LLParser.cpp revision 9d5f6ccd26615592361baa299fc5b450501fb1b0
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  // Check debug info intrinsics.
124  CheckDebugInfoIntrinsics(M);
125  return false;
126}
127
128bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
129                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
130                                               PerFunctionState *PFS) {
131  // Loop over all the references, resolving them.
132  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
133    BasicBlock *Res;
134    if (PFS) {
135      if (Refs[i].first.Kind == ValID::t_LocalName)
136        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
137      else
138        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
139    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
140      return Error(Refs[i].first.Loc,
141       "cannot take address of numeric label after the function is defined");
142    } else {
143      Res = dyn_cast_or_null<BasicBlock>(
144                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
145    }
146
147    if (Res == 0)
148      return Error(Refs[i].first.Loc,
149                   "referenced value is not a basic block");
150
151    // Get the BlockAddress for this and update references to use it.
152    BlockAddress *BA = BlockAddress::get(TheFn, Res);
153    Refs[i].second->replaceAllUsesWith(BA);
154    Refs[i].second->eraseFromParent();
155  }
156  return false;
157}
158
159
160//===----------------------------------------------------------------------===//
161// Top-Level Entities
162//===----------------------------------------------------------------------===//
163
164bool LLParser::ParseTopLevelEntities() {
165  while (1) {
166    switch (Lex.getKind()) {
167    default:         return TokError("expected top-level entity");
168    case lltok::Eof: return false;
169    case lltok::kw_declare: if (ParseDeclare()) return true; break;
170    case lltok::kw_define:  if (ParseDefine()) return true; break;
171    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
172    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
173    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
174    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
175    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
176    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
177    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
178    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
179    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
180
181    // The Global variable production with no name can have many different
182    // optional leading prefixes, the production is:
183    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
184    //               OptionalAddrSpace OptionalUnNammedAddr
185    //               ('constant'|'global') ...
186    case lltok::kw_private:             // OptionalLinkage
187    case lltok::kw_linker_private:      // OptionalLinkage
188    case lltok::kw_linker_private_weak: // OptionalLinkage
189    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
190    case lltok::kw_internal:            // OptionalLinkage
191    case lltok::kw_weak:                // OptionalLinkage
192    case lltok::kw_weak_odr:            // OptionalLinkage
193    case lltok::kw_linkonce:            // OptionalLinkage
194    case lltok::kw_linkonce_odr:        // OptionalLinkage
195    case lltok::kw_appending:           // OptionalLinkage
196    case lltok::kw_dllexport:           // OptionalLinkage
197    case lltok::kw_common:              // OptionalLinkage
198    case lltok::kw_dllimport:           // OptionalLinkage
199    case lltok::kw_extern_weak:         // OptionalLinkage
200    case lltok::kw_external: {          // OptionalLinkage
201      unsigned Linkage, Visibility;
202      if (ParseOptionalLinkage(Linkage) ||
203          ParseOptionalVisibility(Visibility) ||
204          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
205        return true;
206      break;
207    }
208    case lltok::kw_default:       // OptionalVisibility
209    case lltok::kw_hidden:        // OptionalVisibility
210    case lltok::kw_protected: {   // OptionalVisibility
211      unsigned Visibility;
212      if (ParseOptionalVisibility(Visibility) ||
213          ParseGlobal("", SMLoc(), 0, false, Visibility))
214        return true;
215      break;
216    }
217
218    case lltok::kw_thread_local:  // OptionalThreadLocal
219    case lltok::kw_addrspace:     // OptionalAddrSpace
220    case lltok::kw_constant:      // GlobalType
221    case lltok::kw_global:        // GlobalType
222      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
223      break;
224    }
225  }
226}
227
228
229/// toplevelentity
230///   ::= 'module' 'asm' STRINGCONSTANT
231bool LLParser::ParseModuleAsm() {
232  assert(Lex.getKind() == lltok::kw_module);
233  Lex.Lex();
234
235  std::string AsmStr;
236  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
237      ParseStringConstant(AsmStr)) return true;
238
239  M->appendModuleInlineAsm(AsmStr);
240  return false;
241}
242
243/// toplevelentity
244///   ::= 'target' 'triple' '=' STRINGCONSTANT
245///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
246bool LLParser::ParseTargetDefinition() {
247  assert(Lex.getKind() == lltok::kw_target);
248  std::string Str;
249  switch (Lex.Lex()) {
250  default: return TokError("unknown target property");
251  case lltok::kw_triple:
252    Lex.Lex();
253    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
254        ParseStringConstant(Str))
255      return true;
256    M->setTargetTriple(Str);
257    return false;
258  case lltok::kw_datalayout:
259    Lex.Lex();
260    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
261        ParseStringConstant(Str))
262      return true;
263    M->setDataLayout(Str);
264    return false;
265  }
266}
267
268/// toplevelentity
269///   ::= 'deplibs' '=' '[' ']'
270///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
271bool LLParser::ParseDepLibs() {
272  assert(Lex.getKind() == lltok::kw_deplibs);
273  Lex.Lex();
274  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
275      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
276    return true;
277
278  if (EatIfPresent(lltok::rsquare))
279    return false;
280
281  std::string Str;
282  if (ParseStringConstant(Str)) return true;
283  M->addLibrary(Str);
284
285  while (EatIfPresent(lltok::comma)) {
286    if (ParseStringConstant(Str)) return true;
287    M->addLibrary(Str);
288  }
289
290  return ParseToken(lltok::rsquare, "expected ']' at end of list");
291}
292
293/// ParseUnnamedType:
294///   ::= LocalVarID '=' 'type' type
295bool LLParser::ParseUnnamedType() {
296  LocTy TypeLoc = Lex.getLoc();
297  unsigned TypeID = Lex.getUIntVal();
298  Lex.Lex(); // eat LocalVarID;
299
300  if (ParseToken(lltok::equal, "expected '=' after name") ||
301      ParseToken(lltok::kw_type, "expected 'type' after '='"))
302    return true;
303
304  if (TypeID >= NumberedTypes.size())
305    NumberedTypes.resize(TypeID+1);
306
307  Type *Result = 0;
308  if (ParseStructDefinition(TypeLoc, "",
309                            NumberedTypes[TypeID], Result)) return true;
310
311  if (!isa<StructType>(Result)) {
312    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
313    if (Entry.first)
314      return Error(TypeLoc, "non-struct types may not be recursive");
315    Entry.first = Result;
316    Entry.second = SMLoc();
317  }
318
319  return false;
320}
321
322
323/// toplevelentity
324///   ::= LocalVar '=' 'type' type
325bool LLParser::ParseNamedType() {
326  std::string Name = Lex.getStrVal();
327  LocTy NameLoc = Lex.getLoc();
328  Lex.Lex();  // eat LocalVar.
329
330  if (ParseToken(lltok::equal, "expected '=' after name") ||
331      ParseToken(lltok::kw_type, "expected 'type' after name"))
332    return true;
333
334  Type *Result = 0;
335  if (ParseStructDefinition(NameLoc, Name,
336                            NamedTypes[Name], Result)) return true;
337
338  if (!isa<StructType>(Result)) {
339    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
340    if (Entry.first)
341      return Error(NameLoc, "non-struct types may not be recursive");
342    Entry.first = Result;
343    Entry.second = SMLoc();
344  }
345
346  return false;
347}
348
349
350/// toplevelentity
351///   ::= 'declare' FunctionHeader
352bool LLParser::ParseDeclare() {
353  assert(Lex.getKind() == lltok::kw_declare);
354  Lex.Lex();
355
356  Function *F;
357  return ParseFunctionHeader(F, false);
358}
359
360/// toplevelentity
361///   ::= 'define' FunctionHeader '{' ...
362bool LLParser::ParseDefine() {
363  assert(Lex.getKind() == lltok::kw_define);
364  Lex.Lex();
365
366  Function *F;
367  return ParseFunctionHeader(F, true) ||
368         ParseFunctionBody(*F);
369}
370
371/// ParseGlobalType
372///   ::= 'constant'
373///   ::= 'global'
374bool LLParser::ParseGlobalType(bool &IsConstant) {
375  if (Lex.getKind() == lltok::kw_constant)
376    IsConstant = true;
377  else if (Lex.getKind() == lltok::kw_global)
378    IsConstant = false;
379  else {
380    IsConstant = false;
381    return TokError("expected 'global' or 'constant'");
382  }
383  Lex.Lex();
384  return false;
385}
386
387/// ParseUnnamedGlobal:
388///   OptionalVisibility ALIAS ...
389///   OptionalLinkage OptionalVisibility ...   -> global variable
390///   GlobalID '=' OptionalVisibility ALIAS ...
391///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
392bool LLParser::ParseUnnamedGlobal() {
393  unsigned VarID = NumberedVals.size();
394  std::string Name;
395  LocTy NameLoc = Lex.getLoc();
396
397  // Handle the GlobalID form.
398  if (Lex.getKind() == lltok::GlobalID) {
399    if (Lex.getUIntVal() != VarID)
400      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
401                   Twine(VarID) + "'");
402    Lex.Lex(); // eat GlobalID;
403
404    if (ParseToken(lltok::equal, "expected '=' after name"))
405      return true;
406  }
407
408  bool HasLinkage;
409  unsigned Linkage, Visibility;
410  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
411      ParseOptionalVisibility(Visibility))
412    return true;
413
414  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
415    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
416  return ParseAlias(Name, NameLoc, Visibility);
417}
418
419/// ParseNamedGlobal:
420///   GlobalVar '=' OptionalVisibility ALIAS ...
421///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
422bool LLParser::ParseNamedGlobal() {
423  assert(Lex.getKind() == lltok::GlobalVar);
424  LocTy NameLoc = Lex.getLoc();
425  std::string Name = Lex.getStrVal();
426  Lex.Lex();
427
428  bool HasLinkage;
429  unsigned Linkage, Visibility;
430  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
431      ParseOptionalLinkage(Linkage, HasLinkage) ||
432      ParseOptionalVisibility(Visibility))
433    return true;
434
435  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
436    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
437  return ParseAlias(Name, NameLoc, Visibility);
438}
439
440// MDString:
441//   ::= '!' STRINGCONSTANT
442bool LLParser::ParseMDString(MDString *&Result) {
443  std::string Str;
444  if (ParseStringConstant(Str)) return true;
445  Result = MDString::get(Context, Str);
446  return false;
447}
448
449// MDNode:
450//   ::= '!' MDNodeNumber
451//
452/// This version of ParseMDNodeID returns the slot number and null in the case
453/// of a forward reference.
454bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
455  // !{ ..., !42, ... }
456  if (ParseUInt32(SlotNo)) return true;
457
458  // Check existing MDNode.
459  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
460    Result = NumberedMetadata[SlotNo];
461  else
462    Result = 0;
463  return false;
464}
465
466bool LLParser::ParseMDNodeID(MDNode *&Result) {
467  // !{ ..., !42, ... }
468  unsigned MID = 0;
469  if (ParseMDNodeID(Result, MID)) return true;
470
471  // If not a forward reference, just return it now.
472  if (Result) return false;
473
474  // Otherwise, create MDNode forward reference.
475  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
476  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
477
478  if (NumberedMetadata.size() <= MID)
479    NumberedMetadata.resize(MID+1);
480  NumberedMetadata[MID] = FwdNode;
481  Result = FwdNode;
482  return false;
483}
484
485/// ParseNamedMetadata:
486///   !foo = !{ !1, !2 }
487bool LLParser::ParseNamedMetadata() {
488  assert(Lex.getKind() == lltok::MetadataVar);
489  std::string Name = Lex.getStrVal();
490  Lex.Lex();
491
492  if (ParseToken(lltok::equal, "expected '=' here") ||
493      ParseToken(lltok::exclaim, "Expected '!' here") ||
494      ParseToken(lltok::lbrace, "Expected '{' here"))
495    return true;
496
497  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
498  if (Lex.getKind() != lltok::rbrace)
499    do {
500      if (ParseToken(lltok::exclaim, "Expected '!' here"))
501        return true;
502
503      MDNode *N = 0;
504      if (ParseMDNodeID(N)) return true;
505      NMD->addOperand(N);
506    } while (EatIfPresent(lltok::comma));
507
508  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
509    return true;
510
511  return false;
512}
513
514/// ParseStandaloneMetadata:
515///   !42 = !{...}
516bool LLParser::ParseStandaloneMetadata() {
517  assert(Lex.getKind() == lltok::exclaim);
518  Lex.Lex();
519  unsigned MetadataID = 0;
520
521  LocTy TyLoc;
522  Type *Ty = 0;
523  SmallVector<Value *, 16> Elts;
524  if (ParseUInt32(MetadataID) ||
525      ParseToken(lltok::equal, "expected '=' here") ||
526      ParseType(Ty, TyLoc) ||
527      ParseToken(lltok::exclaim, "Expected '!' here") ||
528      ParseToken(lltok::lbrace, "Expected '{' here") ||
529      ParseMDNodeVector(Elts, NULL) ||
530      ParseToken(lltok::rbrace, "expected end of metadata node"))
531    return true;
532
533  MDNode *Init = MDNode::get(Context, Elts);
534
535  // See if this was forward referenced, if so, handle it.
536  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
537    FI = ForwardRefMDNodes.find(MetadataID);
538  if (FI != ForwardRefMDNodes.end()) {
539    MDNode *Temp = FI->second.first;
540    Temp->replaceAllUsesWith(Init);
541    MDNode::deleteTemporary(Temp);
542    ForwardRefMDNodes.erase(FI);
543
544    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
545  } else {
546    if (MetadataID >= NumberedMetadata.size())
547      NumberedMetadata.resize(MetadataID+1);
548
549    if (NumberedMetadata[MetadataID] != 0)
550      return TokError("Metadata id is already used");
551    NumberedMetadata[MetadataID] = Init;
552  }
553
554  return false;
555}
556
557/// ParseAlias:
558///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
559/// Aliasee
560///   ::= TypeAndValue
561///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
562///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
563///
564/// Everything through visibility has already been parsed.
565///
566bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
567                          unsigned Visibility) {
568  assert(Lex.getKind() == lltok::kw_alias);
569  Lex.Lex();
570  unsigned Linkage;
571  LocTy LinkageLoc = Lex.getLoc();
572  if (ParseOptionalLinkage(Linkage))
573    return true;
574
575  if (Linkage != GlobalValue::ExternalLinkage &&
576      Linkage != GlobalValue::WeakAnyLinkage &&
577      Linkage != GlobalValue::WeakODRLinkage &&
578      Linkage != GlobalValue::InternalLinkage &&
579      Linkage != GlobalValue::PrivateLinkage &&
580      Linkage != GlobalValue::LinkerPrivateLinkage &&
581      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
582      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
583    return Error(LinkageLoc, "invalid linkage type for alias");
584
585  Constant *Aliasee;
586  LocTy AliaseeLoc = Lex.getLoc();
587  if (Lex.getKind() != lltok::kw_bitcast &&
588      Lex.getKind() != lltok::kw_getelementptr) {
589    if (ParseGlobalTypeAndValue(Aliasee)) return true;
590  } else {
591    // The bitcast dest type is not present, it is implied by the dest type.
