BitcodeReader.cpp revision 1c8a23c440b1665ba422778cdc74a0c59ecaf39e
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Metadata.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37  MDValueList.clear();
38
39  std::vector<AttrListPtr>().swap(MAttributes);
40  std::vector<BasicBlock*>().swap(FunctionBBs);
41  std::vector<Function*>().swap(FunctionsWithBodies);
42  DeferredFunctionInfo.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  }
80}
81
82static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83  switch (Val) {
84  default: // Map unknown visibilities to default.
85  case 0: return GlobalValue::DefaultVisibility;
86  case 1: return GlobalValue::HiddenVisibility;
87  case 2: return GlobalValue::ProtectedVisibility;
88  }
89}
90
91static int GetDecodedCastOpcode(unsigned Val) {
92  switch (Val) {
93  default: return -1;
94  case bitc::CAST_TRUNC   : return Instruction::Trunc;
95  case bitc::CAST_ZEXT    : return Instruction::ZExt;
96  case bitc::CAST_SEXT    : return Instruction::SExt;
97  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102  case bitc::CAST_FPEXT   : return Instruction::FPExt;
103  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105  case bitc::CAST_BITCAST : return Instruction::BitCast;
106  }
107}
108static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109  switch (Val) {
110  default: return -1;
111  case bitc::BINOP_ADD:
112    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113  case bitc::BINOP_SUB:
114    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115  case bitc::BINOP_MUL:
116    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117  case bitc::BINOP_UDIV: return Instruction::UDiv;
118  case bitc::BINOP_SDIV:
119    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120  case bitc::BINOP_UREM: return Instruction::URem;
121  case bitc::BINOP_SREM:
122    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123  case bitc::BINOP_SHL:  return Instruction::Shl;
124  case bitc::BINOP_LSHR: return Instruction::LShr;
125  case bitc::BINOP_ASHR: return Instruction::AShr;
126  case bitc::BINOP_AND:  return Instruction::And;
127  case bitc::BINOP_OR:   return Instruction::Or;
128  case bitc::BINOP_XOR:  return Instruction::Xor;
129  }
130}
131
132namespace llvm {
133namespace {
134  /// @brief A class for maintaining the slot number definition
135  /// as a placeholder for the actual definition for forward constants defs.
136  class ConstantPlaceHolder : public ConstantExpr {
137    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139  public:
140    // allocate space for exactly one operand
141    void *operator new(size_t s) {
142      return User::operator new(s, 1);
143    }
144    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147    }
148
149    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150    static inline bool classof(const ConstantPlaceHolder *) { return true; }
151    static bool classof(const Value *V) {
152      return isa<ConstantExpr>(V) &&
153             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154    }
155
156
157    /// Provide fast operand accessors
158    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159  };
160}
161
162// FIXME: can we inherit this from ConstantExpr?
163template <>
164struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
165};
166}
167
168
169void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170  if (Idx == size()) {
171    push_back(V);
172    return;
173  }
174
175  if (Idx >= size())
176    resize(Idx+1);
177
178  WeakVH &OldV = ValuePtrs[Idx];
179  if (OldV == 0) {
180    OldV = V;
181    return;
182  }
183
184  // Handle constants and non-constants (e.g. instrs) differently for
185  // efficiency.
186  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187    ResolveConstants.push_back(std::make_pair(PHC, Idx));
188    OldV = V;
189  } else {
190    // If there was a forward reference to this value, replace it.
191    Value *PrevVal = OldV;
192    OldV->replaceAllUsesWith(V);
193    delete PrevVal;
194  }
195}
196
197
198Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                    const Type *Ty) {
200  if (Idx >= size())
201    resize(Idx + 1);
202
203  if (Value *V = ValuePtrs[Idx]) {
204    assert(Ty == V->getType() && "Type mismatch in constant table!");
205    return cast<Constant>(V);
206  }
207
208  // Create and return a placeholder, which will later be RAUW'd.
209  Constant *C = new ConstantPlaceHolder(Ty, Context);
210  ValuePtrs[Idx] = C;
211  return C;
212}
213
214Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215  if (Idx >= size())
216    resize(Idx + 1);
217
218  if (Value *V = ValuePtrs[Idx]) {
219    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220    return V;
221  }
222
223  // No type specified, must be invalid reference.
224  if (Ty == 0) return 0;
225
226  // Create and return a placeholder, which will later be RAUW'd.
227  Value *V = new Argument(Ty);
228  ValuePtrs[Idx] = V;
229  return V;
230}
231
232/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233/// resolves any forward references.  The idea behind this is that we sometimes
234/// get constants (such as large arrays) which reference *many* forward ref
235/// constants.  Replacing each of these causes a lot of thrashing when
236/// building/reuniquing the constant.  Instead of doing this, we look at all the
237/// uses and rewrite all the place holders at once for any constant that uses
238/// a placeholder.
239void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240  // Sort the values by-pointer so that they are efficient to look up with a
241  // binary search.
242  std::sort(ResolveConstants.begin(), ResolveConstants.end());
243
244  SmallVector<Constant*, 64> NewOps;
245
246  while (!ResolveConstants.empty()) {
247    Value *RealVal = operator[](ResolveConstants.back().second);
248    Constant *Placeholder = ResolveConstants.back().first;
249    ResolveConstants.pop_back();
250
251    // Loop over all users of the placeholder, updating them to reference the
252    // new value.  If they reference more than one placeholder, update them all
253    // at once.
254    while (!Placeholder->use_empty()) {
255      Value::use_iterator UI = Placeholder->use_begin();
256
257      // If the using object isn't uniqued, just update the operands.  This
258      // handles instructions and initializers for global variables.
259      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260        UI.getUse().set(RealVal);
261        continue;
262      }
263
264      // Otherwise, we have a constant that uses the placeholder.  Replace that
265      // constant with a new constant that has *all* placeholder uses updated.
266      Constant *UserC = cast<Constant>(*UI);
267      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268           I != E; ++I) {
269        Value *NewOp;
270        if (!isa<ConstantPlaceHolder>(*I)) {
271          // Not a placeholder reference.
272          NewOp = *I;
273        } else if (*I == Placeholder) {
274          // Common case is that it just references this one placeholder.
275          NewOp = RealVal;
276        } else {
277          // Otherwise, look up the placeholder in ResolveConstants.
278          ResolveConstantsTy::iterator It =
279            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
281                                                            0));
282          assert(It != ResolveConstants.end() && It->first == *I);
283          NewOp = operator[](It->second);
284        }
285
286        NewOps.push_back(cast<Constant>(NewOp));
287      }
288
289      // Make the new constant.
290      Constant *NewC;
291      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293                                        NewOps.size());
294      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296                                         UserCS->getType()->isPacked());
297      } else if (isa<ConstantVector>(UserC)) {
298        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299      } else {
300        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302                                                          NewOps.size());
303      }
304
305      UserC->replaceAllUsesWith(NewC);
306      UserC->destroyConstant();
307      NewOps.clear();
308    }
309
310    // Update all ValueHandles, they should be the only users at this point.
311    Placeholder->replaceAllUsesWith(RealVal);
312    delete Placeholder;
313  }
314}
315
316void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317  if (Idx == size()) {
318    push_back(V);
319    return;
320  }
321
322  if (Idx >= size())
323    resize(Idx+1);
324
325  WeakVH &OldV = MDValuePtrs[Idx];
326  if (OldV == 0) {
327    OldV = V;
328    return;
329  }
330
331  // If there was a forward reference to this value, replace it.
332  Value *PrevVal = OldV;
333  OldV->replaceAllUsesWith(V);
334  delete PrevVal;
335}
336
337Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
338  if (Idx >= size())
339    resize(Idx + 1);
340
341  if (Value *V = MDValuePtrs[Idx]) {
342    assert(V->getType() == Type::getMetadataTy(Context) && "Type mismatch in value table!");
343    return V;
344  }
345
346  // Create and return a placeholder, which will later be RAUW'd.
347  Value *V = new Argument(Type::getMetadataTy(Context));
348  MDValuePtrs[Idx] = V;
349  return V;
350}
351
352const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
353  // If the TypeID is in range, return it.
354  if (ID < TypeList.size())
355    return TypeList[ID].get();
356  if (!isTypeTable) return 0;
357
358  // The type table allows forward references.  Push as many Opaque types as
359  // needed to get up to ID.
