() {
352  assert(Lex.getKind() == lltok::kw_declare);
353  Lex.Lex();
354
355  Function *F;
356  return ParseFunctionHeader(F, false);
357}
358
359/// toplevelentity
360///   ::= 'define' FunctionHeader '{' ...
361bool LLParser::ParseDefine() {
362  assert(Lex.getKind() == lltok::kw_define);
363  Lex.Lex();
364
365  Function *F;
366  return ParseFunctionHeader(F, true) ||
367         ParseFunctionBody(*F);
368}
369
370/// ParseGlobalType
371///   ::= 'constant'
372///   ::= 'global'
373bool LLParser::ParseGlobalType(bool &IsConstant) {
374  if (Lex.getKind() == lltok::kw_constant)
375    IsConstant = true;
376  else if (Lex.getKind() == lltok::kw_global)
377    IsConstant = false;
378  else {
379    IsConstant = false;
380    return TokError("expected 'global' or 'constant'");
381  }
382  Lex.Lex();
383  return false;
384}
385
386/// ParseUnnamedGlobal:
387///   OptionalVisibility ALIAS ...
388///   OptionalLinkage OptionalVisibility ...   -> global variable
389///   GlobalID '=' OptionalVisibility ALIAS ...
390///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
391bool LLParser::ParseUnnamedGlobal() {
392  unsigned VarID = NumberedVals.size();
393  std::string Name;
394  LocTy NameLoc = Lex.getLoc();
395
396  // Handle the GlobalID form.
397  if (Lex.getKind() == lltok::GlobalID) {
398    if (Lex.getUIntVal() != VarID)
399      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
400                   Twine(VarID) + "'");
401    Lex.Lex(); // eat GlobalID;
402
403    if (ParseToken(lltok::equal, "expected '=' after name"))
404      return true;
405  }
406
407  bool HasLinkage;
408  unsigned Linkage, Visibility;
409  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
410      ParseOptionalVisibility(Visibility))
411    return true;
412
413  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
414    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
415  return ParseAlias(Name, NameLoc, Visibility);
416}
417
418/// ParseNamedGlobal:
419///   GlobalVar '=' OptionalVisibility ALIAS ...
420///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
421bool LLParser::ParseNamedGlobal() {
422  assert(Lex.getKind() == lltok::GlobalVar);
423  LocTy NameLoc = Lex.getLoc();
424  std::string Name = Lex.getStrVal();
425  Lex.Lex();
426
427  bool HasLinkage;
428  unsigned Linkage, Visibility;
429  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
430      ParseOptionalLinkage(Linkage, HasLinkage) ||
431      ParseOptionalVisibility(Visibility))
432    return true;
433
434  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
435    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
436  return ParseAlias(Name, NameLoc, Visibility);
437}
438
439// MDString:
440//   ::= '!' STRINGCONSTANT
441bool LLParser::ParseMDString(MDString *&Result) {
442  std::string Str;
443  if (ParseStringConstant(Str)) return true;
444  Result = MDString::get(Context, Str);
445  return false;
446}
447
448// MDNode:
449//   ::= '!' MDNodeNumber
450//
451/// This version of ParseMDNodeID returns the slot number and null in the case
452/// of a forward reference.
453bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
454  // !{ ..., !42, ... }
455  if (ParseUInt32(SlotNo)) return true;
456
457  // Check existing MDNode.
458  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
459    Result = NumberedMetadata[SlotNo];
460  else
461    Result = 0;
462  return false;
463}
464
465bool LLParser::ParseMDNodeID(MDNode *&Result) {
466  // !{ ..., !42, ... }
467  unsigned MID = 0;
468  if (ParseMDNodeID(Result, MID)) return true;
469
470  // If not a forward reference, just return it now.
471  if (Result) return false;
472
473  // Otherwise, create MDNode forward reference.
474  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
475  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
476
477  if (NumberedMetadata.size() <= MID)
478    NumberedMetadata.resize(MID+1);
479  NumberedMetadata[MID] = FwdNode;
480  Result = FwdNode;
481  return false;
482}
483
484/// ParseNamedMetadata:
485///   !foo = !{ !1, !2 }
486bool LLParser::ParseNamedMetadata() {
487  assert(Lex.getKind() == lltok::MetadataVar);
488  std::string Name = Lex.getStrVal();
489  Lex.Lex();
490
491  if (ParseToken(lltok::equal, "expected '=' here") ||
492      ParseToken(lltok::exclaim, "Expected '!' here") ||
493      ParseToken(lltok::lbrace, "Expected '{' here"))
494    return true;
495
496  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
497  if (Lex.getKind() != lltok::rbrace)
498    do {
499      if (ParseToken(lltok::exclaim, "Expected '!' here"))
500        return true;
501
502      MDNode *N = 0;
503      if (ParseMDNodeID(N)) return true;
504      NMD->addOperand(N);
505    } while (EatIfPresent(lltok::comma));
506
507  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
508    return true;
509
510  return false;
511}
512
513/// ParseStandaloneMetadata:
514///   !42 = !{...}
515bool LLParser::ParseStandaloneMetadata() {
516  assert(Lex.getKind() == lltok::exclaim);
517  Lex.Lex();
518  unsigned MetadataID = 0;
519
520  LocTy TyLoc;
521  Type *Ty = 0;
522  SmallVector<Value *, 16> Elts;
523  if (ParseUInt32(MetadataID) ||
524      ParseToken(lltok::equal, "expected '=' here") ||
525      ParseType(Ty, TyLoc) ||
526      ParseToken(lltok::exclaim, "Expected '!' here") ||
527      ParseToken(lltok::lbrace, "Expected '{' here") ||
528      ParseMDNodeVector(Elts, NULL) ||
529      ParseToken(lltok::rbrace, "expected end of metadata node"))
530    return true;
531
532  MDNode *Init = MDNode::get(Context, Elts);
533
534  // See if this was forward referenced, if so, handle it.
535  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
536    FI = ForwardRefMDNodes.find(MetadataID);
537  if (FI != ForwardRefMDNodes.end()) {
538    MDNode *Temp = FI->second.first;
539    Temp->replaceAllUsesWith(Init);
540    MDNode::deleteTemporary(Temp);
541    ForwardRefMDNodes.erase(FI);
542
543    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
544  } else {
545    if (MetadataID >= NumberedMetadata.size())
546      NumberedMetadata.resize(MetadataID+1);
547
548    if (NumberedMetadata[MetadataID] != 0)
549      return TokError("Metadata id is already used");
550    NumberedMetadata[MetadataID] = Init;
551  }
552
553  return false;
554}
555
556/// ParseAlias:
557///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
558/// Aliasee
559///   ::= TypeAndValue
560///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
561///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
562///
563/// Everything through visibility has already been parsed.
564///
565bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
566                          unsigned Visibility) {
567  assert(Lex.getKind() == lltok::kw_alias);
568  Lex.Lex();
569  unsigned Linkage;
570  LocTy LinkageLoc = Lex.getLoc();
571  if (ParseOptionalLinkage(Linkage))
572    return true;
573
574  if (Linkage != GlobalValue::ExternalLinkage &&
575      Linkage != GlobalValue::WeakAnyLinkage &&
576      Linkage != GlobalValue::WeakODRLinkage &&
577      Linkage != GlobalValue::InternalLinkage &&
578      Linkage != GlobalValue::PrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool IsConstant, UnnamedAddr;
649  GlobalVariable::ThreadLocalMode TLM;
650  LocTy UnnamedAddrLoc;
651  LocTy TyLoc;
652
653  Type *Ty = 0;
654  if (ParseOptionalThreadLocal(TLM) ||
655      ParseOptionalAddrSpace(AddrSpace) ||
656      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
657                         &UnnamedAddrLoc) ||
658      ParseGlobalType(IsConstant) ||
659      ParseType(Ty, TyLoc))
660    return true;
661
662  // If the linkage is specified and is external, then no initializer is
663  // present.
664  Constant *Init = 0;
665  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
666                      Linkage != GlobalValue::ExternalWeakLinkage &&
667                      Linkage != GlobalValue::ExternalLinkage)) {
668    if (ParseGlobalValue(Ty, Init))
669      return true;
670  }
671
672  if (Ty->isFunctionTy() || Ty->isLabelTy())
673    return Error(TyLoc, "invalid type for global variable");
674
675  GlobalVariable *GV = 0;
676
677  // See if the global was forward referenced, if so, use the global.
678  if (!Name.empty()) {
679    if (GlobalValue *GVal = M->getNamedValue(Name)) {
680      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
681        return Error(NameLoc, "redefinition of global '@" + Name + "'");
682      GV = cast<GlobalVariable>(GVal);
683    }
684  } else {
685    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
686      I = ForwardRefValIDs.find(NumberedVals.size());
687    if (I != ForwardRefValIDs.end()) {
688      GV = cast<GlobalVariable>(I->second.first);
689      ForwardRefValIDs.erase(I);
690    }
691  }
692
693  if (GV == 0) {
694    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
695                            Name, 0, GlobalVariable::NotThreadLocal,
696                            AddrSpace);
697  } else {
698    if (GV->getType()->getElementType() != Ty)
699      return Error(TyLoc,
700            "forward reference and definition of global have different types");
701
702    // Move the forward-reference to the correct spot in the module.
703    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704  }
705
706  if (Name.empty())
707    NumberedVals.push_back(GV);
708
709  // Set the parsed properties on the global.
710  if (Init)
711    GV->setInitializer(Init);
712  GV->setConstant(IsConstant);
713  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715  GV->setThreadLocalMode(TLM);
716  GV->setUnnamedAddr(UnnamedAddr);
717
718  // Parse attributes on the global.
719  while (Lex.getKind() == lltok::comma) {
720    Lex.Lex();
721
722    if (Lex.getKind() == lltok::kw_section) {
723      Lex.Lex();
724      GV->setSection(Lex.getStrVal());
725      if (ParseToken(lltok::StringConstant, "expected global section string"))
726        return true;
727    } else if (Lex.getKind() == lltok::kw_align) {
728      unsigned Alignment;
729      if (ParseOptionalAlignment(Alignment)) return true;
730      GV->setAlignment(Alignment);
731    } else {
732      TokError("unknown global variable property!");
733    }
734  }
735
736  return false;
737}
738
739
740//===----------------------------------------------------------------------===//
741// GlobalValue Reference/Resolution Routines.
742//===----------------------------------------------------------------------===//
743
744/// GetGlobalVal - Get a value with the specified name or ID, creating a
745/// forward reference record if needed.  This can return null if the value
746/// exists but does not have the right type.
747GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748                                    LocTy Loc) {
749  PointerType *PTy = dyn_cast<PointerType>(Ty);
750  if (PTy == 0) {
751    Error(Loc, "global variable reference must have pointer type");
752    return 0;
753  }
754
755  // Look this name up in the normal function symbol table.
756  GlobalValue *Val =
757    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759  // If this is a forward reference for the value, see if we already created a
760  // forward ref record.
761  if (Val == 0) {
762    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763      I = ForwardRefVals.find(Name);
764    if (I != ForwardRefVals.end())
765      Val = I->second.first;
766  }
767
768  // If we have the value in the symbol table or fwd-ref table, return it.
769  if (Val) {
770    if (Val->getType() == Ty) return Val;
771    Error(Loc, "'@" + Name + "' defined with type '" +
772          getTypeString(Val->getType()) + "'");
773    return 0;
774  }
775
776  // Otherwise, create a new forward reference for this value and remember it.
777  GlobalValue *FwdVal;
778  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780  else
781    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782                                GlobalValue::ExternalWeakLinkage, 0, Name);
783
784  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
785  return FwdVal;
786}
787
788GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
789  PointerType *PTy = dyn_cast<PointerType>(Ty);
790  if (PTy == 0) {
791    Error(Loc, "global variable reference must have pointer type");
792    return 0;
793  }
794
795  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
796
797  // If this is a forward reference for the value, see if we already created a
798  // forward ref record.
799  if (Val == 0) {
800    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
801      I = ForwardRefValIDs.find(ID);
802    if (I != ForwardRefValIDs.end())
803      Val = I->second.first;
804  }
805
806  // If we have the value in the symbol table or fwd-ref table, return it.
807  if (Val) {
808    if (Val->getType() == Ty) return Val;
809    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
810          getTypeString(Val->getType()) + "'");
811    return 0;
812  }
813
814  // Otherwise, create a new forward reference for this value and remember it.
815  GlobalValue *FwdVal;
816  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
817    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
818  else
819    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
820                                GlobalValue::ExternalWeakLinkage, 0, "");
821
822  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
823  return FwdVal;
824}
825
826
827//===----------------------------------------------------------------------===//
828// Helper Routines.
829//===----------------------------------------------------------------------===//
830
831/// ParseToken - If the current token has the specified kind, eat it and return
832/// success.  Otherwise, emit the specified error and return failure.
833bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
834  if (Lex.getKind() != T)
835    return TokError(ErrMsg);
836  Lex.Lex();
837  return false;
838}
839
840/// ParseStringConstant
841///   ::= StringConstant
842bool LLParser::ParseStringConstant(std::string &Result) {
843  if (Lex.getKind() != lltok::StringConstant)
844    return TokError("expected string constant");
845  Result = Lex.getStrVal();
846  Lex.Lex();
847  return false;
848}
849
850/// ParseUInt32
851///   ::= uint32
852bool LLParser::ParseUInt32(unsigned &Val) {
853  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
854    return TokError("expected integer");
855  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
856  if (Val64 != unsigned(Val64))
857    return TokError("expected 32-bit integer (too large)");
858  Val = Val64;
859  Lex.Lex();
860  return false;
861}
862
863/// ParseTLSModel
864///   := 'localdynamic'
865///   := 'initialexec'
866///   := 'localexec'
867bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
868  switch (Lex.getKind()) {
869    default:
870      return TokError("expected localdynamic, initialexec or localexec");
871    case lltok::kw_localdynamic:
872      TLM = GlobalVariable::LocalDynamicTLSModel;
873      break;
874    case lltok::kw_initialexec:
875      TLM = GlobalVariable::InitialExecTLSModel;
876      break;
877    case lltok::kw_localexec:
878      TLM = GlobalVariable::LocalExecTLSModel;
879      break;
880  }
881
882  Lex.Lex();
883  return false;
884}
885
886/// ParseOptionalThreadLocal
887///   := /*empty*/
888///   := 'thread_local'
889///   := 'thread_local' '(' tlsmodel ')'
890bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
891  TLM = GlobalVariable::NotThreadLocal;
892  if (!EatIfPresent(lltok::kw_thread_local))
893    return false;
894
895  TLM = GlobalVariable::GeneralDynamicTLSModel;
896  if (Lex.getKind() == lltok::lparen) {
897    Lex.Lex();
898    return ParseTLSModel(TLM) ||
899      ParseToken(lltok::rparen, "expected ')' after thread local model");
900  }
901  return false;
902}
903
904/// ParseOptionalAddrSpace
905///   := /*empty*/
906///   := 'addrspace' '(' uint32 ')'
907bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
908  AddrSpace = 0;
909  if (!EatIfPresent(lltok::kw_addrspace))
910    return false;
911  return ParseToken(lltok::lparen, "expected '(' in address space") ||
912         ParseUInt32(AddrSpace) ||
913         ParseToken(lltok::rparen, "expected ')' in address space");
914}
915
916/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
917/// indicates what kind of attribute list this is: 0: function arg, 1: result,
918/// 2: function attr.
