BitcodeReader.cpp revision 04ef4be048934f8acf15c4ed6e3ebdd410c252bb
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Bitcode/ReaderWriter.h"
11#include "BitcodeReader.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/AutoUpgrade.h"
15#include "llvm/IR/Constants.h"
16#include "llvm/IR/DerivedTypes.h"
17#include "llvm/IR/InlineAsm.h"
18#include "llvm/IR/IntrinsicInst.h"
19#include "llvm/IR/Module.h"
20#include "llvm/IR/OperandTraits.h"
21#include "llvm/IR/Operator.h"
22#include "llvm/Support/DataStream.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Support/MemoryBuffer.h"
25using namespace llvm;
26
27enum {
28  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
29};
30
31void BitcodeReader::materializeForwardReferencedFunctions() {
32  while (!BlockAddrFwdRefs.empty()) {
33    Function *F = BlockAddrFwdRefs.begin()->first;
34    F->Materialize();
35  }
36}
37
38void BitcodeReader::FreeState() {
39  if (BufferOwned)
40    delete Buffer;
41  Buffer = 0;
42  std::vector<Type*>().swap(TypeList);
43  ValueList.clear();
44  MDValueList.clear();
45
46  std::vector<AttributeSet>().swap(MAttributes);
47  std::vector<BasicBlock*>().swap(FunctionBBs);
48  std::vector<Function*>().swap(FunctionsWithBodies);
49  DeferredFunctionInfo.clear();
50  MDKindMap.clear();
51
52  assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
53}
54
55//===----------------------------------------------------------------------===//
56//  Helper functions to implement forward reference resolution, etc.
57//===----------------------------------------------------------------------===//
58
59/// ConvertToString - Convert a string from a record into an std::string, return
60/// true on failure.
61template<typename StrTy>
62static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
63                            StrTy &Result) {
64  if (Idx > Record.size())
65    return true;
66
67  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
68    Result += (char)Record[i];
69  return false;
70}
71
72static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
73  switch (Val) {
74  default: // Map unknown/new linkages to external
75  case 0:  return GlobalValue::ExternalLinkage;
76  case 1:  return GlobalValue::WeakAnyLinkage;
77  case 2:  return GlobalValue::AppendingLinkage;
78  case 3:  return GlobalValue::InternalLinkage;
79  case 4:  return GlobalValue::LinkOnceAnyLinkage;
80  case 5:  return GlobalValue::DLLImportLinkage;
81  case 6:  return GlobalValue::DLLExportLinkage;
82  case 7:  return GlobalValue::ExternalWeakLinkage;
83  case 8:  return GlobalValue::CommonLinkage;
84  case 9:  return GlobalValue::PrivateLinkage;
85  case 10: return GlobalValue::WeakODRLinkage;
86  case 11: return GlobalValue::LinkOnceODRLinkage;
87  case 12: return GlobalValue::AvailableExternallyLinkage;
88  case 13: return GlobalValue::LinkerPrivateLinkage;
89  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
90  case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
91  }
92}
93
94static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
95  switch (Val) {
96  default: // Map unknown visibilities to default.
97  case 0: return GlobalValue::DefaultVisibility;
98  case 1: return GlobalValue::HiddenVisibility;
99  case 2: return GlobalValue::ProtectedVisibility;
100  }
101}
102
103static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
104  switch (Val) {
105    case 0: return GlobalVariable::NotThreadLocal;
106    default: // Map unknown non-zero value to general dynamic.
107    case 1: return GlobalVariable::GeneralDynamicTLSModel;
108    case 2: return GlobalVariable::LocalDynamicTLSModel;
109    case 3: return GlobalVariable::InitialExecTLSModel;
110    case 4: return GlobalVariable::LocalExecTLSModel;
111  }
112}
113
114static int GetDecodedCastOpcode(unsigned Val) {
115  switch (Val) {
116  default: return -1;
117  case bitc::CAST_TRUNC   : return Instruction::Trunc;
118  case bitc::CAST_ZEXT    : return Instruction::ZExt;
119  case bitc::CAST_SEXT    : return Instruction::SExt;
120  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
121  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
122  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
123  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
124  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
125  case bitc::CAST_FPEXT   : return Instruction::FPExt;
126  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
127  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
128  case bitc::CAST_BITCAST : return Instruction::BitCast;
129  }
130}
131static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
132  switch (Val) {
133  default: return -1;
134  case bitc::BINOP_ADD:
135    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
136  case bitc::BINOP_SUB:
137    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
138  case bitc::BINOP_MUL:
139    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
140  case bitc::BINOP_UDIV: return Instruction::UDiv;
141  case bitc::BINOP_SDIV:
142    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
143  case bitc::BINOP_UREM: return Instruction::URem;
144  case bitc::BINOP_SREM:
145    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
146  case bitc::BINOP_SHL:  return Instruction::Shl;
147  case bitc::BINOP_LSHR: return Instruction::LShr;
148  case bitc::BINOP_ASHR: return Instruction::AShr;
149  case bitc::BINOP_AND:  return Instruction::And;
150  case bitc::BINOP_OR:   return Instruction::Or;
151  case bitc::BINOP_XOR:  return Instruction::Xor;
152  }
153}
154
155static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
156  switch (Val) {
157  default: return AtomicRMWInst::BAD_BINOP;
158  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
159  case bitc::RMW_ADD: return AtomicRMWInst::Add;
160  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
161  case bitc::RMW_AND: return AtomicRMWInst::And;
162  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
163  case bitc::RMW_OR: return AtomicRMWInst::Or;
164  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
165  case bitc::RMW_MAX: return AtomicRMWInst::Max;
166  case bitc::RMW_MIN: return AtomicRMWInst::Min;
167  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
168  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
169  }
170}
171
172static AtomicOrdering GetDecodedOrdering(unsigned Val) {
173  switch (Val) {
174  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
175  case bitc::ORDERING_UNORDERED: return Unordered;
176  case bitc::ORDERING_MONOTONIC: return Monotonic;
177  case bitc::ORDERING_ACQUIRE: return Acquire;
178  case bitc::ORDERING_RELEASE: return Release;
179  case bitc::ORDERING_ACQREL: return AcquireRelease;
180  default: // Map unknown orderings to sequentially-consistent.
181  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
182  }
183}
184
185static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
186  switch (Val) {
187  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
188  default: // Map unknown scopes to cross-thread.
189  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
190  }
191}
192
193namespace llvm {
194namespace {
195  /// @brief A class for maintaining the slot number definition
196  /// as a placeholder for the actual definition for forward constants defs.
197  class ConstantPlaceHolder : public ConstantExpr {
198    void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
199  public:
200    // allocate space for exactly one operand
201    void *operator new(size_t s) {
202      return User::operator new(s, 1);
203    }
204    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
205      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
206      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
207    }
208
209    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
210    static bool classof(const Value *V) {
211      return isa<ConstantExpr>(V) &&
212             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
213    }
214
215
216    /// Provide fast operand accessors
217    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
218  };
219}
220
221// FIXME: can we inherit this from ConstantExpr?
222template <>
223struct OperandTraits<ConstantPlaceHolder> :
224  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
225};
226}
227
228
229void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
230  if (Idx == size()) {
231    push_back(V);
232    return;
233  }
234
235  if (Idx >= size())
236    resize(Idx+1);
237
238  WeakVH &OldV = ValuePtrs[Idx];
239  if (OldV == 0) {
240    OldV = V;
241    return;
242  }
243
244  // Handle constants and non-constants (e.g. instrs) differently for
245  // efficiency.
246  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
247    ResolveConstants.push_back(std::make_pair(PHC, Idx));
248    OldV = V;
249  } else {
250    // If there was a forward reference to this value, replace it.
251    Value *PrevVal = OldV;
252    OldV->replaceAllUsesWith(V);
253    delete PrevVal;
254  }
255}
256
257
258Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
259                                                    Type *Ty) {
260  if (Idx >= size())
261    resize(Idx + 1);
262
263  if (Value *V = ValuePtrs[Idx]) {
264    assert(Ty == V->getType() && "Type mismatch in constant table!");
265    return cast<Constant>(V);
266  }
267
268  // Create and return a placeholder, which will later be RAUW'd.
269  Constant *C = new ConstantPlaceHolder(Ty, Context);
270  ValuePtrs[Idx] = C;
271  return C;
272}
273
274Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
275  if (Idx >= size())
276    resize(Idx + 1);
277
278  if (Value *V = ValuePtrs[Idx]) {
279    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
280    return V;
281  }
282
283  // No type specified, must be invalid reference.
284  if (Ty == 0) return 0;
285
286  // Create and return a placeholder, which will later be RAUW'd.
287  Value *V = new Argument(Ty);
288  ValuePtrs[Idx] = V;
289  return V;
290}
291
292/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
293/// resolves any forward references.  The idea behind this is that we sometimes
294/// get constants (such as large arrays) which reference *many* forward ref
295/// constants.  Replacing each of these causes a lot of thrashing when
296/// building/reuniquing the constant.  Instead of doing this, we look at all the
297/// uses and rewrite all the place holders at once for any constant that uses
298/// a placeholder.
299void BitcodeReaderValueList::ResolveConstantForwardRefs() {
300  // Sort the values by-pointer so that they are efficient to look up with a
301  // binary search.
302  std::sort(ResolveConstants.begin(), ResolveConstants.end());
303
304  SmallVector<Constant*, 64> NewOps;
305
306  while (!ResolveConstants.empty()) {
307    Value *RealVal = operator[](ResolveConstants.back().second);
308    Constant *Placeholder = ResolveConstants.back().first;
309    ResolveConstants.pop_back();
310
311    // Loop over all users of the placeholder, updating them to reference the
312    // new value.  If they reference more than one placeholder, update them all
313    // at once.
314    while (!Placeholder->use_empty()) {
315      Value::use_iterator UI = Placeholder->use_begin();
316      User *U = *UI;
317
318      // If the using object isn't uniqued, just update the operands.  This
319      // handles instructions and initializers for global variables.
320      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
321        UI.getUse().set(RealVal);
322        continue;
323      }
324
325      // Otherwise, we have a constant that uses the placeholder.  Replace that
326      // constant with a new constant that has *all* placeholder uses updated.
327      Constant *UserC = cast<Constant>(U);
328      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
329           I != E; ++I) {
330        Value *NewOp;
331        if (!isa<ConstantPlaceHolder>(*I)) {
332          // Not a placeholder reference.
333          NewOp = *I;
334        } else if (*I == Placeholder) {
335          // Common case is that it just references this one placeholder.
336          NewOp = RealVal;
337        } else {
338          // Otherwise, look up the placeholder in ResolveConstants.
339          ResolveConstantsTy::iterator It =
340            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
341                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
342                                                            0));
343          assert(It != ResolveConstants.end() && It->first == *I);
344          NewOp = operator[](It->second);
345        }
346
347        NewOps.push_back(cast<Constant>(NewOp));
348      }
349
350      // Make the new constant.
351      Constant *NewC;
352      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
353        NewC = ConstantArray::get(UserCA->getType(), NewOps);
354      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
355        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
356      } else if (isa<ConstantVector>(UserC)) {
357        NewC = ConstantVector::get(NewOps);
358      } else {
359        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
360        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
361      }
362
363      UserC->replaceAllUsesWith(NewC);
364      UserC->destroyConstant();
365      NewOps.clear();
366    }
367
368    // Update all ValueHandles, they should be the only users at this point.
369    Placeholder->replaceAllUsesWith(RealVal);
370    delete Placeholder;
371  }
372}
373
374void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
375  if (Idx == size()) {
376    push_back(V);
377    return;
378  }
379
380  if (Idx >= size())
381    resize(Idx+1);
382
383  WeakVH &OldV = MDValuePtrs[Idx];
384  if (OldV == 0) {
385    OldV = V;
386    return;
387  }
388
389  // If there was a forward reference to this value, replace it.
390  MDNode *PrevVal = cast<MDNode>(OldV);
391  OldV->replaceAllUsesWith(V);
392  MDNode::deleteTemporary(PrevVal);
393  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
394  // value for Idx.
395  MDValuePtrs[Idx] = V;
396}
397
398Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
399  if (Idx >= size())
400    resize(Idx + 1);
401
402  if (Value *V = MDValuePtrs[Idx]) {
403    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
404    return V;
405  }
406
407  // Create and return a placeholder, which will later be RAUW'd.
