BitcodeReader.cpp revision 2237f8473580180c2a9571124f87c93991de342a
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::materializeForwardReferencedFunctions() {
31  while (!BlockAddrFwdRefs.empty()) {
32    Function *F = BlockAddrFwdRefs.begin()->first;
33    F->Materialize();
34  }
35}
36
37void BitcodeReader::FreeState() {
38  if (BufferOwned)
39    delete Buffer;
40  Buffer = 0;
41  std::vector<Type*>().swap(TypeList);
42  ValueList.clear();
43  MDValueList.clear();
44
45  std::vector<AttrListPtr>().swap(MAttributes);
46  std::vector<BasicBlock*>().swap(FunctionBBs);
47  std::vector<Function*>().swap(FunctionsWithBodies);
48  DeferredFunctionInfo.clear();
49  MDKindMap.clear();
50}
51
52//===----------------------------------------------------------------------===//
53//  Helper functions to implement forward reference resolution, etc.
54//===----------------------------------------------------------------------===//
55
56/// ConvertToString - Convert a string from a record into an std::string, return
57/// true on failure.
58template<typename StrTy>
59static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
60                            StrTy &Result) {
61  if (Idx > Record.size())
62    return true;
63
64  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
65    Result += (char)Record[i];
66  return false;
67}
68
69static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
70  switch (Val) {
71  default: // Map unknown/new linkages to external
72  case 0:  return GlobalValue::ExternalLinkage;
73  case 1:  return GlobalValue::WeakAnyLinkage;
74  case 2:  return GlobalValue::AppendingLinkage;
75  case 3:  return GlobalValue::InternalLinkage;
76  case 4:  return GlobalValue::LinkOnceAnyLinkage;
77  case 5:  return GlobalValue::DLLImportLinkage;
78  case 6:  return GlobalValue::DLLExportLinkage;
79  case 7:  return GlobalValue::ExternalWeakLinkage;
80  case 8:  return GlobalValue::CommonLinkage;
81  case 9:  return GlobalValue::PrivateLinkage;
82  case 10: return GlobalValue::WeakODRLinkage;
83  case 11: return GlobalValue::LinkOnceODRLinkage;
84  case 12: return GlobalValue::AvailableExternallyLinkage;
85  case 13: return GlobalValue::LinkerPrivateLinkage;
86  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
87  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
88  }
89}
90
91static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
92  switch (Val) {
93  default: // Map unknown visibilities to default.
94  case 0: return GlobalValue::DefaultVisibility;
95  case 1: return GlobalValue::HiddenVisibility;
96  case 2: return GlobalValue::ProtectedVisibility;
97  }
98}
99
100static int GetDecodedCastOpcode(unsigned Val) {
101  switch (Val) {
102  default: return -1;
103  case bitc::CAST_TRUNC   : return Instruction::Trunc;
104  case bitc::CAST_ZEXT    : return Instruction::ZExt;
105  case bitc::CAST_SEXT    : return Instruction::SExt;
106  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
107  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
108  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
109  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
110  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
111  case bitc::CAST_FPEXT   : return Instruction::FPExt;
112  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
113  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
114  case bitc::CAST_BITCAST : return Instruction::BitCast;
115  }
116}
117static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
118  switch (Val) {
119  default: return -1;
120  case bitc::BINOP_ADD:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
122  case bitc::BINOP_SUB:
123    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
124  case bitc::BINOP_MUL:
125    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
126  case bitc::BINOP_UDIV: return Instruction::UDiv;
127  case bitc::BINOP_SDIV:
128    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
129  case bitc::BINOP_UREM: return Instruction::URem;
130  case bitc::BINOP_SREM:
131    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
132  case bitc::BINOP_SHL:  return Instruction::Shl;
133  case bitc::BINOP_LSHR: return Instruction::LShr;
134  case bitc::BINOP_ASHR: return Instruction::AShr;
135  case bitc::BINOP_AND:  return Instruction::And;
136  case bitc::BINOP_OR:   return Instruction::Or;
137  case bitc::BINOP_XOR:  return Instruction::Xor;
138  }
139}
140
141static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
142  switch (Val) {
143  default: return AtomicRMWInst::BAD_BINOP;
144  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
145  case bitc::RMW_ADD: return AtomicRMWInst::Add;
146  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
147  case bitc::RMW_AND: return AtomicRMWInst::And;
148  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
149  case bitc::RMW_OR: return AtomicRMWInst::Or;
150  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
151  case bitc::RMW_MAX: return AtomicRMWInst::Max;
152  case bitc::RMW_MIN: return AtomicRMWInst::Min;
153  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
154  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
155  }
156}
157
158static AtomicOrdering GetDecodedOrdering(unsigned Val) {
159  switch (Val) {
160  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
161  case bitc::ORDERING_UNORDERED: return Unordered;
162  case bitc::ORDERING_MONOTONIC: return Monotonic;
163  case bitc::ORDERING_ACQUIRE: return Acquire;
164  case bitc::ORDERING_RELEASE: return Release;
165  case bitc::ORDERING_ACQREL: return AcquireRelease;
166  default: // Map unknown orderings to sequentially-consistent.
167  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
168  }
169}
170
171static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
172  switch (Val) {
173  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
174  default: // Map unknown scopes to cross-thread.
175  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
176  }
177}
178
179namespace llvm {
180namespace {
181  /// @brief A class for maintaining the slot number definition
182  /// as a placeholder for the actual definition for forward constants defs.
183  class ConstantPlaceHolder : public ConstantExpr {
184    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
185  public:
186    // allocate space for exactly one operand
187    void *operator new(size_t s) {
188      return User::operator new(s, 1);
189    }
190    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
191      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
192      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
193    }
194
195    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
196    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
197    static bool classof(const Value *V) {
198      return isa<ConstantExpr>(V) &&
199             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
200    }
201
202
203    /// Provide fast operand accessors
204    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
205  };
206}
207
208// FIXME: can we inherit this from ConstantExpr?
209template <>
210struct OperandTraits<ConstantPlaceHolder> :
211  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
212};
213}
214
215
216void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
217  if (Idx == size()) {
218    push_back(V);
219    return;
220  }
221
222  if (Idx >= size())
223    resize(Idx+1);
224
225  WeakVH &OldV = ValuePtrs[Idx];
226  if (OldV == 0) {
227    OldV = V;
228    return;
229  }
230
231  // Handle constants and non-constants (e.g. instrs) differently for
232  // efficiency.
233  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
234    ResolveConstants.push_back(std::make_pair(PHC, Idx));
235    OldV = V;
236  } else {
237    // If there was a forward reference to this value, replace it.
238    Value *PrevVal = OldV;
239    OldV->replaceAllUsesWith(V);
240    delete PrevVal;
241  }
242}
243
244
245Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
246                                                    Type *Ty) {
247  if (Idx >= size())
248    resize(Idx + 1);
249
250  if (Value *V = ValuePtrs[Idx]) {
251    assert(Ty == V->getType() && "Type mismatch in constant table!");
252    return cast<Constant>(V);
253  }
254
255  // Create and return a placeholder, which will later be RAUW'd.
256  Constant *C = new ConstantPlaceHolder(Ty, Context);
257  ValuePtrs[Idx] = C;
258  return C;
259}
260
261Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
262  if (Idx >= size())
263    resize(Idx + 1);
264
265  if (Value *V = ValuePtrs[Idx]) {
266    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
267    return V;
268  }
269
270  // No type specified, must be invalid reference.
271  if (Ty == 0) return 0;
272
273  // Create and return a placeholder, which will later be RAUW'd.
274  Value *V = new Argument(Ty);
275  ValuePtrs[Idx] = V;
276  return V;
277}
278
279/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
280/// resolves any forward references.  The idea behind this is that we sometimes
281/// get constants (such as large arrays) which reference *many* forward ref
282/// constants.  Replacing each of these causes a lot of thrashing when
283/// building/reuniquing the constant.  Instead of doing this, we look at all the
284/// uses and rewrite all the place holders at once for any constant that uses
285/// a placeholder.
286void BitcodeReaderValueList::ResolveConstantForwardRefs() {
287  // Sort the values by-pointer so that they are efficient to look up with a
288  // binary search.
289  std::sort(ResolveConstants.begin(), ResolveConstants.end());
290
291  SmallVector<Constant*, 64> NewOps;
292
293  while (!ResolveConstants.empty()) {
294    Value *RealVal = operator[](ResolveConstants.back().second);
295    Constant *Placeholder = ResolveConstants.back().first;
296    ResolveConstants.pop_back();
297
298    // Loop over all users of the placeholder, updating them to reference the
299    // new value.  If they reference more than one placeholder, update them all
300    // at once.
301    while (!Placeholder->use_empty()) {
302      Value::use_iterator UI = Placeholder->use_begin();
303      User *U = *UI;
304
305      // If the using object isn't uniqued, just update the operands.  This
306      // handles instructions and initializers for global variables.
307      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
308        UI.getUse().set(RealVal);
309        continue;
310      }
311
312      // Otherwise, we have a constant that uses the placeholder.  Replace that
313      // constant with a new constant that has *all* placeholder uses updated.
314      Constant *UserC = cast<Constant>(U);
315      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
316           I != E; ++I) {
317        Value *NewOp;
318        if (!isa<ConstantPlaceHolder>(*I)) {
319          // Not a placeholder reference.
320          NewOp = *I;
321        } else if (*I == Placeholder) {
322          // Common case is that it just references this one placeholder.
323          NewOp = RealVal;
324        } else {
325          // Otherwise, look up the placeholder in ResolveConstants.
326          ResolveConstantsTy::iterator It =
327            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
328                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
329                                                            0));
330          assert(It != ResolveConstants.end() && It->first == *I);
331          NewOp = operator[](It->second);
332        }
333
334        NewOps.push_back(cast<Constant>(NewOp));
335      }
336
337      // Make the new constant.
338      Constant *NewC;
339      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
340        NewC = ConstantArray::get(UserCA->getType(), NewOps);
341      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
342        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
343      } else if (isa<ConstantVector>(UserC)) {
344        NewC = ConstantVector::get(NewOps);
345      } else {
346        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
347        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
348      }
349
350      UserC->replaceAllUsesWith(NewC);
351      UserC->destroyConstant();
352      NewOps.clear();
353    }
354
355    // Update all ValueHandles, they should be the only users at this point.
356    Placeholder->replaceAllUsesWith(RealVal);
357    delete Placeholder;
358  }
359}
360
361void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
362  if (Idx == size()) {
363    push_back(V);
364    return;
365  }
366
367  if (Idx >= size())
368    resize(Idx+1);
369
370  WeakVH &OldV = MDValuePtrs[Idx];
371  if (OldV == 0) {
372    OldV = V;
373    return;
374  }
375
376  // If there was a forward reference to this value, replace it.
377  MDNode *PrevVal = cast<MDNode>(OldV);
378  OldV->replaceAllUsesWith(V);
379  MDNode::deleteTemporary(PrevVal);
380  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
381  // value for Idx.
382  MDValuePtrs[Idx] = V;
383}
384
385Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
386  if (Idx >= size())
387    resize(Idx + 1);
388
389  if (Value *V = MDValuePtrs[Idx]) {
390    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
391    return V;
392  }
393
394  // Create and return a placeholder, which will later be RAUW'd.