592    ValID ID;
593    if (ParseValID(ID)) return true;
594    if (ID.Kind != ValID::t_Constant)
595      return Error(AliaseeLoc, "invalid aliasee");
596    Aliasee = ID.ConstantVal;
597  }
598
599  if (!Aliasee->getType()->isPointerTy())
600    return Error(AliaseeLoc, "alias must have pointer type");
601
602  // Okay, create the alias but do not insert it into the module yet.
603  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
604                                    (GlobalValue::LinkageTypes)Linkage, Name,
605                                    Aliasee);
606  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
607
608  // See if this value already exists in the symbol table.  If so, it is either
609  // a redefinition or a definition of a forward reference.
610  if (GlobalValue *Val = M->getNamedValue(Name)) {
611    // See if this was a redefinition.  If so, there is no entry in
612    // ForwardRefVals.
613    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
614      I = ForwardRefVals.find(Name);
615    if (I == ForwardRefVals.end())
616      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
617
618    // Otherwise, this was a definition of forward ref.  Verify that types
619    // agree.
620    if (Val->getType() != GA->getType())
621      return Error(NameLoc,
622              "forward reference and definition of alias have different types");
623
624    // If they agree, just RAUW the old value with the alias and remove the
625    // forward ref info.
626    Val->replaceAllUsesWith(GA);
627    Val->eraseFromParent();
628    ForwardRefVals.erase(I);
629  }
630
631  // Insert into the module, we know its name won't collide now.
632  M->getAliasList().push_back(GA);
633  assert(GA->getName() == Name && "Should not be a name conflict!");
634
635  return false;
636}
637
638/// ParseGlobal
639///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
642///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
643///
644/// Everything through visibility has been parsed already.
645///
646bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
647                           unsigned Linkage, bool HasLinkage,
648                           unsigned Visibility) {
649  unsigned AddrSpace;
650  bool ThreadLocal, IsConstant, UnnamedAddr;
651  LocTy UnnamedAddrLoc;
652  LocTy TyLoc;
653
654  Type *Ty = 0;
655  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
656      ParseOptionalAddrSpace(AddrSpace) ||
657      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
658                         &UnnamedAddrLoc) ||
659      ParseGlobalType(IsConstant) ||
660      ParseType(Ty, TyLoc))
661    return true;
662
663  // If the linkage is specified and is external, then no initializer is
664  // present.
665  Constant *Init = 0;
666  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
667                      Linkage != GlobalValue::ExternalWeakLinkage &&
668                      Linkage != GlobalValue::ExternalLinkage)) {
669    if (ParseGlobalValue(Ty, Init))
670      return true;
671  }
672
673  if (Ty->isFunctionTy() || Ty->isLabelTy())
674    return Error(TyLoc, "invalid type for global variable");
675
676  GlobalVariable *GV = 0;
677
678  // See if the global was forward referenced, if so, use the global.
679  if (!Name.empty()) {
680    if (GlobalValue *GVal = M->getNamedValue(Name)) {
681      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
682        return Error(NameLoc, "redefinition of global '@" + Name + "'");
683      GV = cast<GlobalVariable>(GVal);
684    }
685  } else {
686    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
687      I = ForwardRefValIDs.find(NumberedVals.size());
688    if (I != ForwardRefValIDs.end()) {
689      GV = cast<GlobalVariable>(I->second.first);
690      ForwardRefValIDs.erase(I);
691    }
692  }
693
694  if (GV == 0) {
695    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
696                            Name, 0, false, AddrSpace);
697  } else {
698    if (GV->getType()->getElementType() != Ty)
699      return Error(TyLoc,
700            "forward reference and definition of global have different types");
701
702    // Move the forward-reference to the correct spot in the module.
703    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704  }
705
706  if (Name.empty())
707    NumberedVals.push_back(GV);
708
709  // Set the parsed properties on the global.
710  if (Init)
711    GV->setInitializer(Init);
712  GV->setConstant(IsConstant);
713  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715  GV->setThreadLocal(ThreadLocal);
716  GV->setUnnamedAddr(UnnamedAddr);
717
718  // Parse attributes on the global.
719  while (Lex.getKind() == lltok::comma) {
720    Lex.Lex();
721
722    if (Lex.getKind() == lltok::kw_section) {
723      Lex.Lex();
724      GV->setSection(Lex.getStrVal());
725      if (ParseToken(lltok::StringConstant, "expected global section string"))
726        return true;
727    } else if (Lex.getKind() == lltok::kw_align) {
728      unsigned Alignment;
729      if (ParseOptionalAlignment(Alignment)) return true;
730      GV->setAlignment(Alignment);
731    } else {
732      TokError("unknown global variable property!");
733    }
734  }
735
736  return false;
737}
738
739
740//===----------------------------------------------------------------------===//
741// GlobalValue Reference/Resolution Routines.
742//===----------------------------------------------------------------------===//
743
744/// GetGlobalVal - Get a value with the specified name or ID, creating a
745/// forward reference record if needed.  This can return null if the value
746/// exists but does not have the right type.
747GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748                                    LocTy Loc) {
749  PointerType *PTy = dyn_cast<PointerType>(Ty);
750  if (PTy == 0) {
751    Error(Loc, "global variable reference must have pointer type");
752    return 0;
753  }
754
755  // Look this name up in the normal function symbol table.
756  GlobalValue *Val =
757    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759  // If this is a forward reference for the value, see if we already created a
760  // forward ref record.
761  if (Val == 0) {
762    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763      I = ForwardRefVals.find(Name);
764    if (I != ForwardRefVals.end())
765      Val = I->second.first;
766  }
767
768  // If we have the value in the symbol table or fwd-ref table, return it.
769  if (Val) {
770    if (Val->getType() == Ty) return Val;
771    Error(Loc, "'@" + Name + "' defined with type '" +
772          getTypeString(Val->getType()) + "'");
773    return 0;
774  }
775
776  // Otherwise, create a new forward reference for this value and remember it.
777  GlobalValue *FwdVal;
778  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780  else
781    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782                                GlobalValue::ExternalWeakLinkage, 0, Name);
783
784  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
785  return FwdVal;
786}
787
788GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
789  PointerType *PTy = dyn_cast<PointerType>(Ty);
790  if (PTy == 0) {
791    Error(Loc, "global variable reference must have pointer type");
792    return 0;
793  }
794
795  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
796
797  // If this is a forward reference for the value, see if we already created a
798  // forward ref record.
799  if (Val == 0) {
800    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
801      I = ForwardRefValIDs.find(ID);
802    if (I != ForwardRefValIDs.end())
803      Val = I->second.first;
804  }
805
806  // If we have the value in the symbol table or fwd-ref table, return it.
807  if (Val) {
808    if (Val->getType() == Ty) return Val;
809    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
810          getTypeString(Val->getType()) + "'");
811    return 0;
812  }
813
814  // Otherwise, create a new forward reference for this value and remember it.
815  GlobalValue *FwdVal;
816  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
817    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
818  else
819    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
820                                GlobalValue::ExternalWeakLinkage, 0, "");
821
822  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
823  return FwdVal;
824}
825
826
827//===----------------------------------------------------------------------===//
828// Helper Routines.
829//===----------------------------------------------------------------------===//
830
831/// ParseToken - If the current token has the specified kind, eat it and return
832/// success.  Otherwise, emit the specified error and return failure.
833bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
834  if (Lex.getKind() != T)
835    return TokError(ErrMsg);
836  Lex.Lex();
837  return false;
838}
839
840/// ParseStringConstant
841///   ::= StringConstant
842bool LLParser::ParseStringConstant(std::string &Result) {
843  if (Lex.getKind() != lltok::StringConstant)
844    return TokError("expected string constant");
845  Result = Lex.getStrVal();
846  Lex.Lex();
847  return false;
848}
849
850/// ParseUInt32
851///   ::= uint32
852bool LLParser::ParseUInt32(unsigned &Val) {
853  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
854    return TokError("expected integer");
855  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
856  if (Val64 != unsigned(Val64))
857    return TokError("expected 32-bit integer (too large)");
858  Val = Val64;
859  Lex.Lex();
860  return false;
861}
862
863
864/// ParseOptionalAddrSpace
865///   := /*empty*/
866///   := 'addrspace' '(' uint32 ')'
867bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
868  AddrSpace = 0;
869  if (!EatIfPresent(lltok::kw_addrspace))
870    return false;
871  return ParseToken(lltok::lparen, "expected '(' in address space") ||
872         ParseUInt32(AddrSpace) ||
873         ParseToken(lltok::rparen, "expected ')' in address space");
874}
875
876/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
877/// indicates what kind of attribute list this is: 0: function arg, 1: result,
878/// 2: function attr.
879bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
880  Attrs = Attribute::None;
881  LocTy AttrLoc = Lex.getLoc();
882
883  while (1) {
884    switch (Lex.getKind()) {
885    default:  // End of attributes.
886      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
887        return Error(AttrLoc, "invalid use of function-only attribute");
888
889      // As a hack, we allow "align 2" on functions as a synonym for
890      // "alignstack 2".
891      if (AttrKind == 2 &&
892          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
893        return Error(AttrLoc, "invalid use of attribute on a function");
894
895      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
896        return Error(AttrLoc, "invalid use of parameter-only attribute");
897
898      return false;
899    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
900    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
901    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
902    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
903    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
904    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
905    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
906    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
907
908    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
909    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
910    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
911    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
912    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
913    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
914    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
915    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
916    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
917    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
918    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
919    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
920    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
921    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
922    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
923    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
924
925    case lltok::kw_alignstack: {
926      unsigned Alignment;
927      if (ParseOptionalStackAlignment(Alignment))
928        return true;
929      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
930      continue;
931    }
932
933    case lltok::kw_align: {
934      unsigned Alignment;
935      if (ParseOptionalAlignment(Alignment))
936        return true;
937      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
938      continue;
939    }
940
941    }
942    Lex.Lex();
943  }
944}
945
946/// ParseOptionalLinkage
947///   ::= /*empty*/
948///   ::= 'private'
949///   ::= 'linker_private'
950///   ::= 'linker_private_weak'
951///   ::= 'linker_private_weak_def_auto'
952///   ::= 'internal'
953///   ::= 'weak'
954///   ::= 'weak_odr'
955///   ::= 'linkonce'
956///   ::= 'linkonce_odr'
957///   ::= 'available_externally'
958///   ::= 'appending'
959///   ::= 'dllexport'
960///   ::= 'common'
961///   ::= 'dllimport'
962///   ::= 'extern_weak'
963///   ::= 'external'
964bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
965  HasLinkage = false;
966  switch (Lex.getKind()) {
967  default:                       Res=GlobalValue::ExternalLinkage; return false;
968  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
969  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
970  case lltok::kw_linker_private_weak:
971    Res = GlobalValue::LinkerPrivateWeakLinkage;
972    break;
973  case lltok::kw_linker_private_weak_def_auto:
974    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
975    break;
976  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
977  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
978  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
979  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
980  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
981  case lltok::kw_available_externally:
982    Res = GlobalValue::AvailableExternallyLinkage;
983    break;
984  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
985  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
986  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
987  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
988  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
989  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
990  }
991  Lex.Lex();
992  HasLinkage = true;
993  return false;
994}
995
996/// ParseOptionalVisibility
997///   ::= /*empty*/
998///   ::= 'default'
999///   ::= 'hidden'
1000///   ::= 'protected'
1001///
1002bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1003  switch (Lex.getKind()) {
1004  default:                  Res = GlobalValue::DefaultVisibility; return false;
1005  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1006  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1007  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1008  }
1009  Lex.Lex();
1010  return false;
1011}
1012
1013/// ParseOptionalCallingConv
1014///   ::= /*empty*/
1015///   ::= 'ccc'
1016///   ::= 'fastcc'
1017///   ::= 'coldcc'
1018///   ::= 'x86_stdcallcc'
1019///   ::= 'x86_fastcallcc'
1020///   ::= 'x86_thiscallcc'
1021///   ::= 'arm_apcscc'
1022///   ::= 'arm_aapcscc'
1023///   ::= 'arm_aapcs_vfpcc'
1024///   ::= 'msp430_intrcc'
1025///   ::= 'ptx_kernel'
1026///   ::= 'ptx_device'
1027///   ::= 'cc' UINT
1028///
1029bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1030  switch (Lex.getKind()) {
1031  default:                       CC = CallingConv::C; return false;
1032  case lltok::kw_ccc:            CC = CallingConv::C; break;
1033  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1034  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1035  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1036  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1037  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1038  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1039  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1040  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1041  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1042  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1043  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1044  case lltok::kw_cc: {
1045      unsigned ArbitraryCC;
1046      Lex.Lex();
1047      if (ParseUInt32(ArbitraryCC)) {
1048        return true;
1049      } else
1050        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1051        return false;
1052    }
1053    break;
1054  }
1055
1056  Lex.Lex();
1057  return false;
1058}
1059
1060/// ParseInstructionMetadata
1061///   ::= !dbg !42 (',' !dbg !57)*
1062bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1063                                        PerFunctionState *PFS) {
1064  do {
1065    if (Lex.getKind() != lltok::MetadataVar)
1066      return TokError("expected metadata after comma");
1067
1068    std::string Name = Lex.getStrVal();
1069    unsigned MDK = M->getMDKindID(Name.c_str());
1070    Lex.Lex();
1071
1072    MDNode *Node;
1073    SMLoc Loc = Lex.getLoc();
1074
1075    if (ParseToken(lltok::exclaim, "expected '!' here"))
1076      return true;
1077
1078    // This code is similar to that of ParseMetadataValue, however it needs to
1079    // have special-case code for a forward reference; see the comments on
1080    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1081    // at the top level here.
1082    if (Lex.getKind() == lltok::lbrace) {
1083      ValID ID;
1084      if (ParseMetadataListValue(ID, PFS))
1085        return true;
1086      assert(ID.Kind == ValID::t_MDNode);
1087      Inst->setMetadata(MDK, ID.MDNodeVal);
1088    } else {
1089      unsigned NodeID = 0;
1090      if (ParseMDNodeID(Node, NodeID))
1091        return true;
1092      if (Node) {
1093        // If we got the node, add it to the instruction.
1094        Inst->setMetadata(MDK, Node);
1095      } else {
1096        MDRef R = { Loc, MDK, NodeID };
1097        // Otherwise, remember that this should be resolved later.
1098        ForwardRefInstMetadata[Inst].push_back(R);
1099      }
1100    }
1101
1102    // If this is the end of the list, we're done.
1103  } while (EatIfPresent(lltok::comma));
1104  return false;
1105}
1106
1107/// ParseOptionalAlignment
1108///   ::= /* empty */
1109///   ::= 'align' 4
1110bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1111  Alignment = 0;
1112  if (!EatIfPresent(lltok::kw_align))
1113    return false;
1114  LocTy AlignLoc = Lex.getLoc();
1115  if (ParseUInt32(Alignment)) return true;
1116  if (!isPowerOf2_32(Alignment))
1117    return Error(AlignLoc, "alignment is not a power of two");
1118  if (Alignment > Value::MaximumAlignment)
1119    return Error(AlignLoc, "huge alignments are not supported yet");
1120  return false;
1121}
1122
1123/// ParseOptionalCommaAlign
1124///   ::=
1125///   ::= ',' align 4
1126///
1127/// This returns with AteExtraComma set to true if it ate an excess comma at the
1128/// end.
1129bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1130                                       bool &AteExtraComma) {
1131  AteExtraComma = false;
1132  while (EatIfPresent(lltok::comma)) {
1133    // Metadata at the end is an early exit.
