BitcodeReader.cpp revision 1b25cb2416c46a6cebf2a6c52235e9fe46a10d11
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/AutoUpgrade.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26#include "llvm/OperandTraits.h"
27using namespace llvm;
28
29void BitcodeReader::FreeState() {
30  delete Buffer;
31  Buffer = 0;
32  std::vector<PATypeHolder>().swap(TypeList);
33  ValueList.clear();
34
35  std::vector<AttrListPtr>().swap(MAttributes);
36  std::vector<BasicBlock*>().swap(FunctionBBs);
37  std::vector<Function*>().swap(FunctionsWithBodies);
38  DeferredFunctionInfo.clear();
39}
40
41//===----------------------------------------------------------------------===//
42//  Helper functions to implement forward reference resolution, etc.
43//===----------------------------------------------------------------------===//
44
45/// ConvertToString - Convert a string from a record into an std::string, return
46/// true on failure.
47template<typename StrTy>
48static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49                            StrTy &Result) {
50  if (Idx > Record.size())
51    return true;
52
53  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54    Result += (char)Record[i];
55  return false;
56}
57
58static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59  switch (Val) {
60  default: // Map unknown/new linkages to external
61  case 0: return GlobalValue::ExternalLinkage;
62  case 1: return GlobalValue::WeakAnyLinkage;
63  case 2: return GlobalValue::AppendingLinkage;
64  case 3: return GlobalValue::InternalLinkage;
65  case 4: return GlobalValue::LinkOnceAnyLinkage;
66  case 5: return GlobalValue::DLLImportLinkage;
67  case 6: return GlobalValue::DLLExportLinkage;
68  case 7: return GlobalValue::ExternalWeakLinkage;
69  case 8: return GlobalValue::CommonLinkage;
70  case 9: return GlobalValue::PrivateLinkage;
71  case 10: return GlobalValue::WeakODRLinkage;
72  case 11: return GlobalValue::LinkOnceODRLinkage;
73  }
74}
75
76static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
77  switch (Val) {
78  default: // Map unknown visibilities to default.
79  case 0: return GlobalValue::DefaultVisibility;
80  case 1: return GlobalValue::HiddenVisibility;
81  case 2: return GlobalValue::ProtectedVisibility;
82  }
83}
84
85static int GetDecodedCastOpcode(unsigned Val) {
86  switch (Val) {
87  default: return -1;
88  case bitc::CAST_TRUNC   : return Instruction::Trunc;
89  case bitc::CAST_ZEXT    : return Instruction::ZExt;
90  case bitc::CAST_SEXT    : return Instruction::SExt;
91  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
92  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
93  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
94  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
95  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
96  case bitc::CAST_FPEXT   : return Instruction::FPExt;
97  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
98  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
99  case bitc::CAST_BITCAST : return Instruction::BitCast;
100  }
101}
102static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
103  switch (Val) {
104  default: return -1;
105  case bitc::BINOP_ADD:  return Instruction::Add;
106  case bitc::BINOP_SUB:  return Instruction::Sub;
107  case bitc::BINOP_MUL:  return Instruction::Mul;
108  case bitc::BINOP_UDIV: return Instruction::UDiv;
109  case bitc::BINOP_SDIV:
110    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
111  case bitc::BINOP_UREM: return Instruction::URem;
112  case bitc::BINOP_SREM:
113    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
114  case bitc::BINOP_SHL:  return Instruction::Shl;
115  case bitc::BINOP_LSHR: return Instruction::LShr;
116  case bitc::BINOP_ASHR: return Instruction::AShr;
117  case bitc::BINOP_AND:  return Instruction::And;
118  case bitc::BINOP_OR:   return Instruction::Or;
119  case bitc::BINOP_XOR:  return Instruction::Xor;
120  }
121}
122
123namespace llvm {
124namespace {
125  /// @brief A class for maintaining the slot number definition
126  /// as a placeholder for the actual definition for forward constants defs.
127  class ConstantPlaceHolder : public ConstantExpr {
128    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
129    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
130  public:
131    // allocate space for exactly one operand
132    void *operator new(size_t s) {
133      return User::operator new(s, 1);
134    }
135    explicit ConstantPlaceHolder(const Type *Ty)
136      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
137      Op<0>() = UndefValue::get(Type::Int32Ty);
138    }
139
140    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
141    static inline bool classof(const ConstantPlaceHolder *) { return true; }
142    static bool classof(const Value *V) {
143      return isa<ConstantExpr>(V) &&
144             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
145    }
146
147
148    /// Provide fast operand accessors
149    DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
150  };
151}
152
153
154  // FIXME: can we inherit this from ConstantExpr?
155template <>
156struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
157};
158
159DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
160}
161
162void BitcodeReaderValueList::resize(unsigned Desired) {
163  if (Desired > Capacity) {
164    // Since we expect many values to come from the bitcode file we better
165    // allocate the double amount, so that the array size grows exponentially
166    // at each reallocation.  Also, add a small amount of 100 extra elements
167    // each time, to reallocate less frequently when the array is still small.
168    //
169    Capacity = Desired * 2 + 100;
170    Use *New = allocHungoffUses(Capacity);
171    Use *Old = OperandList;
172    unsigned Ops = getNumOperands();
173    for (int i(Ops - 1); i >= 0; --i)
174      New[i] = Old[i].get();
175    OperandList = New;
176    if (Old) Use::zap(Old, Old + Ops, true);
177  }
178}
179
180Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
181                                                    const Type *Ty) {
182  if (Idx >= size()) {
183    // Insert a bunch of null values.
184    resize(Idx + 1);
185    NumOperands = Idx+1;
186  }
187
188  if (Value *V = OperandList[Idx]) {
189    assert(Ty == V->getType() && "Type mismatch in constant table!");
190    return cast<Constant>(V);
191  }
192
193  // Create and return a placeholder, which will later be RAUW'd.
194  Constant *C = new ConstantPlaceHolder(Ty);
195  OperandList[Idx] = C;
196  return C;
197}
198
199Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
200  if (Idx >= size()) {
201    // Insert a bunch of null values.
202    resize(Idx + 1);
203    NumOperands = Idx+1;
204  }
205
206  if (Value *V = OperandList[Idx]) {
207    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
208    return V;
209  }
210
211  // No type specified, must be invalid reference.
212  if (Ty == 0) return 0;
213
214  // Create and return a placeholder, which will later be RAUW'd.
215  Value *V = new Argument(Ty);
216  OperandList[Idx] = V;
217  return V;
218}
219
220/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
221/// resolves any forward references.  The idea behind this is that we sometimes
222/// get constants (such as large arrays) which reference *many* forward ref
223/// constants.  Replacing each of these causes a lot of thrashing when
224/// building/reuniquing the constant.  Instead of doing this, we look at all the
225/// uses and rewrite all the place holders at once for any constant that uses
226/// a placeholder.
227void BitcodeReaderValueList::ResolveConstantForwardRefs() {
228  // Sort the values by-pointer so that they are efficient to look up with a
229  // binary search.
230  std::sort(ResolveConstants.begin(), ResolveConstants.end());
231
232  SmallVector<Constant*, 64> NewOps;
233
234  while (!ResolveConstants.empty()) {
235    Value *RealVal = getOperand(ResolveConstants.back().second);
236    Constant *Placeholder = ResolveConstants.back().first;
237    ResolveConstants.pop_back();
238
239    // Loop over all users of the placeholder, updating them to reference the
240    // new value.  If they reference more than one placeholder, update them all
241    // at once.
242    while (!Placeholder->use_empty()) {
243      Value::use_iterator UI = Placeholder->use_begin();
244
245      // If the using object isn't uniqued, just update the operands.  This
246      // handles instructions and initializers for global variables.
247      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
248        UI.getUse().set(RealVal);
249        continue;
250      }
251
252      // Otherwise, we have a constant that uses the placeholder.  Replace that
253      // constant with a new constant that has *all* placeholder uses updated.
254      Constant *UserC = cast<Constant>(*UI);
255      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
256           I != E; ++I) {
257        Value *NewOp;
258        if (!isa<ConstantPlaceHolder>(*I)) {
259          // Not a placeholder reference.
260          NewOp = *I;
261        } else if (*I == Placeholder) {
262          // Common case is that it just references this one placeholder.
263          NewOp = RealVal;
264        } else {
265          // Otherwise, look up the placeholder in ResolveConstants.