360  while (TypeList.size() <= ID)
361    TypeList.push_back(OpaqueType::get(Context));
362  return TypeList.back().get();
363}
364
365//===----------------------------------------------------------------------===//
366//  Functions for parsing blocks from the bitcode file
367//===----------------------------------------------------------------------===//
368
369bool BitcodeReader::ParseAttributeBlock() {
370  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
371    return Error("Malformed block record");
372
373  if (!MAttributes.empty())
374    return Error("Multiple PARAMATTR blocks found!");
375
376  SmallVector<uint64_t, 64> Record;
377
378  SmallVector<AttributeWithIndex, 8> Attrs;
379
380  // Read all the records.
381  while (1) {
382    unsigned Code = Stream.ReadCode();
383    if (Code == bitc::END_BLOCK) {
384      if (Stream.ReadBlockEnd())
385        return Error("Error at end of PARAMATTR block");
386      return false;
387    }
388
389    if (Code == bitc::ENTER_SUBBLOCK) {
390      // No known subblocks, always skip them.
391      Stream.ReadSubBlockID();
392      if (Stream.SkipBlock())
393        return Error("Malformed block record");
394      continue;
395    }
396
397    if (Code == bitc::DEFINE_ABBREV) {
398      Stream.ReadAbbrevRecord();
399      continue;
400    }
401
402    // Read a record.
403    Record.clear();
404    switch (Stream.ReadRecord(Code, Record)) {
405    default:  // Default behavior: ignore.
406      break;
407    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
408      if (Record.size() & 1)
409        return Error("Invalid ENTRY record");
410
411      // FIXME : Remove this autoupgrade code in LLVM 3.0.
412      // If Function attributes are using index 0 then transfer them
413      // to index ~0. Index 0 is used for return value attributes but used to be
414      // used for function attributes.
415      Attributes RetAttribute = Attribute::None;
416      Attributes FnAttribute = Attribute::None;
417      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
418        // FIXME: remove in LLVM 3.0
419        // The alignment is stored as a 16-bit raw value from bits 31--16.
420        // We shift the bits above 31 down by 11 bits.
421
422        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
423        if (Alignment && !isPowerOf2_32(Alignment))
424          return Error("Alignment is not a power of two.");
425
426        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
427        if (Alignment)
428          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
429        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
430        Record[i+1] = ReconstitutedAttr;
431
432        if (Record[i] == 0)
433          RetAttribute = Record[i+1];
434        else if (Record[i] == ~0U)
435          FnAttribute = Record[i+1];
436      }
437
438      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
439                              Attribute::ReadOnly|Attribute::ReadNone);
440
441      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
442          (RetAttribute & OldRetAttrs) != 0) {
443        if (FnAttribute == Attribute::None) { // add a slot so they get added.
444          Record.push_back(~0U);
445          Record.push_back(0);
446        }
447
448        FnAttribute  |= RetAttribute & OldRetAttrs;
449        RetAttribute &= ~OldRetAttrs;
450      }
451
452      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
453        if (Record[i] == 0) {
454          if (RetAttribute != Attribute::None)
455            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
456        } else if (Record[i] == ~0U) {
457          if (FnAttribute != Attribute::None)
458            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
459        } else if (Record[i+1] != Attribute::None)
460          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
461      }
462
463      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
464      Attrs.clear();
465      break;
466    }
467    }
468  }
469}
470
471
472bool BitcodeReader::ParseTypeTable() {
473  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
474    return Error("Malformed block record");
475
476  if (!TypeList.empty())
477    return Error("Multiple TYPE_BLOCKs found!");
478
479  SmallVector<uint64_t, 64> Record;
480  unsigned NumRecords = 0;
481
482  // Read all the records for this type table.
483  while (1) {
484    unsigned Code = Stream.ReadCode();
485    if (Code == bitc::END_BLOCK) {
486      if (NumRecords != TypeList.size())
487        return Error("Invalid type forward reference in TYPE_BLOCK");
488      if (Stream.ReadBlockEnd())
489        return Error("Error at end of type table block");
490      return false;
491    }
492
493    if (Code == bitc::ENTER_SUBBLOCK) {
494      // No known subblocks, always skip them.
495      Stream.ReadSubBlockID();
496      if (Stream.SkipBlock())
497        return Error("Malformed block record");
498      continue;
499    }
500
501    if (Code == bitc::DEFINE_ABBREV) {
502      Stream.ReadAbbrevRecord();
503      continue;
504    }
505
506    // Read a record.
507    Record.clear();
508    const Type *ResultTy = 0;
509    switch (Stream.ReadRecord(Code, Record)) {
510    default:  // Default behavior: unknown type.
511      ResultTy = 0;
512      break;
513    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
514      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
515      // type list.  This allows us to reserve space.
516      if (Record.size() < 1)
517        return Error("Invalid TYPE_CODE_NUMENTRY record");
518      TypeList.reserve(Record[0]);
519      continue;
520    case bitc::TYPE_CODE_VOID:      // VOID
521      ResultTy = Type::getVoidTy(Context);
522      break;
523    case bitc::TYPE_CODE_FLOAT:     // FLOAT
524      ResultTy = Type::getFloatTy(Context);
525      break;
526    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
527      ResultTy = Type::getDoubleTy(Context);
528      break;
529    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
530      ResultTy = Type::getX86_FP80Ty(Context);
531      break;
532    case bitc::TYPE_CODE_FP128:     // FP128
533      ResultTy = Type::getFP128Ty(Context);
534      break;
535    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
536      ResultTy = Type::getPPC_FP128Ty(Context);
537      break;
538    case bitc::TYPE_CODE_LABEL:     // LABEL
539      ResultTy = Type::getLabelTy(Context);
540      break;
541    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
542      ResultTy = 0;
543      break;
544    case bitc::TYPE_CODE_METADATA:  // METADATA
545      ResultTy = Type::getMetadataTy(Context);
546      break;
547    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
548      if (Record.size() < 1)
549        return Error("Invalid Integer type record");
550
551      ResultTy = IntegerType::get(Context, Record[0]);
552      break;
553    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
554                                    //          [pointee type, address space]
555      if (Record.size() < 1)
556        return Error("Invalid POINTER type record");
557      unsigned AddressSpace = 0;
558      if (Record.size() == 2)
559        AddressSpace = Record[1];
560      ResultTy = PointerType::get(getTypeByID(Record[0], true),
561                                        AddressSpace);
562      break;
563    }
564    case bitc::TYPE_CODE_FUNCTION: {
565      // FIXME: attrid is dead, remove it in LLVM 3.0
566      // FUNCTION: [vararg, attrid, retty, paramty x N]
567      if (Record.size() < 3)
568        return Error("Invalid FUNCTION type record");
569      std::vector<const Type*> ArgTys;
570      for (unsigned i = 3, e = Record.size(); i != e; ++i)
571        ArgTys.push_back(getTypeByID(Record[i], true));
572
573      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
574                                   Record[0]);
575      break;
576    }
577    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
578      if (Record.size() < 1)
579        return Error("Invalid STRUCT type record");
580      std::vector<const Type*> EltTys;
581      for (unsigned i = 1, e = Record.size(); i != e; ++i)
582        EltTys.push_back(getTypeByID(Record[i], true));
583      ResultTy = StructType::get(Context, EltTys, Record[0]);
584      break;
585    }
586    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
587      if (Record.size() < 2)
588        return Error("Invalid ARRAY type record");
589      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
590      break;
591    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
592      if (Record.size() < 2)
593        return Error("Invalid VECTOR type record");
594      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
595      break;
596    }
597
598    if (NumRecords == TypeList.size()) {
599      // If this is a new type slot, just append it.
600      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
601      ++NumRecords;
602    } else if (ResultTy == 0) {
603      // Otherwise, this was forward referenced, so an opaque type was created,
604      // but the result type is actually just an opaque.  Leave the one we
605      // created previously.
606      ++NumRecords;
607    } else {
608      // Otherwise, this was forward referenced, so an opaque type was created.
609      // Resolve the opaque type to the real type now.
610      assert(NumRecords < TypeList.size() && "Typelist imbalance");
611      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
612
613      // Don't directly push the new type on the Tab. Instead we want to replace
614      // the opaque type we previously inserted with the new concrete value. The
615      // refinement from the abstract (opaque) type to the new type causes all
616      // uses of the abstract type to use the concrete type (NewTy). This will
617      // also cause the opaque type to be deleted.
618      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
619
620      // This should have replaced the old opaque type with the new type in the
621      // value table... or with a preexisting type that was already in the
622      // system.  Let's just make sure it did.
623      assert(TypeList[NumRecords-1].get() != OldTy &&
624             "refineAbstractType didn't work!");
625    }
626  }
627}
628
629
630bool BitcodeReader::ParseTypeSymbolTable() {
631  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
632    return Error("Malformed block record");
633
634  SmallVector<uint64_t, 64> Record;
635
636  // Read all the records for this type table.
