LLParser.cpp revision d8ffe5bb162bf97a7b0a323d2edcf8b83ca5dada
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  // Upgrade to new EH scheme. N.B. This will go away in 3.1.
124  UpgradeExceptionHandling(M);
125
126  // Check debug info intrinsics.
127  CheckDebugInfoIntrinsics(M);
128  return false;
129}
130
131bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
132                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
133                                               PerFunctionState *PFS) {
134  // Loop over all the references, resolving them.
135  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
136    BasicBlock *Res;
137    if (PFS) {
138      if (Refs[i].first.Kind == ValID::t_LocalName)
139        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
140      else
141        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
142    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
143      return Error(Refs[i].first.Loc,
144       "cannot take address of numeric label after the function is defined");
145    } else {
146      Res = dyn_cast_or_null<BasicBlock>(
147                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
148    }
149
150    if (Res == 0)
151      return Error(Refs[i].first.Loc,
152                   "referenced value is not a basic block");
153
154    // Get the BlockAddress for this and update references to use it.
155    BlockAddress *BA = BlockAddress::get(TheFn, Res);
156    Refs[i].second->replaceAllUsesWith(BA);
157    Refs[i].second->eraseFromParent();
158  }
159  return false;
160}
161
162
163//===----------------------------------------------------------------------===//
164// Top-Level Entities
165//===----------------------------------------------------------------------===//
166
167bool LLParser::ParseTopLevelEntities() {
168  while (1) {
169    switch (Lex.getKind()) {
170    default:         return TokError("expected top-level entity");
171    case lltok::Eof: return false;
172    case lltok::kw_declare: if (ParseDeclare()) return true; break;
173    case lltok::kw_define:  if (ParseDefine()) return true; break;
174    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
175    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
176    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
177    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
178    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
179    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
180    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
181    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
182    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
183
184    // The Global variable production with no name can have many different
185    // optional leading prefixes, the production is:
186    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
187    //               OptionalAddrSpace OptionalUnNammedAddr
188    //               ('constant'|'global') ...
189    case lltok::kw_private:             // OptionalLinkage
190    case lltok::kw_linker_private:      // OptionalLinkage
191    case lltok::kw_linker_private_weak: // OptionalLinkage
192    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
193    case lltok::kw_internal:            // OptionalLinkage
194    case lltok::kw_weak:                // OptionalLinkage
195    case lltok::kw_weak_odr:            // OptionalLinkage
196    case lltok::kw_linkonce:            // OptionalLinkage
197    case lltok::kw_linkonce_odr:        // OptionalLinkage
198    case lltok::kw_appending:           // OptionalLinkage
199    case lltok::kw_dllexport:           // OptionalLinkage
200    case lltok::kw_common:              // OptionalLinkage
201    case lltok::kw_dllimport:           // OptionalLinkage
202    case lltok::kw_extern_weak:         // OptionalLinkage
203    case lltok::kw_external: {          // OptionalLinkage
204      unsigned Linkage, Visibility;
205      if (ParseOptionalLinkage(Linkage) ||
206          ParseOptionalVisibility(Visibility) ||
207          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
208        return true;
209      break;
210    }
211    case lltok::kw_default:       // OptionalVisibility
212    case lltok::kw_hidden:        // OptionalVisibility
213    case lltok::kw_protected: {   // OptionalVisibility
214      unsigned Visibility;
215      if (ParseOptionalVisibility(Visibility) ||
216          ParseGlobal("", SMLoc(), 0, false, Visibility))
217        return true;
218      break;
219    }
220
221    case lltok::kw_thread_local:  // OptionalThreadLocal
222    case lltok::kw_addrspace:     // OptionalAddrSpace
223    case lltok::kw_constant:      // GlobalType
224    case lltok::kw_global:        // GlobalType
225      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
226      break;
227    }
228  }
229}
230
231
232/// toplevelentity
233///   ::= 'module' 'asm' STRINGCONSTANT
234bool LLParser::ParseModuleAsm() {
235  assert(Lex.getKind() == lltok::kw_module);
236  Lex.Lex();
237
238  std::string AsmStr;
239  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
240      ParseStringConstant(AsmStr)) return true;
241
242  M->appendModuleInlineAsm(AsmStr);
243  return false;
244}
245
246/// toplevelentity
247///   ::= 'target' 'triple' '=' STRINGCONSTANT
248///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
249bool LLParser::ParseTargetDefinition() {
250  assert(Lex.getKind() == lltok::kw_target);
251  std::string Str;
252  switch (Lex.Lex()) {
253  default: return TokError("unknown target property");
254  case lltok::kw_triple:
255    Lex.Lex();
256    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
257        ParseStringConstant(Str))
258      return true;
259    M->setTargetTriple(Str);
260    return false;
261  case lltok::kw_datalayout:
262    Lex.Lex();
263    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
264        ParseStringConstant(Str))
265      return true;
266    M->setDataLayout(Str);
267    return false;
268  }
269}
270
271/// toplevelentity
272///   ::= 'deplibs' '=' '[' ']'
273///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
274bool LLParser::ParseDepLibs() {
275  assert(Lex.getKind() == lltok::kw_deplibs);
276  Lex.Lex();
277  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
278      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
279    return true;
280
281  if (EatIfPresent(lltok::rsquare))
282    return false;
283
284  std::string Str;
285  if (ParseStringConstant(Str)) return true;
286  M->addLibrary(Str);
287
288  while (EatIfPresent(lltok::comma)) {
289    if (ParseStringConstant(Str)) return true;
290    M->addLibrary(Str);
291  }
292
293  return ParseToken(lltok::rsquare, "expected ']' at end of list");
294}
295
296/// ParseUnnamedType:
297///   ::= LocalVarID '=' 'type' type
298bool LLParser::ParseUnnamedType() {
299  LocTy TypeLoc = Lex.getLoc();
300  unsigned TypeID = Lex.getUIntVal();
301  Lex.Lex(); // eat LocalVarID;
302
303  if (ParseToken(lltok::equal, "expected '=' after name") ||
304      ParseToken(lltok::kw_type, "expected 'type' after '='"))
305    return true;
306
307  if (TypeID >= NumberedTypes.size())
308    NumberedTypes.resize(TypeID+1);
309
310  Type *Result = 0;
311  if (ParseStructDefinition(TypeLoc, "",
312                            NumberedTypes[TypeID], Result)) return true;
313
314  if (!isa<StructType>(Result)) {
315    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
316    if (Entry.first)
317      return Error(TypeLoc, "non-struct types may not be recursive");
318    Entry.first = Result;
319    Entry.second = SMLoc();
320  }
321
322  return false;
323}
324
325
326/// toplevelentity
327///   ::= LocalVar '=' 'type' type
328bool LLParser::ParseNamedType() {
329  std::string Name = Lex.getStrVal();
330  LocTy NameLoc = Lex.getLoc();
331  Lex.Lex();  // eat LocalVar.
332
333  if (ParseToken(lltok::equal, "expected '=' after name") ||
334      ParseToken(lltok::kw_type, "expected 'type' after name"))
335    return true;
336
337  Type *Result = 0;
338  if (ParseStructDefinition(NameLoc, Name,
339                            NamedTypes[Name], Result)) return true;
340
341  if (!isa<StructType>(Result)) {
342    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
343    if (Entry.first)
344      return Error(NameLoc, "non-struct types may not be recursive");
345    Entry.first = Result;
346    Entry.second = SMLoc();
347  }
348
349  return false;
350}
351
352
353/// toplevelentity
354///   ::= 'declare' FunctionHeader
355bool LLParser::ParseDeclare() {
356  assert(Lex.getKind() == lltok::kw_declare);
357  Lex.Lex();
358
359  Function *F;
360  return ParseFunctionHeader(F, false);
361}
362
363/// toplevelentity
364///   ::= 'define' FunctionHeader '{' ...
365bool LLParser::ParseDefine() {
366  assert(Lex.getKind() == lltok::kw_define);
367  Lex.Lex();
368
369  Function *F;
370  return ParseFunctionHeader(F, true) ||
371         ParseFunctionBody(*F);
372}
373
374/// ParseGlobalType
375///   ::= 'constant'
376///   ::= 'global'
377bool LLParser::ParseGlobalType(bool &IsConstant) {
378  if (Lex.getKind() == lltok::kw_constant)
379    IsConstant = true;
380  else if (Lex.getKind() == lltok::kw_global)
381    IsConstant = false;
382  else {
383    IsConstant = false;
384    return TokError("expected 'global' or 'constant'");
385  }
386  Lex.Lex();
387  return false;
388}
389
390/// ParseUnnamedGlobal:
391///   OptionalVisibility ALIAS ...
392///   OptionalLinkage OptionalVisibility ...   -> global variable
393///   GlobalID '=' OptionalVisibility ALIAS ...
394///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
395bool LLParser::ParseUnnamedGlobal() {
396  unsigned VarID = NumberedVals.size();
397  std::string Name;
398  LocTy NameLoc = Lex.getLoc();
399
400  // Handle the GlobalID form.
401  if (Lex.getKind() == lltok::GlobalID) {
402    if (Lex.getUIntVal() != VarID)
403      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
404                   Twine(VarID) + "'");
405    Lex.Lex(); // eat GlobalID;
406
407    if (ParseToken(lltok::equal, "expected '=' after name"))
408      return true;
409  }
410
411  bool HasLinkage;
412  unsigned Linkage, Visibility;
413  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
414      ParseOptionalVisibility(Visibility))
415    return true;
416
417  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
418    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
419  return ParseAlias(Name, NameLoc, Visibility);
420}
421
422/// ParseNamedGlobal:
423///   GlobalVar '=' OptionalVisibility ALIAS ...
424///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
425bool LLParser::ParseNamedGlobal() {
426  assert(Lex.getKind() == lltok::GlobalVar);
427  LocTy NameLoc = Lex.getLoc();
428  std::string Name = Lex.getStrVal();
429  Lex.Lex();
430
431  bool HasLinkage;
432  unsigned Linkage, Visibility;
433  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
434      ParseOptionalLinkage(Linkage, HasLinkage) ||
435      ParseOptionalVisibility(Visibility))
436    return true;
437
438  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440  return ParseAlias(Name, NameLoc, Visibility);
441}
442
443// MDString:
444//   ::= '!' STRINGCONSTANT
445bool LLParser::ParseMDString(MDString *&Result) {
446  std::string Str;
447  if (ParseStringConstant(Str)) return true;
448  Result = MDString::get(Context, Str);
449  return false;
450}
451
452// MDNode:
453//   ::= '!' MDNodeNumber
454//
455/// This version of ParseMDNodeID returns the slot number and null in the case
456/// of a forward reference.
457bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
458  // !{ ..., !42, ... }
459  if (ParseUInt32(SlotNo)) return true;
460
461  // Check existing MDNode.
462  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
463    Result = NumberedMetadata[SlotNo];
464  else
465    Result = 0;
466  return false;
467}
468
469bool LLParser::ParseMDNodeID(MDNode *&Result) {
470  // !{ ..., !42, ... }
471  unsigned MID = 0;
472  if (ParseMDNodeID(Result, MID)) return true;
473
474  // If not a forward reference, just return it now.
475  if (Result) return false;
476
477  // Otherwise, create MDNode forward reference.
478  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
479  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
480
481  if (NumberedMetadata.size() <= MID)
482    NumberedMetadata.resize(MID+1);
483  NumberedMetadata[MID] = FwdNode;
484  Result = FwdNode;
485  return false;
486}
487
488/// ParseNamedMetadata:
489///   !foo = !{ !1, !2 }
490bool LLParser::ParseNamedMetadata() {
491  assert(Lex.getKind() == lltok::MetadataVar);
492  std::string Name = Lex.getStrVal();
493  Lex.Lex();
494
495  if (ParseToken(lltok::equal, "expected '=' here") ||
496      ParseToken(lltok::exclaim, "Expected '!' here") ||
497      ParseToken(lltok::lbrace, "Expected '{' here"))
498    return true;
499
500  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
501  if (Lex.getKind() != lltok::rbrace)
502    do {
503      if (ParseToken(lltok::exclaim, "Expected '!' here"))
504        return true;
505
506      MDNode *N = 0;
507      if (ParseMDNodeID(N)) return true;
508      NMD->addOperand(N);
509    } while (EatIfPresent(lltok::comma));
510
511  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
512    return true;
513
514  return false;
515}
516
517/// ParseStandaloneMetadata:
518///   !42 = !{...}
519bool LLParser::ParseStandaloneMetadata() {
520  assert(Lex.getKind() == lltok::exclaim);
521  Lex.Lex();
522  unsigned MetadataID = 0;
523
524  LocTy TyLoc;
525  Type *Ty = 0;
526  SmallVector<Value *, 16> Elts;
527  if (ParseUInt32(MetadataID) ||
528      ParseToken(lltok::equal, "expected '=' here") ||
529      ParseType(Ty, TyLoc) ||
530      ParseToken(lltok::exclaim, "Expected '!' here") ||
531      ParseToken(lltok::lbrace, "Expected '{' here") ||
532      ParseMDNodeVector(Elts, NULL) ||
533      ParseToken(lltok::rbrace, "expected end of metadata node"))
534    return true;
535
536  MDNode *Init = MDNode::get(Context, Elts);
537
538  // See if this was forward referenced, if so, handle it.
539  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
540    FI = ForwardRefMDNodes.find(MetadataID);
541  if (FI != ForwardRefMDNodes.end()) {
542    MDNode *Temp = FI->second.first;
543    Temp->replaceAllUsesWith(Init);
544    MDNode::deleteTemporary(Temp);
545    ForwardRefMDNodes.erase(FI);
546
547    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
548  } else {
549    if (MetadataID >= NumberedMetadata.size())
550      NumberedMetadata.resize(MetadataID+1);
551
552    if (NumberedMetadata[MetadataID] != 0)
553      return TokError("Metadata id is already used");
554    NumberedMetadata[MetadataID] = Init;
555  }
556
557  return false;
558}
559
560/// ParseAlias:
561///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
562/// Aliasee
563///   ::= TypeAndValue
564///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
565///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
566///
567/// Everything through visibility has already been parsed.
568///
569bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
570                          unsigned Visibility) {
571  assert(Lex.getKind() == lltok::kw_alias);
572  Lex.Lex();
573  unsigned Linkage;
574  LocTy LinkageLoc = Lex.getLoc();
575  if (ParseOptionalLinkage(Linkage))
576    return true;
577
578  if (Linkage != GlobalValue::ExternalLinkage &&
579      Linkage != GlobalValue::WeakAnyLinkage &&
580      Linkage != GlobalValue::WeakODRLinkage &&
581      Linkage != GlobalValue::InternalLinkage &&
582      Linkage != GlobalValue::PrivateLinkage &&
583      Linkage != GlobalValue::LinkerPrivateLinkage &&
584      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
585      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
586    return Error(LinkageLoc, "invalid linkage type for alias");
587
588  Constant *Aliasee;
589  LocTy AliaseeLoc = Lex.getLoc();
590  if (Lex.getKind() != lltok::kw_bitcast &&
591      Lex.getKind() != lltok::kw_getelementptr) {
592    if (ParseGlobalTypeAndValue(Aliasee)) return true;
593  } else {
594    // The bitcast dest type is not present, it is implied by the dest type.