266          ResolveConstantsTy::iterator It =
267            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
268                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
269                                                            0));
270          assert(It != ResolveConstants.end() && It->first == *I);
271          NewOp = this->getOperand(It->second);
272        }
273
274        NewOps.push_back(cast<Constant>(NewOp));
275      }
276
277      // Make the new constant.
278      Constant *NewC;
279      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
280        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
281      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
282        NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
283                                   UserCS->getType()->isPacked());
284      } else if (isa<ConstantVector>(UserC)) {
285        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
286      } else {
287        // Must be a constant expression.
288        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
289                                                          NewOps.size());
290      }
291
292      UserC->replaceAllUsesWith(NewC);
293      UserC->destroyConstant();
294      NewOps.clear();
295    }
296
297    delete Placeholder;
298  }
299}
300
301
302const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
303  // If the TypeID is in range, return it.
304  if (ID < TypeList.size())
305    return TypeList[ID].get();
306  if (!isTypeTable) return 0;
307
308  // The type table allows forward references.  Push as many Opaque types as
309  // needed to get up to ID.
310  while (TypeList.size() <= ID)
311    TypeList.push_back(OpaqueType::get());
312  return TypeList.back().get();
313}
314
315//===----------------------------------------------------------------------===//
316//  Functions for parsing blocks from the bitcode file
317//===----------------------------------------------------------------------===//
318
319bool BitcodeReader::ParseAttributeBlock() {
320  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
321    return Error("Malformed block record");
322
323  if (!MAttributes.empty())
324    return Error("Multiple PARAMATTR blocks found!");
325
326  SmallVector<uint64_t, 64> Record;
327
328  SmallVector<AttributeWithIndex, 8> Attrs;
329
330  // Read all the records.
331  while (1) {
332    unsigned Code = Stream.ReadCode();
333    if (Code == bitc::END_BLOCK) {
334      if (Stream.ReadBlockEnd())
335        return Error("Error at end of PARAMATTR block");
336      return false;
337    }
338
339    if (Code == bitc::ENTER_SUBBLOCK) {
340      // No known subblocks, always skip them.
341      Stream.ReadSubBlockID();
342      if (Stream.SkipBlock())
343        return Error("Malformed block record");
344      continue;
345    }
346
347    if (Code == bitc::DEFINE_ABBREV) {
348      Stream.ReadAbbrevRecord();
349      continue;
350    }
351
352    // Read a record.
353    Record.clear();
354    switch (Stream.ReadRecord(Code, Record)) {
355    default:  // Default behavior: ignore.
356      break;
357    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
358      if (Record.size() & 1)
359        return Error("Invalid ENTRY record");
360
361      // FIXME : Remove this autoupgrade code in LLVM 3.0.
362      // If Function attributes are using index 0 then transfer them
363      // to index ~0. Index 0 is used for return value attributes but used to be
364      // used for function attributes.
365      Attributes RetAttribute = Attribute::None;
366      Attributes FnAttribute = Attribute::None;
367      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
368        // FIXME: remove in LLVM 3.0
369        // The alignment is stored as a 16-bit raw value from bits 31--16.
370        // We shift the bits above 31 down by 11 bits.
371
372        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
373        if (Alignment && !isPowerOf2_32(Alignment))
374          return Error("Alignment is not a power of two.");
375
376        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
377        if (Alignment)
378          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
379        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
380        Record[i+1] = ReconstitutedAttr;
381
382        if (Record[i] == 0)
383          RetAttribute = Record[i+1];
384        else if (Record[i] == ~0U)
385          FnAttribute = Record[i+1];
386      }
387
388      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
389                              Attribute::ReadOnly|Attribute::ReadNone);
390
391      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
392          (RetAttribute & OldRetAttrs) != 0) {
393        if (FnAttribute == Attribute::None) { // add a slot so they get added.
394          Record.push_back(~0U);
395          Record.push_back(0);
396        }
397
398        FnAttribute  |= RetAttribute & OldRetAttrs;
399        RetAttribute &= ~OldRetAttrs;
400      }
401
402      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
403        if (Record[i] == 0) {
404          if (RetAttribute != Attribute::None)
405            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
406        } else if (Record[i] == ~0U) {
407          if (FnAttribute != Attribute::None)
408            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
409        } else if (Record[i+1] != Attribute::None)
410          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
411      }
412
413      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
414      Attrs.clear();
415      break;
416    }
417    }
418  }
419}
420
421
422bool BitcodeReader::ParseTypeTable() {
423  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
424    return Error("Malformed block record");
425
426  if (!TypeList.empty())
427    return Error("Multiple TYPE_BLOCKs found!");
428
429  SmallVector<uint64_t, 64> Record;
430  unsigned NumRecords = 0;
431
432  // Read all the records for this type table.
433  while (1) {
434    unsigned Code = Stream.ReadCode();
435    if (Code == bitc::END_BLOCK) {
436      if (NumRecords != TypeList.size())
437        return Error("Invalid type forward reference in TYPE_BLOCK");
438      if (Stream.ReadBlockEnd())
439        return Error("Error at end of type table block");
440      return false;
441    }
442
443    if (Code == bitc::ENTER_SUBBLOCK) {
444      // No known subblocks, always skip them.
445      Stream.ReadSubBlockID();
446      if (Stream.SkipBlock())
447        return Error("Malformed block record");
448      continue;
449    }
450
451    if (Code == bitc::DEFINE_ABBREV) {
452      Stream.ReadAbbrevRecord();
453      continue;
454    }
455
456    // Read a record.
457    Record.clear();
458    const Type *ResultTy = 0;
459    switch (Stream.ReadRecord(Code, Record)) {
460    default:  // Default behavior: unknown type.
461      ResultTy = 0;
462      break;
463    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
464      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
465      // type list.  This allows us to reserve space.
466      if (Record.size() < 1)
467        return Error("Invalid TYPE_CODE_NUMENTRY record");
468      TypeList.reserve(Record[0]);
469      continue;
470    case bitc::TYPE_CODE_VOID:      // VOID
471      ResultTy = Type::VoidTy;
472      break;
473    case bitc::TYPE_CODE_FLOAT:     // FLOAT
474      ResultTy = Type::FloatTy;
475      break;
476    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
477      ResultTy = Type::DoubleTy;
478      break;
479    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
480      ResultTy = Type::X86_FP80Ty;
481      break;
482    case bitc::TYPE_CODE_FP128:     // FP128
483      ResultTy = Type::FP128Ty;
484      break;
485    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
486      ResultTy = Type::PPC_FP128Ty;
487      break;
488    case bitc::TYPE_CODE_LABEL:     // LABEL
489      ResultTy = Type::LabelTy;
490      break;
491    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
492      ResultTy = 0;
493      break;
494    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
495      if (Record.size() < 1)
496        return Error("Invalid Integer type record");
497
498      ResultTy = IntegerType::get(Record[0]);
499      break;
500    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
501                                    //          [pointee type, address space]
502      if (Record.size() < 1)
503        return Error("Invalid POINTER type record");
504      unsigned AddressSpace = 0;
505      if (Record.size() == 2)
506        AddressSpace = Record[1];
507      ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
508      break;
509    }
510    case bitc::TYPE_CODE_FUNCTION: {
511      // FIXME: attrid is dead, remove it in LLVM 3.0
512      // FUNCTION: [vararg, attrid, retty, paramty x N]
513      if (Record.size() < 3)
514        return Error("Invalid FUNCTION type record");
515      std::vector<const Type*> ArgTys;
516      for (unsigned i = 3, e = Record.size(); i != e; ++i)
517        ArgTys.push_back(getTypeByID(Record[i], true));
518
519      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
520                                   Record[0]);
521      break;
522    }
523    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
524      if (Record.size() < 1)
525        return Error("Invalid STRUCT type record");
526      std::vector<const Type*> EltTys;
527      for (unsigned i = 1, e = Record.size(); i != e; ++i)
528        EltTys.push_back(getTypeByID(Record[i], true));
529      ResultTy = StructType::get(EltTys, Record[0]);
530      break;
531    }
532    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
533      if (Record.size() < 2)
534        return Error("Invalid ARRAY type record");
535      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
536      break;
537    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
538      if (Record.size() < 2)
539        return Error("Invalid VECTOR type record");
540      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
541      break;
542    }
543
544    if (NumRecords == TypeList.size()) {
545      // If this is a new type slot, just append it.
