BitcodeReader.cpp revision 0a9f7b9c3ebe7d0ec033462e1a7c9101279956f9
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Metadata.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42}
43
44//===----------------------------------------------------------------------===//
45//  Helper functions to implement forward reference resolution, etc.
46//===----------------------------------------------------------------------===//
47
48/// ConvertToString - Convert a string from a record into an std::string, return
49/// true on failure.
50template<typename StrTy>
51static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                            StrTy &Result) {
53  if (Idx > Record.size())
54    return true;
55
56  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57    Result += (char)Record[i];
58  return false;
59}
60
61static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62  switch (Val) {
63  default: // Map unknown/new linkages to external
64  case 0:  return GlobalValue::ExternalLinkage;
65  case 1:  return GlobalValue::WeakAnyLinkage;
66  case 2:  return GlobalValue::AppendingLinkage;
67  case 3:  return GlobalValue::InternalLinkage;
68  case 4:  return GlobalValue::LinkOnceAnyLinkage;
69  case 5:  return GlobalValue::DLLImportLinkage;
70  case 6:  return GlobalValue::DLLExportLinkage;
71  case 7:  return GlobalValue::ExternalWeakLinkage;
72  case 8:  return GlobalValue::CommonLinkage;
73  case 9:  return GlobalValue::PrivateLinkage;
74  case 10: return GlobalValue::WeakODRLinkage;
75  case 11: return GlobalValue::LinkOnceODRLinkage;
76  case 12: return GlobalValue::AvailableExternallyLinkage;
77  case 13: return GlobalValue::LinkerPrivateLinkage;
78  }
79}
80
81static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
82  switch (Val) {
83  default: // Map unknown visibilities to default.
84  case 0: return GlobalValue::DefaultVisibility;
85  case 1: return GlobalValue::HiddenVisibility;
86  case 2: return GlobalValue::ProtectedVisibility;
87  }
88}
89
90static int GetDecodedCastOpcode(unsigned Val) {
91  switch (Val) {
92  default: return -1;
93  case bitc::CAST_TRUNC   : return Instruction::Trunc;
94  case bitc::CAST_ZEXT    : return Instruction::ZExt;
95  case bitc::CAST_SEXT    : return Instruction::SExt;
96  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
97  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
98  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
99  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
100  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
101  case bitc::CAST_FPEXT   : return Instruction::FPExt;
102  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
103  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
104  case bitc::CAST_BITCAST : return Instruction::BitCast;
105  }
106}
107static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
108  switch (Val) {
109  default: return -1;
110  case bitc::BINOP_ADD:
111    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
112  case bitc::BINOP_SUB:
113    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
114  case bitc::BINOP_MUL:
115    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
116  case bitc::BINOP_UDIV: return Instruction::UDiv;
117  case bitc::BINOP_SDIV:
118    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
119  case bitc::BINOP_UREM: return Instruction::URem;
120  case bitc::BINOP_SREM:
121    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
122  case bitc::BINOP_SHL:  return Instruction::Shl;
123  case bitc::BINOP_LSHR: return Instruction::LShr;
124  case bitc::BINOP_ASHR: return Instruction::AShr;
125  case bitc::BINOP_AND:  return Instruction::And;
126  case bitc::BINOP_OR:   return Instruction::Or;
127  case bitc::BINOP_XOR:  return Instruction::Xor;
128  }
129}
130
131namespace llvm {
132namespace {
133  /// @brief A class for maintaining the slot number definition
134  /// as a placeholder for the actual definition for forward constants defs.
135  class ConstantPlaceHolder : public ConstantExpr {
136    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
137    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
138  public:
139    // allocate space for exactly one operand
140    void *operator new(size_t s) {
141      return User::operator new(s, 1);
142    }
143    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
144      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
145      Op<0>() = Context.getUndef(Type::Int32Ty);
146    }
147
148    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
149    static inline bool classof(const ConstantPlaceHolder *) { return true; }
150    static bool classof(const Value *V) {
151      return isa<ConstantExpr>(V) &&
152             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
153    }
154
155
156    /// Provide fast operand accessors
157    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
158  };
159}
160
161// FIXME: can we inherit this from ConstantExpr?
162template <>
163struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
164};
165}
166
167
168void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
169  if (Idx == size()) {
170    push_back(V);
171    return;
172  }
173
174  if (Idx >= size())
175    resize(Idx+1);
176
177  WeakVH &OldV = ValuePtrs[Idx];
178  if (OldV == 0) {
179    OldV = V;
180    return;
181  }
182
183  // Handle constants and non-constants (e.g. instrs) differently for
184  // efficiency.
185  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
186    ResolveConstants.push_back(std::make_pair(PHC, Idx));
187    OldV = V;
188  } else {
189    // If there was a forward reference to this value, replace it.
190    Value *PrevVal = OldV;
191    OldV->replaceAllUsesWith(V);
192    delete PrevVal;
193  }
194}
195
196
197Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
198                                                    const Type *Ty) {
199  if (Idx >= size())
200    resize(Idx + 1);
201
202  if (Value *V = ValuePtrs[Idx]) {
203    assert(Ty == V->getType() && "Type mismatch in constant table!");
204    return cast<Constant>(V);
205  }
206
207  // Create and return a placeholder, which will later be RAUW'd.
208  Constant *C = new ConstantPlaceHolder(Ty, Context);
209  ValuePtrs[Idx] = C;
210  return C;
211}
212
213Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
214  if (Idx >= size())
215    resize(Idx + 1);
216
217  if (Value *V = ValuePtrs[Idx]) {
218    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
219    return V;
220  }
221
222  // No type specified, must be invalid reference.
223  if (Ty == 0) return 0;
224
225  // Create and return a placeholder, which will later be RAUW'd.
226  Value *V = new Argument(Ty);
227  ValuePtrs[Idx] = V;
228  return V;
229}
230
231/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
232/// resolves any forward references.  The idea behind this is that we sometimes
233/// get constants (such as large arrays) which reference *many* forward ref
234/// constants.  Replacing each of these causes a lot of thrashing when
235/// building/reuniquing the constant.  Instead of doing this, we look at all the
236/// uses and rewrite all the place holders at once for any constant that uses
237/// a placeholder.
238void BitcodeReaderValueList::ResolveConstantForwardRefs() {
239  // Sort the values by-pointer so that they are efficient to look up with a
240  // binary search.
241  std::sort(ResolveConstants.begin(), ResolveConstants.end());
242
243  SmallVector<Constant*, 64> NewOps;
244
245  while (!ResolveConstants.empty()) {
246    Value *RealVal = operator[](ResolveConstants.back().second);
247    Constant *Placeholder = ResolveConstants.back().first;
248    ResolveConstants.pop_back();
249
250    // Loop over all users of the placeholder, updating them to reference the
251    // new value.  If they reference more than one placeholder, update them all
252    // at once.
253    while (!Placeholder->use_empty()) {
254      Value::use_iterator UI = Placeholder->use_begin();
255
256      // If the using object isn't uniqued, just update the operands.  This
257      // handles instructions and initializers for global variables.
258      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
259        UI.getUse().set(RealVal);
260        continue;
261      }
262
263      // Otherwise, we have a constant that uses the placeholder.  Replace that
264      // constant with a new constant that has *all* placeholder uses updated.
265      Constant *UserC = cast<Constant>(*UI);
266      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
267           I != E; ++I) {
268        Value *NewOp;
269        if (!isa<ConstantPlaceHolder>(*I)) {
270          // Not a placeholder reference.
271          NewOp = *I;
272        } else if (*I == Placeholder) {
273          // Common case is that it just references this one placeholder.
274          NewOp = RealVal;
275        } else {
276          // Otherwise, look up the placeholder in ResolveConstants.
277          ResolveConstantsTy::iterator It =
278            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
279                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
280                                                            0));
281          assert(It != ResolveConstants.end() && It->first == *I);
282          NewOp = operator[](It->second);
283        }
284
285        NewOps.push_back(cast<Constant>(NewOp));
286      }
287
288      // Make the new constant.
289      Constant *NewC;
290      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
291        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
292                                        NewOps.size());
293      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
294        NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
295                                         UserCS->getType()->isPacked());
296      } else if (isa<ConstantVector>(UserC)) {
297        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
298      } else {
299        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
300        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
301                                                          NewOps.size());
302      }
303
304      UserC->replaceAllUsesWith(NewC);
305      UserC->destroyConstant();
306      NewOps.clear();
307    }
308
309    // Update all ValueHandles, they should be the only users at this point.
310    Placeholder->replaceAllUsesWith(RealVal);
311    delete Placeholder;
312  }
313}
314
315
316const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
317  // If the TypeID is in range, return it.