919bool LLParser::ParseOptionalAttrs(AttrBuilder &B, unsigned AttrKind) {
920  LocTy AttrLoc = Lex.getLoc();
921  bool HaveError = false;
922
923  B.clear();
924
925  while (1) {
926    lltok::Kind Token = Lex.getKind();
927    switch (Token) {
928    default:  // End of attributes.
929      return HaveError;
930    case lltok::kw_zeroext:         B.addAttribute(Attributes::ZExt); break;
931    case lltok::kw_signext:         B.addAttribute(Attributes::SExt); break;
932    case lltok::kw_inreg:           B.addAttribute(Attributes::InReg); break;
933    case lltok::kw_sret:            B.addAttribute(Attributes::StructRet); break;
934    case lltok::kw_noalias:         B.addAttribute(Attributes::NoAlias); break;
935    case lltok::kw_nocapture:       B.addAttribute(Attributes::NoCapture); break;
936    case lltok::kw_byval:           B.addAttribute(Attributes::ByVal); break;
937    case lltok::kw_nest:            B.addAttribute(Attributes::Nest); break;
938
939    case lltok::kw_noreturn:        B.addAttribute(Attributes::NoReturn); break;
940    case lltok::kw_nounwind:        B.addAttribute(Attributes::NoUnwind); break;
941    case lltok::kw_uwtable:         B.addAttribute(Attributes::UWTable); break;
942    case lltok::kw_returns_twice:   B.addAttribute(Attributes::ReturnsTwice); break;
943    case lltok::kw_noinline:        B.addAttribute(Attributes::NoInline); break;
944    case lltok::kw_readnone:        B.addAttribute(Attributes::ReadNone); break;
945    case lltok::kw_readonly:        B.addAttribute(Attributes::ReadOnly); break;
946    case lltok::kw_inlinehint:      B.addAttribute(Attributes::InlineHint); break;
947    case lltok::kw_alwaysinline:    B.addAttribute(Attributes::AlwaysInline); break;
948    case lltok::kw_optsize:         B.addAttribute(Attributes::OptimizeForSize); break;
949    case lltok::kw_ssp:             B.addAttribute(Attributes::StackProtect); break;
950    case lltok::kw_sspreq:          B.addAttribute(Attributes::StackProtectReq); break;
951    case lltok::kw_noredzone:       B.addAttribute(Attributes::NoRedZone); break;
952    case lltok::kw_noimplicitfloat: B.addAttribute(Attributes::NoImplicitFloat); break;
953    case lltok::kw_naked:           B.addAttribute(Attributes::Naked); break;
954    case lltok::kw_nonlazybind:     B.addAttribute(Attributes::NonLazyBind); break;
955    case lltok::kw_address_safety:  B.addAttribute(Attributes::AddressSafety); break;
956    case lltok::kw_minsize:         B.addAttribute(Attributes::MinSize); break;
957
958    case lltok::kw_alignstack: {
959      unsigned Alignment;
960      if (ParseOptionalStackAlignment(Alignment))
961        return true;
962      B.addStackAlignmentAttr(Alignment);
963      continue;
964    }
965
966    case lltok::kw_align: {
967      unsigned Alignment;
968      if (ParseOptionalAlignment(Alignment))
969        return true;
970      B.addAlignmentAttr(Alignment);
971      continue;
972    }
973
974    }
975
976    // Perform some error checking.
977    switch (Token) {
978    default:
979      if (AttrKind == 2)
980        HaveError |= Error(AttrLoc, "invalid use of attribute on a function");
981      break;
982    case lltok::kw_align:
983      // As a hack, we allow "align 2" on functions as a synonym for
984      // "alignstack 2".
985      break;
986
987    // Parameter Only:
988    case lltok::kw_sret:
989    case lltok::kw_nocapture:
990    case lltok::kw_byval:
991    case lltok::kw_nest:
992      if (AttrKind != 0)
993        HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute");
994      break;
995
996    // Function Only:
997    case lltok::kw_noreturn:
998    case lltok::kw_nounwind:
999    case lltok::kw_readnone:
1000    case lltok::kw_readonly:
1001    case lltok::kw_noinline:
1002    case lltok::kw_alwaysinline:
1003    case lltok::kw_optsize:
1004    case lltok::kw_ssp:
1005    case lltok::kw_sspreq:
1006    case lltok::kw_noredzone:
1007    case lltok::kw_noimplicitfloat:
1008    case lltok::kw_naked:
1009    case lltok::kw_inlinehint:
1010    case lltok::kw_alignstack:
1011    case lltok::kw_uwtable:
1012    case lltok::kw_nonlazybind:
1013    case lltok::kw_returns_twice:
1014    case lltok::kw_address_safety:
1015    case lltok::kw_minsize:
1016      if (AttrKind != 2)
1017        HaveError |= Error(AttrLoc, "invalid use of function-only attribute");
1018      break;
1019    }
1020
1021    Lex.Lex();
1022  }
1023}
1024
1025/// ParseOptionalLinkage
1026///   ::= /*empty*/
1027///   ::= 'private'
1028///   ::= 'linker_private'
1029///   ::= 'linker_private_weak'
1030///   ::= 'internal'
1031///   ::= 'weak'
1032///   ::= 'weak_odr'
1033///   ::= 'linkonce'
1034///   ::= 'linkonce_odr'
1035///   ::= 'linkonce_odr_auto_hide'
1036///   ::= 'available_externally'
1037///   ::= 'appending'
1038///   ::= 'dllexport'
1039///   ::= 'common'
1040///   ::= 'dllimport'
1041///   ::= 'extern_weak'
1042///   ::= 'external'
1043bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1044  HasLinkage = false;
1045  switch (Lex.getKind()) {
1046  default:                       Res=GlobalValue::ExternalLinkage; return false;
1047  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1048  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1049  case lltok::kw_linker_private_weak:
1050    Res = GlobalValue::LinkerPrivateWeakLinkage;
1051    break;
1052  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1053  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1054  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1055  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1056  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1057  case lltok::kw_linkonce_odr_auto_hide:
1058  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1059    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1060    break;
1061  case lltok::kw_available_externally:
1062    Res = GlobalValue::AvailableExternallyLinkage;
1063    break;
1064  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1065  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1066  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1067  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1068  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1069  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1070  }
1071  Lex.Lex();
1072  HasLinkage = true;
1073  return false;
1074}
1075
1076/// ParseOptionalVisibility
1077///   ::= /*empty*/
1078///   ::= 'default'
1079///   ::= 'hidden'
1080///   ::= 'protected'
1081///
1082bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1083  switch (Lex.getKind()) {
1084  default:                  Res = GlobalValue::DefaultVisibility; return false;
1085  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1086  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1087  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1088  }
1089  Lex.Lex();
1090  return false;
1091}
1092
1093/// ParseOptionalCallingConv
1094///   ::= /*empty*/
1095///   ::= 'ccc'
1096///   ::= 'fastcc'
1097///   ::= 'kw_intel_ocl_bicc'
1098///   ::= 'coldcc'
1099///   ::= 'x86_stdcallcc'
1100///   ::= 'x86_fastcallcc'
1101///   ::= 'x86_thiscallcc'
1102///   ::= 'arm_apcscc'
1103///   ::= 'arm_aapcscc'
1104///   ::= 'arm_aapcs_vfpcc'
1105///   ::= 'msp430_intrcc'
1106///   ::= 'ptx_kernel'
1107///   ::= 'ptx_device'
1108///   ::= 'spir_func'
1109///   ::= 'spir_kernel'
1110///   ::= 'cc' UINT
1111///
1112bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1113  switch (Lex.getKind()) {
1114  default:                       CC = CallingConv::C; return false;
1115  case lltok::kw_ccc:            CC = CallingConv::C; break;
1116  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1117  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1118  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1119  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1120  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1121  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1122  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1123  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1124  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1125  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1126  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1127  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1128  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1129  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1130  case lltok::kw_cc: {
1131      unsigned ArbitraryCC;
1132      Lex.Lex();
1133      if (ParseUInt32(ArbitraryCC))
1134        return true;
1135      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1136      return false;
1137    }
1138  }
1139
1140  Lex.Lex();
1141  return false;
1142}
1143
1144/// ParseInstructionMetadata
1145///   ::= !dbg !42 (',' !dbg !57)*
1146bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1147                                        PerFunctionState *PFS) {
1148  do {
1149    if (Lex.getKind() != lltok::MetadataVar)
1150      return TokError("expected metadata after comma");
1151
1152    std::string Name = Lex.getStrVal();
1153    unsigned MDK = M->getMDKindID(Name);
1154    Lex.Lex();
1155
1156    MDNode *Node;
1157    SMLoc Loc = Lex.getLoc();
1158
1159    if (ParseToken(lltok::exclaim, "expected '!' here"))
1160      return true;
1161
1162    // This code is similar to that of ParseMetadataValue, however it needs to
1163    // have special-case code for a forward reference; see the comments on
1164    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1165    // at the top level here.
1166    if (Lex.getKind() == lltok::lbrace) {
1167      ValID ID;
1168      if (ParseMetadataListValue(ID, PFS))
1169        return true;
1170      assert(ID.Kind == ValID::t_MDNode);
1171      Inst->setMetadata(MDK, ID.MDNodeVal);
1172    } else {
1173      unsigned NodeID = 0;
1174      if (ParseMDNodeID(Node, NodeID))
1175        return true;
1176      if (Node) {
1177        // If we got the node, add it to the instruction.
1178        Inst->setMetadata(MDK, Node);
1179      } else {
1180        MDRef R = { Loc, MDK, NodeID };
1181        // Otherwise, remember that this should be resolved later.
1182        ForwardRefInstMetadata[Inst].push_back(R);
1183      }
1184    }
1185
1186    // If this is the end of the list, we're done.
1187  } while (EatIfPresent(lltok::comma));
1188  return false;
1189}
1190
1191/// ParseOptionalAlignment
1192///   ::= /* empty */
1193///   ::= 'align' 4
1194bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1195  Alignment = 0;
1196  if (!EatIfPresent(lltok::kw_align))
1197    return false;
1198  LocTy AlignLoc = Lex.getLoc();
1199  if (ParseUInt32(Alignment)) return true;
1200  if (!isPowerOf2_32(Alignment))
1201    return Error(AlignLoc, "alignment is not a power of two");
1202  if (Alignment > Value::MaximumAlignment)
1203    return Error(AlignLoc, "huge alignments are not supported yet");
1204  return false;
1205}
1206
1207/// ParseOptionalCommaAlign
1208///   ::=
1209///   ::= ',' align 4
1210///
1211/// This returns with AteExtraComma set to true if it ate an excess comma at the
1212/// end.
1213bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1214                                       bool &AteExtraComma) {
1215  AteExtraComma = false;
1216  while (EatIfPresent(lltok::comma)) {
1217    // Metadata at the end is an early exit.
1218    if (Lex.getKind() == lltok::MetadataVar) {
1219      AteExtraComma = true;
1220      return false;
1221    }
1222
1223    if (Lex.getKind() != lltok::kw_align)
1224      return Error(Lex.getLoc(), "expected metadata or 'align'");
1225
1226    if (ParseOptionalAlignment(Alignment)) return true;
1227  }
1228
1229  return false;
1230}
1231
1232/// ParseScopeAndOrdering
1233///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1234///   else: ::=
1235///
1236/// This sets Scope and Ordering to the parsed values.
1237bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1238                                     AtomicOrdering &Ordering) {
1239  if (!isAtomic)
1240    return false;
1241
1242  Scope = CrossThread;
1243  if (EatIfPresent(lltok::kw_singlethread))
1244    Scope = SingleThread;
1245  switch (Lex.getKind()) {
1246  default: return TokError("Expected ordering on atomic instruction");
1247  case lltok::kw_unordered: Ordering = Unordered; break;
1248  case lltok::kw_monotonic: Ordering = Monotonic; break;
1249  case lltok::kw_acquire: Ordering = Acquire; break;
1250  case lltok::kw_release: Ordering = Release; break;
1251  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1252  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1253  }
1254  Lex.Lex();
1255  return false;
1256}
1257
1258/// ParseOptionalStackAlignment
1259///   ::= /* empty */
1260///   ::= 'alignstack' '(' 4 ')'
1261bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1262  Alignment = 0;
1263  if (!EatIfPresent(lltok::kw_alignstack))
1264    return false;
1265  LocTy ParenLoc = Lex.getLoc();
1266  if (!EatIfPresent(lltok::lparen))
1267    return Error(ParenLoc, "expected '('");
1268  LocTy AlignLoc = Lex.getLoc();
1269  if (ParseUInt32(Alignment)) return true;
1270  ParenLoc = Lex.getLoc();
1271  if (!EatIfPresent(lltok::rparen))
1272    return Error(ParenLoc, "expected ')'");
1273  if (!isPowerOf2_32(Alignment))
1274    return Error(AlignLoc, "stack alignment is not a power of two");
1275  return false;
1276}
1277
1278/// ParseIndexList - This parses the index list for an insert/extractvalue
1279/// instruction.  This sets AteExtraComma in the case where we eat an extra
1280/// comma at the end of the line and find that it is followed by metadata.
1281/// Clients that don't allow metadata can call the version of this function that
1282/// only takes one argument.
1283///
1284/// ParseIndexList
1285///    ::=  (',' uint32)+
1286///
1287bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1288                              bool &AteExtraComma) {
1289  AteExtraComma = false;
1290
1291  if (Lex.getKind() != lltok::comma)
1292    return TokError("expected ',' as start of index list");
1293
1294  while (EatIfPresent(lltok::comma)) {
1295    if (Lex.getKind() == lltok::MetadataVar) {
1296      AteExtraComma = true;
1297      return false;
1298    }
1299    unsigned Idx = 0;
1300    if (ParseUInt32(Idx)) return true;
1301    Indices.push_back(Idx);
1302  }
1303
1304  return false;
1305}
1306
1307//===----------------------------------------------------------------------===//
1308// Type Parsing.
1309//===----------------------------------------------------------------------===//
1310
1311/// ParseType - Parse a type.
1312bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1313  SMLoc TypeLoc = Lex.getLoc();
1314  switch (Lex.getKind()) {
1315  default:
1316    return TokError("expected type");
1317  case lltok::Type:
1318    // Type ::= 'float' | 'void' (etc)
1319    Result = Lex.getTyVal();
1320    Lex.Lex();
1321    break;
1322  case lltok::lbrace:
1323    // Type ::= StructType
1324    if (ParseAnonStructType(Result, false))
1325      return true;
1326    break;
1327  case lltok::lsquare:
1328    // Type ::= '[' ... ']'
1329    Lex.Lex(); // eat the lsquare.
1330    if (ParseArrayVectorType(Result, false))
1331      return true;
1332    break;
1333  case lltok::less: // Either vector or packed struct.