546      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
547      ++NumRecords;
548    } else if (ResultTy == 0) {
549      // Otherwise, this was forward referenced, so an opaque type was created,
550      // but the result type is actually just an opaque.  Leave the one we
551      // created previously.
552      ++NumRecords;
553    } else {
554      // Otherwise, this was forward referenced, so an opaque type was created.
555      // Resolve the opaque type to the real type now.
556      assert(NumRecords < TypeList.size() && "Typelist imbalance");
557      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
558
559      // Don't directly push the new type on the Tab. Instead we want to replace
560      // the opaque type we previously inserted with the new concrete value. The
561      // refinement from the abstract (opaque) type to the new type causes all
562      // uses of the abstract type to use the concrete type (NewTy). This will
563      // also cause the opaque type to be deleted.
564      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
565
566      // This should have replaced the old opaque type with the new type in the
567      // value table... or with a preexisting type that was already in the
568      // system.  Let's just make sure it did.
569      assert(TypeList[NumRecords-1].get() != OldTy &&
570             "refineAbstractType didn't work!");
571    }
572  }
573}
574
575
576bool BitcodeReader::ParseTypeSymbolTable() {
577  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
578    return Error("Malformed block record");
579
580  SmallVector<uint64_t, 64> Record;
581
582  // Read all the records for this type table.
583  std::string TypeName;
584  while (1) {
585    unsigned Code = Stream.ReadCode();
586    if (Code == bitc::END_BLOCK) {
587      if (Stream.ReadBlockEnd())
588        return Error("Error at end of type symbol table block");
589      return false;
590    }
591
592    if (Code == bitc::ENTER_SUBBLOCK) {
593      // No known subblocks, always skip them.
594      Stream.ReadSubBlockID();
595      if (Stream.SkipBlock())
596        return Error("Malformed block record");
597      continue;
598    }
599
600    if (Code == bitc::DEFINE_ABBREV) {
601      Stream.ReadAbbrevRecord();
602      continue;
603    }
604
605    // Read a record.
606    Record.clear();
607    switch (Stream.ReadRecord(Code, Record)) {
608    default:  // Default behavior: unknown type.
609      break;
610    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
611      if (ConvertToString(Record, 1, TypeName))
612        return Error("Invalid TST_ENTRY record");
613      unsigned TypeID = Record[0];
614      if (TypeID >= TypeList.size())
615        return Error("Invalid Type ID in TST_ENTRY record");
616
617      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
618      TypeName.clear();
619      break;
620    }
621  }
622}
623
624bool BitcodeReader::ParseValueSymbolTable() {
625  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
626    return Error("Malformed block record");
627
628  SmallVector<uint64_t, 64> Record;
629
630  // Read all the records for this value table.
631  SmallString<128> ValueName;
632  while (1) {
633    unsigned Code = Stream.ReadCode();
634    if (Code == bitc::END_BLOCK) {
635      if (Stream.ReadBlockEnd())
636        return Error("Error at end of value symbol table block");
637      return false;
638    }
639    if (Code == bitc::ENTER_SUBBLOCK) {
640      // No known subblocks, always skip them.
641      Stream.ReadSubBlockID();
642      if (Stream.SkipBlock())
643        return Error("Malformed block record");
644      continue;
645    }
646
647    if (Code == bitc::DEFINE_ABBREV) {
648      Stream.ReadAbbrevRecord();
649      continue;
650    }
651
652    // Read a record.
653    Record.clear();
654    switch (Stream.ReadRecord(Code, Record)) {
655    default:  // Default behavior: unknown type.
656      break;
657    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
658      if (ConvertToString(Record, 1, ValueName))
659        return Error("Invalid TST_ENTRY record");
660      unsigned ValueID = Record[0];
661      if (ValueID >= ValueList.size())
662        return Error("Invalid Value ID in VST_ENTRY record");
663      Value *V = ValueList[ValueID];
664
665      V->setName(&ValueName[0], ValueName.size());
666      ValueName.clear();
667      break;
668    }
669    case bitc::VST_CODE_BBENTRY: {
670      if (ConvertToString(Record, 1, ValueName))
671        return Error("Invalid VST_BBENTRY record");
672      BasicBlock *BB = getBasicBlock(Record[0]);
673      if (BB == 0)
674        return Error("Invalid BB ID in VST_BBENTRY record");
675
676      BB->setName(&ValueName[0], ValueName.size());
677      ValueName.clear();
678      break;
679    }
680    }
681  }
682}
683
684/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
685/// the LSB for dense VBR encoding.
686static uint64_t DecodeSignRotatedValue(uint64_t V) {
687  if ((V & 1) == 0)
688    return V >> 1;
689  if (V != 1)
690    return -(V >> 1);
691  // There is no such thing as -0 with integers.  "-0" really means MININT.
692  return 1ULL << 63;
693}
694
695/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
696/// values and aliases that we can.
697bool BitcodeReader::ResolveGlobalAndAliasInits() {
698  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
699  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
700
701  GlobalInitWorklist.swap(GlobalInits);
702  AliasInitWorklist.swap(AliasInits);
703
704  while (!GlobalInitWorklist.empty()) {
705    unsigned ValID = GlobalInitWorklist.back().second;
706    if (ValID >= ValueList.size()) {
707      // Not ready to resolve this yet, it requires something later in the file.
708      GlobalInits.push_back(GlobalInitWorklist.back());
709    } else {
710      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
711        GlobalInitWorklist.back().first->setInitializer(C);
712      else
713        return Error("Global variable initializer is not a constant!");
714    }
715    GlobalInitWorklist.pop_back();
716  }
717
718  while (!AliasInitWorklist.empty()) {
719    unsigned ValID = AliasInitWorklist.back().second;
720    if (ValID >= ValueList.size()) {
721      AliasInits.push_back(AliasInitWorklist.back());
722    } else {
723      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
724        AliasInitWorklist.back().first->setAliasee(C);
725      else
726        return Error("Alias initializer is not a constant!");
727    }
728    AliasInitWorklist.pop_back();
729  }
730  return false;
731}
732
733
734bool BitcodeReader::ParseConstants() {
735  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
736    return Error("Malformed block record");
737
738  SmallVector<uint64_t, 64> Record;
739
740  // Read all the records for this value table.
741  const Type *CurTy = Type::Int32Ty;
742  unsigned NextCstNo = ValueList.size();
743  while (1) {
744    unsigned Code = Stream.ReadCode();
745    if (Code == bitc::END_BLOCK)
746      break;
747
748    if (Code == bitc::ENTER_SUBBLOCK) {
749      // No known subblocks, always skip them.
750      Stream.ReadSubBlockID();
751      if (Stream.SkipBlock())
752        return Error("Malformed block record");
753      continue;
754    }
755
756    if (Code == bitc::DEFINE_ABBREV) {
757      Stream.ReadAbbrevRecord();
758      continue;
759    }
760
761    // Read a record.
762    Record.clear();
763    Value *V = 0;
764    switch (Stream.ReadRecord(Code, Record)) {
765    default:  // Default behavior: unknown constant
766    case bitc::CST_CODE_UNDEF:     // UNDEF
767      V = UndefValue::get(CurTy);
768      break;
769    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
770      if (Record.empty())
771        return Error("Malformed CST_SETTYPE record");
772      if (Record[0] >= TypeList.size())
773        return Error("Invalid Type ID in CST_SETTYPE record");
774      CurTy = TypeList[Record[0]];
775      continue;  // Skip the ValueList manipulation.
776    case bitc::CST_CODE_NULL:      // NULL
777      V = Constant::getNullValue(CurTy);
778      break;
779    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
780      if (!isa<IntegerType>(CurTy) || Record.empty())
781        return Error("Invalid CST_INTEGER record");
782      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
783      break;
784    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
785      if (!isa<IntegerType>(CurTy) || Record.empty())
786        return Error("Invalid WIDE_INTEGER record");
787
788      unsigned NumWords = Record.size();
789      SmallVector<uint64_t, 8> Words;
790      Words.resize(NumWords);
791      for (unsigned i = 0; i != NumWords; ++i)
792        Words[i] = DecodeSignRotatedValue(Record[i]);
793      V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
794                                 NumWords, &Words[0]));
795      break;
796    }
797    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
798      if (Record.empty())
799        return Error("Invalid FLOAT record");
800      if (CurTy == Type::FloatTy)
801        V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
802      else if (CurTy == Type::DoubleTy)
803        V = ConstantFP::get(APFloat(APInt(64, Record[0])));
804      else if (CurTy == Type::X86_FP80Ty) {
805        // Bits are not stored the same way as a normal i80 APInt, compensate.