395  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
396  MDValuePtrs[Idx] = V;
397  return V;
398}
399
400Type *BitcodeReader::getTypeByID(unsigned ID) {
401  // The type table size is always specified correctly.
402  if (ID >= TypeList.size())
403    return 0;
404
405  if (Type *Ty = TypeList[ID])
406    return Ty;
407
408  // If we have a forward reference, the only possible case is when it is to a
409  // named struct.  Just create a placeholder for now.
410  return TypeList[ID] = StructType::create(Context);
411}
412
413
414//===----------------------------------------------------------------------===//
415//  Functions for parsing blocks from the bitcode file
416//===----------------------------------------------------------------------===//
417
418bool BitcodeReader::ParseAttributeBlock() {
419  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
420    return Error("Malformed block record");
421
422  if (!MAttributes.empty())
423    return Error("Multiple PARAMATTR blocks found!");
424
425  SmallVector<uint64_t, 64> Record;
426
427  SmallVector<AttributeWithIndex, 8> Attrs;
428
429  // Read all the records.
430  while (1) {
431    unsigned Code = Stream.ReadCode();
432    if (Code == bitc::END_BLOCK) {
433      if (Stream.ReadBlockEnd())
434        return Error("Error at end of PARAMATTR block");
435      return false;
436    }
437
438    if (Code == bitc::ENTER_SUBBLOCK) {
439      // No known subblocks, always skip them.
440      Stream.ReadSubBlockID();
441      if (Stream.SkipBlock())
442        return Error("Malformed block record");
443      continue;
444    }
445
446    if (Code == bitc::DEFINE_ABBREV) {
447      Stream.ReadAbbrevRecord();
448      continue;
449    }
450
451    // Read a record.
452    Record.clear();
453    switch (Stream.ReadRecord(Code, Record)) {
454    default:  // Default behavior: ignore.
455      break;
456    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
457      if (Record.size() & 1)
458        return Error("Invalid ENTRY record");
459
460      // FIXME : Remove this autoupgrade code in LLVM 3.0.
461      // If Function attributes are using index 0 then transfer them
462      // to index ~0. Index 0 is used for return value attributes but used to be
463      // used for function attributes.
464      Attributes RetAttribute;
465      Attributes FnAttribute;
466      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
467        // FIXME: remove in LLVM 3.0
468        // The alignment is stored as a 16-bit raw value from bits 31--16.
469        // We shift the bits above 31 down by 11 bits.
470
471        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
472        if (Alignment && !isPowerOf2_32(Alignment))
473          return Error("Alignment is not a power of two.");
474
475        Attributes ReconstitutedAttr(Record[i+1] & 0xffff);
476        if (Alignment)
477          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
478        ReconstitutedAttr |=
479            Attributes((Record[i+1] & (0xffffull << 32)) >> 11);
480
481        Record[i+1] = ReconstitutedAttr.Raw();
482        if (Record[i] == 0)
483          RetAttribute = ReconstitutedAttr;
484        else if (Record[i] == ~0U)
485          FnAttribute = ReconstitutedAttr;
486      }
487
488      Attributes OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
489                              Attribute::ReadOnly|Attribute::ReadNone);
490
491      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
492          (RetAttribute & OldRetAttrs)) {
493        if (FnAttribute == Attribute::None) { // add a slot so they get added.
494          Record.push_back(~0U);
495          Record.push_back(0);
496        }
497
498        FnAttribute  |= RetAttribute & OldRetAttrs;
499        RetAttribute &= ~OldRetAttrs;
500      }
501
502      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
503        if (Record[i] == 0) {
504          if (RetAttribute != Attribute::None)
505            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
506        } else if (Record[i] == ~0U) {
507          if (FnAttribute != Attribute::None)
508            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
509        } else if (Attributes(Record[i+1]) != Attribute::None)
510          Attrs.push_back(AttributeWithIndex::get(Record[i],
511                                                  Attributes(Record[i+1])));
512      }
513
514      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
515      Attrs.clear();
516      break;
517    }
518    }
519  }
520}
521
522bool BitcodeReader::ParseTypeTable() {
523  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
524    return Error("Malformed block record");
525
526  return ParseTypeTableBody();
527}
528
529bool BitcodeReader::ParseTypeTableBody() {
530  if (!TypeList.empty())
531    return Error("Multiple TYPE_BLOCKs found!");
532
533  SmallVector<uint64_t, 64> Record;
534  unsigned NumRecords = 0;
535
536  SmallString<64> TypeName;
537
538  // Read all the records for this type table.
539  while (1) {
540    unsigned Code = Stream.ReadCode();
541    if (Code == bitc::END_BLOCK) {
542      if (NumRecords != TypeList.size())
543        return Error("Invalid type forward reference in TYPE_BLOCK");
544      if (Stream.ReadBlockEnd())
545        return Error("Error at end of type table block");
546      return false;
547    }
548
549    if (Code == bitc::ENTER_SUBBLOCK) {
550      // No known subblocks, always skip them.
551      Stream.ReadSubBlockID();
552      if (Stream.SkipBlock())
553        return Error("Malformed block record");
554      continue;
555    }
556
557    if (Code == bitc::DEFINE_ABBREV) {
558      Stream.ReadAbbrevRecord();
559      continue;
560    }
561
562    // Read a record.
563    Record.clear();
564    Type *ResultTy = 0;
565    switch (Stream.ReadRecord(Code, Record)) {
566    default: return Error("unknown type in type table");
567    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
568      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
569      // type list.  This allows us to reserve space.
570      if (Record.size() < 1)
571        return Error("Invalid TYPE_CODE_NUMENTRY record");
572      TypeList.resize(Record[0]);
573      continue;
574    case bitc::TYPE_CODE_VOID:      // VOID
575      ResultTy = Type::getVoidTy(Context);
576      break;
577    case bitc::TYPE_CODE_HALF:     // HALF
578      ResultTy = Type::getHalfTy(Context);
579      break;
580    case bitc::TYPE_CODE_FLOAT:     // FLOAT
581      ResultTy = Type::getFloatTy(Context);
582      break;
583    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
584      ResultTy = Type::getDoubleTy(Context);
585      break;
586    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
587      ResultTy = Type::getX86_FP80Ty(Context);
588      break;
589    case bitc::TYPE_CODE_FP128:     // FP128
590      ResultTy = Type::getFP128Ty(Context);
591      break;
592    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
593      ResultTy = Type::getPPC_FP128Ty(Context);
594      break;
595    case bitc::TYPE_CODE_LABEL:     // LABEL
596      ResultTy = Type::getLabelTy(Context);
597      break;
598    case bitc::TYPE_CODE_METADATA:  // METADATA
599      ResultTy = Type::getMetadataTy(Context);
600      break;
601    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
602      ResultTy = Type::getX86_MMXTy(Context);
603      break;
604    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
605      if (Record.size() < 1)
606        return Error("Invalid Integer type record");
607
608      ResultTy = IntegerType::get(Context, Record[0]);
609      break;
610    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
611                                    //          [pointee type, address space]
612      if (Record.size() < 1)
613        return Error("Invalid POINTER type record");
614      unsigned AddressSpace = 0;
615      if (Record.size() == 2)
616        AddressSpace = Record[1];
617      ResultTy = getTypeByID(Record[0]);
618      if (ResultTy == 0) return Error("invalid element type in pointer type");
619      ResultTy = PointerType::get(ResultTy, AddressSpace);
620      break;
621    }
622    case bitc::TYPE_CODE_FUNCTION_OLD: {
623      // FIXME: attrid is dead, remove it in LLVM 3.0
624      // FUNCTION: [vararg, attrid, retty, paramty x N]
625      if (Record.size() < 3)
626        return Error("Invalid FUNCTION type record");
627      SmallVector<Type*, 8> ArgTys;
628      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
629        if (Type *T = getTypeByID(Record[i]))
630          ArgTys.push_back(T);
631        else
632          break;
633      }
634
635      ResultTy = getTypeByID(Record[2]);
636      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
637        return Error("invalid type in function type");
638
639      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
640      break;
641    }
642    case bitc::TYPE_CODE_FUNCTION: {
643      // FUNCTION: [vararg, retty, paramty x N]
644      if (Record.size() < 2)
645        return Error("Invalid FUNCTION type record");
646      SmallVector<Type*, 8> ArgTys;
647      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
648        if (Type *T = getTypeByID(Record[i]))
649          ArgTys.push_back(T);
650        else
651          break;
652      }
653
654      ResultTy = getTypeByID(Record[1]);
655      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
656        return Error("invalid type in function type");
657
658      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
659      break;
660    }
661    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
662      if (Record.size() < 1)
663        return Error("Invalid STRUCT type record");
664      SmallVector<Type*, 8> EltTys;
665      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
666        if (Type *T = getTypeByID(Record[i]))
667          EltTys.push_back(T);
668        else
669          break;
670      }
671      if (EltTys.size() != Record.size()-1)
672        return Error("invalid type in struct type");
673      ResultTy = StructType::get(Context, EltTys, Record[0]);
674      break;
675    }
676    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
677      if (ConvertToString(Record, 0, TypeName))
678        return Error("Invalid STRUCT_NAME record");
679      continue;
680
681    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
682      if (Record.size() < 1)
683        return Error("Invalid STRUCT type record");
684
685      if (NumRecords >= TypeList.size())
686        return Error("invalid TYPE table");
687
688      // Check to see if this was forward referenced, if so fill in the temp.
689      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
690      if (Res) {
691        Res->setName(TypeName);
692        TypeList[NumRecords] = 0;
693      } else  // Otherwise, create a new struct.
694        Res = StructType::create(Context, TypeName);
695      TypeName.clear();
696
697      SmallVector<Type*, 8> EltTys;
698      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
699        if (Type *T = getTypeByID(Record[i]))
700          EltTys.push_back(T);
701        else
702          break;
703      }
704      if (EltTys.size() != Record.size()-1)
705        return Error("invalid STRUCT type record");
706      Res->setBody(EltTys, Record[0]);
707      ResultTy = Res;
708      break;
709    }
710    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
711      if (Record.size() != 1)
712        return Error("Invalid OPAQUE type record");
713
714      if (NumRecords >= TypeList.size())
715        return Error("invalid TYPE table");
716
717      // Check to see if this was forward referenced, if so fill in the temp.
718      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
719      if (Res) {
720        Res->setName(TypeName);
721        TypeList[NumRecords] = 0;
722      } else  // Otherwise, create a new struct with no body.
723        Res = StructType::create(Context, TypeName);
724      TypeName.clear();
725      ResultTy = Res;
726      break;
727    }
728    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
729      if (Record.size() < 2)
730        return Error("Invalid ARRAY type record");
731      if ((ResultTy = getTypeByID(Record[1])))
732        ResultTy = ArrayType::get(ResultTy, Record[0]);
733      else
734        return Error("Invalid ARRAY type element");
735      break;
736    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
737      if (Record.size() < 2)
738        return Error("Invalid VECTOR type record");
739      if ((ResultTy = getTypeByID(Record[1])))
740        ResultTy = VectorType::get(ResultTy, Record[0]);
741      else
742        return Error("Invalid ARRAY type element");
743      break;
744    }
745
746    if (NumRecords >= TypeList.size())
747      return Error("invalid TYPE table");
748    assert(ResultTy && "Didn't read a type?");
749    assert(TypeList[NumRecords] == 0 && "Already read type?");
750    TypeList[NumRecords++] = ResultTy;
751  }
752}
753
754bool BitcodeReader::ParseValueSymbolTable() {
755  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
756    return Error("Malformed block record");
757
758  SmallVector<uint64_t, 64> Record;
759
760  // Read all the records for this value table.