408  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
409  MDValuePtrs[Idx] = V;
410  return V;
411}
412
413Type *BitcodeReader::getTypeByID(unsigned ID) {
414  // The type table size is always specified correctly.
415  if (ID >= TypeList.size())
416    return 0;
417
418  if (Type *Ty = TypeList[ID])
419    return Ty;
420
421  // If we have a forward reference, the only possible case is when it is to a
422  // named struct.  Just create a placeholder for now.
423  return TypeList[ID] = StructType::create(Context);
424}
425
426
427//===----------------------------------------------------------------------===//
428//  Functions for parsing blocks from the bitcode file
429//===----------------------------------------------------------------------===//
430
431
432/// \brief This fills an AttrBuilder object with the LLVM attributes that have
433/// been decoded from the given integer. This function must stay in sync with
434/// 'encodeLLVMAttributesForBitcode'.
435static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
436                                           uint64_t EncodedAttrs) {
437  // FIXME: Remove in 4.0.
438
439  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
440  // the bits above 31 down by 11 bits.
441  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
442  assert((!Alignment || isPowerOf2_32(Alignment)) &&
443         "Alignment must be a power of two.");
444
445  if (Alignment)
446    B.addAlignmentAttr(Alignment);
447  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
448                (EncodedAttrs & 0xffff));
449}
450
451bool BitcodeReader::ParseAttributeBlock() {
452  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
453    return Error("Malformed block record");
454
455  if (!MAttributes.empty())
456    return Error("Multiple PARAMATTR blocks found!");
457
458  SmallVector<uint64_t, 64> Record;
459
460  SmallVector<AttributeSet, 8> Attrs;
461
462  // Read all the records.
463  while (1) {
464    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
465
466    switch (Entry.Kind) {
467    case BitstreamEntry::SubBlock: // Handled for us already.
468    case BitstreamEntry::Error:
469      return Error("Error at end of PARAMATTR block");
470    case BitstreamEntry::EndBlock:
471      return false;
472    case BitstreamEntry::Record:
473      // The interesting case.
474      break;
475    }
476
477    // Read a record.
478    Record.clear();
479    switch (Stream.readRecord(Entry.ID, Record)) {
480    default:  // Default behavior: ignore.
481      break;
482    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
483      // FIXME: Remove in 4.0.
484      if (Record.size() & 1)
485        return Error("Invalid ENTRY record");
486
487      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
488        AttrBuilder B;
489        decodeLLVMAttributesForBitcode(B, Record[i+1]);
490        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
491      }
492
493      MAttributes.push_back(AttributeSet::get(Context, Attrs));
494      Attrs.clear();
495      break;
496    }
497    }
498  }
499}
500
501bool BitcodeReader::ParseAttributeGroupBlock() {
502  if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
503    return Error("Malformed block record");
504
505  if (!MAttributeGroups.empty())
506    return Error("Multiple PARAMATTR_GROUP blocks found!");
507
508  SmallVector<uint64_t, 64> Record;
509
510  // Read all the records.
511  while (1) {
512    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
513
514    switch (Entry.Kind) {
515    case BitstreamEntry::SubBlock: // Handled for us already.
516    case BitstreamEntry::Error:
517      return Error("Error at end of PARAMATTR_GROUP block");
518    case BitstreamEntry::EndBlock:
519      return false;
520    case BitstreamEntry::Record:
521      // The interesting case.
522      break;
523    }
524
525    // Read a record.
526    Record.clear();
527    switch (Stream.readRecord(Entry.ID, Record)) {
528    default:  // Default behavior: ignore.
529      break;
530    case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
531      if (Record.size() < 3)
532        return Error("Invalid ENTRY record");
533
534      uint64_t GrpID = Record[0];
535      uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
536
537      AttrBuilder B;
538      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
539        if (Record[i] == 0) {        // Enum attribute
540          B.addAttribute(Attribute::AttrKind(Record[++i]));
541        } else if (Record[i] == 1) { // Align attribute
542          if (Attribute::AttrKind(Record[++i]) == Attribute::Alignment)
543            B.addAlignmentAttr(Record[++i]);
544          else
545            B.addStackAlignmentAttr(Record[++i]);
546        } else {                     // String attribute
547          assert((Record[i] == 3 || Record[i] == 4) &&
548                 "Invalid attribute group entry");
549          bool HasValue = (Record[i++] == 4);
550          SmallString<64> KindStr;
551          SmallString<64> ValStr;
552
553          while (Record[i] != 0 && i != e)
554            KindStr += Record[i++];
555          assert(Record[i] == 0 && "Kind string not null terminated");
556
557          if (HasValue) {
558            // Has a value associated with it.
559            ++i; // Skip the '0' that terminates the "kind" string.
560            while (Record[i] != 0 && i != e)
561              ValStr += Record[i++];
562            assert(Record[i] == 0 && "Value string not null terminated");
563          }
564
565          B.addAttribute(KindStr.str(), ValStr.str());
566        }
567      }
568
569      MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
570      break;
571    }
572    }
573  }
574}
575
576bool BitcodeReader::ParseTypeTable() {
577  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
578    return Error("Malformed block record");
579
580  return ParseTypeTableBody();
581}
582
583bool BitcodeReader::ParseTypeTableBody() {
584  if (!TypeList.empty())
585    return Error("Multiple TYPE_BLOCKs found!");
586
587  SmallVector<uint64_t, 64> Record;
588  unsigned NumRecords = 0;
589
590  SmallString<64> TypeName;
591
592  // Read all the records for this type table.
593  while (1) {
594    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
595
596    switch (Entry.Kind) {
597    case BitstreamEntry::SubBlock: // Handled for us already.
598    case BitstreamEntry::Error:
599      Error("Error in the type table block");
600      return true;
601    case BitstreamEntry::EndBlock:
602      if (NumRecords != TypeList.size())
603        return Error("Invalid type forward reference in TYPE_BLOCK");
604      return false;
605    case BitstreamEntry::Record:
606      // The interesting case.
607      break;
608    }
609
610    // Read a record.
611    Record.clear();
612    Type *ResultTy = 0;
613    switch (Stream.readRecord(Entry.ID, Record)) {
614    default: return Error("unknown type in type table");
615    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
616      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
617      // type list.  This allows us to reserve space.
618      if (Record.size() < 1)
619        return Error("Invalid TYPE_CODE_NUMENTRY record");
620      TypeList.resize(Record[0]);
621      continue;
622    case bitc::TYPE_CODE_VOID:      // VOID
623      ResultTy = Type::getVoidTy(Context);
624      break;
625    case bitc::TYPE_CODE_HALF:     // HALF
626      ResultTy = Type::getHalfTy(Context);
627      break;
628    case bitc::TYPE_CODE_FLOAT:     // FLOAT
629      ResultTy = Type::getFloatTy(Context);
630      break;
631    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
632      ResultTy = Type::getDoubleTy(Context);
633      break;
634    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
635      ResultTy = Type::getX86_FP80Ty(Context);
636      break;
637    case bitc::TYPE_CODE_FP128:     // FP128
638      ResultTy = Type::getFP128Ty(Context);
639      break;
640    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
641      ResultTy = Type::getPPC_FP128Ty(Context);
642      break;
643    case bitc::TYPE_CODE_LABEL:     // LABEL
644      ResultTy = Type::getLabelTy(Context);
645      break;
646    case bitc::TYPE_CODE_METADATA:  // METADATA
647      ResultTy = Type::getMetadataTy(Context);
648      break;
649    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
650      ResultTy = Type::getX86_MMXTy(Context);
651      break;
652    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
653      if (Record.size() < 1)
654        return Error("Invalid Integer type record");
655
656      ResultTy = IntegerType::get(Context, Record[0]);
657      break;
658    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
659                                    //          [pointee type, address space]
660      if (Record.size() < 1)
661        return Error("Invalid POINTER type record");
662      unsigned AddressSpace = 0;
663      if (Record.size() == 2)
664        AddressSpace = Record[1];
665      ResultTy = getTypeByID(Record[0]);
666      if (ResultTy == 0) return Error("invalid element type in pointer type");
667      ResultTy = PointerType::get(ResultTy, AddressSpace);
668      break;
669    }
670    case bitc::TYPE_CODE_FUNCTION_OLD: {
671      // FIXME: attrid is dead, remove it in LLVM 4.0
672      // FUNCTION: [vararg, attrid, retty, paramty x N]
673      if (Record.size() < 3)
674        return Error("Invalid FUNCTION type record");
675      SmallVector<Type*, 8> ArgTys;
676      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
677        if (Type *T = getTypeByID(Record[i]))
678          ArgTys.push_back(T);
679        else
680          break;
681      }
682
683      ResultTy = getTypeByID(Record[2]);
684      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
685        return Error("invalid type in function type");
686
687      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
688      break;
689    }
690    case bitc::TYPE_CODE_FUNCTION: {
691      // FUNCTION: [vararg, retty, paramty x N]
692      if (Record.size() < 2)
693        return Error("Invalid FUNCTION type record");
694      SmallVector<Type*, 8> ArgTys;
695      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
696        if (Type *T = getTypeByID(Record[i]))
697          ArgTys.push_back(T);
698        else
699          break;
700      }
701
702      ResultTy = getTypeByID(Record[1]);
703      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
704        return Error("invalid type in function type");
705
706      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
707      break;
708    }
709    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
710      if (Record.size() < 1)
711        return Error("Invalid STRUCT type record");
712      SmallVector<Type*, 8> EltTys;
713      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
714        if (Type *T = getTypeByID(Record[i]))
715          EltTys.push_back(T);
716        else
717          break;
718      }
719      if (EltTys.size() != Record.size()-1)
720        return Error("invalid type in struct type");
721      ResultTy = StructType::get(Context, EltTys, Record[0]);
722      break;
723    }
724    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
725      if (ConvertToString(Record, 0, TypeName))
726        return Error("Invalid STRUCT_NAME record");
727      continue;
728
729    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
730      if (Record.size() < 1)
731        return Error("Invalid STRUCT type record");
732
733      if (NumRecords >= TypeList.size())
734        return Error("invalid TYPE table");
735
736      // Check to see if this was forward referenced, if so fill in the temp.
737      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
738      if (Res) {
739        Res->setName(TypeName);
740        TypeList[NumRecords] = 0;
741      } else  // Otherwise, create a new struct.
742        Res = StructType::create(Context, TypeName);
743      TypeName.clear();
744
745      SmallVector<Type*, 8> EltTys;
746      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
747        if (Type *T = getTypeByID(Record[i]))
748          EltTys.push_back(T);
749        else
750          break;
751      }
752      if (EltTys.size() != Record.size()-1)
753        return Error("invalid STRUCT type record");
754      Res->setBody(EltTys, Record[0]);
755      ResultTy = Res;
756      break;
757    }
758    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
759      if (Record.size() != 1)
760        return Error("Invalid OPAQUE type record");
761
762      if (NumRecords >= TypeList.size())
763        return Error("invalid TYPE table");
764
765      // Check to see if this was forward referenced, if so fill in the temp.
766      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
767      if (Res) {
768        Res->setName(TypeName);
769        TypeList[NumRecords] = 0;
770      } else  // Otherwise, create a new struct with no body.
771        Res = StructType::create(Context, TypeName);
772      TypeName.clear();
773      ResultTy = Res;
774      break;
775    }
776    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
777      if (Record.size() < 2)
778        return Error("Invalid ARRAY type record");
779      if ((ResultTy = getTypeByID(Record[1])))
780        ResultTy = ArrayType::get(ResultTy, Record[0]);
781      else
782        return Error("Invalid ARRAY type element");
783      break;
784    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
785      if (Record.size() < 2)
786        return Error("Invalid VECTOR type record");
787      if ((ResultTy = getTypeByID(Record[1])))
788        ResultTy = VectorType::get(ResultTy, Record[0]);
789      else
790        return Error("Invalid ARRAY type element");
791      break;
792    }
793
794    if (NumRecords >= TypeList.size())
795      return Error("invalid TYPE table");
796    assert(ResultTy && "Didn't read a type?");
797    assert(TypeList[NumRecords] == 0 && "Already read type?");
798    TypeList[NumRecords++] = ResultTy;
799  }
800}
801
802bool BitcodeReader::ParseValueSymbolTable() {
803  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
804    return Error("Malformed block record");
805
806  SmallVector<uint64_t, 64> Record;
807
808  // Read all the records for this value table.