595    ValID ID;
596    if (ParseValID(ID)) return true;
597    if (ID.Kind != ValID::t_Constant)
598      return Error(AliaseeLoc, "invalid aliasee");
599    Aliasee = ID.ConstantVal;
600  }
601
602  if (!Aliasee->getType()->isPointerTy())
603    return Error(AliaseeLoc, "alias must have pointer type");
604
605  // Okay, create the alias but do not insert it into the module yet.
606  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
607                                    (GlobalValue::LinkageTypes)Linkage, Name,
608                                    Aliasee);
609  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
610
611  // See if this value already exists in the symbol table.  If so, it is either
612  // a redefinition or a definition of a forward reference.
613  if (GlobalValue *Val = M->getNamedValue(Name)) {
614    // See if this was a redefinition.  If so, there is no entry in
615    // ForwardRefVals.
616    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
617      I = ForwardRefVals.find(Name);
618    if (I == ForwardRefVals.end())
619      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
620
621    // Otherwise, this was a definition of forward ref.  Verify that types
622    // agree.
623    if (Val->getType() != GA->getType())
624      return Error(NameLoc,
625              "forward reference and definition of alias have different types");
626
627    // If they agree, just RAUW the old value with the alias and remove the
628    // forward ref info.
629    Val->replaceAllUsesWith(GA);
630    Val->eraseFromParent();
631    ForwardRefVals.erase(I);
632  }
633
634  // Insert into the module, we know its name won't collide now.
635  M->getAliasList().push_back(GA);
636  assert(GA->getName() == Name && "Should not be a name conflict!");
637
638  return false;
639}
640
641/// ParseGlobal
642///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
643///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
644///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
645///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
646///
647/// Everything through visibility has been parsed already.
648///
649bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
650                           unsigned Linkage, bool HasLinkage,
651                           unsigned Visibility) {
652  unsigned AddrSpace;
653  bool ThreadLocal, IsConstant, UnnamedAddr;
654  LocTy UnnamedAddrLoc;
655  LocTy TyLoc;
656
657  Type *Ty = 0;
658  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
659      ParseOptionalAddrSpace(AddrSpace) ||
660      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
661                         &UnnamedAddrLoc) ||
662      ParseGlobalType(IsConstant) ||
663      ParseType(Ty, TyLoc))
664    return true;
665
666  // If the linkage is specified and is external, then no initializer is
667  // present.
668  Constant *Init = 0;
669  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
670                      Linkage != GlobalValue::ExternalWeakLinkage &&
671                      Linkage != GlobalValue::ExternalLinkage)) {
672    if (ParseGlobalValue(Ty, Init))
673      return true;
674  }
675
676  if (Ty->isFunctionTy() || Ty->isLabelTy())
677    return Error(TyLoc, "invalid type for global variable");
678
679  GlobalVariable *GV = 0;
680
681  // See if the global was forward referenced, if so, use the global.
682  if (!Name.empty()) {
683    if (GlobalValue *GVal = M->getNamedValue(Name)) {
684      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
685        return Error(NameLoc, "redefinition of global '@" + Name + "'");
686      GV = cast<GlobalVariable>(GVal);
687    }
688  } else {
689    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
690      I = ForwardRefValIDs.find(NumberedVals.size());
691    if (I != ForwardRefValIDs.end()) {
692      GV = cast<GlobalVariable>(I->second.first);
693      ForwardRefValIDs.erase(I);
694    }
695  }
696
697  if (GV == 0) {
698    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
699                            Name, 0, false, AddrSpace);
700  } else {
701    if (GV->getType()->getElementType() != Ty)
702      return Error(TyLoc,
703            "forward reference and definition of global have different types");
704
705    // Move the forward-reference to the correct spot in the module.
706    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
707  }
708
709  if (Name.empty())
710    NumberedVals.push_back(GV);
711
712  // Set the parsed properties on the global.
713  if (Init)
714    GV->setInitializer(Init);
715  GV->setConstant(IsConstant);
716  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
717  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
718  GV->setThreadLocal(ThreadLocal);
719  GV->setUnnamedAddr(UnnamedAddr);
720
721  // Parse attributes on the global.
722  while (Lex.getKind() == lltok::comma) {
723    Lex.Lex();
724
725    if (Lex.getKind() == lltok::kw_section) {
726      Lex.Lex();
727      GV->setSection(Lex.getStrVal());
728      if (ParseToken(lltok::StringConstant, "expected global section string"))
729        return true;
730    } else if (Lex.getKind() == lltok::kw_align) {
731      unsigned Alignment;
732      if (ParseOptionalAlignment(Alignment)) return true;
733      GV->setAlignment(Alignment);
734    } else {
735      TokError("unknown global variable property!");
736    }
737  }
738
739  return false;
740}
741
742
743//===----------------------------------------------------------------------===//
744// GlobalValue Reference/Resolution Routines.
745//===----------------------------------------------------------------------===//
746
747/// GetGlobalVal - Get a value with the specified name or ID, creating a
748/// forward reference record if needed.  This can return null if the value
749/// exists but does not have the right type.
750GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
751                                    LocTy Loc) {
752  PointerType *PTy = dyn_cast<PointerType>(Ty);
753  if (PTy == 0) {
754    Error(Loc, "global variable reference must have pointer type");
755    return 0;
756  }
757
758  // Look this name up in the normal function symbol table.
759  GlobalValue *Val =
760    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
761
762  // If this is a forward reference for the value, see if we already created a
763  // forward ref record.
764  if (Val == 0) {
765    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
766      I = ForwardRefVals.find(Name);
767    if (I != ForwardRefVals.end())
768      Val = I->second.first;
769  }
770
771  // If we have the value in the symbol table or fwd-ref table, return it.
772  if (Val) {
773    if (Val->getType() == Ty) return Val;
774    Error(Loc, "'@" + Name + "' defined with type '" +
775          getTypeString(Val->getType()) + "'");
776    return 0;
777  }
778
779  // Otherwise, create a new forward reference for this value and remember it.
780  GlobalValue *FwdVal;
781  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
782    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
783  else
784    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
785                                GlobalValue::ExternalWeakLinkage, 0, Name);
786
787  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
788  return FwdVal;
789}
790
791GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
792  PointerType *PTy = dyn_cast<PointerType>(Ty);
793  if (PTy == 0) {
794    Error(Loc, "global variable reference must have pointer type");
795    return 0;
796  }
797
798  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
799
800  // If this is a forward reference for the value, see if we already created a
801  // forward ref record.
802  if (Val == 0) {
803    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
804      I = ForwardRefValIDs.find(ID);
805    if (I != ForwardRefValIDs.end())
806      Val = I->second.first;
807  }
808
809  // If we have the value in the symbol table or fwd-ref table, return it.
810  if (Val) {
811    if (Val->getType() == Ty) return Val;
812    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
813          getTypeString(Val->getType()) + "'");
814    return 0;
815  }
816
817  // Otherwise, create a new forward reference for this value and remember it.
818  GlobalValue *FwdVal;
819  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
820    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
821  else
822    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
823                                GlobalValue::ExternalWeakLinkage, 0, "");
824
825  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
826  return FwdVal;
827}
828
829
830//===----------------------------------------------------------------------===//
831// Helper Routines.
832//===----------------------------------------------------------------------===//
833
834/// ParseToken - If the current token has the specified kind, eat it and return
835/// success.  Otherwise, emit the specified error and return failure.
836bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
837  if (Lex.getKind() != T)
838    return TokError(ErrMsg);
839  Lex.Lex();
840  return false;
841}
842
843/// ParseStringConstant
844///   ::= StringConstant
845bool LLParser::ParseStringConstant(std::string &Result) {
846  if (Lex.getKind() != lltok::StringConstant)
847    return TokError("expected string constant");
848  Result = Lex.getStrVal();
849  Lex.Lex();
850  return false;
851}
852
853/// ParseUInt32
854///   ::= uint32
855bool LLParser::ParseUInt32(unsigned &Val) {
856  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
857    return TokError("expected integer");
858  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
859  if (Val64 != unsigned(Val64))
860    return TokError("expected 32-bit integer (too large)");
861  Val = Val64;
862  Lex.Lex();
863  return false;
864}
865
866
867/// ParseOptionalAddrSpace
868///   := /*empty*/
869///   := 'addrspace' '(' uint32 ')'
870bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
871  AddrSpace = 0;
872  if (!EatIfPresent(lltok::kw_addrspace))
873    return false;
874  return ParseToken(lltok::lparen, "expected '(' in address space") ||
875         ParseUInt32(AddrSpace) ||
876         ParseToken(lltok::rparen, "expected ')' in address space");
877}
878
879/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
880/// indicates what kind of attribute list this is: 0: function arg, 1: result,
881/// 2: function attr.
882bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
883  Attrs = Attribute::None;
884  LocTy AttrLoc = Lex.getLoc();
885
886  while (1) {
887    switch (Lex.getKind()) {
888    default:  // End of attributes.
889      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
890        return Error(AttrLoc, "invalid use of function-only attribute");
891
892      // As a hack, we allow "align 2" on functions as a synonym for
893      // "alignstack 2".
894      if (AttrKind == 2 &&
895          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
896        return Error(AttrLoc, "invalid use of attribute on a function");
897
898      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
899        return Error(AttrLoc, "invalid use of parameter-only attribute");
900
901      return false;
902    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
903    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
904    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
905    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
906    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
907    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
908    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
909    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
910
911    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
912    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
913    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
914    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
915    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
916    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
917    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
918    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
919    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
920    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
921    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
922    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
923    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
924    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
925    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
926    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
927
928    case lltok::kw_alignstack: {
929      unsigned Alignment;
930      if (ParseOptionalStackAlignment(Alignment))
931        return true;
932      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
933      continue;
934    }
935
936    case lltok::kw_align: {
937      unsigned Alignment;
938      if (ParseOptionalAlignment(Alignment))
939        return true;
940      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
941      continue;
942    }
943
944    }
945    Lex.Lex();
946  }
947}
948
949/// ParseOptionalLinkage
950///   ::= /*empty*/
951///   ::= 'private'
952///   ::= 'linker_private'
953///   ::= 'linker_private_weak'
954///   ::= 'linker_private_weak_def_auto'
955///   ::= 'internal'
956///   ::= 'weak'
957///   ::= 'weak_odr'
958///   ::= 'linkonce'
959///   ::= 'linkonce_odr'
960///   ::= 'available_externally'
961///   ::= 'appending'
962///   ::= 'dllexport'
963///   ::= 'common'
964///   ::= 'dllimport'
965///   ::= 'extern_weak'
966///   ::= 'external'
967bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
968  HasLinkage = false;
969  switch (Lex.getKind()) {
970  default:                       Res=GlobalValue::ExternalLinkage; return false;
971  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
972  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
973  case lltok::kw_linker_private_weak:
974    Res = GlobalValue::LinkerPrivateWeakLinkage;
975    break;
976  case lltok::kw_linker_private_weak_def_auto:
977    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
978    break;
979  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
980  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
981  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
982  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
983  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
984  case lltok::kw_available_externally:
985    Res = GlobalValue::AvailableExternallyLinkage;
986    break;
987  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
988  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
989  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
990  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
991  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
992  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
993  }
994  Lex.Lex();
995  HasLinkage = true;
996  return false;
997}
998
999/// ParseOptionalVisibility
1000///   ::= /*empty*/
1001///   ::= 'default'
1002///   ::= 'hidden'
1003///   ::= 'protected'
1004///
1005bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1006  switch (Lex.getKind()) {
1007  default:                  Res = GlobalValue::DefaultVisibility; return false;
1008  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1009  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1010  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1011  }
1012  Lex.Lex();
1013  return false;
1014}
1015
1016/// ParseOptionalCallingConv
1017///   ::= /*empty*/
1018///   ::= 'ccc'
1019///   ::= 'fastcc'
1020///   ::= 'coldcc'
1021///   ::= 'x86_stdcallcc'
1022///   ::= 'x86_fastcallcc'
1023///   ::= 'x86_thiscallcc'
1024///   ::= 'arm_apcscc'
1025///   ::= 'arm_aapcscc'
1026///   ::= 'arm_aapcs_vfpcc'
1027///   ::= 'msp430_intrcc'
1028///   ::= 'ptx_kernel'
1029///   ::= 'ptx_device'
1030///   ::= 'cc' UINT
1031///
1032bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1033  switch (Lex.getKind()) {
1034  default:                       CC = CallingConv::C; return false;
1035  case lltok::kw_ccc:            CC = CallingConv::C; break;
1036  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1037  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1038  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1039  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1040  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1041  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1042  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1043  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1044  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1045  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1046  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1047  case lltok::kw_cc: {
1048      unsigned ArbitraryCC;
1049      Lex.Lex();
1050      if (ParseUInt32(ArbitraryCC)) {
1051        return true;
1052      } else
1053        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1054        return false;
1055    }
1056    break;
1057  }
1058
1059  Lex.Lex();
1060  return false;
1061}
1062
1063/// ParseInstructionMetadata
1064///   ::= !dbg !42 (',' !dbg !57)*
1065bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1066                                        PerFunctionState *PFS) {
1067  do {
1068    if (Lex.getKind() != lltok::MetadataVar)
1069      return TokError("expected metadata after comma");
1070
1071    std::string Name = Lex.getStrVal();
1072    unsigned MDK = M->getMDKindID(Name.c_str());
1073    Lex.Lex();
1074
1075    MDNode *Node;
1076    SMLoc Loc = Lex.getLoc();
1077
1078    if (ParseToken(lltok::exclaim, "expected '!' here"))
1079      return true;
1080
1081    // This code is similar to that of ParseMetadataValue, however it needs to
1082    // have special-case code for a forward reference; see the comments on
1083    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1084    // at the top level here.
1085    if (Lex.getKind() == lltok::lbrace) {
1086      ValID ID;
1087      if (ParseMetadataListValue(ID, PFS))
1088        return true;
1089      assert(ID.Kind == ValID::t_MDNode);
1090      Inst->setMetadata(MDK, ID.MDNodeVal);
1091    } else {
1092      unsigned NodeID = 0;
1093      if (ParseMDNodeID(Node, NodeID))
1094        return true;
1095      if (Node) {
1096        // If we got the node, add it to the instruction.
1097        Inst->setMetadata(MDK, Node);
1098      } else {
1099        MDRef R = { Loc, MDK, NodeID };
1100        // Otherwise, remember that this should be resolved later.
1101        ForwardRefInstMetadata[Inst].push_back(R);
1102      }
1103    }
1104
1105    // If this is the end of the list, we're done.
1106  } while (EatIfPresent(lltok::comma));
1107  return false;
1108}
1109
1110/// ParseOptionalAlignment
1111///   ::= /* empty */
1112///   ::= 'align' 4
1113bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1114  Alignment = 0;
1115  if (!EatIfPresent(lltok::kw_align))
1116    return false;
1117  LocTy AlignLoc = Lex.getLoc();
1118  if (ParseUInt32(Alignment)) return true;
1119  if (!isPowerOf2_32(Alignment))
1120    return Error(AlignLoc, "alignment is not a power of two");
1121  if (Alignment > Value::MaximumAlignment)
1122    return Error(AlignLoc, "huge alignments are not supported yet");
1123  return false;
1124}
1125
1126/// ParseOptionalCommaAlign
1127///   ::=
1128///   ::= ',' align 4
1129///
1130/// This returns with AteExtraComma set to true if it ate an excess comma at the
1131/// end.