761  SmallString<128> ValueName;
762  while (1) {
763    unsigned Code = Stream.ReadCode();
764    if (Code == bitc::END_BLOCK) {
765      if (Stream.ReadBlockEnd())
766        return Error("Error at end of value symbol table block");
767      return false;
768    }
769    if (Code == bitc::ENTER_SUBBLOCK) {
770      // No known subblocks, always skip them.
771      Stream.ReadSubBlockID();
772      if (Stream.SkipBlock())
773        return Error("Malformed block record");
774      continue;
775    }
776
777    if (Code == bitc::DEFINE_ABBREV) {
778      Stream.ReadAbbrevRecord();
779      continue;
780    }
781
782    // Read a record.
783    Record.clear();
784    switch (Stream.ReadRecord(Code, Record)) {
785    default:  // Default behavior: unknown type.
786      break;
787    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
788      if (ConvertToString(Record, 1, ValueName))
789        return Error("Invalid VST_ENTRY record");
790      unsigned ValueID = Record[0];
791      if (ValueID >= ValueList.size())
792        return Error("Invalid Value ID in VST_ENTRY record");
793      Value *V = ValueList[ValueID];
794
795      V->setName(StringRef(ValueName.data(), ValueName.size()));
796      ValueName.clear();
797      break;
798    }
799    case bitc::VST_CODE_BBENTRY: {
800      if (ConvertToString(Record, 1, ValueName))
801        return Error("Invalid VST_BBENTRY record");
802      BasicBlock *BB = getBasicBlock(Record[0]);
803      if (BB == 0)
804        return Error("Invalid BB ID in VST_BBENTRY record");
805
806      BB->setName(StringRef(ValueName.data(), ValueName.size()));
807      ValueName.clear();
808      break;
809    }
810    }
811  }
812}
813
814bool BitcodeReader::ParseMetadata() {
815  unsigned NextMDValueNo = MDValueList.size();
816
817  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
818    return Error("Malformed block record");
819
820  SmallVector<uint64_t, 64> Record;
821
822  // Read all the records.
823  while (1) {
824    unsigned Code = Stream.ReadCode();
825    if (Code == bitc::END_BLOCK) {
826      if (Stream.ReadBlockEnd())
827        return Error("Error at end of PARAMATTR block");
828      return false;
829    }
830
831    if (Code == bitc::ENTER_SUBBLOCK) {
832      // No known subblocks, always skip them.
833      Stream.ReadSubBlockID();
834      if (Stream.SkipBlock())
835        return Error("Malformed block record");
836      continue;
837    }
838
839    if (Code == bitc::DEFINE_ABBREV) {
840      Stream.ReadAbbrevRecord();
841      continue;
842    }
843
844    bool IsFunctionLocal = false;
845    // Read a record.
846    Record.clear();
847    Code = Stream.ReadRecord(Code, Record);
848    switch (Code) {
849    default:  // Default behavior: ignore.
850      break;
851    case bitc::METADATA_NAME: {
852      // Read named of the named metadata.
853      unsigned NameLength = Record.size();
854      SmallString<8> Name;
855      Name.resize(NameLength);
856      for (unsigned i = 0; i != NameLength; ++i)
857        Name[i] = Record[i];
858      Record.clear();
859      Code = Stream.ReadCode();
860
861      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
862      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
863      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
864
865      // Read named metadata elements.
866      unsigned Size = Record.size();
867      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
868      for (unsigned i = 0; i != Size; ++i) {
869        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
870        if (MD == 0)
871          return Error("Malformed metadata record");
872        NMD->addOperand(MD);
873      }
874      break;
875    }
876    case bitc::METADATA_FN_NODE:
877      IsFunctionLocal = true;
878      // fall-through
879    case bitc::METADATA_NODE: {
880      if (Record.size() % 2 == 1)
881        return Error("Invalid METADATA_NODE record");
882
883      unsigned Size = Record.size();
884      SmallVector<Value*, 8> Elts;
885      for (unsigned i = 0; i != Size; i += 2) {
886        Type *Ty = getTypeByID(Record[i]);
887        if (!Ty) return Error("Invalid METADATA_NODE record");
888        if (Ty->isMetadataTy())
889          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
890        else if (!Ty->isVoidTy())
891          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
892        else
893          Elts.push_back(NULL);
894      }
895      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
896      IsFunctionLocal = false;
897      MDValueList.AssignValue(V, NextMDValueNo++);
898      break;
899    }
900    case bitc::METADATA_STRING: {
901      unsigned MDStringLength = Record.size();
902      SmallString<8> String;
903      String.resize(MDStringLength);
904      for (unsigned i = 0; i != MDStringLength; ++i)
905        String[i] = Record[i];
906      Value *V = MDString::get(Context,
907                               StringRef(String.data(), String.size()));
908      MDValueList.AssignValue(V, NextMDValueNo++);
909      break;
910    }
911    case bitc::METADATA_KIND: {
912      unsigned RecordLength = Record.size();
913      if (Record.empty() || RecordLength < 2)
914        return Error("Invalid METADATA_KIND record");
915      SmallString<8> Name;
916      Name.resize(RecordLength-1);
917      unsigned Kind = Record[0];
918      for (unsigned i = 1; i != RecordLength; ++i)
919        Name[i-1] = Record[i];
920
921      unsigned NewKind = TheModule->getMDKindID(Name.str());
922      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
923        return Error("Conflicting METADATA_KIND records");
924      break;
925    }
926    }
927  }
928}
929
930/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
931/// the LSB for dense VBR encoding.
932static uint64_t DecodeSignRotatedValue(uint64_t V) {
933  if ((V & 1) == 0)
934    return V >> 1;
935  if (V != 1)
936    return -(V >> 1);
937  // There is no such thing as -0 with integers.  "-0" really means MININT.
938  return 1ULL << 63;
939}
940
941/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
942/// values and aliases that we can.
943bool BitcodeReader::ResolveGlobalAndAliasInits() {
944  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
945  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
946
947  GlobalInitWorklist.swap(GlobalInits);
948  AliasInitWorklist.swap(AliasInits);
949
950  while (!GlobalInitWorklist.empty()) {
951    unsigned ValID = GlobalInitWorklist.back().second;
952    if (ValID >= ValueList.size()) {
953      // Not ready to resolve this yet, it requires something later in the file.
954      GlobalInits.push_back(GlobalInitWorklist.back());
955    } else {
956      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
957        GlobalInitWorklist.back().first->setInitializer(C);
958      else
959        return Error("Global variable initializer is not a constant!");
960    }
961    GlobalInitWorklist.pop_back();
962  }
963
964  while (!AliasInitWorklist.empty()) {
965    unsigned ValID = AliasInitWorklist.back().second;
966    if (ValID >= ValueList.size()) {
967      AliasInits.push_back(AliasInitWorklist.back());
968    } else {
969      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
970        AliasInitWorklist.back().first->setAliasee(C);
971      else
972        return Error("Alias initializer is not a constant!");
973    }
974    AliasInitWorklist.pop_back();
975  }
976  return false;
977}
978
979bool BitcodeReader::ParseConstants() {
980  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
981    return Error("Malformed block record");
982
983  SmallVector<uint64_t, 64> Record;
984
985  // Read all the records for this value table.
986  Type *CurTy = Type::getInt32Ty(Context);
987  unsigned NextCstNo = ValueList.size();
988  while (1) {
989    unsigned Code = Stream.ReadCode();
990    if (Code == bitc::END_BLOCK)
991      break;
992
993    if (Code == bitc::ENTER_SUBBLOCK) {
994      // No known subblocks, always skip them.
995      Stream.ReadSubBlockID();
996      if (Stream.SkipBlock())
997        return Error("Malformed block record");
998      continue;
999    }
1000
1001    if (Code == bitc::DEFINE_ABBREV) {
1002      Stream.ReadAbbrevRecord();
1003      continue;
1004    }
1005
1006    // Read a record.
1007    Record.clear();
1008    Value *V = 0;
1009    unsigned BitCode = Stream.ReadRecord(Code, Record);
1010    switch (BitCode) {
1011    default:  // Default behavior: unknown constant
1012    case bitc::CST_CODE_UNDEF:     // UNDEF
1013      V = UndefValue::get(CurTy);
1014      break;
1015    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1016      if (Record.empty())
1017        return Error("Malformed CST_SETTYPE record");
1018      if (Record[0] >= TypeList.size())
1019        return Error("Invalid Type ID in CST_SETTYPE record");
1020      CurTy = TypeList[Record[0]];
1021      continue;  // Skip the ValueList manipulation.
1022    case bitc::CST_CODE_NULL:      // NULL
1023      V = Constant::getNullValue(CurTy);
1024      break;
1025    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1026      if (!CurTy->isIntegerTy() || Record.empty())
1027        return Error("Invalid CST_INTEGER record");
1028      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1029      break;
1030    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1031      if (!CurTy->isIntegerTy() || Record.empty())
1032        return Error("Invalid WIDE_INTEGER record");
1033
1034      unsigned NumWords = Record.size();
1035      SmallVector<uint64_t, 8> Words;
1036      Words.resize(NumWords);
1037      for (unsigned i = 0; i != NumWords; ++i)
1038        Words[i] = DecodeSignRotatedValue(Record[i]);
1039      V = ConstantInt::get(Context,
1040                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1041                                 Words));
1042      break;
1043    }
1044    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1045      if (Record.empty())
1046        return Error("Invalid FLOAT record");
1047      if (CurTy->isHalfTy())
1048        V = ConstantFP::get(Context, APFloat(APInt(16, (uint16_t)Record[0])));
1049      else if (CurTy->isFloatTy())
1050        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1051      else if (CurTy->isDoubleTy())
1052        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1053      else if (CurTy->isX86_FP80Ty()) {
1054        // Bits are not stored the same way as a normal i80 APInt, compensate.