637  std::string TypeName;
638  while (1) {
639    unsigned Code = Stream.ReadCode();
640    if (Code == bitc::END_BLOCK) {
641      if (Stream.ReadBlockEnd())
642        return Error("Error at end of type symbol table block");
643      return false;
644    }
645
646    if (Code == bitc::ENTER_SUBBLOCK) {
647      // No known subblocks, always skip them.
648      Stream.ReadSubBlockID();
649      if (Stream.SkipBlock())
650        return Error("Malformed block record");
651      continue;
652    }
653
654    if (Code == bitc::DEFINE_ABBREV) {
655      Stream.ReadAbbrevRecord();
656      continue;
657    }
658
659    // Read a record.
660    Record.clear();
661    switch (Stream.ReadRecord(Code, Record)) {
662    default:  // Default behavior: unknown type.
663      break;
664    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
665      if (ConvertToString(Record, 1, TypeName))
666        return Error("Invalid TST_ENTRY record");
667      unsigned TypeID = Record[0];
668      if (TypeID >= TypeList.size())
669        return Error("Invalid Type ID in TST_ENTRY record");
670
671      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
672      TypeName.clear();
673      break;
674    }
675  }
676}
677
678bool BitcodeReader::ParseValueSymbolTable() {
679  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
680    return Error("Malformed block record");
681
682  SmallVector<uint64_t, 64> Record;
683
684  // Read all the records for this value table.
685  SmallString<128> ValueName;
686  while (1) {
687    unsigned Code = Stream.ReadCode();
688    if (Code == bitc::END_BLOCK) {
689      if (Stream.ReadBlockEnd())
690        return Error("Error at end of value symbol table block");
691      return false;
692    }
693    if (Code == bitc::ENTER_SUBBLOCK) {
694      // No known subblocks, always skip them.
695      Stream.ReadSubBlockID();
696      if (Stream.SkipBlock())
697        return Error("Malformed block record");
698      continue;
699    }
700
701    if (Code == bitc::DEFINE_ABBREV) {
702      Stream.ReadAbbrevRecord();
703      continue;
704    }
705
706    // Read a record.
707    Record.clear();
708    switch (Stream.ReadRecord(Code, Record)) {
709    default:  // Default behavior: unknown type.
710      break;
711    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
712      if (ConvertToString(Record, 1, ValueName))
713        return Error("Invalid VST_ENTRY record");
714      unsigned ValueID = Record[0];
715      if (ValueID >= ValueList.size())
716        return Error("Invalid Value ID in VST_ENTRY record");
717      Value *V = ValueList[ValueID];
718
719      V->setName(StringRef(ValueName.data(), ValueName.size()));
720      ValueName.clear();
721      break;
722    }
723    case bitc::VST_CODE_BBENTRY: {
724      if (ConvertToString(Record, 1, ValueName))
725        return Error("Invalid VST_BBENTRY record");
726      BasicBlock *BB = getBasicBlock(Record[0]);
727      if (BB == 0)
728        return Error("Invalid BB ID in VST_BBENTRY record");
729
730      BB->setName(StringRef(ValueName.data(), ValueName.size()));
731      ValueName.clear();
732      break;
733    }
734    }
735  }
736}
737
738bool BitcodeReader::ParseMetadata() {
739  unsigned NextValueNo = MDValueList.size();
740
741  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
742    return Error("Malformed block record");
743
744  SmallVector<uint64_t, 64> Record;
745
746  // Read all the records.
747  while (1) {
748    unsigned Code = Stream.ReadCode();
749    if (Code == bitc::END_BLOCK) {
750      if (Stream.ReadBlockEnd())
751        return Error("Error at end of PARAMATTR block");
752      return false;
753    }
754
755    if (Code == bitc::ENTER_SUBBLOCK) {
756      // No known subblocks, always skip them.
757      Stream.ReadSubBlockID();
758      if (Stream.SkipBlock())
759        return Error("Malformed block record");
760      continue;
761    }
762
763    if (Code == bitc::DEFINE_ABBREV) {
764      Stream.ReadAbbrevRecord();
765      continue;
766    }
767
768    // Read a record.
769    Record.clear();
770    switch (Stream.ReadRecord(Code, Record)) {
771    default:  // Default behavior: ignore.
772      break;
773    case bitc::METADATA_NAME: {
774      // Read named of the named metadata.
775      unsigned NameLength = Record.size();
776      SmallString<8> Name;
777      Name.resize(NameLength);
778      for (unsigned i = 0; i != NameLength; ++i)
779        Name[i] = Record[i];
780      Record.clear();
781      Code = Stream.ReadCode();
782
783      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
784      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
785        assert ( 0 && "Inavlid Named Metadata record");
786
787      // Read named metadata elements.
788      unsigned Size = Record.size();
789      SmallVector<MetadataBase*, 8> Elts;
790      for (unsigned i = 0; i != Size; ++i) {
791        Value *MD = MDValueList.getValueFwdRef(Record[i]);
792        if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
793        Elts.push_back(B);
794      }
795      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
796                                     Elts.size(), TheModule);
797      MDValueList.AssignValue(V, NextValueNo++);
798      break;
799    }
800    case bitc::METADATA_NODE: {
801      if (Record.empty() || Record.size() % 2 == 1)
802        return Error("Invalid METADATA_NODE record");
803
804      unsigned Size = Record.size();
805      SmallVector<Value*, 8> Elts;
806      for (unsigned i = 0; i != Size; i += 2) {
807        const Type *Ty = getTypeByID(Record[i], false);
808        if (Ty == Type::getMetadataTy(Context))
809          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
810        else if (Ty != Type::getVoidTy(Context))
811          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
812        else
813          Elts.push_back(NULL);
814      }
815      Value *V = MDNode::get(Context, &Elts[0], Elts.size());
816      MDValueList.AssignValue(V, NextValueNo++);
817      break;
818    }
819    case bitc::METADATA_STRING: {
820      unsigned MDStringLength = Record.size();
821      SmallString<8> String;
822      String.resize(MDStringLength);
823      for (unsigned i = 0; i != MDStringLength; ++i)
824        String[i] = Record[i];
825      Value *V = MDString::get(Context,
826                               StringRef(String.data(), String.size()));
827      MDValueList.AssignValue(V, NextValueNo++);
828      break;
829    }
830    }
831  }
832}
833
834/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
835/// the LSB for dense VBR encoding.
836static uint64_t DecodeSignRotatedValue(uint64_t V) {
837  if ((V & 1) == 0)
838    return V >> 1;
839  if (V != 1)
840    return -(V >> 1);
841  // There is no such thing as -0 with integers.  "-0" really means MININT.
842  return 1ULL << 63;
843}
844
845/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
846/// values and aliases that we can.
847bool BitcodeReader::ResolveGlobalAndAliasInits() {
848  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
849  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
850
851  GlobalInitWorklist.swap(GlobalInits);
852  AliasInitWorklist.swap(AliasInits);
853
854  while (!GlobalInitWorklist.empty()) {
855    unsigned ValID = GlobalInitWorklist.back().second;
856    if (ValID >= ValueList.size()) {
857      // Not ready to resolve this yet, it requires something later in the file.
858      GlobalInits.push_back(GlobalInitWorklist.back());
859    } else {
860      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
861        GlobalInitWorklist.back().first->setInitializer(C);
862      else
863        return Error("Global variable initializer is not a constant!");
864    }
865    GlobalInitWorklist.pop_back();
866  }
867
868  while (!AliasInitWorklist.empty()) {
869    unsigned ValID = AliasInitWorklist.back().second;
870    if (ValID >= ValueList.size()) {
871      AliasInits.push_back(AliasInitWorklist.back());
872    } else {
873      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
874        AliasInitWorklist.back().first->setAliasee(C);
875      else
876        return Error("Alias initializer is not a constant!");
877    }
878    AliasInitWorklist.pop_back();
879  }
880  return false;
881}
882
883static void SetOptimizationFlags(Value *V, uint64_t Flags) {
884  if (OverflowingBinaryOperator *OBO =
885        dyn_cast<OverflowingBinaryOperator>(V)) {
886    if (Flags & (1 << bitc::OBO_NO_SIGNED_WRAP))
887      OBO->setHasNoSignedWrap(true);
888    if (Flags & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
889      OBO->setHasNoUnsignedWrap(true);
890  } else if (SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
891    if (Flags & (1 << bitc::SDIV_EXACT))
892      Div->setIsExact(true);
893  }
894}
895
896bool BitcodeReader::ParseConstants() {
897  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
898    return Error("Malformed block record");
899
900  SmallVector<uint64_t, 64> Record;
901
902  // Read all the records for this value table.