1132bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1133                                       bool &AteExtraComma) {
1134  AteExtraComma = false;
1135  while (EatIfPresent(lltok::comma)) {
1136    // Metadata at the end is an early exit.
1137    if (Lex.getKind() == lltok::MetadataVar) {
1138      AteExtraComma = true;
1139      return false;
1140    }
1141
1142    if (Lex.getKind() != lltok::kw_align)
1143      return Error(Lex.getLoc(), "expected metadata or 'align'");
1144
1145    if (ParseOptionalAlignment(Alignment)) return true;
1146  }
1147
1148  return false;
1149}
1150
1151/// ParseScopeAndOrdering
1152///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1153///   else: ::=
1154///
1155/// This sets Scope and Ordering to the parsed values.
1156bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1157                                     AtomicOrdering &Ordering) {
1158  if (!isAtomic)
1159    return false;
1160
1161  Scope = CrossThread;
1162  if (EatIfPresent(lltok::kw_singlethread))
1163    Scope = SingleThread;
1164  switch (Lex.getKind()) {
1165  default: return TokError("Expected ordering on atomic instruction");
1166  case lltok::kw_unordered: Ordering = Unordered; break;
1167  case lltok::kw_monotonic: Ordering = Monotonic; break;
1168  case lltok::kw_acquire: Ordering = Acquire; break;
1169  case lltok::kw_release: Ordering = Release; break;
1170  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1171  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1172  }
1173  Lex.Lex();
1174  return false;
1175}
1176
1177/// ParseOptionalStackAlignment
1178///   ::= /* empty */
1179///   ::= 'alignstack' '(' 4 ')'
1180bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1181  Alignment = 0;
1182  if (!EatIfPresent(lltok::kw_alignstack))
1183    return false;
1184  LocTy ParenLoc = Lex.getLoc();
1185  if (!EatIfPresent(lltok::lparen))
1186    return Error(ParenLoc, "expected '('");
1187  LocTy AlignLoc = Lex.getLoc();
1188  if (ParseUInt32(Alignment)) return true;
1189  ParenLoc = Lex.getLoc();
1190  if (!EatIfPresent(lltok::rparen))
1191    return Error(ParenLoc, "expected ')'");
1192  if (!isPowerOf2_32(Alignment))
1193    return Error(AlignLoc, "stack alignment is not a power of two");
1194  return false;
1195}
1196
1197/// ParseIndexList - This parses the index list for an insert/extractvalue
1198/// instruction.  This sets AteExtraComma in the case where we eat an extra
1199/// comma at the end of the line and find that it is followed by metadata.
1200/// Clients that don't allow metadata can call the version of this function that
1201/// only takes one argument.
1202///
1203/// ParseIndexList
1204///    ::=  (',' uint32)+
1205///
1206bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1207                              bool &AteExtraComma) {
1208  AteExtraComma = false;
1209
1210  if (Lex.getKind() != lltok::comma)
1211    return TokError("expected ',' as start of index list");
1212
1213  while (EatIfPresent(lltok::comma)) {
1214    if (Lex.getKind() == lltok::MetadataVar) {
1215      AteExtraComma = true;
1216      return false;
1217    }
1218    unsigned Idx = 0;
1219    if (ParseUInt32(Idx)) return true;
1220    Indices.push_back(Idx);
1221  }
1222
1223  return false;
1224}
1225
1226//===----------------------------------------------------------------------===//
1227// Type Parsing.
1228//===----------------------------------------------------------------------===//
1229
1230/// ParseType - Parse a type.
1231bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1232  SMLoc TypeLoc = Lex.getLoc();
1233  switch (Lex.getKind()) {
1234  default:
1235    return TokError("expected type");
1236  case lltok::Type:
1237    // Type ::= 'float' | 'void' (etc)
1238    Result = Lex.getTyVal();
1239    Lex.Lex();
1240    break;
1241  case lltok::lbrace:
1242    // Type ::= StructType
1243    if (ParseAnonStructType(Result, false))
1244      return true;
1245    break;
1246  case lltok::lsquare:
1247    // Type ::= '[' ... ']'
1248    Lex.Lex(); // eat the lsquare.
1249    if (ParseArrayVectorType(Result, false))
1250      return true;
1251    break;
1252  case lltok::less: // Either vector or packed struct.
1253    // Type ::= '<' ... '>'
1254    Lex.Lex();
1255    if (Lex.getKind() == lltok::lbrace) {
1256      if (ParseAnonStructType(Result, true) ||
1257          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1258        return true;
1259    } else if (ParseArrayVectorType(Result, true))
1260      return true;
1261    break;
1262  case lltok::LocalVar: {
1263    // Type ::= %foo
1264    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1265
1266    // If the type hasn't been defined yet, create a forward definition and
1267    // remember where that forward def'n was seen (in case it never is defined).
1268    if (Entry.first == 0) {
1269      Entry.first = StructType::create(Context, Lex.getStrVal());
1270      Entry.second = Lex.getLoc();
1271    }
1272    Result = Entry.first;
1273    Lex.Lex();
1274    break;
1275  }
1276
1277  case lltok::LocalVarID: {
1278    // Type ::= %4
1279    if (Lex.getUIntVal() >= NumberedTypes.size())
1280      NumberedTypes.resize(Lex.getUIntVal()+1);
1281    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1282
1283    // If the type hasn't been defined yet, create a forward definition and
1284    // remember where that forward def'n was seen (in case it never is defined).
1285    if (Entry.first == 0) {
1286      Entry.first = StructType::create(Context);
1287      Entry.second = Lex.getLoc();
1288    }
1289    Result = Entry.first;
1290    Lex.Lex();
1291    break;
1292  }
1293  }
1294
1295  // Parse the type suffixes.
1296  while (1) {
1297    switch (Lex.getKind()) {
1298    // End of type.
1299    default:
1300      if (!AllowVoid && Result->isVoidTy())
1301        return Error(TypeLoc, "void type only allowed for function results");
1302      return false;
1303
1304    // Type ::= Type '*'
1305    case lltok::star:
1306      if (Result->isLabelTy())
1307        return TokError("basic block pointers are invalid");
1308      if (Result->isVoidTy())
1309        return TokError("pointers to void are invalid - use i8* instead");
1310      if (!PointerType::isValidElementType(Result))
1311        return TokError("pointer to this type is invalid");
1312      Result = PointerType::getUnqual(Result);
1313      Lex.Lex();
1314      break;
1315
1316    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1317    case lltok::kw_addrspace: {
1318      if (Result->isLabelTy())
1319        return TokError("basic block pointers are invalid");
1320      if (Result->isVoidTy())
1321        return TokError("pointers to void are invalid; use i8* instead");
1322      if (!PointerType::isValidElementType(Result))
1323        return TokError("pointer to this type is invalid");
1324      unsigned AddrSpace;
1325      if (ParseOptionalAddrSpace(AddrSpace) ||
1326          ParseToken(lltok::star, "expected '*' in address space"))
1327        return true;
1328
1329      Result = PointerType::get(Result, AddrSpace);
1330      break;
1331    }
1332
1333    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1334    case lltok::lparen:
1335      if (ParseFunctionType(Result))
1336        return true;
1337      break;
1338    }
1339  }
1340}
1341
1342/// ParseParameterList
1343///    ::= '(' ')'
1344///    ::= '(' Arg (',' Arg)* ')'
1345///  Arg
1346///    ::= Type OptionalAttributes Value OptionalAttributes
1347bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1348                                  PerFunctionState &PFS) {
1349  if (ParseToken(lltok::lparen, "expected '(' in call"))
1350    return true;
1351
1352  while (Lex.getKind() != lltok::rparen) {
1353    // If this isn't the first argument, we need a comma.
1354    if (!ArgList.empty() &&
1355        ParseToken(lltok::comma, "expected ',' in argument list"))
1356      return true;
1357
1358    // Parse the argument.
1359    LocTy ArgLoc;
1360    Type *ArgTy = 0;
1361    unsigned ArgAttrs1 = Attribute::None;
1362    unsigned ArgAttrs2 = Attribute::None;
1363    Value *V;
1364    if (ParseType(ArgTy, ArgLoc))
1365      return true;
1366
1367    // Otherwise, handle normal operands.
1368    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1369      return true;
1370    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1371  }
1372
1373  Lex.Lex();  // Lex the ')'.
1374  return false;
1375}
1376
1377
1378
1379/// ParseArgumentList - Parse the argument list for a function type or function
1380/// prototype.
1381///   ::= '(' ArgTypeListI ')'
1382/// ArgTypeListI
1383///   ::= /*empty*/
1384///   ::= '...'
1385///   ::= ArgTypeList ',' '...'
1386///   ::= ArgType (',' ArgType)*
1387///
1388bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1389                                 bool &isVarArg){
1390  isVarArg = false;
1391  assert(Lex.getKind() == lltok::lparen);
1392  Lex.Lex(); // eat the (.
1393
1394  if (Lex.getKind() == lltok::rparen) {
1395    // empty
1396  } else if (Lex.getKind() == lltok::dotdotdot) {
1397    isVarArg = true;
1398    Lex.Lex();
1399  } else {
1400    LocTy TypeLoc = Lex.getLoc();
1401    Type *ArgTy = 0;
1402    unsigned Attrs;
1403    std::string Name;
1404
1405    if (ParseType(ArgTy) ||
1406        ParseOptionalAttrs(Attrs, 0)) return true;
1407
1408    if (ArgTy->isVoidTy())
1409      return Error(TypeLoc, "argument can not have void type");
1410
1411    if (Lex.getKind() == lltok::LocalVar) {
1412      Name = Lex.getStrVal();
1413      Lex.Lex();
1414    }
1415
1416    if (!FunctionType::isValidArgumentType(ArgTy))
1417      return Error(TypeLoc, "invalid type for function argument");
1418
1419    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1420
1421    while (EatIfPresent(lltok::comma)) {
1422      // Handle ... at end of arg list.
1423      if (EatIfPresent(lltok::dotdotdot)) {
1424        isVarArg = true;
1425        break;
1426      }
1427
1428      // Otherwise must be an argument type.
1429      TypeLoc = Lex.getLoc();
1430      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1431
1432      if (ArgTy->isVoidTy())
1433        return Error(TypeLoc, "argument can not have void type");
1434
1435      if (Lex.getKind() == lltok::LocalVar) {
1436        Name = Lex.getStrVal();
1437        Lex.Lex();
1438      } else {
1439        Name = "";
1440      }
1441
1442      if (!ArgTy->isFirstClassType())
1443        return Error(TypeLoc, "invalid type for function argument");
1444
1445      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1446    }
1447  }
1448
1449  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1450}
1451
1452/// ParseFunctionType
1453///  ::= Type ArgumentList OptionalAttrs
1454bool LLParser::ParseFunctionType(Type *&Result) {
1455  assert(Lex.getKind() == lltok::lparen);
1456
1457  if (!FunctionType::isValidReturnType(Result))
1458    return TokError("invalid function return type");
1459
1460  SmallVector<ArgInfo, 8> ArgList;
1461  bool isVarArg;
1462  if (ParseArgumentList(ArgList, isVarArg))
1463    return true;
1464
1465  // Reject names on the arguments lists.
1466  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1467    if (!ArgList[i].Name.empty())
1468      return Error(ArgList[i].Loc, "argument name invalid in function type");
1469    if (ArgList[i].Attrs != 0)
1470      return Error(ArgList[i].Loc,
1471                   "argument attributes invalid in function type");
1472  }
1473
1474  SmallVector<Type*, 16> ArgListTy;
1475  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1476    ArgListTy.push_back(ArgList[i].Ty);
1477
1478  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1479  return false;
1480}
1481
1482/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1483/// other structs.
1484bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1485  SmallVector<Type*, 8> Elts;
1486  if (ParseStructBody(Elts)) return true;
1487
1488  Result = StructType::get(Context, Elts, Packed);
1489  return false;
1490}
1491
1492/// ParseStructDefinition - Parse a struct in a 'type' definition.
1493bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1494                                     std::pair<Type*, LocTy> &Entry,
1495                                     Type *&ResultTy) {
1496  // If the type was already defined, diagnose the redefinition.
1497  if (Entry.first && !Entry.second.isValid())
1498    return Error(TypeLoc, "redefinition of type");
1499
1500  // If we have opaque, just return without filling in the definition for the
1501  // struct.  This counts as a definition as far as the .ll file goes.
1502  if (EatIfPresent(lltok::kw_opaque)) {
1503    // This type is being defined, so clear the location to indicate this.
1504    Entry.second = SMLoc();
1505
1506    // If this type number has never been uttered, create it.
1507    if (Entry.first == 0)
1508      Entry.first = StructType::create(Context, Name);
1509    ResultTy = Entry.first;
1510    return false;
1511  }
1512
1513  // If the type starts with '<', then it is either a packed struct or a vector.
1514  bool isPacked = EatIfPresent(lltok::less);
1515
1516  // If we don't have a struct, then we have a random type alias, which we
1517  // accept for compatibility with old files.  These types are not allowed to be
1518  // forward referenced and not allowed to be recursive.
1519  if (Lex.getKind() != lltok::lbrace) {
1520    if (Entry.first)
1521      return Error(TypeLoc, "forward references to non-struct type");
1522
1523    ResultTy = 0;
1524    if (isPacked)
1525      return ParseArrayVectorType(ResultTy, true);
1526    return ParseType(ResultTy);
1527  }
1528
1529  // This type is being defined, so clear the location to indicate this.
1530  Entry.second = SMLoc();
1531
1532  // If this type number has never been uttered, create it.
1533  if (Entry.first == 0)
1534    Entry.first = StructType::create(Context, Name);
1535
1536  StructType *STy = cast<StructType>(Entry.first);
1537
1538  SmallVector<Type*, 8> Body;
1539  if (ParseStructBody(Body) ||
1540      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1541    return true;
1542
1543  STy->setBody(Body, isPacked);
1544  ResultTy = STy;
1545  return false;
1546}
1547
1548
1549/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1550///   StructType
1551///     ::= '{' '}'
1552///     ::= '{' Type (',' Type)* '}'
1553///     ::= '<' '{' '}' '>'
1554///     ::= '<' '{' Type (',' Type)* '}' '>'
1555bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1556  assert(Lex.getKind() == lltok::lbrace);
1557  Lex.Lex(); // Consume the '{'
1558
1559  // Handle the empty struct.
1560  if (EatIfPresent(lltok::rbrace))
1561    return false;
1562
1563  LocTy EltTyLoc = Lex.getLoc();
1564  Type *Ty = 0;
1565  if (ParseType(Ty)) return true;
1566  Body.push_back(Ty);
1567
1568  if (!StructType::isValidElementType(Ty))
1569    return Error(EltTyLoc, "invalid element type for struct");
1570
1571  while (EatIfPresent(lltok::comma)) {
1572    EltTyLoc = Lex.getLoc();
1573    if (ParseType(Ty)) return true;
1574
1575    if (!StructType::isValidElementType(Ty))
1576      return Error(EltTyLoc, "invalid element type for struct");
1577
1578    Body.push_back(Ty);
1579  }
1580
1581  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1582}
1583
1584/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1585/// token has already been consumed.