1055        uint64_t Rearrange[2];
1056        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1057        Rearrange[1] = Record[0] >> 48;
1058        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1059      } else if (CurTy->isFP128Ty())
1060        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1061      else if (CurTy->isPPC_FP128Ty())
1062        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1063      else
1064        V = UndefValue::get(CurTy);
1065      break;
1066    }
1067
1068    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1069      if (Record.empty())
1070        return Error("Invalid CST_AGGREGATE record");
1071
1072      unsigned Size = Record.size();
1073      SmallVector<Constant*, 16> Elts;
1074
1075      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1076        for (unsigned i = 0; i != Size; ++i)
1077          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1078                                                     STy->getElementType(i)));
1079        V = ConstantStruct::get(STy, Elts);
1080      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1081        Type *EltTy = ATy->getElementType();
1082        for (unsigned i = 0; i != Size; ++i)
1083          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1084        V = ConstantArray::get(ATy, Elts);
1085      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1086        Type *EltTy = VTy->getElementType();
1087        for (unsigned i = 0; i != Size; ++i)
1088          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1089        V = ConstantVector::get(Elts);
1090      } else {
1091        V = UndefValue::get(CurTy);
1092      }
1093      break;
1094    }
1095    case bitc::CST_CODE_STRING:    // STRING: [values]
1096    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1097      if (Record.empty())
1098        return Error("Invalid CST_STRING record");
1099
1100      unsigned Size = Record.size();
1101      SmallString<16> Elts;
1102      for (unsigned i = 0; i != Size; ++i)
1103        Elts.push_back(Record[i]);
1104      V = ConstantDataArray::getString(Context, Elts,
1105                                       BitCode == bitc::CST_CODE_CSTRING);
1106      break;
1107    }
1108    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1109      if (Record.empty())
1110        return Error("Invalid CST_DATA record");
1111
1112      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1113      unsigned Size = Record.size();
1114
1115      if (EltTy->isIntegerTy(8)) {
1116        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1117        if (isa<VectorType>(CurTy))
1118          V = ConstantDataVector::get(Context, Elts);
1119        else
1120          V = ConstantDataArray::get(Context, Elts);
1121      } else if (EltTy->isIntegerTy(16)) {
1122        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1123        if (isa<VectorType>(CurTy))
1124          V = ConstantDataVector::get(Context, Elts);
1125        else
1126          V = ConstantDataArray::get(Context, Elts);
1127      } else if (EltTy->isIntegerTy(32)) {
1128        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1129        if (isa<VectorType>(CurTy))
1130          V = ConstantDataVector::get(Context, Elts);
1131        else
1132          V = ConstantDataArray::get(Context, Elts);
1133      } else if (EltTy->isIntegerTy(64)) {
1134        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1135        if (isa<VectorType>(CurTy))
1136          V = ConstantDataVector::get(Context, Elts);
1137        else
1138          V = ConstantDataArray::get(Context, Elts);
1139      } else if (EltTy->isFloatTy()) {
1140        SmallVector<float, 16> Elts;
1141        for (unsigned i = 0; i != Size; ++i) {
1142          union { uint32_t I; float F; };
1143          I = Record[i];
1144          Elts.push_back(F);
1145        }
1146        if (isa<VectorType>(CurTy))
1147          V = ConstantDataVector::get(Context, Elts);
1148        else
1149          V = ConstantDataArray::get(Context, Elts);
1150      } else if (EltTy->isDoubleTy()) {
1151        SmallVector<double, 16> Elts;
1152        for (unsigned i = 0; i != Size; ++i) {
1153          union { uint64_t I; double F; };
1154          I = Record[i];
1155          Elts.push_back(F);
1156        }
1157        if (isa<VectorType>(CurTy))
1158          V = ConstantDataVector::get(Context, Elts);
1159        else
1160          V = ConstantDataArray::get(Context, Elts);
1161      } else {
1162        return Error("Unknown element type in CE_DATA");
1163      }
1164      break;
1165    }
1166
1167    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1168      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1169      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1170      if (Opc < 0) {
1171        V = UndefValue::get(CurTy);  // Unknown binop.
1172      } else {
1173        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1174        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1175        unsigned Flags = 0;
1176        if (Record.size() >= 4) {
1177          if (Opc == Instruction::Add ||
1178              Opc == Instruction::Sub ||
1179              Opc == Instruction::Mul ||
1180              Opc == Instruction::Shl) {
1181            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1182              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1183            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1184              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1185          } else if (Opc == Instruction::SDiv ||
1186                     Opc == Instruction::UDiv ||
1187                     Opc == Instruction::LShr ||
1188                     Opc == Instruction::AShr) {
1189            if (Record[3] & (1 << bitc::PEO_EXACT))
1190              Flags |= SDivOperator::IsExact;
1191          }
1192        }
1193        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1194      }
1195      break;
1196    }
1197    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1198      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1199      int Opc = GetDecodedCastOpcode(Record[0]);
1200      if (Opc < 0) {
1201        V = UndefValue::get(CurTy);  // Unknown cast.
1202      } else {
1203        Type *OpTy = getTypeByID(Record[1]);
1204        if (!OpTy) return Error("Invalid CE_CAST record");
1205        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1206        V = ConstantExpr::getCast(Opc, Op, CurTy);
1207      }
1208      break;
1209    }
1210    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1211    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1212      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1213      SmallVector<Constant*, 16> Elts;
1214      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1215        Type *ElTy = getTypeByID(Record[i]);
1216        if (!ElTy) return Error("Invalid CE_GEP record");
1217        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1218      }
1219      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1220      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1221                                         BitCode ==
1222                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1223      break;
1224    }
1225    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1226      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1227      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1228                                                              Type::getInt1Ty(Context)),
1229                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1230                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1231      break;
1232    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1233      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1234      VectorType *OpTy =
1235        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1236      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1237      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1238      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1239      V = ConstantExpr::getExtractElement(Op0, Op1);
1240      break;
1241    }
1242    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1243      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1244      if (Record.size() < 3 || OpTy == 0)
1245        return Error("Invalid CE_INSERTELT record");
1246      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1247      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1248                                                  OpTy->getElementType());
1249      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1250      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1251      break;
1252    }
1253    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1254      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1255      if (Record.size() < 3 || OpTy == 0)
1256        return Error("Invalid CE_SHUFFLEVEC record");
1257      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1258      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1259      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1260                                                 OpTy->getNumElements());
1261      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1262      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1263      break;
1264    }
1265    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1266      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1267      VectorType *OpTy =
1268        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1269      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1270        return Error("Invalid CE_SHUFVEC_EX record");
1271      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1272      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1273      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1274                                                 RTy->getNumElements());
1275      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1276      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1277      break;
1278    }
1279    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1280      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1281      Type *OpTy = getTypeByID(Record[0]);
1282      if (OpTy == 0) return Error("Invalid CE_CMP record");
1283      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1284      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1285
1286      if (OpTy->isFPOrFPVectorTy())
1287        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1288      else
1289        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1290      break;
1291    }
1292    case bitc::CST_CODE_INLINEASM: {
1293      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1294      std::string AsmStr, ConstrStr;
1295      bool HasSideEffects = Record[0] & 1;
1296      bool IsAlignStack = Record[0] >> 1;
1297      unsigned AsmStrSize = Record[1];
1298      if (2+AsmStrSize >= Record.size())
1299        return Error("Invalid INLINEASM record");
1300      unsigned ConstStrSize = Record[2+AsmStrSize];
1301      if (3+AsmStrSize+ConstStrSize > Record.size())
1302        return Error("Invalid INLINEASM record");
1303
1304      for (unsigned i = 0; i != AsmStrSize; ++i)
1305        AsmStr += (char)Record[2+i];
1306      for (unsigned i = 0; i != ConstStrSize; ++i)
1307        ConstrStr += (char)Record[3+AsmStrSize+i];
1308      PointerType *PTy = cast<PointerType>(CurTy);
1309      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1310                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1311      break;
1312    }
1313    case bitc::CST_CODE_BLOCKADDRESS:{
1314      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1315      Type *FnTy = getTypeByID(Record[0]);
1316      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1317      Function *Fn =
1318        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1319      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1320
1321      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1322                                                  Type::getInt8Ty(Context),
1323                                            false, GlobalValue::InternalLinkage,
1324                                                  0, "");
1325      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1326      V = FwdRef;
1327      break;
1328    }
1329    }
1330
1331    ValueList.AssignValue(V, NextCstNo);
1332    ++NextCstNo;
1333  }
1334
1335  if (NextCstNo != ValueList.size())
1336    return Error("Invalid constant reference!");
1337
1338  if (Stream.ReadBlockEnd())
1339    return Error("Error at end of constants block");
1340
1341  // Once all the constants have been read, go through and resolve forward
1342  // references.
1343  ValueList.ResolveConstantForwardRefs();
1344  return false;
1345}
1346
1347bool BitcodeReader::ParseUseLists() {
1348  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1349    return Error("Malformed block record");
1350
1351  SmallVector<uint64_t, 64> Record;
1352
1353  // Read all the records.
1354  while (1) {
1355    unsigned Code = Stream.ReadCode();
1356    if (Code == bitc::END_BLOCK) {
1357      if (Stream.ReadBlockEnd())
1358        return Error("Error at end of use-list table block");
1359      return false;
1360    }
1361
1362    if (Code == bitc::ENTER_SUBBLOCK) {
1363      // No known subblocks, always skip them.
1364      Stream.ReadSubBlockID();
1365      if (Stream.SkipBlock())
1366        return Error("Malformed block record");
1367      continue;
1368    }
1369
1370    if (Code == bitc::DEFINE_ABBREV) {
1371      Stream.ReadAbbrevRecord();
1372      continue;
1373    }
1374
1375    // Read a use list record.
1376    Record.clear();
1377    switch (Stream.ReadRecord(Code, Record)) {
1378    default:  // Default behavior: unknown type.
1379      break;
1380    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1381      unsigned RecordLength = Record.size();
1382      if (RecordLength < 1)
1383        return Error ("Invalid UseList reader!");
1384      UseListRecords.push_back(Record);
1385      break;
1386    }
1387    }
1388  }
1389}
1390
1391/// RememberAndSkipFunctionBody - When we see the block for a function body,
1392/// remember where it is and then skip it.  This lets us lazily deserialize the
1393/// functions.
1394bool BitcodeReader::RememberAndSkipFunctionBody() {
1395  // Get the function we are talking about.
1396  if (FunctionsWithBodies.empty())
1397    return Error("Insufficient function protos");
1398
1399  Function *Fn = FunctionsWithBodies.back();
1400  FunctionsWithBodies.pop_back();
1401
1402  // Save the current stream state.
1403  uint64_t CurBit = Stream.GetCurrentBitNo();
1404  DeferredFunctionInfo[Fn] = CurBit;
1405
1406  // Skip over the function block for now.
1407  if (Stream.SkipBlock())
1408    return Error("Malformed block record");
1409  return false;
1410}
1411
1412bool BitcodeReader::ParseModule() {
1413  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1414    return Error("Malformed block record");
1415
1416  SmallVector<uint64_t, 64> Record;
1417  std::vector<std::string> SectionTable;
1418  std::vector<std::string> GCTable;
1419
1420  // Read all the records for this module.
1421  while (!Stream.AtEndOfStream()) {
1422    unsigned Code = Stream.ReadCode();
1423    if (Code == bitc::END_BLOCK) {
1424      if (Stream.ReadBlockEnd())
1425        return Error("Error at end of module block");
1426
1427      // Patch the initializers for globals and aliases up.
1428      ResolveGlobalAndAliasInits();
1429      if (!GlobalInits.empty() || !AliasInits.empty())
1430        return Error("Malformed global initializer set");
1431      if (!FunctionsWithBodies.empty())
1432        return Error("Too few function bodies found");
1433
1434      // Look for intrinsic functions which need to be upgraded at some point
1435      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1436           FI != FE; ++FI) {
1437        Function* NewFn;
1438        if (UpgradeIntrinsicFunction(FI, NewFn))
1439          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1440      }
1441
1442      // Look for global variables which need to be renamed.
1443      for (Module::global_iterator
1444             GI = TheModule->global_begin(), GE = TheModule->global_end();
1445           GI != GE; ++GI)
1446        UpgradeGlobalVariable(GI);
1447
1448      // Force deallocation of memory for these vectors to favor the client that
1449      // want lazy deserialization.