1134    if (Lex.getKind() == lltok::MetadataVar) {
1135      AteExtraComma = true;
1136      return false;
1137    }
1138
1139    if (Lex.getKind() != lltok::kw_align)
1140      return Error(Lex.getLoc(), "expected metadata or 'align'");
1141
1142    if (ParseOptionalAlignment(Alignment)) return true;
1143  }
1144
1145  return false;
1146}
1147
1148/// ParseScopeAndOrdering
1149///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1150///   else: ::=
1151///
1152/// This sets Scope and Ordering to the parsed values.
1153bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1154                                     AtomicOrdering &Ordering) {
1155  if (!isAtomic)
1156    return false;
1157
1158  Scope = CrossThread;
1159  if (EatIfPresent(lltok::kw_singlethread))
1160    Scope = SingleThread;
1161  switch (Lex.getKind()) {
1162  default: return TokError("Expected ordering on atomic instruction");
1163  case lltok::kw_unordered: Ordering = Unordered; break;
1164  case lltok::kw_monotonic: Ordering = Monotonic; break;
1165  case lltok::kw_acquire: Ordering = Acquire; break;
1166  case lltok::kw_release: Ordering = Release; break;
1167  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1168  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1169  }
1170  Lex.Lex();
1171  return false;
1172}
1173
1174/// ParseOptionalStackAlignment
1175///   ::= /* empty */
1176///   ::= 'alignstack' '(' 4 ')'
1177bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1178  Alignment = 0;
1179  if (!EatIfPresent(lltok::kw_alignstack))
1180    return false;
1181  LocTy ParenLoc = Lex.getLoc();
1182  if (!EatIfPresent(lltok::lparen))
1183    return Error(ParenLoc, "expected '('");
1184  LocTy AlignLoc = Lex.getLoc();
1185  if (ParseUInt32(Alignment)) return true;
1186  ParenLoc = Lex.getLoc();
1187  if (!EatIfPresent(lltok::rparen))
1188    return Error(ParenLoc, "expected ')'");
1189  if (!isPowerOf2_32(Alignment))
1190    return Error(AlignLoc, "stack alignment is not a power of two");
1191  return false;
1192}
1193
1194/// ParseIndexList - This parses the index list for an insert/extractvalue
1195/// instruction.  This sets AteExtraComma in the case where we eat an extra
1196/// comma at the end of the line and find that it is followed by metadata.
1197/// Clients that don't allow metadata can call the version of this function that
1198/// only takes one argument.
1199///
1200/// ParseIndexList
1201///    ::=  (',' uint32)+
1202///
1203bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1204                              bool &AteExtraComma) {
1205  AteExtraComma = false;
1206
1207  if (Lex.getKind() != lltok::comma)
1208    return TokError("expected ',' as start of index list");
1209
1210  while (EatIfPresent(lltok::comma)) {
1211    if (Lex.getKind() == lltok::MetadataVar) {
1212      AteExtraComma = true;
1213      return false;
1214    }
1215    unsigned Idx = 0;
1216    if (ParseUInt32(Idx)) return true;
1217    Indices.push_back(Idx);
1218  }
1219
1220  return false;
1221}
1222
1223//===----------------------------------------------------------------------===//
1224// Type Parsing.
1225//===----------------------------------------------------------------------===//
1226
1227/// ParseType - Parse a type.
1228bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1229  SMLoc TypeLoc = Lex.getLoc();
1230  switch (Lex.getKind()) {
1231  default:
1232    return TokError("expected type");
1233  case lltok::Type:
1234    // Type ::= 'float' | 'void' (etc)
1235    Result = Lex.getTyVal();
1236    Lex.Lex();
1237    break;
1238  case lltok::lbrace:
1239    // Type ::= StructType
1240    if (ParseAnonStructType(Result, false))
1241      return true;
1242    break;
1243  case lltok::lsquare:
1244    // Type ::= '[' ... ']'
1245    Lex.Lex(); // eat the lsquare.
1246    if (ParseArrayVectorType(Result, false))
1247      return true;
1248    break;
1249  case lltok::less: // Either vector or packed struct.
1250    // Type ::= '<' ... '>'
1251    Lex.Lex();
1252    if (Lex.getKind() == lltok::lbrace) {
1253      if (ParseAnonStructType(Result, true) ||
1254          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1255        return true;
1256    } else if (ParseArrayVectorType(Result, true))
1257      return true;
1258    break;
1259  case lltok::LocalVar: {
1260    // Type ::= %foo
1261    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1262
1263    // If the type hasn't been defined yet, create a forward definition and
1264    // remember where that forward def'n was seen (in case it never is defined).
1265    if (Entry.first == 0) {
1266      Entry.first = StructType::create(Context, Lex.getStrVal());
1267      Entry.second = Lex.getLoc();
1268    }
1269    Result = Entry.first;
1270    Lex.Lex();
1271    break;
1272  }
1273
1274  case lltok::LocalVarID: {
1275    // Type ::= %4
1276    if (Lex.getUIntVal() >= NumberedTypes.size())
1277      NumberedTypes.resize(Lex.getUIntVal()+1);
1278    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1279
1280    // If the type hasn't been defined yet, create a forward definition and
1281    // remember where that forward def'n was seen (in case it never is defined).
1282    if (Entry.first == 0) {
1283      Entry.first = StructType::create(Context);
1284      Entry.second = Lex.getLoc();
1285    }
1286    Result = Entry.first;
1287    Lex.Lex();
1288    break;
1289  }
1290  }
1291
1292  // Parse the type suffixes.
1293  while (1) {
1294    switch (Lex.getKind()) {
1295    // End of type.
1296    default:
1297      if (!AllowVoid && Result->isVoidTy())
1298        return Error(TypeLoc, "void type only allowed for function results");
1299      return false;
1300
1301    // Type ::= Type '*'
1302    case lltok::star:
1303      if (Result->isLabelTy())
1304        return TokError("basic block pointers are invalid");
1305      if (Result->isVoidTy())
1306        return TokError("pointers to void are invalid - use i8* instead");
1307      if (!PointerType::isValidElementType(Result))
1308        return TokError("pointer to this type is invalid");
1309      Result = PointerType::getUnqual(Result);
1310      Lex.Lex();
1311      break;
1312
1313    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1314    case lltok::kw_addrspace: {
1315      if (Result->isLabelTy())
1316        return TokError("basic block pointers are invalid");
1317      if (Result->isVoidTy())
1318        return TokError("pointers to void are invalid; use i8* instead");
1319      if (!PointerType::isValidElementType(Result))
1320        return TokError("pointer to this type is invalid");
1321      unsigned AddrSpace;
1322      if (ParseOptionalAddrSpace(AddrSpace) ||
1323          ParseToken(lltok::star, "expected '*' in address space"))
1324        return true;
1325
1326      Result = PointerType::get(Result, AddrSpace);
1327      break;
1328    }
1329
1330    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1331    case lltok::lparen:
1332      if (ParseFunctionType(Result))
1333        return true;
1334      break;
1335    }
1336  }
1337}
1338
1339/// ParseParameterList
1340///    ::= '(' ')'
1341///    ::= '(' Arg (',' Arg)* ')'
1342///  Arg
1343///    ::= Type OptionalAttributes Value OptionalAttributes
1344bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1345                                  PerFunctionState &PFS) {
1346  if (ParseToken(lltok::lparen, "expected '(' in call"))
1347    return true;
1348
1349  while (Lex.getKind() != lltok::rparen) {
1350    // If this isn't the first argument, we need a comma.
1351    if (!ArgList.empty() &&
1352        ParseToken(lltok::comma, "expected ',' in argument list"))
1353      return true;
1354
1355    // Parse the argument.
1356    LocTy ArgLoc;
1357    Type *ArgTy = 0;
1358    unsigned ArgAttrs1 = Attribute::None;
1359    unsigned ArgAttrs2 = Attribute::None;
1360    Value *V;
1361    if (ParseType(ArgTy, ArgLoc))
1362      return true;
1363
1364    // Otherwise, handle normal operands.
1365    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1366      return true;
1367    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1368  }
1369
1370  Lex.Lex();  // Lex the ')'.
1371  return false;
1372}
1373
1374
1375
1376/// ParseArgumentList - Parse the argument list for a function type or function
1377/// prototype.
1378///   ::= '(' ArgTypeListI ')'
1379/// ArgTypeListI
1380///   ::= /*empty*/
1381///   ::= '...'
1382///   ::= ArgTypeList ',' '...'
1383///   ::= ArgType (',' ArgType)*
1384///
1385bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1386                                 bool &isVarArg){
1387  isVarArg = false;
1388  assert(Lex.getKind() == lltok::lparen);
1389  Lex.Lex(); // eat the (.
1390
1391  if (Lex.getKind() == lltok::rparen) {
1392    // empty
1393  } else if (Lex.getKind() == lltok::dotdotdot) {
1394    isVarArg = true;
1395    Lex.Lex();
1396  } else {
1397    LocTy TypeLoc = Lex.getLoc();
1398    Type *ArgTy = 0;
1399    unsigned Attrs;
1400    std::string Name;
1401
1402    if (ParseType(ArgTy) ||
1403        ParseOptionalAttrs(Attrs, 0)) return true;
1404
1405    if (ArgTy->isVoidTy())
1406      return Error(TypeLoc, "argument can not have void type");
1407
1408    if (Lex.getKind() == lltok::LocalVar) {
1409      Name = Lex.getStrVal();
1410      Lex.Lex();
1411    }
1412
1413    if (!FunctionType::isValidArgumentType(ArgTy))
1414      return Error(TypeLoc, "invalid type for function argument");
1415
1416    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1417
1418    while (EatIfPresent(lltok::comma)) {
1419      // Handle ... at end of arg list.
1420      if (EatIfPresent(lltok::dotdotdot)) {
1421        isVarArg = true;
1422        break;
1423      }
1424
1425      // Otherwise must be an argument type.
1426      TypeLoc = Lex.getLoc();
1427      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1428
1429      if (ArgTy->isVoidTy())
1430        return Error(TypeLoc, "argument can not have void type");
1431
1432      if (Lex.getKind() == lltok::LocalVar) {
1433        Name = Lex.getStrVal();
1434        Lex.Lex();
1435      } else {
1436        Name = "";
1437      }
1438
1439      if (!ArgTy->isFirstClassType())
1440        return Error(TypeLoc, "invalid type for function argument");
1441
1442      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1443    }
1444  }
1445
1446  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1447}
1448
1449/// ParseFunctionType
1450///  ::= Type ArgumentList OptionalAttrs
1451bool LLParser::ParseFunctionType(Type *&Result) {
1452  assert(Lex.getKind() == lltok::lparen);
1453
1454  if (!FunctionType::isValidReturnType(Result))
1455    return TokError("invalid function return type");
1456
1457  SmallVector<ArgInfo, 8> ArgList;
1458  bool isVarArg;
1459  if (ParseArgumentList(ArgList, isVarArg))
1460    return true;
1461
1462  // Reject names on the arguments lists.
1463  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1464    if (!ArgList[i].Name.empty())
1465      return Error(ArgList[i].Loc, "argument name invalid in function type");
1466    if (ArgList[i].Attrs != 0)
1467      return Error(ArgList[i].Loc,
1468                   "argument attributes invalid in function type");
1469  }
1470
1471  SmallVector<Type*, 16> ArgListTy;
1472  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1473    ArgListTy.push_back(ArgList[i].Ty);
1474
1475  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1476  return false;
1477}
1478
1479/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1480/// other structs.
1481bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1482  SmallVector<Type*, 8> Elts;
1483  if (ParseStructBody(Elts)) return true;
1484
1485  Result = StructType::get(Context, Elts, Packed);
1486  return false;
1487}
1488
1489/// ParseStructDefinition - Parse a struct in a 'type' definition.
1490bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1491                                     std::pair<Type*, LocTy> &Entry,
1492                                     Type *&ResultTy) {
1493  // If the type was already defined, diagnose the redefinition.
1494  if (Entry.first && !Entry.second.isValid())
1495    return Error(TypeLoc, "redefinition of type");
1496
1497  // If we have opaque, just return without filling in the definition for the
1498  // struct.  This counts as a definition as far as the .ll file goes.
1499  if (EatIfPresent(lltok::kw_opaque)) {
1500    // This type is being defined, so clear the location to indicate this.
1501    Entry.second = SMLoc();
1502
1503    // If this type number has never been uttered, create it.
1504    if (Entry.first == 0)
1505      Entry.first = StructType::create(Context, Name);
1506    ResultTy = Entry.first;
1507    return false;
1508  }
1509
1510  // If the type starts with '<', then it is either a packed struct or a vector.
1511  bool isPacked = EatIfPresent(lltok::less);
1512
1513  // If we don't have a struct, then we have a random type alias, which we
1514  // accept for compatibility with old files.  These types are not allowed to be
1515  // forward referenced and not allowed to be recursive.
1516  if (Lex.getKind() != lltok::lbrace) {
1517    if (Entry.first)
1518      return Error(TypeLoc, "forward references to non-struct type");
1519
1520    ResultTy = 0;
1521    if (isPacked)
1522      return ParseArrayVectorType(ResultTy, true);
1523    return ParseType(ResultTy);
1524  }
1525
1526  // This type is being defined, so clear the location to indicate this.
1527  Entry.second = SMLoc();
1528
1529  // If this type number has never been uttered, create it.
1530  if (Entry.first == 0)
1531    Entry.first = StructType::create(Context, Name);
1532
1533  StructType *STy = cast<StructType>(Entry.first);
1534
1535  SmallVector<Type*, 8> Body;
1536  if (ParseStructBody(Body) ||
1537      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1538    return true;
1539
1540  STy->setBody(Body, isPacked);
1541  ResultTy = STy;
1542  return false;
1543}
1544
1545
1546/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1547///   StructType
1548///     ::= '{' '}'
1549///     ::= '{' Type (',' Type)* '}'
1550///     ::= '<' '{' '}' '>'
1551///     ::= '<' '{' Type (',' Type)* '}' '>'
1552bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1553  assert(Lex.getKind() == lltok::lbrace);
1554  Lex.Lex(); // Consume the '{'
1555
1556  // Handle the empty struct.
1557  if (EatIfPresent(lltok::rbrace))
1558    return false;
1559
1560  LocTy EltTyLoc = Lex.getLoc();
1561  Type *Ty = 0;
1562  if (ParseType(Ty)) return true;
1563  Body.push_back(Ty);
1564
1565  if (!StructType::isValidElementType(Ty))
1566    return Error(EltTyLoc, "invalid element type for struct");
1567
1568  while (EatIfPresent(lltok::comma)) {
1569    EltTyLoc = Lex.getLoc();
1570    if (ParseType(Ty)) return true;
1571
1572    if (!StructType::isValidElementType(Ty))
1573      return Error(EltTyLoc, "invalid element type for struct");
1574
1575    Body.push_back(Ty);
1576  }
1577
1578  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1579}
1580
1581/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1582/// token has already been consumed.