903  const Type *CurTy = Type::getInt32Ty(Context);
904  unsigned NextCstNo = ValueList.size();
905  while (1) {
906    unsigned Code = Stream.ReadCode();
907    if (Code == bitc::END_BLOCK)
908      break;
909
910    if (Code == bitc::ENTER_SUBBLOCK) {
911      // No known subblocks, always skip them.
912      Stream.ReadSubBlockID();
913      if (Stream.SkipBlock())
914        return Error("Malformed block record");
915      continue;
916    }
917
918    if (Code == bitc::DEFINE_ABBREV) {
919      Stream.ReadAbbrevRecord();
920      continue;
921    }
922
923    // Read a record.
924    Record.clear();
925    Value *V = 0;
926    unsigned BitCode = Stream.ReadRecord(Code, Record);
927    switch (BitCode) {
928    default:  // Default behavior: unknown constant
929    case bitc::CST_CODE_UNDEF:     // UNDEF
930      V = UndefValue::get(CurTy);
931      break;
932    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
933      if (Record.empty())
934        return Error("Malformed CST_SETTYPE record");
935      if (Record[0] >= TypeList.size())
936        return Error("Invalid Type ID in CST_SETTYPE record");
937      CurTy = TypeList[Record[0]];
938      continue;  // Skip the ValueList manipulation.
939    case bitc::CST_CODE_NULL:      // NULL
940      V = Constant::getNullValue(CurTy);
941      break;
942    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
943      if (!isa<IntegerType>(CurTy) || Record.empty())
944        return Error("Invalid CST_INTEGER record");
945      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
946      break;
947    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
948      if (!isa<IntegerType>(CurTy) || Record.empty())
949        return Error("Invalid WIDE_INTEGER record");
950
951      unsigned NumWords = Record.size();
952      SmallVector<uint64_t, 8> Words;
953      Words.resize(NumWords);
954      for (unsigned i = 0; i != NumWords; ++i)
955        Words[i] = DecodeSignRotatedValue(Record[i]);
956      V = ConstantInt::get(Context,
957                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
958                           NumWords, &Words[0]));
959      break;
960    }
961    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
962      if (Record.empty())
963        return Error("Invalid FLOAT record");
964      if (CurTy == Type::getFloatTy(Context))
965        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
966      else if (CurTy == Type::getDoubleTy(Context))
967        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
968      else if (CurTy == Type::getX86_FP80Ty(Context)) {
969        // Bits are not stored the same way as a normal i80 APInt, compensate.
970        uint64_t Rearrange[2];
971        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
972        Rearrange[1] = Record[0] >> 48;
973        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
974      } else if (CurTy == Type::getFP128Ty(Context))
975        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
976      else if (CurTy == Type::getPPC_FP128Ty(Context))
977        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
978      else
979        V = UndefValue::get(CurTy);
980      break;
981    }
982
983    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
984      if (Record.empty())
985        return Error("Invalid CST_AGGREGATE record");
986
987      unsigned Size = Record.size();
988      std::vector<Constant*> Elts;
989
990      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
991        for (unsigned i = 0; i != Size; ++i)
992          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
993                                                     STy->getElementType(i)));
994        V = ConstantStruct::get(STy, Elts);
995      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
996        const Type *EltTy = ATy->getElementType();
997        for (unsigned i = 0; i != Size; ++i)
998          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
999        V = ConstantArray::get(ATy, Elts);
1000      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1001        const Type *EltTy = VTy->getElementType();
1002        for (unsigned i = 0; i != Size; ++i)
1003          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1004        V = ConstantVector::get(Elts);
1005      } else {
1006        V = UndefValue::get(CurTy);
1007      }
1008      break;
1009    }
1010    case bitc::CST_CODE_STRING: { // STRING: [values]
1011      if (Record.empty())
1012        return Error("Invalid CST_AGGREGATE record");
1013
1014      const ArrayType *ATy = cast<ArrayType>(CurTy);
1015      const Type *EltTy = ATy->getElementType();
1016
1017      unsigned Size = Record.size();
1018      std::vector<Constant*> Elts;
1019      for (unsigned i = 0; i != Size; ++i)
1020        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1021      V = ConstantArray::get(ATy, Elts);
1022      break;
1023    }
1024    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1025      if (Record.empty())
1026        return Error("Invalid CST_AGGREGATE record");
1027
1028      const ArrayType *ATy = cast<ArrayType>(CurTy);
1029      const Type *EltTy = ATy->getElementType();
1030
1031      unsigned Size = Record.size();
1032      std::vector<Constant*> Elts;
1033      for (unsigned i = 0; i != Size; ++i)
1034        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1035      Elts.push_back(Constant::getNullValue(EltTy));
1036      V = ConstantArray::get(ATy, Elts);
1037      break;
1038    }
1039    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1040      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1041      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1042      if (Opc < 0) {
1043        V = UndefValue::get(CurTy);  // Unknown binop.
1044      } else {
1045        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1046        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1047        V = ConstantExpr::get(Opc, LHS, RHS);
1048      }
1049      if (Record.size() >= 4)
1050        SetOptimizationFlags(V, Record[3]);
1051      break;
1052    }
1053    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1054      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1055      int Opc = GetDecodedCastOpcode(Record[0]);
1056      if (Opc < 0) {
1057        V = UndefValue::get(CurTy);  // Unknown cast.
1058      } else {
1059        const Type *OpTy = getTypeByID(Record[1]);
1060        if (!OpTy) return Error("Invalid CE_CAST record");
1061        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1062        V = ConstantExpr::getCast(Opc, Op, CurTy);
1063      }
1064      break;
1065    }
1066    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1067    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1068      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1069      SmallVector<Constant*, 16> Elts;
1070      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1071        const Type *ElTy = getTypeByID(Record[i]);
1072        if (!ElTy) return Error("Invalid CE_GEP record");
1073        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1074      }
1075      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1076                                               Elts.size()-1);
1077      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1078        cast<GEPOperator>(V)->setIsInBounds(true);
1079      break;
1080    }
1081    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1082      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1083      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1084                                                              Type::getInt1Ty(Context)),
1085                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1086                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1087      break;
1088    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1089      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1090      const VectorType *OpTy =
1091        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1092      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1093      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1094      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1095      V = ConstantExpr::getExtractElement(Op0, Op1);
1096      break;
1097    }
1098    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1099      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1100      if (Record.size() < 3 || OpTy == 0)
1101        return Error("Invalid CE_INSERTELT record");
1102      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1103      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1104                                                  OpTy->getElementType());
1105      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1106      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1107      break;
1108    }
1109    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1110      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1111      if (Record.size() < 3 || OpTy == 0)
1112        return Error("Invalid CE_SHUFFLEVEC record");
1113      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1114      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1115      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1116                                                 OpTy->getNumElements());
1117      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1118      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1119      break;
1120    }
1121    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1122      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1123      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1124      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1125        return Error("Invalid CE_SHUFVEC_EX record");
1126      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1127      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1128      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1129                                                 RTy->getNumElements());
1130      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1131      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1132      break;
1133    }
1134    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1135      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1136      const Type *OpTy = getTypeByID(Record[0]);
1137      if (OpTy == 0) return Error("Invalid CE_CMP record");
1138      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1139      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1140
1141      if (OpTy->isFloatingPoint())
1142        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1143      else
1144        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1145      break;
1146    }
1147    case bitc::CST_CODE_INLINEASM: {
1148      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1149      std::string AsmStr, ConstrStr;
1150      bool HasSideEffects = Record[0];
1151      unsigned AsmStrSize = Record[1];
1152      if (2+AsmStrSize >= Record.size())
1153        return Error("Invalid INLINEASM record");
1154      unsigned ConstStrSize = Record[2+AsmStrSize];
1155      if (3+AsmStrSize+ConstStrSize > Record.size())
1156        return Error("Invalid INLINEASM record");
1157
1158      for (unsigned i = 0; i != AsmStrSize; ++i)
1159        AsmStr += (char)Record[2+i];
1160      for (unsigned i = 0; i != ConstStrSize; ++i)
1161        ConstrStr += (char)Record[3+AsmStrSize+i];
1162      const PointerType *PTy = cast<PointerType>(CurTy);
1163      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1164                         AsmStr, ConstrStr, HasSideEffects);
1165      break;
1166    }
1167    }
1168
1169    ValueList.AssignValue(V, NextCstNo);
1170    ++NextCstNo;
1171  }
1172
1173  if (NextCstNo != ValueList.size())
1174    return Error("Invalid constant reference!");
1175
1176  if (Stream.ReadBlockEnd())
1177    return Error("Error at end of constants block");
1178
1179  // Once all the constants have been read, go through and resolve forward
1180  // references.