1450      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1451      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1452      std::vector<Function*>().swap(FunctionsWithBodies);
1453      return false;
1454    }
1455
1456    if (Code == bitc::ENTER_SUBBLOCK) {
1457      switch (Stream.ReadSubBlockID()) {
1458      default:  // Skip unknown content.
1459        if (Stream.SkipBlock())
1460          return Error("Malformed block record");
1461        break;
1462      case bitc::BLOCKINFO_BLOCK_ID:
1463        if (Stream.ReadBlockInfoBlock())
1464          return Error("Malformed BlockInfoBlock");
1465        break;
1466      case bitc::PARAMATTR_BLOCK_ID:
1467        if (ParseAttributeBlock())
1468          return true;
1469        break;
1470      case bitc::TYPE_BLOCK_ID_NEW:
1471        if (ParseTypeTable())
1472          return true;
1473        break;
1474      case bitc::VALUE_SYMTAB_BLOCK_ID:
1475        if (ParseValueSymbolTable())
1476          return true;
1477        break;
1478      case bitc::CONSTANTS_BLOCK_ID:
1479        if (ParseConstants() || ResolveGlobalAndAliasInits())
1480          return true;
1481        break;
1482      case bitc::METADATA_BLOCK_ID:
1483        if (ParseMetadata())
1484          return true;
1485        break;
1486      case bitc::FUNCTION_BLOCK_ID:
1487        // If this is the first function body we've seen, reverse the
1488        // FunctionsWithBodies list.
1489        if (!HasReversedFunctionsWithBodies) {
1490          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1491          HasReversedFunctionsWithBodies = true;
1492        }
1493
1494        if (RememberAndSkipFunctionBody())
1495          return true;
1496        break;
1497      case bitc::USELIST_BLOCK_ID:
1498        if (ParseUseLists())
1499          return true;
1500        break;
1501      }
1502      continue;
1503    }
1504
1505    if (Code == bitc::DEFINE_ABBREV) {
1506      Stream.ReadAbbrevRecord();
1507      continue;
1508    }
1509
1510    // Read a record.
1511    switch (Stream.ReadRecord(Code, Record)) {
1512    default: break;  // Default behavior, ignore unknown content.
1513    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1514      if (Record.size() < 1)
1515        return Error("Malformed MODULE_CODE_VERSION");
1516      // Only version #0 is supported so far.
1517      if (Record[0] != 0)
1518        return Error("Unknown bitstream version!");
1519      break;
1520    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1521      std::string S;
1522      if (ConvertToString(Record, 0, S))
1523        return Error("Invalid MODULE_CODE_TRIPLE record");
1524      TheModule->setTargetTriple(S);
1525      break;
1526    }
1527    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1528      std::string S;
1529      if (ConvertToString(Record, 0, S))
1530        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1531      TheModule->setDataLayout(S);
1532      break;
1533    }
1534    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1535      std::string S;
1536      if (ConvertToString(Record, 0, S))
1537        return Error("Invalid MODULE_CODE_ASM record");
1538      TheModule->setModuleInlineAsm(S);
1539      break;
1540    }
1541    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1542      std::string S;
1543      if (ConvertToString(Record, 0, S))
1544        return Error("Invalid MODULE_CODE_DEPLIB record");
1545      TheModule->addLibrary(S);
1546      break;
1547    }
1548    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1549      std::string S;
1550      if (ConvertToString(Record, 0, S))
1551        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1552      SectionTable.push_back(S);
1553      break;
1554    }
1555    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1556      std::string S;
1557      if (ConvertToString(Record, 0, S))
1558        return Error("Invalid MODULE_CODE_GCNAME record");
1559      GCTable.push_back(S);
1560      break;
1561    }
1562    // GLOBALVAR: [pointer type, isconst, initid,
1563    //             linkage, alignment, section, visibility, threadlocal,
1564    //             unnamed_addr]
1565    case bitc::MODULE_CODE_GLOBALVAR: {
1566      if (Record.size() < 6)
1567        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1568      Type *Ty = getTypeByID(Record[0]);
1569      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1570      if (!Ty->isPointerTy())
1571        return Error("Global not a pointer type!");
1572      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1573      Ty = cast<PointerType>(Ty)->getElementType();
1574
1575      bool isConstant = Record[1];
1576      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1577      unsigned Alignment = (1 << Record[4]) >> 1;
1578      std::string Section;
1579      if (Record[5]) {
1580        if (Record[5]-1 >= SectionTable.size())
1581          return Error("Invalid section ID");
1582        Section = SectionTable[Record[5]-1];
1583      }
1584      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1585      if (Record.size() > 6)
1586        Visibility = GetDecodedVisibility(Record[6]);
1587      bool isThreadLocal = false;
1588      if (Record.size() > 7)
1589        isThreadLocal = Record[7];
1590
1591      bool UnnamedAddr = false;
1592      if (Record.size() > 8)
1593        UnnamedAddr = Record[8];
1594
1595      GlobalVariable *NewGV =
1596        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1597                           isThreadLocal, AddressSpace);
1598      NewGV->setAlignment(Alignment);
1599      if (!Section.empty())
1600        NewGV->setSection(Section);
1601      NewGV->setVisibility(Visibility);
1602      NewGV->setThreadLocal(isThreadLocal);
1603      NewGV->setUnnamedAddr(UnnamedAddr);
1604
1605      ValueList.push_back(NewGV);
1606
1607      // Remember which value to use for the global initializer.
1608      if (unsigned InitID = Record[2])
1609        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1610      break;
1611    }
1612    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1613    //             alignment, section, visibility, gc, unnamed_addr]
1614    case bitc::MODULE_CODE_FUNCTION: {
1615      if (Record.size() < 8)
1616        return Error("Invalid MODULE_CODE_FUNCTION record");
1617      Type *Ty = getTypeByID(Record[0]);
1618      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1619      if (!Ty->isPointerTy())
1620        return Error("Function not a pointer type!");
1621      FunctionType *FTy =
1622        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1623      if (!FTy)
1624        return Error("Function not a pointer to function type!");
1625
1626      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1627                                        "", TheModule);
1628
1629      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1630      bool isProto = Record[2];
1631      Func->setLinkage(GetDecodedLinkage(Record[3]));
1632      Func->setAttributes(getAttributes(Record[4]));
1633
1634      Func->setAlignment((1 << Record[5]) >> 1);
1635      if (Record[6]) {
1636        if (Record[6]-1 >= SectionTable.size())
1637          return Error("Invalid section ID");
1638        Func->setSection(SectionTable[Record[6]-1]);
1639      }
1640      Func->setVisibility(GetDecodedVisibility(Record[7]));
1641      if (Record.size() > 8 && Record[8]) {
1642        if (Record[8]-1 > GCTable.size())
1643          return Error("Invalid GC ID");
1644        Func->setGC(GCTable[Record[8]-1].c_str());
1645      }
1646      bool UnnamedAddr = false;
1647      if (Record.size() > 9)
1648        UnnamedAddr = Record[9];
1649      Func->setUnnamedAddr(UnnamedAddr);
1650      ValueList.push_back(Func);
1651
1652      // If this is a function with a body, remember the prototype we are
1653      // creating now, so that we can match up the body with them later.
1654      if (!isProto)
1655        FunctionsWithBodies.push_back(Func);
1656      break;
1657    }
1658    // ALIAS: [alias type, aliasee val#, linkage]
1659    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1660    case bitc::MODULE_CODE_ALIAS: {
1661      if (Record.size() < 3)
1662        return Error("Invalid MODULE_ALIAS record");
1663      Type *Ty = getTypeByID(Record[0]);
1664      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1665      if (!Ty->isPointerTy())
1666        return Error("Function not a pointer type!");
1667
1668      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1669                                           "", 0, TheModule);
1670      // Old bitcode files didn't have visibility field.
1671      if (Record.size() > 3)
1672        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1673      ValueList.push_back(NewGA);
1674      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1675      break;
1676    }
1677    /// MODULE_CODE_PURGEVALS: [numvals]
1678    case bitc::MODULE_CODE_PURGEVALS:
1679      // Trim down the value list to the specified size.
1680      if (Record.size() < 1 || Record[0] > ValueList.size())
1681        return Error("Invalid MODULE_PURGEVALS record");
1682      ValueList.shrinkTo(Record[0]);
1683      break;
1684    }
1685    Record.clear();
1686  }
1687
1688  return Error("Premature end of bitstream");
1689}
1690
1691bool BitcodeReader::ParseBitcodeInto(Module *M) {
1692  TheModule = 0;
1693
1694  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1695  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1696
1697  if (Buffer->getBufferSize() & 3) {
1698    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1699      return Error("Invalid bitcode signature");
1700    else
1701      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1702  }
1703
1704  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1705  // The magic number is 0x0B17C0DE stored in little endian.
1706  if (isBitcodeWrapper(BufPtr, BufEnd))
1707    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1708      return Error("Invalid bitcode wrapper header");
1709
1710  StreamFile.init(BufPtr, BufEnd);
1711  Stream.init(StreamFile);
1712
1713  // Sniff for the signature.
1714  if (Stream.Read(8) != 'B' ||
1715      Stream.Read(8) != 'C' ||
1716      Stream.Read(4) != 0x0 ||
1717      Stream.Read(4) != 0xC ||
1718      Stream.Read(4) != 0xE ||
1719      Stream.Read(4) != 0xD)
1720    return Error("Invalid bitcode signature");
1721
1722  // We expect a number of well-defined blocks, though we don't necessarily
1723  // need to understand them all.
1724  while (!Stream.AtEndOfStream()) {
1725    unsigned Code = Stream.ReadCode();
1726
1727    if (Code != bitc::ENTER_SUBBLOCK) {
1728
1729      // The ranlib in xcode 4 will align archive members by appending newlines
1730      // to the end of them. If this file size is a multiple of 4 but not 8, we
1731      // have to read and ignore these final 4 bytes :-(
1732      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1733          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1734	  Stream.AtEndOfStream())
1735        return false;
1736
1737      return Error("Invalid record at top-level");
1738    }
1739
1740    unsigned BlockID = Stream.ReadSubBlockID();
1741
1742    // We only know the MODULE subblock ID.
1743    switch (BlockID) {
1744    case bitc::BLOCKINFO_BLOCK_ID:
1745      if (Stream.ReadBlockInfoBlock())
1746        return Error("Malformed BlockInfoBlock");
1747      break;
1748    case bitc::MODULE_BLOCK_ID:
1749      // Reject multiple MODULE_BLOCK's in a single bitstream.
1750      if (TheModule)
1751        return Error("Multiple MODULE_BLOCKs in same stream");
1752      TheModule = M;
1753      if (ParseModule())
1754        return true;
1755      break;
1756    default:
1757      if (Stream.SkipBlock())
1758        return Error("Malformed block record");
1759      break;
1760    }
1761  }
1762
1763  return false;
1764}
1765
1766bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1767  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1768    return Error("Malformed block record");
1769
1770  SmallVector<uint64_t, 64> Record;
1771
1772  // Read all the records for this module.