809  SmallString<128> ValueName;
810  while (1) {
811    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
812
813    switch (Entry.Kind) {
814    case BitstreamEntry::SubBlock: // Handled for us already.
815    case BitstreamEntry::Error:
816      return Error("malformed value symbol table block");
817    case BitstreamEntry::EndBlock:
818      return false;
819    case BitstreamEntry::Record:
820      // The interesting case.
821      break;
822    }
823
824    // Read a record.
825    Record.clear();
826    switch (Stream.readRecord(Entry.ID, Record)) {
827    default:  // Default behavior: unknown type.
828      break;
829    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
830      if (ConvertToString(Record, 1, ValueName))
831        return Error("Invalid VST_ENTRY record");
832      unsigned ValueID = Record[0];
833      if (ValueID >= ValueList.size())
834        return Error("Invalid Value ID in VST_ENTRY record");
835      Value *V = ValueList[ValueID];
836
837      V->setName(StringRef(ValueName.data(), ValueName.size()));
838      ValueName.clear();
839      break;
840    }
841    case bitc::VST_CODE_BBENTRY: {
842      if (ConvertToString(Record, 1, ValueName))
843        return Error("Invalid VST_BBENTRY record");
844      BasicBlock *BB = getBasicBlock(Record[0]);
845      if (BB == 0)
846        return Error("Invalid BB ID in VST_BBENTRY record");
847
848      BB->setName(StringRef(ValueName.data(), ValueName.size()));
849      ValueName.clear();
850      break;
851    }
852    }
853  }
854}
855
856bool BitcodeReader::ParseMetadata() {
857  unsigned NextMDValueNo = MDValueList.size();
858
859  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
860    return Error("Malformed block record");
861
862  SmallVector<uint64_t, 64> Record;
863
864  // Read all the records.
865  while (1) {
866    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
867
868    switch (Entry.Kind) {
869    case BitstreamEntry::SubBlock: // Handled for us already.
870    case BitstreamEntry::Error:
871      Error("malformed metadata block");
872      return true;
873    case BitstreamEntry::EndBlock:
874      return false;
875    case BitstreamEntry::Record:
876      // The interesting case.
877      break;
878    }
879
880    bool IsFunctionLocal = false;
881    // Read a record.
882    Record.clear();
883    unsigned Code = Stream.readRecord(Entry.ID, Record);
884    switch (Code) {
885    default:  // Default behavior: ignore.
886      break;
887    case bitc::METADATA_NAME: {
888      // Read name of the named metadata.
889      SmallString<8> Name(Record.begin(), Record.end());
890      Record.clear();
891      Code = Stream.ReadCode();
892
893      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
894      unsigned NextBitCode = Stream.readRecord(Code, Record);
895      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
896
897      // Read named metadata elements.
898      unsigned Size = Record.size();
899      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
900      for (unsigned i = 0; i != Size; ++i) {
901        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
902        if (MD == 0)
903          return Error("Malformed metadata record");
904        NMD->addOperand(MD);
905      }
906      break;
907    }
908    case bitc::METADATA_FN_NODE:
909      IsFunctionLocal = true;
910      // fall-through
911    case bitc::METADATA_NODE: {
912      if (Record.size() % 2 == 1)
913        return Error("Invalid METADATA_NODE record");
914
915      unsigned Size = Record.size();
916      SmallVector<Value*, 8> Elts;
917      for (unsigned i = 0; i != Size; i += 2) {
918        Type *Ty = getTypeByID(Record[i]);
919        if (!Ty) return Error("Invalid METADATA_NODE record");
920        if (Ty->isMetadataTy())
921          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
922        else if (!Ty->isVoidTy())
923          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
924        else
925          Elts.push_back(NULL);
926      }
927      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
928      IsFunctionLocal = false;
929      MDValueList.AssignValue(V, NextMDValueNo++);
930      break;
931    }
932    case bitc::METADATA_STRING: {
933      SmallString<8> String(Record.begin(), Record.end());
934      Value *V = MDString::get(Context, String);
935      MDValueList.AssignValue(V, NextMDValueNo++);
936      break;
937    }
938    case bitc::METADATA_KIND: {
939      if (Record.size() < 2)
940        return Error("Invalid METADATA_KIND record");
941
942      unsigned Kind = Record[0];
943      SmallString<8> Name(Record.begin()+1, Record.end());
944
945      unsigned NewKind = TheModule->getMDKindID(Name.str());
946      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
947        return Error("Conflicting METADATA_KIND records");
948      break;
949    }
950    }
951  }
952}
953
954/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
955/// the LSB for dense VBR encoding.
956uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
957  if ((V & 1) == 0)
958    return V >> 1;
959  if (V != 1)
960    return -(V >> 1);
961  // There is no such thing as -0 with integers.  "-0" really means MININT.
962  return 1ULL << 63;
963}
964
965/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
966/// values and aliases that we can.
967bool BitcodeReader::ResolveGlobalAndAliasInits() {
968  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
969  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
970
971  GlobalInitWorklist.swap(GlobalInits);
972  AliasInitWorklist.swap(AliasInits);
973
974  while (!GlobalInitWorklist.empty()) {
975    unsigned ValID = GlobalInitWorklist.back().second;
976    if (ValID >= ValueList.size()) {
977      // Not ready to resolve this yet, it requires something later in the file.
978      GlobalInits.push_back(GlobalInitWorklist.back());
979    } else {
980      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
981        GlobalInitWorklist.back().first->setInitializer(C);
982      else
983        return Error("Global variable initializer is not a constant!");
984    }
985    GlobalInitWorklist.pop_back();
986  }
987
988  while (!AliasInitWorklist.empty()) {
989    unsigned ValID = AliasInitWorklist.back().second;
990    if (ValID >= ValueList.size()) {
991      AliasInits.push_back(AliasInitWorklist.back());
992    } else {
993      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
994        AliasInitWorklist.back().first->setAliasee(C);
995      else
996        return Error("Alias initializer is not a constant!");
997    }
998    AliasInitWorklist.pop_back();
999  }
1000  return false;
1001}
1002
1003static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1004  SmallVector<uint64_t, 8> Words(Vals.size());
1005  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1006                 BitcodeReader::decodeSignRotatedValue);
1007
1008  return APInt(TypeBits, Words);
1009}
1010
1011bool BitcodeReader::ParseConstants() {
1012  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1013    return Error("Malformed block record");
1014
1015  SmallVector<uint64_t, 64> Record;
1016
1017  // Read all the records for this value table.
1018  Type *CurTy = Type::getInt32Ty(Context);
1019  unsigned NextCstNo = ValueList.size();
1020  while (1) {
1021    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1022
1023    switch (Entry.Kind) {
1024    case BitstreamEntry::SubBlock: // Handled for us already.
1025    case BitstreamEntry::Error:
1026      return Error("malformed block record in AST file");
1027    case BitstreamEntry::EndBlock:
1028      if (NextCstNo != ValueList.size())
1029        return Error("Invalid constant reference!");
1030
1031      // Once all the constants have been read, go through and resolve forward
1032      // references.
1033      ValueList.ResolveConstantForwardRefs();
1034      return false;
1035    case BitstreamEntry::Record:
1036      // The interesting case.
1037      break;
1038    }
1039
1040    // Read a record.
1041    Record.clear();
1042    Value *V = 0;
1043    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1044    switch (BitCode) {
1045    default:  // Default behavior: unknown constant
1046    case bitc::CST_CODE_UNDEF:     // UNDEF
1047      V = UndefValue::get(CurTy);
1048      break;
1049    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1050      if (Record.empty())
1051        return Error("Malformed CST_SETTYPE record");
1052      if (Record[0] >= TypeList.size())
1053        return Error("Invalid Type ID in CST_SETTYPE record");
1054      CurTy = TypeList[Record[0]];
1055      continue;  // Skip the ValueList manipulation.
1056    case bitc::CST_CODE_NULL:      // NULL
1057      V = Constant::getNullValue(CurTy);
1058      break;
1059    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1060      if (!CurTy->isIntegerTy() || Record.empty())
1061        return Error("Invalid CST_INTEGER record");
1062      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1063      break;
1064    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1065      if (!CurTy->isIntegerTy() || Record.empty())
1066        return Error("Invalid WIDE_INTEGER record");
1067
1068      APInt VInt = ReadWideAPInt(Record,
1069                                 cast<IntegerType>(CurTy)->getBitWidth());
1070      V = ConstantInt::get(Context, VInt);
1071
1072      break;
1073    }
1074    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1075      if (Record.empty())
1076        return Error("Invalid FLOAT record");
1077      if (CurTy->isHalfTy())
1078        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1079                                             APInt(16, (uint16_t)Record[0])));
1080      else if (CurTy->isFloatTy())
1081        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1082                                             APInt(32, (uint32_t)Record[0])));
1083      else if (CurTy->isDoubleTy())
1084        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1085                                             APInt(64, Record[0])));
1086      else if (CurTy->isX86_FP80Ty()) {
1087        // Bits are not stored the same way as a normal i80 APInt, compensate.
1088        uint64_t Rearrange[2];
1089        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1090        Rearrange[1] = Record[0] >> 48;
1091        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1092                                             APInt(80, Rearrange)));
1093      } else if (CurTy->isFP128Ty())
1094        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1095                                             APInt(128, Record)));
1096      else if (CurTy->isPPC_FP128Ty())
1097        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1098                                             APInt(128, Record)));
1099      else
1100        V = UndefValue::get(CurTy);
1101      break;
1102    }
1103
1104    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1105      if (Record.empty())
1106        return Error("Invalid CST_AGGREGATE record");
1107
1108      unsigned Size = Record.size();
1109      SmallVector<Constant*, 16> Elts;
1110
1111      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1112        for (unsigned i = 0; i != Size; ++i)
1113          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1114                                                     STy->getElementType(i)));
1115        V = ConstantStruct::get(STy, Elts);
1116      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1117        Type *EltTy = ATy->getElementType();
1118        for (unsigned i = 0; i != Size; ++i)
1119          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1120        V = ConstantArray::get(ATy, Elts);
1121      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1122        Type *EltTy = VTy->getElementType();
1123        for (unsigned i = 0; i != Size; ++i)
1124          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1125        V = ConstantVector::get(Elts);
1126      } else {
1127        V = UndefValue::get(CurTy);
1128      }
1129      break;
1130    }
1131    case bitc::CST_CODE_STRING:    // STRING: [values]
1132    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1133      if (Record.empty())
1134        return Error("Invalid CST_STRING record");
1135
1136      SmallString<16> Elts(Record.begin(), Record.end());
1137      V = ConstantDataArray::getString(Context, Elts,
1138                                       BitCode == bitc::CST_CODE_CSTRING);
1139      break;
1140    }
1141    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1142      if (Record.empty())
1143        return Error("Invalid CST_DATA record");
1144
1145      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1146      unsigned Size = Record.size();
1147
1148      if (EltTy->isIntegerTy(8)) {
1149        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1150        if (isa<VectorType>(CurTy))
1151          V = ConstantDataVector::get(Context, Elts);
1152        else
1153          V = ConstantDataArray::get(Context, Elts);
1154      } else if (EltTy->isIntegerTy(16)) {
1155        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1156        if (isa<VectorType>(CurTy))
1157          V = ConstantDataVector::get(Context, Elts);
1158        else
1159          V = ConstantDataArray::get(Context, Elts);
1160      } else if (EltTy->isIntegerTy(32)) {
1161        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1162        if (isa<VectorType>(CurTy))
1163          V = ConstantDataVector::get(Context, Elts);
1164        else
1165          V = ConstantDataArray::get(Context, Elts);
1166      } else if (EltTy->isIntegerTy(64)) {
1167        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1168        if (isa<VectorType>(CurTy))
1169          V = ConstantDataVector::get(Context, Elts);
1170        else
1171          V = ConstantDataArray::get(Context, Elts);
1172      } else if (EltTy->isFloatTy()) {
1173        SmallVector<float, 16> Elts(Size);
1174        std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1175        if (isa<VectorType>(CurTy))
1176          V = ConstantDataVector::get(Context, Elts);
1177        else
1178          V = ConstantDataArray::get(Context, Elts);
1179      } else if (EltTy->isDoubleTy()) {
1180        SmallVector<double, 16> Elts(Size);
1181        std::transform(Record.begin(), Record.end(), Elts.begin(),
1182                       BitsToDouble);
1183        if (isa<VectorType>(CurTy))
1184          V = ConstantDataVector::get(Context, Elts);
1185        else
1186          V = ConstantDataArray::get(Context, Elts);
1187      } else {
1188        return Error("Unknown element type in CE_DATA");
1189      }
1190      break;
1191    }
1192
1193    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1194      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1195      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1196      if (Opc < 0) {