1583///   Type
1584///     ::= '[' APSINTVAL 'x' Types ']'
1585///     ::= '<' APSINTVAL 'x' Types '>'
1586bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1587  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1588      Lex.getAPSIntVal().getBitWidth() > 64)
1589    return TokError("expected number in address space");
1590
1591  LocTy SizeLoc = Lex.getLoc();
1592  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1593  Lex.Lex();
1594
1595  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1596      return true;
1597
1598  LocTy TypeLoc = Lex.getLoc();
1599  Type *EltTy = 0;
1600  if (ParseType(EltTy)) return true;
1601
1602  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1603                 "expected end of sequential type"))
1604    return true;
1605
1606  if (isVector) {
1607    if (Size == 0)
1608      return Error(SizeLoc, "zero element vector is illegal");
1609    if ((unsigned)Size != Size)
1610      return Error(SizeLoc, "size too large for vector");
1611    if (!VectorType::isValidElementType(EltTy))
1612      return Error(TypeLoc, "vector element type must be fp or integer");
1613    Result = VectorType::get(EltTy, unsigned(Size));
1614  } else {
1615    if (!ArrayType::isValidElementType(EltTy))
1616      return Error(TypeLoc, "invalid array element type");
1617    Result = ArrayType::get(EltTy, Size);
1618  }
1619  return false;
1620}
1621
1622//===----------------------------------------------------------------------===//
1623// Function Semantic Analysis.
1624//===----------------------------------------------------------------------===//
1625
1626LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1627                                             int functionNumber)
1628  : P(p), F(f), FunctionNumber(functionNumber) {
1629
1630  // Insert unnamed arguments into the NumberedVals list.
1631  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1632       AI != E; ++AI)
1633    if (!AI->hasName())
1634      NumberedVals.push_back(AI);
1635}
1636
1637LLParser::PerFunctionState::~PerFunctionState() {
1638  // If there were any forward referenced non-basicblock values, delete them.
1639  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1640       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1641    if (!isa<BasicBlock>(I->second.first)) {
1642      I->second.first->replaceAllUsesWith(
1643                           UndefValue::get(I->second.first->getType()));
1644      delete I->second.first;
1645      I->second.first = 0;
1646    }
1647
1648  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1649       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1650    if (!isa<BasicBlock>(I->second.first)) {
1651      I->second.first->replaceAllUsesWith(
1652                           UndefValue::get(I->second.first->getType()));
1653      delete I->second.first;
1654      I->second.first = 0;
1655    }
1656}
1657
1658bool LLParser::PerFunctionState::FinishFunction() {
1659  // Check to see if someone took the address of labels in this block.
1660  if (!P.ForwardRefBlockAddresses.empty()) {
1661    ValID FunctionID;
1662    if (!F.getName().empty()) {
1663      FunctionID.Kind = ValID::t_GlobalName;
1664      FunctionID.StrVal = F.getName();
1665    } else {
1666      FunctionID.Kind = ValID::t_GlobalID;
1667      FunctionID.UIntVal = FunctionNumber;
1668    }
1669
1670    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1671      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1672    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1673      // Resolve all these references.
1674      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1675        return true;
1676
1677      P.ForwardRefBlockAddresses.erase(FRBAI);
1678    }
1679  }
1680
1681  if (!ForwardRefVals.empty())
1682    return P.Error(ForwardRefVals.begin()->second.second,
1683                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1684                   "'");
1685  if (!ForwardRefValIDs.empty())
1686    return P.Error(ForwardRefValIDs.begin()->second.second,
1687                   "use of undefined value '%" +
1688                   Twine(ForwardRefValIDs.begin()->first) + "'");
1689  return false;
1690}
1691
1692
1693/// GetVal - Get a value with the specified name or ID, creating a
1694/// forward reference record if needed.  This can return null if the value
1695/// exists but does not have the right type.
1696Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1697                                          Type *Ty, LocTy Loc) {
1698  // Look this name up in the normal function symbol table.
1699  Value *Val = F.getValueSymbolTable().lookup(Name);
1700
1701  // If this is a forward reference for the value, see if we already created a
1702  // forward ref record.
1703  if (Val == 0) {
1704    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1705      I = ForwardRefVals.find(Name);
1706    if (I != ForwardRefVals.end())
1707      Val = I->second.first;
1708  }
1709
1710  // If we have the value in the symbol table or fwd-ref table, return it.
1711  if (Val) {
1712    if (Val->getType() == Ty) return Val;
1713    if (Ty->isLabelTy())
1714      P.Error(Loc, "'%" + Name + "' is not a basic block");
1715    else
1716      P.Error(Loc, "'%" + Name + "' defined with type '" +
1717              getTypeString(Val->getType()) + "'");
1718    return 0;
1719  }
1720
1721  // Don't make placeholders with invalid type.
1722  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1723    P.Error(Loc, "invalid use of a non-first-class type");
1724    return 0;
1725  }
1726
1727  // Otherwise, create a new forward reference for this value and remember it.
1728  Value *FwdVal;
1729  if (Ty->isLabelTy())
1730    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1731  else
1732    FwdVal = new Argument(Ty, Name);
1733
1734  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1735  return FwdVal;
1736}
1737
1738Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1739                                          LocTy Loc) {
1740  // Look this name up in the normal function symbol table.
1741  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1742
1743  // If this is a forward reference for the value, see if we already created a
1744  // forward ref record.
1745  if (Val == 0) {
1746    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1747      I = ForwardRefValIDs.find(ID);
1748    if (I != ForwardRefValIDs.end())
1749      Val = I->second.first;
1750  }
1751
1752  // If we have the value in the symbol table or fwd-ref table, return it.
1753  if (Val) {
1754    if (Val->getType() == Ty) return Val;
1755    if (Ty->isLabelTy())
1756      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1757    else
1758      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1759              getTypeString(Val->getType()) + "'");
1760    return 0;
1761  }
1762
1763  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1764    P.Error(Loc, "invalid use of a non-first-class type");
1765    return 0;
1766  }
1767
1768  // Otherwise, create a new forward reference for this value and remember it.
1769  Value *FwdVal;
1770  if (Ty->isLabelTy())
1771    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1772  else
1773    FwdVal = new Argument(Ty);
1774
1775  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1776  return FwdVal;
1777}
1778
1779/// SetInstName - After an instruction is parsed and inserted into its
1780/// basic block, this installs its name.
1781bool LLParser::PerFunctionState::SetInstName(int NameID,
1782                                             const std::string &NameStr,
1783                                             LocTy NameLoc, Instruction *Inst) {
1784  // If this instruction has void type, it cannot have a name or ID specified.
1785  if (Inst->getType()->isVoidTy()) {
1786    if (NameID != -1 || !NameStr.empty())
1787      return P.Error(NameLoc, "instructions returning void cannot have a name");
1788    return false;
1789  }
1790
1791  // If this was a numbered instruction, verify that the instruction is the
1792  // expected value and resolve any forward references.
1793  if (NameStr.empty()) {
1794    // If neither a name nor an ID was specified, just use the next ID.
1795    if (NameID == -1)
1796      NameID = NumberedVals.size();
1797
1798    if (unsigned(NameID) != NumberedVals.size())
1799      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1800                     Twine(NumberedVals.size()) + "'");
1801
1802    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1803      ForwardRefValIDs.find(NameID);
1804    if (FI != ForwardRefValIDs.end()) {
1805      if (FI->second.first->getType() != Inst->getType())
1806        return P.Error(NameLoc, "instruction forward referenced with type '" +
1807                       getTypeString(FI->second.first->getType()) + "'");
1808      FI->second.first->replaceAllUsesWith(Inst);
1809      delete FI->second.first;
1810      ForwardRefValIDs.erase(FI);
1811    }
1812
1813    NumberedVals.push_back(Inst);
1814    return false;
1815  }
1816
1817  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1818  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1819    FI = ForwardRefVals.find(NameStr);
1820  if (FI != ForwardRefVals.end()) {
1821    if (FI->second.first->getType() != Inst->getType())
1822      return P.Error(NameLoc, "instruction forward referenced with type '" +
1823                     getTypeString(FI->second.first->getType()) + "'");
1824    FI->second.first->replaceAllUsesWith(Inst);
1825    delete FI->second.first;
1826    ForwardRefVals.erase(FI);
1827  }
1828
1829  // Set the name on the instruction.
1830  Inst->setName(NameStr);
1831
1832  if (Inst->getName() != NameStr)
1833    return P.Error(NameLoc, "multiple definition of local value named '" +
1834                   NameStr + "'");
1835  return false;
1836}
1837
1838/// GetBB - Get a basic block with the specified name or ID, creating a
1839/// forward reference record if needed.
1840BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1841                                              LocTy Loc) {
1842  return cast_or_null<BasicBlock>(GetVal(Name,
1843                                        Type::getLabelTy(F.getContext()), Loc));
1844}
1845
1846BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1847  return cast_or_null<BasicBlock>(GetVal(ID,
1848                                        Type::getLabelTy(F.getContext()), Loc));
1849}
1850
1851/// DefineBB - Define the specified basic block, which is either named or
1852/// unnamed.  If there is an error, this returns null otherwise it returns
1853/// the block being defined.
1854BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1855                                                 LocTy Loc) {
1856  BasicBlock *BB;
1857  if (Name.empty())
1858    BB = GetBB(NumberedVals.size(), Loc);
1859  else
1860    BB = GetBB(Name, Loc);
1861  if (BB == 0) return 0; // Already diagnosed error.
1862
1863  // Move the block to the end of the function.  Forward ref'd blocks are
1864  // inserted wherever they happen to be referenced.
1865  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1866
1867  // Remove the block from forward ref sets.
1868  if (Name.empty()) {
1869    ForwardRefValIDs.erase(NumberedVals.size());
1870    NumberedVals.push_back(BB);
1871  } else {
1872    // BB forward references are already in the function symbol table.
1873    ForwardRefVals.erase(Name);
1874  }
1875
1876  return BB;
1877}
1878
1879//===----------------------------------------------------------------------===//
1880// Constants.
1881//===----------------------------------------------------------------------===//
1882
1883/// ParseValID - Parse an abstract value that doesn't necessarily have a
1884/// type implied.  For example, if we parse "4" we don't know what integer type
1885/// it has.  The value will later be combined with its type and checked for
1886/// sanity.  PFS is used to convert function-local operands of metadata (since
1887/// metadata operands are not just parsed here but also converted to values).
1888/// PFS can be null when we are not parsing metadata values inside a function.
1889bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1890  ID.Loc = Lex.getLoc();
1891  switch (Lex.getKind()) {
1892  default: return TokError("expected value token");
1893  case lltok::GlobalID:  // @42
1894    ID.UIntVal = Lex.getUIntVal();
1895    ID.Kind = ValID::t_GlobalID;
1896    break;
1897  case lltok::GlobalVar:  // @foo
1898    ID.StrVal = Lex.getStrVal();
1899    ID.Kind = ValID::t_GlobalName;
1900    break;
1901  case lltok::LocalVarID:  // %42
1902    ID.UIntVal = Lex.getUIntVal();
1903    ID.Kind = ValID::t_LocalID;
1904    break;
1905  case lltok::LocalVar:  // %foo
1906    ID.StrVal = Lex.getStrVal();
1907    ID.Kind = ValID::t_LocalName;
1908    break;
1909  case lltok::exclaim:   // !42, !{...}, or !"foo"
1910    return ParseMetadataValue(ID, PFS);
1911  case lltok::APSInt:
1912    ID.APSIntVal = Lex.getAPSIntVal();
1913    ID.Kind = ValID::t_APSInt;
1914    break;
1915  case lltok::APFloat:
1916    ID.APFloatVal = Lex.getAPFloatVal();
1917    ID.Kind = ValID::t_APFloat;
1918    break;
1919  case lltok::kw_true:
1920    ID.ConstantVal = ConstantInt::getTrue(Context);
1921    ID.Kind = ValID::t_Constant;
1922    break;
1923  case lltok::kw_false:
1924    ID.ConstantVal = ConstantInt::getFalse(Context);
1925    ID.Kind = ValID::t_Constant;
1926    break;
1927  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1928  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1929  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1930
1931  case lltok::lbrace: {
1932    // ValID ::= '{' ConstVector '}'
1933    Lex.Lex();
1934    SmallVector<Constant*, 16> Elts;
1935    if (ParseGlobalValueVector(Elts) ||
1936        ParseToken(lltok::rbrace, "expected end of struct constant"))
1937      return true;
1938
1939    ID.ConstantStructElts = new Constant*[Elts.size()];
1940    ID.UIntVal = Elts.size();
1941    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1942    ID.Kind = ValID::t_ConstantStruct;
1943    return false;
1944  }
1945  case lltok::less: {
1946    // ValID ::= '<' ConstVector '>'         --> Vector.
1947    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1948    Lex.Lex();
1949    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1950
1951    SmallVector<Constant*, 16> Elts;
1952    LocTy FirstEltLoc = Lex.getLoc();
1953    if (ParseGlobalValueVector(Elts) ||
1954        (isPackedStruct &&
1955         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1956        ParseToken(lltok::greater, "expected end of constant"))
1957      return true;
1958
1959    if (isPackedStruct) {
1960      ID.ConstantStructElts = new Constant*[Elts.size()];
1961      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1962      ID.UIntVal = Elts.size();
1963      ID.Kind = ValID::t_PackedConstantStruct;
1964      return false;
1965    }
1966
1967    if (Elts.empty())
1968      return Error(ID.Loc, "constant vector must not be empty");
1969
1970    if (!Elts[0]->getType()->isIntegerTy() &&
1971        !Elts[0]->getType()->isFloatingPointTy())
1972      return Error(FirstEltLoc,
1973                   "vector elements must have integer or floating point type");
1974
1975    // Verify that all the vector elements have the same type.
1976    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1977      if (Elts[i]->getType() != Elts[0]->getType())
1978        return Error(FirstEltLoc,
1979                     "vector element #" + Twine(i) +
1980                    " is not of type '" + getTypeString(Elts[0]->getType()));
1981
1982    ID.ConstantVal = ConstantVector::get(Elts);
1983    ID.Kind = ValID::t_Constant;
1984    return false;
1985  }
1986  case lltok::lsquare: {   // Array Constant
1987    Lex.Lex();
1988    SmallVector<Constant*, 16> Elts;
1989    LocTy FirstEltLoc = Lex.getLoc();
1990    if (ParseGlobalValueVector(Elts) ||
1991        ParseToken(lltok::rsquare, "expected end of array constant"))
1992      return true;
1993
1994    // Handle empty element.
1995    if (Elts.empty()) {
1996      // Use undef instead of an array because it's inconvenient to determine
1997      // the element type at this point, there being no elements to examine.
1998      ID.Kind = ValID::t_EmptyArray;
1999      return false;
2000    }
2001
2002    if (!Elts[0]->getType()->isFirstClassType())
2003      return Error(FirstEltLoc, "invalid array element type: " +
2004                   getTypeString(Elts[0]->getType()));
2005
2006    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2007
2008    // Verify all elements are correct type!