318  if (ID < TypeList.size())
319    return TypeList[ID].get();
320  if (!isTypeTable) return 0;
321
322  // The type table allows forward references.  Push as many Opaque types as
323  // needed to get up to ID.
324  while (TypeList.size() <= ID)
325    TypeList.push_back(Context.getOpaqueType());
326  return TypeList.back().get();
327}
328
329//===----------------------------------------------------------------------===//
330//  Functions for parsing blocks from the bitcode file
331//===----------------------------------------------------------------------===//
332
333bool BitcodeReader::ParseAttributeBlock() {
334  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
335    return Error("Malformed block record");
336
337  if (!MAttributes.empty())
338    return Error("Multiple PARAMATTR blocks found!");
339
340  SmallVector<uint64_t, 64> Record;
341
342  SmallVector<AttributeWithIndex, 8> Attrs;
343
344  // Read all the records.
345  while (1) {
346    unsigned Code = Stream.ReadCode();
347    if (Code == bitc::END_BLOCK) {
348      if (Stream.ReadBlockEnd())
349        return Error("Error at end of PARAMATTR block");
350      return false;
351    }
352
353    if (Code == bitc::ENTER_SUBBLOCK) {
354      // No known subblocks, always skip them.
355      Stream.ReadSubBlockID();
356      if (Stream.SkipBlock())
357        return Error("Malformed block record");
358      continue;
359    }
360
361    if (Code == bitc::DEFINE_ABBREV) {
362      Stream.ReadAbbrevRecord();
363      continue;
364    }
365
366    // Read a record.
367    Record.clear();
368    switch (Stream.ReadRecord(Code, Record)) {
369    default:  // Default behavior: ignore.
370      break;
371    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
372      if (Record.size() & 1)
373        return Error("Invalid ENTRY record");
374
375      // FIXME : Remove this autoupgrade code in LLVM 3.0.
376      // If Function attributes are using index 0 then transfer them
377      // to index ~0. Index 0 is used for return value attributes but used to be
378      // used for function attributes.
379      Attributes RetAttribute = Attribute::None;
380      Attributes FnAttribute = Attribute::None;
381      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
382        // FIXME: remove in LLVM 3.0
383        // The alignment is stored as a 16-bit raw value from bits 31--16.
384        // We shift the bits above 31 down by 11 bits.
385
386        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
387        if (Alignment && !isPowerOf2_32(Alignment))
388          return Error("Alignment is not a power of two.");
389
390        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
391        if (Alignment)
392          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
393        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
394        Record[i+1] = ReconstitutedAttr;
395
396        if (Record[i] == 0)
397          RetAttribute = Record[i+1];
398        else if (Record[i] == ~0U)
399          FnAttribute = Record[i+1];
400      }
401
402      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
403                              Attribute::ReadOnly|Attribute::ReadNone);
404
405      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
406          (RetAttribute & OldRetAttrs) != 0) {
407        if (FnAttribute == Attribute::None) { // add a slot so they get added.
408          Record.push_back(~0U);
409          Record.push_back(0);
410        }
411
412        FnAttribute  |= RetAttribute & OldRetAttrs;
413        RetAttribute &= ~OldRetAttrs;
414      }
415
416      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
417        if (Record[i] == 0) {
418          if (RetAttribute != Attribute::None)
419            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
420        } else if (Record[i] == ~0U) {
421          if (FnAttribute != Attribute::None)
422            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
423        } else if (Record[i+1] != Attribute::None)
424          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
425      }
426
427      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
428      Attrs.clear();
429      break;
430    }
431    }
432  }
433}
434
435
436bool BitcodeReader::ParseTypeTable() {
437  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
438    return Error("Malformed block record");
439
440  if (!TypeList.empty())
441    return Error("Multiple TYPE_BLOCKs found!");
442
443  SmallVector<uint64_t, 64> Record;
444  unsigned NumRecords = 0;
445
446  // Read all the records for this type table.
447  while (1) {
448    unsigned Code = Stream.ReadCode();
449    if (Code == bitc::END_BLOCK) {
450      if (NumRecords != TypeList.size())
451        return Error("Invalid type forward reference in TYPE_BLOCK");
452      if (Stream.ReadBlockEnd())
453        return Error("Error at end of type table block");
454      return false;
455    }
456
457    if (Code == bitc::ENTER_SUBBLOCK) {
458      // No known subblocks, always skip them.
459      Stream.ReadSubBlockID();
460      if (Stream.SkipBlock())
461        return Error("Malformed block record");
462      continue;
463    }
464
465    if (Code == bitc::DEFINE_ABBREV) {
466      Stream.ReadAbbrevRecord();
467      continue;
468    }
469
470    // Read a record.
471    Record.clear();
472    const Type *ResultTy = 0;
473    switch (Stream.ReadRecord(Code, Record)) {
474    default:  // Default behavior: unknown type.
475      ResultTy = 0;
476      break;
477    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
478      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
479      // type list.  This allows us to reserve space.
480      if (Record.size() < 1)
481        return Error("Invalid TYPE_CODE_NUMENTRY record");
482      TypeList.reserve(Record[0]);
483      continue;
484    case bitc::TYPE_CODE_VOID:      // VOID
485      ResultTy = Type::VoidTy;
486      break;
487    case bitc::TYPE_CODE_FLOAT:     // FLOAT
488      ResultTy = Type::FloatTy;
489      break;
490    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
491      ResultTy = Type::DoubleTy;
492      break;
493    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
494      ResultTy = Type::X86_FP80Ty;
495      break;
496    case bitc::TYPE_CODE_FP128:     // FP128
497      ResultTy = Type::FP128Ty;
498      break;
499    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
500      ResultTy = Type::PPC_FP128Ty;
501      break;
502    case bitc::TYPE_CODE_LABEL:     // LABEL
503      ResultTy = Type::LabelTy;
504      break;
505    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
506      ResultTy = 0;
507      break;
508    case bitc::TYPE_CODE_METADATA:  // METADATA
509      ResultTy = Type::MetadataTy;
510      break;
511    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
512      if (Record.size() < 1)
513        return Error("Invalid Integer type record");
514
515      ResultTy = Context.getIntegerType(Record[0]);
516      break;
517    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
518                                    //          [pointee type, address space]
519      if (Record.size() < 1)
520        return Error("Invalid POINTER type record");
521      unsigned AddressSpace = 0;
522      if (Record.size() == 2)
523        AddressSpace = Record[1];
524      ResultTy = Context.getPointerType(getTypeByID(Record[0], true),
525                                        AddressSpace);
526      break;
527    }
528    case bitc::TYPE_CODE_FUNCTION: {
529      // FIXME: attrid is dead, remove it in LLVM 3.0
530      // FUNCTION: [vararg, attrid, retty, paramty x N]
531      if (Record.size() < 3)
532        return Error("Invalid FUNCTION type record");
533      std::vector<const Type*> ArgTys;
534      for (unsigned i = 3, e = Record.size(); i != e; ++i)
535        ArgTys.push_back(getTypeByID(Record[i], true));
536
537      ResultTy = Context.getFunctionType(getTypeByID(Record[2], true), ArgTys,
538                                   Record[0]);
539      break;
540    }
541    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
542      if (Record.size() < 1)
543        return Error("Invalid STRUCT type record");
544      std::vector<const Type*> EltTys;
545      for (unsigned i = 1, e = Record.size(); i != e; ++i)
546        EltTys.push_back(getTypeByID(Record[i], true));
547      ResultTy = Context.getStructType(EltTys, Record[0]);
548      break;
549    }
550    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
551      if (Record.size() < 2)
552        return Error("Invalid ARRAY type record");
553      ResultTy = Context.getArrayType(getTypeByID(Record[1], true), Record[0]);
554      break;
555    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
556      if (Record.size() < 2)
557        return Error("Invalid VECTOR type record");
558      ResultTy = Context.getVectorType(getTypeByID(Record[1], true), Record[0]);
559      break;
560    }
561
562    if (NumRecords == TypeList.size()) {
563      // If this is a new type slot, just append it.
564      TypeList.push_back(ResultTy ? ResultTy : Context.getOpaqueType());
565      ++NumRecords;
566    } else if (ResultTy == 0) {
567      // Otherwise, this was forward referenced, so an opaque type was created,
568      // but the result type is actually just an opaque.  Leave the one we
569      // created previously.
570      ++NumRecords;
571    } else {
572      // Otherwise, this was forward referenced, so an opaque type was created.
573      // Resolve the opaque type to the real type now.