806        uint64_t Rearrange[2];
807        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
808        Rearrange[1] = Record[0] >> 48;
809        V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange)));
810      } else if (CurTy == Type::FP128Ty)
811        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
812      else if (CurTy == Type::PPC_FP128Ty)
813        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
814      else
815        V = UndefValue::get(CurTy);
816      break;
817    }
818
819    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
820      if (Record.empty())
821        return Error("Invalid CST_AGGREGATE record");
822
823      unsigned Size = Record.size();
824      std::vector<Constant*> Elts;
825
826      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
827        for (unsigned i = 0; i != Size; ++i)
828          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
829                                                     STy->getElementType(i)));
830        V = ConstantStruct::get(STy, Elts);
831      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
832        const Type *EltTy = ATy->getElementType();
833        for (unsigned i = 0; i != Size; ++i)
834          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
835        V = ConstantArray::get(ATy, Elts);
836      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
837        const Type *EltTy = VTy->getElementType();
838        for (unsigned i = 0; i != Size; ++i)
839          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
840        V = ConstantVector::get(Elts);
841      } else {
842        V = UndefValue::get(CurTy);
843      }
844      break;
845    }
846    case bitc::CST_CODE_STRING: { // STRING: [values]
847      if (Record.empty())
848        return Error("Invalid CST_AGGREGATE record");
849
850      const ArrayType *ATy = cast<ArrayType>(CurTy);
851      const Type *EltTy = ATy->getElementType();
852
853      unsigned Size = Record.size();
854      std::vector<Constant*> Elts;
855      for (unsigned i = 0; i != Size; ++i)
856        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
857      V = ConstantArray::get(ATy, Elts);
858      break;
859    }
860    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
861      if (Record.empty())
862        return Error("Invalid CST_AGGREGATE record");
863
864      const ArrayType *ATy = cast<ArrayType>(CurTy);
865      const Type *EltTy = ATy->getElementType();
866
867      unsigned Size = Record.size();
868      std::vector<Constant*> Elts;
869      for (unsigned i = 0; i != Size; ++i)
870        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
871      Elts.push_back(Constant::getNullValue(EltTy));
872      V = ConstantArray::get(ATy, Elts);
873      break;
874    }
875    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
876      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
877      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
878      if (Opc < 0) {
879        V = UndefValue::get(CurTy);  // Unknown binop.
880      } else {
881        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
882        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
883        V = ConstantExpr::get(Opc, LHS, RHS);
884      }
885      break;
886    }
887    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
888      if (Record.size() < 3) return Error("Invalid CE_CAST record");
889      int Opc = GetDecodedCastOpcode(Record[0]);
890      if (Opc < 0) {
891        V = UndefValue::get(CurTy);  // Unknown cast.
892      } else {
893        const Type *OpTy = getTypeByID(Record[1]);
894        if (!OpTy) return Error("Invalid CE_CAST record");
895        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
896        V = ConstantExpr::getCast(Opc, Op, CurTy);
897      }
898      break;
899    }
900    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
901      if (Record.size() & 1) return Error("Invalid CE_GEP record");
902      SmallVector<Constant*, 16> Elts;
903      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
904        const Type *ElTy = getTypeByID(Record[i]);
905        if (!ElTy) return Error("Invalid CE_GEP record");
906        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
907      }
908      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
909      break;
910    }
911    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
912      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
913      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
914                                                              Type::Int1Ty),
915                                  ValueList.getConstantFwdRef(Record[1],CurTy),
916                                  ValueList.getConstantFwdRef(Record[2],CurTy));
917      break;
918    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
919      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
920      const VectorType *OpTy =
921        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
922      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
923      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
924      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
925      V = ConstantExpr::getExtractElement(Op0, Op1);
926      break;
927    }
928    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
929      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
930      if (Record.size() < 3 || OpTy == 0)
931        return Error("Invalid CE_INSERTELT record");
932      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
933      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
934                                                  OpTy->getElementType());
935      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
936      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
937      break;
938    }
939    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
940      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
941      if (Record.size() < 3 || OpTy == 0)
942        return Error("Invalid CE_SHUFFLEVEC record");
943      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
944      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
945      const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
946      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
947      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
948      break;
949    }
950    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
951      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
952      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
953      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
954        return Error("Invalid CE_SHUFVEC_EX record");
955      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
956      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
957      const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
958      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
959      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
960      break;
961    }
962    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
963      if (Record.size() < 4) return Error("Invalid CE_CMP record");
964      const Type *OpTy = getTypeByID(Record[0]);
965      if (OpTy == 0) return Error("Invalid CE_CMP record");
966      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
967      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
968
969      if (OpTy->isFloatingPoint())
970        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
971      else if (!isa<VectorType>(OpTy))
972        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
973      else if (OpTy->isFPOrFPVector())
974        V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
975      else
976        V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
977      break;
978    }
979    case bitc::CST_CODE_INLINEASM: {
980      if (Record.size() < 2) return Error("Invalid INLINEASM record");
981      std::string AsmStr, ConstrStr;
982      bool HasSideEffects = Record[0];
983      unsigned AsmStrSize = Record[1];
984      if (2+AsmStrSize >= Record.size())
985        return Error("Invalid INLINEASM record");
986      unsigned ConstStrSize = Record[2+AsmStrSize];
987      if (3+AsmStrSize+ConstStrSize > Record.size())
988        return Error("Invalid INLINEASM record");
989
990      for (unsigned i = 0; i != AsmStrSize; ++i)
991        AsmStr += (char)Record[2+i];
992      for (unsigned i = 0; i != ConstStrSize; ++i)
993        ConstrStr += (char)Record[3+AsmStrSize+i];
994      const PointerType *PTy = cast<PointerType>(CurTy);
995      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
996                         AsmStr, ConstrStr, HasSideEffects);
997      break;
998    }
999    }
1000
1001    ValueList.AssignValue(V, NextCstNo);
1002    ++NextCstNo;
1003  }
1004
1005  if (NextCstNo != ValueList.size())
1006    return Error("Invalid constant reference!");
1007
1008  if (Stream.ReadBlockEnd())
1009    return Error("Error at end of constants block");
1010
1011  // Once all the constants have been read, go through and resolve forward
1012  // references.
1013  ValueList.ResolveConstantForwardRefs();
1014  return false;
1015}
1016
1017/// RememberAndSkipFunctionBody - When we see the block for a function body,
1018/// remember where it is and then skip it.  This lets us lazily deserialize the
1019/// functions.
1020bool BitcodeReader::RememberAndSkipFunctionBody() {
1021  // Get the function we are talking about.
1022  if (FunctionsWithBodies.empty())
1023    return Error("Insufficient function protos");
1024
1025  Function *Fn = FunctionsWithBodies.back();
1026  FunctionsWithBodies.pop_back();
1027
1028  // Save the current stream state.
1029  uint64_t CurBit = Stream.GetCurrentBitNo();
1030  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1031
1032  // Set the functions linkage to GhostLinkage so we know it is lazily
1033  // deserialized.
1034  Fn->setLinkage(GlobalValue::GhostLinkage);
1035
1036  // Skip over the function block for now.
1037  if (Stream.SkipBlock())
1038    return Error("Malformed block record");
1039  return false;
1040}
1041
1042bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1043  // Reject multiple MODULE_BLOCK's in a single bitstream.
1044  if (TheModule)
1045    return Error("Multiple MODULE_BLOCKs in same stream");
1046
1047  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1048    return Error("Malformed block record");
1049
1050  // Otherwise, create the module.
1051  TheModule = new Module(ModuleID);
1052
1053  SmallVector<uint64_t, 64> Record;
1054  std::vector<std::string> SectionTable;
1055  std::vector<std::string> GCTable;
1056
1057  // Read all the records for this module.
1058  while (!Stream.AtEndOfStream()) {
1059    unsigned Code = Stream.ReadCode();
1060    if (Code == bitc::END_BLOCK) {
1061      if (Stream.ReadBlockEnd())
1062        return Error("Error at end of module block");
1063
1064      // Patch the initializers for globals and aliases up.