1197        V = UndefValue::get(CurTy);  // Unknown binop.
1198      } else {
1199        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1200        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1201        unsigned Flags = 0;
1202        if (Record.size() >= 4) {
1203          if (Opc == Instruction::Add ||
1204              Opc == Instruction::Sub ||
1205              Opc == Instruction::Mul ||
1206              Opc == Instruction::Shl) {
1207            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1208              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1209            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1210              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1211          } else if (Opc == Instruction::SDiv ||
1212                     Opc == Instruction::UDiv ||
1213                     Opc == Instruction::LShr ||
1214                     Opc == Instruction::AShr) {
1215            if (Record[3] & (1 << bitc::PEO_EXACT))
1216              Flags |= SDivOperator::IsExact;
1217          }
1218        }
1219        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1220      }
1221      break;
1222    }
1223    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1224      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1225      int Opc = GetDecodedCastOpcode(Record[0]);
1226      if (Opc < 0) {
1227        V = UndefValue::get(CurTy);  // Unknown cast.
1228      } else {
1229        Type *OpTy = getTypeByID(Record[1]);
1230        if (!OpTy) return Error("Invalid CE_CAST record");
1231        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1232        V = ConstantExpr::getCast(Opc, Op, CurTy);
1233      }
1234      break;
1235    }
1236    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1237    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1238      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1239      SmallVector<Constant*, 16> Elts;
1240      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1241        Type *ElTy = getTypeByID(Record[i]);
1242        if (!ElTy) return Error("Invalid CE_GEP record");
1243        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1244      }
1245      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1246      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1247                                         BitCode ==
1248                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1249      break;
1250    }
1251    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1252      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1253      V = ConstantExpr::getSelect(
1254                          ValueList.getConstantFwdRef(Record[0],
1255                                                      Type::getInt1Ty(Context)),
1256                          ValueList.getConstantFwdRef(Record[1],CurTy),
1257                          ValueList.getConstantFwdRef(Record[2],CurTy));
1258      break;
1259    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1260      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1261      VectorType *OpTy =
1262        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1263      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1264      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1265      Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
1266                                                  Type::getInt32Ty(Context));
1267      V = ConstantExpr::getExtractElement(Op0, Op1);
1268      break;
1269    }
1270    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1271      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1272      if (Record.size() < 3 || OpTy == 0)
1273        return Error("Invalid CE_INSERTELT record");
1274      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1275      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1276                                                  OpTy->getElementType());
1277      Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
1278                                                  Type::getInt32Ty(Context));
1279      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1280      break;
1281    }
1282    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1283      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1284      if (Record.size() < 3 || OpTy == 0)
1285        return Error("Invalid CE_SHUFFLEVEC record");
1286      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1287      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1288      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1289                                                 OpTy->getNumElements());
1290      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1291      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1292      break;
1293    }
1294    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1295      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1296      VectorType *OpTy =
1297        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1298      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1299        return Error("Invalid CE_SHUFVEC_EX record");
1300      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1301      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1302      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1303                                                 RTy->getNumElements());
1304      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1305      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1306      break;
1307    }
1308    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1309      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1310      Type *OpTy = getTypeByID(Record[0]);
1311      if (OpTy == 0) return Error("Invalid CE_CMP record");
1312      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1313      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1314
1315      if (OpTy->isFPOrFPVectorTy())
1316        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1317      else
1318        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1319      break;
1320    }
1321    // This maintains backward compatibility, pre-asm dialect keywords.
1322    // FIXME: Remove with the 4.0 release.
1323    case bitc::CST_CODE_INLINEASM_OLD: {
1324      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1325      std::string AsmStr, ConstrStr;
1326      bool HasSideEffects = Record[0] & 1;
1327      bool IsAlignStack = Record[0] >> 1;
1328      unsigned AsmStrSize = Record[1];
1329      if (2+AsmStrSize >= Record.size())
1330        return Error("Invalid INLINEASM record");
1331      unsigned ConstStrSize = Record[2+AsmStrSize];
1332      if (3+AsmStrSize+ConstStrSize > Record.size())
1333        return Error("Invalid INLINEASM record");
1334
1335      for (unsigned i = 0; i != AsmStrSize; ++i)
1336        AsmStr += (char)Record[2+i];
1337      for (unsigned i = 0; i != ConstStrSize; ++i)
1338        ConstrStr += (char)Record[3+AsmStrSize+i];
1339      PointerType *PTy = cast<PointerType>(CurTy);
1340      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1341                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1342      break;
1343    }
1344    // This version adds support for the asm dialect keywords (e.g.,
1345    // inteldialect).
1346    case bitc::CST_CODE_INLINEASM: {
1347      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1348      std::string AsmStr, ConstrStr;
1349      bool HasSideEffects = Record[0] & 1;
1350      bool IsAlignStack = (Record[0] >> 1) & 1;
1351      unsigned AsmDialect = Record[0] >> 2;
1352      unsigned AsmStrSize = Record[1];
1353      if (2+AsmStrSize >= Record.size())
1354        return Error("Invalid INLINEASM record");
1355      unsigned ConstStrSize = Record[2+AsmStrSize];
1356      if (3+AsmStrSize+ConstStrSize > Record.size())
1357        return Error("Invalid INLINEASM record");
1358
1359      for (unsigned i = 0; i != AsmStrSize; ++i)
1360        AsmStr += (char)Record[2+i];
1361      for (unsigned i = 0; i != ConstStrSize; ++i)
1362        ConstrStr += (char)Record[3+AsmStrSize+i];
1363      PointerType *PTy = cast<PointerType>(CurTy);
1364      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1365                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1366                         InlineAsm::AsmDialect(AsmDialect));
1367      break;
1368    }
1369    case bitc::CST_CODE_BLOCKADDRESS:{
1370      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1371      Type *FnTy = getTypeByID(Record[0]);
1372      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1373      Function *Fn =
1374        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1375      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1376
1377      // If the function is already parsed we can insert the block address right
1378      // away.
1379      if (!Fn->empty()) {
1380        Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1381        for (size_t I = 0, E = Record[2]; I != E; ++I) {
1382          if (BBI == BBE)
1383            return Error("Invalid blockaddress block #");
1384          ++BBI;
1385        }
1386        V = BlockAddress::get(Fn, BBI);
1387      } else {
1388        // Otherwise insert a placeholder and remember it so it can be inserted
1389        // when the function is parsed.
1390        GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1391                                                    Type::getInt8Ty(Context),
1392                                            false, GlobalValue::InternalLinkage,
1393                                                    0, "");
1394        BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1395        V = FwdRef;
1396      }
1397      break;
1398    }
1399    }
1400
1401    ValueList.AssignValue(V, NextCstNo);
1402    ++NextCstNo;
1403  }
1404}
1405
1406bool BitcodeReader::ParseUseLists() {
1407  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1408    return Error("Malformed block record");
1409
1410  SmallVector<uint64_t, 64> Record;
1411
1412  // Read all the records.
1413  while (1) {
1414    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1415
1416    switch (Entry.Kind) {
1417    case BitstreamEntry::SubBlock: // Handled for us already.
1418    case BitstreamEntry::Error:
1419      return Error("malformed use list block");
1420    case BitstreamEntry::EndBlock:
1421      return false;
1422    case BitstreamEntry::Record:
1423      // The interesting case.
1424      break;
1425    }
1426
1427    // Read a use list record.
1428    Record.clear();
1429    switch (Stream.readRecord(Entry.ID, Record)) {
1430    default:  // Default behavior: unknown type.
1431      break;
1432    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1433      unsigned RecordLength = Record.size();
1434      if (RecordLength < 1)
1435        return Error ("Invalid UseList reader!");
1436      UseListRecords.push_back(Record);
1437      break;
1438    }
1439    }
1440  }
1441}
1442
1443/// RememberAndSkipFunctionBody - When we see the block for a function body,
1444/// remember where it is and then skip it.  This lets us lazily deserialize the
1445/// functions.
1446bool BitcodeReader::RememberAndSkipFunctionBody() {
1447  // Get the function we are talking about.
1448  if (FunctionsWithBodies.empty())
1449    return Error("Insufficient function protos");
1450
1451  Function *Fn = FunctionsWithBodies.back();
1452  FunctionsWithBodies.pop_back();
1453
1454  // Save the current stream state.
1455  uint64_t CurBit = Stream.GetCurrentBitNo();
1456  DeferredFunctionInfo[Fn] = CurBit;
1457
1458  // Skip over the function block for now.
1459  if (Stream.SkipBlock())
1460    return Error("Malformed block record");
1461  return false;
1462}
1463
1464bool BitcodeReader::GlobalCleanup() {
1465  // Patch the initializers for globals and aliases up.
1466  ResolveGlobalAndAliasInits();
1467  if (!GlobalInits.empty() || !AliasInits.empty())
1468    return Error("Malformed global initializer set");
1469
1470  // Look for intrinsic functions which need to be upgraded at some point
1471  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1472       FI != FE; ++FI) {
1473    Function *NewFn;
1474    if (UpgradeIntrinsicFunction(FI, NewFn))
1475      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1476  }
1477
1478  // Look for global variables which need to be renamed.
1479  for (Module::global_iterator
1480         GI = TheModule->global_begin(), GE = TheModule->global_end();
1481       GI != GE; ++GI)
1482    UpgradeGlobalVariable(GI);
1483  // Force deallocation of memory for these vectors to favor the client that
1484  // want lazy deserialization.
1485  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1486  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1487  return false;
1488}
1489
1490bool BitcodeReader::ParseModule(bool Resume) {
1491  if (Resume)
1492    Stream.JumpToBit(NextUnreadBit);
1493  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1494    return Error("Malformed block record");
1495
1496  SmallVector<uint64_t, 64> Record;
1497  std::vector<std::string> SectionTable;
1498  std::vector<std::string> GCTable;
1499
1500  // Read all the records for this module.
1501  while (1) {
1502    BitstreamEntry Entry = Stream.advance();
1503
1504    switch (Entry.Kind) {
1505    case BitstreamEntry::Error:
1506      Error("malformed module block");
1507      return true;
1508    case BitstreamEntry::EndBlock:
1509      return GlobalCleanup();
1510
1511    case BitstreamEntry::SubBlock:
1512      switch (Entry.ID) {
1513      default:  // Skip unknown content.
1514        if (Stream.SkipBlock())
1515          return Error("Malformed block record");
1516        break;
1517      case bitc::BLOCKINFO_BLOCK_ID:
1518        if (Stream.ReadBlockInfoBlock())
1519          return Error("Malformed BlockInfoBlock");
1520        break;
1521      case bitc::PARAMATTR_BLOCK_ID:
1522        if (ParseAttributeBlock())
1523          return true;
1524        break;
1525      case bitc::PARAMATTR_GROUP_BLOCK_ID:
1526        if (ParseAttributeGroupBlock())
1527          return true;
1528        break;
1529      case bitc::TYPE_BLOCK_ID_NEW:
1530        if (ParseTypeTable())
1531          return true;
1532        break;
1533      case bitc::VALUE_SYMTAB_BLOCK_ID:
1534        if (ParseValueSymbolTable())
1535          return true;
1536        SeenValueSymbolTable = true;
1537        break;
1538      case bitc::CONSTANTS_BLOCK_ID:
1539        if (ParseConstants() || ResolveGlobalAndAliasInits())
1540          return true;
1541        break;
1542      case bitc::METADATA_BLOCK_ID:
1543        if (ParseMetadata())
1544          return true;
1545        break;
1546      case bitc::FUNCTION_BLOCK_ID:
1547        // If this is the first function body we've seen, reverse the
1548        // FunctionsWithBodies list.