574      assert(NumRecords < TypeList.size() && "Typelist imbalance");
575      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
576
577      // Don't directly push the new type on the Tab. Instead we want to replace
578      // the opaque type we previously inserted with the new concrete value. The
579      // refinement from the abstract (opaque) type to the new type causes all
580      // uses of the abstract type to use the concrete type (NewTy). This will
581      // also cause the opaque type to be deleted.
582      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
583
584      // This should have replaced the old opaque type with the new type in the
585      // value table... or with a preexisting type that was already in the
586      // system.  Let's just make sure it did.
587      assert(TypeList[NumRecords-1].get() != OldTy &&
588             "refineAbstractType didn't work!");
589    }
590  }
591}
592
593
594bool BitcodeReader::ParseTypeSymbolTable() {
595  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
596    return Error("Malformed block record");
597
598  SmallVector<uint64_t, 64> Record;
599
600  // Read all the records for this type table.
601  std::string TypeName;
602  while (1) {
603    unsigned Code = Stream.ReadCode();
604    if (Code == bitc::END_BLOCK) {
605      if (Stream.ReadBlockEnd())
606        return Error("Error at end of type symbol table block");
607      return false;
608    }
609
610    if (Code == bitc::ENTER_SUBBLOCK) {
611      // No known subblocks, always skip them.
612      Stream.ReadSubBlockID();
613      if (Stream.SkipBlock())
614        return Error("Malformed block record");
615      continue;
616    }
617
618    if (Code == bitc::DEFINE_ABBREV) {
619      Stream.ReadAbbrevRecord();
620      continue;
621    }
622
623    // Read a record.
624    Record.clear();
625    switch (Stream.ReadRecord(Code, Record)) {
626    default:  // Default behavior: unknown type.
627      break;
628    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
629      if (ConvertToString(Record, 1, TypeName))
630        return Error("Invalid TST_ENTRY record");
631      unsigned TypeID = Record[0];
632      if (TypeID >= TypeList.size())
633        return Error("Invalid Type ID in TST_ENTRY record");
634
635      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
636      TypeName.clear();
637      break;
638    }
639  }
640}
641
642bool BitcodeReader::ParseValueSymbolTable() {
643  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
644    return Error("Malformed block record");
645
646  SmallVector<uint64_t, 64> Record;
647
648  // Read all the records for this value table.
649  SmallString<128> ValueName;
650  while (1) {
651    unsigned Code = Stream.ReadCode();
652    if (Code == bitc::END_BLOCK) {
653      if (Stream.ReadBlockEnd())
654        return Error("Error at end of value symbol table block");
655      return false;
656    }
657    if (Code == bitc::ENTER_SUBBLOCK) {
658      // No known subblocks, always skip them.
659      Stream.ReadSubBlockID();
660      if (Stream.SkipBlock())
661        return Error("Malformed block record");
662      continue;
663    }
664
665    if (Code == bitc::DEFINE_ABBREV) {
666      Stream.ReadAbbrevRecord();
667      continue;
668    }
669
670    // Read a record.
671    Record.clear();
672    switch (Stream.ReadRecord(Code, Record)) {
673    default:  // Default behavior: unknown type.
674      break;
675    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
676      if (ConvertToString(Record, 1, ValueName))
677        return Error("Invalid VST_ENTRY record");
678      unsigned ValueID = Record[0];
679      if (ValueID >= ValueList.size())
680        return Error("Invalid Value ID in VST_ENTRY record");
681      Value *V = ValueList[ValueID];
682
683      V->setName(StringRef(ValueName.data(), ValueName.size()));
684      ValueName.clear();
685      break;
686    }
687    case bitc::VST_CODE_BBENTRY: {
688      if (ConvertToString(Record, 1, ValueName))
689        return Error("Invalid VST_BBENTRY record");
690      BasicBlock *BB = getBasicBlock(Record[0]);
691      if (BB == 0)
692        return Error("Invalid BB ID in VST_BBENTRY record");
693
694      BB->setName(StringRef(ValueName.data(), ValueName.size()));
695      ValueName.clear();
696      break;
697    }
698    }
699  }
700}
701
702bool BitcodeReader::ParseMetadata() {
703  unsigned NextValueNo = ValueList.size();
704
705  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
706    return Error("Malformed block record");
707
708  SmallVector<uint64_t, 64> Record;
709
710  // Read all the records.
711  while (1) {
712    unsigned Code = Stream.ReadCode();
713    if (Code == bitc::END_BLOCK) {
714      if (Stream.ReadBlockEnd())
715        return Error("Error at end of PARAMATTR block");
716      return false;
717    }
718
719    if (Code == bitc::ENTER_SUBBLOCK) {
720      // No known subblocks, always skip them.
721      Stream.ReadSubBlockID();
722      if (Stream.SkipBlock())
723        return Error("Malformed block record");
724      continue;
725    }
726
727    if (Code == bitc::DEFINE_ABBREV) {
728      Stream.ReadAbbrevRecord();
729      continue;
730    }
731
732    // Read a record.
733    Record.clear();
734    switch (Stream.ReadRecord(Code, Record)) {
735    default:  // Default behavior: ignore.
736      break;
737    case bitc::METADATA_NODE: {
738      if (Record.empty() || Record.size() % 2 == 1)
739        return Error("Invalid METADATA_NODE record");
740
741      unsigned Size = Record.size();
742      SmallVector<Value*, 8> Elts;
743      for (unsigned i = 0; i != Size; i += 2) {
744        const Type *Ty = getTypeByID(Record[i], false);
745        if (Ty != Type::VoidTy)
746          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
747        else
748          Elts.push_back(NULL);
749      }
750      Value *V = Context.getMDNode(&Elts[0], Elts.size());
751      ValueList.AssignValue(V, NextValueNo++);
752      break;
753    }
754    case bitc::METADATA_STRING: {
755      unsigned MDStringLength = Record.size();
756      SmallString<8> String;
757      String.resize(MDStringLength);
758      for (unsigned i = 0; i != MDStringLength; ++i)
759        String[i] = Record[i];
760      Value *V = Context.getMDString(StringRef(String.data(), String.size()));
761      ValueList.AssignValue(V, NextValueNo++);
762      break;
763    }
764    }
765  }
766}
767
768/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
769/// the LSB for dense VBR encoding.
770static uint64_t DecodeSignRotatedValue(uint64_t V) {
771  if ((V & 1) == 0)
772    return V >> 1;
773  if (V != 1)
774    return -(V >> 1);
775  // There is no such thing as -0 with integers.  "-0" really means MININT.
776  return 1ULL << 63;
777}
778
779/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
780/// values and aliases that we can.
781bool BitcodeReader::ResolveGlobalAndAliasInits() {
782  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
783  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
784
785  GlobalInitWorklist.swap(GlobalInits);
786  AliasInitWorklist.swap(AliasInits);
787
788  while (!GlobalInitWorklist.empty()) {
789    unsigned ValID = GlobalInitWorklist.back().second;
790    if (ValID >= ValueList.size()) {
791      // Not ready to resolve this yet, it requires something later in the file.
792      GlobalInits.push_back(GlobalInitWorklist.back());
793    } else {
794      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
795        GlobalInitWorklist.back().first->setInitializer(C);
796      else
797        return Error("Global variable initializer is not a constant!");
798    }
799    GlobalInitWorklist.pop_back();
800  }
801
802  while (!AliasInitWorklist.empty()) {
803    unsigned ValID = AliasInitWorklist.back().second;
804    if (ValID >= ValueList.size()) {
805      AliasInits.push_back(AliasInitWorklist.back());
806    } else {
807      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
808        AliasInitWorklist.back().first->setAliasee(C);
809      else
810        return Error("Alias initializer is not a constant!");
811    }
812    AliasInitWorklist.pop_back();
813  }
814  return false;
815}
816
817static void SetOptimizationFlags(Value *V, uint64_t Flags) {
818  if (OverflowingBinaryOperator *OBO =
819        dyn_cast<OverflowingBinaryOperator>(V)) {
820    if (Flags & (1 << bitc::OBO_NO_SIGNED_OVERFLOW))
821      OBO->setHasNoSignedOverflow(true);
822    if (Flags & (1 << bitc::OBO_NO_UNSIGNED_OVERFLOW))
823      OBO->setHasNoUnsignedOverflow(true);
824  } else if (SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
825    if (Flags & (1 << bitc::SDIV_EXACT))
826      Div->setIsExact(true);
827  }
828}
829
830bool BitcodeReader::ParseConstants() {
831  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
832    return Error("Malformed block record");
833
834  SmallVector<uint64_t, 64> Record;
835
836  // Read all the records for this value table.