1334    // Type ::= '<' ... '>'
1335    Lex.Lex();
1336    if (Lex.getKind() == lltok::lbrace) {
1337      if (ParseAnonStructType(Result, true) ||
1338          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1339        return true;
1340    } else if (ParseArrayVectorType(Result, true))
1341      return true;
1342    break;
1343  case lltok::LocalVar: {
1344    // Type ::= %foo
1345    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1346
1347    // If the type hasn't been defined yet, create a forward definition and
1348    // remember where that forward def'n was seen (in case it never is defined).
1349    if (Entry.first == 0) {
1350      Entry.first = StructType::create(Context, Lex.getStrVal());
1351      Entry.second = Lex.getLoc();
1352    }
1353    Result = Entry.first;
1354    Lex.Lex();
1355    break;
1356  }
1357
1358  case lltok::LocalVarID: {
1359    // Type ::= %4
1360    if (Lex.getUIntVal() >= NumberedTypes.size())
1361      NumberedTypes.resize(Lex.getUIntVal()+1);
1362    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1363
1364    // If the type hasn't been defined yet, create a forward definition and
1365    // remember where that forward def'n was seen (in case it never is defined).
1366    if (Entry.first == 0) {
1367      Entry.first = StructType::create(Context);
1368      Entry.second = Lex.getLoc();
1369    }
1370    Result = Entry.first;
1371    Lex.Lex();
1372    break;
1373  }
1374  }
1375
1376  // Parse the type suffixes.
1377  while (1) {
1378    switch (Lex.getKind()) {
1379    // End of type.
1380    default:
1381      if (!AllowVoid && Result->isVoidTy())
1382        return Error(TypeLoc, "void type only allowed for function results");
1383      return false;
1384
1385    // Type ::= Type '*'
1386    case lltok::star:
1387      if (Result->isLabelTy())
1388        return TokError("basic block pointers are invalid");
1389      if (Result->isVoidTy())
1390        return TokError("pointers to void are invalid - use i8* instead");
1391      if (!PointerType::isValidElementType(Result))
1392        return TokError("pointer to this type is invalid");
1393      Result = PointerType::getUnqual(Result);
1394      Lex.Lex();
1395      break;
1396
1397    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1398    case lltok::kw_addrspace: {
1399      if (Result->isLabelTy())
1400        return TokError("basic block pointers are invalid");
1401      if (Result->isVoidTy())
1402        return TokError("pointers to void are invalid; use i8* instead");
1403      if (!PointerType::isValidElementType(Result))
1404        return TokError("pointer to this type is invalid");
1405      unsigned AddrSpace;
1406      if (ParseOptionalAddrSpace(AddrSpace) ||
1407          ParseToken(lltok::star, "expected '*' in address space"))
1408        return true;
1409
1410      Result = PointerType::get(Result, AddrSpace);
1411      break;
1412    }
1413
1414    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1415    case lltok::lparen:
1416      if (ParseFunctionType(Result))
1417        return true;
1418      break;
1419    }
1420  }
1421}
1422
1423/// ParseParameterList
1424///    ::= '(' ')'
1425///    ::= '(' Arg (',' Arg)* ')'
1426///  Arg
1427///    ::= Type OptionalAttributes Value OptionalAttributes
1428bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1429                                  PerFunctionState &PFS) {
1430  if (ParseToken(lltok::lparen, "expected '(' in call"))
1431    return true;
1432
1433  while (Lex.getKind() != lltok::rparen) {
1434    // If this isn't the first argument, we need a comma.
1435    if (!ArgList.empty() &&
1436        ParseToken(lltok::comma, "expected ',' in argument list"))
1437      return true;
1438
1439    // Parse the argument.
1440    LocTy ArgLoc;
1441    Type *ArgTy = 0;
1442    AttrBuilder ArgAttrs;
1443    Value *V;
1444    if (ParseType(ArgTy, ArgLoc))
1445      return true;
1446
1447    // Otherwise, handle normal operands.
1448    if (ParseOptionalAttrs(ArgAttrs, 0) || ParseValue(ArgTy, V, PFS))
1449      return true;
1450    ArgList.push_back(ParamInfo(ArgLoc, V, Attributes::get(V->getContext(),
1451                                                           ArgAttrs)));
1452  }
1453
1454  Lex.Lex();  // Lex the ')'.
1455  return false;
1456}
1457
1458
1459
1460/// ParseArgumentList - Parse the argument list for a function type or function
1461/// prototype.
1462///   ::= '(' ArgTypeListI ')'
1463/// ArgTypeListI
1464///   ::= /*empty*/
1465///   ::= '...'
1466///   ::= ArgTypeList ',' '...'
1467///   ::= ArgType (',' ArgType)*
1468///
1469bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1470                                 bool &isVarArg){
1471  isVarArg = false;
1472  assert(Lex.getKind() == lltok::lparen);
1473  Lex.Lex(); // eat the (.
1474
1475  if (Lex.getKind() == lltok::rparen) {
1476    // empty
1477  } else if (Lex.getKind() == lltok::dotdotdot) {
1478    isVarArg = true;
1479    Lex.Lex();
1480  } else {
1481    LocTy TypeLoc = Lex.getLoc();
1482    Type *ArgTy = 0;
1483    AttrBuilder Attrs;
1484    std::string Name;
1485
1486    if (ParseType(ArgTy) ||
1487        ParseOptionalAttrs(Attrs, 0)) return true;
1488
1489    if (ArgTy->isVoidTy())
1490      return Error(TypeLoc, "argument can not have void type");
1491
1492    if (Lex.getKind() == lltok::LocalVar) {
1493      Name = Lex.getStrVal();
1494      Lex.Lex();
1495    }
1496
1497    if (!FunctionType::isValidArgumentType(ArgTy))
1498      return Error(TypeLoc, "invalid type for function argument");
1499
1500    ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1501                              Attributes::get(ArgTy->getContext(),
1502                                              Attrs), Name));
1503
1504    while (EatIfPresent(lltok::comma)) {
1505      // Handle ... at end of arg list.
1506      if (EatIfPresent(lltok::dotdotdot)) {
1507        isVarArg = true;
1508        break;
1509      }
1510
1511      // Otherwise must be an argument type.
1512      TypeLoc = Lex.getLoc();
1513      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1514
1515      if (ArgTy->isVoidTy())
1516        return Error(TypeLoc, "argument can not have void type");
1517
1518      if (Lex.getKind() == lltok::LocalVar) {
1519        Name = Lex.getStrVal();
1520        Lex.Lex();
1521      } else {
1522        Name = "";
1523      }
1524
1525      if (!ArgTy->isFirstClassType())
1526        return Error(TypeLoc, "invalid type for function argument");
1527
1528      ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1529                                Attributes::get(ArgTy->getContext(), Attrs),
1530                                Name));
1531    }
1532  }
1533
1534  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1535}
1536
1537/// ParseFunctionType
1538///  ::= Type ArgumentList OptionalAttrs
1539bool LLParser::ParseFunctionType(Type *&Result) {
1540  assert(Lex.getKind() == lltok::lparen);
1541
1542  if (!FunctionType::isValidReturnType(Result))
1543    return TokError("invalid function return type");
1544
1545  SmallVector<ArgInfo, 8> ArgList;
1546  bool isVarArg;
1547  if (ParseArgumentList(ArgList, isVarArg))
1548    return true;
1549
1550  // Reject names on the arguments lists.
1551  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1552    if (!ArgList[i].Name.empty())
1553      return Error(ArgList[i].Loc, "argument name invalid in function type");
1554    if (ArgList[i].Attrs.hasAttributes())
1555      return Error(ArgList[i].Loc,
1556                   "argument attributes invalid in function type");
1557  }
1558
1559  SmallVector<Type*, 16> ArgListTy;
1560  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1561    ArgListTy.push_back(ArgList[i].Ty);
1562
1563  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1564  return false;
1565}
1566
1567/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1568/// other structs.
1569bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1570  SmallVector<Type*, 8> Elts;
1571  if (ParseStructBody(Elts)) return true;
1572
1573  Result = StructType::get(Context, Elts, Packed);
1574  return false;
1575}
1576
1577/// ParseStructDefinition - Parse a struct in a 'type' definition.
1578bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1579                                     std::pair<Type*, LocTy> &Entry,
1580                                     Type *&ResultTy) {
1581  // If the type was already defined, diagnose the redefinition.
1582  if (Entry.first && !Entry.second.isValid())
1583    return Error(TypeLoc, "redefinition of type");
1584
1585  // If we have opaque, just return without filling in the definition for the
1586  // struct.  This counts as a definition as far as the .ll file goes.
1587  if (EatIfPresent(lltok::kw_opaque)) {
1588    // This type is being defined, so clear the location to indicate this.
1589    Entry.second = SMLoc();
1590
1591    // If this type number has never been uttered, create it.
1592    if (Entry.first == 0)
1593      Entry.first = StructType::create(Context, Name);
1594    ResultTy = Entry.first;
1595    return false;
1596  }
1597
1598  // If the type starts with '<', then it is either a packed struct or a vector.
1599  bool isPacked = EatIfPresent(lltok::less);
1600
1601  // If we don't have a struct, then we have a random type alias, which we
1602  // accept for compatibility with old files.  These types are not allowed to be
1603  // forward referenced and not allowed to be recursive.
1604  if (Lex.getKind() != lltok::lbrace) {
1605    if (Entry.first)
1606      return Error(TypeLoc, "forward references to non-struct type");
1607
1608    ResultTy = 0;
1609    if (isPacked)
1610      return ParseArrayVectorType(ResultTy, true);
1611    return ParseType(ResultTy);
1612  }
1613
1614  // This type is being defined, so clear the location to indicate this.
1615  Entry.second = SMLoc();
1616
1617  // If this type number has never been uttered, create it.
1618  if (Entry.first == 0)
1619    Entry.first = StructType::create(Context, Name);
1620
1621  StructType *STy = cast<StructType>(Entry.first);
1622
1623  SmallVector<Type*, 8> Body;
1624  if (ParseStructBody(Body) ||
1625      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1626    return true;
1627
1628  STy->setBody(Body, isPacked);
1629  ResultTy = STy;
1630  return false;
1631}
1632
1633
1634/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1635///   StructType
1636///     ::= '{' '}'
1637///     ::= '{' Type (',' Type)* '}'
1638///     ::= '<' '{' '}' '>'
1639///     ::= '<' '{' Type (',' Type)* '}' '>'
1640bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1641  assert(Lex.getKind() == lltok::lbrace);
1642  Lex.Lex(); // Consume the '{'
1643
1644  // Handle the empty struct.
1645  if (EatIfPresent(lltok::rbrace))
1646    return false;
1647
1648  LocTy EltTyLoc = Lex.getLoc();
1649  Type *Ty = 0;
1650  if (ParseType(Ty)) return true;
1651  Body.push_back(Ty);
1652
1653  if (!StructType::isValidElementType(Ty))
1654    return Error(EltTyLoc, "invalid element type for struct");
1655
1656  while (EatIfPresent(lltok::comma)) {
1657    EltTyLoc = Lex.getLoc();
1658    if (ParseType(Ty)) return true;
1659
1660    if (!StructType::isValidElementType(Ty))
1661      return Error(EltTyLoc, "invalid element type for struct");
1662
1663    Body.push_back(Ty);
1664  }
1665
1666  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1667}
1668
1669/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1670/// token has already been consumed.
1671///   Type
1672///     ::= '[' APSINTVAL 'x' Types ']'
1673///     ::= '<' APSINTVAL 'x' Types '>'
1674bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1675  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1676      Lex.getAPSIntVal().getBitWidth() > 64)
1677    return TokError("expected number in address space");
1678
1679  LocTy SizeLoc = Lex.getLoc();
1680  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1681  Lex.Lex();
1682
1683  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1684      return true;
1685
1686  LocTy TypeLoc = Lex.getLoc();
1687  Type *EltTy = 0;
1688  if (ParseType(EltTy)) return true;
1689
1690  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1691                 "expected end of sequential type"))
1692    return true;
1693
1694  if (isVector) {
1695    if (Size == 0)
1696      return Error(SizeLoc, "zero element vector is illegal");
1697    if ((unsigned)Size != Size)
1698      return Error(SizeLoc, "size too large for vector");
1699    if (!VectorType::isValidElementType(EltTy))
1700      return Error(TypeLoc, "invalid vector element type");
1701    Result = VectorType::get(EltTy, unsigned(Size));
1702  } else {
1703    if (!ArrayType::isValidElementType(EltTy))
1704      return Error(TypeLoc, "invalid array element type");
1705    Result = ArrayType::get(EltTy, Size);
1706  }
1707  return false;
1708}
1709
1710//===----------------------------------------------------------------------===//
1711// Function Semantic Analysis.
1712//===----------------------------------------------------------------------===//
1713
1714LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1715                                             int functionNumber)
1716  : P(p), F(f), FunctionNumber(functionNumber) {
1717
1718  // Insert unnamed arguments into the NumberedVals list.
1719  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1720       AI != E; ++AI)
1721    if (!AI->hasName())
1722      NumberedVals.push_back(AI);
1723}
1724
1725LLParser::PerFunctionState::~PerFunctionState() {
1726  // If there were any forward referenced non-basicblock values, delete them.
1727  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1728       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1729    if (!isa<BasicBlock>(I->second.first)) {
1730      I->second.first->replaceAllUsesWith(
1731                           UndefValue::get(I->second.first->getType()));
1732      delete I->second.first;
1733      I->second.first = 0;
1734    }
1735
1736  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1737       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1738    if (!isa<BasicBlock>(I->second.first)) {
1739      I->second.first->replaceAllUsesWith(
1740                           UndefValue::get(I->second.first->getType()));
1741      delete I->second.first;
1742      I->second.first = 0;
1743    }
1744}
1745
1746bool LLParser::PerFunctionState::FinishFunction() {
1747  // Check to see if someone took the address of labels in this block.
1748  if (!P.ForwardRefBlockAddresses.empty()) {
1749    ValID FunctionID;
1750    if (!F.getName().empty()) {
1751      FunctionID.Kind = ValID::t_GlobalName;
1752      FunctionID.StrVal = F.getName();
1753    } else {
1754      FunctionID.Kind = ValID::t_GlobalID;
1755      FunctionID.UIntVal = FunctionNumber;
1756    }
1757
1758    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1759      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1760    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1761      // Resolve all these references.
1762      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1763        return true;
1764
1765      P.ForwardRefBlockAddresses.erase(FRBAI);
1766    }
1767  }
1768
1769  if (!ForwardRefVals.empty())
1770    return P.Error(ForwardRefVals.begin()->second.second,
1771                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1772                   "'");
1773  if (!ForwardRefValIDs.empty())
1774    return P.Error(ForwardRefValIDs.begin()->second.second,
1775                   "use of undefined value '%" +
1776                   Twine(ForwardRefValIDs.begin()->first) + "'");
1777  return false;
1778}
1779
1780
1781/// GetVal - Get a value with the specified name or ID, creating a
1782/// forward reference record if needed.  This can return null if the value
1783/// exists but does not have the right type.