1773  while (!Stream.AtEndOfStream()) {
1774    unsigned Code = Stream.ReadCode();
1775    if (Code == bitc::END_BLOCK) {
1776      if (Stream.ReadBlockEnd())
1777        return Error("Error at end of module block");
1778
1779      return false;
1780    }
1781
1782    if (Code == bitc::ENTER_SUBBLOCK) {
1783      switch (Stream.ReadSubBlockID()) {
1784      default:  // Skip unknown content.
1785        if (Stream.SkipBlock())
1786          return Error("Malformed block record");
1787        break;
1788      }
1789      continue;
1790    }
1791
1792    if (Code == bitc::DEFINE_ABBREV) {
1793      Stream.ReadAbbrevRecord();
1794      continue;
1795    }
1796
1797    // Read a record.
1798    switch (Stream.ReadRecord(Code, Record)) {
1799    default: break;  // Default behavior, ignore unknown content.
1800    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1801      if (Record.size() < 1)
1802        return Error("Malformed MODULE_CODE_VERSION");
1803      // Only version #0 is supported so far.
1804      if (Record[0] != 0)
1805        return Error("Unknown bitstream version!");
1806      break;
1807    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1808      std::string S;
1809      if (ConvertToString(Record, 0, S))
1810        return Error("Invalid MODULE_CODE_TRIPLE record");
1811      Triple = S;
1812      break;
1813    }
1814    }
1815    Record.clear();
1816  }
1817
1818  return Error("Premature end of bitstream");
1819}
1820
1821bool BitcodeReader::ParseTriple(std::string &Triple) {
1822  if (Buffer->getBufferSize() & 3)
1823    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1824
1825  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1826  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1827
1828  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1829  // The magic number is 0x0B17C0DE stored in little endian.
1830  if (isBitcodeWrapper(BufPtr, BufEnd))
1831    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1832      return Error("Invalid bitcode wrapper header");
1833
1834  StreamFile.init(BufPtr, BufEnd);
1835  Stream.init(StreamFile);
1836
1837  // Sniff for the signature.
1838  if (Stream.Read(8) != 'B' ||
1839      Stream.Read(8) != 'C' ||
1840      Stream.Read(4) != 0x0 ||
1841      Stream.Read(4) != 0xC ||
1842      Stream.Read(4) != 0xE ||
1843      Stream.Read(4) != 0xD)
1844    return Error("Invalid bitcode signature");
1845
1846  // We expect a number of well-defined blocks, though we don't necessarily
1847  // need to understand them all.
1848  while (!Stream.AtEndOfStream()) {
1849    unsigned Code = Stream.ReadCode();
1850
1851    if (Code != bitc::ENTER_SUBBLOCK)
1852      return Error("Invalid record at top-level");
1853
1854    unsigned BlockID = Stream.ReadSubBlockID();
1855
1856    // We only know the MODULE subblock ID.
1857    switch (BlockID) {
1858    case bitc::MODULE_BLOCK_ID:
1859      if (ParseModuleTriple(Triple))
1860        return true;
1861      break;
1862    default:
1863      if (Stream.SkipBlock())
1864        return Error("Malformed block record");
1865      break;
1866    }
1867  }
1868
1869  return false;
1870}
1871
1872/// ParseMetadataAttachment - Parse metadata attachments.
1873bool BitcodeReader::ParseMetadataAttachment() {
1874  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1875    return Error("Malformed block record");
1876
1877  SmallVector<uint64_t, 64> Record;
1878  while(1) {
1879    unsigned Code = Stream.ReadCode();
1880    if (Code == bitc::END_BLOCK) {
1881      if (Stream.ReadBlockEnd())
1882        return Error("Error at end of PARAMATTR block");
1883      break;
1884    }
1885    if (Code == bitc::DEFINE_ABBREV) {
1886      Stream.ReadAbbrevRecord();
1887      continue;
1888    }
1889    // Read a metadata attachment record.
1890    Record.clear();
1891    switch (Stream.ReadRecord(Code, Record)) {
1892    default:  // Default behavior: ignore.
1893      break;
1894    case bitc::METADATA_ATTACHMENT: {
1895      unsigned RecordLength = Record.size();
1896      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1897        return Error ("Invalid METADATA_ATTACHMENT reader!");
1898      Instruction *Inst = InstructionList[Record[0]];
1899      for (unsigned i = 1; i != RecordLength; i = i+2) {
1900        unsigned Kind = Record[i];
1901        DenseMap<unsigned, unsigned>::iterator I =
1902          MDKindMap.find(Kind);
1903        if (I == MDKindMap.end())
1904          return Error("Invalid metadata kind ID");
1905        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1906        Inst->setMetadata(I->second, cast<MDNode>(Node));
1907      }
1908      break;
1909    }
1910    }
1911  }
1912  return false;
1913}
1914
1915/// ParseFunctionBody - Lazily parse the specified function body block.
1916bool BitcodeReader::ParseFunctionBody(Function *F) {
1917  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1918    return Error("Malformed block record");
1919
1920  InstructionList.clear();
1921  unsigned ModuleValueListSize = ValueList.size();
1922  unsigned ModuleMDValueListSize = MDValueList.size();
1923
1924  // Add all the function arguments to the value table.
1925  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1926    ValueList.push_back(I);
1927
1928  unsigned NextValueNo = ValueList.size();
1929  BasicBlock *CurBB = 0;
1930  unsigned CurBBNo = 0;
1931
1932  DebugLoc LastLoc;
1933
1934  // Read all the records.
1935  SmallVector<uint64_t, 64> Record;
1936  while (1) {
1937    unsigned Code = Stream.ReadCode();
1938    if (Code == bitc::END_BLOCK) {
1939      if (Stream.ReadBlockEnd())
1940        return Error("Error at end of function block");
1941      break;
1942    }
1943
1944    if (Code == bitc::ENTER_SUBBLOCK) {
1945      switch (Stream.ReadSubBlockID()) {
1946      default:  // Skip unknown content.
1947        if (Stream.SkipBlock())
1948          return Error("Malformed block record");
1949        break;
1950      case bitc::CONSTANTS_BLOCK_ID:
1951        if (ParseConstants()) return true;
1952        NextValueNo = ValueList.size();
1953        break;
1954      case bitc::VALUE_SYMTAB_BLOCK_ID:
1955        if (ParseValueSymbolTable()) return true;
1956        break;
1957      case bitc::METADATA_ATTACHMENT_ID:
1958        if (ParseMetadataAttachment()) return true;
1959        break;
1960      case bitc::METADATA_BLOCK_ID:
1961        if (ParseMetadata()) return true;
1962        break;
1963      }
1964      continue;
1965    }
1966
1967    if (Code == bitc::DEFINE_ABBREV) {
1968      Stream.ReadAbbrevRecord();
1969      continue;
1970    }
1971
1972    // Read a record.
1973    Record.clear();
1974    Instruction *I = 0;
1975    unsigned BitCode = Stream.ReadRecord(Code, Record);
1976    switch (BitCode) {
1977    default: // Default behavior: reject
1978      return Error("Unknown instruction");
1979    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1980      if (Record.size() < 1 || Record[0] == 0)
1981        return Error("Invalid DECLAREBLOCKS record");
1982      // Create all the basic blocks for the function.
1983      FunctionBBs.resize(Record[0]);
1984      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1985        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1986      CurBB = FunctionBBs[0];
1987      continue;
1988
1989    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1990      // This record indicates that the last instruction is at the same
1991      // location as the previous instruction with a location.
1992      I = 0;
1993
1994      // Get the last instruction emitted.
1995      if (CurBB && !CurBB->empty())
1996        I = &CurBB->back();
1997      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1998               !FunctionBBs[CurBBNo-1]->empty())
1999        I = &FunctionBBs[CurBBNo-1]->back();
2000
2001      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2002      I->setDebugLoc(LastLoc);
2003      I = 0;
2004      continue;
2005
2006    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2007      I = 0;     // Get the last instruction emitted.
2008      if (CurBB && !CurBB->empty())
2009        I = &CurBB->back();
2010      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2011               !FunctionBBs[CurBBNo-1]->empty())
2012        I = &FunctionBBs[CurBBNo-1]->back();
2013      if (I == 0 || Record.size() < 4)
2014        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2015
2016      unsigned Line = Record[0], Col = Record[1];
2017      unsigned ScopeID = Record[2], IAID = Record[3];
2018
2019      MDNode *Scope = 0, *IA = 0;
2020      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2021      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2022      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2023      I->setDebugLoc(LastLoc);
2024      I = 0;
2025      continue;
2026    }
2027
2028    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2029      unsigned OpNum = 0;
2030      Value *LHS, *RHS;
2031      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2032          getValue(Record, OpNum, LHS->getType(), RHS) ||
2033          OpNum+1 > Record.size())
2034        return Error("Invalid BINOP record");
2035
2036      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2037      if (Opc == -1) return Error("Invalid BINOP record");
2038      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2039      InstructionList.push_back(I);
2040      if (OpNum < Record.size()) {
2041        if (Opc == Instruction::Add ||
2042            Opc == Instruction::Sub ||
2043            Opc == Instruction::Mul ||
2044            Opc == Instruction::Shl) {
2045          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2046            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2047          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2048            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2049        } else if (Opc == Instruction::SDiv ||
2050                   Opc == Instruction::UDiv ||
2051                   Opc == Instruction::LShr ||
2052                   Opc == Instruction::AShr) {
2053          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2054            cast<BinaryOperator>(I)->setIsExact(true);
2055        }
2056      }
2057      break;
2058    }
2059    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2060      unsigned OpNum = 0;
2061      Value *Op;
2062      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2063          OpNum+2 != Record.size())
2064        return Error("Invalid CAST record");
2065
2066      Type *ResTy = getTypeByID(Record[OpNum]);
2067      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2068      if (Opc == -1 || ResTy == 0)
2069        return Error("Invalid CAST record");
2070      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2071      InstructionList.push_back(I);
2072      break;
2073    }
2074    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2075    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2076      unsigned OpNum = 0;
2077      Value *BasePtr;
2078      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2079        return Error("Invalid GEP record");
2080
2081      SmallVector<Value*, 16> GEPIdx;
2082      while (OpNum != Record.size()) {
2083        Value *Op;
2084        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2085          return Error("Invalid GEP record");
2086        GEPIdx.push_back(Op);
2087      }
2088
2089      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2090      InstructionList.push_back(I);
2091      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2092        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2093      break;
2094    }
2095
2096    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2097                                       // EXTRACTVAL: [opty, opval, n x indices]
2098      unsigned OpNum = 0;
2099      Value *Agg;
2100      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2101        return Error("Invalid EXTRACTVAL record");
2102
2103      SmallVector<unsigned, 4> EXTRACTVALIdx;
2104      for (unsigned RecSize = Record.size();
2105           OpNum != RecSize; ++OpNum) {
2106        uint64_t Index = Record[OpNum];
2107        if ((unsigned)Index != Index)
2108          return Error("Invalid EXTRACTVAL index");
2109        EXTRACTVALIdx.push_back((unsigned)Index);
2110      }
2111
2112      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2113      InstructionList.push_back(I);
2114      break;
2115    }
2116
2117    case bitc::FUNC_CODE_INST_INSERTVAL: {
2118                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2119      unsigned OpNum = 0;
2120      Value *Agg;
2121      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2122        return Error("Invalid INSERTVAL record");
2123      Value *Val;
2124      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2125        return Error("Invalid INSERTVAL record");
2126
2127      SmallVector<unsigned, 4> INSERTVALIdx;
2128      for (unsigned RecSize = Record.size();
2129           OpNum != RecSize; ++OpNum) {
2130        uint64_t Index = Record[OpNum];
2131        if ((unsigned)Index != Index)
2132          return Error("Invalid INSERTVAL index");
2133        INSERTVALIdx.push_back((unsigned)Index);
2134      }
2135
2136      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2137      InstructionList.push_back(I);
2138      break;
2139    }
2140
2141    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2142      // obsolete form of select
2143      // handles select i1 ... in old bitcode
2144      unsigned OpNum = 0;
2145      Value *TrueVal, *FalseVal, *Cond;
2146      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2147          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2148          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2149        return Error("Invalid SELECT record");
2150
2151      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2152      InstructionList.push_back(I);
2153      break;
2154    }
2155
2156    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2157      // new form of select
2158      // handles select i1 or select [N x i1]
2159      unsigned OpNum = 0;
2160      Value *TrueVal, *FalseVal, *Cond;
2161      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2162          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2163          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2164        return Error("Invalid SELECT record");
2165
2166      // select condition can be either i1 or [N x i1]
2167      if (VectorType* vector_type =
2168          dyn_cast<VectorType>(Cond->getType())) {
2169        // expect <n x i1>
2170        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2171          return Error("Invalid SELECT condition type");
2172      } else {
2173        // expect i1
2174        if (Cond->getType() != Type::getInt1Ty(Context))
2175          return Error("Invalid SELECT condition type");
2176      }
2177
2178      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2179      InstructionList.push_back(I);
2180      break;
2181    }
2182
2183    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2184      unsigned OpNum = 0;
2185      Value *Vec, *Idx;
2186      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2187          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2188        return Error("Invalid EXTRACTELT record");
2189      I = ExtractElementInst::Create(Vec, Idx);
2190      InstructionList.push_back(I);
2191      break;
2192    }
2193
2194    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2195      unsigned OpNum = 0;
2196      Value *Vec, *Elt, *Idx;
2197      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2198          getValue(Record, OpNum,
2199                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2200          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2201        return Error("Invalid INSERTELT record");
2202      I = InsertElementInst::Create(Vec, Elt, Idx);
2203      InstructionList.push_back(I);
2204      break;
2205    }
2206
2207    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2208      unsigned OpNum = 0;
2209      Value *Vec1, *Vec2, *Mask;
2210      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2211          getValue(Record, OpNum, Vec1->getType(), Vec2))
2212        return Error("Invalid SHUFFLEVEC record");
2213
2214      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2215        return Error("Invalid SHUFFLEVEC record");
2216      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2217      InstructionList.push_back(I);
2218      break;
2219    }
2220
2221    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2222      // Old form of ICmp/FCmp returning bool
2223      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2224      // both legal on vectors but had different behaviour.