1065      ResolveGlobalAndAliasInits();
1066      if (!GlobalInits.empty() || !AliasInits.empty())
1067        return Error("Malformed global initializer set");
1068      if (!FunctionsWithBodies.empty())
1069        return Error("Too few function bodies found");
1070
1071      // Look for intrinsic functions which need to be upgraded at some point
1072      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1073           FI != FE; ++FI) {
1074        Function* NewFn;
1075        if (UpgradeIntrinsicFunction(FI, NewFn))
1076          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1077      }
1078
1079      // Force deallocation of memory for these vectors to favor the client that
1080      // want lazy deserialization.
1081      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1082      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1083      std::vector<Function*>().swap(FunctionsWithBodies);
1084      return false;
1085    }
1086
1087    if (Code == bitc::ENTER_SUBBLOCK) {
1088      switch (Stream.ReadSubBlockID()) {
1089      default:  // Skip unknown content.
1090        if (Stream.SkipBlock())
1091          return Error("Malformed block record");
1092        break;
1093      case bitc::BLOCKINFO_BLOCK_ID:
1094        if (Stream.ReadBlockInfoBlock())
1095          return Error("Malformed BlockInfoBlock");
1096        break;
1097      case bitc::PARAMATTR_BLOCK_ID:
1098        if (ParseAttributeBlock())
1099          return true;
1100        break;
1101      case bitc::TYPE_BLOCK_ID:
1102        if (ParseTypeTable())
1103          return true;
1104        break;
1105      case bitc::TYPE_SYMTAB_BLOCK_ID:
1106        if (ParseTypeSymbolTable())
1107          return true;
1108        break;
1109      case bitc::VALUE_SYMTAB_BLOCK_ID:
1110        if (ParseValueSymbolTable())
1111          return true;
1112        break;
1113      case bitc::CONSTANTS_BLOCK_ID:
1114        if (ParseConstants() || ResolveGlobalAndAliasInits())
1115          return true;
1116        break;
1117      case bitc::FUNCTION_BLOCK_ID:
1118        // If this is the first function body we've seen, reverse the
1119        // FunctionsWithBodies list.
1120        if (!HasReversedFunctionsWithBodies) {
1121          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1122          HasReversedFunctionsWithBodies = true;
1123        }
1124
1125        if (RememberAndSkipFunctionBody())
1126          return true;
1127        break;
1128      }
1129      continue;
1130    }
1131
1132    if (Code == bitc::DEFINE_ABBREV) {
1133      Stream.ReadAbbrevRecord();
1134      continue;
1135    }
1136
1137    // Read a record.
1138    switch (Stream.ReadRecord(Code, Record)) {
1139    default: break;  // Default behavior, ignore unknown content.
1140    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1141      if (Record.size() < 1)
1142        return Error("Malformed MODULE_CODE_VERSION");
1143      // Only version #0 is supported so far.
1144      if (Record[0] != 0)
1145        return Error("Unknown bitstream version!");
1146      break;
1147    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1148      std::string S;
1149      if (ConvertToString(Record, 0, S))
1150        return Error("Invalid MODULE_CODE_TRIPLE record");
1151      TheModule->setTargetTriple(S);
1152      break;
1153    }
1154    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1155      std::string S;
1156      if (ConvertToString(Record, 0, S))
1157        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1158      TheModule->setDataLayout(S);
1159      break;
1160    }
1161    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1162      std::string S;
1163      if (ConvertToString(Record, 0, S))
1164        return Error("Invalid MODULE_CODE_ASM record");
1165      TheModule->setModuleInlineAsm(S);
1166      break;
1167    }
1168    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1169      std::string S;
1170      if (ConvertToString(Record, 0, S))
1171        return Error("Invalid MODULE_CODE_DEPLIB record");
1172      TheModule->addLibrary(S);
1173      break;
1174    }
1175    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1176      std::string S;
1177      if (ConvertToString(Record, 0, S))
1178        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1179      SectionTable.push_back(S);
1180      break;
1181    }
1182    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1183      std::string S;
1184      if (ConvertToString(Record, 0, S))
1185        return Error("Invalid MODULE_CODE_GCNAME record");
1186      GCTable.push_back(S);
1187      break;
1188    }
1189    // GLOBALVAR: [pointer type, isconst, initid,
1190    //             linkage, alignment, section, visibility, threadlocal]
1191    case bitc::MODULE_CODE_GLOBALVAR: {
1192      if (Record.size() < 6)
1193        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1194      const Type *Ty = getTypeByID(Record[0]);
1195      if (!isa<PointerType>(Ty))
1196        return Error("Global not a pointer type!");
1197      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1198      Ty = cast<PointerType>(Ty)->getElementType();
1199
1200      bool isConstant = Record[1];
1201      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1202      unsigned Alignment = (1 << Record[4]) >> 1;
1203      std::string Section;
1204      if (Record[5]) {
1205        if (Record[5]-1 >= SectionTable.size())
1206          return Error("Invalid section ID");
1207        Section = SectionTable[Record[5]-1];
1208      }
1209      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1210      if (Record.size() > 6)
1211        Visibility = GetDecodedVisibility(Record[6]);
1212      bool isThreadLocal = false;
1213      if (Record.size() > 7)
1214        isThreadLocal = Record[7];
1215
1216      GlobalVariable *NewGV =
1217        new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1218                           isThreadLocal, AddressSpace);
1219      NewGV->setAlignment(Alignment);
1220      if (!Section.empty())
1221        NewGV->setSection(Section);
1222      NewGV->setVisibility(Visibility);
1223      NewGV->setThreadLocal(isThreadLocal);
1224
1225      ValueList.push_back(NewGV);
1226
1227      // Remember which value to use for the global initializer.
1228      if (unsigned InitID = Record[2])
1229        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1230      break;
1231    }
1232    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1233    //             alignment, section, visibility, gc]
1234    case bitc::MODULE_CODE_FUNCTION: {
1235      if (Record.size() < 8)
1236        return Error("Invalid MODULE_CODE_FUNCTION record");
1237      const Type *Ty = getTypeByID(Record[0]);
1238      if (!isa<PointerType>(Ty))
1239        return Error("Function not a pointer type!");
1240      const FunctionType *FTy =
1241        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1242      if (!FTy)
1243        return Error("Function not a pointer to function type!");
1244
1245      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1246                                        "", TheModule);
1247
1248      Func->setCallingConv(Record[1]);
1249      bool isProto = Record[2];
1250      Func->setLinkage(GetDecodedLinkage(Record[3]));
1251      Func->setAttributes(getAttributes(Record[4]));
1252
1253      Func->setAlignment((1 << Record[5]) >> 1);
1254      if (Record[6]) {
1255        if (Record[6]-1 >= SectionTable.size())
1256          return Error("Invalid section ID");
1257        Func->setSection(SectionTable[Record[6]-1]);
1258      }
1259      Func->setVisibility(GetDecodedVisibility(Record[7]));
1260      if (Record.size() > 8 && Record[8]) {
1261        if (Record[8]-1 > GCTable.size())
1262          return Error("Invalid GC ID");
1263        Func->setGC(GCTable[Record[8]-1].c_str());
1264      }
1265      ValueList.push_back(Func);
1266
1267      // If this is a function with a body, remember the prototype we are
1268      // creating now, so that we can match up the body with them later.
1269      if (!isProto)
1270        FunctionsWithBodies.push_back(Func);
1271      break;
1272    }
1273    // ALIAS: [alias type, aliasee val#, linkage]
1274    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1275    case bitc::MODULE_CODE_ALIAS: {
1276      if (Record.size() < 3)
1277        return Error("Invalid MODULE_ALIAS record");
1278      const Type *Ty = getTypeByID(Record[0]);
1279      if (!isa<PointerType>(Ty))
1280        return Error("Function not a pointer type!");
1281
1282      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1283                                           "", 0, TheModule);
1284      // Old bitcode files didn't have visibility field.
1285      if (Record.size() > 3)
1286        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1287      ValueList.push_back(NewGA);
1288      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1289      break;
1290    }
1291    /// MODULE_CODE_PURGEVALS: [numvals]
1292    case bitc::MODULE_CODE_PURGEVALS:
1293      // Trim down the value list to the specified size.
1294      if (Record.size() < 1 || Record[0] > ValueList.size())
1295        return Error("Invalid MODULE_PURGEVALS record");
1296      ValueList.shrinkTo(Record[0]);
1297      break;
1298    }
1299    Record.clear();
1300  }
1301
1302  return Error("Premature end of bitstream");
1303}
1304
1305/// SkipWrapperHeader - Some systems wrap bc files with a special header for
1306/// padding or other reasons.  The format of this header is:
1307///
1308/// struct bc_header {
1309///   uint32_t Magic;         // 0x0B17C0DE
1310///   uint32_t Version;       // Version, currently always 0.