1586///   Type
1587///     ::= '[' APSINTVAL 'x' Types ']'
1588///     ::= '<' APSINTVAL 'x' Types '>'
1589bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1590  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1591      Lex.getAPSIntVal().getBitWidth() > 64)
1592    return TokError("expected number in address space");
1593
1594  LocTy SizeLoc = Lex.getLoc();
1595  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1596  Lex.Lex();
1597
1598  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1599      return true;
1600
1601  LocTy TypeLoc = Lex.getLoc();
1602  Type *EltTy = 0;
1603  if (ParseType(EltTy)) return true;
1604
1605  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1606                 "expected end of sequential type"))
1607    return true;
1608
1609  if (isVector) {
1610    if (Size == 0)
1611      return Error(SizeLoc, "zero element vector is illegal");
1612    if ((unsigned)Size != Size)
1613      return Error(SizeLoc, "size too large for vector");
1614    if (!VectorType::isValidElementType(EltTy))
1615      return Error(TypeLoc, "vector element type must be fp or integer");
1616    Result = VectorType::get(EltTy, unsigned(Size));
1617  } else {
1618    if (!ArrayType::isValidElementType(EltTy))
1619      return Error(TypeLoc, "invalid array element type");
1620    Result = ArrayType::get(EltTy, Size);
1621  }
1622  return false;
1623}
1624
1625//===----------------------------------------------------------------------===//
1626// Function Semantic Analysis.
1627//===----------------------------------------------------------------------===//
1628
1629LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1630                                             int functionNumber)
1631  : P(p), F(f), FunctionNumber(functionNumber) {
1632
1633  // Insert unnamed arguments into the NumberedVals list.
1634  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1635       AI != E; ++AI)
1636    if (!AI->hasName())
1637      NumberedVals.push_back(AI);
1638}
1639
1640LLParser::PerFunctionState::~PerFunctionState() {
1641  // If there were any forward referenced non-basicblock values, delete them.
1642  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1643       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1644    if (!isa<BasicBlock>(I->second.first)) {
1645      I->second.first->replaceAllUsesWith(
1646                           UndefValue::get(I->second.first->getType()));
1647      delete I->second.first;
1648      I->second.first = 0;
1649    }
1650
1651  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1652       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1653    if (!isa<BasicBlock>(I->second.first)) {
1654      I->second.first->replaceAllUsesWith(
1655                           UndefValue::get(I->second.first->getType()));
1656      delete I->second.first;
1657      I->second.first = 0;
1658    }
1659}
1660
1661bool LLParser::PerFunctionState::FinishFunction() {
1662  // Check to see if someone took the address of labels in this block.
1663  if (!P.ForwardRefBlockAddresses.empty()) {
1664    ValID FunctionID;
1665    if (!F.getName().empty()) {
1666      FunctionID.Kind = ValID::t_GlobalName;
1667      FunctionID.StrVal = F.getName();
1668    } else {
1669      FunctionID.Kind = ValID::t_GlobalID;
1670      FunctionID.UIntVal = FunctionNumber;
1671    }
1672
1673    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1674      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1675    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1676      // Resolve all these references.
1677      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1678        return true;
1679
1680      P.ForwardRefBlockAddresses.erase(FRBAI);
1681    }
1682  }
1683
1684  if (!ForwardRefVals.empty())
1685    return P.Error(ForwardRefVals.begin()->second.second,
1686                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1687                   "'");
1688  if (!ForwardRefValIDs.empty())
1689    return P.Error(ForwardRefValIDs.begin()->second.second,
1690                   "use of undefined value '%" +
1691                   Twine(ForwardRefValIDs.begin()->first) + "'");
1692  return false;
1693}
1694
1695
1696/// GetVal - Get a value with the specified name or ID, creating a
1697/// forward reference record if needed.  This can return null if the value
1698/// exists but does not have the right type.
1699Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1700                                          Type *Ty, LocTy Loc) {
1701  // Look this name up in the normal function symbol table.
1702  Value *Val = F.getValueSymbolTable().lookup(Name);
1703
1704  // If this is a forward reference for the value, see if we already created a
1705  // forward ref record.
1706  if (Val == 0) {
1707    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1708      I = ForwardRefVals.find(Name);
1709    if (I != ForwardRefVals.end())
1710      Val = I->second.first;
1711  }
1712
1713  // If we have the value in the symbol table or fwd-ref table, return it.
1714  if (Val) {
1715    if (Val->getType() == Ty) return Val;
1716    if (Ty->isLabelTy())
1717      P.Error(Loc, "'%" + Name + "' is not a basic block");
1718    else
1719      P.Error(Loc, "'%" + Name + "' defined with type '" +
1720              getTypeString(Val->getType()) + "'");
1721    return 0;
1722  }
1723
1724  // Don't make placeholders with invalid type.
1725  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1726    P.Error(Loc, "invalid use of a non-first-class type");
1727    return 0;
1728  }
1729
1730  // Otherwise, create a new forward reference for this value and remember it.
1731  Value *FwdVal;
1732  if (Ty->isLabelTy())
1733    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1734  else
1735    FwdVal = new Argument(Ty, Name);
1736
1737  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1738  return FwdVal;
1739}
1740
1741Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1742                                          LocTy Loc) {
1743  // Look this name up in the normal function symbol table.
1744  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1745
1746  // If this is a forward reference for the value, see if we already created a
1747  // forward ref record.
1748  if (Val == 0) {
1749    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1750      I = ForwardRefValIDs.find(ID);
1751    if (I != ForwardRefValIDs.end())
1752      Val = I->second.first;
1753  }
1754
1755  // If we have the value in the symbol table or fwd-ref table, return it.
1756  if (Val) {
1757    if (Val->getType() == Ty) return Val;
1758    if (Ty->isLabelTy())
1759      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1760    else
1761      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1762              getTypeString(Val->getType()) + "'");
1763    return 0;
1764  }
1765
1766  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1767    P.Error(Loc, "invalid use of a non-first-class type");
1768    return 0;
1769  }
1770
1771  // Otherwise, create a new forward reference for this value and remember it.
1772  Value *FwdVal;
1773  if (Ty->isLabelTy())
1774    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1775  else
1776    FwdVal = new Argument(Ty);
1777
1778  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1779  return FwdVal;
1780}
1781
1782/// SetInstName - After an instruction is parsed and inserted into its
1783/// basic block, this installs its name.
1784bool LLParser::PerFunctionState::SetInstName(int NameID,
1785                                             const std::string &NameStr,
1786                                             LocTy NameLoc, Instruction *Inst) {
1787  // If this instruction has void type, it cannot have a name or ID specified.
1788  if (Inst->getType()->isVoidTy()) {
1789    if (NameID != -1 || !NameStr.empty())
1790      return P.Error(NameLoc, "instructions returning void cannot have a name");
1791    return false;
1792  }
1793
1794  // If this was a numbered instruction, verify that the instruction is the
1795  // expected value and resolve any forward references.
1796  if (NameStr.empty()) {
1797    // If neither a name nor an ID was specified, just use the next ID.
1798    if (NameID == -1)
1799      NameID = NumberedVals.size();
1800
1801    if (unsigned(NameID) != NumberedVals.size())
1802      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1803                     Twine(NumberedVals.size()) + "'");
1804
1805    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1806      ForwardRefValIDs.find(NameID);
1807    if (FI != ForwardRefValIDs.end()) {
1808      if (FI->second.first->getType() != Inst->getType())
1809        return P.Error(NameLoc, "instruction forward referenced with type '" +
1810                       getTypeString(FI->second.first->getType()) + "'");
1811      FI->second.first->replaceAllUsesWith(Inst);
1812      delete FI->second.first;
1813      ForwardRefValIDs.erase(FI);
1814    }
1815
1816    NumberedVals.push_back(Inst);
1817    return false;
1818  }
1819
1820  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1821  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1822    FI = ForwardRefVals.find(NameStr);
1823  if (FI != ForwardRefVals.end()) {
1824    if (FI->second.first->getType() != Inst->getType())
1825      return P.Error(NameLoc, "instruction forward referenced with type '" +
1826                     getTypeString(FI->second.first->getType()) + "'");
1827    FI->second.first->replaceAllUsesWith(Inst);
1828    delete FI->second.first;
1829    ForwardRefVals.erase(FI);
1830  }
1831
1832  // Set the name on the instruction.
1833  Inst->setName(NameStr);
1834
1835  if (Inst->getName() != NameStr)
1836    return P.Error(NameLoc, "multiple definition of local value named '" +
1837                   NameStr + "'");
1838  return false;
1839}
1840
1841/// GetBB - Get a basic block with the specified name or ID, creating a
1842/// forward reference record if needed.
1843BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1844                                              LocTy Loc) {
1845  return cast_or_null<BasicBlock>(GetVal(Name,
1846                                        Type::getLabelTy(F.getContext()), Loc));
1847}
1848
1849BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1850  return cast_or_null<BasicBlock>(GetVal(ID,
1851                                        Type::getLabelTy(F.getContext()), Loc));
1852}
1853
1854/// DefineBB - Define the specified basic block, which is either named or
1855/// unnamed.  If there is an error, this returns null otherwise it returns
1856/// the block being defined.
1857BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1858                                                 LocTy Loc) {
1859  BasicBlock *BB;
1860  if (Name.empty())
1861    BB = GetBB(NumberedVals.size(), Loc);
1862  else
1863    BB = GetBB(Name, Loc);
1864  if (BB == 0) return 0; // Already diagnosed error.
1865
1866  // Move the block to the end of the function.  Forward ref'd blocks are
1867  // inserted wherever they happen to be referenced.
1868  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1869
1870  // Remove the block from forward ref sets.
1871  if (Name.empty()) {
1872    ForwardRefValIDs.erase(NumberedVals.size());
1873    NumberedVals.push_back(BB);
1874  } else {
1875    // BB forward references are already in the function symbol table.
1876    ForwardRefVals.erase(Name);
1877  }
1878
1879  return BB;
1880}
1881
1882//===----------------------------------------------------------------------===//
1883// Constants.
1884//===----------------------------------------------------------------------===//
1885
1886/// ParseValID - Parse an abstract value that doesn't necessarily have a
1887/// type implied.  For example, if we parse "4" we don't know what integer type
1888/// it has.  The value will later be combined with its type and checked for
1889/// sanity.  PFS is used to convert function-local operands of metadata (since
1890/// metadata operands are not just parsed here but also converted to values).
1891/// PFS can be null when we are not parsing metadata values inside a function.
1892bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1893  ID.Loc = Lex.getLoc();
1894  switch (Lex.getKind()) {
1895  default: return TokError("expected value token");
1896  case lltok::GlobalID:  // @42
1897    ID.UIntVal = Lex.getUIntVal();
1898    ID.Kind = ValID::t_GlobalID;
1899    break;
1900  case lltok::GlobalVar:  // @foo
1901    ID.StrVal = Lex.getStrVal();
1902    ID.Kind = ValID::t_GlobalName;
1903    break;
1904  case lltok::LocalVarID:  // %42
1905    ID.UIntVal = Lex.getUIntVal();
1906    ID.Kind = ValID::t_LocalID;
1907    break;
1908  case lltok::LocalVar:  // %foo
1909    ID.StrVal = Lex.getStrVal();
1910    ID.Kind = ValID::t_LocalName;
1911    break;
1912  case lltok::exclaim:   // !42, !{...}, or !"foo"
1913    return ParseMetadataValue(ID, PFS);
1914  case lltok::APSInt:
1915    ID.APSIntVal = Lex.getAPSIntVal();
1916    ID.Kind = ValID::t_APSInt;
1917    break;
1918  case lltok::APFloat:
1919    ID.APFloatVal = Lex.getAPFloatVal();
1920    ID.Kind = ValID::t_APFloat;
1921    break;
1922  case lltok::kw_true:
1923    ID.ConstantVal = ConstantInt::getTrue(Context);
1924    ID.Kind = ValID::t_Constant;
1925    break;
1926  case lltok::kw_false:
1927    ID.ConstantVal = ConstantInt::getFalse(Context);
1928    ID.Kind = ValID::t_Constant;
1929    break;
1930  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1931  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1932  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1933
1934  case lltok::lbrace: {
1935    // ValID ::= '{' ConstVector '}'
1936    Lex.Lex();
1937    SmallVector<Constant*, 16> Elts;
1938    if (ParseGlobalValueVector(Elts) ||
1939        ParseToken(lltok::rbrace, "expected end of struct constant"))
1940      return true;
1941
1942    ID.ConstantStructElts = new Constant*[Elts.size()];
1943    ID.UIntVal = Elts.size();
1944    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1945    ID.Kind = ValID::t_ConstantStruct;
1946    return false;
1947  }
1948  case lltok::less: {
1949    // ValID ::= '<' ConstVector '>'         --> Vector.
1950    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1951    Lex.Lex();
1952    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1953
1954    SmallVector<Constant*, 16> Elts;
1955    LocTy FirstEltLoc = Lex.getLoc();
1956    if (ParseGlobalValueVector(Elts) ||
1957        (isPackedStruct &&
1958         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1959        ParseToken(lltok::greater, "expected end of constant"))
1960      return true;
1961
1962    if (isPackedStruct) {
1963      ID.ConstantStructElts = new Constant*[Elts.size()];
1964      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1965      ID.UIntVal = Elts.size();
1966      ID.Kind = ValID::t_PackedConstantStruct;
1967      return false;
1968    }
1969
1970    if (Elts.empty())
1971      return Error(ID.Loc, "constant vector must not be empty");
1972
1973    if (!Elts[0]->getType()->isIntegerTy() &&
1974        !Elts[0]->getType()->isFloatingPointTy())
1975      return Error(FirstEltLoc,
1976                   "vector elements must have integer or floating point type");
1977
1978    // Verify that all the vector elements have the same type.
1979    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1980      if (Elts[i]->getType() != Elts[0]->getType())
1981        return Error(FirstEltLoc,
1982                     "vector element #" + Twine(i) +
1983                    " is not of type '" + getTypeString(Elts[0]->getType()));
1984
1985    ID.ConstantVal = ConstantVector::get(Elts);
1986    ID.Kind = ValID::t_Constant;
1987    return false;
1988  }
1989  case lltok::lsquare: {   // Array Constant
1990    Lex.Lex();
1991    SmallVector<Constant*, 16> Elts;
1992    LocTy FirstEltLoc = Lex.getLoc();
1993    if (ParseGlobalValueVector(Elts) ||
1994        ParseToken(lltok::rsquare, "expected end of array constant"))
1995      return true;
1996
1997    // Handle empty element.
1998    if (Elts.empty()) {
1999      // Use undef instead of an array because it's inconvenient to determine
2000      // the element type at this point, there being no elements to examine.
2001      ID.Kind = ValID::t_EmptyArray;
2002      return false;
2003    }
2004
2005    if (!Elts[0]->getType()->isFirstClassType())
2006      return Error(FirstEltLoc, "invalid array element type: " +
2007                   getTypeString(Elts[0]->getType()));
2008
2009    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2010
2011    // Verify all elements are correct type!