2225    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2226      // FCmp/ICmp returning bool or vector of bool
2227
2228      unsigned OpNum = 0;
2229      Value *LHS, *RHS;
2230      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2231          getValue(Record, OpNum, LHS->getType(), RHS) ||
2232          OpNum+1 != Record.size())
2233        return Error("Invalid CMP record");
2234
2235      if (LHS->getType()->isFPOrFPVectorTy())
2236        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2237      else
2238        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2239      InstructionList.push_back(I);
2240      break;
2241    }
2242
2243    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2244      {
2245        unsigned Size = Record.size();
2246        if (Size == 0) {
2247          I = ReturnInst::Create(Context);
2248          InstructionList.push_back(I);
2249          break;
2250        }
2251
2252        unsigned OpNum = 0;
2253        Value *Op = NULL;
2254        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2255          return Error("Invalid RET record");
2256        if (OpNum != Record.size())
2257          return Error("Invalid RET record");
2258
2259        I = ReturnInst::Create(Context, Op);
2260        InstructionList.push_back(I);
2261        break;
2262      }
2263    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2264      if (Record.size() != 1 && Record.size() != 3)
2265        return Error("Invalid BR record");
2266      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2267      if (TrueDest == 0)
2268        return Error("Invalid BR record");
2269
2270      if (Record.size() == 1) {
2271        I = BranchInst::Create(TrueDest);
2272        InstructionList.push_back(I);
2273      }
2274      else {
2275        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2276        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2277        if (FalseDest == 0 || Cond == 0)
2278          return Error("Invalid BR record");
2279        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2280        InstructionList.push_back(I);
2281      }
2282      break;
2283    }
2284    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2285      if (Record.size() < 3 || (Record.size() & 1) == 0)
2286        return Error("Invalid SWITCH record");
2287      Type *OpTy = getTypeByID(Record[0]);
2288      Value *Cond = getFnValueByID(Record[1], OpTy);
2289      BasicBlock *Default = getBasicBlock(Record[2]);
2290      if (OpTy == 0 || Cond == 0 || Default == 0)
2291        return Error("Invalid SWITCH record");
2292      unsigned NumCases = (Record.size()-3)/2;
2293      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2294      InstructionList.push_back(SI);
2295      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2296        ConstantInt *CaseVal =
2297          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2298        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2299        if (CaseVal == 0 || DestBB == 0) {
2300          delete SI;
2301          return Error("Invalid SWITCH record!");
2302        }
2303        SI->addCase(CaseVal, DestBB);
2304      }
2305      I = SI;
2306      break;
2307    }
2308    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2309      if (Record.size() < 2)
2310        return Error("Invalid INDIRECTBR record");
2311      Type *OpTy = getTypeByID(Record[0]);
2312      Value *Address = getFnValueByID(Record[1], OpTy);
2313      if (OpTy == 0 || Address == 0)
2314        return Error("Invalid INDIRECTBR record");
2315      unsigned NumDests = Record.size()-2;
2316      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2317      InstructionList.push_back(IBI);
2318      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2319        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2320          IBI->addDestination(DestBB);
2321        } else {
2322          delete IBI;
2323          return Error("Invalid INDIRECTBR record!");
2324        }
2325      }
2326      I = IBI;
2327      break;
2328    }
2329
2330    case bitc::FUNC_CODE_INST_INVOKE: {
2331      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2332      if (Record.size() < 4) return Error("Invalid INVOKE record");
2333      AttrListPtr PAL = getAttributes(Record[0]);
2334      unsigned CCInfo = Record[1];
2335      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2336      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2337
2338      unsigned OpNum = 4;
2339      Value *Callee;
2340      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2341        return Error("Invalid INVOKE record");
2342
2343      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2344      FunctionType *FTy = !CalleeTy ? 0 :
2345        dyn_cast<FunctionType>(CalleeTy->getElementType());
2346
2347      // Check that the right number of fixed parameters are here.
2348      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2349          Record.size() < OpNum+FTy->getNumParams())
2350        return Error("Invalid INVOKE record");
2351
2352      SmallVector<Value*, 16> Ops;
2353      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2354        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2355        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2356      }
2357
2358      if (!FTy->isVarArg()) {
2359        if (Record.size() != OpNum)
2360          return Error("Invalid INVOKE record");
2361      } else {
2362        // Read type/value pairs for varargs params.
2363        while (OpNum != Record.size()) {
2364          Value *Op;
2365          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2366            return Error("Invalid INVOKE record");
2367          Ops.push_back(Op);
2368        }
2369      }
2370
2371      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2372      InstructionList.push_back(I);
2373      cast<InvokeInst>(I)->setCallingConv(
2374        static_cast<CallingConv::ID>(CCInfo));
2375      cast<InvokeInst>(I)->setAttributes(PAL);
2376      break;
2377    }
2378    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2379      unsigned Idx = 0;
2380      Value *Val = 0;
2381      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2382        return Error("Invalid RESUME record");
2383      I = ResumeInst::Create(Val);
2384      InstructionList.push_back(I);
2385      break;
2386    }
2387    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2388      I = new UnwindInst(Context);
2389      InstructionList.push_back(I);
2390      break;
2391    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2392      I = new UnreachableInst(Context);
2393      InstructionList.push_back(I);
2394      break;
2395    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2396      if (Record.size() < 1 || ((Record.size()-1)&1))
2397        return Error("Invalid PHI record");
2398      Type *Ty = getTypeByID(Record[0]);
2399      if (!Ty) return Error("Invalid PHI record");
2400
2401      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2402      InstructionList.push_back(PN);
2403
2404      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2405        Value *V = getFnValueByID(Record[1+i], Ty);
2406        BasicBlock *BB = getBasicBlock(Record[2+i]);
2407        if (!V || !BB) return Error("Invalid PHI record");
2408        PN->addIncoming(V, BB);
2409      }
2410      I = PN;
2411      break;
2412    }
2413
2414    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2415      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2416      unsigned Idx = 0;
2417      if (Record.size() < 4)
2418        return Error("Invalid LANDINGPAD record");
2419      Type *Ty = getTypeByID(Record[Idx++]);
2420      if (!Ty) return Error("Invalid LANDINGPAD record");
2421      Value *PersFn = 0;
2422      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2423        return Error("Invalid LANDINGPAD record");
2424
2425      bool IsCleanup = !!Record[Idx++];
2426      unsigned NumClauses = Record[Idx++];
2427      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2428      LP->setCleanup(IsCleanup);
2429      for (unsigned J = 0; J != NumClauses; ++J) {
2430        LandingPadInst::ClauseType CT =
2431          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2432        Value *Val;
2433
2434        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2435          delete LP;
2436          return Error("Invalid LANDINGPAD record");
2437        }
2438
2439        assert((CT != LandingPadInst::Catch ||
2440                !isa<ArrayType>(Val->getType())) &&
2441               "Catch clause has a invalid type!");
2442        assert((CT != LandingPadInst::Filter ||
2443                isa<ArrayType>(Val->getType())) &&
2444               "Filter clause has invalid type!");
2445        LP->addClause(Val);
2446      }
2447
2448      I = LP;
2449      InstructionList.push_back(I);
2450      break;
2451    }
2452
2453    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2454      if (Record.size() != 4)
2455        return Error("Invalid ALLOCA record");
2456      PointerType *Ty =
2457        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2458      Type *OpTy = getTypeByID(Record[1]);
2459      Value *Size = getFnValueByID(Record[2], OpTy);
2460      unsigned Align = Record[3];
2461      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2462      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2463      InstructionList.push_back(I);
2464      break;
2465    }
2466    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2467      unsigned OpNum = 0;
2468      Value *Op;
2469      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2470          OpNum+2 != Record.size())
2471        return Error("Invalid LOAD record");
2472
2473      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2474      InstructionList.push_back(I);
2475      break;
2476    }
2477    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2478       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2479      unsigned OpNum = 0;
2480      Value *Op;
2481      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2482          OpNum+4 != Record.size())
2483        return Error("Invalid LOADATOMIC record");
2484
2485
2486      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2487      if (Ordering == NotAtomic || Ordering == Release ||
2488          Ordering == AcquireRelease)
2489        return Error("Invalid LOADATOMIC record");
2490      if (Ordering != NotAtomic && Record[OpNum] == 0)
2491        return Error("Invalid LOADATOMIC record");
2492      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2493
2494      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2495                       Ordering, SynchScope);
2496      InstructionList.push_back(I);
2497      break;
2498    }
2499    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2500      unsigned OpNum = 0;
2501      Value *Val, *Ptr;
2502      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2503          getValue(Record, OpNum,
2504                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2505          OpNum+2 != Record.size())
2506        return Error("Invalid STORE record");
2507
2508      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2509      InstructionList.push_back(I);
2510      break;
2511    }
2512    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2513      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2514      unsigned OpNum = 0;
2515      Value *Val, *Ptr;
2516      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2517          getValue(Record, OpNum,
2518                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2519          OpNum+4 != Record.size())
2520        return Error("Invalid STOREATOMIC record");
2521
2522      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2523      if (Ordering == NotAtomic || Ordering == Acquire ||
2524          Ordering == AcquireRelease)
2525        return Error("Invalid STOREATOMIC record");
2526      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2527      if (Ordering != NotAtomic && Record[OpNum] == 0)
2528        return Error("Invalid STOREATOMIC record");
2529
2530      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2531                        Ordering, SynchScope);
2532      InstructionList.push_back(I);
2533      break;
2534    }
2535    case bitc::FUNC_CODE_INST_CMPXCHG: {
2536      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2537      unsigned OpNum = 0;
2538      Value *Ptr, *Cmp, *New;
2539      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2540          getValue(Record, OpNum,
2541                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2542          getValue(Record, OpNum,
2543                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2544          OpNum+3 != Record.size())
2545        return Error("Invalid CMPXCHG record");
2546      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2547      if (Ordering == NotAtomic || Ordering == Unordered)
2548        return Error("Invalid CMPXCHG record");
2549      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2550      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2551      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2552      InstructionList.push_back(I);
2553      break;
2554    }
2555    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2556      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2557      unsigned OpNum = 0;
2558      Value *Ptr, *Val;
2559      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2560          getValue(Record, OpNum,
2561                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2562          OpNum+4 != Record.size())
2563        return Error("Invalid ATOMICRMW record");
2564      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2565      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2566          Operation > AtomicRMWInst::LAST_BINOP)
2567        return Error("Invalid ATOMICRMW record");
2568      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2569      if (Ordering == NotAtomic || Ordering == Unordered)
2570        return Error("Invalid ATOMICRMW record");
2571      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2572      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2573      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2574      InstructionList.push_back(I);
2575      break;
2576    }
2577    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2578      if (2 != Record.size())
2579        return Error("Invalid FENCE record");
2580      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2581      if (Ordering == NotAtomic || Ordering == Unordered ||
2582          Ordering == Monotonic)
2583        return Error("Invalid FENCE record");
2584      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2585      I = new FenceInst(Context, Ordering, SynchScope);
2586      InstructionList.push_back(I);
2587      break;
2588    }
2589    case bitc::FUNC_CODE_INST_CALL: {
2590      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2591      if (Record.size() < 3)
2592        return Error("Invalid CALL record");
2593
2594      AttrListPtr PAL = getAttributes(Record[0]);
2595      unsigned CCInfo = Record[1];
2596
2597      unsigned OpNum = 2;
2598      Value *Callee;
2599      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2600        return Error("Invalid CALL record");
2601
2602      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2603      FunctionType *FTy = 0;
2604      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2605      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2606        return Error("Invalid CALL record");
2607
2608      SmallVector<Value*, 16> Args;
2609      // Read the fixed params.