1311///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1312///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1313///   ... potentially other gunk ...
1314/// };
1315///
1316/// This function is called when we find a file with a matching magic number.
1317/// In this case, skip down to the subsection of the file that is actually a BC
1318/// file.
1319static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
1320  enum {
1321    KnownHeaderSize = 4*4,  // Size of header we read.
1322    OffsetField = 2*4,      // Offset in bytes to Offset field.
1323    SizeField = 3*4         // Offset in bytes to Size field.
1324  };
1325
1326
1327  // Must contain the header!
1328  if (BufEnd-BufPtr < KnownHeaderSize) return true;
1329
1330  unsigned Offset = ( BufPtr[OffsetField  ]        |
1331                     (BufPtr[OffsetField+1] << 8)  |
1332                     (BufPtr[OffsetField+2] << 16) |
1333                     (BufPtr[OffsetField+3] << 24));
1334  unsigned Size   = ( BufPtr[SizeField    ]        |
1335                     (BufPtr[SizeField  +1] << 8)  |
1336                     (BufPtr[SizeField  +2] << 16) |
1337                     (BufPtr[SizeField  +3] << 24));
1338
1339  // Verify that Offset+Size fits in the file.
1340  if (Offset+Size > unsigned(BufEnd-BufPtr))
1341    return true;
1342  BufPtr += Offset;
1343  BufEnd = BufPtr+Size;
1344  return false;
1345}
1346
1347bool BitcodeReader::ParseBitcode() {
1348  TheModule = 0;
1349
1350  if (Buffer->getBufferSize() & 3)
1351    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1352
1353  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1354  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1355
1356  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1357  // The magic number is 0x0B17C0DE stored in little endian.
1358  if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
1359      BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
1360    if (SkipWrapperHeader(BufPtr, BufEnd))
1361      return Error("Invalid bitcode wrapper header");
1362
1363  Stream.init(BufPtr, BufEnd);
1364
1365  // Sniff for the signature.
1366  if (Stream.Read(8) != 'B' ||
1367      Stream.Read(8) != 'C' ||
1368      Stream.Read(4) != 0x0 ||
1369      Stream.Read(4) != 0xC ||
1370      Stream.Read(4) != 0xE ||
1371      Stream.Read(4) != 0xD)
1372    return Error("Invalid bitcode signature");
1373
1374  // We expect a number of well-defined blocks, though we don't necessarily
1375  // need to understand them all.
1376  while (!Stream.AtEndOfStream()) {
1377    unsigned Code = Stream.ReadCode();
1378
1379    if (Code != bitc::ENTER_SUBBLOCK)
1380      return Error("Invalid record at top-level");
1381
1382    unsigned BlockID = Stream.ReadSubBlockID();
1383
1384    // We only know the MODULE subblock ID.
1385    switch (BlockID) {
1386    case bitc::BLOCKINFO_BLOCK_ID:
1387      if (Stream.ReadBlockInfoBlock())
1388        return Error("Malformed BlockInfoBlock");
1389      break;
1390    case bitc::MODULE_BLOCK_ID:
1391      if (ParseModule(Buffer->getBufferIdentifier()))
1392        return true;
1393      break;
1394    default:
1395      if (Stream.SkipBlock())
1396        return Error("Malformed block record");
1397      break;
1398    }
1399  }
1400
1401  return false;
1402}
1403
1404
1405/// ParseFunctionBody - Lazily parse the specified function body block.
1406bool BitcodeReader::ParseFunctionBody(Function *F) {
1407  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1408    return Error("Malformed block record");
1409
1410  unsigned ModuleValueListSize = ValueList.size();
1411
1412  // Add all the function arguments to the value table.
1413  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1414    ValueList.push_back(I);
1415
1416  unsigned NextValueNo = ValueList.size();
1417  BasicBlock *CurBB = 0;
1418  unsigned CurBBNo = 0;
1419
1420  // Read all the records.
1421  SmallVector<uint64_t, 64> Record;
1422  while (1) {
1423    unsigned Code = Stream.ReadCode();
1424    if (Code == bitc::END_BLOCK) {
1425      if (Stream.ReadBlockEnd())
1426        return Error("Error at end of function block");
1427      break;
1428    }
1429
1430    if (Code == bitc::ENTER_SUBBLOCK) {
1431      switch (Stream.ReadSubBlockID()) {
1432      default:  // Skip unknown content.
1433        if (Stream.SkipBlock())
1434          return Error("Malformed block record");
1435        break;
1436      case bitc::CONSTANTS_BLOCK_ID:
1437        if (ParseConstants()) return true;
1438        NextValueNo = ValueList.size();
1439        break;
1440      case bitc::VALUE_SYMTAB_BLOCK_ID:
1441        if (ParseValueSymbolTable()) return true;
1442        break;
1443      }
1444      continue;
1445    }
1446
1447    if (Code == bitc::DEFINE_ABBREV) {
1448      Stream.ReadAbbrevRecord();
1449      continue;
1450    }
1451
1452    // Read a record.
1453    Record.clear();
1454    Instruction *I = 0;
1455    switch (Stream.ReadRecord(Code, Record)) {
1456    default: // Default behavior: reject
1457      return Error("Unknown instruction");
1458    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1459      if (Record.size() < 1 || Record[0] == 0)
1460        return Error("Invalid DECLAREBLOCKS record");
1461      // Create all the basic blocks for the function.
1462      FunctionBBs.resize(Record[0]);
1463      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1464        FunctionBBs[i] = BasicBlock::Create("", F);
1465      CurBB = FunctionBBs[0];
1466      continue;
1467
1468    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1469      unsigned OpNum = 0;
1470      Value *LHS, *RHS;
1471      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1472          getValue(Record, OpNum, LHS->getType(), RHS) ||
1473          OpNum+1 != Record.size())
1474        return Error("Invalid BINOP record");
1475
1476      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1477      if (Opc == -1) return Error("Invalid BINOP record");
1478      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1479      break;
1480    }
1481    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1482      unsigned OpNum = 0;
1483      Value *Op;
1484      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1485          OpNum+2 != Record.size())
1486        return Error("Invalid CAST record");
1487
1488      const Type *ResTy = getTypeByID(Record[OpNum]);
1489      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1490      if (Opc == -1 || ResTy == 0)
1491        return Error("Invalid CAST record");
1492      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1493      break;
1494    }
1495    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1496      unsigned OpNum = 0;
1497      Value *BasePtr;
1498      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1499        return Error("Invalid GEP record");
1500
1501      SmallVector<Value*, 16> GEPIdx;
1502      while (OpNum != Record.size()) {
1503        Value *Op;
1504        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1505          return Error("Invalid GEP record");
1506        GEPIdx.push_back(Op);
1507      }
1508
1509      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1510      break;
1511    }
1512
1513    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1514                                       // EXTRACTVAL: [opty, opval, n x indices]
1515      unsigned OpNum = 0;
1516      Value *Agg;
1517      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1518        return Error("Invalid EXTRACTVAL record");
1519
1520      SmallVector<unsigned, 4> EXTRACTVALIdx;
1521      for (unsigned RecSize = Record.size();
1522           OpNum != RecSize; ++OpNum) {
1523        uint64_t Index = Record[OpNum];
1524        if ((unsigned)Index != Index)
1525          return Error("Invalid EXTRACTVAL index");
1526        EXTRACTVALIdx.push_back((unsigned)Index);
1527      }
1528
1529      I = ExtractValueInst::Create(Agg,
1530                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1531      break;
1532    }
1533
1534    case bitc::FUNC_CODE_INST_INSERTVAL: {
1535                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1536      unsigned OpNum = 0;
1537      Value *Agg;
1538      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1539        return Error("Invalid INSERTVAL record");
1540      Value *Val;
1541      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1542        return Error("Invalid INSERTVAL record");
1543
1544      SmallVector<unsigned, 4> INSERTVALIdx;
1545      for (unsigned RecSize = Record.size();
1546           OpNum != RecSize; ++OpNum) {
1547        uint64_t Index = Record[OpNum];
1548        if ((unsigned)Index != Index)
1549          return Error("Invalid INSERTVAL index");
1550        INSERTVALIdx.push_back((unsigned)Index);
1551      }
1552
1553      I = InsertValueInst::Create(Agg, Val,
1554                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1555      break;
1556    }
1557
1558    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1559      // obsolete form of select
1560      // handles select i1 ... in old bitcode
1561      unsigned OpNum = 0;