2012    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2013      if (Elts[i]->getType() != Elts[0]->getType())
2014        return Error(FirstEltLoc,
2015                     "array element #" + Twine(i) +
2016                     " is not of type '" + getTypeString(Elts[0]->getType()));
2017    }
2018
2019    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2020    ID.Kind = ValID::t_Constant;
2021    return false;
2022  }
2023  case lltok::kw_c:  // c "foo"
2024    Lex.Lex();
2025    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2026    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2027    ID.Kind = ValID::t_Constant;
2028    return false;
2029
2030  case lltok::kw_asm: {
2031    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2032    bool HasSideEffect, AlignStack;
2033    Lex.Lex();
2034    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2035        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2036        ParseStringConstant(ID.StrVal) ||
2037        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2038        ParseToken(lltok::StringConstant, "expected constraint string"))
2039      return true;
2040    ID.StrVal2 = Lex.getStrVal();
2041    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2042    ID.Kind = ValID::t_InlineAsm;
2043    return false;
2044  }
2045
2046  case lltok::kw_blockaddress: {
2047    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2048    Lex.Lex();
2049
2050    ValID Fn, Label;
2051    LocTy FnLoc, LabelLoc;
2052
2053    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2054        ParseValID(Fn) ||
2055        ParseToken(lltok::comma, "expected comma in block address expression")||
2056        ParseValID(Label) ||
2057        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2058      return true;
2059
2060    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2061      return Error(Fn.Loc, "expected function name in blockaddress");
2062    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2063      return Error(Label.Loc, "expected basic block name in blockaddress");
2064
2065    // Make a global variable as a placeholder for this reference.
2066    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2067                                           false, GlobalValue::InternalLinkage,
2068                                                0, "");
2069    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2070    ID.ConstantVal = FwdRef;
2071    ID.Kind = ValID::t_Constant;
2072    return false;
2073  }
2074
2075  case lltok::kw_trunc:
2076  case lltok::kw_zext:
2077  case lltok::kw_sext:
2078  case lltok::kw_fptrunc:
2079  case lltok::kw_fpext:
2080  case lltok::kw_bitcast:
2081  case lltok::kw_uitofp:
2082  case lltok::kw_sitofp:
2083  case lltok::kw_fptoui:
2084  case lltok::kw_fptosi:
2085  case lltok::kw_inttoptr:
2086  case lltok::kw_ptrtoint: {
2087    unsigned Opc = Lex.getUIntVal();
2088    Type *DestTy = 0;
2089    Constant *SrcVal;
2090    Lex.Lex();
2091    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2092        ParseGlobalTypeAndValue(SrcVal) ||
2093        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2094        ParseType(DestTy) ||
2095        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2096      return true;
2097    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2098      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2099                   getTypeString(SrcVal->getType()) + "' to '" +
2100                   getTypeString(DestTy) + "'");
2101    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2102                                                 SrcVal, DestTy);
2103    ID.Kind = ValID::t_Constant;
2104    return false;
2105  }
2106  case lltok::kw_extractvalue: {
2107    Lex.Lex();
2108    Constant *Val;
2109    SmallVector<unsigned, 4> Indices;
2110    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2111        ParseGlobalTypeAndValue(Val) ||
2112        ParseIndexList(Indices) ||
2113        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2114      return true;
2115
2116    if (!Val->getType()->isAggregateType())
2117      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2118    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2119      return Error(ID.Loc, "invalid indices for extractvalue");
2120    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2121    ID.Kind = ValID::t_Constant;
2122    return false;
2123  }
2124  case lltok::kw_insertvalue: {
2125    Lex.Lex();
2126    Constant *Val0, *Val1;
2127    SmallVector<unsigned, 4> Indices;
2128    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2129        ParseGlobalTypeAndValue(Val0) ||
2130        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2131        ParseGlobalTypeAndValue(Val1) ||
2132        ParseIndexList(Indices) ||
2133        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2134      return true;
2135    if (!Val0->getType()->isAggregateType())
2136      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2137    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2138      return Error(ID.Loc, "invalid indices for insertvalue");
2139    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2140    ID.Kind = ValID::t_Constant;
2141    return false;
2142  }
2143  case lltok::kw_icmp:
2144  case lltok::kw_fcmp: {
2145    unsigned PredVal, Opc = Lex.getUIntVal();
2146    Constant *Val0, *Val1;
2147    Lex.Lex();
2148    if (ParseCmpPredicate(PredVal, Opc) ||
2149        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2150        ParseGlobalTypeAndValue(Val0) ||
2151        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2152        ParseGlobalTypeAndValue(Val1) ||
2153        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2154      return true;
2155
2156    if (Val0->getType() != Val1->getType())
2157      return Error(ID.Loc, "compare operands must have the same type");
2158
2159    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2160
2161    if (Opc == Instruction::FCmp) {
2162      if (!Val0->getType()->isFPOrFPVectorTy())
2163        return Error(ID.Loc, "fcmp requires floating point operands");
2164      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2165    } else {
2166      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2167      if (!Val0->getType()->isIntOrIntVectorTy() &&
2168          !Val0->getType()->isPointerTy())
2169        return Error(ID.Loc, "icmp requires pointer or integer operands");
2170      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2171    }
2172    ID.Kind = ValID::t_Constant;
2173    return false;
2174  }
2175
2176  // Binary Operators.
2177  case lltok::kw_add:
2178  case lltok::kw_fadd:
2179  case lltok::kw_sub:
2180  case lltok::kw_fsub:
2181  case lltok::kw_mul:
2182  case lltok::kw_fmul:
2183  case lltok::kw_udiv:
2184  case lltok::kw_sdiv:
2185  case lltok::kw_fdiv:
2186  case lltok::kw_urem:
2187  case lltok::kw_srem:
2188  case lltok::kw_frem:
2189  case lltok::kw_shl:
2190  case lltok::kw_lshr:
2191  case lltok::kw_ashr: {
2192    bool NUW = false;
2193    bool NSW = false;
2194    bool Exact = false;
2195    unsigned Opc = Lex.getUIntVal();
2196    Constant *Val0, *Val1;
2197    Lex.Lex();
2198    LocTy ModifierLoc = Lex.getLoc();
2199    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2200        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2201      if (EatIfPresent(lltok::kw_nuw))
2202        NUW = true;
2203      if (EatIfPresent(lltok::kw_nsw)) {
2204        NSW = true;
2205        if (EatIfPresent(lltok::kw_nuw))
2206          NUW = true;
2207      }
2208    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2209               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2210      if (EatIfPresent(lltok::kw_exact))
2211        Exact = true;
2212    }
2213    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2214        ParseGlobalTypeAndValue(Val0) ||
2215        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2216        ParseGlobalTypeAndValue(Val1) ||
2217        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2218      return true;
2219    if (Val0->getType() != Val1->getType())
2220      return Error(ID.Loc, "operands of constexpr must have same type");
2221    if (!Val0->getType()->isIntOrIntVectorTy()) {
2222      if (NUW)
2223        return Error(ModifierLoc, "nuw only applies to integer operations");
2224      if (NSW)
2225        return Error(ModifierLoc, "nsw only applies to integer operations");
2226    }
2227    // Check that the type is valid for the operator.
2228    switch (Opc) {
2229    case Instruction::Add:
2230    case Instruction::Sub:
2231    case Instruction::Mul:
2232    case Instruction::UDiv:
2233    case Instruction::SDiv:
2234    case Instruction::URem:
2235    case Instruction::SRem:
2236    case Instruction::Shl:
2237    case Instruction::AShr:
2238    case Instruction::LShr:
2239      if (!Val0->getType()->isIntOrIntVectorTy())
2240        return Error(ID.Loc, "constexpr requires integer operands");
2241      break;
2242    case Instruction::FAdd:
2243    case Instruction::FSub:
2244    case Instruction::FMul:
2245    case Instruction::FDiv:
2246    case Instruction::FRem:
2247      if (!Val0->getType()->isFPOrFPVectorTy())
2248        return Error(ID.Loc, "constexpr requires fp operands");
2249      break;
2250    default: llvm_unreachable("Unknown binary operator!");
2251    }
2252    unsigned Flags = 0;
2253    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2254    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2255    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2256    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2257    ID.ConstantVal = C;
2258    ID.Kind = ValID::t_Constant;
2259    return false;
2260  }
2261
2262  // Logical Operations
2263  case lltok::kw_and:
2264  case lltok::kw_or:
2265  case lltok::kw_xor: {
2266    unsigned Opc = Lex.getUIntVal();
2267    Constant *Val0, *Val1;
2268    Lex.Lex();
2269    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2270        ParseGlobalTypeAndValue(Val0) ||
2271        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2272        ParseGlobalTypeAndValue(Val1) ||
2273        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2274      return true;
2275    if (Val0->getType() != Val1->getType())
2276      return Error(ID.Loc, "operands of constexpr must have same type");
2277    if (!Val0->getType()->isIntOrIntVectorTy())
2278      return Error(ID.Loc,
2279                   "constexpr requires integer or integer vector operands");
2280    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2281    ID.Kind = ValID::t_Constant;
2282    return false;
2283  }
2284
2285  case lltok::kw_getelementptr:
2286  case lltok::kw_shufflevector:
2287  case lltok::kw_insertelement:
2288  case lltok::kw_extractelement:
2289  case lltok::kw_select: {
2290    unsigned Opc = Lex.getUIntVal();
2291    SmallVector<Constant*, 16> Elts;
2292    bool InBounds = false;
2293    Lex.Lex();
2294    if (Opc == Instruction::GetElementPtr)
2295      InBounds = EatIfPresent(lltok::kw_inbounds);
2296    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2297        ParseGlobalValueVector(Elts) ||
2298        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2299      return true;
2300
2301    if (Opc == Instruction::GetElementPtr) {
2302      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2303        return Error(ID.Loc, "getelementptr requires pointer operand");
2304
2305      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2306      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2307        return Error(ID.Loc, "invalid indices for getelementptr");
2308      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2309                                                      InBounds);
2310    } else if (Opc == Instruction::Select) {
2311      if (Elts.size() != 3)
2312        return Error(ID.Loc, "expected three operands to select");
2313      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2314                                                              Elts[2]))
2315        return Error(ID.Loc, Reason);
2316      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2317    } else if (Opc == Instruction::ShuffleVector) {
2318      if (Elts.size() != 3)
2319        return Error(ID.Loc, "expected three operands to shufflevector");
2320      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2321        return Error(ID.Loc, "invalid operands to shufflevector");
2322      ID.ConstantVal =
2323                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2324    } else if (Opc == Instruction::ExtractElement) {
2325      if (Elts.size() != 2)
2326        return Error(ID.Loc, "expected two operands to extractelement");
2327      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2328        return Error(ID.Loc, "invalid extractelement operands");
2329      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2330    } else {
2331      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2332      if (Elts.size() != 3)
2333      return Error(ID.Loc, "expected three operands to insertelement");
2334      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2335        return Error(ID.Loc, "invalid insertelement operands");
2336      ID.ConstantVal =
2337                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2338    }
2339
2340    ID.Kind = ValID::t_Constant;
2341    return false;
2342  }
2343  }
2344
2345  Lex.Lex();
2346  return false;
2347}
2348
2349/// ParseGlobalValue - Parse a global value with the specified type.
2350bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2351  C = 0;
2352  ValID ID;
2353  Value *V = NULL;
2354  bool Parsed = ParseValID(ID) ||
2355                ConvertValIDToValue(Ty, ID, V, NULL);
2356  if (V && !(C = dyn_cast<Constant>(V)))
2357    return Error(ID.Loc, "global values must be constants");
2358  return Parsed;
2359}
2360
2361bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2362  Type *Ty = 0;
2363  return ParseType(Ty) ||
2364         ParseGlobalValue(Ty, V);
2365}
2366
2367/// ParseGlobalValueVector
2368///   ::= /*empty*/
2369///   ::= TypeAndValue (',' TypeAndValue)*
2370bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2371  // Empty list.
2372  if (Lex.getKind() == lltok::rbrace ||
2373      Lex.getKind() == lltok::rsquare ||
2374      Lex.getKind() == lltok::greater ||
2375      Lex.getKind() == lltok::rparen)
2376    return false;
2377
2378  Constant *C;
2379  if (ParseGlobalTypeAndValue(C)) return true;
2380  Elts.push_back(C);
2381
2382  while (EatIfPresent(lltok::comma)) {
2383    if (ParseGlobalTypeAndValue(C)) return true;
2384    Elts.push_back(C);
2385  }
2386
2387  return false;
2388}
2389
2390bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2391  assert(Lex.getKind() == lltok::lbrace);
2392  Lex.Lex();
2393
2394  SmallVector<Value*, 16> Elts;
2395  if (ParseMDNodeVector(Elts, PFS) ||
2396      ParseToken(lltok::rbrace, "expected end of metadata node"))
2397    return true;
2398
2399  ID.MDNodeVal = MDNode::get(Context, Elts);
2400  ID.Kind = ValID::t_MDNode;
2401  return false;
2402}
2403
2404/// ParseMetadataValue
2405///  ::= !42
2406///  ::= !{...}
2407///  ::= !"string"
2408bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2409  assert(Lex.getKind() == lltok::exclaim);
2410  Lex.Lex();
2411
2412  // MDNode:
2413  // !{ ... }
2414  if (Lex.getKind() == lltok::lbrace)
2415    return ParseMetadataListValue(ID, PFS);
2416
2417  // Standalone metadata reference
2418  // !42
2419  if (Lex.getKind() == lltok::APSInt) {
2420    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2421    ID.Kind = ValID::t_MDNode;
2422    return false;
2423  }
2424
2425  // MDString:
2426  //   ::= '!' STRINGCONSTANT
2427  if (ParseMDString(ID.MDStringVal)) return true;
2428  ID.Kind = ValID::t_MDString;
2429  return false;
2430}
2431
2432
2433//===----------------------------------------------------------------------===//
2434// Function Parsing.
2435//===----------------------------------------------------------------------===//
2436
2437bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2438                                   PerFunctionState *PFS) {
2439  if (Ty->isFunctionTy())
2440    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2441
2442  switch (ID.Kind) {
2443  default: llvm_unreachable("Unknown ValID!");
2444  case ValID::t_LocalID:
2445    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2446    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2447    return (V == 0);
2448  case ValID::t_LocalName:
2449    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2450    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2451    return (V == 0);
2452  case ValID::t_InlineAsm: {
2453    PointerType *PTy = dyn_cast<PointerType>(Ty);
2454    FunctionType *FTy =
2455      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2456    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2457      return Error(ID.Loc, "invalid type for inline asm constraint string");
2458    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2459    return false;
2460  }
2461  case ValID::t_MDNode:
2462    if (!Ty->isMetadataTy())
2463      return Error(ID.Loc, "metadata value must have metadata type");
2464    V = ID.MDNodeVal;
2465    return false;
2466  case ValID::t_MDString:
2467    if (!Ty->isMetadataTy())
2468      return Error(ID.Loc, "metadata value must have metadata type");
2469    V = ID.MDStringVal;
2470    return false;
2471  case ValID::t_GlobalName:
2472    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2473    return V == 0;
2474  case ValID::t_GlobalID:
2475    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2476    return V == 0;
2477  case ValID::t_APSInt:
2478    if (!Ty->isIntegerTy())
2479      return Error(ID.Loc, "integer constant must have integer type");
2480    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2481    V = ConstantInt::get(Context, ID.APSIntVal);
2482    return false;
2483  case ValID::t_APFloat:
2484    if (!Ty->isFloatingPointTy() ||
2485        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2486      return Error(ID.Loc, "floating point constant invalid for type");
2487
2488    // The lexer has no type info, so builds all float and double FP constants
2489    // as double.  Fix this here.  Long double does not need this.