2009    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2010      if (Elts[i]->getType() != Elts[0]->getType())
2011        return Error(FirstEltLoc,
2012                     "array element #" + Twine(i) +
2013                     " is not of type '" + getTypeString(Elts[0]->getType()));
2014    }
2015
2016    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2017    ID.Kind = ValID::t_Constant;
2018    return false;
2019  }
2020  case lltok::kw_c:  // c "foo"
2021    Lex.Lex();
2022    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2023    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2024    ID.Kind = ValID::t_Constant;
2025    return false;
2026
2027  case lltok::kw_asm: {
2028    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2029    bool HasSideEffect, AlignStack;
2030    Lex.Lex();
2031    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2032        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2033        ParseStringConstant(ID.StrVal) ||
2034        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2035        ParseToken(lltok::StringConstant, "expected constraint string"))
2036      return true;
2037    ID.StrVal2 = Lex.getStrVal();
2038    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2039    ID.Kind = ValID::t_InlineAsm;
2040    return false;
2041  }
2042
2043  case lltok::kw_blockaddress: {
2044    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2045    Lex.Lex();
2046
2047    ValID Fn, Label;
2048    LocTy FnLoc, LabelLoc;
2049
2050    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2051        ParseValID(Fn) ||
2052        ParseToken(lltok::comma, "expected comma in block address expression")||
2053        ParseValID(Label) ||
2054        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2055      return true;
2056
2057    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2058      return Error(Fn.Loc, "expected function name in blockaddress");
2059    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2060      return Error(Label.Loc, "expected basic block name in blockaddress");
2061
2062    // Make a global variable as a placeholder for this reference.
2063    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2064                                           false, GlobalValue::InternalLinkage,
2065                                                0, "");
2066    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2067    ID.ConstantVal = FwdRef;
2068    ID.Kind = ValID::t_Constant;
2069    return false;
2070  }
2071
2072  case lltok::kw_trunc:
2073  case lltok::kw_zext:
2074  case lltok::kw_sext:
2075  case lltok::kw_fptrunc:
2076  case lltok::kw_fpext:
2077  case lltok::kw_bitcast:
2078  case lltok::kw_uitofp:
2079  case lltok::kw_sitofp:
2080  case lltok::kw_fptoui:
2081  case lltok::kw_fptosi:
2082  case lltok::kw_inttoptr:
2083  case lltok::kw_ptrtoint: {
2084    unsigned Opc = Lex.getUIntVal();
2085    Type *DestTy = 0;
2086    Constant *SrcVal;
2087    Lex.Lex();
2088    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2089        ParseGlobalTypeAndValue(SrcVal) ||
2090        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2091        ParseType(DestTy) ||
2092        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2093      return true;
2094    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2095      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2096                   getTypeString(SrcVal->getType()) + "' to '" +
2097                   getTypeString(DestTy) + "'");
2098    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2099                                                 SrcVal, DestTy);
2100    ID.Kind = ValID::t_Constant;
2101    return false;
2102  }
2103  case lltok::kw_extractvalue: {
2104    Lex.Lex();
2105    Constant *Val;
2106    SmallVector<unsigned, 4> Indices;
2107    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2108        ParseGlobalTypeAndValue(Val) ||
2109        ParseIndexList(Indices) ||
2110        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2111      return true;
2112
2113    if (!Val->getType()->isAggregateType())
2114      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2115    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2116      return Error(ID.Loc, "invalid indices for extractvalue");
2117    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2118    ID.Kind = ValID::t_Constant;
2119    return false;
2120  }
2121  case lltok::kw_insertvalue: {
2122    Lex.Lex();
2123    Constant *Val0, *Val1;
2124    SmallVector<unsigned, 4> Indices;
2125    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2126        ParseGlobalTypeAndValue(Val0) ||
2127        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2128        ParseGlobalTypeAndValue(Val1) ||
2129        ParseIndexList(Indices) ||
2130        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2131      return true;
2132    if (!Val0->getType()->isAggregateType())
2133      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2134    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2135      return Error(ID.Loc, "invalid indices for insertvalue");
2136    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2137    ID.Kind = ValID::t_Constant;
2138    return false;
2139  }
2140  case lltok::kw_icmp:
2141  case lltok::kw_fcmp: {
2142    unsigned PredVal, Opc = Lex.getUIntVal();
2143    Constant *Val0, *Val1;
2144    Lex.Lex();
2145    if (ParseCmpPredicate(PredVal, Opc) ||
2146        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2147        ParseGlobalTypeAndValue(Val0) ||
2148        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2149        ParseGlobalTypeAndValue(Val1) ||
2150        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2151      return true;
2152
2153    if (Val0->getType() != Val1->getType())
2154      return Error(ID.Loc, "compare operands must have the same type");
2155
2156    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2157
2158    if (Opc == Instruction::FCmp) {
2159      if (!Val0->getType()->isFPOrFPVectorTy())
2160        return Error(ID.Loc, "fcmp requires floating point operands");
2161      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2162    } else {
2163      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2164      if (!Val0->getType()->isIntOrIntVectorTy() &&
2165          !Val0->getType()->isPointerTy())
2166        return Error(ID.Loc, "icmp requires pointer or integer operands");
2167      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2168    }
2169    ID.Kind = ValID::t_Constant;
2170    return false;
2171  }
2172
2173  // Binary Operators.
2174  case lltok::kw_add:
2175  case lltok::kw_fadd:
2176  case lltok::kw_sub:
2177  case lltok::kw_fsub:
2178  case lltok::kw_mul:
2179  case lltok::kw_fmul:
2180  case lltok::kw_udiv:
2181  case lltok::kw_sdiv:
2182  case lltok::kw_fdiv:
2183  case lltok::kw_urem:
2184  case lltok::kw_srem:
2185  case lltok::kw_frem:
2186  case lltok::kw_shl:
2187  case lltok::kw_lshr:
2188  case lltok::kw_ashr: {
2189    bool NUW = false;
2190    bool NSW = false;
2191    bool Exact = false;
2192    unsigned Opc = Lex.getUIntVal();
2193    Constant *Val0, *Val1;
2194    Lex.Lex();
2195    LocTy ModifierLoc = Lex.getLoc();
2196    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2197        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2198      if (EatIfPresent(lltok::kw_nuw))
2199        NUW = true;
2200      if (EatIfPresent(lltok::kw_nsw)) {
2201        NSW = true;
2202        if (EatIfPresent(lltok::kw_nuw))
2203          NUW = true;
2204      }
2205    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2206               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2207      if (EatIfPresent(lltok::kw_exact))
2208        Exact = true;
2209    }
2210    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2211        ParseGlobalTypeAndValue(Val0) ||
2212        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2213        ParseGlobalTypeAndValue(Val1) ||
2214        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2215      return true;
2216    if (Val0->getType() != Val1->getType())
2217      return Error(ID.Loc, "operands of constexpr must have same type");
2218    if (!Val0->getType()->isIntOrIntVectorTy()) {
2219      if (NUW)
2220        return Error(ModifierLoc, "nuw only applies to integer operations");
2221      if (NSW)
2222        return Error(ModifierLoc, "nsw only applies to integer operations");
2223    }
2224    // Check that the type is valid for the operator.
2225    switch (Opc) {
2226    case Instruction::Add:
2227    case Instruction::Sub:
2228    case Instruction::Mul:
2229    case Instruction::UDiv:
2230    case Instruction::SDiv:
2231    case Instruction::URem:
2232    case Instruction::SRem:
2233    case Instruction::Shl:
2234    case Instruction::AShr:
2235    case Instruction::LShr:
2236      if (!Val0->getType()->isIntOrIntVectorTy())
2237        return Error(ID.Loc, "constexpr requires integer operands");
2238      break;
2239    case Instruction::FAdd:
2240    case Instruction::FSub:
2241    case Instruction::FMul:
2242    case Instruction::FDiv:
2243    case Instruction::FRem:
2244      if (!Val0->getType()->isFPOrFPVectorTy())
2245        return Error(ID.Loc, "constexpr requires fp operands");
2246      break;
2247    default: llvm_unreachable("Unknown binary operator!");
2248    }
2249    unsigned Flags = 0;
2250    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2251    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2252    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2253    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2254    ID.ConstantVal = C;
2255    ID.Kind = ValID::t_Constant;
2256    return false;
2257  }
2258
2259  // Logical Operations
2260  case lltok::kw_and:
2261  case lltok::kw_or:
2262  case lltok::kw_xor: {
2263    unsigned Opc = Lex.getUIntVal();
2264    Constant *Val0, *Val1;
2265    Lex.Lex();
2266    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2267        ParseGlobalTypeAndValue(Val0) ||
2268        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2269        ParseGlobalTypeAndValue(Val1) ||
2270        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2271      return true;
2272    if (Val0->getType() != Val1->getType())
2273      return Error(ID.Loc, "operands of constexpr must have same type");
2274    if (!Val0->getType()->isIntOrIntVectorTy())
2275      return Error(ID.Loc,
2276                   "constexpr requires integer or integer vector operands");
2277    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2278    ID.Kind = ValID::t_Constant;
2279    return false;
2280  }
2281
2282  case lltok::kw_getelementptr:
2283  case lltok::kw_shufflevector:
2284  case lltok::kw_insertelement:
2285  case lltok::kw_extractelement:
2286  case lltok::kw_select: {
2287    unsigned Opc = Lex.getUIntVal();
2288    SmallVector<Constant*, 16> Elts;
2289    bool InBounds = false;
2290    Lex.Lex();
2291    if (Opc == Instruction::GetElementPtr)
2292      InBounds = EatIfPresent(lltok::kw_inbounds);
2293    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2294        ParseGlobalValueVector(Elts) ||
2295        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2296      return true;
2297
2298    if (Opc == Instruction::GetElementPtr) {
2299      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2300        return Error(ID.Loc, "getelementptr requires pointer operand");
2301
2302      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2303      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2304        return Error(ID.Loc, "invalid indices for getelementptr");
2305      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2306                                                      InBounds);
2307    } else if (Opc == Instruction::Select) {
2308      if (Elts.size() != 3)
2309        return Error(ID.Loc, "expected three operands to select");
2310      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2311                                                              Elts[2]))
2312        return Error(ID.Loc, Reason);
2313      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2314    } else if (Opc == Instruction::ShuffleVector) {
2315      if (Elts.size() != 3)
2316        return Error(ID.Loc, "expected three operands to shufflevector");
2317      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2318        return Error(ID.Loc, "invalid operands to shufflevector");
2319      ID.ConstantVal =
2320                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2321    } else if (Opc == Instruction::ExtractElement) {
2322      if (Elts.size() != 2)
2323        return Error(ID.Loc, "expected two operands to extractelement");
2324      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2325        return Error(ID.Loc, "invalid extractelement operands");
2326      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2327    } else {
2328      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2329      if (Elts.size() != 3)
2330      return Error(ID.Loc, "expected three operands to insertelement");
2331      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2332        return Error(ID.Loc, "invalid insertelement operands");
2333      ID.ConstantVal =
2334                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2335    }
2336
2337    ID.Kind = ValID::t_Constant;
2338    return false;
2339  }
2340  }
2341
2342  Lex.Lex();
2343  return false;
2344}
2345
2346/// ParseGlobalValue - Parse a global value with the specified type.
2347bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2348  C = 0;
2349  ValID ID;
2350  Value *V = NULL;
2351  bool Parsed = ParseValID(ID) ||
2352                ConvertValIDToValue(Ty, ID, V, NULL);
2353  if (V && !(C = dyn_cast<Constant>(V)))
2354    return Error(ID.Loc, "global values must be constants");
2355  return Parsed;
2356}
2357
2358bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2359  Type *Ty = 0;
2360  return ParseType(Ty) ||
2361         ParseGlobalValue(Ty, V);
2362}
2363
2364/// ParseGlobalValueVector
2365///   ::= /*empty*/
2366///   ::= TypeAndValue (',' TypeAndValue)*
2367bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2368  // Empty list.
2369  if (Lex.getKind() == lltok::rbrace ||
2370      Lex.getKind() == lltok::rsquare ||
2371      Lex.getKind() == lltok::greater ||
2372      Lex.getKind() == lltok::rparen)
2373    return false;
2374
2375  Constant *C;
2376  if (ParseGlobalTypeAndValue(C)) return true;
2377  Elts.push_back(C);
2378
2379  while (EatIfPresent(lltok::comma)) {
2380    if (ParseGlobalTypeAndValue(C)) return true;
2381    Elts.push_back(C);
2382  }
2383
2384  return false;
2385}
2386
2387bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2388  assert(Lex.getKind() == lltok::lbrace);
2389  Lex.Lex();
2390
2391  SmallVector<Value*, 16> Elts;
2392  if (ParseMDNodeVector(Elts, PFS) ||
2393      ParseToken(lltok::rbrace, "expected end of metadata node"))
2394    return true;
2395
2396  ID.MDNodeVal = MDNode::get(Context, Elts);
2397  ID.Kind = ValID::t_MDNode;
2398  return false;
2399}
2400
2401/// ParseMetadataValue
2402///  ::= !42
2403///  ::= !{...}
2404///  ::= !"string"
2405bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2406  assert(Lex.getKind() == lltok::exclaim);
2407  Lex.Lex();
2408
2409  // MDNode:
2410  // !{ ... }
2411  if (Lex.getKind() == lltok::lbrace)
2412    return ParseMetadataListValue(ID, PFS);
2413
2414  // Standalone metadata reference
2415  // !42
2416  if (Lex.getKind() == lltok::APSInt) {
2417    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2418    ID.Kind = ValID::t_MDNode;
2419    return false;
2420  }
2421
2422  // MDString:
2423  //   ::= '!' STRINGCONSTANT
2424  if (ParseMDString(ID.MDStringVal)) return true;
2425  ID.Kind = ValID::t_MDString;
2426  return false;
2427}
2428
2429
2430//===----------------------------------------------------------------------===//
2431// Function Parsing.
2432//===----------------------------------------------------------------------===//
2433
2434bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2435                                   PerFunctionState *PFS) {
2436  if (Ty->isFunctionTy())
2437    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2438
2439  switch (ID.Kind) {
2440  default: llvm_unreachable("Unknown ValID!");
2441  case ValID::t_LocalID:
2442    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2443    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2444    return (V == 0);
2445  case ValID::t_LocalName:
2446    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2447    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2448    return (V == 0);
2449  case ValID::t_InlineAsm: {
2450    PointerType *PTy = dyn_cast<PointerType>(Ty);
2451    FunctionType *FTy =
2452      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2453    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2454      return Error(ID.Loc, "invalid type for inline asm constraint string");
2455    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2456    return false;
2457  }
2458  case ValID::t_MDNode:
2459    if (!Ty->isMetadataTy())
2460      return Error(ID.Loc, "metadata value must have metadata type");
2461    V = ID.MDNodeVal;
2462    return false;
2463  case ValID::t_MDString:
2464    if (!Ty->isMetadataTy())
2465      return Error(ID.Loc, "metadata value must have metadata type");
2466    V = ID.MDStringVal;
2467    return false;
2468  case ValID::t_GlobalName:
2469    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2470    return V == 0;
2471  case ValID::t_GlobalID:
2472    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2473    return V == 0;
2474  case ValID::t_APSInt:
2475    if (!Ty->isIntegerTy())
2476      return Error(ID.Loc, "integer constant must have integer type");
2477    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2478    V = ConstantInt::get(Context, ID.APSIntVal);
2479    return false;
2480  case ValID::t_APFloat:
2481    if (!Ty->isFloatingPointTy() ||
2482        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2483      return Error(ID.Loc, "floating point constant invalid for type");
2484
2485    // The lexer has no type info, so builds all float and double FP constants
2486    // as double.  Fix this here.  Long double does not need this.