1784Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1785                                          Type *Ty, LocTy Loc) {
1786  // Look this name up in the normal function symbol table.
1787  Value *Val = F.getValueSymbolTable().lookup(Name);
1788
1789  // If this is a forward reference for the value, see if we already created a
1790  // forward ref record.
1791  if (Val == 0) {
1792    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1793      I = ForwardRefVals.find(Name);
1794    if (I != ForwardRefVals.end())
1795      Val = I->second.first;
1796  }
1797
1798  // If we have the value in the symbol table or fwd-ref table, return it.
1799  if (Val) {
1800    if (Val->getType() == Ty) return Val;
1801    if (Ty->isLabelTy())
1802      P.Error(Loc, "'%" + Name + "' is not a basic block");
1803    else
1804      P.Error(Loc, "'%" + Name + "' defined with type '" +
1805              getTypeString(Val->getType()) + "'");
1806    return 0;
1807  }
1808
1809  // Don't make placeholders with invalid type.
1810  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1811    P.Error(Loc, "invalid use of a non-first-class type");
1812    return 0;
1813  }
1814
1815  // Otherwise, create a new forward reference for this value and remember it.
1816  Value *FwdVal;
1817  if (Ty->isLabelTy())
1818    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1819  else
1820    FwdVal = new Argument(Ty, Name);
1821
1822  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1823  return FwdVal;
1824}
1825
1826Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1827                                          LocTy Loc) {
1828  // Look this name up in the normal function symbol table.
1829  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1830
1831  // If this is a forward reference for the value, see if we already created a
1832  // forward ref record.
1833  if (Val == 0) {
1834    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1835      I = ForwardRefValIDs.find(ID);
1836    if (I != ForwardRefValIDs.end())
1837      Val = I->second.first;
1838  }
1839
1840  // If we have the value in the symbol table or fwd-ref table, return it.
1841  if (Val) {
1842    if (Val->getType() == Ty) return Val;
1843    if (Ty->isLabelTy())
1844      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1845    else
1846      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1847              getTypeString(Val->getType()) + "'");
1848    return 0;
1849  }
1850
1851  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1852    P.Error(Loc, "invalid use of a non-first-class type");
1853    return 0;
1854  }
1855
1856  // Otherwise, create a new forward reference for this value and remember it.
1857  Value *FwdVal;
1858  if (Ty->isLabelTy())
1859    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1860  else
1861    FwdVal = new Argument(Ty);
1862
1863  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1864  return FwdVal;
1865}
1866
1867/// SetInstName - After an instruction is parsed and inserted into its
1868/// basic block, this installs its name.
1869bool LLParser::PerFunctionState::SetInstName(int NameID,
1870                                             const std::string &NameStr,
1871                                             LocTy NameLoc, Instruction *Inst) {
1872  // If this instruction has void type, it cannot have a name or ID specified.
1873  if (Inst->getType()->isVoidTy()) {
1874    if (NameID != -1 || !NameStr.empty())
1875      return P.Error(NameLoc, "instructions returning void cannot have a name");
1876    return false;
1877  }
1878
1879  // If this was a numbered instruction, verify that the instruction is the
1880  // expected value and resolve any forward references.
1881  if (NameStr.empty()) {
1882    // If neither a name nor an ID was specified, just use the next ID.
1883    if (NameID == -1)
1884      NameID = NumberedVals.size();
1885
1886    if (unsigned(NameID) != NumberedVals.size())
1887      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1888                     Twine(NumberedVals.size()) + "'");
1889
1890    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1891      ForwardRefValIDs.find(NameID);
1892    if (FI != ForwardRefValIDs.end()) {
1893      if (FI->second.first->getType() != Inst->getType())
1894        return P.Error(NameLoc, "instruction forward referenced with type '" +
1895                       getTypeString(FI->second.first->getType()) + "'");
1896      FI->second.first->replaceAllUsesWith(Inst);
1897      delete FI->second.first;
1898      ForwardRefValIDs.erase(FI);
1899    }
1900
1901    NumberedVals.push_back(Inst);
1902    return false;
1903  }
1904
1905  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1906  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1907    FI = ForwardRefVals.find(NameStr);
1908  if (FI != ForwardRefVals.end()) {
1909    if (FI->second.first->getType() != Inst->getType())
1910      return P.Error(NameLoc, "instruction forward referenced with type '" +
1911                     getTypeString(FI->second.first->getType()) + "'");
1912    FI->second.first->replaceAllUsesWith(Inst);
1913    delete FI->second.first;
1914    ForwardRefVals.erase(FI);
1915  }
1916
1917  // Set the name on the instruction.
1918  Inst->setName(NameStr);
1919
1920  if (Inst->getName() != NameStr)
1921    return P.Error(NameLoc, "multiple definition of local value named '" +
1922                   NameStr + "'");
1923  return false;
1924}
1925
1926/// GetBB - Get a basic block with the specified name or ID, creating a
1927/// forward reference record if needed.
1928BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1929                                              LocTy Loc) {
1930  return cast_or_null<BasicBlock>(GetVal(Name,
1931                                        Type::getLabelTy(F.getContext()), Loc));
1932}
1933
1934BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1935  return cast_or_null<BasicBlock>(GetVal(ID,
1936                                        Type::getLabelTy(F.getContext()), Loc));
1937}
1938
1939/// DefineBB - Define the specified basic block, which is either named or
1940/// unnamed.  If there is an error, this returns null otherwise it returns
1941/// the block being defined.
1942BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1943                                                 LocTy Loc) {
1944  BasicBlock *BB;
1945  if (Name.empty())
1946    BB = GetBB(NumberedVals.size(), Loc);
1947  else
1948    BB = GetBB(Name, Loc);
1949  if (BB == 0) return 0; // Already diagnosed error.
1950
1951  // Move the block to the end of the function.  Forward ref'd blocks are
1952  // inserted wherever they happen to be referenced.
1953  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1954
1955  // Remove the block from forward ref sets.
1956  if (Name.empty()) {
1957    ForwardRefValIDs.erase(NumberedVals.size());
1958    NumberedVals.push_back(BB);
1959  } else {
1960    // BB forward references are already in the function symbol table.
1961    ForwardRefVals.erase(Name);
1962  }
1963
1964  return BB;
1965}
1966
1967//===----------------------------------------------------------------------===//
1968// Constants.
1969//===----------------------------------------------------------------------===//
1970
1971/// ParseValID - Parse an abstract value that doesn't necessarily have a
1972/// type implied.  For example, if we parse "4" we don't know what integer type
1973/// it has.  The value will later be combined with its type and checked for
1974/// sanity.  PFS is used to convert function-local operands of metadata (since
1975/// metadata operands are not just parsed here but also converted to values).
1976/// PFS can be null when we are not parsing metadata values inside a function.
1977bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1978  ID.Loc = Lex.getLoc();
1979  switch (Lex.getKind()) {
1980  default: return TokError("expected value token");
1981  case lltok::GlobalID:  // @42
1982    ID.UIntVal = Lex.getUIntVal();
1983    ID.Kind = ValID::t_GlobalID;
1984    break;
1985  case lltok::GlobalVar:  // @foo
1986    ID.StrVal = Lex.getStrVal();
1987    ID.Kind = ValID::t_GlobalName;
1988    break;
1989  case lltok::LocalVarID:  // %42
1990    ID.UIntVal = Lex.getUIntVal();
1991    ID.Kind = ValID::t_LocalID;
1992    break;
1993  case lltok::LocalVar:  // %foo
1994    ID.StrVal = Lex.getStrVal();
1995    ID.Kind = ValID::t_LocalName;
1996    break;
1997  case lltok::exclaim:   // !42, !{...}, or !"foo"
1998    return ParseMetadataValue(ID, PFS);
1999  case lltok::APSInt:
2000    ID.APSIntVal = Lex.getAPSIntVal();
2001    ID.Kind = ValID::t_APSInt;
2002    break;
2003  case lltok::APFloat:
2004    ID.APFloatVal = Lex.getAPFloatVal();
2005    ID.Kind = ValID::t_APFloat;
2006    break;
2007  case lltok::kw_true:
2008    ID.ConstantVal = ConstantInt::getTrue(Context);
2009    ID.Kind = ValID::t_Constant;
2010    break;
2011  case lltok::kw_false:
2012    ID.ConstantVal = ConstantInt::getFalse(Context);
2013    ID.Kind = ValID::t_Constant;
2014    break;
2015  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2016  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2017  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2018
2019  case lltok::lbrace: {
2020    // ValID ::= '{' ConstVector '}'
2021    Lex.Lex();
2022    SmallVector<Constant*, 16> Elts;
2023    if (ParseGlobalValueVector(Elts) ||
2024        ParseToken(lltok::rbrace, "expected end of struct constant"))
2025      return true;
2026
2027    ID.ConstantStructElts = new Constant*[Elts.size()];
2028    ID.UIntVal = Elts.size();
2029    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2030    ID.Kind = ValID::t_ConstantStruct;
2031    return false;
2032  }
2033  case lltok::less: {
2034    // ValID ::= '<' ConstVector '>'         --> Vector.
2035    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2036    Lex.Lex();
2037    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2038
2039    SmallVector<Constant*, 16> Elts;
2040    LocTy FirstEltLoc = Lex.getLoc();
2041    if (ParseGlobalValueVector(Elts) ||
2042        (isPackedStruct &&
2043         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2044        ParseToken(lltok::greater, "expected end of constant"))
2045      return true;
2046
2047    if (isPackedStruct) {
2048      ID.ConstantStructElts = new Constant*[Elts.size()];
2049      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2050      ID.UIntVal = Elts.size();
2051      ID.Kind = ValID::t_PackedConstantStruct;
2052      return false;
2053    }
2054
2055    if (Elts.empty())
2056      return Error(ID.Loc, "constant vector must not be empty");
2057
2058    if (!Elts[0]->getType()->isIntegerTy() &&
2059        !Elts[0]->getType()->isFloatingPointTy() &&
2060        !Elts[0]->getType()->isPointerTy())
2061      return Error(FirstEltLoc,
2062            "vector elements must have integer, pointer or floating point type");
2063
2064    // Verify that all the vector elements have the same type.
2065    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2066      if (Elts[i]->getType() != Elts[0]->getType())
2067        return Error(FirstEltLoc,
2068                     "vector element #" + Twine(i) +
2069                    " is not of type '" + getTypeString(Elts[0]->getType()));
2070
2071    ID.ConstantVal = ConstantVector::get(Elts);
2072    ID.Kind = ValID::t_Constant;
2073    return false;
2074  }
2075  case lltok::lsquare: {   // Array Constant
2076    Lex.Lex();
2077    SmallVector<Constant*, 16> Elts;
2078    LocTy FirstEltLoc = Lex.getLoc();
2079    if (ParseGlobalValueVector(Elts) ||
2080        ParseToken(lltok::rsquare, "expected end of array constant"))
2081      return true;
2082
2083    // Handle empty element.
2084    if (Elts.empty()) {
2085      // Use undef instead of an array because it's inconvenient to determine
2086      // the element type at this point, there being no elements to examine.
2087      ID.Kind = ValID::t_EmptyArray;
2088      return false;
2089    }
2090
2091    if (!Elts[0]->getType()->isFirstClassType())
2092      return Error(FirstEltLoc, "invalid array element type: " +
2093                   getTypeString(Elts[0]->getType()));
2094
2095    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2096
2097    // Verify all elements are correct type!
2098    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2099      if (Elts[i]->getType() != Elts[0]->getType())
2100        return Error(FirstEltLoc,
2101                     "array element #" + Twine(i) +
2102                     " is not of type '" + getTypeString(Elts[0]->getType()));
2103    }
2104
2105    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2106    ID.Kind = ValID::t_Constant;
2107    return false;
2108  }
2109  case lltok::kw_c:  // c "foo"
2110    Lex.Lex();
2111    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2112                                                  false);
2113    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2114    ID.Kind = ValID::t_Constant;
2115    return false;
2116
2117  case lltok::kw_asm: {
2118    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2119    bool HasSideEffect, AlignStack, AsmDialect;
2120    Lex.Lex();
2121    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2122        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2123        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2124        ParseStringConstant(ID.StrVal) ||
2125        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2126        ParseToken(lltok::StringConstant, "expected constraint string"))
2127      return true;
2128    ID.StrVal2 = Lex.getStrVal();
2129    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2130      (unsigned(AsmDialect)<<2);
2131    ID.Kind = ValID::t_InlineAsm;
2132    return false;
2133  }
2134
2135  case lltok::kw_blockaddress: {
2136    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2137    Lex.Lex();
2138
2139    ValID Fn, Label;
2140    LocTy FnLoc, LabelLoc;
2141
2142    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2143        ParseValID(Fn) ||
2144        ParseToken(lltok::comma, "expected comma in block address expression")||
2145        ParseValID(Label) ||
2146        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2147      return true;
2148
2149    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2150      return Error(Fn.Loc, "expected function name in blockaddress");
2151    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2152      return Error(Label.Loc, "expected basic block name in blockaddress");
2153
2154    // Make a global variable as a placeholder for this reference.