1181  ValueList.ResolveConstantForwardRefs();
1182  return false;
1183}
1184
1185/// RememberAndSkipFunctionBody - When we see the block for a function body,
1186/// remember where it is and then skip it.  This lets us lazily deserialize the
1187/// functions.
1188bool BitcodeReader::RememberAndSkipFunctionBody() {
1189  // Get the function we are talking about.
1190  if (FunctionsWithBodies.empty())
1191    return Error("Insufficient function protos");
1192
1193  Function *Fn = FunctionsWithBodies.back();
1194  FunctionsWithBodies.pop_back();
1195
1196  // Save the current stream state.
1197  uint64_t CurBit = Stream.GetCurrentBitNo();
1198  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1199
1200  // Set the functions linkage to GhostLinkage so we know it is lazily
1201  // deserialized.
1202  Fn->setLinkage(GlobalValue::GhostLinkage);
1203
1204  // Skip over the function block for now.
1205  if (Stream.SkipBlock())
1206    return Error("Malformed block record");
1207  return false;
1208}
1209
1210bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1211  // Reject multiple MODULE_BLOCK's in a single bitstream.
1212  if (TheModule)
1213    return Error("Multiple MODULE_BLOCKs in same stream");
1214
1215  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1216    return Error("Malformed block record");
1217
1218  // Otherwise, create the module.
1219  TheModule = new Module(ModuleID, Context);
1220
1221  SmallVector<uint64_t, 64> Record;
1222  std::vector<std::string> SectionTable;
1223  std::vector<std::string> GCTable;
1224
1225  // Read all the records for this module.
1226  while (!Stream.AtEndOfStream()) {
1227    unsigned Code = Stream.ReadCode();
1228    if (Code == bitc::END_BLOCK) {
1229      if (Stream.ReadBlockEnd())
1230        return Error("Error at end of module block");
1231
1232      // Patch the initializers for globals and aliases up.
1233      ResolveGlobalAndAliasInits();
1234      if (!GlobalInits.empty() || !AliasInits.empty())
1235        return Error("Malformed global initializer set");
1236      if (!FunctionsWithBodies.empty())
1237        return Error("Too few function bodies found");
1238
1239      // Look for intrinsic functions which need to be upgraded at some point
1240      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1241           FI != FE; ++FI) {
1242        Function* NewFn;
1243        if (UpgradeIntrinsicFunction(FI, NewFn))
1244          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1245      }
1246
1247      // Force deallocation of memory for these vectors to favor the client that
1248      // want lazy deserialization.
1249      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1250      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1251      std::vector<Function*>().swap(FunctionsWithBodies);
1252      return false;
1253    }
1254
1255    if (Code == bitc::ENTER_SUBBLOCK) {
1256      switch (Stream.ReadSubBlockID()) {
1257      default:  // Skip unknown content.
1258        if (Stream.SkipBlock())
1259          return Error("Malformed block record");
1260        break;
1261      case bitc::BLOCKINFO_BLOCK_ID:
1262        if (Stream.ReadBlockInfoBlock())
1263          return Error("Malformed BlockInfoBlock");
1264        break;
1265      case bitc::PARAMATTR_BLOCK_ID:
1266        if (ParseAttributeBlock())
1267          return true;
1268        break;
1269      case bitc::TYPE_BLOCK_ID:
1270        if (ParseTypeTable())
1271          return true;
1272        break;
1273      case bitc::TYPE_SYMTAB_BLOCK_ID:
1274        if (ParseTypeSymbolTable())
1275          return true;
1276        break;
1277      case bitc::VALUE_SYMTAB_BLOCK_ID:
1278        if (ParseValueSymbolTable())
1279          return true;
1280        break;
1281      case bitc::CONSTANTS_BLOCK_ID:
1282        if (ParseConstants() || ResolveGlobalAndAliasInits())
1283          return true;
1284        break;
1285      case bitc::METADATA_BLOCK_ID:
1286        if (ParseMetadata())
1287          return true;
1288        break;
1289      case bitc::FUNCTION_BLOCK_ID:
1290        // If this is the first function body we've seen, reverse the
1291        // FunctionsWithBodies list.
1292        if (!HasReversedFunctionsWithBodies) {
1293          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1294          HasReversedFunctionsWithBodies = true;
1295        }
1296
1297        if (RememberAndSkipFunctionBody())
1298          return true;
1299        break;
1300      }
1301      continue;
1302    }
1303
1304    if (Code == bitc::DEFINE_ABBREV) {
1305      Stream.ReadAbbrevRecord();
1306      continue;
1307    }
1308
1309    // Read a record.
1310    switch (Stream.ReadRecord(Code, Record)) {
1311    default: break;  // Default behavior, ignore unknown content.
1312    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1313      if (Record.size() < 1)
1314        return Error("Malformed MODULE_CODE_VERSION");
1315      // Only version #0 is supported so far.
1316      if (Record[0] != 0)
1317        return Error("Unknown bitstream version!");
1318      break;
1319    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1320      std::string S;
1321      if (ConvertToString(Record, 0, S))
1322        return Error("Invalid MODULE_CODE_TRIPLE record");
1323      TheModule->setTargetTriple(S);
1324      break;
1325    }
1326    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1327      std::string S;
1328      if (ConvertToString(Record, 0, S))
1329        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1330      TheModule->setDataLayout(S);
1331      break;
1332    }
1333    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1334      std::string S;
1335      if (ConvertToString(Record, 0, S))
1336        return Error("Invalid MODULE_CODE_ASM record");
1337      TheModule->setModuleInlineAsm(S);
1338      break;
1339    }
1340    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1341      std::string S;
1342      if (ConvertToString(Record, 0, S))
1343        return Error("Invalid MODULE_CODE_DEPLIB record");
1344      TheModule->addLibrary(S);
1345      break;
1346    }
1347    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1348      std::string S;
1349      if (ConvertToString(Record, 0, S))
1350        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1351      SectionTable.push_back(S);
1352      break;
1353    }
1354    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1355      std::string S;
1356      if (ConvertToString(Record, 0, S))
1357        return Error("Invalid MODULE_CODE_GCNAME record");
1358      GCTable.push_back(S);
1359      break;
1360    }
1361    // GLOBALVAR: [pointer type, isconst, initid,
1362    //             linkage, alignment, section, visibility, threadlocal]
1363    case bitc::MODULE_CODE_GLOBALVAR: {
1364      if (Record.size() < 6)
1365        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1366      const Type *Ty = getTypeByID(Record[0]);
1367      if (!isa<PointerType>(Ty))
1368        return Error("Global not a pointer type!");
1369      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1370      Ty = cast<PointerType>(Ty)->getElementType();
1371
1372      bool isConstant = Record[1];
1373      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1374      unsigned Alignment = (1 << Record[4]) >> 1;
1375      std::string Section;
1376      if (Record[5]) {
1377        if (Record[5]-1 >= SectionTable.size())
1378          return Error("Invalid section ID");
1379        Section = SectionTable[Record[5]-1];
1380      }
1381      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1382      if (Record.size() > 6)
1383        Visibility = GetDecodedVisibility(Record[6]);
1384      bool isThreadLocal = false;
1385      if (Record.size() > 7)
1386        isThreadLocal = Record[7];
1387
1388      GlobalVariable *NewGV =
1389        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1390                           isThreadLocal, AddressSpace);
1391      NewGV->setAlignment(Alignment);
1392      if (!Section.empty())
1393        NewGV->setSection(Section);
1394      NewGV->setVisibility(Visibility);
1395      NewGV->setThreadLocal(isThreadLocal);
1396
1397      ValueList.push_back(NewGV);
1398
1399      // Remember which value to use for the global initializer.