2487    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2488        Ty->isFloatTy()) {
2489      bool Ignored;
2490      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2491                            &Ignored);
2492    }
2493    V = ConstantFP::get(Context, ID.APFloatVal);
2494
2495    if (V->getType() != Ty)
2496      return Error(ID.Loc, "floating point constant does not have type '" +
2497                   getTypeString(Ty) + "'");
2498
2499    return false;
2500  case ValID::t_Null:
2501    if (!Ty->isPointerTy())
2502      return Error(ID.Loc, "null must be a pointer type");
2503    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2504    return false;
2505  case ValID::t_Undef:
2506    // FIXME: LabelTy should not be a first-class type.
2507    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2508      return Error(ID.Loc, "invalid type for undef constant");
2509    V = UndefValue::get(Ty);
2510    return false;
2511  case ValID::t_EmptyArray:
2512    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2513      return Error(ID.Loc, "invalid empty array initializer");
2514    V = UndefValue::get(Ty);
2515    return false;
2516  case ValID::t_Zero:
2517    // FIXME: LabelTy should not be a first-class type.
2518    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2519      return Error(ID.Loc, "invalid type for null constant");
2520    V = Constant::getNullValue(Ty);
2521    return false;
2522  case ValID::t_Constant:
2523    if (ID.ConstantVal->getType() != Ty)
2524      return Error(ID.Loc, "constant expression type mismatch");
2525
2526    V = ID.ConstantVal;
2527    return false;
2528  case ValID::t_ConstantStruct:
2529  case ValID::t_PackedConstantStruct:
2530    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2531      if (ST->getNumElements() != ID.UIntVal)
2532        return Error(ID.Loc,
2533                     "initializer with struct type has wrong # elements");
2534      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2535        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2536
2537      // Verify that the elements are compatible with the structtype.
2538      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2539        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2540          return Error(ID.Loc, "element " + Twine(i) +
2541                    " of struct initializer doesn't match struct element type");
2542
2543      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2544                                               ID.UIntVal));
2545    } else
2546      return Error(ID.Loc, "constant expression type mismatch");
2547    return false;
2548  }
2549}
2550
2551bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2552  V = 0;
2553  ValID ID;
2554  return ParseValID(ID, PFS) ||
2555         ConvertValIDToValue(Ty, ID, V, PFS);
2556}
2557
2558bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2559  Type *Ty = 0;
2560  return ParseType(Ty) ||
2561         ParseValue(Ty, V, PFS);
2562}
2563
2564bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2565                                      PerFunctionState &PFS) {
2566  Value *V;
2567  Loc = Lex.getLoc();
2568  if (ParseTypeAndValue(V, PFS)) return true;
2569  if (!isa<BasicBlock>(V))
2570    return Error(Loc, "expected a basic block");
2571  BB = cast<BasicBlock>(V);
2572  return false;
2573}
2574
2575
2576/// FunctionHeader
2577///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2578///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2579///       OptionalAlign OptGC
2580bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2581  // Parse the linkage.
2582  LocTy LinkageLoc = Lex.getLoc();
2583  unsigned Linkage;
2584
2585  unsigned Visibility, RetAttrs;
2586  CallingConv::ID CC;
2587  Type *RetType = 0;
2588  LocTy RetTypeLoc = Lex.getLoc();
2589  if (ParseOptionalLinkage(Linkage) ||
2590      ParseOptionalVisibility(Visibility) ||
2591      ParseOptionalCallingConv(CC) ||
2592      ParseOptionalAttrs(RetAttrs, 1) ||
2593      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2594    return true;
2595
2596  // Verify that the linkage is ok.
2597  switch ((GlobalValue::LinkageTypes)Linkage) {
2598  case GlobalValue::ExternalLinkage:
2599    break; // always ok.
2600  case GlobalValue::DLLImportLinkage:
2601  case GlobalValue::ExternalWeakLinkage:
2602    if (isDefine)
2603      return Error(LinkageLoc, "invalid linkage for function definition");
2604    break;
2605  case GlobalValue::PrivateLinkage:
2606  case GlobalValue::LinkerPrivateLinkage:
2607  case GlobalValue::LinkerPrivateWeakLinkage:
2608  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2609  case GlobalValue::InternalLinkage:
2610  case GlobalValue::AvailableExternallyLinkage:
2611  case GlobalValue::LinkOnceAnyLinkage:
2612  case GlobalValue::LinkOnceODRLinkage:
2613  case GlobalValue::WeakAnyLinkage:
2614  case GlobalValue::WeakODRLinkage:
2615  case GlobalValue::DLLExportLinkage:
2616    if (!isDefine)
2617      return Error(LinkageLoc, "invalid linkage for function declaration");
2618    break;
2619  case GlobalValue::AppendingLinkage:
2620  case GlobalValue::CommonLinkage:
2621    return Error(LinkageLoc, "invalid function linkage type");
2622  }
2623
2624  if (!FunctionType::isValidReturnType(RetType))
2625    return Error(RetTypeLoc, "invalid function return type");
2626
2627  LocTy NameLoc = Lex.getLoc();
2628
2629  std::string FunctionName;
2630  if (Lex.getKind() == lltok::GlobalVar) {
2631    FunctionName = Lex.getStrVal();
2632  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2633    unsigned NameID = Lex.getUIntVal();
2634
2635    if (NameID != NumberedVals.size())
2636      return TokError("function expected to be numbered '%" +
2637                      Twine(NumberedVals.size()) + "'");
2638  } else {
2639    return TokError("expected function name");
2640  }
2641
2642  Lex.Lex();
2643
2644  if (Lex.getKind() != lltok::lparen)
2645    return TokError("expected '(' in function argument list");
2646
2647  SmallVector<ArgInfo, 8> ArgList;
2648  bool isVarArg;
2649  unsigned FuncAttrs;
2650  std::string Section;
2651  unsigned Alignment;
2652  std::string GC;
2653  bool UnnamedAddr;
2654  LocTy UnnamedAddrLoc;
2655
2656  if (ParseArgumentList(ArgList, isVarArg) ||
2657      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2658                         &UnnamedAddrLoc) ||
2659      ParseOptionalAttrs(FuncAttrs, 2) ||
2660      (EatIfPresent(lltok::kw_section) &&
2661       ParseStringConstant(Section)) ||
2662      ParseOptionalAlignment(Alignment) ||
2663      (EatIfPresent(lltok::kw_gc) &&
2664       ParseStringConstant(GC)))
2665    return true;
2666
2667  // If the alignment was parsed as an attribute, move to the alignment field.
2668  if (FuncAttrs & Attribute::Alignment) {
2669    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2670    FuncAttrs &= ~Attribute::Alignment;
2671  }
2672
2673  // Okay, if we got here, the function is syntactically valid.  Convert types
2674  // and do semantic checks.
2675  std::vector<Type*> ParamTypeList;
2676  SmallVector<AttributeWithIndex, 8> Attrs;
2677
2678  if (RetAttrs != Attribute::None)
2679    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2680
2681  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2682    ParamTypeList.push_back(ArgList[i].Ty);
2683    if (ArgList[i].Attrs != Attribute::None)
2684      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2685  }
2686
2687  if (FuncAttrs != Attribute::None)
2688    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2689
2690  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2691
2692  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2693    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2694
2695  FunctionType *FT =
2696    FunctionType::get(RetType, ParamTypeList, isVarArg);
2697  PointerType *PFT = PointerType::getUnqual(FT);
2698
2699  Fn = 0;
2700  if (!FunctionName.empty()) {
2701    // If this was a definition of a forward reference, remove the definition
2702    // from the forward reference table and fill in the forward ref.
2703    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2704      ForwardRefVals.find(FunctionName);
2705    if (FRVI != ForwardRefVals.end()) {
2706      Fn = M->getFunction(FunctionName);
2707      if (Fn->getType() != PFT)
2708        return Error(FRVI->second.second, "invalid forward reference to "
2709                     "function '" + FunctionName + "' with wrong type!");
2710
2711      ForwardRefVals.erase(FRVI);
2712    } else if ((Fn = M->getFunction(FunctionName))) {
2713      // Reject redefinitions.
2714      return Error(NameLoc, "invalid redefinition of function '" +
2715                   FunctionName + "'");
2716    } else if (M->getNamedValue(FunctionName)) {
2717      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2718    }
2719
2720  } else {
2721    // If this is a definition of a forward referenced function, make sure the
2722    // types agree.
2723    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2724      = ForwardRefValIDs.find(NumberedVals.size());
2725    if (I != ForwardRefValIDs.end()) {
2726      Fn = cast<Function>(I->second.first);
2727      if (Fn->getType() != PFT)
2728        return Error(NameLoc, "type of definition and forward reference of '@" +
2729                     Twine(NumberedVals.size()) + "' disagree");
2730      ForwardRefValIDs.erase(I);
2731    }
2732  }
2733
2734  if (Fn == 0)
2735    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2736  else // Move the forward-reference to the correct spot in the module.
2737    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2738
2739  if (FunctionName.empty())
2740    NumberedVals.push_back(Fn);
2741
2742  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2743  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2744  Fn->setCallingConv(CC);
2745  Fn->setAttributes(PAL);
2746  Fn->setUnnamedAddr(UnnamedAddr);
2747  Fn->setAlignment(Alignment);
2748  Fn->setSection(Section);
2749  if (!GC.empty()) Fn->setGC(GC.c_str());
2750
2751  // Add all of the arguments we parsed to the function.
2752  Function::arg_iterator ArgIt = Fn->arg_begin();
2753  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2754    // If the argument has a name, insert it into the argument symbol table.
2755    if (ArgList[i].Name.empty()) continue;
2756
2757    // Set the name, if it conflicted, it will be auto-renamed.
2758    ArgIt->setName(ArgList[i].Name);
2759
2760    if (ArgIt->getName() != ArgList[i].Name)
2761      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2762                   ArgList[i].Name + "'");
2763  }
2764
2765  return false;
2766}
2767
2768
2769/// ParseFunctionBody
2770///   ::= '{' BasicBlock+ '}'
2771///
2772bool LLParser::ParseFunctionBody(Function &Fn) {
2773  if (Lex.getKind() != lltok::lbrace)
2774    return TokError("expected '{' in function body");
2775  Lex.Lex();  // eat the {.
2776
2777  int FunctionNumber = -1;
2778  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2779
2780  PerFunctionState PFS(*this, Fn, FunctionNumber);
2781
2782  // We need at least one basic block.
2783  if (Lex.getKind() == lltok::rbrace)
2784    return TokError("function body requires at least one basic block");
2785
2786  while (Lex.getKind() != lltok::rbrace)
2787    if (ParseBasicBlock(PFS)) return true;
2788
2789  // Eat the }.
2790  Lex.Lex();
2791
2792  // Verify function is ok.
2793  return PFS.FinishFunction();
2794}
2795
2796/// ParseBasicBlock
2797///   ::= LabelStr? Instruction*
2798bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2799  // If this basic block starts out with a name, remember it.
2800  std::string Name;
2801  LocTy NameLoc = Lex.getLoc();
2802  if (Lex.getKind() == lltok::LabelStr) {
2803    Name = Lex.getStrVal();
2804    Lex.Lex();
2805  }
2806
2807  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2808  if (BB == 0) return true;
2809
2810  std::string NameStr;
2811
2812  // Parse the instructions in this block until we get a terminator.
2813  Instruction *Inst;
2814  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2815  do {
2816    // This instruction may have three possibilities for a name: a) none
2817    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2818    LocTy NameLoc = Lex.getLoc();
2819    int NameID = -1;
2820    NameStr = "";
2821
2822    if (Lex.getKind() == lltok::LocalVarID) {
2823      NameID = Lex.getUIntVal();
2824      Lex.Lex();
2825      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2826        return true;
2827    } else if (Lex.getKind() == lltok::LocalVar) {
2828      NameStr = Lex.getStrVal();
2829      Lex.Lex();
2830      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2831        return true;
2832    }
2833
2834    switch (ParseInstruction(Inst, BB, PFS)) {
2835    default: assert(0 && "Unknown ParseInstruction result!");
2836    case InstError: return true;
2837    case InstNormal:
2838      BB->getInstList().push_back(Inst);
2839
2840      // With a normal result, we check to see if the instruction is followed by
2841      // a comma and metadata.
2842      if (EatIfPresent(lltok::comma))
2843        if (ParseInstructionMetadata(Inst, &PFS))
2844          return true;
2845      break;
2846    case InstExtraComma:
2847      BB->getInstList().push_back(Inst);
2848
2849      // If the instruction parser ate an extra comma at the end of it, it
2850      // *must* be followed by metadata.
2851      if (ParseInstructionMetadata(Inst, &PFS))
2852        return true;
2853      break;
2854    }
2855
2856    // Set the name on the instruction.
2857    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2858  } while (!isa<TerminatorInst>(Inst));
2859
2860  return false;
2861}
2862
2863//===----------------------------------------------------------------------===//
2864// Instruction Parsing.
2865//===----------------------------------------------------------------------===//
2866
2867/// ParseInstruction - Parse one of the many different instructions.
2868///
2869int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2870                               PerFunctionState &PFS) {
2871  lltok::Kind Token = Lex.getKind();
2872  if (Token == lltok::Eof)
2873    return TokError("found end of file when expecting more instructions");
2874  LocTy Loc = Lex.getLoc();
2875  unsigned KeywordVal = Lex.getUIntVal();
2876  Lex.Lex();  // Eat the keyword.
2877
2878  switch (Token) {
2879  default:                    return Error(Loc, "expected instruction opcode");
2880  // Terminator Instructions.
2881  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2882  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2883  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2884  case lltok::kw_br:          return ParseBr(Inst, PFS);
2885  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2886  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2887  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2888  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2889  // Binary Operators.
2890  case lltok::kw_add:
2891  case lltok::kw_sub:
2892  case lltok::kw_mul:
2893  case lltok::kw_shl: {
2894    bool NUW = EatIfPresent(lltok::kw_nuw);
2895    bool NSW = EatIfPresent(lltok::kw_nsw);
2896    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2897
2898    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2899
2900    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2901    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2902    return false;
2903  }
2904  case lltok::kw_fadd:
2905  case lltok::kw_fsub:
2906  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2907
2908  case lltok::kw_sdiv:
2909  case lltok::kw_udiv:
2910  case lltok::kw_lshr:
2911  case lltok::kw_ashr: {
2912    bool Exact = EatIfPresent(lltok::kw_exact);
2913
2914    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2915    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2916    return false;
2917  }
2918
2919  case lltok::kw_urem:
2920  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2921  case lltok::kw_fdiv:
2922  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2923  case lltok::kw_and:
2924  case lltok::kw_or:
2925  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2926  case lltok::kw_icmp:
2927  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2928  // Casts.
2929  case lltok::kw_trunc:
2930  case lltok::kw_zext:
2931  case lltok::kw_sext:
2932  case lltok::kw_fptrunc:
2933  case lltok::kw_fpext:
2934  case lltok::kw_bitcast:
2935  case lltok::kw_uitofp:
2936  case lltok::kw_sitofp:
2937  case lltok::kw_fptoui:
2938  case lltok::kw_fptosi:
2939  case lltok::kw_inttoptr:
2940  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2941  // Other.
2942  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2943  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2944  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2945  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2946  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2947  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2948  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2949  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2950  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2951  // Memory.