1562      Value *TrueVal, *FalseVal, *Cond;
1563      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1564          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1565          getValue(Record, OpNum, Type::Int1Ty, Cond))
1566        return Error("Invalid SELECT record");
1567
1568      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1569      break;
1570    }
1571
1572    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1573      // new form of select
1574      // handles select i1 or select [N x i1]
1575      unsigned OpNum = 0;
1576      Value *TrueVal, *FalseVal, *Cond;
1577      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1578          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1579          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1580        return Error("Invalid SELECT record");
1581
1582      // select condition can be either i1 or [N x i1]
1583      if (const VectorType* vector_type =
1584          dyn_cast<const VectorType>(Cond->getType())) {
1585        // expect <n x i1>
1586        if (vector_type->getElementType() != Type::Int1Ty)
1587          return Error("Invalid SELECT condition type");
1588      } else {
1589        // expect i1
1590        if (Cond->getType() != Type::Int1Ty)
1591          return Error("Invalid SELECT condition type");
1592      }
1593
1594      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1595      break;
1596    }
1597
1598    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1599      unsigned OpNum = 0;
1600      Value *Vec, *Idx;
1601      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1602          getValue(Record, OpNum, Type::Int32Ty, Idx))
1603        return Error("Invalid EXTRACTELT record");
1604      I = new ExtractElementInst(Vec, Idx);
1605      break;
1606    }
1607
1608    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1609      unsigned OpNum = 0;
1610      Value *Vec, *Elt, *Idx;
1611      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1612          getValue(Record, OpNum,
1613                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1614          getValue(Record, OpNum, Type::Int32Ty, Idx))
1615        return Error("Invalid INSERTELT record");
1616      I = InsertElementInst::Create(Vec, Elt, Idx);
1617      break;
1618    }
1619
1620    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1621      unsigned OpNum = 0;
1622      Value *Vec1, *Vec2, *Mask;
1623      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1624          getValue(Record, OpNum, Vec1->getType(), Vec2))
1625        return Error("Invalid SHUFFLEVEC record");
1626
1627      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1628        return Error("Invalid SHUFFLEVEC record");
1629      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1630      break;
1631    }
1632
1633    case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1634      // VFCmp/VICmp
1635      // or old form of ICmp/FCmp returning bool
1636      unsigned OpNum = 0;
1637      Value *LHS, *RHS;
1638      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1639          getValue(Record, OpNum, LHS->getType(), RHS) ||
1640          OpNum+1 != Record.size())
1641        return Error("Invalid CMP record");
1642
1643      if (LHS->getType()->isFloatingPoint())
1644        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1645      else if (!isa<VectorType>(LHS->getType()))
1646        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1647      else if (LHS->getType()->isFPOrFPVector())
1648        I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1649      else
1650        I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1651      break;
1652    }
1653    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1654      // Fcmp/ICmp returning bool or vector of bool
1655      unsigned OpNum = 0;
1656      Value *LHS, *RHS;
1657      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1658          getValue(Record, OpNum, LHS->getType(), RHS) ||
1659          OpNum+1 != Record.size())
1660        return Error("Invalid CMP2 record");
1661
1662      if (LHS->getType()->isFPOrFPVector())
1663        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1664      else
1665        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1666      break;
1667    }
1668    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1669      if (Record.size() != 2)
1670        return Error("Invalid GETRESULT record");
1671      unsigned OpNum = 0;
1672      Value *Op;
1673      getValueTypePair(Record, OpNum, NextValueNo, Op);
1674      unsigned Index = Record[1];
1675      I = ExtractValueInst::Create(Op, Index);
1676      break;
1677    }
1678
1679    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1680      {
1681        unsigned Size = Record.size();
1682        if (Size == 0) {
1683          I = ReturnInst::Create();
1684          break;
1685        }
1686
1687        unsigned OpNum = 0;
1688        SmallVector<Value *,4> Vs;
1689        do {
1690          Value *Op = NULL;
1691          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1692            return Error("Invalid RET record");
1693          Vs.push_back(Op);
1694        } while(OpNum != Record.size());
1695
1696        const Type *ReturnType = F->getReturnType();
1697        if (Vs.size() > 1 ||
1698            (isa<StructType>(ReturnType) &&
1699             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1700          Value *RV = UndefValue::get(ReturnType);
1701          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1702            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1703            CurBB->getInstList().push_back(I);
1704            ValueList.AssignValue(I, NextValueNo++);
1705            RV = I;
1706          }
1707          I = ReturnInst::Create(RV);
1708          break;
1709        }
1710
1711        I = ReturnInst::Create(Vs[0]);
1712        break;
1713      }
1714    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1715      if (Record.size() != 1 && Record.size() != 3)
1716        return Error("Invalid BR record");
1717      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1718      if (TrueDest == 0)
1719        return Error("Invalid BR record");
1720
1721      if (Record.size() == 1)
1722        I = BranchInst::Create(TrueDest);
1723      else {
1724        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1725        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1726        if (FalseDest == 0 || Cond == 0)
1727          return Error("Invalid BR record");
1728        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1729      }
1730      break;
1731    }
1732    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1733      if (Record.size() < 3 || (Record.size() & 1) == 0)
1734        return Error("Invalid SWITCH record");
1735      const Type *OpTy = getTypeByID(Record[0]);
1736      Value *Cond = getFnValueByID(Record[1], OpTy);
1737      BasicBlock *Default = getBasicBlock(Record[2]);
1738      if (OpTy == 0 || Cond == 0 || Default == 0)
1739        return Error("Invalid SWITCH record");
1740      unsigned NumCases = (Record.size()-3)/2;
1741      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1742      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1743        ConstantInt *CaseVal =
1744          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1745        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1746        if (CaseVal == 0 || DestBB == 0) {
1747          delete SI;
1748          return Error("Invalid SWITCH record!");
1749        }
1750        SI->addCase(CaseVal, DestBB);
1751      }
1752      I = SI;
1753      break;
1754    }
1755
1756    case bitc::FUNC_CODE_INST_INVOKE: {
1757      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1758      if (Record.size() < 4) return Error("Invalid INVOKE record");
1759      AttrListPtr PAL = getAttributes(Record[0]);
1760      unsigned CCInfo = Record[1];
1761      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1762      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1763
1764      unsigned OpNum = 4;
1765      Value *Callee;
1766      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1767        return Error("Invalid INVOKE record");
1768
1769      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1770      const FunctionType *FTy = !CalleeTy ? 0 :
1771        dyn_cast<FunctionType>(CalleeTy->getElementType());
1772
1773      // Check that the right number of fixed parameters are here.
1774      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1775          Record.size() < OpNum+FTy->getNumParams())
1776        return Error("Invalid INVOKE record");
1777
1778      SmallVector<Value*, 16> Ops;
1779      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1780        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1781        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1782      }
1783
1784      if (!FTy->isVarArg()) {
1785        if (Record.size() != OpNum)
1786          return Error("Invalid INVOKE record");
1787      } else {
1788        // Read type/value pairs for varargs params.