1400      if (unsigned InitID = Record[2])
1401        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1402      break;
1403    }
1404    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1405    //             alignment, section, visibility, gc]
1406    case bitc::MODULE_CODE_FUNCTION: {
1407      if (Record.size() < 8)
1408        return Error("Invalid MODULE_CODE_FUNCTION record");
1409      const Type *Ty = getTypeByID(Record[0]);
1410      if (!isa<PointerType>(Ty))
1411        return Error("Function not a pointer type!");
1412      const FunctionType *FTy =
1413        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1414      if (!FTy)
1415        return Error("Function not a pointer to function type!");
1416
1417      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1418                                        "", TheModule);
1419
1420      Func->setCallingConv(Record[1]);
1421      bool isProto = Record[2];
1422      Func->setLinkage(GetDecodedLinkage(Record[3]));
1423      Func->setAttributes(getAttributes(Record[4]));
1424
1425      Func->setAlignment((1 << Record[5]) >> 1);
1426      if (Record[6]) {
1427        if (Record[6]-1 >= SectionTable.size())
1428          return Error("Invalid section ID");
1429        Func->setSection(SectionTable[Record[6]-1]);
1430      }
1431      Func->setVisibility(GetDecodedVisibility(Record[7]));
1432      if (Record.size() > 8 && Record[8]) {
1433        if (Record[8]-1 > GCTable.size())
1434          return Error("Invalid GC ID");
1435        Func->setGC(GCTable[Record[8]-1].c_str());
1436      }
1437      ValueList.push_back(Func);
1438
1439      // If this is a function with a body, remember the prototype we are
1440      // creating now, so that we can match up the body with them later.
1441      if (!isProto)
1442        FunctionsWithBodies.push_back(Func);
1443      break;
1444    }
1445    // ALIAS: [alias type, aliasee val#, linkage]
1446    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1447    case bitc::MODULE_CODE_ALIAS: {
1448      if (Record.size() < 3)
1449        return Error("Invalid MODULE_ALIAS record");
1450      const Type *Ty = getTypeByID(Record[0]);
1451      if (!isa<PointerType>(Ty))
1452        return Error("Function not a pointer type!");
1453
1454      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1455                                           "", 0, TheModule);
1456      // Old bitcode files didn't have visibility field.
1457      if (Record.size() > 3)
1458        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1459      ValueList.push_back(NewGA);
1460      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1461      break;
1462    }
1463    /// MODULE_CODE_PURGEVALS: [numvals]
1464    case bitc::MODULE_CODE_PURGEVALS:
1465      // Trim down the value list to the specified size.
1466      if (Record.size() < 1 || Record[0] > ValueList.size())
1467        return Error("Invalid MODULE_PURGEVALS record");
1468      ValueList.shrinkTo(Record[0]);
1469      break;
1470    }
1471    Record.clear();
1472  }
1473
1474  return Error("Premature end of bitstream");
1475}
1476
1477bool BitcodeReader::ParseBitcode() {
1478  TheModule = 0;
1479
1480  if (Buffer->getBufferSize() & 3)
1481    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1482
1483  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1484  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1485
1486  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1487  // The magic number is 0x0B17C0DE stored in little endian.
1488  if (isBitcodeWrapper(BufPtr, BufEnd))
1489    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1490      return Error("Invalid bitcode wrapper header");
1491
1492  StreamFile.init(BufPtr, BufEnd);
1493  Stream.init(StreamFile);
1494
1495  // Sniff for the signature.
1496  if (Stream.Read(8) != 'B' ||
1497      Stream.Read(8) != 'C' ||
1498      Stream.Read(4) != 0x0 ||
1499      Stream.Read(4) != 0xC ||
1500      Stream.Read(4) != 0xE ||
1501      Stream.Read(4) != 0xD)
1502    return Error("Invalid bitcode signature");
1503
1504  // We expect a number of well-defined blocks, though we don't necessarily
1505  // need to understand them all.
1506  while (!Stream.AtEndOfStream()) {
1507    unsigned Code = Stream.ReadCode();
1508
1509    if (Code != bitc::ENTER_SUBBLOCK)
1510      return Error("Invalid record at top-level");
1511
1512    unsigned BlockID = Stream.ReadSubBlockID();
1513
1514    // We only know the MODULE subblock ID.
1515    switch (BlockID) {
1516    case bitc::BLOCKINFO_BLOCK_ID:
1517      if (Stream.ReadBlockInfoBlock())
1518        return Error("Malformed BlockInfoBlock");
1519      break;
1520    case bitc::MODULE_BLOCK_ID:
1521      if (ParseModule(Buffer->getBufferIdentifier()))
1522        return true;
1523      break;
1524    default:
1525      if (Stream.SkipBlock())
1526        return Error("Malformed block record");
1527      break;
1528    }
1529  }
1530
1531  return false;
1532}
1533
1534
1535/// ParseFunctionBody - Lazily parse the specified function body block.
1536bool BitcodeReader::ParseFunctionBody(Function *F) {
1537  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1538    return Error("Malformed block record");
1539
1540  unsigned ModuleValueListSize = ValueList.size();
1541
1542  // Add all the function arguments to the value table.
1543  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1544    ValueList.push_back(I);
1545
1546  unsigned NextValueNo = ValueList.size();
1547  BasicBlock *CurBB = 0;
1548  unsigned CurBBNo = 0;
1549
1550  // Read all the records.
1551  SmallVector<uint64_t, 64> Record;
1552  while (1) {
1553    unsigned Code = Stream.ReadCode();
1554    if (Code == bitc::END_BLOCK) {
1555      if (Stream.ReadBlockEnd())
1556        return Error("Error at end of function block");
1557      break;
1558    }
1559
1560    if (Code == bitc::ENTER_SUBBLOCK) {
1561      switch (Stream.ReadSubBlockID()) {
1562      default:  // Skip unknown content.
1563        if (Stream.SkipBlock())
1564          return Error("Malformed block record");
1565        break;
1566      case bitc::CONSTANTS_BLOCK_ID:
1567        if (ParseConstants()) return true;
1568        NextValueNo = ValueList.size();
1569        break;
1570      case bitc::VALUE_SYMTAB_BLOCK_ID:
1571        if (ParseValueSymbolTable()) return true;
1572        break;
1573      }
1574      continue;
1575    }
1576
1577    if (Code == bitc::DEFINE_ABBREV) {
1578      Stream.ReadAbbrevRecord();
1579      continue;
1580    }
1581
1582    // Read a record.
1583    Record.clear();
1584    Instruction *I = 0;
1585    unsigned BitCode = Stream.ReadRecord(Code, Record);
1586    switch (BitCode) {
1587    default: // Default behavior: reject
1588      return Error("Unknown instruction");
1589    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1590      if (Record.size() < 1 || Record[0] == 0)
1591        return Error("Invalid DECLAREBLOCKS record");
1592      // Create all the basic blocks for the function.