2952  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2953  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2954  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2955  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
2956  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
2957  case lltok::kw_fence:          return ParseFence(Inst, PFS);
2958  case lltok::kw_volatile:
2959    // For compatibility; canonical location is after load
2960    if (EatIfPresent(lltok::kw_load))
2961      return ParseLoad(Inst, PFS, true);
2962    else if (EatIfPresent(lltok::kw_store))
2963      return ParseStore(Inst, PFS, true);
2964    else
2965      return TokError("expected 'load' or 'store'");
2966  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2967  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2968  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2969  }
2970}
2971
2972/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2973bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2974  if (Opc == Instruction::FCmp) {
2975    switch (Lex.getKind()) {
2976    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2977    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2978    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2979    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2980    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2981    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2982    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2983    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2984    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2985    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2986    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2987    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2988    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2989    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2990    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2991    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2992    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2993    }
2994  } else {
2995    switch (Lex.getKind()) {
2996    default: TokError("expected icmp predicate (e.g. 'eq')");
2997    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2998    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2999    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3000    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3001    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3002    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3003    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3004    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3005    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3006    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3007    }
3008  }
3009  Lex.Lex();
3010  return false;
3011}
3012
3013//===----------------------------------------------------------------------===//
3014// Terminator Instructions.
3015//===----------------------------------------------------------------------===//
3016
3017/// ParseRet - Parse a return instruction.
3018///   ::= 'ret' void (',' !dbg, !1)*
3019///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3020bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3021                        PerFunctionState &PFS) {
3022  SMLoc TypeLoc = Lex.getLoc();
3023  Type *Ty = 0;
3024  if (ParseType(Ty, true /*void allowed*/)) return true;
3025
3026  Type *ResType = PFS.getFunction().getReturnType();
3027
3028  if (Ty->isVoidTy()) {
3029    if (!ResType->isVoidTy())
3030      return Error(TypeLoc, "value doesn't match function result type '" +
3031                   getTypeString(ResType) + "'");
3032
3033    Inst = ReturnInst::Create(Context);
3034    return false;
3035  }
3036
3037  Value *RV;
3038  if (ParseValue(Ty, RV, PFS)) return true;
3039
3040  if (ResType != RV->getType())
3041    return Error(TypeLoc, "value doesn't match function result type '" +
3042                 getTypeString(ResType) + "'");
3043
3044  Inst = ReturnInst::Create(Context, RV);
3045  return false;
3046}
3047
3048
3049/// ParseBr
3050///   ::= 'br' TypeAndValue
3051///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3052bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3053  LocTy Loc, Loc2;
3054  Value *Op0;
3055  BasicBlock *Op1, *Op2;
3056  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3057
3058  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3059    Inst = BranchInst::Create(BB);
3060    return false;
3061  }
3062
3063  if (Op0->getType() != Type::getInt1Ty(Context))
3064    return Error(Loc, "branch condition must have 'i1' type");
3065
3066  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3067      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3068      ParseToken(lltok::comma, "expected ',' after true destination") ||
3069      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3070    return true;
3071
3072  Inst = BranchInst::Create(Op1, Op2, Op0);
3073  return false;
3074}
3075
3076/// ParseSwitch
3077///  Instruction
3078///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3079///  JumpTable
3080///    ::= (TypeAndValue ',' TypeAndValue)*
3081bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3082  LocTy CondLoc, BBLoc;
3083  Value *Cond;
3084  BasicBlock *DefaultBB;
3085  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3086      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3087      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3088      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3089    return true;
3090
3091  if (!Cond->getType()->isIntegerTy())
3092    return Error(CondLoc, "switch condition must have integer type");
3093
3094  // Parse the jump table pairs.
3095  SmallPtrSet<Value*, 32> SeenCases;
3096  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3097  while (Lex.getKind() != lltok::rsquare) {
3098    Value *Constant;
3099    BasicBlock *DestBB;
3100
3101    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3102        ParseToken(lltok::comma, "expected ',' after case value") ||
3103        ParseTypeAndBasicBlock(DestBB, PFS))
3104      return true;
3105
3106    if (!SeenCases.insert(Constant))
3107      return Error(CondLoc, "duplicate case value in switch");
3108    if (!isa<ConstantInt>(Constant))
3109      return Error(CondLoc, "case value is not a constant integer");
3110
3111    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3112  }
3113
3114  Lex.Lex();  // Eat the ']'.
3115
3116  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3117  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3118    SI->addCase(Table[i].first, Table[i].second);
3119  Inst = SI;
3120  return false;
3121}
3122
3123/// ParseIndirectBr
3124///  Instruction
3125///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3126bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3127  LocTy AddrLoc;
3128  Value *Address;
3129  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3130      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3131      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3132    return true;
3133
3134  if (!Address->getType()->isPointerTy())
3135    return Error(AddrLoc, "indirectbr address must have pointer type");
3136
3137  // Parse the destination list.
3138  SmallVector<BasicBlock*, 16> DestList;
3139
3140  if (Lex.getKind() != lltok::rsquare) {
3141    BasicBlock *DestBB;
3142    if (ParseTypeAndBasicBlock(DestBB, PFS))
3143      return true;
3144    DestList.push_back(DestBB);
3145
3146    while (EatIfPresent(lltok::comma)) {
3147      if (ParseTypeAndBasicBlock(DestBB, PFS))
3148        return true;
3149      DestList.push_back(DestBB);
3150    }
3151  }
3152
3153  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3154    return true;
3155
3156  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3157  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3158    IBI->addDestination(DestList[i]);
3159  Inst = IBI;
3160  return false;
3161}
3162
3163
3164/// ParseInvoke
3165///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3166///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3167bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3168  LocTy CallLoc = Lex.getLoc();
3169  unsigned RetAttrs, FnAttrs;
3170  CallingConv::ID CC;
3171  Type *RetType = 0;
3172  LocTy RetTypeLoc;
3173  ValID CalleeID;
3174  SmallVector<ParamInfo, 16> ArgList;
3175
3176  BasicBlock *NormalBB, *UnwindBB;
3177  if (ParseOptionalCallingConv(CC) ||
3178      ParseOptionalAttrs(RetAttrs, 1) ||
3179      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3180      ParseValID(CalleeID) ||
3181      ParseParameterList(ArgList, PFS) ||
3182      ParseOptionalAttrs(FnAttrs, 2) ||
3183      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3184      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3185      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3186      ParseTypeAndBasicBlock(UnwindBB, PFS))
3187    return true;
3188
3189  // If RetType is a non-function pointer type, then this is the short syntax
3190  // for the call, which means that RetType is just the return type.  Infer the
3191  // rest of the function argument types from the arguments that are present.
3192  PointerType *PFTy = 0;
3193  FunctionType *Ty = 0;
3194  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3195      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3196    // Pull out the types of all of the arguments...
3197    std::vector<Type*> ParamTypes;
3198    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3199      ParamTypes.push_back(ArgList[i].V->getType());
3200
3201    if (!FunctionType::isValidReturnType(RetType))
3202      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3203
3204    Ty = FunctionType::get(RetType, ParamTypes, false);
3205    PFTy = PointerType::getUnqual(Ty);
3206  }
3207
3208  // Look up the callee.
3209  Value *Callee;
3210  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3211
3212  // Set up the Attributes for the function.
3213  SmallVector<AttributeWithIndex, 8> Attrs;
3214  if (RetAttrs != Attribute::None)
3215    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3216
3217  SmallVector<Value*, 8> Args;
3218
3219  // Loop through FunctionType's arguments and ensure they are specified
3220  // correctly.  Also, gather any parameter attributes.
3221  FunctionType::param_iterator I = Ty->param_begin();
3222  FunctionType::param_iterator E = Ty->param_end();
3223  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3224    Type *ExpectedTy = 0;
3225    if (I != E) {
3226      ExpectedTy = *I++;
3227    } else if (!Ty->isVarArg()) {
3228      return Error(ArgList[i].Loc, "too many arguments specified");
3229    }
3230
3231    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3232      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3233                   getTypeString(ExpectedTy) + "'");
3234    Args.push_back(ArgList[i].V);
3235    if (ArgList[i].Attrs != Attribute::None)
3236      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3237  }
3238
3239  if (I != E)
3240    return Error(CallLoc, "not enough parameters specified for call");
3241
3242  if (FnAttrs != Attribute::None)
3243    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3244
3245  // Finish off the Attributes and check them
3246  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3247
3248  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3249  II->setCallingConv(CC);
3250  II->setAttributes(PAL);
3251  Inst = II;
3252  return false;
3253}
3254
3255/// ParseResume
3256///   ::= 'resume' TypeAndValue
3257bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3258  Value *Exn; LocTy ExnLoc;
3259  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3260    return true;
3261
3262  ResumeInst *RI = ResumeInst::Create(Exn);
3263  Inst = RI;
3264  return false;
3265}
3266
3267//===----------------------------------------------------------------------===//
3268// Binary Operators.
3269//===----------------------------------------------------------------------===//
3270
3271/// ParseArithmetic
3272///  ::= ArithmeticOps TypeAndValue ',' Value
3273///
3274/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3275/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3276bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3277                               unsigned Opc, unsigned OperandType) {
3278  LocTy Loc; Value *LHS, *RHS;
3279  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3280      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3281      ParseValue(LHS->getType(), RHS, PFS))
3282    return true;
3283
3284  bool Valid;
3285  switch (OperandType) {
3286  default: llvm_unreachable("Unknown operand type!");
3287  case 0: // int or FP.
3288    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3289            LHS->getType()->isFPOrFPVectorTy();
3290    break;
3291  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3292  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3293  }
3294
3295  if (!Valid)
3296    return Error(Loc, "invalid operand type for instruction");
3297
3298  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3299  return false;
3300}
3301
3302/// ParseLogical
3303///  ::= ArithmeticOps TypeAndValue ',' Value {
3304bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3305                            unsigned Opc) {
3306  LocTy Loc; Value *LHS, *RHS;
3307  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3308      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3309      ParseValue(LHS->getType(), RHS, PFS))
3310    return true;
3311
3312  if (!LHS->getType()->isIntOrIntVectorTy())
3313    return Error(Loc,"instruction requires integer or integer vector operands");
3314
3315  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3316  return false;
3317}
3318
3319
3320/// ParseCompare
3321///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3322///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3323bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3324                            unsigned Opc) {
3325  // Parse the integer/fp comparison predicate.
3326  LocTy Loc;
3327  unsigned Pred;
3328  Value *LHS, *RHS;
3329  if (ParseCmpPredicate(Pred, Opc) ||
3330      ParseTypeAndValue(LHS, Loc, PFS) ||
3331      ParseToken(lltok::comma, "expected ',' after compare value") ||
3332      ParseValue(LHS->getType(), RHS, PFS))
3333    return true;
3334
3335  if (Opc == Instruction::FCmp) {
3336    if (!LHS->getType()->isFPOrFPVectorTy())
3337      return Error(Loc, "fcmp requires floating point operands");
3338    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3339  } else {
3340    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3341    if (!LHS->getType()->isIntOrIntVectorTy() &&
3342        !LHS->getType()->isPointerTy())
3343      return Error(Loc, "icmp requires integer operands");
3344    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3345  }
3346  return false;
3347}
3348
3349//===----------------------------------------------------------------------===//
3350// Other Instructions.
3351//===----------------------------------------------------------------------===//
3352
3353
3354/// ParseCast
3355///   ::= CastOpc TypeAndValue 'to' Type
3356bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3357                         unsigned Opc) {
3358  LocTy Loc;
3359  Value *Op;
3360  Type *DestTy = 0;
3361  if (ParseTypeAndValue(Op, Loc, PFS) ||
3362      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3363      ParseType(DestTy))
3364    return true;
3365
3366  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3367    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3368    return Error(Loc, "invalid cast opcode for cast from '" +
3369                 getTypeString(Op->getType()) + "' to '" +
3370                 getTypeString(DestTy) + "'");
3371  }
3372  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3373  return false;
3374}
3375
3376/// ParseSelect
3377///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3378bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3379  LocTy Loc;
3380  Value *Op0, *Op1, *Op2;
3381  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3382      ParseToken(lltok::comma, "expected ',' after select condition") ||
3383      ParseTypeAndValue(Op1, PFS) ||
3384      ParseToken(lltok::comma, "expected ',' after select value") ||
3385      ParseTypeAndValue(Op2, PFS))
3386    return true;
3387
3388  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3389    return Error(Loc, Reason);
3390
3391  Inst = SelectInst::Create(Op0, Op1, Op2);
3392  return false;
3393}
3394
3395/// ParseVA_Arg
3396///   ::= 'va_arg' TypeAndValue ',' Type
3397bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3398  Value *Op;
3399  Type *EltTy = 0;
3400  LocTy TypeLoc;
3401  if (ParseTypeAndValue(Op, PFS) ||
3402      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3403      ParseType(EltTy, TypeLoc))
3404    return true;
3405
3406  if (!EltTy->isFirstClassType())
3407    return Error(TypeLoc, "va_arg requires operand with first class type");
3408
3409  Inst = new VAArgInst(Op, EltTy);
3410  return false;
3411}
3412
3413/// ParseExtractElement
3414///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3415bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3416  LocTy Loc;
3417  Value *Op0, *Op1;
3418  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3419      ParseToken(lltok::comma, "expected ',' after extract value") ||
3420      ParseTypeAndValue(Op1, PFS))
3421    return true;
3422
3423  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3424    return Error(Loc, "invalid extractelement operands");
3425
3426  Inst = ExtractElementInst::Create(Op0, Op1);
3427  return false;
3428}
3429
3430/// ParseInsertElement
3431///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3432bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3433  LocTy Loc;
3434  Value *Op0, *Op1, *Op2;
3435  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3436      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3437      ParseTypeAndValue(Op1, PFS) ||
3438      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3439      ParseTypeAndValue(Op2, PFS))
3440    return true;
3441
3442  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3443    return Error(Loc, "invalid insertelement operands");
3444
3445  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3446  return false;
3447}
3448
3449/// ParseShuffleVector
3450///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3451bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3452  LocTy Loc;
3453  Value *Op0, *Op1, *Op2;
3454  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3455      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3456      ParseTypeAndValue(Op1, PFS) ||
3457      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3458      ParseTypeAndValue(Op2, PFS))
3459    return true;
3460
3461  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3462    return Error(Loc, "invalid extractelement operands");
3463
3464  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3465  return false;
3466}
3467
3468/// ParsePHI
3469///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3470int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3471  Type *Ty = 0;  LocTy TypeLoc;
3472  Value *Op0, *Op1;
3473
3474  if (ParseType(Ty, TypeLoc) ||
3475      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3476      ParseValue(Ty, Op0, PFS) ||
3477      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3478      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3479      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3480    return true;
3481
3482  bool AteExtraComma = false;
3483  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3484  while (1) {
3485    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3486
3487    if (!EatIfPresent(lltok::comma))
3488      break;
3489
3490    if (Lex.getKind() == lltok::MetadataVar) {
3491      AteExtraComma = true;
3492      break;
3493    }
3494
3495    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3496        ParseValue(Ty, Op0, PFS) ||
3497        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3498        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3499        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3500      return true;
3501  }
3502
3503  if (!Ty->isFirstClassType())
3504    return Error(TypeLoc, "phi node must have first class type");
3505
3506  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3507  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3508    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3509  Inst = PN;
3510  return AteExtraComma ? InstExtraComma : InstNormal;
3511}
3512
3513/// ParseLandingPad
3514///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3515/// Clause
3516///   ::= 'catch' TypeAndValue
3517///   ::= 'filter'
3518///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3519bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3520  Type *Ty = 0; LocTy TyLoc;
3521  Value *PersFn; LocTy PersFnLoc;
3522
3523  if (ParseType(Ty, TyLoc) ||
3524      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3525      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3526    return true;
3527
3528  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3529  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3530
3531  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3532    LandingPadInst::ClauseType CT;
3533    if (EatIfPresent(lltok::kw_catch))
3534      CT = LandingPadInst::Catch;
3535    else if (EatIfPresent(lltok::kw_filter))
3536      CT = LandingPadInst::Filter;
3537    else
3538      return TokError("expected 'catch' or 'filter' clause type");
3539
3540    Value *V; LocTy VLoc;
3541    if (ParseTypeAndValue(V, VLoc, PFS)) {
3542      delete LP;
3543      return true;
3544    }
3545
3546    // A 'catch' type expects a non-array constant. A filter clause expects an
3547    // array constant.