2490    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2491        Ty->isFloatTy()) {
2492      bool Ignored;
2493      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2494                            &Ignored);
2495    }
2496    V = ConstantFP::get(Context, ID.APFloatVal);
2497
2498    if (V->getType() != Ty)
2499      return Error(ID.Loc, "floating point constant does not have type '" +
2500                   getTypeString(Ty) + "'");
2501
2502    return false;
2503  case ValID::t_Null:
2504    if (!Ty->isPointerTy())
2505      return Error(ID.Loc, "null must be a pointer type");
2506    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2507    return false;
2508  case ValID::t_Undef:
2509    // FIXME: LabelTy should not be a first-class type.
2510    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2511      return Error(ID.Loc, "invalid type for undef constant");
2512    V = UndefValue::get(Ty);
2513    return false;
2514  case ValID::t_EmptyArray:
2515    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2516      return Error(ID.Loc, "invalid empty array initializer");
2517    V = UndefValue::get(Ty);
2518    return false;
2519  case ValID::t_Zero:
2520    // FIXME: LabelTy should not be a first-class type.
2521    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2522      return Error(ID.Loc, "invalid type for null constant");
2523    V = Constant::getNullValue(Ty);
2524    return false;
2525  case ValID::t_Constant:
2526    if (ID.ConstantVal->getType() != Ty)
2527      return Error(ID.Loc, "constant expression type mismatch");
2528
2529    V = ID.ConstantVal;
2530    return false;
2531  case ValID::t_ConstantStruct:
2532  case ValID::t_PackedConstantStruct:
2533    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2534      if (ST->getNumElements() != ID.UIntVal)
2535        return Error(ID.Loc,
2536                     "initializer with struct type has wrong # elements");
2537      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2538        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2539
2540      // Verify that the elements are compatible with the structtype.
2541      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2542        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2543          return Error(ID.Loc, "element " + Twine(i) +
2544                    " of struct initializer doesn't match struct element type");
2545
2546      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2547                                               ID.UIntVal));
2548    } else
2549      return Error(ID.Loc, "constant expression type mismatch");
2550    return false;
2551  }
2552}
2553
2554bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2555  V = 0;
2556  ValID ID;
2557  return ParseValID(ID, PFS) ||
2558         ConvertValIDToValue(Ty, ID, V, PFS);
2559}
2560
2561bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2562  Type *Ty = 0;
2563  return ParseType(Ty) ||
2564         ParseValue(Ty, V, PFS);
2565}
2566
2567bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2568                                      PerFunctionState &PFS) {
2569  Value *V;
2570  Loc = Lex.getLoc();
2571  if (ParseTypeAndValue(V, PFS)) return true;
2572  if (!isa<BasicBlock>(V))
2573    return Error(Loc, "expected a basic block");
2574  BB = cast<BasicBlock>(V);
2575  return false;
2576}
2577
2578
2579/// FunctionHeader
2580///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2581///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2582///       OptionalAlign OptGC
2583bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2584  // Parse the linkage.
2585  LocTy LinkageLoc = Lex.getLoc();
2586  unsigned Linkage;
2587
2588  unsigned Visibility, RetAttrs;
2589  CallingConv::ID CC;
2590  Type *RetType = 0;
2591  LocTy RetTypeLoc = Lex.getLoc();
2592  if (ParseOptionalLinkage(Linkage) ||
2593      ParseOptionalVisibility(Visibility) ||
2594      ParseOptionalCallingConv(CC) ||
2595      ParseOptionalAttrs(RetAttrs, 1) ||
2596      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2597    return true;
2598
2599  // Verify that the linkage is ok.
2600  switch ((GlobalValue::LinkageTypes)Linkage) {
2601  case GlobalValue::ExternalLinkage:
2602    break; // always ok.
2603  case GlobalValue::DLLImportLinkage:
2604  case GlobalValue::ExternalWeakLinkage:
2605    if (isDefine)
2606      return Error(LinkageLoc, "invalid linkage for function definition");
2607    break;
2608  case GlobalValue::PrivateLinkage:
2609  case GlobalValue::LinkerPrivateLinkage:
2610  case GlobalValue::LinkerPrivateWeakLinkage:
2611  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2612  case GlobalValue::InternalLinkage:
2613  case GlobalValue::AvailableExternallyLinkage:
2614  case GlobalValue::LinkOnceAnyLinkage:
2615  case GlobalValue::LinkOnceODRLinkage:
2616  case GlobalValue::WeakAnyLinkage:
2617  case GlobalValue::WeakODRLinkage:
2618  case GlobalValue::DLLExportLinkage:
2619    if (!isDefine)
2620      return Error(LinkageLoc, "invalid linkage for function declaration");
2621    break;
2622  case GlobalValue::AppendingLinkage:
2623  case GlobalValue::CommonLinkage:
2624    return Error(LinkageLoc, "invalid function linkage type");
2625  }
2626
2627  if (!FunctionType::isValidReturnType(RetType))
2628    return Error(RetTypeLoc, "invalid function return type");
2629
2630  LocTy NameLoc = Lex.getLoc();
2631
2632  std::string FunctionName;
2633  if (Lex.getKind() == lltok::GlobalVar) {
2634    FunctionName = Lex.getStrVal();
2635  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2636    unsigned NameID = Lex.getUIntVal();
2637
2638    if (NameID != NumberedVals.size())
2639      return TokError("function expected to be numbered '%" +
2640                      Twine(NumberedVals.size()) + "'");
2641  } else {
2642    return TokError("expected function name");
2643  }
2644
2645  Lex.Lex();
2646
2647  if (Lex.getKind() != lltok::lparen)
2648    return TokError("expected '(' in function argument list");
2649
2650  SmallVector<ArgInfo, 8> ArgList;
2651  bool isVarArg;
2652  unsigned FuncAttrs;
2653  std::string Section;
2654  unsigned Alignment;
2655  std::string GC;
2656  bool UnnamedAddr;
2657  LocTy UnnamedAddrLoc;
2658
2659  if (ParseArgumentList(ArgList, isVarArg) ||
2660      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2661                         &UnnamedAddrLoc) ||
2662      ParseOptionalAttrs(FuncAttrs, 2) ||
2663      (EatIfPresent(lltok::kw_section) &&
2664       ParseStringConstant(Section)) ||
2665      ParseOptionalAlignment(Alignment) ||
2666      (EatIfPresent(lltok::kw_gc) &&
2667       ParseStringConstant(GC)))
2668    return true;
2669
2670  // If the alignment was parsed as an attribute, move to the alignment field.
2671  if (FuncAttrs & Attribute::Alignment) {
2672    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2673    FuncAttrs &= ~Attribute::Alignment;
2674  }
2675
2676  // Okay, if we got here, the function is syntactically valid.  Convert types
2677  // and do semantic checks.
2678  std::vector<Type*> ParamTypeList;
2679  SmallVector<AttributeWithIndex, 8> Attrs;
2680
2681  if (RetAttrs != Attribute::None)
2682    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2683
2684  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2685    ParamTypeList.push_back(ArgList[i].Ty);
2686    if (ArgList[i].Attrs != Attribute::None)
2687      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2688  }
2689
2690  if (FuncAttrs != Attribute::None)
2691    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2692
2693  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2694
2695  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2696    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2697
2698  FunctionType *FT =
2699    FunctionType::get(RetType, ParamTypeList, isVarArg);
2700  PointerType *PFT = PointerType::getUnqual(FT);
2701
2702  Fn = 0;
2703  if (!FunctionName.empty()) {
2704    // If this was a definition of a forward reference, remove the definition
2705    // from the forward reference table and fill in the forward ref.
2706    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2707      ForwardRefVals.find(FunctionName);
2708    if (FRVI != ForwardRefVals.end()) {
2709      Fn = M->getFunction(FunctionName);
2710      if (Fn->getType() != PFT)
2711        return Error(FRVI->second.second, "invalid forward reference to "
2712                     "function '" + FunctionName + "' with wrong type!");
2713
2714      ForwardRefVals.erase(FRVI);
2715    } else if ((Fn = M->getFunction(FunctionName))) {
2716      // Reject redefinitions.
2717      return Error(NameLoc, "invalid redefinition of function '" +
2718                   FunctionName + "'");
2719    } else if (M->getNamedValue(FunctionName)) {
2720      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2721    }
2722
2723  } else {
2724    // If this is a definition of a forward referenced function, make sure the
2725    // types agree.
2726    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2727      = ForwardRefValIDs.find(NumberedVals.size());
2728    if (I != ForwardRefValIDs.end()) {
2729      Fn = cast<Function>(I->second.first);
2730      if (Fn->getType() != PFT)
2731        return Error(NameLoc, "type of definition and forward reference of '@" +
2732                     Twine(NumberedVals.size()) + "' disagree");
2733      ForwardRefValIDs.erase(I);
2734    }
2735  }
2736
2737  if (Fn == 0)
2738    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2739  else // Move the forward-reference to the correct spot in the module.
2740    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2741
2742  if (FunctionName.empty())
2743    NumberedVals.push_back(Fn);
2744
2745  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2746  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2747  Fn->setCallingConv(CC);
2748  Fn->setAttributes(PAL);
2749  Fn->setUnnamedAddr(UnnamedAddr);
2750  Fn->setAlignment(Alignment);
2751  Fn->setSection(Section);
2752  if (!GC.empty()) Fn->setGC(GC.c_str());
2753
2754  // Add all of the arguments we parsed to the function.
2755  Function::arg_iterator ArgIt = Fn->arg_begin();
2756  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2757    // If the argument has a name, insert it into the argument symbol table.
2758    if (ArgList[i].Name.empty()) continue;
2759
2760    // Set the name, if it conflicted, it will be auto-renamed.
2761    ArgIt->setName(ArgList[i].Name);
2762
2763    if (ArgIt->getName() != ArgList[i].Name)
2764      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2765                   ArgList[i].Name + "'");
2766  }
2767
2768  return false;
2769}
2770
2771
2772/// ParseFunctionBody
2773///   ::= '{' BasicBlock+ '}'
2774///
2775bool LLParser::ParseFunctionBody(Function &Fn) {
2776  if (Lex.getKind() != lltok::lbrace)
2777    return TokError("expected '{' in function body");
2778  Lex.Lex();  // eat the {.
2779
2780  int FunctionNumber = -1;
2781  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2782
2783  PerFunctionState PFS(*this, Fn, FunctionNumber);
2784
2785  // We need at least one basic block.
2786  if (Lex.getKind() == lltok::rbrace)
2787    return TokError("function body requires at least one basic block");
2788
2789  while (Lex.getKind() != lltok::rbrace)
2790    if (ParseBasicBlock(PFS)) return true;
2791
2792  // Eat the }.
2793  Lex.Lex();
2794
2795  // Verify function is ok.
2796  return PFS.FinishFunction();
2797}
2798
2799/// ParseBasicBlock
2800///   ::= LabelStr? Instruction*
2801bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2802  // If this basic block starts out with a name, remember it.
2803  std::string Name;
2804  LocTy NameLoc = Lex.getLoc();
2805  if (Lex.getKind() == lltok::LabelStr) {
2806    Name = Lex.getStrVal();
2807    Lex.Lex();
2808  }
2809
2810  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2811  if (BB == 0) return true;
2812
2813  std::string NameStr;
2814
2815  // Parse the instructions in this block until we get a terminator.
2816  Instruction *Inst;
2817  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2818  do {
2819    // This instruction may have three possibilities for a name: a) none
2820    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2821    LocTy NameLoc = Lex.getLoc();
2822    int NameID = -1;
2823    NameStr = "";
2824
2825    if (Lex.getKind() == lltok::LocalVarID) {
2826      NameID = Lex.getUIntVal();
2827      Lex.Lex();
2828      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2829        return true;
2830    } else if (Lex.getKind() == lltok::LocalVar) {
2831      NameStr = Lex.getStrVal();
2832      Lex.Lex();
2833      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2834        return true;
2835    }
2836
2837    switch (ParseInstruction(Inst, BB, PFS)) {
2838    default: assert(0 && "Unknown ParseInstruction result!");
2839    case InstError: return true;
2840    case InstNormal:
2841      BB->getInstList().push_back(Inst);
2842
2843      // With a normal result, we check to see if the instruction is followed by
2844      // a comma and metadata.
2845      if (EatIfPresent(lltok::comma))
2846        if (ParseInstructionMetadata(Inst, &PFS))
2847          return true;
2848      break;
2849    case InstExtraComma:
2850      BB->getInstList().push_back(Inst);
2851
2852      // If the instruction parser ate an extra comma at the end of it, it
2853      // *must* be followed by metadata.
2854      if (ParseInstructionMetadata(Inst, &PFS))
2855        return true;
2856      break;
2857    }
2858
2859    // Set the name on the instruction.
2860    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2861  } while (!isa<TerminatorInst>(Inst));
2862
2863  return false;
2864}
2865
2866//===----------------------------------------------------------------------===//
2867// Instruction Parsing.
2868//===----------------------------------------------------------------------===//
2869
2870/// ParseInstruction - Parse one of the many different instructions.
2871///
2872int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2873                               PerFunctionState &PFS) {
2874  lltok::Kind Token = Lex.getKind();
2875  if (Token == lltok::Eof)
2876    return TokError("found end of file when expecting more instructions");
2877  LocTy Loc = Lex.getLoc();
2878  unsigned KeywordVal = Lex.getUIntVal();
2879  Lex.Lex();  // Eat the keyword.
2880
2881  switch (Token) {
2882  default:                    return Error(Loc, "expected instruction opcode");
2883  // Terminator Instructions.
2884  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2885  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2886  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2887  case lltok::kw_br:          return ParseBr(Inst, PFS);
2888  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2889  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2890  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2891  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2892  // Binary Operators.
2893  case lltok::kw_add:
2894  case lltok::kw_sub:
2895  case lltok::kw_mul:
2896  case lltok::kw_shl: {
2897    bool NUW = EatIfPresent(lltok::kw_nuw);
2898    bool NSW = EatIfPresent(lltok::kw_nsw);
2899    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2900
2901    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2902
2903    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2904    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2905    return false;
2906  }
2907  case lltok::kw_fadd:
2908  case lltok::kw_fsub:
2909  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2910
2911  case lltok::kw_sdiv:
2912  case lltok::kw_udiv:
2913  case lltok::kw_lshr:
2914  case lltok::kw_ashr: {
2915    bool Exact = EatIfPresent(lltok::kw_exact);
2916
2917    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2918    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2919    return false;
2920  }
2921
2922  case lltok::kw_urem:
2923  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2924  case lltok::kw_fdiv:
2925  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2926  case lltok::kw_and:
2927  case lltok::kw_or:
2928  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2929  case lltok::kw_icmp:
2930  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2931  // Casts.
2932  case lltok::kw_trunc:
2933  case lltok::kw_zext:
2934  case lltok::kw_sext:
2935  case lltok::kw_fptrunc:
2936  case lltok::kw_fpext:
2937  case lltok::kw_bitcast:
2938  case lltok::kw_uitofp:
2939  case lltok::kw_sitofp:
2940  case lltok::kw_fptoui:
2941  case lltok::kw_fptosi:
2942  case lltok::kw_inttoptr:
2943  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2944  // Other.
2945  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2946  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2947  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2948  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2949  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2950  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2951  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2952  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2953  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2954  // Memory.