1549        if (!SeenFirstFunctionBody) {
1550          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1551          if (GlobalCleanup())
1552            return true;
1553          SeenFirstFunctionBody = true;
1554        }
1555
1556        if (RememberAndSkipFunctionBody())
1557          return true;
1558        // For streaming bitcode, suspend parsing when we reach the function
1559        // bodies. Subsequent materialization calls will resume it when
1560        // necessary. For streaming, the function bodies must be at the end of
1561        // the bitcode. If the bitcode file is old, the symbol table will be
1562        // at the end instead and will not have been seen yet. In this case,
1563        // just finish the parse now.
1564        if (LazyStreamer && SeenValueSymbolTable) {
1565          NextUnreadBit = Stream.GetCurrentBitNo();
1566          return false;
1567        }
1568        break;
1569      case bitc::USELIST_BLOCK_ID:
1570        if (ParseUseLists())
1571          return true;
1572        break;
1573      }
1574      continue;
1575
1576    case BitstreamEntry::Record:
1577      // The interesting case.
1578      break;
1579    }
1580
1581
1582    // Read a record.
1583    switch (Stream.readRecord(Entry.ID, Record)) {
1584    default: break;  // Default behavior, ignore unknown content.
1585    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1586      if (Record.size() < 1)
1587        return Error("Malformed MODULE_CODE_VERSION");
1588      // Only version #0 and #1 are supported so far.
1589      unsigned module_version = Record[0];
1590      switch (module_version) {
1591        default: return Error("Unknown bitstream version!");
1592        case 0:
1593          UseRelativeIDs = false;
1594          break;
1595        case 1:
1596          UseRelativeIDs = true;
1597          break;
1598      }
1599      break;
1600    }
1601    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1602      std::string S;
1603      if (ConvertToString(Record, 0, S))
1604        return Error("Invalid MODULE_CODE_TRIPLE record");
1605      TheModule->setTargetTriple(S);
1606      break;
1607    }
1608    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1609      std::string S;
1610      if (ConvertToString(Record, 0, S))
1611        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1612      TheModule->setDataLayout(S);
1613      break;
1614    }
1615    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1616      std::string S;
1617      if (ConvertToString(Record, 0, S))
1618        return Error("Invalid MODULE_CODE_ASM record");
1619      TheModule->setModuleInlineAsm(S);
1620      break;
1621    }
1622    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1623      // FIXME: Remove in 4.0.
1624      std::string S;
1625      if (ConvertToString(Record, 0, S))
1626        return Error("Invalid MODULE_CODE_DEPLIB record");
1627      // Ignore value.
1628      break;
1629    }
1630    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1631      std::string S;
1632      if (ConvertToString(Record, 0, S))
1633        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1634      SectionTable.push_back(S);
1635      break;
1636    }
1637    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1638      std::string S;
1639      if (ConvertToString(Record, 0, S))
1640        return Error("Invalid MODULE_CODE_GCNAME record");
1641      GCTable.push_back(S);
1642      break;
1643    }
1644    // GLOBALVAR: [pointer type, isconst, initid,
1645    //             linkage, alignment, section, visibility, threadlocal,
1646    //             unnamed_addr]
1647    case bitc::MODULE_CODE_GLOBALVAR: {
1648      if (Record.size() < 6)
1649        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1650      Type *Ty = getTypeByID(Record[0]);
1651      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1652      if (!Ty->isPointerTy())
1653        return Error("Global not a pointer type!");
1654      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1655      Ty = cast<PointerType>(Ty)->getElementType();
1656
1657      bool isConstant = Record[1];
1658      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1659      unsigned Alignment = (1 << Record[4]) >> 1;
1660      std::string Section;
1661      if (Record[5]) {
1662        if (Record[5]-1 >= SectionTable.size())
1663          return Error("Invalid section ID");
1664        Section = SectionTable[Record[5]-1];
1665      }
1666      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1667      if (Record.size() > 6)
1668        Visibility = GetDecodedVisibility(Record[6]);
1669
1670      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1671      if (Record.size() > 7)
1672        TLM = GetDecodedThreadLocalMode(Record[7]);
1673
1674      bool UnnamedAddr = false;
1675      if (Record.size() > 8)
1676        UnnamedAddr = Record[8];
1677
1678      bool ExternallyInitialized = false;
1679      if (Record.size() > 9)
1680        ExternallyInitialized = Record[9];
1681
1682      GlobalVariable *NewGV =
1683        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1684                           TLM, AddressSpace, ExternallyInitialized);
1685      NewGV->setAlignment(Alignment);
1686      if (!Section.empty())
1687        NewGV->setSection(Section);
1688      NewGV->setVisibility(Visibility);
1689      NewGV->setUnnamedAddr(UnnamedAddr);
1690
1691      ValueList.push_back(NewGV);
1692
1693      // Remember which value to use for the global initializer.
1694      if (unsigned InitID = Record[2])
1695        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1696      break;
1697    }
1698    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1699    //             alignment, section, visibility, gc, unnamed_addr]
1700    case bitc::MODULE_CODE_FUNCTION: {
1701      if (Record.size() < 8)
1702        return Error("Invalid MODULE_CODE_FUNCTION record");
1703      Type *Ty = getTypeByID(Record[0]);
1704      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1705      if (!Ty->isPointerTy())
1706        return Error("Function not a pointer type!");
1707      FunctionType *FTy =
1708        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1709      if (!FTy)
1710        return Error("Function not a pointer to function type!");
1711
1712      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1713                                        "", TheModule);
1714
1715      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1716      bool isProto = Record[2];
1717      Func->setLinkage(GetDecodedLinkage(Record[3]));
1718      Func->setAttributes(getAttributes(Record[4]));
1719
1720      Func->setAlignment((1 << Record[5]) >> 1);
1721      if (Record[6]) {
1722        if (Record[6]-1 >= SectionTable.size())
1723          return Error("Invalid section ID");
1724        Func->setSection(SectionTable[Record[6]-1]);
1725      }
1726      Func->setVisibility(GetDecodedVisibility(Record[7]));
1727      if (Record.size() > 8 && Record[8]) {
1728        if (Record[8]-1 > GCTable.size())
1729          return Error("Invalid GC ID");
1730        Func->setGC(GCTable[Record[8]-1].c_str());
1731      }
1732      bool UnnamedAddr = false;
1733      if (Record.size() > 9)
1734        UnnamedAddr = Record[9];
1735      Func->setUnnamedAddr(UnnamedAddr);
1736      ValueList.push_back(Func);
1737
1738      // If this is a function with a body, remember the prototype we are
1739      // creating now, so that we can match up the body with them later.
1740      if (!isProto) {
1741        FunctionsWithBodies.push_back(Func);
1742        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1743      }
1744      break;
1745    }
1746    // ALIAS: [alias type, aliasee val#, linkage]
1747    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1748    case bitc::MODULE_CODE_ALIAS: {
1749      if (Record.size() < 3)
1750        return Error("Invalid MODULE_ALIAS record");
1751      Type *Ty = getTypeByID(Record[0]);
1752      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1753      if (!Ty->isPointerTy())
1754        return Error("Function not a pointer type!");
1755
1756      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1757                                           "", 0, TheModule);
1758      // Old bitcode files didn't have visibility field.
1759      if (Record.size() > 3)
1760        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1761      ValueList.push_back(NewGA);
1762      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1763      break;
1764    }
1765    /// MODULE_CODE_PURGEVALS: [numvals]
1766    case bitc::MODULE_CODE_PURGEVALS:
1767      // Trim down the value list to the specified size.
1768      if (Record.size() < 1 || Record[0] > ValueList.size())
1769        return Error("Invalid MODULE_PURGEVALS record");
1770      ValueList.shrinkTo(Record[0]);
1771      break;
1772    }
1773    Record.clear();
1774  }
1775}
1776
1777bool BitcodeReader::ParseBitcodeInto(Module *M) {
1778  TheModule = 0;
1779
1780  if (InitStream()) return true;
1781
1782  // Sniff for the signature.
1783  if (Stream.Read(8) != 'B' ||
1784      Stream.Read(8) != 'C' ||
1785      Stream.Read(4) != 0x0 ||
1786      Stream.Read(4) != 0xC ||
1787      Stream.Read(4) != 0xE ||
1788      Stream.Read(4) != 0xD)
1789    return Error("Invalid bitcode signature");
1790
1791  // We expect a number of well-defined blocks, though we don't necessarily
1792  // need to understand them all.
1793  while (1) {
1794    if (Stream.AtEndOfStream())
1795      return false;
1796
1797    BitstreamEntry Entry =
1798      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1799
1800    switch (Entry.Kind) {
1801    case BitstreamEntry::Error:
1802      Error("malformed module file");
1803      return true;
1804    case BitstreamEntry::EndBlock:
1805      return false;
1806
1807    case BitstreamEntry::SubBlock:
1808      switch (Entry.ID) {
1809      case bitc::BLOCKINFO_BLOCK_ID:
1810        if (Stream.ReadBlockInfoBlock())
1811          return Error("Malformed BlockInfoBlock");
1812        break;
1813      case bitc::MODULE_BLOCK_ID:
1814        // Reject multiple MODULE_BLOCK's in a single bitstream.
1815        if (TheModule)
1816          return Error("Multiple MODULE_BLOCKs in same stream");
1817        TheModule = M;
1818        if (ParseModule(false))
1819          return true;
1820        if (LazyStreamer) return false;
1821        break;
1822      default:
1823        if (Stream.SkipBlock())
1824          return Error("Malformed block record");
1825        break;
1826      }
1827      continue;
1828    case BitstreamEntry::Record:
1829      // There should be no records in the top-level of blocks.
1830
1831      // The ranlib in Xcode 4 will align archive members by appending newlines
1832      // to the end of them. If this file size is a multiple of 4 but not 8, we
1833      // have to read and ignore these final 4 bytes :-(
1834      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
1835          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1836          Stream.AtEndOfStream())
1837        return false;
1838
1839      return Error("Invalid record at top-level");
1840    }
1841  }
1842}
1843
1844bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1845  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1846    return Error("Malformed block record");
1847
1848  SmallVector<uint64_t, 64> Record;
1849
1850  // Read all the records for this module.
1851  while (1) {
1852    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1853
1854    switch (Entry.Kind) {
1855    case BitstreamEntry::SubBlock: // Handled for us already.
1856    case BitstreamEntry::Error:
1857      return Error("malformed module block");
1858    case BitstreamEntry::EndBlock:
1859      return false;
1860    case BitstreamEntry::Record:
1861      // The interesting case.
1862      break;
1863    }
1864
1865    // Read a record.
1866    switch (Stream.readRecord(Entry.ID, Record)) {
1867    default: break;  // Default behavior, ignore unknown content.
1868    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1869      std::string S;
1870      if (ConvertToString(Record, 0, S))
1871        return Error("Invalid MODULE_CODE_TRIPLE record");
1872      Triple = S;
1873      break;
1874    }
1875    }
1876    Record.clear();
1877  }
1878}
1879
1880bool BitcodeReader::ParseTriple(std::string &Triple) {
1881  if (InitStream()) return true;
1882
1883  // Sniff for the signature.
1884  if (Stream.Read(8) != 'B' ||
1885      Stream.Read(8) != 'C' ||
1886      Stream.Read(4) != 0x0 ||
1887      Stream.Read(4) != 0xC ||
1888      Stream.Read(4) != 0xE ||
1889      Stream.Read(4) != 0xD)
1890    return Error("Invalid bitcode signature");
1891
1892  // We expect a number of well-defined blocks, though we don't necessarily
1893  // need to understand them all.
1894  while (1) {
1895    BitstreamEntry Entry = Stream.advance();
1896
1897    switch (Entry.Kind) {
1898    case BitstreamEntry::Error:
1899      Error("malformed module file");
1900      return true;
1901    case BitstreamEntry::EndBlock:
1902      return false;
1903
1904    case BitstreamEntry::SubBlock:
1905      if (Entry.ID == bitc::MODULE_BLOCK_ID)
1906        return ParseModuleTriple(Triple);
1907
1908      // Ignore other sub-blocks.