837  const Type *CurTy = Type::Int32Ty;
838  unsigned NextCstNo = ValueList.size();
839  while (1) {
840    unsigned Code = Stream.ReadCode();
841    if (Code == bitc::END_BLOCK)
842      break;
843
844    if (Code == bitc::ENTER_SUBBLOCK) {
845      // No known subblocks, always skip them.
846      Stream.ReadSubBlockID();
847      if (Stream.SkipBlock())
848        return Error("Malformed block record");
849      continue;
850    }
851
852    if (Code == bitc::DEFINE_ABBREV) {
853      Stream.ReadAbbrevRecord();
854      continue;
855    }
856
857    // Read a record.
858    Record.clear();
859    Value *V = 0;
860    unsigned BitCode = Stream.ReadRecord(Code, Record);
861    switch (BitCode) {
862    default:  // Default behavior: unknown constant
863    case bitc::CST_CODE_UNDEF:     // UNDEF
864      V = Context.getUndef(CurTy);
865      break;
866    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
867      if (Record.empty())
868        return Error("Malformed CST_SETTYPE record");
869      if (Record[0] >= TypeList.size())
870        return Error("Invalid Type ID in CST_SETTYPE record");
871      CurTy = TypeList[Record[0]];
872      continue;  // Skip the ValueList manipulation.
873    case bitc::CST_CODE_NULL:      // NULL
874      V = Context.getNullValue(CurTy);
875      break;
876    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
877      if (!isa<IntegerType>(CurTy) || Record.empty())
878        return Error("Invalid CST_INTEGER record");
879      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
880      break;
881    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
882      if (!isa<IntegerType>(CurTy) || Record.empty())
883        return Error("Invalid WIDE_INTEGER record");
884
885      unsigned NumWords = Record.size();
886      SmallVector<uint64_t, 8> Words;
887      Words.resize(NumWords);
888      for (unsigned i = 0; i != NumWords; ++i)
889        Words[i] = DecodeSignRotatedValue(Record[i]);
890      V = ConstantInt::get(Context,
891                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
892                           NumWords, &Words[0]));
893      break;
894    }
895    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
896      if (Record.empty())
897        return Error("Invalid FLOAT record");
898      if (CurTy == Type::FloatTy)
899        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
900      else if (CurTy == Type::DoubleTy)
901        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
902      else if (CurTy == Type::X86_FP80Ty) {
903        // Bits are not stored the same way as a normal i80 APInt, compensate.
904        uint64_t Rearrange[2];
905        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
906        Rearrange[1] = Record[0] >> 48;
907        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
908      } else if (CurTy == Type::FP128Ty)
909        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
910      else if (CurTy == Type::PPC_FP128Ty)
911        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
912      else
913        V = Context.getUndef(CurTy);
914      break;
915    }
916
917    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
918      if (Record.empty())
919        return Error("Invalid CST_AGGREGATE record");
920
921      unsigned Size = Record.size();
922      std::vector<Constant*> Elts;
923
924      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
925        for (unsigned i = 0; i != Size; ++i)
926          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
927                                                     STy->getElementType(i)));
928        V = ConstantStruct::get(STy, Elts);
929      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
930        const Type *EltTy = ATy->getElementType();
931        for (unsigned i = 0; i != Size; ++i)
932          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
933        V = ConstantArray::get(ATy, Elts);
934      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
935        const Type *EltTy = VTy->getElementType();
936        for (unsigned i = 0; i != Size; ++i)
937          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
938        V = ConstantVector::get(Elts);
939      } else {
940        V = Context.getUndef(CurTy);
941      }
942      break;
943    }
944    case bitc::CST_CODE_STRING: { // STRING: [values]
945      if (Record.empty())
946        return Error("Invalid CST_AGGREGATE record");
947
948      const ArrayType *ATy = cast<ArrayType>(CurTy);
949      const Type *EltTy = ATy->getElementType();
950
951      unsigned Size = Record.size();
952      std::vector<Constant*> Elts;
953      for (unsigned i = 0; i != Size; ++i)
954        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
955      V = ConstantArray::get(ATy, Elts);
956      break;
957    }
958    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
959      if (Record.empty())
960        return Error("Invalid CST_AGGREGATE record");
961
962      const ArrayType *ATy = cast<ArrayType>(CurTy);
963      const Type *EltTy = ATy->getElementType();
964
965      unsigned Size = Record.size();
966      std::vector<Constant*> Elts;
967      for (unsigned i = 0; i != Size; ++i)
968        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
969      Elts.push_back(Context.getNullValue(EltTy));
970      V = ConstantArray::get(ATy, Elts);
971      break;
972    }
973    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
974      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
975      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
976      if (Opc < 0) {
977        V = Context.getUndef(CurTy);  // Unknown binop.
978      } else {
979        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
980        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
981        V = Context.getConstantExpr(Opc, LHS, RHS);
982      }
983      if (Record.size() >= 4)
984        SetOptimizationFlags(V, Record[3]);
985      break;
986    }
987    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
988      if (Record.size() < 3) return Error("Invalid CE_CAST record");
989      int Opc = GetDecodedCastOpcode(Record[0]);
990      if (Opc < 0) {
991        V = Context.getUndef(CurTy);  // Unknown cast.
992      } else {
993        const Type *OpTy = getTypeByID(Record[1]);
994        if (!OpTy) return Error("Invalid CE_CAST record");
995        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
996        V = Context.getConstantExprCast(Opc, Op, CurTy);
997      }
998      break;
999    }
1000    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1001    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1002      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1003      SmallVector<Constant*, 16> Elts;
1004      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1005        const Type *ElTy = getTypeByID(Record[i]);
1006        if (!ElTy) return Error("Invalid CE_GEP record");
1007        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1008      }
1009      V = Context.getConstantExprGetElementPtr(Elts[0], &Elts[1],
1010                                               Elts.size()-1);
1011      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1012        cast<GEPOperator>(V)->setIsInBounds(true);
1013      break;
1014    }
1015    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1016      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1017      V = Context.getConstantExprSelect(ValueList.getConstantFwdRef(Record[0],
1018                                                              Type::Int1Ty),
1019                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1020                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1021      break;
1022    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1023      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1024      const VectorType *OpTy =
1025        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1026      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1027      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1028      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1029      V = Context.getConstantExprExtractElement(Op0, Op1);
1030      break;
1031    }
1032    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1033      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1034      if (Record.size() < 3 || OpTy == 0)
1035        return Error("Invalid CE_INSERTELT record");
1036      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1037      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1038                                                  OpTy->getElementType());
1039      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1040      V = Context.getConstantExprInsertElement(Op0, Op1, Op2);
1041      break;
1042    }
1043    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1044      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1045      if (Record.size() < 3 || OpTy == 0)
1046        return Error("Invalid CE_SHUFFLEVEC record");
1047      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1048      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1049      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1050                                                 OpTy->getNumElements());
1051      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1052      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1053      break;
1054    }
1055    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1056      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1057      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1058      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1059        return Error("Invalid CE_SHUFVEC_EX record");
1060      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1061      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1062      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1063                                                 RTy->getNumElements());
1064      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1065      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1066      break;
1067    }
1068    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1069      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1070      const Type *OpTy = getTypeByID(Record[0]);
1071      if (OpTy == 0) return Error("Invalid CE_CMP record");
1072      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1073      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1074
1075      if (OpTy->isFloatingPoint())
1076        V = Context.getConstantExprFCmp(Record[3], Op0, Op1);
1077      else
1078        V = Context.getConstantExprICmp(Record[3], Op0, Op1);
1079      break;
1080    }
1081    case bitc::CST_CODE_INLINEASM: {
1082      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1083      std::string AsmStr, ConstrStr;
1084      bool HasSideEffects = Record[0];
1085      unsigned AsmStrSize = Record[1];
1086      if (2+AsmStrSize >= Record.size())
1087        return Error("Invalid INLINEASM record");
1088      unsigned ConstStrSize = Record[2+AsmStrSize];
1089      if (3+AsmStrSize+ConstStrSize > Record.size())
1090        return Error("Invalid INLINEASM record");
1091
1092      for (unsigned i = 0; i != AsmStrSize; ++i)
1093        AsmStr += (char)Record[2+i];
1094      for (unsigned i = 0; i != ConstStrSize; ++i)
1095        ConstrStr += (char)Record[3+AsmStrSize+i];
1096      const PointerType *PTy = cast<PointerType>(CurTy);
1097      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1098                         AsmStr, ConstrStr, HasSideEffects);
1099      break;
1100    }
1101    }
1102
1103    ValueList.AssignValue(V, NextCstNo);
1104    ++NextCstNo;
1105  }
1106
1107  if (NextCstNo != ValueList.size())
1108    return Error("Invalid constant reference!");
1109
1110  if (Stream.ReadBlockEnd())
1111    return Error("Error at end of constants block");
1112
1113  // Once all the constants have been read, go through and resolve forward
1114  // references.