2155    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2156                                           false, GlobalValue::InternalLinkage,
2157                                                0, "");
2158    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2159    ID.ConstantVal = FwdRef;
2160    ID.Kind = ValID::t_Constant;
2161    return false;
2162  }
2163
2164  case lltok::kw_trunc:
2165  case lltok::kw_zext:
2166  case lltok::kw_sext:
2167  case lltok::kw_fptrunc:
2168  case lltok::kw_fpext:
2169  case lltok::kw_bitcast:
2170  case lltok::kw_uitofp:
2171  case lltok::kw_sitofp:
2172  case lltok::kw_fptoui:
2173  case lltok::kw_fptosi:
2174  case lltok::kw_inttoptr:
2175  case lltok::kw_ptrtoint: {
2176    unsigned Opc = Lex.getUIntVal();
2177    Type *DestTy = 0;
2178    Constant *SrcVal;
2179    Lex.Lex();
2180    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2181        ParseGlobalTypeAndValue(SrcVal) ||
2182        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2183        ParseType(DestTy) ||
2184        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2185      return true;
2186    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2187      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2188                   getTypeString(SrcVal->getType()) + "' to '" +
2189                   getTypeString(DestTy) + "'");
2190    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2191                                                 SrcVal, DestTy);
2192    ID.Kind = ValID::t_Constant;
2193    return false;
2194  }
2195  case lltok::kw_extractvalue: {
2196    Lex.Lex();
2197    Constant *Val;
2198    SmallVector<unsigned, 4> Indices;
2199    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2200        ParseGlobalTypeAndValue(Val) ||
2201        ParseIndexList(Indices) ||
2202        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2203      return true;
2204
2205    if (!Val->getType()->isAggregateType())
2206      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2207    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2208      return Error(ID.Loc, "invalid indices for extractvalue");
2209    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2210    ID.Kind = ValID::t_Constant;
2211    return false;
2212  }
2213  case lltok::kw_insertvalue: {
2214    Lex.Lex();
2215    Constant *Val0, *Val1;
2216    SmallVector<unsigned, 4> Indices;
2217    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2218        ParseGlobalTypeAndValue(Val0) ||
2219        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2220        ParseGlobalTypeAndValue(Val1) ||
2221        ParseIndexList(Indices) ||
2222        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2223      return true;
2224    if (!Val0->getType()->isAggregateType())
2225      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2226    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2227      return Error(ID.Loc, "invalid indices for insertvalue");
2228    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2229    ID.Kind = ValID::t_Constant;
2230    return false;
2231  }
2232  case lltok::kw_icmp:
2233  case lltok::kw_fcmp: {
2234    unsigned PredVal, Opc = Lex.getUIntVal();
2235    Constant *Val0, *Val1;
2236    Lex.Lex();
2237    if (ParseCmpPredicate(PredVal, Opc) ||
2238        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2239        ParseGlobalTypeAndValue(Val0) ||
2240        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2241        ParseGlobalTypeAndValue(Val1) ||
2242        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2243      return true;
2244
2245    if (Val0->getType() != Val1->getType())
2246      return Error(ID.Loc, "compare operands must have the same type");
2247
2248    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2249
2250    if (Opc == Instruction::FCmp) {
2251      if (!Val0->getType()->isFPOrFPVectorTy())
2252        return Error(ID.Loc, "fcmp requires floating point operands");
2253      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2254    } else {
2255      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2256      if (!Val0->getType()->isIntOrIntVectorTy() &&
2257          !Val0->getType()->getScalarType()->isPointerTy())
2258        return Error(ID.Loc, "icmp requires pointer or integer operands");
2259      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2260    }
2261    ID.Kind = ValID::t_Constant;
2262    return false;
2263  }
2264
2265  // Binary Operators.
2266  case lltok::kw_add:
2267  case lltok::kw_fadd:
2268  case lltok::kw_sub:
2269  case lltok::kw_fsub:
2270  case lltok::kw_mul:
2271  case lltok::kw_fmul:
2272  case lltok::kw_udiv:
2273  case lltok::kw_sdiv:
2274  case lltok::kw_fdiv:
2275  case lltok::kw_urem:
2276  case lltok::kw_srem:
2277  case lltok::kw_frem:
2278  case lltok::kw_shl:
2279  case lltok::kw_lshr:
2280  case lltok::kw_ashr: {
2281    bool NUW = false;
2282    bool NSW = false;
2283    bool Exact = false;
2284    unsigned Opc = Lex.getUIntVal();
2285    Constant *Val0, *Val1;
2286    Lex.Lex();
2287    LocTy ModifierLoc = Lex.getLoc();
2288    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2289        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2290      if (EatIfPresent(lltok::kw_nuw))
2291        NUW = true;
2292      if (EatIfPresent(lltok::kw_nsw)) {
2293        NSW = true;
2294        if (EatIfPresent(lltok::kw_nuw))
2295          NUW = true;
2296      }
2297    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2298               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2299      if (EatIfPresent(lltok::kw_exact))
2300        Exact = true;
2301    }
2302    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2303        ParseGlobalTypeAndValue(Val0) ||
2304        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2305        ParseGlobalTypeAndValue(Val1) ||
2306        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2307      return true;
2308    if (Val0->getType() != Val1->getType())
2309      return Error(ID.Loc, "operands of constexpr must have same type");
2310    if (!Val0->getType()->isIntOrIntVectorTy()) {
2311      if (NUW)
2312        return Error(ModifierLoc, "nuw only applies to integer operations");
2313      if (NSW)
2314        return Error(ModifierLoc, "nsw only applies to integer operations");
2315    }
2316    // Check that the type is valid for the operator.
2317    switch (Opc) {
2318    case Instruction::Add:
2319    case Instruction::Sub:
2320    case Instruction::Mul:
2321    case Instruction::UDiv:
2322    case Instruction::SDiv:
2323    case Instruction::URem:
2324    case Instruction::SRem:
2325    case Instruction::Shl:
2326    case Instruction::AShr:
2327    case Instruction::LShr:
2328      if (!Val0->getType()->isIntOrIntVectorTy())
2329        return Error(ID.Loc, "constexpr requires integer operands");
2330      break;
2331    case Instruction::FAdd:
2332    case Instruction::FSub:
2333    case Instruction::FMul:
2334    case Instruction::FDiv:
2335    case Instruction::FRem:
2336      if (!Val0->getType()->isFPOrFPVectorTy())
2337        return Error(ID.Loc, "constexpr requires fp operands");
2338      break;
2339    default: llvm_unreachable("Unknown binary operator!");
2340    }
2341    unsigned Flags = 0;
2342    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2343    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2344    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2345    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2346    ID.ConstantVal = C;
2347    ID.Kind = ValID::t_Constant;
2348    return false;
2349  }
2350
2351  // Logical Operations
2352  case lltok::kw_and:
2353  case lltok::kw_or:
2354  case lltok::kw_xor: {
2355    unsigned Opc = Lex.getUIntVal();
2356    Constant *Val0, *Val1;
2357    Lex.Lex();
2358    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2359        ParseGlobalTypeAndValue(Val0) ||
2360        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2361        ParseGlobalTypeAndValue(Val1) ||
2362        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2363      return true;
2364    if (Val0->getType() != Val1->getType())
2365      return Error(ID.Loc, "operands of constexpr must have same type");
2366    if (!Val0->getType()->isIntOrIntVectorTy())
2367      return Error(ID.Loc,
2368                   "constexpr requires integer or integer vector operands");
2369    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2370    ID.Kind = ValID::t_Constant;
2371    return false;
2372  }
2373
2374  case lltok::kw_getelementptr:
2375  case lltok::kw_shufflevector:
2376  case lltok::kw_insertelement:
2377  case lltok::kw_extractelement:
2378  case lltok::kw_select: {
2379    unsigned Opc = Lex.getUIntVal();
2380    SmallVector<Constant*, 16> Elts;
2381    bool InBounds = false;
2382    Lex.Lex();
2383    if (Opc == Instruction::GetElementPtr)
2384      InBounds = EatIfPresent(lltok::kw_inbounds);
2385    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2386        ParseGlobalValueVector(Elts) ||
2387        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2388      return true;
2389
2390    if (Opc == Instruction::GetElementPtr) {
2391      if (Elts.size() == 0 ||
2392          !Elts[0]->getType()->getScalarType()->isPointerTy())
2393        return Error(ID.Loc, "getelementptr requires pointer operand");
2394
2395      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2396      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2397        return Error(ID.Loc, "invalid indices for getelementptr");
2398      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2399                                                      InBounds);
2400    } else if (Opc == Instruction::Select) {
2401      if (Elts.size() != 3)
2402        return Error(ID.Loc, "expected three operands to select");
2403      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2404                                                              Elts[2]))
2405        return Error(ID.Loc, Reason);
2406      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2407    } else if (Opc == Instruction::ShuffleVector) {
2408      if (Elts.size() != 3)
2409        return Error(ID.Loc, "expected three operands to shufflevector");
2410      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2411        return Error(ID.Loc, "invalid operands to shufflevector");
2412      ID.ConstantVal =
2413                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2414    } else if (Opc == Instruction::ExtractElement) {
2415      if (Elts.size() != 2)
2416        return Error(ID.Loc, "expected two operands to extractelement");
2417      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2418        return Error(ID.Loc, "invalid extractelement operands");
2419      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2420    } else {
2421      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2422      if (Elts.size() != 3)
2423      return Error(ID.Loc, "expected three operands to insertelement");
2424      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2425        return Error(ID.Loc, "invalid insertelement operands");
2426      ID.ConstantVal =
2427                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2428    }
2429
2430    ID.Kind = ValID::t_Constant;
2431    return false;
2432  }
2433  }
2434
2435  Lex.Lex();
2436  return false;
2437}
2438
2439/// ParseGlobalValue - Parse a global value with the specified type.
2440bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2441  C = 0;
2442  ValID ID;
2443  Value *V = NULL;
2444  bool Parsed = ParseValID(ID) ||
2445                ConvertValIDToValue(Ty, ID, V, NULL);
2446  if (V && !(C = dyn_cast<Constant>(V)))
2447    return Error(ID.Loc, "global values must be constants");
2448  return Parsed;
2449}
2450
2451bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2452  Type *Ty = 0;
2453  return ParseType(Ty) ||
2454         ParseGlobalValue(Ty, V);
2455}
2456
2457/// ParseGlobalValueVector
2458///   ::= /*empty*/
2459///   ::= TypeAndValue (',' TypeAndValue)*
2460bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2461  // Empty list.
2462  if (Lex.getKind() == lltok::rbrace ||
2463      Lex.getKind() == lltok::rsquare ||
2464      Lex.getKind() == lltok::greater ||
2465      Lex.getKind() == lltok::rparen)
2466    return false;
2467
2468  Constant *C;
2469  if (ParseGlobalTypeAndValue(C)) return true;
2470  Elts.push_back(C);
2471
2472  while (EatIfPresent(lltok::comma)) {
2473    if (ParseGlobalTypeAndValue(C)) return true;
2474    Elts.push_back(C);
2475  }
2476
2477  return false;
2478}
2479
2480bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2481  assert(Lex.getKind() == lltok::lbrace);
2482  Lex.Lex();
2483
2484  SmallVector<Value*, 16> Elts;
2485  if (ParseMDNodeVector(Elts, PFS) ||
2486      ParseToken(lltok::rbrace, "expected end of metadata node"))
2487    return true;
2488
2489  ID.MDNodeVal = MDNode::get(Context, Elts);
2490  ID.Kind = ValID::t_MDNode;
2491  return false;
2492}
2493
2494/// ParseMetadataValue
2495///  ::= !42
2496///  ::= !{...}
2497///  ::= !"string"
2498bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2499  assert(Lex.getKind() == lltok::exclaim);
2500  Lex.Lex();
2501
2502  // MDNode:
2503  // !{ ... }
2504  if (Lex.getKind() == lltok::lbrace)
2505    return ParseMetadataListValue(ID, PFS);
2506
2507  // Standalone metadata reference
2508  // !42
2509  if (Lex.getKind() == lltok::APSInt) {
2510    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2511    ID.Kind = ValID::t_MDNode;
2512    return false;
2513  }
2514
2515  // MDString:
2516  //   ::= '!' STRINGCONSTANT
2517  if (ParseMDString(ID.MDStringVal)) return true;
2518  ID.Kind = ValID::t_MDString;
2519  return false;
2520}
2521
2522
2523//===----------------------------------------------------------------------===//
2524// Function Parsing.
2525//===----------------------------------------------------------------------===//
2526
2527bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2528                                   PerFunctionState *PFS) {
2529  if (Ty->isFunctionTy())
2530    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2531
2532  switch (ID.Kind) {
2533  case ValID::t_LocalID:
2534    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2535    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2536    return (V == 0);
2537  case ValID::t_LocalName:
2538    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2539    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2540    return (V == 0);
2541  case ValID::t_InlineAsm: {
2542    PointerType *PTy = dyn_cast<PointerType>(Ty);
2543    FunctionType *FTy =
2544      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2545    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2546      return Error(ID.Loc, "invalid type for inline asm constraint string");
2547    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2548                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2549    return false;
2550  }
2551  case ValID::t_MDNode:
2552    if (!Ty->isMetadataTy())
2553      return Error(ID.Loc, "metadata value must have metadata type");
2554    V = ID.MDNodeVal;
2555    return false;
2556  case ValID::t_MDString:
2557    if (!Ty->isMetadataTy())
2558      return Error(ID.Loc, "metadata value must have metadata type");
2559    V = ID.MDStringVal;
2560    return false;
2561  case ValID::t_GlobalName:
2562    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2563    return V == 0;
2564  case ValID::t_GlobalID:
2565    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2566    return V == 0;
2567  case ValID::t_APSInt:
2568    if (!Ty->isIntegerTy())
2569      return Error(ID.Loc, "integer constant must have integer type");
2570    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2571    V = ConstantInt::get(Context, ID.APSIntVal);
2572    return false;
2573  case ValID::t_APFloat:
2574    if (!Ty->isFloatingPointTy() ||
2575        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2576      return Error(ID.Loc, "floating point constant invalid for type");
2577
2578    // The lexer has no type info, so builds all half, float, and double FP
2579    // constants as double.  Fix this here.  Long double does not need this.
2580    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2581      bool Ignored;
2582      if (Ty->isHalfTy())
2583        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2584                              &Ignored);
2585      else if (Ty->isFloatTy())
2586        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2587                              &Ignored);
2588    }
2589    V = ConstantFP::get(Context, ID.APFloatVal);
2590
2591    if (V->getType() != Ty)
2592      return Error(ID.Loc, "floating point constant does not have type '" +
2593                   getTypeString(Ty) + "'");
2594
2595    return false;
2596  case ValID::t_Null:
2597    if (!Ty->isPointerTy())
2598      return Error(ID.Loc, "null must be a pointer type");
2599    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2600    return false;
2601  case ValID::t_Undef:
2602    // FIXME: LabelTy should not be a first-class type.
2603    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2604      return Error(ID.Loc, "invalid type for undef constant");
2605    V = UndefValue::get(Ty);
2606    return false;
2607  case ValID::t_EmptyArray:
2608    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2609      return Error(ID.Loc, "invalid empty array initializer");
2610    V = UndefValue::get(Ty);
2611    return false;
2612  case ValID::t_Zero:
2613    // FIXME: LabelTy should not be a first-class type.
2614    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2615      return Error(ID.Loc, "invalid type for null constant");
2616    V = Constant::getNullValue(Ty);
2617    return false;
2618  case ValID::t_Constant:
2619    if (ID.ConstantVal->getType() != Ty)
2620      return Error(ID.Loc, "constant expression type mismatch");
2621
2622    V = ID.ConstantVal;
2623    return false;
2624  case ValID::t_ConstantStruct:
2625  case ValID::t_PackedConstantStruct:
2626    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2627      if (ST->getNumElements() != ID.UIntVal)
2628        return Error(ID.Loc,
2629                     "initializer with struct type has wrong # elements");
2630      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2631        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2632
2633      // Verify that the elements are compatible with the structtype.
2634      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2635        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2636          return Error(ID.Loc, "element " + Twine(i) +
2637                    " of struct initializer doesn't match struct element type");
2638
2639      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2640                                               ID.UIntVal));
2641    } else
2642      return Error(ID.Loc, "constant expression type mismatch");
2643    return false;
2644  }
2645  llvm_unreachable("Invalid ValID");
2646}
2647
2648bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2649  V = 0;
2650  ValID ID;
2651  return ParseValID(ID, PFS) ||
2652         ConvertValIDToValue(Ty, ID, V, PFS);
2653}
2654
2655bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2656  Type *Ty = 0;
2657  return ParseType(Ty) ||
2658         ParseValue(Ty, V, PFS);
2659}
2660
2661bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2662                                      PerFunctionState &PFS) {
2663  Value *V;
2664  Loc = Lex.getLoc();
2665  if (ParseTypeAndValue(V, PFS)) return true;
2666  if (!isa<BasicBlock>(V))
2667    return Error(Loc, "expected a basic block");
2668  BB = cast<BasicBlock>(V);
2669  return false;
2670}
2671
2672
2673/// FunctionHeader
2674///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2675///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2676///       OptionalAlign OptGC
2677bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2678  // Parse the linkage.