1909      if (Stream.SkipBlock()) {
1910        Error("malformed block record in AST file");
1911        return true;
1912      }
1913      continue;
1914
1915    case BitstreamEntry::Record:
1916      Stream.skipRecord(Entry.ID);
1917      continue;
1918    }
1919  }
1920}
1921
1922/// ParseMetadataAttachment - Parse metadata attachments.
1923bool BitcodeReader::ParseMetadataAttachment() {
1924  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1925    return Error("Malformed block record");
1926
1927  SmallVector<uint64_t, 64> Record;
1928  while (1) {
1929    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1930
1931    switch (Entry.Kind) {
1932    case BitstreamEntry::SubBlock: // Handled for us already.
1933    case BitstreamEntry::Error:
1934      return Error("malformed metadata block");
1935    case BitstreamEntry::EndBlock:
1936      return false;
1937    case BitstreamEntry::Record:
1938      // The interesting case.
1939      break;
1940    }
1941
1942    // Read a metadata attachment record.
1943    Record.clear();
1944    switch (Stream.readRecord(Entry.ID, Record)) {
1945    default:  // Default behavior: ignore.
1946      break;
1947    case bitc::METADATA_ATTACHMENT: {
1948      unsigned RecordLength = Record.size();
1949      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1950        return Error ("Invalid METADATA_ATTACHMENT reader!");
1951      Instruction *Inst = InstructionList[Record[0]];
1952      for (unsigned i = 1; i != RecordLength; i = i+2) {
1953        unsigned Kind = Record[i];
1954        DenseMap<unsigned, unsigned>::iterator I =
1955          MDKindMap.find(Kind);
1956        if (I == MDKindMap.end())
1957          return Error("Invalid metadata kind ID");
1958        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1959        Inst->setMetadata(I->second, cast<MDNode>(Node));
1960      }
1961      break;
1962    }
1963    }
1964  }
1965}
1966
1967/// ParseFunctionBody - Lazily parse the specified function body block.
1968bool BitcodeReader::ParseFunctionBody(Function *F) {
1969  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1970    return Error("Malformed block record");
1971
1972  InstructionList.clear();
1973  unsigned ModuleValueListSize = ValueList.size();
1974  unsigned ModuleMDValueListSize = MDValueList.size();
1975
1976  // Add all the function arguments to the value table.
1977  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1978    ValueList.push_back(I);
1979
1980  unsigned NextValueNo = ValueList.size();
1981  BasicBlock *CurBB = 0;
1982  unsigned CurBBNo = 0;
1983
1984  DebugLoc LastLoc;
1985
1986  // Read all the records.
1987  SmallVector<uint64_t, 64> Record;
1988  while (1) {
1989    BitstreamEntry Entry = Stream.advance();
1990
1991    switch (Entry.Kind) {
1992    case BitstreamEntry::Error:
1993      return Error("Bitcode error in function block");
1994    case BitstreamEntry::EndBlock:
1995      goto OutOfRecordLoop;
1996
1997    case BitstreamEntry::SubBlock:
1998      switch (Entry.ID) {
1999      default:  // Skip unknown content.
2000        if (Stream.SkipBlock())
2001          return Error("Malformed block record");
2002        break;
2003      case bitc::CONSTANTS_BLOCK_ID:
2004        if (ParseConstants()) return true;
2005        NextValueNo = ValueList.size();
2006        break;
2007      case bitc::VALUE_SYMTAB_BLOCK_ID:
2008        if (ParseValueSymbolTable()) return true;
2009        break;
2010      case bitc::METADATA_ATTACHMENT_ID:
2011        if (ParseMetadataAttachment()) return true;
2012        break;
2013      case bitc::METADATA_BLOCK_ID:
2014        if (ParseMetadata()) return true;
2015        break;
2016      }
2017      continue;
2018
2019    case BitstreamEntry::Record:
2020      // The interesting case.
2021      break;
2022    }
2023
2024    // Read a record.
2025    Record.clear();
2026    Instruction *I = 0;
2027    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2028    switch (BitCode) {
2029    default: // Default behavior: reject
2030      return Error("Unknown instruction");
2031    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2032      if (Record.size() < 1 || Record[0] == 0)
2033        return Error("Invalid DECLAREBLOCKS record");
2034      // Create all the basic blocks for the function.
2035      FunctionBBs.resize(Record[0]);
2036      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2037        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2038      CurBB = FunctionBBs[0];
2039      continue;
2040
2041    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2042      // This record indicates that the last instruction is at the same
2043      // location as the previous instruction with a location.
2044      I = 0;
2045
2046      // Get the last instruction emitted.
2047      if (CurBB && !CurBB->empty())
2048        I = &CurBB->back();
2049      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2050               !FunctionBBs[CurBBNo-1]->empty())
2051        I = &FunctionBBs[CurBBNo-1]->back();
2052
2053      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2054      I->setDebugLoc(LastLoc);
2055      I = 0;
2056      continue;
2057
2058    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2059      I = 0;     // Get the last instruction emitted.
2060      if (CurBB && !CurBB->empty())
2061        I = &CurBB->back();
2062      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2063               !FunctionBBs[CurBBNo-1]->empty())
2064        I = &FunctionBBs[CurBBNo-1]->back();
2065      if (I == 0 || Record.size() < 4)
2066        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2067
2068      unsigned Line = Record[0], Col = Record[1];
2069      unsigned ScopeID = Record[2], IAID = Record[3];
2070
2071      MDNode *Scope = 0, *IA = 0;
2072      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2073      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2074      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2075      I->setDebugLoc(LastLoc);
2076      I = 0;
2077      continue;
2078    }
2079
2080    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2081      unsigned OpNum = 0;
2082      Value *LHS, *RHS;
2083      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2084          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2085          OpNum+1 > Record.size())
2086        return Error("Invalid BINOP record");
2087
2088      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2089      if (Opc == -1) return Error("Invalid BINOP record");
2090      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2091      InstructionList.push_back(I);
2092      if (OpNum < Record.size()) {
2093        if (Opc == Instruction::Add ||
2094            Opc == Instruction::Sub ||
2095            Opc == Instruction::Mul ||
2096            Opc == Instruction::Shl) {
2097          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2098            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2099          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2100            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2101        } else if (Opc == Instruction::SDiv ||
2102                   Opc == Instruction::UDiv ||
2103                   Opc == Instruction::LShr ||
2104                   Opc == Instruction::AShr) {
2105          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2106            cast<BinaryOperator>(I)->setIsExact(true);
2107        } else if (isa<FPMathOperator>(I)) {
2108          FastMathFlags FMF;
2109          if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2110            FMF.setUnsafeAlgebra();
2111          if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2112            FMF.setNoNaNs();
2113          if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2114            FMF.setNoInfs();
2115          if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2116            FMF.setNoSignedZeros();
2117          if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2118            FMF.setAllowReciprocal();
2119          if (FMF.any())
2120            I->setFastMathFlags(FMF);
2121        }
2122
2123      }
2124      break;
2125    }
2126    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2127      unsigned OpNum = 0;
2128      Value *Op;
2129      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2130          OpNum+2 != Record.size())
2131        return Error("Invalid CAST record");
2132
2133      Type *ResTy = getTypeByID(Record[OpNum]);
2134      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2135      if (Opc == -1 || ResTy == 0)
2136        return Error("Invalid CAST record");
2137      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2138      InstructionList.push_back(I);
2139      break;
2140    }
2141    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2142    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2143      unsigned OpNum = 0;
2144      Value *BasePtr;
2145      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2146        return Error("Invalid GEP record");
2147
2148      SmallVector<Value*, 16> GEPIdx;
2149      while (OpNum != Record.size()) {
2150        Value *Op;
2151        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2152          return Error("Invalid GEP record");
2153        GEPIdx.push_back(Op);
2154      }
2155
2156      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2157      InstructionList.push_back(I);
2158      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2159        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2160      break;
2161    }
2162
2163    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2164                                       // EXTRACTVAL: [opty, opval, n x indices]
2165      unsigned OpNum = 0;
2166      Value *Agg;
2167      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2168        return Error("Invalid EXTRACTVAL record");
2169
2170      SmallVector<unsigned, 4> EXTRACTVALIdx;
2171      for (unsigned RecSize = Record.size();
2172           OpNum != RecSize; ++OpNum) {
2173        uint64_t Index = Record[OpNum];
2174        if ((unsigned)Index != Index)
2175          return Error("Invalid EXTRACTVAL index");
2176        EXTRACTVALIdx.push_back((unsigned)Index);
2177      }
2178
2179      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2180      InstructionList.push_back(I);
2181      break;
2182    }
2183
2184    case bitc::FUNC_CODE_INST_INSERTVAL: {
2185                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2186      unsigned OpNum = 0;
2187      Value *Agg;
2188      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2189        return Error("Invalid INSERTVAL record");
2190      Value *Val;
2191      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2192        return Error("Invalid INSERTVAL record");
2193
2194      SmallVector<unsigned, 4> INSERTVALIdx;
2195      for (unsigned RecSize = Record.size();
2196           OpNum != RecSize; ++OpNum) {
2197        uint64_t Index = Record[OpNum];
2198        if ((unsigned)Index != Index)
2199          return Error("Invalid INSERTVAL index");
2200        INSERTVALIdx.push_back((unsigned)Index);
2201      }
2202
2203      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2204      InstructionList.push_back(I);
2205      break;
2206    }
2207
2208    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2209      // obsolete form of select
2210      // handles select i1 ... in old bitcode
2211      unsigned OpNum = 0;
2212      Value *TrueVal, *FalseVal, *Cond;
2213      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2214          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2215          popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2216        return Error("Invalid SELECT record");
2217
2218      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2219      InstructionList.push_back(I);
2220      break;
2221    }
2222
2223    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2224      // new form of select
2225      // handles select i1 or select [N x i1]
2226      unsigned OpNum = 0;
2227      Value *TrueVal, *FalseVal, *Cond;
2228      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2229          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2230          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2231        return Error("Invalid SELECT record");
2232
2233      // select condition can be either i1 or [N x i1]
2234      if (VectorType* vector_type =
2235          dyn_cast<VectorType>(Cond->getType())) {
2236        // expect <n x i1>
2237        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2238          return Error("Invalid SELECT condition type");
2239      } else {
2240        // expect i1
2241        if (Cond->getType() != Type::getInt1Ty(Context))
2242          return Error("Invalid SELECT condition type");
2243      }
2244
2245      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2246      InstructionList.push_back(I);
2247      break;
2248    }
2249
2250    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2251      unsigned OpNum = 0;
2252      Value *Vec, *Idx;
2253      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2254          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2255        return Error("Invalid EXTRACTELT record");
2256      I = ExtractElementInst::Create(Vec, Idx);
2257      InstructionList.push_back(I);
2258      break;
2259    }
2260
2261    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2262      unsigned OpNum = 0;
2263      Value *Vec, *Elt, *Idx;
2264      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2265          popValue(Record, OpNum, NextValueNo,
2266                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2267          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2268        return Error("Invalid INSERTELT record");
2269      I = InsertElementInst::Create(Vec, Elt, Idx);
2270      InstructionList.push_back(I);
2271      break;
2272    }
2273
2274    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2275      unsigned OpNum = 0;
2276      Value *Vec1, *Vec2, *Mask;
2277      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2278          popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2279        return Error("Invalid SHUFFLEVEC record");
2280
2281      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2282        return Error("Invalid SHUFFLEVEC record");
2283      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2284      InstructionList.push_back(I);
2285      break;
2286    }
2287
2288    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2289      // Old form of ICmp/FCmp returning bool
2290      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2291      // both legal on vectors but had different behaviour.