1115  ValueList.ResolveConstantForwardRefs();
1116  return false;
1117}
1118
1119/// RememberAndSkipFunctionBody - When we see the block for a function body,
1120/// remember where it is and then skip it.  This lets us lazily deserialize the
1121/// functions.
1122bool BitcodeReader::RememberAndSkipFunctionBody() {
1123  // Get the function we are talking about.
1124  if (FunctionsWithBodies.empty())
1125    return Error("Insufficient function protos");
1126
1127  Function *Fn = FunctionsWithBodies.back();
1128  FunctionsWithBodies.pop_back();
1129
1130  // Save the current stream state.
1131  uint64_t CurBit = Stream.GetCurrentBitNo();
1132  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1133
1134  // Set the functions linkage to GhostLinkage so we know it is lazily
1135  // deserialized.
1136  Fn->setLinkage(GlobalValue::GhostLinkage);
1137
1138  // Skip over the function block for now.
1139  if (Stream.SkipBlock())
1140    return Error("Malformed block record");
1141  return false;
1142}
1143
1144bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1145  // Reject multiple MODULE_BLOCK's in a single bitstream.
1146  if (TheModule)
1147    return Error("Multiple MODULE_BLOCKs in same stream");
1148
1149  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1150    return Error("Malformed block record");
1151
1152  // Otherwise, create the module.
1153  TheModule = new Module(ModuleID, Context);
1154
1155  SmallVector<uint64_t, 64> Record;
1156  std::vector<std::string> SectionTable;
1157  std::vector<std::string> GCTable;
1158
1159  // Read all the records for this module.
1160  while (!Stream.AtEndOfStream()) {
1161    unsigned Code = Stream.ReadCode();
1162    if (Code == bitc::END_BLOCK) {
1163      if (Stream.ReadBlockEnd())
1164        return Error("Error at end of module block");
1165
1166      // Patch the initializers for globals and aliases up.
1167      ResolveGlobalAndAliasInits();
1168      if (!GlobalInits.empty() || !AliasInits.empty())
1169        return Error("Malformed global initializer set");
1170      if (!FunctionsWithBodies.empty())
1171        return Error("Too few function bodies found");
1172
1173      // Look for intrinsic functions which need to be upgraded at some point
1174      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1175           FI != FE; ++FI) {
1176        Function* NewFn;
1177        if (UpgradeIntrinsicFunction(FI, NewFn))
1178          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1179      }
1180
1181      // Force deallocation of memory for these vectors to favor the client that
1182      // want lazy deserialization.
1183      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1184      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1185      std::vector<Function*>().swap(FunctionsWithBodies);
1186      return false;
1187    }
1188
1189    if (Code == bitc::ENTER_SUBBLOCK) {
1190      switch (Stream.ReadSubBlockID()) {
1191      default:  // Skip unknown content.
1192        if (Stream.SkipBlock())
1193          return Error("Malformed block record");
1194        break;
1195      case bitc::BLOCKINFO_BLOCK_ID:
1196        if (Stream.ReadBlockInfoBlock())
1197          return Error("Malformed BlockInfoBlock");
1198        break;
1199      case bitc::PARAMATTR_BLOCK_ID:
1200        if (ParseAttributeBlock())
1201          return true;
1202        break;
1203      case bitc::TYPE_BLOCK_ID:
1204        if (ParseTypeTable())
1205          return true;
1206        break;
1207      case bitc::TYPE_SYMTAB_BLOCK_ID:
1208        if (ParseTypeSymbolTable())
1209          return true;
1210        break;
1211      case bitc::VALUE_SYMTAB_BLOCK_ID:
1212        if (ParseValueSymbolTable())
1213          return true;
1214        break;
1215      case bitc::CONSTANTS_BLOCK_ID:
1216        if (ParseConstants() || ResolveGlobalAndAliasInits())
1217          return true;
1218        break;
1219      case bitc::METADATA_BLOCK_ID:
1220        if (ParseMetadata())
1221          return true;
1222        break;
1223      case bitc::FUNCTION_BLOCK_ID:
1224        // If this is the first function body we've seen, reverse the
1225        // FunctionsWithBodies list.
1226        if (!HasReversedFunctionsWithBodies) {
1227          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1228          HasReversedFunctionsWithBodies = true;
1229        }
1230
1231        if (RememberAndSkipFunctionBody())
1232          return true;
1233        break;
1234      }
1235      continue;
1236    }
1237
1238    if (Code == bitc::DEFINE_ABBREV) {
1239      Stream.ReadAbbrevRecord();
1240      continue;
1241    }
1242
1243    // Read a record.
1244    switch (Stream.ReadRecord(Code, Record)) {
1245    default: break;  // Default behavior, ignore unknown content.
1246    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1247      if (Record.size() < 1)
1248        return Error("Malformed MODULE_CODE_VERSION");
1249      // Only version #0 is supported so far.
1250      if (Record[0] != 0)
1251        return Error("Unknown bitstream version!");
1252      break;
1253    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1254      std::string S;
1255      if (ConvertToString(Record, 0, S))
1256        return Error("Invalid MODULE_CODE_TRIPLE record");
1257      TheModule->setTargetTriple(S);
1258      break;
1259    }
1260    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1261      std::string S;
1262      if (ConvertToString(Record, 0, S))
1263        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1264      TheModule->setDataLayout(S);
1265      break;
1266    }
1267    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1268      std::string S;
1269      if (ConvertToString(Record, 0, S))
1270        return Error("Invalid MODULE_CODE_ASM record");
1271      TheModule->setModuleInlineAsm(S);
1272      break;
1273    }
1274    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1275      std::string S;
1276      if (ConvertToString(Record, 0, S))
1277        return Error("Invalid MODULE_CODE_DEPLIB record");
1278      TheModule->addLibrary(S);
1279      break;
1280    }
1281    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1282      std::string S;
1283      if (ConvertToString(Record, 0, S))
1284        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1285      SectionTable.push_back(S);
1286      break;
1287    }
1288    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1289      std::string S;
1290      if (ConvertToString(Record, 0, S))
1291        return Error("Invalid MODULE_CODE_GCNAME record");
1292      GCTable.push_back(S);
1293      break;
1294    }
1295    // GLOBALVAR: [pointer type, isconst, initid,
1296    //             linkage, alignment, section, visibility, threadlocal]
1297    case bitc::MODULE_CODE_GLOBALVAR: {
1298      if (Record.size() < 6)
1299        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1300      const Type *Ty = getTypeByID(Record[0]);
1301      if (!isa<PointerType>(Ty))
1302        return Error("Global not a pointer type!");
1303      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1304      Ty = cast<PointerType>(Ty)->getElementType();
1305
1306      bool isConstant = Record[1];
1307      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1308      unsigned Alignment = (1 << Record[4]) >> 1;
1309      std::string Section;
1310      if (Record[5]) {
1311        if (Record[5]-1 >= SectionTable.size())
1312          return Error("Invalid section ID");
1313        Section = SectionTable[Record[5]-1];
1314      }
1315      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1316      if (Record.size() > 6)
1317        Visibility = GetDecodedVisibility(Record[6]);
1318      bool isThreadLocal = false;
1319      if (Record.size() > 7)
1320        isThreadLocal = Record[7];
1321
1322      GlobalVariable *NewGV =
1323        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1324                           isThreadLocal, AddressSpace);
1325      NewGV->setAlignment(Alignment);
1326      if (!Section.empty())
1327        NewGV->setSection(Section);
1328      NewGV->setVisibility(Visibility);
1329      NewGV->setThreadLocal(isThreadLocal);
1330
1331      ValueList.push_back(NewGV);
1332
1333      // Remember which value to use for the global initializer.