2955  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2956  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2957  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2958  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
2959  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
2960  case lltok::kw_fence:          return ParseFence(Inst, PFS);
2961  case lltok::kw_volatile:
2962    // For compatibility; canonical location is after load
2963    if (EatIfPresent(lltok::kw_load))
2964      return ParseLoad(Inst, PFS, true);
2965    else if (EatIfPresent(lltok::kw_store))
2966      return ParseStore(Inst, PFS, true);
2967    else
2968      return TokError("expected 'load' or 'store'");
2969  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2970  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2971  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2972  }
2973}
2974
2975/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2976bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2977  if (Opc == Instruction::FCmp) {
2978    switch (Lex.getKind()) {
2979    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2980    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2981    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2982    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2983    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2984    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2985    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2986    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2987    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2988    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2989    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2990    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2991    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2992    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2993    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2994    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2995    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2996    }
2997  } else {
2998    switch (Lex.getKind()) {
2999    default: TokError("expected icmp predicate (e.g. 'eq')");
3000    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3001    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3002    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3003    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3004    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3005    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3006    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3007    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3008    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3009    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3010    }
3011  }
3012  Lex.Lex();
3013  return false;
3014}
3015
3016//===----------------------------------------------------------------------===//
3017// Terminator Instructions.
3018//===----------------------------------------------------------------------===//
3019
3020/// ParseRet - Parse a return instruction.
3021///   ::= 'ret' void (',' !dbg, !1)*
3022///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3023bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3024                        PerFunctionState &PFS) {
3025  SMLoc TypeLoc = Lex.getLoc();
3026  Type *Ty = 0;
3027  if (ParseType(Ty, true /*void allowed*/)) return true;
3028
3029  Type *ResType = PFS.getFunction().getReturnType();
3030
3031  if (Ty->isVoidTy()) {
3032    if (!ResType->isVoidTy())
3033      return Error(TypeLoc, "value doesn't match function result type '" +
3034                   getTypeString(ResType) + "'");
3035
3036    Inst = ReturnInst::Create(Context);
3037    return false;
3038  }
3039
3040  Value *RV;
3041  if (ParseValue(Ty, RV, PFS)) return true;
3042
3043  if (ResType != RV->getType())
3044    return Error(TypeLoc, "value doesn't match function result type '" +
3045                 getTypeString(ResType) + "'");
3046
3047  Inst = ReturnInst::Create(Context, RV);
3048  return false;
3049}
3050
3051
3052/// ParseBr
3053///   ::= 'br' TypeAndValue
3054///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3055bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3056  LocTy Loc, Loc2;
3057  Value *Op0;
3058  BasicBlock *Op1, *Op2;
3059  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3060
3061  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3062    Inst = BranchInst::Create(BB);
3063    return false;
3064  }
3065
3066  if (Op0->getType() != Type::getInt1Ty(Context))
3067    return Error(Loc, "branch condition must have 'i1' type");
3068
3069  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3070      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3071      ParseToken(lltok::comma, "expected ',' after true destination") ||
3072      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3073    return true;
3074
3075  Inst = BranchInst::Create(Op1, Op2, Op0);
3076  return false;
3077}
3078
3079/// ParseSwitch
3080///  Instruction
3081///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3082///  JumpTable
3083///    ::= (TypeAndValue ',' TypeAndValue)*
3084bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3085  LocTy CondLoc, BBLoc;
3086  Value *Cond;
3087  BasicBlock *DefaultBB;
3088  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3089      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3090      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3091      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3092    return true;
3093
3094  if (!Cond->getType()->isIntegerTy())
3095    return Error(CondLoc, "switch condition must have integer type");
3096
3097  // Parse the jump table pairs.
3098  SmallPtrSet<Value*, 32> SeenCases;
3099  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3100  while (Lex.getKind() != lltok::rsquare) {
3101    Value *Constant;
3102    BasicBlock *DestBB;
3103
3104    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3105        ParseToken(lltok::comma, "expected ',' after case value") ||
3106        ParseTypeAndBasicBlock(DestBB, PFS))
3107      return true;
3108
3109    if (!SeenCases.insert(Constant))
3110      return Error(CondLoc, "duplicate case value in switch");
3111    if (!isa<ConstantInt>(Constant))
3112      return Error(CondLoc, "case value is not a constant integer");
3113
3114    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3115  }
3116
3117  Lex.Lex();  // Eat the ']'.
3118
3119  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3120  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3121    SI->addCase(Table[i].first, Table[i].second);
3122  Inst = SI;
3123  return false;
3124}
3125
3126/// ParseIndirectBr
3127///  Instruction
3128///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3129bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3130  LocTy AddrLoc;
3131  Value *Address;
3132  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3133      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3134      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3135    return true;
3136
3137  if (!Address->getType()->isPointerTy())
3138    return Error(AddrLoc, "indirectbr address must have pointer type");
3139
3140  // Parse the destination list.
3141  SmallVector<BasicBlock*, 16> DestList;
3142
3143  if (Lex.getKind() != lltok::rsquare) {
3144    BasicBlock *DestBB;
3145    if (ParseTypeAndBasicBlock(DestBB, PFS))
3146      return true;
3147    DestList.push_back(DestBB);
3148
3149    while (EatIfPresent(lltok::comma)) {
3150      if (ParseTypeAndBasicBlock(DestBB, PFS))
3151        return true;
3152      DestList.push_back(DestBB);
3153    }
3154  }
3155
3156  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3157    return true;
3158
3159  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3160  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3161    IBI->addDestination(DestList[i]);
3162  Inst = IBI;
3163  return false;
3164}
3165
3166
3167/// ParseInvoke
3168///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3169///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3170bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3171  LocTy CallLoc = Lex.getLoc();
3172  unsigned RetAttrs, FnAttrs;
3173  CallingConv::ID CC;
3174  Type *RetType = 0;
3175  LocTy RetTypeLoc;
3176  ValID CalleeID;
3177  SmallVector<ParamInfo, 16> ArgList;
3178
3179  BasicBlock *NormalBB, *UnwindBB;
3180  if (ParseOptionalCallingConv(CC) ||
3181      ParseOptionalAttrs(RetAttrs, 1) ||
3182      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3183      ParseValID(CalleeID) ||
3184      ParseParameterList(ArgList, PFS) ||
3185      ParseOptionalAttrs(FnAttrs, 2) ||
3186      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3187      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3188      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3189      ParseTypeAndBasicBlock(UnwindBB, PFS))
3190    return true;
3191
3192  // If RetType is a non-function pointer type, then this is the short syntax
3193  // for the call, which means that RetType is just the return type.  Infer the
3194  // rest of the function argument types from the arguments that are present.
3195  PointerType *PFTy = 0;
3196  FunctionType *Ty = 0;
3197  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3198      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3199    // Pull out the types of all of the arguments...
3200    std::vector<Type*> ParamTypes;
3201    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3202      ParamTypes.push_back(ArgList[i].V->getType());
3203
3204    if (!FunctionType::isValidReturnType(RetType))
3205      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3206
3207    Ty = FunctionType::get(RetType, ParamTypes, false);
3208    PFTy = PointerType::getUnqual(Ty);
3209  }
3210
3211  // Look up the callee.
3212  Value *Callee;
3213  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3214
3215  // Set up the Attributes for the function.
3216  SmallVector<AttributeWithIndex, 8> Attrs;
3217  if (RetAttrs != Attribute::None)
3218    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3219
3220  SmallVector<Value*, 8> Args;
3221
3222  // Loop through FunctionType's arguments and ensure they are specified
3223  // correctly.  Also, gather any parameter attributes.
3224  FunctionType::param_iterator I = Ty->param_begin();
3225  FunctionType::param_iterator E = Ty->param_end();
3226  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3227    Type *ExpectedTy = 0;
3228    if (I != E) {
3229      ExpectedTy = *I++;
3230    } else if (!Ty->isVarArg()) {
3231      return Error(ArgList[i].Loc, "too many arguments specified");
3232    }
3233
3234    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3235      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3236                   getTypeString(ExpectedTy) + "'");
3237    Args.push_back(ArgList[i].V);
3238    if (ArgList[i].Attrs != Attribute::None)
3239      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3240  }
3241
3242  if (I != E)
3243    return Error(CallLoc, "not enough parameters specified for call");
3244
3245  if (FnAttrs != Attribute::None)
3246    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3247
3248  // Finish off the Attributes and check them
3249  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3250
3251  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3252  II->setCallingConv(CC);
3253  II->setAttributes(PAL);
3254  Inst = II;
3255  return false;
3256}
3257
3258/// ParseResume
3259///   ::= 'resume' TypeAndValue
3260bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3261  Value *Exn; LocTy ExnLoc;
3262  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3263    return true;
3264
3265  ResumeInst *RI = ResumeInst::Create(Exn);
3266  Inst = RI;
3267  return false;
3268}
3269
3270//===----------------------------------------------------------------------===//
3271// Binary Operators.
3272//===----------------------------------------------------------------------===//
3273
3274/// ParseArithmetic
3275///  ::= ArithmeticOps TypeAndValue ',' Value
3276///
3277/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3278/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3279bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3280                               unsigned Opc, unsigned OperandType) {
3281  LocTy Loc; Value *LHS, *RHS;
3282  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3283      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3284      ParseValue(LHS->getType(), RHS, PFS))
3285    return true;
3286
3287  bool Valid;
3288  switch (OperandType) {
3289  default: llvm_unreachable("Unknown operand type!");
3290  case 0: // int or FP.
3291    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3292            LHS->getType()->isFPOrFPVectorTy();
3293    break;
3294  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3295  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3296  }
3297
3298  if (!Valid)
3299    return Error(Loc, "invalid operand type for instruction");
3300
3301  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3302  return false;
3303}
3304
3305/// ParseLogical
3306///  ::= ArithmeticOps TypeAndValue ',' Value {
3307bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3308                            unsigned Opc) {
3309  LocTy Loc; Value *LHS, *RHS;
3310  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3311      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3312      ParseValue(LHS->getType(), RHS, PFS))
3313    return true;
3314
3315  if (!LHS->getType()->isIntOrIntVectorTy())
3316    return Error(Loc,"instruction requires integer or integer vector operands");
3317
3318  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3319  return false;
3320}
3321
3322
3323/// ParseCompare
3324///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3325///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3326bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3327                            unsigned Opc) {
3328  // Parse the integer/fp comparison predicate.
3329  LocTy Loc;
3330  unsigned Pred;
3331  Value *LHS, *RHS;
3332  if (ParseCmpPredicate(Pred, Opc) ||
3333      ParseTypeAndValue(LHS, Loc, PFS) ||
3334      ParseToken(lltok::comma, "expected ',' after compare value") ||
3335      ParseValue(LHS->getType(), RHS, PFS))
3336    return true;
3337
3338  if (Opc == Instruction::FCmp) {
3339    if (!LHS->getType()->isFPOrFPVectorTy())
3340      return Error(Loc, "fcmp requires floating point operands");
3341    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3342  } else {
3343    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3344    if (!LHS->getType()->isIntOrIntVectorTy() &&
3345        !LHS->getType()->isPointerTy())
3346      return Error(Loc, "icmp requires integer operands");
3347    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3348  }
3349  return false;
3350}
3351
3352//===----------------------------------------------------------------------===//
3353// Other Instructions.
3354//===----------------------------------------------------------------------===//
3355
3356
3357/// ParseCast
3358///   ::= CastOpc TypeAndValue 'to' Type
3359bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3360                         unsigned Opc) {
3361  LocTy Loc;
3362  Value *Op;
3363  Type *DestTy = 0;
3364  if (ParseTypeAndValue(Op, Loc, PFS) ||
3365      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3366      ParseType(DestTy))
3367    return true;
3368
3369  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3370    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3371    return Error(Loc, "invalid cast opcode for cast from '" +
3372                 getTypeString(Op->getType()) + "' to '" +
3373                 getTypeString(DestTy) + "'");
3374  }
3375  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3376  return false;
3377}
3378
3379/// ParseSelect
3380///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3381bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3382  LocTy Loc;
3383  Value *Op0, *Op1, *Op2;
3384  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3385      ParseToken(lltok::comma, "expected ',' after select condition") ||
3386      ParseTypeAndValue(Op1, PFS) ||
3387      ParseToken(lltok::comma, "expected ',' after select value") ||
3388      ParseTypeAndValue(Op2, PFS))
3389    return true;
3390
3391  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3392    return Error(Loc, Reason);
3393
3394  Inst = SelectInst::Create(Op0, Op1, Op2);
3395  return false;
3396}
3397
3398/// ParseVA_Arg
3399///   ::= 'va_arg' TypeAndValue ',' Type
3400bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3401  Value *Op;
3402  Type *EltTy = 0;
3403  LocTy TypeLoc;
3404  if (ParseTypeAndValue(Op, PFS) ||
3405      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3406      ParseType(EltTy, TypeLoc))
3407    return true;
3408
3409  if (!EltTy->isFirstClassType())
3410    return Error(TypeLoc, "va_arg requires operand with first class type");
3411
3412  Inst = new VAArgInst(Op, EltTy);
3413  return false;
3414}
3415
3416/// ParseExtractElement
3417///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3418bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3419  LocTy Loc;
3420  Value *Op0, *Op1;
3421  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3422      ParseToken(lltok::comma, "expected ',' after extract value") ||
3423      ParseTypeAndValue(Op1, PFS))
3424    return true;
3425
3426  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3427    return Error(Loc, "invalid extractelement operands");
3428
3429  Inst = ExtractElementInst::Create(Op0, Op1);
3430  return false;
3431}
3432
3433/// ParseInsertElement
3434///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3435bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3436  LocTy Loc;
3437  Value *Op0, *Op1, *Op2;
3438  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3439      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3440      ParseTypeAndValue(Op1, PFS) ||
3441      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3442      ParseTypeAndValue(Op2, PFS))
3443    return true;
3444
3445  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3446    return Error(Loc, "invalid insertelement operands");
3447
3448  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3449  return false;
3450}
3451
3452/// ParseShuffleVector
3453///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3454bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3455  LocTy Loc;
3456  Value *Op0, *Op1, *Op2;
3457  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3458      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3459      ParseTypeAndValue(Op1, PFS) ||
3460      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3461      ParseTypeAndValue(Op2, PFS))
3462    return true;
3463
3464  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3465    return Error(Loc, "invalid extractelement operands");
3466
3467  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3468  return false;
3469}
3470
3471/// ParsePHI
3472///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3473int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3474  Type *Ty = 0;  LocTy TypeLoc;
3475  Value *Op0, *Op1;
3476
3477  if (ParseType(Ty, TypeLoc) ||
3478      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3479      ParseValue(Ty, Op0, PFS) ||
3480      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3481      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3482      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3483    return true;
3484
3485  bool AteExtraComma = false;
3486  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3487  while (1) {
3488    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3489
3490    if (!EatIfPresent(lltok::comma))
3491      break;
3492
3493    if (Lex.getKind() == lltok::MetadataVar) {
3494      AteExtraComma = true;
3495      break;
3496    }
3497
3498    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3499        ParseValue(Ty, Op0, PFS) ||
3500        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3501        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3502        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3503      return true;
3504  }
3505
3506  if (!Ty->isFirstClassType())
3507    return Error(TypeLoc, "phi node must have first class type");
3508
3509  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3510  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3511    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3512  Inst = PN;
3513  return AteExtraComma ? InstExtraComma : InstNormal;
3514}
3515
3516/// ParseLandingPad
3517///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3518/// Clause
3519///   ::= 'catch' TypeAndValue
3520///   ::= 'filter'
3521///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3522bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3523  Type *Ty = 0; LocTy TyLoc;
3524  Value *PersFn; LocTy PersFnLoc;
3525
3526  if (ParseType(Ty, TyLoc) ||
3527      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3528      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3529    return true;
3530
3531  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3532  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3533
3534  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3535    LandingPadInst::ClauseType CT;
3536    if (EatIfPresent(lltok::kw_catch))
3537      CT = LandingPadInst::Catch;
3538    else if (EatIfPresent(lltok::kw_filter))
3539      CT = LandingPadInst::Filter;
3540    else
3541      return TokError("expected 'catch' or 'filter' clause type");
3542
3543    Value *V; LocTy VLoc;
3544    if (ParseTypeAndValue(V, VLoc, PFS)) {
3545      delete LP;
3546      return true;
3547    }
3548
3549    // A 'catch' type expects a non-array constant. A filter clause expects an
3550    // array constant.