2610      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2611        if (FTy->getParamType(i)->isLabelTy())
2612          Args.push_back(getBasicBlock(Record[OpNum]));
2613        else
2614          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2615        if (Args.back() == 0) return Error("Invalid CALL record");
2616      }
2617
2618      // Read type/value pairs for varargs params.
2619      if (!FTy->isVarArg()) {
2620        if (OpNum != Record.size())
2621          return Error("Invalid CALL record");
2622      } else {
2623        while (OpNum != Record.size()) {
2624          Value *Op;
2625          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2626            return Error("Invalid CALL record");
2627          Args.push_back(Op);
2628        }
2629      }
2630
2631      I = CallInst::Create(Callee, Args);
2632      InstructionList.push_back(I);
2633      cast<CallInst>(I)->setCallingConv(
2634        static_cast<CallingConv::ID>(CCInfo>>1));
2635      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2636      cast<CallInst>(I)->setAttributes(PAL);
2637      break;
2638    }
2639    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2640      if (Record.size() < 3)
2641        return Error("Invalid VAARG record");
2642      Type *OpTy = getTypeByID(Record[0]);
2643      Value *Op = getFnValueByID(Record[1], OpTy);
2644      Type *ResTy = getTypeByID(Record[2]);
2645      if (!OpTy || !Op || !ResTy)
2646        return Error("Invalid VAARG record");
2647      I = new VAArgInst(Op, ResTy);
2648      InstructionList.push_back(I);
2649      break;
2650    }
2651    }
2652
2653    // Add instruction to end of current BB.  If there is no current BB, reject
2654    // this file.
2655    if (CurBB == 0) {
2656      delete I;
2657      return Error("Invalid instruction with no BB");
2658    }
2659    CurBB->getInstList().push_back(I);
2660
2661    // If this was a terminator instruction, move to the next block.
2662    if (isa<TerminatorInst>(I)) {
2663      ++CurBBNo;
2664      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2665    }
2666
2667    // Non-void values get registered in the value table for future use.
2668    if (I && !I->getType()->isVoidTy())
2669      ValueList.AssignValue(I, NextValueNo++);
2670  }
2671
2672  // Check the function list for unresolved values.
2673  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2674    if (A->getParent() == 0) {
2675      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2676      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2677        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2678          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2679          delete A;
2680        }
2681      }
2682      return Error("Never resolved value found in function!");
2683    }
2684  }
2685
2686  // FIXME: Check for unresolved forward-declared metadata references
2687  // and clean up leaks.
2688
2689  // See if anything took the address of blocks in this function.  If so,
2690  // resolve them now.
2691  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2692    BlockAddrFwdRefs.find(F);
2693  if (BAFRI != BlockAddrFwdRefs.end()) {
2694    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2695    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2696      unsigned BlockIdx = RefList[i].first;
2697      if (BlockIdx >= FunctionBBs.size())
2698        return Error("Invalid blockaddress block #");
2699
2700      GlobalVariable *FwdRef = RefList[i].second;
2701      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2702      FwdRef->eraseFromParent();
2703    }
2704
2705    BlockAddrFwdRefs.erase(BAFRI);
2706  }
2707
2708  // Trim the value list down to the size it was before we parsed this function.
2709  ValueList.shrinkTo(ModuleValueListSize);
2710  MDValueList.shrinkTo(ModuleMDValueListSize);
2711  std::vector<BasicBlock*>().swap(FunctionBBs);
2712  return false;
2713}
2714
2715//===----------------------------------------------------------------------===//
2716// GVMaterializer implementation
2717//===----------------------------------------------------------------------===//
2718
2719
2720bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2721  if (const Function *F = dyn_cast<Function>(GV)) {
2722    return F->isDeclaration() &&
2723      DeferredFunctionInfo.count(const_cast<Function*>(F));
2724  }
2725  return false;
2726}
2727
2728bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2729  Function *F = dyn_cast<Function>(GV);
2730  // If it's not a function or is already material, ignore the request.
2731  if (!F || !F->isMaterializable()) return false;
2732
2733  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2734  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2735
2736  // Move the bit stream to the saved position of the deferred function body.
2737  Stream.JumpToBit(DFII->second);
2738
2739  if (ParseFunctionBody(F)) {
2740    if (ErrInfo) *ErrInfo = ErrorString;
2741    return true;
2742  }
2743
2744  // Upgrade any old intrinsic calls in the function.
2745  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2746       E = UpgradedIntrinsics.end(); I != E; ++I) {
2747    if (I->first != I->second) {
2748      for (Value::use_iterator UI = I->first->use_begin(),
2749           UE = I->first->use_end(); UI != UE; ) {
2750        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2751          UpgradeIntrinsicCall(CI, I->second);
2752      }
2753    }
2754  }
2755
2756  return false;
2757}
2758
2759bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2760  const Function *F = dyn_cast<Function>(GV);
2761  if (!F || F->isDeclaration())
2762    return false;
2763  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2764}
2765
2766void BitcodeReader::Dematerialize(GlobalValue *GV) {
2767  Function *F = dyn_cast<Function>(GV);
2768  // If this function isn't dematerializable, this is a noop.
2769  if (!F || !isDematerializable(F))
2770    return;
2771
2772  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2773
2774  // Just forget the function body, we can remat it later.
2775  F->deleteBody();
2776}
2777
2778
2779bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2780  assert(M == TheModule &&
2781         "Can only Materialize the Module this BitcodeReader is attached to.");
2782  // Iterate over the module, deserializing any functions that are still on
2783  // disk.
2784  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2785       F != E; ++F)
2786    if (F->isMaterializable() &&
2787        Materialize(F, ErrInfo))
2788      return true;
2789
2790  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2791  // delete the old functions to clean up. We can't do this unless the entire
2792  // module is materialized because there could always be another function body
2793  // with calls to the old function.
2794  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2795       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2796    if (I->first != I->second) {
2797      for (Value::use_iterator UI = I->first->use_begin(),
2798           UE = I->first->use_end(); UI != UE; ) {
2799        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2800          UpgradeIntrinsicCall(CI, I->second);
2801      }
2802      if (!I->first->use_empty())
2803        I->first->replaceAllUsesWith(I->second);
2804      I->first->eraseFromParent();
2805    }
2806  }
2807  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2808
2809  return false;
2810}
2811
2812
2813//===----------------------------------------------------------------------===//
2814// External interface
2815//===----------------------------------------------------------------------===//
2816
2817/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2818///
2819Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2820                                   LLVMContext& Context,
2821                                   std::string *ErrMsg) {
2822  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2823  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2824  M->setMaterializer(R);
2825  if (R->ParseBitcodeInto(M)) {
2826    if (ErrMsg)
2827      *ErrMsg = R->getErrorString();
2828
2829    delete M;  // Also deletes R.
2830    return 0;
2831  }
2832  // Have the BitcodeReader dtor delete 'Buffer'.
2833  R->setBufferOwned(true);
2834
2835  R->materializeForwardReferencedFunctions();
2836
2837  return M;
2838}
2839
2840/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2841/// If an error occurs, return null and fill in *ErrMsg if non-null.
2842Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2843                               std::string *ErrMsg){
2844  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2845  if (!M) return 0;
2846
2847  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2848  // there was an error.
2849  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2850
2851  // Read in the entire module, and destroy the BitcodeReader.
2852  if (M->MaterializeAllPermanently(ErrMsg)) {
2853    delete M;
2854    return 0;
2855  }
2856
2857  // TODO: Restore the use-lists to the in-memory state when the bitcode was
2858  // written.  We must defer until the Module has been fully materialized.
2859
2860  return M;
2861}
2862
2863std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2864                                         LLVMContext& Context,
2865                                         std::string *ErrMsg) {
2866  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2867  // Don't let the BitcodeReader dtor delete 'Buffer'.
2868  R->setBufferOwned(false);
2869
2870  std::string Triple("");
2871  if (R->ParseTriple(Triple))
2872    if (ErrMsg)
2873      *ErrMsg = R->getErrorString();
2874
2875  delete R;
2876  return Triple;
2877}
2878