2292    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2293      // FCmp/ICmp returning bool or vector of bool
2294
2295      unsigned OpNum = 0;
2296      Value *LHS, *RHS;
2297      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2298          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2299          OpNum+1 != Record.size())
2300        return Error("Invalid CMP record");
2301
2302      if (LHS->getType()->isFPOrFPVectorTy())
2303        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2304      else
2305        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2306      InstructionList.push_back(I);
2307      break;
2308    }
2309
2310    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2311      {
2312        unsigned Size = Record.size();
2313        if (Size == 0) {
2314          I = ReturnInst::Create(Context);
2315          InstructionList.push_back(I);
2316          break;
2317        }
2318
2319        unsigned OpNum = 0;
2320        Value *Op = NULL;
2321        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2322          return Error("Invalid RET record");
2323        if (OpNum != Record.size())
2324          return Error("Invalid RET record");
2325
2326        I = ReturnInst::Create(Context, Op);
2327        InstructionList.push_back(I);
2328        break;
2329      }
2330    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2331      if (Record.size() != 1 && Record.size() != 3)
2332        return Error("Invalid BR record");
2333      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2334      if (TrueDest == 0)
2335        return Error("Invalid BR record");
2336
2337      if (Record.size() == 1) {
2338        I = BranchInst::Create(TrueDest);
2339        InstructionList.push_back(I);
2340      }
2341      else {
2342        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2343        Value *Cond = getValue(Record, 2, NextValueNo,
2344                               Type::getInt1Ty(Context));
2345        if (FalseDest == 0 || Cond == 0)
2346          return Error("Invalid BR record");
2347        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2348        InstructionList.push_back(I);
2349      }
2350      break;
2351    }
2352    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2353      // Check magic
2354      if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2355        // New SwitchInst format with case ranges.
2356
2357        Type *OpTy = getTypeByID(Record[1]);
2358        unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2359
2360        Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2361        BasicBlock *Default = getBasicBlock(Record[3]);
2362        if (OpTy == 0 || Cond == 0 || Default == 0)
2363          return Error("Invalid SWITCH record");
2364
2365        unsigned NumCases = Record[4];
2366
2367        SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2368        InstructionList.push_back(SI);
2369
2370        unsigned CurIdx = 5;
2371        for (unsigned i = 0; i != NumCases; ++i) {
2372          IntegersSubsetToBB CaseBuilder;
2373          unsigned NumItems = Record[CurIdx++];
2374          for (unsigned ci = 0; ci != NumItems; ++ci) {
2375            bool isSingleNumber = Record[CurIdx++];
2376
2377            APInt Low;
2378            unsigned ActiveWords = 1;
2379            if (ValueBitWidth > 64)
2380              ActiveWords = Record[CurIdx++];
2381            Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2382                                ValueBitWidth);
2383            CurIdx += ActiveWords;
2384
2385            if (!isSingleNumber) {
2386              ActiveWords = 1;
2387              if (ValueBitWidth > 64)
2388                ActiveWords = Record[CurIdx++];
2389              APInt High =
2390                  ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2391                                ValueBitWidth);
2392
2393              CaseBuilder.add(IntItem::fromType(OpTy, Low),
2394                              IntItem::fromType(OpTy, High));
2395              CurIdx += ActiveWords;
2396            } else
2397              CaseBuilder.add(IntItem::fromType(OpTy, Low));
2398          }
2399          BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2400          IntegersSubset Case = CaseBuilder.getCase();
2401          SI->addCase(Case, DestBB);
2402        }
2403        uint16_t Hash = SI->hash();
2404        if (Hash != (Record[0] & 0xFFFF))
2405          return Error("Invalid SWITCH record");
2406        I = SI;
2407        break;
2408      }
2409
2410      // Old SwitchInst format without case ranges.
2411
2412      if (Record.size() < 3 || (Record.size() & 1) == 0)
2413        return Error("Invalid SWITCH record");
2414      Type *OpTy = getTypeByID(Record[0]);
2415      Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2416      BasicBlock *Default = getBasicBlock(Record[2]);
2417      if (OpTy == 0 || Cond == 0 || Default == 0)
2418        return Error("Invalid SWITCH record");
2419      unsigned NumCases = (Record.size()-3)/2;
2420      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2421      InstructionList.push_back(SI);
2422      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2423        ConstantInt *CaseVal =
2424          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2425        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2426        if (CaseVal == 0 || DestBB == 0) {
2427          delete SI;
2428          return Error("Invalid SWITCH record!");
2429        }
2430        SI->addCase(CaseVal, DestBB);
2431      }
2432      I = SI;
2433      break;
2434    }
2435    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2436      if (Record.size() < 2)
2437        return Error("Invalid INDIRECTBR record");
2438      Type *OpTy = getTypeByID(Record[0]);
2439      Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2440      if (OpTy == 0 || Address == 0)
2441        return Error("Invalid INDIRECTBR record");
2442      unsigned NumDests = Record.size()-2;
2443      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2444      InstructionList.push_back(IBI);
2445      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2446        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2447          IBI->addDestination(DestBB);
2448        } else {
2449          delete IBI;
2450          return Error("Invalid INDIRECTBR record!");
2451        }
2452      }
2453      I = IBI;
2454      break;
2455    }
2456
2457    case bitc::FUNC_CODE_INST_INVOKE: {
2458      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2459      if (Record.size() < 4) return Error("Invalid INVOKE record");
2460      AttributeSet PAL = getAttributes(Record[0]);
2461      unsigned CCInfo = Record[1];
2462      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2463      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2464
2465      unsigned OpNum = 4;
2466      Value *Callee;
2467      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2468        return Error("Invalid INVOKE record");
2469
2470      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2471      FunctionType *FTy = !CalleeTy ? 0 :
2472        dyn_cast<FunctionType>(CalleeTy->getElementType());
2473
2474      // Check that the right number of fixed parameters are here.
2475      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2476          Record.size() < OpNum+FTy->getNumParams())
2477        return Error("Invalid INVOKE record");
2478
2479      SmallVector<Value*, 16> Ops;
2480      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2481        Ops.push_back(getValue(Record, OpNum, NextValueNo,
2482                               FTy->getParamType(i)));
2483        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2484      }
2485
2486      if (!FTy->isVarArg()) {
2487        if (Record.size() != OpNum)
2488          return Error("Invalid INVOKE record");
2489      } else {
2490        // Read type/value pairs for varargs params.
2491        while (OpNum != Record.size()) {
2492          Value *Op;
2493          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2494            return Error("Invalid INVOKE record");
2495          Ops.push_back(Op);
2496        }
2497      }
2498
2499      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2500      InstructionList.push_back(I);
2501      cast<InvokeInst>(I)->setCallingConv(
2502        static_cast<CallingConv::ID>(CCInfo));
2503      cast<InvokeInst>(I)->setAttributes(PAL);
2504      break;
2505    }
2506    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2507      unsigned Idx = 0;
2508      Value *Val = 0;
2509      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2510        return Error("Invalid RESUME record");
2511      I = ResumeInst::Create(Val);
2512      InstructionList.push_back(I);
2513      break;
2514    }
2515    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2516      I = new UnreachableInst(Context);
2517      InstructionList.push_back(I);
2518      break;
2519    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2520      if (Record.size() < 1 || ((Record.size()-1)&1))
2521        return Error("Invalid PHI record");
2522      Type *Ty = getTypeByID(Record[0]);
2523      if (!Ty) return Error("Invalid PHI record");
2524
2525      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2526      InstructionList.push_back(PN);
2527
2528      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2529        Value *V;
2530        // With the new function encoding, it is possible that operands have
2531        // negative IDs (for forward references).  Use a signed VBR
2532        // representation to keep the encoding small.
2533        if (UseRelativeIDs)
2534          V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2535        else
2536          V = getValue(Record, 1+i, NextValueNo, Ty);
2537        BasicBlock *BB = getBasicBlock(Record[2+i]);
2538        if (!V || !BB) return Error("Invalid PHI record");
2539        PN->addIncoming(V, BB);
2540      }
2541      I = PN;
2542      break;
2543    }
2544
2545    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2546      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2547      unsigned Idx = 0;
2548      if (Record.size() < 4)
2549        return Error("Invalid LANDINGPAD record");
2550      Type *Ty = getTypeByID(Record[Idx++]);
2551      if (!Ty) return Error("Invalid LANDINGPAD record");
2552      Value *PersFn = 0;
2553      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2554        return Error("Invalid LANDINGPAD record");
2555
2556      bool IsCleanup = !!Record[Idx++];
2557      unsigned NumClauses = Record[Idx++];
2558      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2559      LP->setCleanup(IsCleanup);
2560      for (unsigned J = 0; J != NumClauses; ++J) {
2561        LandingPadInst::ClauseType CT =
2562          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2563        Value *Val;
2564
2565        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2566          delete LP;
2567          return Error("Invalid LANDINGPAD record");
2568        }
2569
2570        assert((CT != LandingPadInst::Catch ||
2571                !isa<ArrayType>(Val->getType())) &&
2572               "Catch clause has a invalid type!");
2573        assert((CT != LandingPadInst::Filter ||
2574                isa<ArrayType>(Val->getType())) &&
2575               "Filter clause has invalid type!");
2576        LP->addClause(Val);
2577      }
2578
2579      I = LP;
2580      InstructionList.push_back(I);
2581      break;
2582    }
2583
2584    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2585      if (Record.size() != 4)
2586        return Error("Invalid ALLOCA record");
2587      PointerType *Ty =
2588        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2589      Type *OpTy = getTypeByID(Record[1]);
2590      Value *Size = getFnValueByID(Record[2], OpTy);
2591      unsigned Align = Record[3];
2592      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2593      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2594      InstructionList.push_back(I);
2595      break;
2596    }
2597    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2598      unsigned OpNum = 0;
2599      Value *Op;
2600      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2601          OpNum+2 != Record.size())
2602        return Error("Invalid LOAD record");
2603
2604      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2605      InstructionList.push_back(I);
2606      break;
2607    }
2608    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2609       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2610      unsigned OpNum = 0;
2611      Value *Op;
2612      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2613          OpNum+4 != Record.size())
2614        return Error("Invalid LOADATOMIC record");
2615
2616
2617      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2618      if (Ordering == NotAtomic || Ordering == Release ||
2619          Ordering == AcquireRelease)
2620        return Error("Invalid LOADATOMIC record");
2621      if (Ordering != NotAtomic && Record[OpNum] == 0)
2622        return Error("Invalid LOADATOMIC record");
2623      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2624
2625      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2626                       Ordering, SynchScope);
2627      InstructionList.push_back(I);
2628      break;
2629    }
2630    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2631      unsigned OpNum = 0;
2632      Value *Val, *Ptr;
2633      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2634          popValue(Record, OpNum, NextValueNo,
2635                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2636          OpNum+2 != Record.size())
2637        return Error("Invalid STORE record");
2638
2639      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2640      InstructionList.push_back(I);
2641      break;
2642    }
2643    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2644      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2645      unsigned OpNum = 0;
2646      Value *Val, *Ptr;
2647      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2648          popValue(Record, OpNum, NextValueNo,
2649                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2650          OpNum+4 != Record.size())
2651        return Error("Invalid STOREATOMIC record");
2652
2653      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2654      if (Ordering == NotAtomic || Ordering == Acquire ||
2655          Ordering == AcquireRelease)
2656        return Error("Invalid STOREATOMIC record");
2657      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2658      if (Ordering != NotAtomic && Record[OpNum] == 0)
2659        return Error("Invalid STOREATOMIC record");
2660
2661      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2662                        Ordering, SynchScope);
2663      InstructionList.push_back(I);
2664      break;
2665    }
2666    case bitc::FUNC_CODE_INST_CMPXCHG: {
2667      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2668      unsigned OpNum = 0;
2669      Value *Ptr, *Cmp, *New;
2670      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2671          popValue(Record, OpNum, NextValueNo,
2672                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2673          popValue(Record, OpNum, NextValueNo,
2674                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2675          OpNum+3 != Record.size())
2676        return Error("Invalid CMPXCHG record");
2677      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2678      if (Ordering == NotAtomic || Ordering == Unordered)
2679        return Error("Invalid CMPXCHG record");
2680      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2681      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2682      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2683      InstructionList.push_back(I);
2684      break;
2685    }
2686    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2687      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2688      unsigned OpNum = 0;
2689      Value *Ptr, *Val;
2690      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2691          popValue(Record, OpNum, NextValueNo,
2692                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2693          OpNum+4 != Record.size())
2694        return Error("Invalid ATOMICRMW record");
2695      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2696      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2697          Operation > AtomicRMWInst::LAST_BINOP)
2698        return Error("Invalid ATOMICRMW record");
2699      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2700      if (Ordering == NotAtomic || Ordering == Unordered)
2701        return Error("Invalid ATOMICRMW record");
2702      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2703      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2704      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2705      InstructionList.push_back(I);
2706      break;
2707    }
2708    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2709      if (2 != Record.size())
2710        return Error("Invalid FENCE record");
2711      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2712      if (Ordering == NotAtomic || Ordering == Unordered ||
2713          Ordering == Monotonic)
2714        return Error("Invalid FENCE record");
2715      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2716      I = new FenceInst(Context, Ordering, SynchScope);
2717      InstructionList.push_back(I);
2718      break;
2719    }
2720    case bitc::FUNC_CODE_INST_CALL: {
2721      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2722      if (Record.size() < 3)
2723        return Error("Invalid CALL record");
2724
2725      AttributeSet PAL = getAttributes(Record[0]);
2726      unsigned CCInfo = Record[1];
2727
2728      unsigned OpNum = 2;
2729      Value *Callee;
2730      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2731        return Error("Invalid CALL record");
2732
2733      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2734      FunctionType *FTy = 0;
2735      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2736      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2737        return Error("Invalid CALL record");
2738
2739      SmallVector<Value*, 16> Args;
2740      // Read the fixed params.