2679  LocTy LinkageLoc = Lex.getLoc();
2680  unsigned Linkage;
2681
2682  unsigned Visibility;
2683  AttrBuilder RetAttrs;
2684  CallingConv::ID CC;
2685  Type *RetType = 0;
2686  LocTy RetTypeLoc = Lex.getLoc();
2687  if (ParseOptionalLinkage(Linkage) ||
2688      ParseOptionalVisibility(Visibility) ||
2689      ParseOptionalCallingConv(CC) ||
2690      ParseOptionalAttrs(RetAttrs, 1) ||
2691      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2692    return true;
2693
2694  // Verify that the linkage is ok.
2695  switch ((GlobalValue::LinkageTypes)Linkage) {
2696  case GlobalValue::ExternalLinkage:
2697    break; // always ok.
2698  case GlobalValue::DLLImportLinkage:
2699  case GlobalValue::ExternalWeakLinkage:
2700    if (isDefine)
2701      return Error(LinkageLoc, "invalid linkage for function definition");
2702    break;
2703  case GlobalValue::PrivateLinkage:
2704  case GlobalValue::LinkerPrivateLinkage:
2705  case GlobalValue::LinkerPrivateWeakLinkage:
2706  case GlobalValue::InternalLinkage:
2707  case GlobalValue::AvailableExternallyLinkage:
2708  case GlobalValue::LinkOnceAnyLinkage:
2709  case GlobalValue::LinkOnceODRLinkage:
2710  case GlobalValue::LinkOnceODRAutoHideLinkage:
2711  case GlobalValue::WeakAnyLinkage:
2712  case GlobalValue::WeakODRLinkage:
2713  case GlobalValue::DLLExportLinkage:
2714    if (!isDefine)
2715      return Error(LinkageLoc, "invalid linkage for function declaration");
2716    break;
2717  case GlobalValue::AppendingLinkage:
2718  case GlobalValue::CommonLinkage:
2719    return Error(LinkageLoc, "invalid function linkage type");
2720  }
2721
2722  if (!FunctionType::isValidReturnType(RetType))
2723    return Error(RetTypeLoc, "invalid function return type");
2724
2725  LocTy NameLoc = Lex.getLoc();
2726
2727  std::string FunctionName;
2728  if (Lex.getKind() == lltok::GlobalVar) {
2729    FunctionName = Lex.getStrVal();
2730  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2731    unsigned NameID = Lex.getUIntVal();
2732
2733    if (NameID != NumberedVals.size())
2734      return TokError("function expected to be numbered '%" +
2735                      Twine(NumberedVals.size()) + "'");
2736  } else {
2737    return TokError("expected function name");
2738  }
2739
2740  Lex.Lex();
2741
2742  if (Lex.getKind() != lltok::lparen)
2743    return TokError("expected '(' in function argument list");
2744
2745  SmallVector<ArgInfo, 8> ArgList;
2746  bool isVarArg;
2747  AttrBuilder FuncAttrs;
2748  std::string Section;
2749  unsigned Alignment;
2750  std::string GC;
2751  bool UnnamedAddr;
2752  LocTy UnnamedAddrLoc;
2753
2754  if (ParseArgumentList(ArgList, isVarArg) ||
2755      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2756                         &UnnamedAddrLoc) ||
2757      ParseOptionalAttrs(FuncAttrs, 2) ||
2758      (EatIfPresent(lltok::kw_section) &&
2759       ParseStringConstant(Section)) ||
2760      ParseOptionalAlignment(Alignment) ||
2761      (EatIfPresent(lltok::kw_gc) &&
2762       ParseStringConstant(GC)))
2763    return true;
2764
2765  // If the alignment was parsed as an attribute, move to the alignment field.
2766  if (FuncAttrs.hasAlignmentAttr()) {
2767    Alignment = FuncAttrs.getAlignment();
2768    FuncAttrs.removeAttribute(Attributes::Alignment);
2769  }
2770
2771  // Okay, if we got here, the function is syntactically valid.  Convert types
2772  // and do semantic checks.
2773  std::vector<Type*> ParamTypeList;
2774  SmallVector<AttributeWithIndex, 8> Attrs;
2775
2776  if (RetAttrs.hasAttributes())
2777    Attrs.push_back(
2778      AttributeWithIndex::get(AttrListPtr::ReturnIndex,
2779                              Attributes::get(RetType->getContext(),
2780                                              RetAttrs)));
2781
2782  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2783    ParamTypeList.push_back(ArgList[i].Ty);
2784    if (ArgList[i].Attrs.hasAttributes())
2785      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2786  }
2787
2788  if (FuncAttrs.hasAttributes())
2789    Attrs.push_back(
2790      AttributeWithIndex::get(AttrListPtr::FunctionIndex,
2791                              Attributes::get(RetType->getContext(),
2792                                              FuncAttrs)));
2793
2794  AttrListPtr PAL = AttrListPtr::get(Attrs);
2795
2796  if (PAL.getParamAttributes(1).hasAttribute(Attributes::StructRet) &&
2797      !RetType->isVoidTy())
2798    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2799
2800  FunctionType *FT =
2801    FunctionType::get(RetType, ParamTypeList, isVarArg);
2802  PointerType *PFT = PointerType::getUnqual(FT);
2803
2804  Fn = 0;
2805  if (!FunctionName.empty()) {
2806    // If this was a definition of a forward reference, remove the definition
2807    // from the forward reference table and fill in the forward ref.
2808    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2809      ForwardRefVals.find(FunctionName);
2810    if (FRVI != ForwardRefVals.end()) {
2811      Fn = M->getFunction(FunctionName);
2812      if (!Fn)
2813        return Error(FRVI->second.second, "invalid forward reference to "
2814                     "function as global value!");
2815      if (Fn->getType() != PFT)
2816        return Error(FRVI->second.second, "invalid forward reference to "
2817                     "function '" + FunctionName + "' with wrong type!");
2818
2819      ForwardRefVals.erase(FRVI);
2820    } else if ((Fn = M->getFunction(FunctionName))) {
2821      // Reject redefinitions.
2822      return Error(NameLoc, "invalid redefinition of function '" +
2823                   FunctionName + "'");
2824    } else if (M->getNamedValue(FunctionName)) {
2825      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2826    }
2827
2828  } else {
2829    // If this is a definition of a forward referenced function, make sure the
2830    // types agree.
2831    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2832      = ForwardRefValIDs.find(NumberedVals.size());
2833    if (I != ForwardRefValIDs.end()) {
2834      Fn = cast<Function>(I->second.first);
2835      if (Fn->getType() != PFT)
2836        return Error(NameLoc, "type of definition and forward reference of '@" +
2837                     Twine(NumberedVals.size()) + "' disagree");
2838      ForwardRefValIDs.erase(I);
2839    }
2840  }
2841
2842  if (Fn == 0)
2843    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2844  else // Move the forward-reference to the correct spot in the module.
2845    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2846
2847  if (FunctionName.empty())
2848    NumberedVals.push_back(Fn);
2849
2850  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2851  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2852  Fn->setCallingConv(CC);
2853  Fn->setAttributes(PAL);
2854  Fn->setUnnamedAddr(UnnamedAddr);
2855  Fn->setAlignment(Alignment);
2856  Fn->setSection(Section);
2857  if (!GC.empty()) Fn->setGC(GC.c_str());
2858
2859  // Add all of the arguments we parsed to the function.
2860  Function::arg_iterator ArgIt = Fn->arg_begin();
2861  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2862    // If the argument has a name, insert it into the argument symbol table.
2863    if (ArgList[i].Name.empty()) continue;
2864
2865    // Set the name, if it conflicted, it will be auto-renamed.
2866    ArgIt->setName(ArgList[i].Name);
2867
2868    if (ArgIt->getName() != ArgList[i].Name)
2869      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2870                   ArgList[i].Name + "'");
2871  }
2872
2873  return false;
2874}
2875
2876
2877/// ParseFunctionBody
2878///   ::= '{' BasicBlock+ '}'
2879///
2880bool LLParser::ParseFunctionBody(Function &Fn) {
2881  if (Lex.getKind() != lltok::lbrace)
2882    return TokError("expected '{' in function body");
2883  Lex.Lex();  // eat the {.
2884
2885  int FunctionNumber = -1;
2886  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2887
2888  PerFunctionState PFS(*this, Fn, FunctionNumber);
2889
2890  // We need at least one basic block.
2891  if (Lex.getKind() == lltok::rbrace)
2892    return TokError("function body requires at least one basic block");
2893
2894  while (Lex.getKind() != lltok::rbrace)
2895    if (ParseBasicBlock(PFS)) return true;
2896
2897  // Eat the }.
2898  Lex.Lex();
2899
2900  // Verify function is ok.
2901  return PFS.FinishFunction();
2902}
2903
2904/// ParseBasicBlock
2905///   ::= LabelStr? Instruction*
2906bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2907  // If this basic block starts out with a name, remember it.
2908  std::string Name;
2909  LocTy NameLoc = Lex.getLoc();
2910  if (Lex.getKind() == lltok::LabelStr) {
2911    Name = Lex.getStrVal();
2912    Lex.Lex();
2913  }
2914
2915  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2916  if (BB == 0) return true;
2917
2918  std::string NameStr;
2919
2920  // Parse the instructions in this block until we get a terminator.
2921  Instruction *Inst;
2922  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2923  do {
2924    // This instruction may have three possibilities for a name: a) none
2925    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2926    LocTy NameLoc = Lex.getLoc();
2927    int NameID = -1;
2928    NameStr = "";
2929
2930    if (Lex.getKind() == lltok::LocalVarID) {
2931      NameID = Lex.getUIntVal();
2932      Lex.Lex();
2933      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2934        return true;
2935    } else if (Lex.getKind() == lltok::LocalVar) {
2936      NameStr = Lex.getStrVal();
2937      Lex.Lex();
2938      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2939        return true;
2940    }
2941
2942    switch (ParseInstruction(Inst, BB, PFS)) {
2943    default: llvm_unreachable("Unknown ParseInstruction result!");
2944    case InstError: return true;
2945    case InstNormal:
2946      BB->getInstList().push_back(Inst);
2947
2948      // With a normal result, we check to see if the instruction is followed by
2949      // a comma and metadata.
2950      if (EatIfPresent(lltok::comma))
2951        if (ParseInstructionMetadata(Inst, &PFS))
2952          return true;
2953      break;
2954    case InstExtraComma:
2955      BB->getInstList().push_back(Inst);
2956
2957      // If the instruction parser ate an extra comma at the end of it, it
2958      // *must* be followed by metadata.
2959      if (ParseInstructionMetadata(Inst, &PFS))
2960        return true;
2961      break;
2962    }
2963
2964    // Set the name on the instruction.
2965    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2966  } while (!isa<TerminatorInst>(Inst));
2967
2968  return false;
2969}
2970
2971//===----------------------------------------------------------------------===//
2972// Instruction Parsing.
2973//===----------------------------------------------------------------------===//
2974
2975/// ParseInstruction - Parse one of the many different instructions.
2976///
2977int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2978                               PerFunctionState &PFS) {
2979  lltok::Kind Token = Lex.getKind();
2980  if (Token == lltok::Eof)
2981    return TokError("found end of file when expecting more instructions");
2982  LocTy Loc = Lex.getLoc();
2983  unsigned KeywordVal = Lex.getUIntVal();
2984  Lex.Lex();  // Eat the keyword.
2985
2986  switch (Token) {
2987  default:                    return Error(Loc, "expected instruction opcode");
2988  // Terminator Instructions.
2989  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2990  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2991  case lltok::kw_br:          return ParseBr(Inst, PFS);
2992  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2993  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2994  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2995  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2996  // Binary Operators.
2997  case lltok::kw_add:
2998  case lltok::kw_sub:
2999  case lltok::kw_mul:
3000  case lltok::kw_shl: {
3001    bool NUW = EatIfPresent(lltok::kw_nuw);
3002    bool NSW = EatIfPresent(lltok::kw_nsw);
3003    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3004
3005    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3006
3007    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3008    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3009    return false;
3010  }
3011  case lltok::kw_fadd:
3012  case lltok::kw_fsub:
3013  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3014
3015  case lltok::kw_sdiv:
3016  case lltok::kw_udiv:
3017  case lltok::kw_lshr:
3018  case lltok::kw_ashr: {
3019    bool Exact = EatIfPresent(lltok::kw_exact);
3020
3021    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3022    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3023    return false;
3024  }
3025
3026  case lltok::kw_urem:
3027  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3028  case lltok::kw_fdiv:
3029  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3030  case lltok::kw_and:
3031  case lltok::kw_or:
3032  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3033  case lltok::kw_icmp:
3034  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3035  // Casts.
3036  case lltok::kw_trunc:
3037  case lltok::kw_zext:
3038  case lltok::kw_sext:
3039  case lltok::kw_fptrunc:
3040  case lltok::kw_fpext:
3041  case lltok::kw_bitcast:
3042  case lltok::kw_uitofp:
3043  case lltok::kw_sitofp:
3044  case lltok::kw_fptoui:
3045  case lltok::kw_fptosi:
3046  case lltok::kw_inttoptr:
3047  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3048  // Other.
3049  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3050  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3051  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3052  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3053  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3054  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3055  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3056  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3057  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3058  // Memory.
3059  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3060  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3061  case lltok::kw_store:          return ParseStore(Inst, PFS);
3062  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3063  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3064  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3065  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3066  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3067  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3068  }
3069}
3070
3071/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3072bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3073  if (Opc == Instruction::FCmp) {
3074    switch (Lex.getKind()) {
3075    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3076    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3077    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3078    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3079    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3080    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3081    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3082    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3083    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3084    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3085    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3086    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3087    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3088    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3089    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3090    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3091    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3092    }
3093  } else {
3094    switch (Lex.getKind()) {
3095    default: TokError("expected icmp predicate (e.g. 'eq')");
3096    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3097    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3098    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3099    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3100    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3101    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3102    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3103    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3104    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3105    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3106    }
3107  }
3108  Lex.Lex();
3109  return false;
3110}
3111
3112//===----------------------------------------------------------------------===//
3113// Terminator Instructions.
3114//===----------------------------------------------------------------------===//
3115
3116/// ParseRet - Parse a return instruction.