1593      FunctionBBs.resize(Record[0]);
1594      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1595        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1596      CurBB = FunctionBBs[0];
1597      continue;
1598
1599    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1600      unsigned OpNum = 0;
1601      Value *LHS, *RHS;
1602      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1603          getValue(Record, OpNum, LHS->getType(), RHS) ||
1604          OpNum+1 > Record.size())
1605        return Error("Invalid BINOP record");
1606
1607      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1608      if (Opc == -1) return Error("Invalid BINOP record");
1609      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1610      if (OpNum < Record.size())
1611        SetOptimizationFlags(I, Record[3]);
1612      break;
1613    }
1614    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1615      unsigned OpNum = 0;
1616      Value *Op;
1617      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1618          OpNum+2 != Record.size())
1619        return Error("Invalid CAST record");
1620
1621      const Type *ResTy = getTypeByID(Record[OpNum]);
1622      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1623      if (Opc == -1 || ResTy == 0)
1624        return Error("Invalid CAST record");
1625      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1626      break;
1627    }
1628    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1629    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1630      unsigned OpNum = 0;
1631      Value *BasePtr;
1632      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1633        return Error("Invalid GEP record");
1634
1635      SmallVector<Value*, 16> GEPIdx;
1636      while (OpNum != Record.size()) {
1637        Value *Op;
1638        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1639          return Error("Invalid GEP record");
1640        GEPIdx.push_back(Op);
1641      }
1642
1643      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1644      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1645        cast<GEPOperator>(I)->setIsInBounds(true);
1646      break;
1647    }
1648
1649    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1650                                       // EXTRACTVAL: [opty, opval, n x indices]
1651      unsigned OpNum = 0;
1652      Value *Agg;
1653      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1654        return Error("Invalid EXTRACTVAL record");
1655
1656      SmallVector<unsigned, 4> EXTRACTVALIdx;
1657      for (unsigned RecSize = Record.size();
1658           OpNum != RecSize; ++OpNum) {
1659        uint64_t Index = Record[OpNum];
1660        if ((unsigned)Index != Index)
1661          return Error("Invalid EXTRACTVAL index");
1662        EXTRACTVALIdx.push_back((unsigned)Index);
1663      }
1664
1665      I = ExtractValueInst::Create(Agg,
1666                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1667      break;
1668    }
1669
1670    case bitc::FUNC_CODE_INST_INSERTVAL: {
1671                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1672      unsigned OpNum = 0;
1673      Value *Agg;
1674      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1675        return Error("Invalid INSERTVAL record");
1676      Value *Val;
1677      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1678        return Error("Invalid INSERTVAL record");
1679
1680      SmallVector<unsigned, 4> INSERTVALIdx;
1681      for (unsigned RecSize = Record.size();
1682           OpNum != RecSize; ++OpNum) {
1683        uint64_t Index = Record[OpNum];
1684        if ((unsigned)Index != Index)
1685          return Error("Invalid INSERTVAL index");
1686        INSERTVALIdx.push_back((unsigned)Index);
1687      }
1688
1689      I = InsertValueInst::Create(Agg, Val,
1690                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1691      break;
1692    }
1693
1694    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1695      // obsolete form of select
1696      // handles select i1 ... in old bitcode
1697      unsigned OpNum = 0;
1698      Value *TrueVal, *FalseVal, *Cond;
1699      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1700          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1701          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1702        return Error("Invalid SELECT record");
1703
1704      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1705      break;
1706    }
1707
1708    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1709      // new form of select
1710      // handles select i1 or select [N x i1]
1711      unsigned OpNum = 0;
1712      Value *TrueVal, *FalseVal, *Cond;
1713      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1714          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1715          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1716        return Error("Invalid SELECT record");
1717
1718      // select condition can be either i1 or [N x i1]
1719      if (const VectorType* vector_type =
1720          dyn_cast<const VectorType>(Cond->getType())) {
1721        // expect <n x i1>
1722        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1723          return Error("Invalid SELECT condition type");
1724      } else {
1725        // expect i1
1726        if (Cond->getType() != Type::getInt1Ty(Context))
1727          return Error("Invalid SELECT condition type");
1728      }
1729
1730      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1731      break;
1732    }
1733
1734    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1735      unsigned OpNum = 0;
1736      Value *Vec, *Idx;
1737      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1738          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1739        return Error("Invalid EXTRACTELT record");
1740      I = ExtractElementInst::Create(Vec, Idx);
1741      break;
1742    }
1743
1744    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1745      unsigned OpNum = 0;
1746      Value *Vec, *Elt, *Idx;
1747      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1748          getValue(Record, OpNum,
1749                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1750          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1751        return Error("Invalid INSERTELT record");
1752      I = InsertElementInst::Create(Vec, Elt, Idx);
1753      break;
1754    }
1755
1756    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1757      unsigned OpNum = 0;
1758      Value *Vec1, *Vec2, *Mask;
1759      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1760          getValue(Record, OpNum, Vec1->getType(), Vec2))
1761        return Error("Invalid SHUFFLEVEC record");
1762
1763      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1764        return Error("Invalid SHUFFLEVEC record");
1765      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1766      break;
1767    }
1768
1769    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1770      // Old form of ICmp/FCmp returning bool
1771      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1772      // both legal on vectors but had different behaviour.
1773    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1774      // FCmp/ICmp returning bool or vector of bool
1775
1776      unsigned OpNum = 0;
1777      Value *LHS, *RHS;
1778      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1779          getValue(Record, OpNum, LHS->getType(), RHS) ||
1780          OpNum+1 != Record.size())
1781        return Error("Invalid CMP record");
1782
1783      if (LHS->getType()->isFPOrFPVector())
1784        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1785      else
1786        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1787      break;
1788    }
1789
1790    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1791      if (Record.size() != 2)
1792        return Error("Invalid GETRESULT record");
1793      unsigned OpNum = 0;
1794      Value *Op;
1795      getValueTypePair(Record, OpNum, NextValueNo, Op);
1796      unsigned Index = Record[1];
1797      I = ExtractValueInst::Create(Op, Index);
1798      break;
1799    }
1800
1801    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1802      {
1803        unsigned Size = Record.size();
1804        if (Size == 0) {
1805          I = ReturnInst::Create(Context);
1806          break;
1807        }
1808
1809        unsigned OpNum = 0;
1810        SmallVector<Value *,4> Vs;
1811        do {
1812          Value *Op = NULL;
1813          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1814            return Error("Invalid RET record");
1815          Vs.push_back(Op);
1816        } while(OpNum != Record.size());
1817
1818        const Type *ReturnType = F->getReturnType();
1819        if (Vs.size() > 1 ||
1820            (isa<StructType>(ReturnType) &&
1821             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1822          Value *RV = UndefValue::get(ReturnType);
1823          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1824            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1825            CurBB->getInstList().push_back(I);
1826            ValueList.AssignValue(I, NextValueNo++);
1827            RV = I;
1828          }
1829          I = ReturnInst::Create(Context, RV);
1830          break;
1831        }
1832
1833        I = ReturnInst::Create(Context, Vs[0]);
1834        break;
1835      }
1836    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1837      if (Record.size() != 1 && Record.size() != 3)
1838        return Error("Invalid BR record");
1839      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1840      if (TrueDest == 0)
1841        return Error("Invalid BR record");
1842
1843      if (Record.size() == 1)
1844        I = BranchInst::Create(TrueDest);
1845      else {
1846        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1847        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1848        if (FalseDest == 0 || Cond == 0)
1849          return Error("Invalid BR record");
1850        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1851      }
1852      break;
1853    }
1854    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1855      if (Record.size() < 3 || (Record.size() & 1) == 0)
1856        return Error("Invalid SWITCH record");
1857      const Type *OpTy = getTypeByID(Record[0]);
1858      Value *Cond = getFnValueByID(Record[1], OpTy);
1859      BasicBlock *Default = getBasicBlock(Record[2]);
1860      if (OpTy == 0 || Cond == 0 || Default == 0)
1861        return Error("Invalid SWITCH record");
1862      unsigned NumCases = (Record.size()-3)/2;
1863      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1864      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1865        ConstantInt *CaseVal =
1866          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1867        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1868        if (CaseVal == 0 || DestBB == 0) {
1869          delete SI;
1870          return Error("Invalid SWITCH record!");
1871        }
1872        SI->addCase(CaseVal, DestBB);
1873      }
1874      I = SI;
1875      break;
1876    }
1877
1878    case bitc::FUNC_CODE_INST_INVOKE: {
1879      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1880      if (Record.size() < 4) return Error("Invalid INVOKE record");
1881      AttrListPtr PAL = getAttributes(Record[0]);
1882      unsigned CCInfo = Record[1];
1883      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1884      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1885
1886      unsigned OpNum = 4;
1887      Value *Callee;
1888      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1889        return Error("Invalid INVOKE record");
1890
1891      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1892      const FunctionType *FTy = !CalleeTy ? 0 :
1893        dyn_cast<FunctionType>(CalleeTy->getElementType());
1894
1895      // Check that the right number of fixed parameters are here.
1896      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1897          Record.size() < OpNum+FTy->getNumParams())
1898        return Error("Invalid INVOKE record");
1899
1900      SmallVector<Value*, 16> Ops;
1901      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1902        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1903        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1904      }
1905
1906      if (!FTy->isVarArg()) {
1907        if (Record.size() != OpNum)
1908          return Error("Invalid INVOKE record");
1909      } else {
1910        // Read type/value pairs for varargs params.