2741      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2742        if (FTy->getParamType(i)->isLabelTy())
2743          Args.push_back(getBasicBlock(Record[OpNum]));
2744        else
2745          Args.push_back(getValue(Record, OpNum, NextValueNo,
2746                                  FTy->getParamType(i)));
2747        if (Args.back() == 0) return Error("Invalid CALL record");
2748      }
2749
2750      // Read type/value pairs for varargs params.
2751      if (!FTy->isVarArg()) {
2752        if (OpNum != Record.size())
2753          return Error("Invalid CALL record");
2754      } else {
2755        while (OpNum != Record.size()) {
2756          Value *Op;
2757          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2758            return Error("Invalid CALL record");
2759          Args.push_back(Op);
2760        }
2761      }
2762
2763      I = CallInst::Create(Callee, Args);
2764      InstructionList.push_back(I);
2765      cast<CallInst>(I)->setCallingConv(
2766        static_cast<CallingConv::ID>(CCInfo>>1));
2767      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2768      cast<CallInst>(I)->setAttributes(PAL);
2769      break;
2770    }
2771    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2772      if (Record.size() < 3)
2773        return Error("Invalid VAARG record");
2774      Type *OpTy = getTypeByID(Record[0]);
2775      Value *Op = getValue(Record, 1, NextValueNo, OpTy);
2776      Type *ResTy = getTypeByID(Record[2]);
2777      if (!OpTy || !Op || !ResTy)
2778        return Error("Invalid VAARG record");
2779      I = new VAArgInst(Op, ResTy);
2780      InstructionList.push_back(I);
2781      break;
2782    }
2783    }
2784
2785    // Add instruction to end of current BB.  If there is no current BB, reject
2786    // this file.
2787    if (CurBB == 0) {
2788      delete I;
2789      return Error("Invalid instruction with no BB");
2790    }
2791    CurBB->getInstList().push_back(I);
2792
2793    // If this was a terminator instruction, move to the next block.
2794    if (isa<TerminatorInst>(I)) {
2795      ++CurBBNo;
2796      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2797    }
2798
2799    // Non-void values get registered in the value table for future use.
2800    if (I && !I->getType()->isVoidTy())
2801      ValueList.AssignValue(I, NextValueNo++);
2802  }
2803
2804OutOfRecordLoop:
2805
2806  // Check the function list for unresolved values.
2807  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2808    if (A->getParent() == 0) {
2809      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2810      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2811        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2812          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2813          delete A;
2814        }
2815      }
2816      return Error("Never resolved value found in function!");
2817    }
2818  }
2819
2820  // FIXME: Check for unresolved forward-declared metadata references
2821  // and clean up leaks.
2822
2823  // See if anything took the address of blocks in this function.  If so,
2824  // resolve them now.
2825  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2826    BlockAddrFwdRefs.find(F);
2827  if (BAFRI != BlockAddrFwdRefs.end()) {
2828    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2829    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2830      unsigned BlockIdx = RefList[i].first;
2831      if (BlockIdx >= FunctionBBs.size())
2832        return Error("Invalid blockaddress block #");
2833
2834      GlobalVariable *FwdRef = RefList[i].second;
2835      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2836      FwdRef->eraseFromParent();
2837    }
2838
2839    BlockAddrFwdRefs.erase(BAFRI);
2840  }
2841
2842  // Trim the value list down to the size it was before we parsed this function.
2843  ValueList.shrinkTo(ModuleValueListSize);
2844  MDValueList.shrinkTo(ModuleMDValueListSize);
2845  std::vector<BasicBlock*>().swap(FunctionBBs);
2846  return false;
2847}
2848
2849/// FindFunctionInStream - Find the function body in the bitcode stream
2850bool BitcodeReader::FindFunctionInStream(Function *F,
2851       DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
2852  while (DeferredFunctionInfoIterator->second == 0) {
2853    if (Stream.AtEndOfStream())
2854      return Error("Could not find Function in stream");
2855    // ParseModule will parse the next body in the stream and set its
2856    // position in the DeferredFunctionInfo map.
2857    if (ParseModule(true)) return true;
2858  }
2859  return false;
2860}
2861
2862//===----------------------------------------------------------------------===//
2863// GVMaterializer implementation
2864//===----------------------------------------------------------------------===//
2865
2866
2867bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2868  if (const Function *F = dyn_cast<Function>(GV)) {
2869    return F->isDeclaration() &&
2870      DeferredFunctionInfo.count(const_cast<Function*>(F));
2871  }
2872  return false;
2873}
2874
2875bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2876  Function *F = dyn_cast<Function>(GV);
2877  // If it's not a function or is already material, ignore the request.
2878  if (!F || !F->isMaterializable()) return false;
2879
2880  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2881  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2882  // If its position is recorded as 0, its body is somewhere in the stream
2883  // but we haven't seen it yet.
2884  if (DFII->second == 0)
2885    if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
2886
2887  // Move the bit stream to the saved position of the deferred function body.
2888  Stream.JumpToBit(DFII->second);
2889
2890  if (ParseFunctionBody(F)) {
2891    if (ErrInfo) *ErrInfo = ErrorString;
2892    return true;
2893  }
2894
2895  // Upgrade any old intrinsic calls in the function.
2896  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2897       E = UpgradedIntrinsics.end(); I != E; ++I) {
2898    if (I->first != I->second) {
2899      for (Value::use_iterator UI = I->first->use_begin(),
2900           UE = I->first->use_end(); UI != UE; ) {
2901        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2902          UpgradeIntrinsicCall(CI, I->second);
2903      }
2904    }
2905  }
2906
2907  return false;
2908}
2909
2910bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2911  const Function *F = dyn_cast<Function>(GV);
2912  if (!F || F->isDeclaration())
2913    return false;
2914  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2915}
2916
2917void BitcodeReader::Dematerialize(GlobalValue *GV) {
2918  Function *F = dyn_cast<Function>(GV);
2919  // If this function isn't dematerializable, this is a noop.
2920  if (!F || !isDematerializable(F))
2921    return;
2922
2923  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2924
2925  // Just forget the function body, we can remat it later.
2926  F->deleteBody();
2927}
2928
2929
2930bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2931  assert(M == TheModule &&
2932         "Can only Materialize the Module this BitcodeReader is attached to.");
2933  // Iterate over the module, deserializing any functions that are still on
2934  // disk.
2935  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2936       F != E; ++F)
2937    if (F->isMaterializable() &&
2938        Materialize(F, ErrInfo))
2939      return true;
2940
2941  // At this point, if there are any function bodies, the current bit is
2942  // pointing to the END_BLOCK record after them. Now make sure the rest
2943  // of the bits in the module have been read.
2944  if (NextUnreadBit)
2945    ParseModule(true);
2946
2947  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2948  // delete the old functions to clean up. We can't do this unless the entire
2949  // module is materialized because there could always be another function body
2950  // with calls to the old function.
2951  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2952       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2953    if (I->first != I->second) {
2954      for (Value::use_iterator UI = I->first->use_begin(),
2955           UE = I->first->use_end(); UI != UE; ) {
2956        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2957          UpgradeIntrinsicCall(CI, I->second);
2958      }
2959      if (!I->first->use_empty())
2960        I->first->replaceAllUsesWith(I->second);
2961      I->first->eraseFromParent();
2962    }
2963  }
2964  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2965
2966  return false;
2967}
2968
2969bool BitcodeReader::InitStream() {
2970  if (LazyStreamer) return InitLazyStream();
2971  return InitStreamFromBuffer();
2972}
2973
2974bool BitcodeReader::InitStreamFromBuffer() {
2975  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
2976  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2977
2978  if (Buffer->getBufferSize() & 3) {
2979    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
2980      return Error("Invalid bitcode signature");
2981    else
2982      return Error("Bitcode stream should be a multiple of 4 bytes in length");
2983  }
2984
2985  // If we have a wrapper header, parse it and ignore the non-bc file contents.
2986  // The magic number is 0x0B17C0DE stored in little endian.
2987  if (isBitcodeWrapper(BufPtr, BufEnd))
2988    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
2989      return Error("Invalid bitcode wrapper header");
2990
2991  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
2992  Stream.init(*StreamFile);
2993
2994  return false;
2995}
2996
2997bool BitcodeReader::InitLazyStream() {
2998  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
2999  // see it.
3000  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3001  StreamFile.reset(new BitstreamReader(Bytes));
3002  Stream.init(*StreamFile);
3003
3004  unsigned char buf[16];
3005  if (Bytes->readBytes(0, 16, buf, NULL) == -1)
3006    return Error("Bitcode stream must be at least 16 bytes in length");
3007
3008  if (!isBitcode(buf, buf + 16))
3009    return Error("Invalid bitcode signature");
3010
3011  if (isBitcodeWrapper(buf, buf + 4)) {
3012    const unsigned char *bitcodeStart = buf;
3013    const unsigned char *bitcodeEnd = buf + 16;
3014    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3015    Bytes->dropLeadingBytes(bitcodeStart - buf);
3016    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3017  }
3018  return false;
3019}
3020
3021//===----------------------------------------------------------------------===//
3022// External interface
3023//===----------------------------------------------------------------------===//
3024
3025/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3026///
3027Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3028                                   LLVMContext& Context,
3029                                   std::string *ErrMsg) {
3030  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3031  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3032  M->setMaterializer(R);
3033  if (R->ParseBitcodeInto(M)) {
3034    if (ErrMsg)
3035      *ErrMsg = R->getErrorString();
3036
3037    delete M;  // Also deletes R.
3038    return 0;
3039  }
3040  // Have the BitcodeReader dtor delete 'Buffer'.
3041  R->setBufferOwned(true);
3042
3043  R->materializeForwardReferencedFunctions();
3044
3045  return M;
3046}
3047
3048
3049Module *llvm::getStreamedBitcodeModule(const std::string &name,
3050                                       DataStreamer *streamer,
3051                                       LLVMContext &Context,
3052                                       std::string *ErrMsg) {
3053  Module *M = new Module(name, Context);
3054  BitcodeReader *R = new BitcodeReader(streamer, Context);
3055  M->setMaterializer(R);
3056  if (R->ParseBitcodeInto(M)) {
3057    if (ErrMsg)
3058      *ErrMsg = R->getErrorString();
3059    delete M;  // Also deletes R.
3060    return 0;
3061  }
3062  R->setBufferOwned(false); // no buffer to delete
3063  return M;
3064}
3065
3066/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3067/// If an error occurs, return null and fill in *ErrMsg if non-null.
3068Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3069                               std::string *ErrMsg){
3070  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3071  if (!M) return 0;
3072
3073  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3074  // there was an error.
3075  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3076
3077  // Read in the entire module, and destroy the BitcodeReader.
3078  if (M->MaterializeAllPermanently(ErrMsg)) {
3079    delete M;
3080    return 0;
3081  }
3082
3083  // TODO: Restore the use-lists to the in-memory state when the bitcode was
3084  // written.  We must defer until the Module has been fully materialized.
3085
3086  return M;
3087}
3088
3089std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3090                                         LLVMContext& Context,
3091                                         std::string *ErrMsg) {
3092  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3093  // Don't let the BitcodeReader dtor delete 'Buffer'.
3094  R->setBufferOwned(false);
3095
3096  std::string Triple("");
3097  if (R->ParseTriple(Triple))
3098    if (ErrMsg)
3099      *ErrMsg = R->getErrorString();
3100
3101  delete R;
3102  return Triple;
3103}
3104