3117///   ::= 'ret' void (',' !dbg, !1)*
3118///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3119bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3120                        PerFunctionState &PFS) {
3121  SMLoc TypeLoc = Lex.getLoc();
3122  Type *Ty = 0;
3123  if (ParseType(Ty, true /*void allowed*/)) return true;
3124
3125  Type *ResType = PFS.getFunction().getReturnType();
3126
3127  if (Ty->isVoidTy()) {
3128    if (!ResType->isVoidTy())
3129      return Error(TypeLoc, "value doesn't match function result type '" +
3130                   getTypeString(ResType) + "'");
3131
3132    Inst = ReturnInst::Create(Context);
3133    return false;
3134  }
3135
3136  Value *RV;
3137  if (ParseValue(Ty, RV, PFS)) return true;
3138
3139  if (ResType != RV->getType())
3140    return Error(TypeLoc, "value doesn't match function result type '" +
3141                 getTypeString(ResType) + "'");
3142
3143  Inst = ReturnInst::Create(Context, RV);
3144  return false;
3145}
3146
3147
3148/// ParseBr
3149///   ::= 'br' TypeAndValue
3150///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3151bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3152  LocTy Loc, Loc2;
3153  Value *Op0;
3154  BasicBlock *Op1, *Op2;
3155  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3156
3157  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3158    Inst = BranchInst::Create(BB);
3159    return false;
3160  }
3161
3162  if (Op0->getType() != Type::getInt1Ty(Context))
3163    return Error(Loc, "branch condition must have 'i1' type");
3164
3165  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3166      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3167      ParseToken(lltok::comma, "expected ',' after true destination") ||
3168      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3169    return true;
3170
3171  Inst = BranchInst::Create(Op1, Op2, Op0);
3172  return false;
3173}
3174
3175/// ParseSwitch
3176///  Instruction
3177///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3178///  JumpTable
3179///    ::= (TypeAndValue ',' TypeAndValue)*
3180bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3181  LocTy CondLoc, BBLoc;
3182  Value *Cond;
3183  BasicBlock *DefaultBB;
3184  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3185      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3186      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3187      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3188    return true;
3189
3190  if (!Cond->getType()->isIntegerTy())
3191    return Error(CondLoc, "switch condition must have integer type");
3192
3193  // Parse the jump table pairs.
3194  SmallPtrSet<Value*, 32> SeenCases;
3195  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3196  while (Lex.getKind() != lltok::rsquare) {
3197    Value *Constant;
3198    BasicBlock *DestBB;
3199
3200    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3201        ParseToken(lltok::comma, "expected ',' after case value") ||
3202        ParseTypeAndBasicBlock(DestBB, PFS))
3203      return true;
3204
3205    if (!SeenCases.insert(Constant))
3206      return Error(CondLoc, "duplicate case value in switch");
3207    if (!isa<ConstantInt>(Constant))
3208      return Error(CondLoc, "case value is not a constant integer");
3209
3210    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3211  }
3212
3213  Lex.Lex();  // Eat the ']'.
3214
3215  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3216  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3217    SI->addCase(Table[i].first, Table[i].second);
3218  Inst = SI;
3219  return false;
3220}
3221
3222/// ParseIndirectBr
3223///  Instruction
3224///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3225bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3226  LocTy AddrLoc;
3227  Value *Address;
3228  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3229      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3230      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3231    return true;
3232
3233  if (!Address->getType()->isPointerTy())
3234    return Error(AddrLoc, "indirectbr address must have pointer type");
3235
3236  // Parse the destination list.
3237  SmallVector<BasicBlock*, 16> DestList;
3238
3239  if (Lex.getKind() != lltok::rsquare) {
3240    BasicBlock *DestBB;
3241    if (ParseTypeAndBasicBlock(DestBB, PFS))
3242      return true;
3243    DestList.push_back(DestBB);
3244
3245    while (EatIfPresent(lltok::comma)) {
3246      if (ParseTypeAndBasicBlock(DestBB, PFS))
3247        return true;
3248      DestList.push_back(DestBB);
3249    }
3250  }
3251
3252  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3253    return true;
3254
3255  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3256  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3257    IBI->addDestination(DestList[i]);
3258  Inst = IBI;
3259  return false;
3260}
3261
3262
3263/// ParseInvoke
3264///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3265///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3266bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3267  LocTy CallLoc = Lex.getLoc();
3268  AttrBuilder RetAttrs, FnAttrs;
3269  CallingConv::ID CC;
3270  Type *RetType = 0;
3271  LocTy RetTypeLoc;
3272  ValID CalleeID;
3273  SmallVector<ParamInfo, 16> ArgList;
3274
3275  BasicBlock *NormalBB, *UnwindBB;
3276  if (ParseOptionalCallingConv(CC) ||
3277      ParseOptionalAttrs(RetAttrs, 1) ||
3278      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3279      ParseValID(CalleeID) ||
3280      ParseParameterList(ArgList, PFS) ||
3281      ParseOptionalAttrs(FnAttrs, 2) ||
3282      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3283      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3284      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3285      ParseTypeAndBasicBlock(UnwindBB, PFS))
3286    return true;
3287
3288  // If RetType is a non-function pointer type, then this is the short syntax
3289  // for the call, which means that RetType is just the return type.  Infer the
3290  // rest of the function argument types from the arguments that are present.
3291  PointerType *PFTy = 0;
3292  FunctionType *Ty = 0;
3293  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3294      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3295    // Pull out the types of all of the arguments...
3296    std::vector<Type*> ParamTypes;
3297    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3298      ParamTypes.push_back(ArgList[i].V->getType());
3299
3300    if (!FunctionType::isValidReturnType(RetType))
3301      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3302
3303    Ty = FunctionType::get(RetType, ParamTypes, false);
3304    PFTy = PointerType::getUnqual(Ty);
3305  }
3306
3307  // Look up the callee.
3308  Value *Callee;
3309  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3310
3311  // Set up the Attributes for the function.
3312  SmallVector<AttributeWithIndex, 8> Attrs;
3313  if (RetAttrs.hasAttributes())
3314    Attrs.push_back(
3315      AttributeWithIndex::get(AttrListPtr::ReturnIndex,
3316                              Attributes::get(Callee->getContext(),
3317                                              RetAttrs)));
3318
3319  SmallVector<Value*, 8> Args;
3320
3321  // Loop through FunctionType's arguments and ensure they are specified
3322  // correctly.  Also, gather any parameter attributes.
3323  FunctionType::param_iterator I = Ty->param_begin();
3324  FunctionType::param_iterator E = Ty->param_end();
3325  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3326    Type *ExpectedTy = 0;
3327    if (I != E) {
3328      ExpectedTy = *I++;
3329    } else if (!Ty->isVarArg()) {
3330      return Error(ArgList[i].Loc, "too many arguments specified");
3331    }
3332
3333    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3334      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3335                   getTypeString(ExpectedTy) + "'");
3336    Args.push_back(ArgList[i].V);
3337    if (ArgList[i].Attrs.hasAttributes())
3338      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3339  }
3340
3341  if (I != E)
3342    return Error(CallLoc, "not enough parameters specified for call");
3343
3344  if (FnAttrs.hasAttributes())
3345    Attrs.push_back(
3346      AttributeWithIndex::get(AttrListPtr::FunctionIndex,
3347                              Attributes::get(Callee->getContext(),
3348                                              FnAttrs)));
3349
3350  // Finish off the Attributes and check them
3351  AttrListPtr PAL = AttrListPtr::get(Attrs);
3352
3353  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3354  II->setCallingConv(CC);
3355  II->setAttributes(PAL);
3356  Inst = II;
3357  return false;
3358}
3359
3360/// ParseResume
3361///   ::= 'resume' TypeAndValue
3362bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3363  Value *Exn; LocTy ExnLoc;
3364  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3365    return true;
3366
3367  ResumeInst *RI = ResumeInst::Create(Exn);
3368  Inst = RI;
3369  return false;
3370}
3371
3372//===----------------------------------------------------------------------===//
3373// Binary Operators.
3374//===----------------------------------------------------------------------===//
3375
3376/// ParseArithmetic
3377///  ::= ArithmeticOps TypeAndValue ',' Value
3378///
3379/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3380/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3381bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3382                               unsigned Opc, unsigned OperandType) {
3383  LocTy Loc; Value *LHS, *RHS;
3384  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3385      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3386      ParseValue(LHS->getType(), RHS, PFS))
3387    return true;
3388
3389  bool Valid;
3390  switch (OperandType) {
3391  default: llvm_unreachable("Unknown operand type!");
3392  case 0: // int or FP.
3393    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3394            LHS->getType()->isFPOrFPVectorTy();
3395    break;
3396  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3397  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3398  }
3399
3400  if (!Valid)
3401    return Error(Loc, "invalid operand type for instruction");
3402
3403  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3404  return false;
3405}
3406
3407/// ParseLogical
3408///  ::= ArithmeticOps TypeAndValue ',' Value {
3409bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3410                            unsigned Opc) {
3411  LocTy Loc; Value *LHS, *RHS;
3412  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3413      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3414      ParseValue(LHS->getType(), RHS, PFS))
3415    return true;
3416
3417  if (!LHS->getType()->isIntOrIntVectorTy())
3418    return Error(Loc,"instruction requires integer or integer vector operands");
3419
3420  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3421  return false;
3422}
3423
3424
3425/// ParseCompare
3426///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3427///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3428bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3429                            unsigned Opc) {
3430  // Parse the integer/fp comparison predicate.
3431  LocTy Loc;
3432  unsigned Pred;
3433  Value *LHS, *RHS;
3434  if (ParseCmpPredicate(Pred, Opc) ||
3435      ParseTypeAndValue(LHS, Loc, PFS) ||
3436      ParseToken(lltok::comma, "expected ',' after compare value") ||
3437      ParseValue(LHS->getType(), RHS, PFS))
3438    return true;
3439
3440  if (Opc == Instruction::FCmp) {
3441    if (!LHS->getType()->isFPOrFPVectorTy())
3442      return Error(Loc, "fcmp requires floating point operands");
3443    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3444  } else {
3445    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3446    if (!LHS->getType()->isIntOrIntVectorTy() &&
3447        !LHS->getType()->getScalarType()->isPointerTy())
3448      return Error(Loc, "icmp requires integer operands");
3449    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3450  }
3451  return false;
3452}
3453
3454//===----------------------------------------------------------------------===//
3455// Other Instructions.
3456//===----------------------------------------------------------------------===//
3457
3458
3459/// ParseCast
3460///   ::= CastOpc TypeAndValue 'to' Type
3461bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3462                         unsigned Opc) {
3463  LocTy Loc;
3464  Value *Op;
3465  Type *DestTy = 0;
3466  if (ParseTypeAndValue(Op, Loc, PFS) ||
3467      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3468      ParseType(DestTy))
3469    return true;
3470
3471  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3472    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3473    return Error(Loc, "invalid cast opcode for cast from '" +
3474                 getTypeString(Op->getType()) + "' to '" +
3475                 getTypeString(DestTy) + "'");
3476  }
3477  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3478  return false;
3479}
3480
3481/// ParseSelect
3482///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3483bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3484  LocTy Loc;
3485  Value *Op0, *Op1, *Op2;
3486  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3487      ParseToken(lltok::comma, "expected ',' after select condition") ||
3488      ParseTypeAndValue(Op1, PFS) ||
3489      ParseToken(lltok::comma, "expected ',' after select value") ||
3490      ParseTypeAndValue(Op2, PFS))
3491    return true;
3492
3493  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3494    return Error(Loc, Reason);
3495
3496  Inst = SelectInst::Create(Op0, Op1, Op2);
3497  return false;
3498}
3499
3500/// ParseVA_Arg
3501///   ::= 'va_arg' TypeAndValue ',' Type
3502bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3503  Value *Op;
3504  Type *EltTy = 0;
3505  LocTy TypeLoc;
3506  if (ParseTypeAndValue(Op, PFS) ||
3507      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3508      ParseType(EltTy, TypeLoc))
3509    return true;
3510
3511  if (!EltTy->isFirstClassType())
3512    return Error(TypeLoc, "va_arg requires operand with first class type");
3513
3514  Inst = new VAArgInst(Op, EltTy);
3515  return false;
3516}
3517
3518/// ParseExtractElement
3519///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3520bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3521  LocTy Loc;
3522  Value *Op0, *Op1;
3523  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3524      ParseToken(lltok::comma, "expected ',' after extract value") ||
3525      ParseTypeAndValue(Op1, PFS))
3526    return true;
3527
3528  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3529    return Error(Loc, "invalid extractelement operands");
3530
3531  Inst = ExtractElementInst::Create(Op0, Op1);
3532  return false;
3533}
3534
3535/// ParseInsertElement
3536///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3537bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3538  LocTy Loc;
3539  Value *Op0, *Op1, *Op2;
3540  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3541      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3542      ParseTypeAndValue(Op1, PFS) ||
3543      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3544      ParseTypeAndValue(Op2, PFS))
3545    return true;
3546
3547  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3548    return Error(Loc, "invalid insertelement operands");
3549
3550  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3551  return false;
3552}
3553
3554/// ParseShuffleVector
3555///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3556bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3557  LocTy Loc;
3558  Value *Op0, *Op1, *Op2;
3559  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3560      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3561      ParseTypeAndValue(Op1, PFS) ||
3562      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3563      ParseTypeAndValue(Op2, PFS))
3564    return true;
3565
3566  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3567    return Error(Loc, "invalid shufflevector operands");
3568
3569  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3570  return false;
3571}
3572
3573/// ParsePHI
3574///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3575int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3576  Type *Ty = 0;  LocTy TypeLoc;
3577  Value *Op0, *Op1;
3578
3579  if (ParseType(Ty, TypeLoc) ||
3580      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3581      ParseValue(Ty, Op0, PFS) ||
3582      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3583      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3584      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3585    return true;
3586
3587  bool AteExtraComma = false;
3588  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3589  while (1) {
3590    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3591
3592    if (!EatIfPresent(lltok::comma))
3593      break;
3594
3595    if (Lex.getKind() == lltok::MetadataVar) {
3596      AteExtraComma = true;
3597      break;
3598    }
3599
3600    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3601        ParseValue(Ty, Op0, PFS) ||
3602        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3603        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3604        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3605      return true;
3606  }
3607
3608  if (!Ty->isFirstClassType())
3609    return Error(TypeLoc, "phi node must have first class type");
3610
3611  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3612  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3613    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3614  Inst = PN;
3615  return AteExtraComma ? InstExtraComma : InstNormal;
3616}
3617
3618/// ParseLandingPad
3619///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3620/// Clause
3621///   ::= 'catch' TypeAndValue
3622///   ::= 'filter'
3623///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3624bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3625  Type *Ty = 0; LocTy TyLoc;
3626  Value *PersFn; LocTy PersFnLoc;
3627
3628  if (ParseType(Ty, TyLoc) ||
3629      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3630      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3631    return true;
3632
3633  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3634  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3635
3636  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3637    LandingPadInst::ClauseType CT;
3638    if (EatIfPresent(lltok::kw_catch))
3639      CT = LandingPadInst::Catch;
3640    else if (EatIfPresent(lltok::kw_filter))
3641      CT = LandingPadInst::Filter;
3642    else
3643      return TokError("expected 'catch' or 'filter' clause type");
3644
3645    Value *V; LocTy VLoc;
3646    if (ParseTypeAndValue(V, VLoc, PFS)) {
3647      delete LP;
3648      return true;
3649    }
3650
3651    // A 'catch' type expects a non-array constant. A filter clause expects an
3652    // array constant.