1334      if (unsigned InitID = Record[2])
1335        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1336      break;
1337    }
1338    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1339    //             alignment, section, visibility, gc]
1340    case bitc::MODULE_CODE_FUNCTION: {
1341      if (Record.size() < 8)
1342        return Error("Invalid MODULE_CODE_FUNCTION record");
1343      const Type *Ty = getTypeByID(Record[0]);
1344      if (!isa<PointerType>(Ty))
1345        return Error("Function not a pointer type!");
1346      const FunctionType *FTy =
1347        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1348      if (!FTy)
1349        return Error("Function not a pointer to function type!");
1350
1351      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1352                                        "", TheModule);
1353
1354      Func->setCallingConv(Record[1]);
1355      bool isProto = Record[2];
1356      Func->setLinkage(GetDecodedLinkage(Record[3]));
1357      Func->setAttributes(getAttributes(Record[4]));
1358
1359      Func->setAlignment((1 << Record[5]) >> 1);
1360      if (Record[6]) {
1361        if (Record[6]-1 >= SectionTable.size())
1362          return Error("Invalid section ID");
1363        Func->setSection(SectionTable[Record[6]-1]);
1364      }
1365      Func->setVisibility(GetDecodedVisibility(Record[7]));
1366      if (Record.size() > 8 && Record[8]) {
1367        if (Record[8]-1 > GCTable.size())
1368          return Error("Invalid GC ID");
1369        Func->setGC(GCTable[Record[8]-1].c_str());
1370      }
1371      ValueList.push_back(Func);
1372
1373      // If this is a function with a body, remember the prototype we are
1374      // creating now, so that we can match up the body with them later.
1375      if (!isProto)
1376        FunctionsWithBodies.push_back(Func);
1377      break;
1378    }
1379    // ALIAS: [alias type, aliasee val#, linkage]
1380    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1381    case bitc::MODULE_CODE_ALIAS: {
1382      if (Record.size() < 3)
1383        return Error("Invalid MODULE_ALIAS record");
1384      const Type *Ty = getTypeByID(Record[0]);
1385      if (!isa<PointerType>(Ty))
1386        return Error("Function not a pointer type!");
1387
1388      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1389                                           "", 0, TheModule);
1390      // Old bitcode files didn't have visibility field.
1391      if (Record.size() > 3)
1392        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1393      ValueList.push_back(NewGA);
1394      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1395      break;
1396    }
1397    /// MODULE_CODE_PURGEVALS: [numvals]
1398    case bitc::MODULE_CODE_PURGEVALS:
1399      // Trim down the value list to the specified size.
1400      if (Record.size() < 1 || Record[0] > ValueList.size())
1401        return Error("Invalid MODULE_PURGEVALS record");
1402      ValueList.shrinkTo(Record[0]);
1403      break;
1404    }
1405    Record.clear();
1406  }
1407
1408  return Error("Premature end of bitstream");
1409}
1410
1411bool BitcodeReader::ParseBitcode() {
1412  TheModule = 0;
1413
1414  if (Buffer->getBufferSize() & 3)
1415    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1416
1417  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1418  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1419
1420  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1421  // The magic number is 0x0B17C0DE stored in little endian.
1422  if (isBitcodeWrapper(BufPtr, BufEnd))
1423    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1424      return Error("Invalid bitcode wrapper header");
1425
1426  StreamFile.init(BufPtr, BufEnd);
1427  Stream.init(StreamFile);
1428
1429  // Sniff for the signature.
1430  if (Stream.Read(8) != 'B' ||
1431      Stream.Read(8) != 'C' ||
1432      Stream.Read(4) != 0x0 ||
1433      Stream.Read(4) != 0xC ||
1434      Stream.Read(4) != 0xE ||
1435      Stream.Read(4) != 0xD)
1436    return Error("Invalid bitcode signature");
1437
1438  // We expect a number of well-defined blocks, though we don't necessarily
1439  // need to understand them all.
1440  while (!Stream.AtEndOfStream()) {
1441    unsigned Code = Stream.ReadCode();
1442
1443    if (Code != bitc::ENTER_SUBBLOCK)
1444      return Error("Invalid record at top-level");
1445
1446    unsigned BlockID = Stream.ReadSubBlockID();
1447
1448    // We only know the MODULE subblock ID.
1449    switch (BlockID) {
1450    case bitc::BLOCKINFO_BLOCK_ID:
1451      if (Stream.ReadBlockInfoBlock())
1452        return Error("Malformed BlockInfoBlock");
1453      break;
1454    case bitc::MODULE_BLOCK_ID:
1455      if (ParseModule(Buffer->getBufferIdentifier()))
1456        return true;
1457      break;
1458    default:
1459      if (Stream.SkipBlock())
1460        return Error("Malformed block record");
1461      break;
1462    }
1463  }
1464
1465  return false;
1466}
1467
1468
1469/// ParseFunctionBody - Lazily parse the specified function body block.
1470bool BitcodeReader::ParseFunctionBody(Function *F) {
1471  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1472    return Error("Malformed block record");
1473
1474  unsigned ModuleValueListSize = ValueList.size();
1475
1476  // Add all the function arguments to the value table.
1477  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1478    ValueList.push_back(I);
1479
1480  unsigned NextValueNo = ValueList.size();
1481  BasicBlock *CurBB = 0;
1482  unsigned CurBBNo = 0;
1483
1484  // Read all the records.
1485  SmallVector<uint64_t, 64> Record;
1486  while (1) {
1487    unsigned Code = Stream.ReadCode();
1488    if (Code == bitc::END_BLOCK) {
1489      if (Stream.ReadBlockEnd())
1490        return Error("Error at end of function block");
1491      break;
1492    }
1493
1494    if (Code == bitc::ENTER_SUBBLOCK) {
1495      switch (Stream.ReadSubBlockID()) {
1496      default:  // Skip unknown content.
1497        if (Stream.SkipBlock())
1498          return Error("Malformed block record");
1499        break;
1500      case bitc::CONSTANTS_BLOCK_ID:
1501        if (ParseConstants()) return true;
1502        NextValueNo = ValueList.size();
1503        break;
1504      case bitc::VALUE_SYMTAB_BLOCK_ID:
1505        if (ParseValueSymbolTable()) return true;
1506        break;
1507      }
1508      continue;
1509    }
1510
1511    if (Code == bitc::DEFINE_ABBREV) {
1512      Stream.ReadAbbrevRecord();
1513      continue;
1514    }
1515
1516    // Read a record.
1517    Record.clear();
1518    Instruction *I = 0;
1519    unsigned BitCode = Stream.ReadRecord(Code, Record);
1520    switch (BitCode) {
1521    default: // Default behavior: reject
1522      return Error("Unknown instruction");
1523    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1524      if (Record.size() < 1 || Record[0] == 0)
1525        return Error("Invalid DECLAREBLOCKS record");
1526      // Create all the basic blocks for the function.