1911        while (OpNum != Record.size()) {
1912          Value *Op;
1913          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1914            return Error("Invalid INVOKE record");
1915          Ops.push_back(Op);
1916        }
1917      }
1918
1919      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1920                             Ops.begin(), Ops.end());
1921      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1922      cast<InvokeInst>(I)->setAttributes(PAL);
1923      break;
1924    }
1925    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1926      I = new UnwindInst(Context);
1927      break;
1928    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1929      I = new UnreachableInst(Context);
1930      break;
1931    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1932      if (Record.size() < 1 || ((Record.size()-1)&1))
1933        return Error("Invalid PHI record");
1934      const Type *Ty = getTypeByID(Record[0]);
1935      if (!Ty) return Error("Invalid PHI record");
1936
1937      PHINode *PN = PHINode::Create(Ty);
1938      PN->reserveOperandSpace((Record.size()-1)/2);
1939
1940      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1941        Value *V = getFnValueByID(Record[1+i], Ty);
1942        BasicBlock *BB = getBasicBlock(Record[2+i]);
1943        if (!V || !BB) return Error("Invalid PHI record");
1944        PN->addIncoming(V, BB);
1945      }
1946      I = PN;
1947      break;
1948    }
1949
1950    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1951      if (Record.size() < 3)
1952        return Error("Invalid MALLOC record");
1953      const PointerType *Ty =
1954        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1955      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1956      unsigned Align = Record[2];
1957      if (!Ty || !Size) return Error("Invalid MALLOC record");
1958      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1959      break;
1960    }
1961    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1962      unsigned OpNum = 0;
1963      Value *Op;
1964      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1965          OpNum != Record.size())
1966        return Error("Invalid FREE record");
1967      I = new FreeInst(Op);
1968      break;
1969    }
1970    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1971      if (Record.size() < 3)
1972        return Error("Invalid ALLOCA record");
1973      const PointerType *Ty =
1974        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1975      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1976      unsigned Align = Record[2];
1977      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1978      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1979      break;
1980    }
1981    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1982      unsigned OpNum = 0;
1983      Value *Op;
1984      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1985          OpNum+2 != Record.size())
1986        return Error("Invalid LOAD record");
1987
1988      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1989      break;
1990    }
1991    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1992      unsigned OpNum = 0;
1993      Value *Val, *Ptr;
1994      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1995          getValue(Record, OpNum,
1996                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1997          OpNum+2 != Record.size())
1998        return Error("Invalid STORE record");
1999
2000      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2001      break;
2002    }
2003    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2004      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2005      unsigned OpNum = 0;
2006      Value *Val, *Ptr;
2007      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2008          getValue(Record, OpNum,
2009                   PointerType::getUnqual(Val->getType()), Ptr)||
2010          OpNum+2 != Record.size())
2011        return Error("Invalid STORE record");
2012
2013      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2014      break;
2015    }
2016    case bitc::FUNC_CODE_INST_CALL: {
2017      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2018      if (Record.size() < 3)
2019        return Error("Invalid CALL record");
2020
2021      AttrListPtr PAL = getAttributes(Record[0]);
2022      unsigned CCInfo = Record[1];
2023
2024      unsigned OpNum = 2;
2025      Value *Callee;
2026      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2027        return Error("Invalid CALL record");
2028
2029      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2030      const FunctionType *FTy = 0;
2031      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2032      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2033        return Error("Invalid CALL record");
2034
2035      SmallVector<Value*, 16> Args;
2036      // Read the fixed params.
2037      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2038        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2039          Args.push_back(getBasicBlock(Record[OpNum]));
2040        else
2041          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2042        if (Args.back() == 0) return Error("Invalid CALL record");
2043      }
2044
2045      // Read type/value pairs for varargs params.
2046      if (!FTy->isVarArg()) {
2047        if (OpNum != Record.size())
2048          return Error("Invalid CALL record");
2049      } else {
2050        while (OpNum != Record.size()) {
2051          Value *Op;
2052          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2053            return Error("Invalid CALL record");
2054          Args.push_back(Op);
2055        }
2056      }
2057
2058      I = CallInst::Create(Callee, Args.begin(), Args.end());
2059      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
2060      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2061      cast<CallInst>(I)->setAttributes(PAL);
2062      break;
2063    }
2064    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2065      if (Record.size() < 3)
2066        return Error("Invalid VAARG record");
2067      const Type *OpTy = getTypeByID(Record[0]);
2068      Value *Op = getFnValueByID(Record[1], OpTy);
2069      const Type *ResTy = getTypeByID(Record[2]);
2070      if (!OpTy || !Op || !ResTy)
2071        return Error("Invalid VAARG record");
2072      I = new VAArgInst(Op, ResTy);
2073      break;
2074    }
2075    }
2076
2077    // Add instruction to end of current BB.  If there is no current BB, reject
2078    // this file.
2079    if (CurBB == 0) {
2080      delete I;
2081      return Error("Invalid instruction with no BB");
2082    }
2083    CurBB->getInstList().push_back(I);
2084
2085    // If this was a terminator instruction, move to the next block.
2086    if (isa<TerminatorInst>(I)) {
2087      ++CurBBNo;
2088      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2089    }
2090
2091    // Non-void values get registered in the value table for future use.
2092    if (I && I->getType() != Type::getVoidTy(Context))
2093      ValueList.AssignValue(I, NextValueNo++);
2094  }
2095
2096  // Check the function list for unresolved values.
2097  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2098    if (A->getParent() == 0) {
2099      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2100      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2101        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2102          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2103          delete A;
2104        }
2105      }
2106      return Error("Never resolved value found in function!");
2107    }
2108  }
2109
2110  // Trim the value list down to the size it was before we parsed this function.
2111  ValueList.shrinkTo(ModuleValueListSize);
2112  std::vector<BasicBlock*>().swap(FunctionBBs);
2113
2114  return false;
2115}
2116
2117//===----------------------------------------------------------------------===//
2118// ModuleProvider implementation
2119//===----------------------------------------------------------------------===//
2120
2121
2122bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2123  // If it already is material, ignore the request.
2124  if (!F->hasNotBeenReadFromBitcode()) return false;
2125
2126  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2127    DeferredFunctionInfo.find(F);
2128  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2129
2130  // Move the bit stream to the saved position of the deferred function body and
2131  // restore the real linkage type for the function.
2132  Stream.JumpToBit(DFII->second.first);
2133  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2134
2135  if (ParseFunctionBody(F)) {
2136    if (ErrInfo) *ErrInfo = ErrorString;
2137    return true;
2138  }
2139
2140  // Upgrade any old intrinsic calls in the function.
2141  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2142       E = UpgradedIntrinsics.end(); I != E; ++I) {
2143    if (I->first != I->second) {
2144      for (Value::use_iterator UI = I->first->use_begin(),
2145           UE = I->first->use_end(); UI != UE; ) {
2146        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2147          UpgradeIntrinsicCall(CI, I->second);
2148      }
2149    }
2150  }
2151
2152  return false;
2153}
2154
2155void BitcodeReader::dematerializeFunction(Function *F) {
2156  // If this function isn't materialized, or if it is a proto, this is a noop.
2157  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2158    return;
2159
2160  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2161
2162  // Just forget the function body, we can remat it later.
2163  F->deleteBody();
2164  F->setLinkage(GlobalValue::GhostLinkage);
2165}
2166
2167
2168Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2169  // Iterate over the module, deserializing any functions that are still on
2170  // disk.
2171  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2172       F != E; ++F)
2173    if (F->hasNotBeenReadFromBitcode() &&
2174        materializeFunction(F, ErrInfo))
2175      return 0;
2176
2177  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2178  // delete the old functions to clean up. We can't do this unless the entire
2179  // module is materialized because there could always be another function body
2180  // with calls to the old function.
2181  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2182       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2183    if (I->first != I->second) {
2184      for (Value::use_iterator UI = I->first->use_begin(),
2185           UE = I->first->use_end(); UI != UE; ) {
2186        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2187          UpgradeIntrinsicCall(CI, I->second);
2188      }
2189      if (!I->first->use_empty())
2190        I->first->replaceAllUsesWith(I->second);
2191      I->first->eraseFromParent();
2192    }
2193  }
2194  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2195
2196  // Check debug info intrinsics.
2197  CheckDebugInfoIntrinsics(TheModule);
2198
2199  return TheModule;
2200}
2201
2202
2203/// This method is provided by the parent ModuleProvde class and overriden
2204/// here. It simply releases the module from its provided and frees up our
2205/// state.
2206/// @brief Release our hold on the generated module
2207Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2208  // Since we're losing control of this Module, we must hand it back complete
2209  Module *M = ModuleProvider::releaseModule(ErrInfo);
2210  FreeState();
2211  return M;
2212}
2213
2214
2215//===----------------------------------------------------------------------===//
2216// External interface
2217//===----------------------------------------------------------------------===//
2218
2219/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2220///
2221ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2222                                               LLVMContext& Context,
2223                                               std::string *ErrMsg) {
2224  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2225  if (R->ParseBitcode()) {
2226    if (ErrMsg)
2227      *ErrMsg = R->getErrorString();
2228
2229    // Don't let the BitcodeReader dtor delete 'Buffer'.
2230    R->releaseMemoryBuffer();
2231    delete R;
2232    return 0;
2233  }
2234  return R;
2235}
2236
2237/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2238/// If an error occurs, return null and fill in *ErrMsg if non-null.
2239Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2240                               std::string *ErrMsg){
2241  BitcodeReader *R;
2242  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2243                                                           ErrMsg));
2244  if (!R) return 0;
2245
2246  // Read in the entire module.
2247  Module *M = R->materializeModule(ErrMsg);
2248
2249  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2250  // there was an error.
2251  R->releaseMemoryBuffer();
2252
2253  // If there was no error, tell ModuleProvider not to delete it when its dtor
2254  // is run.
2255  if (M)
2256    M = R->releaseModule(ErrMsg);
2257
2258  delete R;
2259  return M;
2260}
2261