3653    if (CT == LandingPadInst::Catch) {
3654      if (isa<ArrayType>(V->getType()))
3655        Error(VLoc, "'catch' clause has an invalid type");
3656    } else {
3657      if (!isa<ArrayType>(V->getType()))
3658        Error(VLoc, "'filter' clause has an invalid type");
3659    }
3660
3661    LP->addClause(V);
3662  }
3663
3664  Inst = LP;
3665  return false;
3666}
3667
3668/// ParseCall
3669///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3670///       ParameterList OptionalAttrs
3671bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3672                         bool isTail) {
3673  AttrBuilder RetAttrs, FnAttrs;
3674  CallingConv::ID CC;
3675  Type *RetType = 0;
3676  LocTy RetTypeLoc;
3677  ValID CalleeID;
3678  SmallVector<ParamInfo, 16> ArgList;
3679  LocTy CallLoc = Lex.getLoc();
3680
3681  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3682      ParseOptionalCallingConv(CC) ||
3683      ParseOptionalAttrs(RetAttrs, 1) ||
3684      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3685      ParseValID(CalleeID) ||
3686      ParseParameterList(ArgList, PFS) ||
3687      ParseOptionalAttrs(FnAttrs, 2))
3688    return true;
3689
3690  // If RetType is a non-function pointer type, then this is the short syntax
3691  // for the call, which means that RetType is just the return type.  Infer the
3692  // rest of the function argument types from the arguments that are present.
3693  PointerType *PFTy = 0;
3694  FunctionType *Ty = 0;
3695  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3696      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3697    // Pull out the types of all of the arguments...
3698    std::vector<Type*> ParamTypes;
3699    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3700      ParamTypes.push_back(ArgList[i].V->getType());
3701
3702    if (!FunctionType::isValidReturnType(RetType))
3703      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3704
3705    Ty = FunctionType::get(RetType, ParamTypes, false);
3706    PFTy = PointerType::getUnqual(Ty);
3707  }
3708
3709  // Look up the callee.
3710  Value *Callee;
3711  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3712
3713  // Set up the Attributes for the function.
3714  SmallVector<AttributeWithIndex, 8> Attrs;
3715  if (RetAttrs.hasAttributes())
3716    Attrs.push_back(
3717      AttributeWithIndex::get(AttrListPtr::ReturnIndex,
3718                              Attributes::get(Callee->getContext(),
3719                                              RetAttrs)));
3720
3721  SmallVector<Value*, 8> Args;
3722
3723  // Loop through FunctionType's arguments and ensure they are specified
3724  // correctly.  Also, gather any parameter attributes.
3725  FunctionType::param_iterator I = Ty->param_begin();
3726  FunctionType::param_iterator E = Ty->param_end();
3727  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3728    Type *ExpectedTy = 0;
3729    if (I != E) {
3730      ExpectedTy = *I++;
3731    } else if (!Ty->isVarArg()) {
3732      return Error(ArgList[i].Loc, "too many arguments specified");
3733    }
3734
3735    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3736      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3737                   getTypeString(ExpectedTy) + "'");
3738    Args.push_back(ArgList[i].V);
3739    if (ArgList[i].Attrs.hasAttributes())
3740      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3741  }
3742
3743  if (I != E)
3744    return Error(CallLoc, "not enough parameters specified for call");
3745
3746  if (FnAttrs.hasAttributes())
3747    Attrs.push_back(
3748      AttributeWithIndex::get(AttrListPtr::FunctionIndex,
3749                              Attributes::get(Callee->getContext(),
3750                                              FnAttrs)));
3751
3752  // Finish off the Attributes and check them
3753  AttrListPtr PAL = AttrListPtr::get(Attrs);
3754
3755  CallInst *CI = CallInst::Create(Callee, Args);
3756  CI->setTailCall(isTail);
3757  CI->setCallingConv(CC);
3758  CI->setAttributes(PAL);
3759  Inst = CI;
3760  return false;
3761}
3762
3763//===----------------------------------------------------------------------===//
3764// Memory Instructions.
3765//===----------------------------------------------------------------------===//
3766
3767/// ParseAlloc
3768///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3769int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3770  Value *Size = 0;
3771  LocTy SizeLoc;
3772  unsigned Alignment = 0;
3773  Type *Ty = 0;
3774  if (ParseType(Ty)) return true;
3775
3776  bool AteExtraComma = false;
3777  if (EatIfPresent(lltok::comma)) {
3778    if (Lex.getKind() == lltok::kw_align) {
3779      if (ParseOptionalAlignment(Alignment)) return true;
3780    } else if (Lex.getKind() == lltok::MetadataVar) {
3781      AteExtraComma = true;
3782    } else {
3783      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3784          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3785        return true;
3786    }
3787  }
3788
3789  if (Size && !Size->getType()->isIntegerTy())
3790    return Error(SizeLoc, "element count must have integer type");
3791
3792  Inst = new AllocaInst(Ty, Size, Alignment);
3793  return AteExtraComma ? InstExtraComma : InstNormal;
3794}
3795
3796/// ParseLoad
3797///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3798///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3799///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3800int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3801  Value *Val; LocTy Loc;
3802  unsigned Alignment = 0;
3803  bool AteExtraComma = false;
3804  bool isAtomic = false;
3805  AtomicOrdering Ordering = NotAtomic;
3806  SynchronizationScope Scope = CrossThread;
3807
3808  if (Lex.getKind() == lltok::kw_atomic) {
3809    isAtomic = true;
3810    Lex.Lex();
3811  }
3812
3813  bool isVolatile = false;
3814  if (Lex.getKind() == lltok::kw_volatile) {
3815    isVolatile = true;
3816    Lex.Lex();
3817  }
3818
3819  if (ParseTypeAndValue(Val, Loc, PFS) ||
3820      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3821      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3822    return true;
3823
3824  if (!Val->getType()->isPointerTy() ||
3825      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3826    return Error(Loc, "load operand must be a pointer to a first class type");
3827  if (isAtomic && !Alignment)
3828    return Error(Loc, "atomic load must have explicit non-zero alignment");
3829  if (Ordering == Release || Ordering == AcquireRelease)
3830    return Error(Loc, "atomic load cannot use Release ordering");
3831
3832  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3833  return AteExtraComma ? InstExtraComma : InstNormal;
3834}
3835
3836/// ParseStore
3837
3838///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3839///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3840///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3841int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3842  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3843  unsigned Alignment = 0;
3844  bool AteExtraComma = false;
3845  bool isAtomic = false;
3846  AtomicOrdering Ordering = NotAtomic;
3847  SynchronizationScope Scope = CrossThread;
3848
3849  if (Lex.getKind() == lltok::kw_atomic) {
3850    isAtomic = true;
3851    Lex.Lex();
3852  }
3853
3854  bool isVolatile = false;
3855  if (Lex.getKind() == lltok::kw_volatile) {
3856    isVolatile = true;
3857    Lex.Lex();
3858  }
3859
3860  if (ParseTypeAndValue(Val, Loc, PFS) ||
3861      ParseToken(lltok::comma, "expected ',' after store operand") ||
3862      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3863      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3864      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3865    return true;
3866
3867  if (!Ptr->getType()->isPointerTy())
3868    return Error(PtrLoc, "store operand must be a pointer");
3869  if (!Val->getType()->isFirstClassType())
3870    return Error(Loc, "store operand must be a first class value");
3871  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3872    return Error(Loc, "stored value and pointer type do not match");
3873  if (isAtomic && !Alignment)
3874    return Error(Loc, "atomic store must have explicit non-zero alignment");
3875  if (Ordering == Acquire || Ordering == AcquireRelease)
3876    return Error(Loc, "atomic store cannot use Acquire ordering");
3877
3878  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3879  return AteExtraComma ? InstExtraComma : InstNormal;
3880}
3881
3882/// ParseCmpXchg
3883///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3884///       'singlethread'? AtomicOrdering
3885int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3886  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3887  bool AteExtraComma = false;
3888  AtomicOrdering Ordering = NotAtomic;
3889  SynchronizationScope Scope = CrossThread;
3890  bool isVolatile = false;
3891
3892  if (EatIfPresent(lltok::kw_volatile))
3893    isVolatile = true;
3894
3895  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3896      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3897      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3898      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3899      ParseTypeAndValue(New, NewLoc, PFS) ||
3900      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3901    return true;
3902
3903  if (Ordering == Unordered)
3904    return TokError("cmpxchg cannot be unordered");
3905  if (!Ptr->getType()->isPointerTy())
3906    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3907  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3908    return Error(CmpLoc, "compare value and pointer type do not match");
3909  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3910    return Error(NewLoc, "new value and pointer type do not match");
3911  if (!New->getType()->isIntegerTy())
3912    return Error(NewLoc, "cmpxchg operand must be an integer");
3913  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3914  if (Size < 8 || (Size & (Size - 1)))
3915    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3916                         " integer");
3917
3918  AtomicCmpXchgInst *CXI =
3919    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3920  CXI->setVolatile(isVolatile);
3921  Inst = CXI;
3922  return AteExtraComma ? InstExtraComma : InstNormal;
3923}
3924
3925/// ParseAtomicRMW
3926///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3927///       'singlethread'? AtomicOrdering
3928int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3929  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3930  bool AteExtraComma = false;
3931  AtomicOrdering Ordering = NotAtomic;
3932  SynchronizationScope Scope = CrossThread;
3933  bool isVolatile = false;
3934  AtomicRMWInst::BinOp Operation;
3935
3936  if (EatIfPresent(lltok::kw_volatile))
3937    isVolatile = true;
3938
3939  switch (Lex.getKind()) {
3940  default: return TokError("expected binary operation in atomicrmw");
3941  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3942  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3943  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3944  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3945  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3946  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3947  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3948  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3949  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3950  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3951  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3952  }
3953  Lex.Lex();  // Eat the operation.
3954
3955  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3956      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3957      ParseTypeAndValue(Val, ValLoc, PFS) ||
3958      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3959    return true;
3960
3961  if (Ordering == Unordered)
3962    return TokError("atomicrmw cannot be unordered");
3963  if (!Ptr->getType()->isPointerTy())
3964    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3965  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3966    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3967  if (!Val->getType()->isIntegerTy())
3968    return Error(ValLoc, "atomicrmw operand must be an integer");
3969  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3970  if (Size < 8 || (Size & (Size - 1)))
3971    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3972                         " integer");
3973
3974  AtomicRMWInst *RMWI =
3975    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3976  RMWI->setVolatile(isVolatile);
3977  Inst = RMWI;
3978  return AteExtraComma ? InstExtraComma : InstNormal;
3979}
3980
3981/// ParseFence
3982///   ::= 'fence' 'singlethread'? AtomicOrdering
3983int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3984  AtomicOrdering Ordering = NotAtomic;
3985  SynchronizationScope Scope = CrossThread;
3986  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3987    return true;
3988
3989  if (Ordering == Unordered)
3990    return TokError("fence cannot be unordered");
3991  if (Ordering == Monotonic)
3992    return TokError("fence cannot be monotonic");
3993
3994  Inst = new FenceInst(Context, Ordering, Scope);
3995  return InstNormal;
3996}
3997
3998/// ParseGetElementPtr
3999///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4000int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4001  Value *Ptr = 0;
4002  Value *Val = 0;
4003  LocTy Loc, EltLoc;
4004
4005  bool InBounds = EatIfPresent(lltok::kw_inbounds);
4006
4007  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4008
4009  if (!Ptr->getType()->getScalarType()->isPointerTy())
4010    return Error(Loc, "base of getelementptr must be a pointer");
4011
4012  SmallVector<Value*, 16> Indices;
4013  bool AteExtraComma = false;
4014  while (EatIfPresent(lltok::comma)) {
4015    if (Lex.getKind() == lltok::MetadataVar) {
4016      AteExtraComma = true;
4017      break;
4018    }
4019    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4020    if (!Val->getType()->getScalarType()->isIntegerTy())
4021      return Error(EltLoc, "getelementptr index must be an integer");
4022    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4023      return Error(EltLoc, "getelementptr index type missmatch");
4024    if (Val->getType()->isVectorTy()) {
4025      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4026      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4027      if (ValNumEl != PtrNumEl)
4028        return Error(EltLoc,
4029          "getelementptr vector index has a wrong number of elements");
4030    }
4031    Indices.push_back(Val);
4032  }
4033
4034  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
4035    return Error(Loc, "invalid getelementptr indices");
4036  Inst = GetElementPtrInst::Create(Ptr, Indices);
4037  if (InBounds)
4038    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4039  return AteExtraComma ? InstExtraComma : InstNormal;
4040}
4041
4042/// ParseExtractValue
4043///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4044int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4045  Value *Val; LocTy Loc;
4046  SmallVector<unsigned, 4> Indices;
4047  bool AteExtraComma;
4048  if (ParseTypeAndValue(Val, Loc, PFS) ||
4049      ParseIndexList(Indices, AteExtraComma))
4050    return true;
4051
4052  if (!Val->getType()->isAggregateType())
4053    return Error(Loc, "extractvalue operand must be aggregate type");
4054
4055  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4056    return Error(Loc, "invalid indices for extractvalue");
4057  Inst = ExtractValueInst::Create(Val, Indices);
4058  return AteExtraComma ? InstExtraComma : InstNormal;
4059}
4060
4061/// ParseInsertValue
4062///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4063int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4064  Value *Val0, *Val1; LocTy Loc0, Loc1;
4065  SmallVector<unsigned, 4> Indices;
4066  bool AteExtraComma;
4067  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4068      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4069      ParseTypeAndValue(Val1, Loc1, PFS) ||
4070      ParseIndexList(Indices, AteExtraComma))
4071    return true;
4072
4073  if (!Val0->getType()->isAggregateType())
4074    return Error(Loc0, "insertvalue operand must be aggregate type");
4075
4076  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4077    return Error(Loc0, "invalid indices for insertvalue");
4078  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4079  return AteExtraComma ? InstExtraComma : InstNormal;
4080}
4081
4082//===----------------------------------------------------------------------===//
4083// Embedded metadata.
4084//===----------------------------------------------------------------------===//
4085
4086/// ParseMDNodeVector
4087///   ::= Element (',' Element)*
4088/// Element
4089///   ::= 'null' | TypeAndValue
4090bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4091                                 PerFunctionState *PFS) {
4092  // Check for an empty list.
4093  if (Lex.getKind() == lltok::rbrace)
4094    return false;
4095
4096  do {
4097    // Null is a special case since it is typeless.
4098    if (EatIfPresent(lltok::kw_null)) {
4099      Elts.push_back(0);
4100      continue;
4101    }
4102
4103    Value *V = 0;
4104    if (ParseTypeAndValue(V, PFS)) return true;
4105    Elts.push_back(V);
4106  } while (EatIfPresent(lltok::comma));
4107
4108  return false;
4109}
4110