1527      FunctionBBs.resize(Record[0]);
1528      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1529        FunctionBBs[i] = BasicBlock::Create("", F);
1530      CurBB = FunctionBBs[0];
1531      continue;
1532
1533    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1534      unsigned OpNum = 0;
1535      Value *LHS, *RHS;
1536      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1537          getValue(Record, OpNum, LHS->getType(), RHS) ||
1538          OpNum+1 > Record.size())
1539        return Error("Invalid BINOP record");
1540
1541      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1542      if (Opc == -1) return Error("Invalid BINOP record");
1543      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1544      if (OpNum < Record.size())
1545        SetOptimizationFlags(I, Record[3]);
1546      break;
1547    }
1548    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1549      unsigned OpNum = 0;
1550      Value *Op;
1551      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1552          OpNum+2 != Record.size())
1553        return Error("Invalid CAST record");
1554
1555      const Type *ResTy = getTypeByID(Record[OpNum]);
1556      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1557      if (Opc == -1 || ResTy == 0)
1558        return Error("Invalid CAST record");
1559      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1560      break;
1561    }
1562    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1563    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1564      unsigned OpNum = 0;
1565      Value *BasePtr;
1566      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1567        return Error("Invalid GEP record");
1568
1569      SmallVector<Value*, 16> GEPIdx;
1570      while (OpNum != Record.size()) {
1571        Value *Op;
1572        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1573          return Error("Invalid GEP record");
1574        GEPIdx.push_back(Op);
1575      }
1576
1577      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1578      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1579        cast<GEPOperator>(I)->setIsInBounds(true);
1580      break;
1581    }
1582
1583    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1584                                       // EXTRACTVAL: [opty, opval, n x indices]
1585      unsigned OpNum = 0;
1586      Value *Agg;
1587      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1588        return Error("Invalid EXTRACTVAL record");
1589
1590      SmallVector<unsigned, 4> EXTRACTVALIdx;
1591      for (unsigned RecSize = Record.size();
1592           OpNum != RecSize; ++OpNum) {
1593        uint64_t Index = Record[OpNum];
1594        if ((unsigned)Index != Index)
1595          return Error("Invalid EXTRACTVAL index");
1596        EXTRACTVALIdx.push_back((unsigned)Index);
1597      }
1598
1599      I = ExtractValueInst::Create(Agg,
1600                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1601      break;
1602    }
1603
1604    case bitc::FUNC_CODE_INST_INSERTVAL: {
1605                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1606      unsigned OpNum = 0;
1607      Value *Agg;
1608      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1609        return Error("Invalid INSERTVAL record");
1610      Value *Val;
1611      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1612        return Error("Invalid INSERTVAL record");
1613
1614      SmallVector<unsigned, 4> INSERTVALIdx;
1615      for (unsigned RecSize = Record.size();
1616           OpNum != RecSize; ++OpNum) {
1617        uint64_t Index = Record[OpNum];
1618        if ((unsigned)Index != Index)
1619          return Error("Invalid INSERTVAL index");
1620        INSERTVALIdx.push_back((unsigned)Index);
1621      }
1622
1623      I = InsertValueInst::Create(Agg, Val,
1624                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1625      break;
1626    }
1627
1628    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1629      // obsolete form of select
1630      // handles select i1 ... in old bitcode
1631      unsigned OpNum = 0;
1632      Value *TrueVal, *FalseVal, *Cond;
1633      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1634          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1635          getValue(Record, OpNum, Type::Int1Ty, Cond))
1636        return Error("Invalid SELECT record");
1637
1638      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1639      break;
1640    }
1641
1642    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1643      // new form of select
1644      // handles select i1 or select [N x i1]
1645      unsigned OpNum = 0;
1646      Value *TrueVal, *FalseVal, *Cond;
1647      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1648          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1649          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1650        return Error("Invalid SELECT record");
1651
1652      // select condition can be either i1 or [N x i1]
1653      if (const VectorType* vector_type =
1654          dyn_cast<const VectorType>(Cond->getType())) {
1655        // expect <n x i1>
1656        if (vector_type->getElementType() != Type::Int1Ty)
1657          return Error("Invalid SELECT condition type");
1658      } else {
1659        // expect i1
1660        if (Cond->getType() != Type::Int1Ty)
1661          return Error("Invalid SELECT condition type");
1662      }
1663
1664      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1665      break;
1666    }
1667
1668    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1669      unsigned OpNum = 0;
1670      Value *Vec, *Idx;
1671      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1672          getValue(Record, OpNum, Type::Int32Ty, Idx))
1673        return Error("Invalid EXTRACTELT record");
1674      I = ExtractElementInst::Create(Vec, Idx);
1675      break;
1676    }
1677
1678    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1679      unsigned OpNum = 0;
1680      Value *Vec, *Elt, *Idx;
1681      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1682          getValue(Record, OpNum,
1683                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1684          getValue(Record, OpNum, Type::Int32Ty, Idx))
1685        return Error("Invalid INSERTELT record");
1686      I = InsertElementInst::Create(Vec, Elt, Idx);
1687      break;
1688    }
1689
1690    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1691      unsigned OpNum = 0;
1692      Value *Vec1, *Vec2, *Mask;
1693      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1694          getValue(Record, OpNum, Vec1->getType(), Vec2))
1695        return Error("Invalid SHUFFLEVEC record");
1696
1697      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1698        return Error("Invalid SHUFFLEVEC record");
1699      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1700      break;
1701    }
1702
1703    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1704      // Old form of ICmp/FCmp returning bool
1705      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1706      // both legal on vectors but had different behaviour.
1707    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1708      // FCmp/ICmp returning bool or vector of bool
1709
1710      unsigned OpNum = 0;
1711      Value *LHS, *RHS;
1712      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1713          getValue(Record, OpNum, LHS->getType(), RHS) ||
1714          OpNum+1 != Record.size())
1715        return Error("Invalid CMP record");
1716
1717      if (LHS->getType()->isFPOrFPVector())
1718        I = new FCmpInst(Context, (FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1719      else
1720        I = new ICmpInst(Context, (ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1721      break;
1722    }
1723
1724    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1725      if (Record.size() != 2)
1726        return Error("Invalid GETRESULT record");
1727      unsigned OpNum = 0;
1728      Value *Op;
1729      getValueTypePair(Record, OpNum, NextValueNo, Op);
1730      unsigned Index = Record[1];
1731      I = ExtractValueInst::Create(Op, Index);
1732      break;
1733    }
1734
1735    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1736      {
1737        unsigned Size = Record.size();
1738        if (Size == 0) {
1739          I = ReturnInst::Create();
1740          break;
1741        }
1742
1743        unsigned OpNum = 0;
1744        SmallVector<Value *,4> Vs;
1745        do {
1746          Value *Op = NULL;
1747          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1748            return Error("Invalid RET record");
1749          Vs.push_back(Op);
1750        } while(OpNum != Record.size());
1751
1752        const Type *ReturnType = F->getReturnType();
1753        if (Vs.size() > 1 ||
1754            (isa<StructType>(ReturnType) &&
1755             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1756          Value *RV = Context.getUndef(ReturnType);
1757          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1758            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1759            CurBB->getInstList().push_back(I);
1760            ValueList.AssignValue(I, NextValueNo++);
1761            RV = I;
1762          }
1763          I = ReturnInst::Create(RV);
1764          break;
1765        }
1766
1767        I = ReturnInst::Create(Vs[0]);
1768        break;
1769      }
1770    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1771      if (Record.size() != 1 && Record.size() != 3)
1772        return Error("Invalid BR record");
1773      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1774      if (TrueDest == 0)
1775        return Error("Invalid BR record");
1776
1777      if (Record.size() == 1)
1778        I = BranchInst::Create(TrueDest);
1779      else {
1780        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1781        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1782        if (FalseDest == 0 || Cond == 0)
1783          return Error("Invalid BR record");
1784        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1785      }
1786      break;
1787    }
1788    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1789      if (Record.size() < 3 || (Record.size() & 1) == 0)
1790        return Error("Invalid SWITCH record");
1791      const Type *OpTy = getTypeByID(Record[0]);
1792      Value *Cond = getFnValueByID(Record[1], OpTy);
1793      BasicBlock *Default = getBasicBlock(Record[2]);
1794      if (OpTy == 0 || Cond == 0 || Default == 0)
1795        return Error("Invalid SWITCH record");
1796      unsigned NumCases = (Record.size()-3)/2;
1797      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1798      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1799        ConstantInt *CaseVal =
1800          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1801        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1802        if (CaseVal == 0 || DestBB == 0) {
1803          delete SI;
1804          return Error("Invalid SWITCH record!");
1805        }
1806        SI->addCase(CaseVal, DestBB);
1807      }
1808      I = SI;
1809      break;
1810    }
1811
1812    case bitc::FUNC_CODE_INST_INVOKE: {
1813      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1814      if (Record.size() < 4) return Error("Invalid INVOKE record");
1815      AttrListPtr PAL = getAttributes(Record[0]);
1816      unsigned CCInfo = Record[1];
1817      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1818      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1819
1820      unsigned OpNum = 4;
1821      Value *Callee;
1822      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1823        return Error("Invalid INVOKE record");
1824
1825      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1826      const FunctionType *FTy = !CalleeTy ? 0 :
1827        dyn_cast<FunctionType>(CalleeTy->getElementType());
1828
1829      // Check that the right number of fixed parameters are here.
1830      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1831          Record.size() < OpNum+FTy->getNumParams())
1832        return Error("Invalid INVOKE record");
1833
1834      SmallVector<Value*, 16> Ops;
1835      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1836        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1837        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1838      }
1839
1840      if (!FTy->isVarArg()) {
1841        if (Record.size() != OpNum)
1842          return Error("Invalid INVOKE record");
1843      } else {
1844        // Read type/value pairs for varargs params.