3551    if (CT == LandingPadInst::Catch) {
3552      if (isa<ArrayType>(V->getType()))
3553        Error(VLoc, "'catch' clause has an invalid type");
3554    } else {
3555      if (!isa<ArrayType>(V->getType()))
3556        Error(VLoc, "'filter' clause has an invalid type");
3557    }
3558
3559    LP->addClause(V);
3560  }
3561
3562  Inst = LP;
3563  return false;
3564}
3565
3566/// ParseCall
3567///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3568///       ParameterList OptionalAttrs
3569bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3570                         bool isTail) {
3571  unsigned RetAttrs, FnAttrs;
3572  CallingConv::ID CC;
3573  Type *RetType = 0;
3574  LocTy RetTypeLoc;
3575  ValID CalleeID;
3576  SmallVector<ParamInfo, 16> ArgList;
3577  LocTy CallLoc = Lex.getLoc();
3578
3579  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3580      ParseOptionalCallingConv(CC) ||
3581      ParseOptionalAttrs(RetAttrs, 1) ||
3582      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3583      ParseValID(CalleeID) ||
3584      ParseParameterList(ArgList, PFS) ||
3585      ParseOptionalAttrs(FnAttrs, 2))
3586    return true;
3587
3588  // If RetType is a non-function pointer type, then this is the short syntax
3589  // for the call, which means that RetType is just the return type.  Infer the
3590  // rest of the function argument types from the arguments that are present.
3591  PointerType *PFTy = 0;
3592  FunctionType *Ty = 0;
3593  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3594      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3595    // Pull out the types of all of the arguments...
3596    std::vector<Type*> ParamTypes;
3597    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3598      ParamTypes.push_back(ArgList[i].V->getType());
3599
3600    if (!FunctionType::isValidReturnType(RetType))
3601      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3602
3603    Ty = FunctionType::get(RetType, ParamTypes, false);
3604    PFTy = PointerType::getUnqual(Ty);
3605  }
3606
3607  // Look up the callee.
3608  Value *Callee;
3609  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3610
3611  // Set up the Attributes for the function.
3612  SmallVector<AttributeWithIndex, 8> Attrs;
3613  if (RetAttrs != Attribute::None)
3614    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3615
3616  SmallVector<Value*, 8> Args;
3617
3618  // Loop through FunctionType's arguments and ensure they are specified
3619  // correctly.  Also, gather any parameter attributes.
3620  FunctionType::param_iterator I = Ty->param_begin();
3621  FunctionType::param_iterator E = Ty->param_end();
3622  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3623    Type *ExpectedTy = 0;
3624    if (I != E) {
3625      ExpectedTy = *I++;
3626    } else if (!Ty->isVarArg()) {
3627      return Error(ArgList[i].Loc, "too many arguments specified");
3628    }
3629
3630    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3631      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3632                   getTypeString(ExpectedTy) + "'");
3633    Args.push_back(ArgList[i].V);
3634    if (ArgList[i].Attrs != Attribute::None)
3635      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3636  }
3637
3638  if (I != E)
3639    return Error(CallLoc, "not enough parameters specified for call");
3640
3641  if (FnAttrs != Attribute::None)
3642    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3643
3644  // Finish off the Attributes and check them
3645  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3646
3647  CallInst *CI = CallInst::Create(Callee, Args);
3648  CI->setTailCall(isTail);
3649  CI->setCallingConv(CC);
3650  CI->setAttributes(PAL);
3651  Inst = CI;
3652  return false;
3653}
3654
3655//===----------------------------------------------------------------------===//
3656// Memory Instructions.
3657//===----------------------------------------------------------------------===//
3658
3659/// ParseAlloc
3660///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3661int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3662  Value *Size = 0;
3663  LocTy SizeLoc;
3664  unsigned Alignment = 0;
3665  Type *Ty = 0;
3666  if (ParseType(Ty)) return true;
3667
3668  bool AteExtraComma = false;
3669  if (EatIfPresent(lltok::comma)) {
3670    if (Lex.getKind() == lltok::kw_align) {
3671      if (ParseOptionalAlignment(Alignment)) return true;
3672    } else if (Lex.getKind() == lltok::MetadataVar) {
3673      AteExtraComma = true;
3674    } else {
3675      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3676          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3677        return true;
3678    }
3679  }
3680
3681  if (Size && !Size->getType()->isIntegerTy())
3682    return Error(SizeLoc, "element count must have integer type");
3683
3684  Inst = new AllocaInst(Ty, Size, Alignment);
3685  return AteExtraComma ? InstExtraComma : InstNormal;
3686}
3687
3688/// ParseLoad
3689///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3690///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3691///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3692///   Compatibility:
3693///   ::= 'volatile' 'load' TypeAndValue (',' 'align' i32)?
3694int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3695                        bool isVolatile) {
3696  Value *Val; LocTy Loc;
3697  unsigned Alignment = 0;
3698  bool AteExtraComma = false;
3699  bool isAtomic = false;
3700  AtomicOrdering Ordering = NotAtomic;
3701  SynchronizationScope Scope = CrossThread;
3702
3703  if (Lex.getKind() == lltok::kw_atomic) {
3704    if (isVolatile)
3705      return TokError("mixing atomic with old volatile placement");
3706    isAtomic = true;
3707    Lex.Lex();
3708  }
3709
3710  if (Lex.getKind() == lltok::kw_volatile) {
3711    if (isVolatile)
3712      return TokError("duplicate volatile before and after store");
3713    isVolatile = true;
3714    Lex.Lex();
3715  }
3716
3717  if (ParseTypeAndValue(Val, Loc, PFS) ||
3718      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3719      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3720    return true;
3721
3722  if (!Val->getType()->isPointerTy() ||
3723      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3724    return Error(Loc, "load operand must be a pointer to a first class type");
3725  if (isAtomic && !Alignment)
3726    return Error(Loc, "atomic load must have explicit non-zero alignment");
3727  if (Ordering == Release || Ordering == AcquireRelease)
3728    return Error(Loc, "atomic load cannot use Release ordering");
3729
3730  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3731  return AteExtraComma ? InstExtraComma : InstNormal;
3732}
3733
3734/// ParseStore
3735
3736///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3737///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3738///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3739///   Compatibility:
3740///   ::= 'volatile' 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3741int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3742                         bool isVolatile) {
3743  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3744  unsigned Alignment = 0;
3745  bool AteExtraComma = false;
3746  bool isAtomic = false;
3747  AtomicOrdering Ordering = NotAtomic;
3748  SynchronizationScope Scope = CrossThread;
3749
3750  if (Lex.getKind() == lltok::kw_atomic) {
3751    if (isVolatile)
3752      return TokError("mixing atomic with old volatile placement");
3753    isAtomic = true;
3754    Lex.Lex();
3755  }
3756
3757  if (Lex.getKind() == lltok::kw_volatile) {
3758    if (isVolatile)
3759      return TokError("duplicate volatile before and after store");
3760    isVolatile = true;
3761    Lex.Lex();
3762  }
3763
3764  if (ParseTypeAndValue(Val, Loc, PFS) ||
3765      ParseToken(lltok::comma, "expected ',' after store operand") ||
3766      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3767      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3768      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3769    return true;
3770
3771  if (!Ptr->getType()->isPointerTy())
3772    return Error(PtrLoc, "store operand must be a pointer");
3773  if (!Val->getType()->isFirstClassType())
3774    return Error(Loc, "store operand must be a first class value");
3775  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3776    return Error(Loc, "stored value and pointer type do not match");
3777  if (isAtomic && !Alignment)
3778    return Error(Loc, "atomic store must have explicit non-zero alignment");
3779  if (Ordering == Acquire || Ordering == AcquireRelease)
3780    return Error(Loc, "atomic store cannot use Acquire ordering");
3781
3782  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3783  return AteExtraComma ? InstExtraComma : InstNormal;
3784}
3785
3786/// ParseCmpXchg
3787///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3788///       'singlethread'? AtomicOrdering
3789int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3790  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3791  bool AteExtraComma = false;
3792  AtomicOrdering Ordering = NotAtomic;
3793  SynchronizationScope Scope = CrossThread;
3794  bool isVolatile = false;
3795
3796  if (EatIfPresent(lltok::kw_volatile))
3797    isVolatile = true;
3798
3799  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3800      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3801      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3802      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3803      ParseTypeAndValue(New, NewLoc, PFS) ||
3804      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3805    return true;
3806
3807  if (Ordering == Unordered)
3808    return TokError("cmpxchg cannot be unordered");
3809  if (!Ptr->getType()->isPointerTy())
3810    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3811  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3812    return Error(CmpLoc, "compare value and pointer type do not match");
3813  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3814    return Error(NewLoc, "new value and pointer type do not match");
3815  if (!New->getType()->isIntegerTy())
3816    return Error(NewLoc, "cmpxchg operand must be an integer");
3817  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3818  if (Size < 8 || (Size & (Size - 1)))
3819    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3820                         " integer");
3821
3822  AtomicCmpXchgInst *CXI =
3823    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3824  CXI->setVolatile(isVolatile);
3825  Inst = CXI;
3826  return AteExtraComma ? InstExtraComma : InstNormal;
3827}
3828
3829/// ParseAtomicRMW
3830///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3831///       'singlethread'? AtomicOrdering
3832int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3833  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3834  bool AteExtraComma = false;
3835  AtomicOrdering Ordering = NotAtomic;
3836  SynchronizationScope Scope = CrossThread;
3837  bool isVolatile = false;
3838  AtomicRMWInst::BinOp Operation;
3839
3840  if (EatIfPresent(lltok::kw_volatile))
3841    isVolatile = true;
3842
3843  switch (Lex.getKind()) {
3844  default: return TokError("expected binary operation in atomicrmw");
3845  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3846  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3847  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3848  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3849  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3850  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3851  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3852  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3853  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3854  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3855  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3856  }
3857  Lex.Lex();  // Eat the operation.
3858
3859  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3860      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3861      ParseTypeAndValue(Val, ValLoc, PFS) ||
3862      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3863    return true;
3864
3865  if (Ordering == Unordered)
3866    return TokError("atomicrmw cannot be unordered");
3867  if (!Ptr->getType()->isPointerTy())
3868    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3869  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3870    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3871  if (!Val->getType()->isIntegerTy())
3872    return Error(ValLoc, "atomicrmw operand must be an integer");
3873  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3874  if (Size < 8 || (Size & (Size - 1)))
3875    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3876                         " integer");
3877
3878  AtomicRMWInst *RMWI =
3879    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3880  RMWI->setVolatile(isVolatile);
3881  Inst = RMWI;
3882  return AteExtraComma ? InstExtraComma : InstNormal;
3883}
3884
3885/// ParseFence
3886///   ::= 'fence' 'singlethread'? AtomicOrdering
3887int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3888  AtomicOrdering Ordering = NotAtomic;
3889  SynchronizationScope Scope = CrossThread;
3890  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3891    return true;
3892
3893  if (Ordering == Unordered)
3894    return TokError("fence cannot be unordered");
3895  if (Ordering == Monotonic)
3896    return TokError("fence cannot be monotonic");
3897
3898  Inst = new FenceInst(Context, Ordering, Scope);
3899  return InstNormal;
3900}
3901
3902/// ParseGetElementPtr
3903///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3904int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3905  Value *Ptr, *Val; LocTy Loc, EltLoc;
3906
3907  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3908
3909  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3910
3911  if (!Ptr->getType()->isPointerTy())
3912    return Error(Loc, "base of getelementptr must be a pointer");
3913
3914  SmallVector<Value*, 16> Indices;
3915  bool AteExtraComma = false;
3916  while (EatIfPresent(lltok::comma)) {
3917    if (Lex.getKind() == lltok::MetadataVar) {
3918      AteExtraComma = true;
3919      break;
3920    }
3921    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3922    if (!Val->getType()->isIntegerTy())
3923      return Error(EltLoc, "getelementptr index must be an integer");
3924    Indices.push_back(Val);
3925  }
3926
3927  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3928    return Error(Loc, "invalid getelementptr indices");
3929  Inst = GetElementPtrInst::Create(Ptr, Indices);
3930  if (InBounds)
3931    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3932  return AteExtraComma ? InstExtraComma : InstNormal;
3933}
3934
3935/// ParseExtractValue
3936///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3937int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3938  Value *Val; LocTy Loc;
3939  SmallVector<unsigned, 4> Indices;
3940  bool AteExtraComma;
3941  if (ParseTypeAndValue(Val, Loc, PFS) ||
3942      ParseIndexList(Indices, AteExtraComma))
3943    return true;
3944
3945  if (!Val->getType()->isAggregateType())
3946    return Error(Loc, "extractvalue operand must be aggregate type");
3947
3948  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3949    return Error(Loc, "invalid indices for extractvalue");
3950  Inst = ExtractValueInst::Create(Val, Indices);
3951  return AteExtraComma ? InstExtraComma : InstNormal;
3952}
3953
3954/// ParseInsertValue
3955///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3956int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3957  Value *Val0, *Val1; LocTy Loc0, Loc1;
3958  SmallVector<unsigned, 4> Indices;
3959  bool AteExtraComma;
3960  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3961      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3962      ParseTypeAndValue(Val1, Loc1, PFS) ||
3963      ParseIndexList(Indices, AteExtraComma))
3964    return true;
3965
3966  if (!Val0->getType()->isAggregateType())
3967    return Error(Loc0, "insertvalue operand must be aggregate type");
3968
3969  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
3970    return Error(Loc0, "invalid indices for insertvalue");
3971  Inst = InsertValueInst::Create(Val0, Val1, Indices);
3972  return AteExtraComma ? InstExtraComma : InstNormal;
3973}
3974
3975//===----------------------------------------------------------------------===//
3976// Embedded metadata.
3977//===----------------------------------------------------------------------===//
3978
3979/// ParseMDNodeVector
3980///   ::= Element (',' Element)*
3981/// Element
3982///   ::= 'null' | TypeAndValue
3983bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3984                                 PerFunctionState *PFS) {
3985  // Check for an empty list.
3986  if (Lex.getKind() == lltok::rbrace)
3987    return false;
3988
3989  do {
3990    // Null is a special case since it is typeless.
3991    if (EatIfPresent(lltok::kw_null)) {
3992      Elts.push_back(0);
3993      continue;
3994    }
3995
3996    Value *V = 0;
3997    if (ParseTypeAndValue(V, PFS)) return true;
3998    Elts.push_back(V);
3999  } while (EatIfPresent(lltok::comma));
4000
4001  return false;
4002}
4003