1789        while (OpNum != Record.size()) {
1790          Value *Op;
1791          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1792            return Error("Invalid INVOKE record");
1793          Ops.push_back(Op);
1794        }
1795      }
1796
1797      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1798                             Ops.begin(), Ops.end());
1799      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1800      cast<InvokeInst>(I)->setAttributes(PAL);
1801      break;
1802    }
1803    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1804      I = new UnwindInst();
1805      break;
1806    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1807      I = new UnreachableInst();
1808      break;
1809    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1810      if (Record.size() < 1 || ((Record.size()-1)&1))
1811        return Error("Invalid PHI record");
1812      const Type *Ty = getTypeByID(Record[0]);
1813      if (!Ty) return Error("Invalid PHI record");
1814
1815      PHINode *PN = PHINode::Create(Ty);
1816      PN->reserveOperandSpace((Record.size()-1)/2);
1817
1818      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1819        Value *V = getFnValueByID(Record[1+i], Ty);
1820        BasicBlock *BB = getBasicBlock(Record[2+i]);
1821        if (!V || !BB) return Error("Invalid PHI record");
1822        PN->addIncoming(V, BB);
1823      }
1824      I = PN;
1825      break;
1826    }
1827
1828    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1829      if (Record.size() < 3)
1830        return Error("Invalid MALLOC record");
1831      const PointerType *Ty =
1832        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1833      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1834      unsigned Align = Record[2];
1835      if (!Ty || !Size) return Error("Invalid MALLOC record");
1836      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1837      break;
1838    }
1839    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1840      unsigned OpNum = 0;
1841      Value *Op;
1842      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1843          OpNum != Record.size())
1844        return Error("Invalid FREE record");
1845      I = new FreeInst(Op);
1846      break;
1847    }
1848    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1849      if (Record.size() < 3)
1850        return Error("Invalid ALLOCA record");
1851      const PointerType *Ty =
1852        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1853      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1854      unsigned Align = Record[2];
1855      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1856      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1857      break;
1858    }
1859    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1860      unsigned OpNum = 0;
1861      Value *Op;
1862      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1863          OpNum+2 != Record.size())
1864        return Error("Invalid LOAD record");
1865
1866      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1867      break;
1868    }
1869    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1870      unsigned OpNum = 0;
1871      Value *Val, *Ptr;
1872      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1873          getValue(Record, OpNum,
1874                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1875          OpNum+2 != Record.size())
1876        return Error("Invalid STORE record");
1877
1878      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1879      break;
1880    }
1881    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1882      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1883      unsigned OpNum = 0;
1884      Value *Val, *Ptr;
1885      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1886          getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1887          OpNum+2 != Record.size())
1888        return Error("Invalid STORE record");
1889
1890      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1891      break;
1892    }
1893    case bitc::FUNC_CODE_INST_CALL: {
1894      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1895      if (Record.size() < 3)
1896        return Error("Invalid CALL record");
1897
1898      AttrListPtr PAL = getAttributes(Record[0]);
1899      unsigned CCInfo = Record[1];
1900
1901      unsigned OpNum = 2;
1902      Value *Callee;
1903      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1904        return Error("Invalid CALL record");
1905
1906      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1907      const FunctionType *FTy = 0;
1908      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1909      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1910        return Error("Invalid CALL record");
1911
1912      SmallVector<Value*, 16> Args;
1913      // Read the fixed params.
1914      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1915        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1916          Args.push_back(getBasicBlock(Record[OpNum]));
1917        else
1918          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1919        if (Args.back() == 0) return Error("Invalid CALL record");
1920      }
1921
1922      // Read type/value pairs for varargs params.
1923      if (!FTy->isVarArg()) {
1924        if (OpNum != Record.size())
1925          return Error("Invalid CALL record");
1926      } else {
1927        while (OpNum != Record.size()) {
1928          Value *Op;
1929          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1930            return Error("Invalid CALL record");
1931          Args.push_back(Op);
1932        }
1933      }
1934
1935      I = CallInst::Create(Callee, Args.begin(), Args.end());
1936      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1937      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1938      cast<CallInst>(I)->setAttributes(PAL);
1939      break;
1940    }
1941    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1942      if (Record.size() < 3)
1943        return Error("Invalid VAARG record");
1944      const Type *OpTy = getTypeByID(Record[0]);
1945      Value *Op = getFnValueByID(Record[1], OpTy);
1946      const Type *ResTy = getTypeByID(Record[2]);
1947      if (!OpTy || !Op || !ResTy)
1948        return Error("Invalid VAARG record");
1949      I = new VAArgInst(Op, ResTy);
1950      break;
1951    }
1952    }
1953
1954    // Add instruction to end of current BB.  If there is no current BB, reject
1955    // this file.
1956    if (CurBB == 0) {
1957      delete I;
1958      return Error("Invalid instruction with no BB");
1959    }
1960    CurBB->getInstList().push_back(I);
1961
1962    // If this was a terminator instruction, move to the next block.
1963    if (isa<TerminatorInst>(I)) {
1964      ++CurBBNo;
1965      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1966    }
1967
1968    // Non-void values get registered in the value table for future use.
1969    if (I && I->getType() != Type::VoidTy)
1970      ValueList.AssignValue(I, NextValueNo++);
1971  }
1972
1973  // Check the function list for unresolved values.
1974  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1975    if (A->getParent() == 0) {
1976      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1977      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1978        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1979          A->replaceAllUsesWith(UndefValue::get(A->getType()));
1980          delete A;
1981        }
1982      }
1983      return Error("Never resolved value found in function!");
1984    }
1985  }
1986
1987  // Trim the value list down to the size it was before we parsed this function.
1988  ValueList.shrinkTo(ModuleValueListSize);
1989  std::vector<BasicBlock*>().swap(FunctionBBs);
1990
1991  return false;
1992}
1993
1994//===----------------------------------------------------------------------===//
1995// ModuleProvider implementation
1996//===----------------------------------------------------------------------===//
1997
1998
1999bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2000  // If it already is material, ignore the request.
2001  if (!F->hasNotBeenReadFromBitcode()) return false;
2002
2003  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2004    DeferredFunctionInfo.find(F);
2005  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2006
2007  // Move the bit stream to the saved position of the deferred function body and
2008  // restore the real linkage type for the function.
2009  Stream.JumpToBit(DFII->second.first);
2010  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2011
2012  if (ParseFunctionBody(F)) {
2013    if (ErrInfo) *ErrInfo = ErrorString;
2014    return true;
2015  }
2016
2017  // Upgrade any old intrinsic calls in the function.
2018  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2019       E = UpgradedIntrinsics.end(); I != E; ++I) {
2020    if (I->first != I->second) {
2021      for (Value::use_iterator UI = I->first->use_begin(),
2022           UE = I->first->use_end(); UI != UE; ) {
2023        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2024          UpgradeIntrinsicCall(CI, I->second);
2025      }
2026    }
2027  }
2028
2029  return false;
2030}
2031
2032void BitcodeReader::dematerializeFunction(Function *F) {
2033  // If this function isn't materialized, or if it is a proto, this is a noop.
2034  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2035    return;
2036
2037  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2038
2039  // Just forget the function body, we can remat it later.
2040  F->deleteBody();
2041  F->setLinkage(GlobalValue::GhostLinkage);
2042}
2043
2044
2045Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2046  for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2047       DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2048       ++I) {
2049    Function *F = I->first;
2050    if (F->hasNotBeenReadFromBitcode() &&
2051        materializeFunction(F, ErrInfo))
2052      return 0;
2053  }
2054
2055  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2056  // delete the old functions to clean up. We can't do this unless the entire
2057  // module is materialized because there could always be another function body
2058  // with calls to the old function.
2059  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2060       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2061    if (I->first != I->second) {
2062      for (Value::use_iterator UI = I->first->use_begin(),
2063           UE = I->first->use_end(); UI != UE; ) {
2064        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2065          UpgradeIntrinsicCall(CI, I->second);
2066      }
2067      ValueList.replaceUsesOfWith(I->first, I->second);
2068      I->first->eraseFromParent();
2069    }
2070  }
2071  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2072
2073  return TheModule;
2074}
2075
2076
2077/// This method is provided by the parent ModuleProvde class and overriden
2078/// here. It simply releases the module from its provided and frees up our
2079/// state.
2080/// @brief Release our hold on the generated module
2081Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2082  // Since we're losing control of this Module, we must hand it back complete
2083  Module *M = ModuleProvider::releaseModule(ErrInfo);
2084  FreeState();
2085  return M;
2086}
2087
2088
2089//===----------------------------------------------------------------------===//
2090// External interface
2091//===----------------------------------------------------------------------===//
2092
2093/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2094///
2095ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2096                                               std::string *ErrMsg) {
2097  BitcodeReader *R = new BitcodeReader(Buffer);
2098  if (R->ParseBitcode()) {
2099    if (ErrMsg)
2100      *ErrMsg = R->getErrorString();
2101
2102    // Don't let the BitcodeReader dtor delete 'Buffer'.
2103    R->releaseMemoryBuffer();
2104    delete R;
2105    return 0;
2106  }
2107  return R;
2108}
2109
2110/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2111/// If an error occurs, return null and fill in *ErrMsg if non-null.
2112Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2113  BitcodeReader *R;
2114  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2115  if (!R) return 0;
2116
2117  // Read in the entire module.
2118  Module *M = R->materializeModule(ErrMsg);
2119
2120  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2121  // there was an error.
2122  R->releaseMemoryBuffer();
2123
2124  // If there was no error, tell ModuleProvider not to delete it when its dtor
2125  // is run.
2126  if (M)
2127    M = R->releaseModule(ErrMsg);
2128
2129  delete R;
2130  return M;
2131}
2132