1845        while (OpNum != Record.size()) {
1846          Value *Op;
1847          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1848            return Error("Invalid INVOKE record");
1849          Ops.push_back(Op);
1850        }
1851      }
1852
1853      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1854                             Ops.begin(), Ops.end());
1855      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1856      cast<InvokeInst>(I)->setAttributes(PAL);
1857      break;
1858    }
1859    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1860      I = new UnwindInst();
1861      break;
1862    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1863      I = new UnreachableInst();
1864      break;
1865    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1866      if (Record.size() < 1 || ((Record.size()-1)&1))
1867        return Error("Invalid PHI record");
1868      const Type *Ty = getTypeByID(Record[0]);
1869      if (!Ty) return Error("Invalid PHI record");
1870
1871      PHINode *PN = PHINode::Create(Ty);
1872      PN->reserveOperandSpace((Record.size()-1)/2);
1873
1874      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1875        Value *V = getFnValueByID(Record[1+i], Ty);
1876        BasicBlock *BB = getBasicBlock(Record[2+i]);
1877        if (!V || !BB) return Error("Invalid PHI record");
1878        PN->addIncoming(V, BB);
1879      }
1880      I = PN;
1881      break;
1882    }
1883
1884    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1885      if (Record.size() < 3)
1886        return Error("Invalid MALLOC record");
1887      const PointerType *Ty =
1888        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1889      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1890      unsigned Align = Record[2];
1891      if (!Ty || !Size) return Error("Invalid MALLOC record");
1892      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1893      break;
1894    }
1895    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1896      unsigned OpNum = 0;
1897      Value *Op;
1898      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1899          OpNum != Record.size())
1900        return Error("Invalid FREE record");
1901      I = new FreeInst(Op);
1902      break;
1903    }
1904    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1905      if (Record.size() < 3)
1906        return Error("Invalid ALLOCA record");
1907      const PointerType *Ty =
1908        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1909      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1910      unsigned Align = Record[2];
1911      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1912      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1913      break;
1914    }
1915    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1916      unsigned OpNum = 0;
1917      Value *Op;
1918      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1919          OpNum+2 != Record.size())
1920        return Error("Invalid LOAD record");
1921
1922      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1923      break;
1924    }
1925    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1926      unsigned OpNum = 0;
1927      Value *Val, *Ptr;
1928      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1929          getValue(Record, OpNum,
1930                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1931          OpNum+2 != Record.size())
1932        return Error("Invalid STORE record");
1933
1934      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1935      break;
1936    }
1937    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1938      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1939      unsigned OpNum = 0;
1940      Value *Val, *Ptr;
1941      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1942          getValue(Record, OpNum,
1943                   Context.getPointerTypeUnqual(Val->getType()), Ptr)||
1944          OpNum+2 != Record.size())
1945        return Error("Invalid STORE record");
1946
1947      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1948      break;
1949    }
1950    case bitc::FUNC_CODE_INST_CALL: {
1951      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1952      if (Record.size() < 3)
1953        return Error("Invalid CALL record");
1954
1955      AttrListPtr PAL = getAttributes(Record[0]);
1956      unsigned CCInfo = Record[1];
1957
1958      unsigned OpNum = 2;
1959      Value *Callee;
1960      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1961        return Error("Invalid CALL record");
1962
1963      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1964      const FunctionType *FTy = 0;
1965      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1966      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1967        return Error("Invalid CALL record");
1968
1969      SmallVector<Value*, 16> Args;
1970      // Read the fixed params.
1971      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1972        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1973          Args.push_back(getBasicBlock(Record[OpNum]));
1974        else
1975          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1976        if (Args.back() == 0) return Error("Invalid CALL record");
1977      }
1978
1979      // Read type/value pairs for varargs params.
1980      if (!FTy->isVarArg()) {
1981        if (OpNum != Record.size())
1982          return Error("Invalid CALL record");
1983      } else {
1984        while (OpNum != Record.size()) {
1985          Value *Op;
1986          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1987            return Error("Invalid CALL record");
1988          Args.push_back(Op);
1989        }
1990      }
1991
1992      I = CallInst::Create(Callee, Args.begin(), Args.end());
1993      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1994      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1995      cast<CallInst>(I)->setAttributes(PAL);
1996      break;
1997    }
1998    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1999      if (Record.size() < 3)
2000        return Error("Invalid VAARG record");
2001      const Type *OpTy = getTypeByID(Record[0]);
2002      Value *Op = getFnValueByID(Record[1], OpTy);
2003      const Type *ResTy = getTypeByID(Record[2]);
2004      if (!OpTy || !Op || !ResTy)
2005        return Error("Invalid VAARG record");
2006      I = new VAArgInst(Op, ResTy);
2007      break;
2008    }
2009    }
2010
2011    // Add instruction to end of current BB.  If there is no current BB, reject
2012    // this file.
2013    if (CurBB == 0) {
2014      delete I;
2015      return Error("Invalid instruction with no BB");
2016    }
2017    CurBB->getInstList().push_back(I);
2018
2019    // If this was a terminator instruction, move to the next block.
2020    if (isa<TerminatorInst>(I)) {
2021      ++CurBBNo;
2022      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2023    }
2024
2025    // Non-void values get registered in the value table for future use.
2026    if (I && I->getType() != Type::VoidTy)
2027      ValueList.AssignValue(I, NextValueNo++);
2028  }
2029
2030  // Check the function list for unresolved values.
2031  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2032    if (A->getParent() == 0) {
2033      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2034      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2035        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2036          A->replaceAllUsesWith(Context.getUndef(A->getType()));
2037          delete A;
2038        }
2039      }
2040      return Error("Never resolved value found in function!");
2041    }
2042  }
2043
2044  // Trim the value list down to the size it was before we parsed this function.
2045  ValueList.shrinkTo(ModuleValueListSize);
2046  std::vector<BasicBlock*>().swap(FunctionBBs);
2047
2048  return false;
2049}
2050
2051//===----------------------------------------------------------------------===//
2052// ModuleProvider implementation
2053//===----------------------------------------------------------------------===//
2054
2055
2056bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2057  // If it already is material, ignore the request.
2058  if (!F->hasNotBeenReadFromBitcode()) return false;
2059
2060  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2061    DeferredFunctionInfo.find(F);
2062  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2063
2064  // Move the bit stream to the saved position of the deferred function body and
2065  // restore the real linkage type for the function.
2066  Stream.JumpToBit(DFII->second.first);
2067  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2068
2069  if (ParseFunctionBody(F)) {
2070    if (ErrInfo) *ErrInfo = ErrorString;
2071    return true;
2072  }
2073
2074  // Upgrade any old intrinsic calls in the function.
2075  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2076       E = UpgradedIntrinsics.end(); I != E; ++I) {
2077    if (I->first != I->second) {
2078      for (Value::use_iterator UI = I->first->use_begin(),
2079           UE = I->first->use_end(); UI != UE; ) {
2080        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2081          UpgradeIntrinsicCall(CI, I->second);
2082      }
2083    }
2084  }
2085
2086  return false;
2087}
2088
2089void BitcodeReader::dematerializeFunction(Function *F) {
2090  // If this function isn't materialized, or if it is a proto, this is a noop.
2091  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2092    return;
2093
2094  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2095
2096  // Just forget the function body, we can remat it later.
2097  F->deleteBody();
2098  F->setLinkage(GlobalValue::GhostLinkage);
2099}
2100
2101
2102Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2103  // Iterate over the module, deserializing any functions that are still on
2104  // disk.
2105  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2106       F != E; ++F)
2107    if (F->hasNotBeenReadFromBitcode() &&
2108        materializeFunction(F, ErrInfo))
2109      return 0;
2110
2111  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2112  // delete the old functions to clean up. We can't do this unless the entire
2113  // module is materialized because there could always be another function body
2114  // with calls to the old function.
2115  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2116       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2117    if (I->first != I->second) {
2118      for (Value::use_iterator UI = I->first->use_begin(),
2119           UE = I->first->use_end(); UI != UE; ) {
2120        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2121          UpgradeIntrinsicCall(CI, I->second);
2122      }
2123      if (!I->first->use_empty())
2124        I->first->replaceAllUsesWith(I->second);
2125      I->first->eraseFromParent();
2126    }
2127  }
2128  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2129
2130  return TheModule;
2131}
2132
2133
2134/// This method is provided by the parent ModuleProvde class and overriden
2135/// here. It simply releases the module from its provided and frees up our
2136/// state.
2137/// @brief Release our hold on the generated module
2138Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2139  // Since we're losing control of this Module, we must hand it back complete
2140  Module *M = ModuleProvider::releaseModule(ErrInfo);
2141  FreeState();
2142  return M;
2143}
2144
2145
2146//===----------------------------------------------------------------------===//
2147// External interface
2148//===----------------------------------------------------------------------===//
2149
2150/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2151///
2152ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2153                                               LLVMContext& Context,
2154                                               std::string *ErrMsg) {
2155  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2156  if (R->ParseBitcode()) {
2157    if (ErrMsg)
2158      *ErrMsg = R->getErrorString();
2159
2160    // Don't let the BitcodeReader dtor delete 'Buffer'.
2161    R->releaseMemoryBuffer();
2162    delete R;
2163    return 0;
2164  }
2165  return R;
2166}
2167
2168/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2169/// If an error occurs, return null and fill in *ErrMsg if non-null.
2170Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2171                               std::string *ErrMsg){
2172  BitcodeReader *R;
2173  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2174                                                           ErrMsg));
2175  if (!R) return 0;
2176
2177  // Read in the entire module.
2178  Module *M = R->materializeModule(ErrMsg);
2179
2180  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2181  // there was an error.
2182  R->releaseMemoryBuffer();
2183
2184  // If there was no error, tell ModuleProvider not to delete it when its dtor
2185  // is run.
2186  if (M)
2187    M = R->releaseModule(ErrMsg);
2188
2189  delete R;
2190  return M;
2191}
2192