3548    if (CT == LandingPadInst::Catch) {
3549      if (isa<ArrayType>(V->getType()))
3550        Error(VLoc, "'catch' clause has an invalid type");
3551    } else {
3552      if (!isa<ArrayType>(V->getType()))
3553        Error(VLoc, "'filter' clause has an invalid type");
3554    }
3555
3556    LP->addClause(V);
3557  }
3558
3559  Inst = LP;
3560  return false;
3561}
3562
3563/// ParseCall
3564///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3565///       ParameterList OptionalAttrs
3566bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3567                         bool isTail) {
3568  unsigned RetAttrs, FnAttrs;
3569  CallingConv::ID CC;
3570  Type *RetType = 0;
3571  LocTy RetTypeLoc;
3572  ValID CalleeID;
3573  SmallVector<ParamInfo, 16> ArgList;
3574  LocTy CallLoc = Lex.getLoc();
3575
3576  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3577      ParseOptionalCallingConv(CC) ||
3578      ParseOptionalAttrs(RetAttrs, 1) ||
3579      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3580      ParseValID(CalleeID) ||
3581      ParseParameterList(ArgList, PFS) ||
3582      ParseOptionalAttrs(FnAttrs, 2))
3583    return true;
3584
3585  // If RetType is a non-function pointer type, then this is the short syntax
3586  // for the call, which means that RetType is just the return type.  Infer the
3587  // rest of the function argument types from the arguments that are present.
3588  PointerType *PFTy = 0;
3589  FunctionType *Ty = 0;
3590  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3591      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3592    // Pull out the types of all of the arguments...
3593    std::vector<Type*> ParamTypes;
3594    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3595      ParamTypes.push_back(ArgList[i].V->getType());
3596
3597    if (!FunctionType::isValidReturnType(RetType))
3598      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3599
3600    Ty = FunctionType::get(RetType, ParamTypes, false);
3601    PFTy = PointerType::getUnqual(Ty);
3602  }
3603
3604  // Look up the callee.
3605  Value *Callee;
3606  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3607
3608  // Set up the Attributes for the function.
3609  SmallVector<AttributeWithIndex, 8> Attrs;
3610  if (RetAttrs != Attribute::None)
3611    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3612
3613  SmallVector<Value*, 8> Args;
3614
3615  // Loop through FunctionType's arguments and ensure they are specified
3616  // correctly.  Also, gather any parameter attributes.
3617  FunctionType::param_iterator I = Ty->param_begin();
3618  FunctionType::param_iterator E = Ty->param_end();
3619  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3620    Type *ExpectedTy = 0;
3621    if (I != E) {
3622      ExpectedTy = *I++;
3623    } else if (!Ty->isVarArg()) {
3624      return Error(ArgList[i].Loc, "too many arguments specified");
3625    }
3626
3627    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3628      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3629                   getTypeString(ExpectedTy) + "'");
3630    Args.push_back(ArgList[i].V);
3631    if (ArgList[i].Attrs != Attribute::None)
3632      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3633  }
3634
3635  if (I != E)
3636    return Error(CallLoc, "not enough parameters specified for call");
3637
3638  if (FnAttrs != Attribute::None)
3639    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3640
3641  // Finish off the Attributes and check them
3642  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3643
3644  CallInst *CI = CallInst::Create(Callee, Args);
3645  CI->setTailCall(isTail);
3646  CI->setCallingConv(CC);
3647  CI->setAttributes(PAL);
3648  Inst = CI;
3649  return false;
3650}
3651
3652//===----------------------------------------------------------------------===//
3653// Memory Instructions.
3654//===----------------------------------------------------------------------===//
3655
3656/// ParseAlloc
3657///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3658int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3659  Value *Size = 0;
3660  LocTy SizeLoc;
3661  unsigned Alignment = 0;
3662  Type *Ty = 0;
3663  if (ParseType(Ty)) return true;
3664
3665  bool AteExtraComma = false;
3666  if (EatIfPresent(lltok::comma)) {
3667    if (Lex.getKind() == lltok::kw_align) {
3668      if (ParseOptionalAlignment(Alignment)) return true;
3669    } else if (Lex.getKind() == lltok::MetadataVar) {
3670      AteExtraComma = true;
3671    } else {
3672      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3673          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3674        return true;
3675    }
3676  }
3677
3678  if (Size && !Size->getType()->isIntegerTy())
3679    return Error(SizeLoc, "element count must have integer type");
3680
3681  Inst = new AllocaInst(Ty, Size, Alignment);
3682  return AteExtraComma ? InstExtraComma : InstNormal;
3683}
3684
3685/// ParseLoad
3686///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3687///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3688///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3689///   Compatibility:
3690///   ::= 'volatile' 'load' TypeAndValue (',' 'align' i32)?
3691int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3692                        bool isVolatile) {
3693  Value *Val; LocTy Loc;
3694  unsigned Alignment = 0;
3695  bool AteExtraComma = false;
3696  bool isAtomic = false;
3697  AtomicOrdering Ordering = NotAtomic;
3698  SynchronizationScope Scope = CrossThread;
3699
3700  if (Lex.getKind() == lltok::kw_atomic) {
3701    if (isVolatile)
3702      return TokError("mixing atomic with old volatile placement");
3703    isAtomic = true;
3704    Lex.Lex();
3705  }
3706
3707  if (Lex.getKind() == lltok::kw_volatile) {
3708    if (isVolatile)
3709      return TokError("duplicate volatile before and after store");
3710    isVolatile = true;
3711    Lex.Lex();
3712  }
3713
3714  if (ParseTypeAndValue(Val, Loc, PFS) ||
3715      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3716      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3717    return true;
3718
3719  if (!Val->getType()->isPointerTy() ||
3720      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3721    return Error(Loc, "load operand must be a pointer to a first class type");
3722  if (isAtomic && !Alignment)
3723    return Error(Loc, "atomic load must have explicit non-zero alignment");
3724  if (Ordering == Release || Ordering == AcquireRelease)
3725    return Error(Loc, "atomic load cannot use Release ordering");
3726
3727  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3728  return AteExtraComma ? InstExtraComma : InstNormal;
3729}
3730
3731/// ParseStore
3732
3733///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3734///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3735///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3736///   Compatibility:
3737///   ::= 'volatile' 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3738int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3739                         bool isVolatile) {
3740  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3741  unsigned Alignment = 0;
3742  bool AteExtraComma = false;
3743  bool isAtomic = false;
3744  AtomicOrdering Ordering = NotAtomic;
3745  SynchronizationScope Scope = CrossThread;
3746
3747  if (Lex.getKind() == lltok::kw_atomic) {
3748    if (isVolatile)
3749      return TokError("mixing atomic with old volatile placement");
3750    isAtomic = true;
3751    Lex.Lex();
3752  }
3753
3754  if (Lex.getKind() == lltok::kw_volatile) {
3755    if (isVolatile)
3756      return TokError("duplicate volatile before and after store");
3757    isVolatile = true;
3758    Lex.Lex();
3759  }
3760
3761  if (ParseTypeAndValue(Val, Loc, PFS) ||
3762      ParseToken(lltok::comma, "expected ',' after store operand") ||
3763      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3764      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3765      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3766    return true;
3767
3768  if (!Ptr->getType()->isPointerTy())
3769    return Error(PtrLoc, "store operand must be a pointer");
3770  if (!Val->getType()->isFirstClassType())
3771    return Error(Loc, "store operand must be a first class value");
3772  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3773    return Error(Loc, "stored value and pointer type do not match");
3774  if (isAtomic && !Alignment)
3775    return Error(Loc, "atomic store must have explicit non-zero alignment");
3776  if (Ordering == Acquire || Ordering == AcquireRelease)
3777    return Error(Loc, "atomic store cannot use Acquire ordering");
3778
3779  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3780  return AteExtraComma ? InstExtraComma : InstNormal;
3781}
3782
3783/// ParseCmpXchg
3784///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3785///       'singlethread'? AtomicOrdering
3786int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3787  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3788  bool AteExtraComma = false;
3789  AtomicOrdering Ordering = NotAtomic;
3790  SynchronizationScope Scope = CrossThread;
3791  bool isVolatile = false;
3792
3793  if (EatIfPresent(lltok::kw_volatile))
3794    isVolatile = true;
3795
3796  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3797      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3798      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3799      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3800      ParseTypeAndValue(New, NewLoc, PFS) ||
3801      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3802    return true;
3803
3804  if (Ordering == Unordered)
3805    return TokError("cmpxchg cannot be unordered");
3806  if (!Ptr->getType()->isPointerTy())
3807    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3808  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3809    return Error(CmpLoc, "compare value and pointer type do not match");
3810  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3811    return Error(NewLoc, "new value and pointer type do not match");
3812  if (!New->getType()->isIntegerTy())
3813    return Error(NewLoc, "cmpxchg operand must be an integer");
3814  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3815  if (Size < 8 || (Size & (Size - 1)))
3816    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3817                         " integer");
3818
3819  AtomicCmpXchgInst *CXI =
3820    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3821  CXI->setVolatile(isVolatile);
3822  Inst = CXI;
3823  return AteExtraComma ? InstExtraComma : InstNormal;
3824}
3825
3826/// ParseAtomicRMW
3827///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3828///       'singlethread'? AtomicOrdering
3829int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3830  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3831  bool AteExtraComma = false;
3832  AtomicOrdering Ordering = NotAtomic;
3833  SynchronizationScope Scope = CrossThread;
3834  bool isVolatile = false;
3835  AtomicRMWInst::BinOp Operation;
3836
3837  if (EatIfPresent(lltok::kw_volatile))
3838    isVolatile = true;
3839
3840  switch (Lex.getKind()) {
3841  default: return TokError("expected binary operation in atomicrmw");
3842  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3843  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3844  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3845  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3846  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3847  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3848  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3849  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3850  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3851  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3852  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3853  }
3854  Lex.Lex();  // Eat the operation.
3855
3856  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3857      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3858      ParseTypeAndValue(Val, ValLoc, PFS) ||
3859      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3860    return true;
3861
3862  if (Ordering == Unordered)
3863    return TokError("atomicrmw cannot be unordered");
3864  if (!Ptr->getType()->isPointerTy())
3865    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3866  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3867    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3868  if (!Val->getType()->isIntegerTy())
3869    return Error(ValLoc, "atomicrmw operand must be an integer");
3870  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3871  if (Size < 8 || (Size & (Size - 1)))
3872    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3873                         " integer");
3874
3875  AtomicRMWInst *RMWI =
3876    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3877  RMWI->setVolatile(isVolatile);
3878  Inst = RMWI;
3879  return AteExtraComma ? InstExtraComma : InstNormal;
3880}
3881
3882/// ParseFence
3883///   ::= 'fence' 'singlethread'? AtomicOrdering
3884int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3885  AtomicOrdering Ordering = NotAtomic;
3886  SynchronizationScope Scope = CrossThread;
3887  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3888    return true;
3889
3890  if (Ordering == Unordered)
3891    return TokError("fence cannot be unordered");
3892  if (Ordering == Monotonic)
3893    return TokError("fence cannot be monotonic");
3894
3895  Inst = new FenceInst(Context, Ordering, Scope);
3896  return InstNormal;
3897}
3898
3899/// ParseGetElementPtr
3900///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3901int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3902  Value *Ptr, *Val; LocTy Loc, EltLoc;
3903
3904  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3905
3906  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3907
3908  if (!Ptr->getType()->isPointerTy())
3909    return Error(Loc, "base of getelementptr must be a pointer");
3910
3911  SmallVector<Value*, 16> Indices;
3912  bool AteExtraComma = false;
3913  while (EatIfPresent(lltok::comma)) {
3914    if (Lex.getKind() == lltok::MetadataVar) {
3915      AteExtraComma = true;
3916      break;
3917    }
3918    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3919    if (!Val->getType()->isIntegerTy())
3920      return Error(EltLoc, "getelementptr index must be an integer");
3921    Indices.push_back(Val);
3922  }
3923
3924  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3925    return Error(Loc, "invalid getelementptr indices");
3926  Inst = GetElementPtrInst::Create(Ptr, Indices);
3927  if (InBounds)
3928    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3929  return AteExtraComma ? InstExtraComma : InstNormal;
3930}
3931
3932/// ParseExtractValue
3933///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3934int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3935  Value *Val; LocTy Loc;
3936  SmallVector<unsigned, 4> Indices;
3937  bool AteExtraComma;
3938  if (ParseTypeAndValue(Val, Loc, PFS) ||
3939      ParseIndexList(Indices, AteExtraComma))
3940    return true;
3941
3942  if (!Val->getType()->isAggregateType())
3943    return Error(Loc, "extractvalue operand must be aggregate type");
3944
3945  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3946    return Error(Loc, "invalid indices for extractvalue");
3947  Inst = ExtractValueInst::Create(Val, Indices);
3948  return AteExtraComma ? InstExtraComma : InstNormal;
3949}
3950
3951/// ParseInsertValue
3952///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3953int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3954  Value *Val0, *Val1; LocTy Loc0, Loc1;
3955  SmallVector<unsigned, 4> Indices;
3956  bool AteExtraComma;
3957  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3958      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3959      ParseTypeAndValue(Val1, Loc1, PFS) ||
3960      ParseIndexList(Indices, AteExtraComma))
3961    return true;
3962
3963  if (!Val0->getType()->isAggregateType())
3964    return Error(Loc0, "insertvalue operand must be aggregate type");
3965
3966  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
3967    return Error(Loc0, "invalid indices for insertvalue");
3968  Inst = InsertValueInst::Create(Val0, Val1, Indices);
3969  return AteExtraComma ? InstExtraComma : InstNormal;
3970}
3971
3972//===----------------------------------------------------------------------===//
3973// Embedded metadata.
3974//===----------------------------------------------------------------------===//
3975
3976/// ParseMDNodeVector
3977///   ::= Element (',' Element)*
3978/// Element
3979///   ::= 'null' | TypeAndValue
3980bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3981                                 PerFunctionState *PFS) {
3982  // Check for an empty list.
3983  if (Lex.getKind() == lltok::rbrace)
3984    return false;
3985
3986  do {
3987    // Null is a special case since it is typeless.
3988    if (EatIfPresent(lltok::kw_null)) {
3989      Elts.push_back(0);
3990      continue;
3991    }
3992
3993    Value *V = 0;
3994    if (ParseTypeAndValue(V, PFS)) return true;
3995    Elts.push_back(V);
3996  } while (EatIfPresent(lltok::comma));
3997
3998  return false;
3999}
4000