BitcodeReader.cpp revision 23598502efa6a0c2daaa6c6efc519867c8445e8f
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  delete Buffer;
32  Buffer = 0;
33  std::vector<PATypeHolder>().swap(TypeList);
34  ValueList.clear();
35  MDValueList.clear();
36
37  std::vector<AttrListPtr>().swap(MAttributes);
38  std::vector<BasicBlock*>().swap(FunctionBBs);
39  std::vector<Function*>().swap(FunctionsWithBodies);
40  DeferredFunctionInfo.clear();
41}
42
43//===----------------------------------------------------------------------===//
44//  Helper functions to implement forward reference resolution, etc.
45//===----------------------------------------------------------------------===//
46
47/// ConvertToString - Convert a string from a record into an std::string, return
48/// true on failure.
49template<typename StrTy>
50static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
51                            StrTy &Result) {
52  if (Idx > Record.size())
53    return true;
54
55  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
56    Result += (char)Record[i];
57  return false;
58}
59
60static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
61  switch (Val) {
62  default: // Map unknown/new linkages to external
63  case 0:  return GlobalValue::ExternalLinkage;
64  case 1:  return GlobalValue::WeakAnyLinkage;
65  case 2:  return GlobalValue::AppendingLinkage;
66  case 3:  return GlobalValue::InternalLinkage;
67  case 4:  return GlobalValue::LinkOnceAnyLinkage;
68  case 5:  return GlobalValue::DLLImportLinkage;
69  case 6:  return GlobalValue::DLLExportLinkage;
70  case 7:  return GlobalValue::ExternalWeakLinkage;
71  case 8:  return GlobalValue::CommonLinkage;
72  case 9:  return GlobalValue::PrivateLinkage;
73  case 10: return GlobalValue::WeakODRLinkage;
74  case 11: return GlobalValue::LinkOnceODRLinkage;
75  case 12: return GlobalValue::AvailableExternallyLinkage;
76  case 13: return GlobalValue::LinkerPrivateLinkage;
77  }
78}
79
80static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
81  switch (Val) {
82  default: // Map unknown visibilities to default.
83  case 0: return GlobalValue::DefaultVisibility;
84  case 1: return GlobalValue::HiddenVisibility;
85  case 2: return GlobalValue::ProtectedVisibility;
86  }
87}
88
89static int GetDecodedCastOpcode(unsigned Val) {
90  switch (Val) {
91  default: return -1;
92  case bitc::CAST_TRUNC   : return Instruction::Trunc;
93  case bitc::CAST_ZEXT    : return Instruction::ZExt;
94  case bitc::CAST_SEXT    : return Instruction::SExt;
95  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
96  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
97  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
98  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
99  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
100  case bitc::CAST_FPEXT   : return Instruction::FPExt;
101  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
102  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
103  case bitc::CAST_BITCAST : return Instruction::BitCast;
104  }
105}
106static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
107  switch (Val) {
108  default: return -1;
109  case bitc::BINOP_ADD:
110    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
111  case bitc::BINOP_SUB:
112    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
113  case bitc::BINOP_MUL:
114    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
115  case bitc::BINOP_UDIV: return Instruction::UDiv;
116  case bitc::BINOP_SDIV:
117    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
118  case bitc::BINOP_UREM: return Instruction::URem;
119  case bitc::BINOP_SREM:
120    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
121  case bitc::BINOP_SHL:  return Instruction::Shl;
122  case bitc::BINOP_LSHR: return Instruction::LShr;
123  case bitc::BINOP_ASHR: return Instruction::AShr;
124  case bitc::BINOP_AND:  return Instruction::And;
125  case bitc::BINOP_OR:   return Instruction::Or;
126  case bitc::BINOP_XOR:  return Instruction::Xor;
127  }
128}
129
130namespace llvm {
131namespace {
132  /// @brief A class for maintaining the slot number definition
133  /// as a placeholder for the actual definition for forward constants defs.
134  class ConstantPlaceHolder : public ConstantExpr {
135    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
136    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
137  public:
138    // allocate space for exactly one operand
139    void *operator new(size_t s) {
140      return User::operator new(s, 1);
141    }
142    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
143      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
144      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
145    }
146
147    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
148    static inline bool classof(const ConstantPlaceHolder *) { return true; }
149    static bool classof(const Value *V) {
150      return isa<ConstantExpr>(V) &&
151             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
152    }
153
154
155    /// Provide fast operand accessors
156    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
157  };
158}
159
160// FIXME: can we inherit this from ConstantExpr?
161template <>
162struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
163};
164}
165
166
167void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
168  if (Idx == size()) {
169    push_back(V);
170    return;
171  }
172
173  if (Idx >= size())
174    resize(Idx+1);
175
176  WeakVH &OldV = ValuePtrs[Idx];
177  if (OldV == 0) {
178    OldV = V;
179    return;
180  }
181
182  // Handle constants and non-constants (e.g. instrs) differently for
183  // efficiency.
184  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
185    ResolveConstants.push_back(std::make_pair(PHC, Idx));
186    OldV = V;
187  } else {
188    // If there was a forward reference to this value, replace it.
189    Value *PrevVal = OldV;
190    OldV->replaceAllUsesWith(V);
191    delete PrevVal;
192  }
193}
194
195
196Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
197                                                    const Type *Ty) {
198  if (Idx >= size())
199    resize(Idx + 1);
200
201  if (Value *V = ValuePtrs[Idx]) {
202    assert(Ty == V->getType() && "Type mismatch in constant table!");
203    return cast<Constant>(V);
204  }
205
206  // Create and return a placeholder, which will later be RAUW'd.
207  Constant *C = new ConstantPlaceHolder(Ty, Context);
208  ValuePtrs[Idx] = C;
209  return C;
210}
211
212Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
213  if (Idx >= size())
214    resize(Idx + 1);
215
216  if (Value *V = ValuePtrs[Idx]) {
217    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
218    return V;
219  }
220
221  // No type specified, must be invalid reference.
222  if (Ty == 0) return 0;
223
224  // Create and return a placeholder, which will later be RAUW'd.
225  Value *V = new Argument(Ty);
226  ValuePtrs[Idx] = V;
227  return V;
228}
229
230/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
231/// resolves any forward references.  The idea behind this is that we sometimes
232/// get constants (such as large arrays) which reference *many* forward ref
233/// constants.  Replacing each of these causes a lot of thrashing when
234/// building/reuniquing the constant.  Instead of doing this, we look at all the
235/// uses and rewrite all the place holders at once for any constant that uses
236/// a placeholder.
237void BitcodeReaderValueList::ResolveConstantForwardRefs() {
238  // Sort the values by-pointer so that they are efficient to look up with a
239  // binary search.
240  std::sort(ResolveConstants.begin(), ResolveConstants.end());
241
242  SmallVector<Constant*, 64> NewOps;
243
244  while (!ResolveConstants.empty()) {
245    Value *RealVal = operator[](ResolveConstants.back().second);
246    Constant *Placeholder = ResolveConstants.back().first;
247    ResolveConstants.pop_back();
248
249    // Loop over all users of the placeholder, updating them to reference the
250    // new value.  If they reference more than one placeholder, update them all
251    // at once.
252    while (!Placeholder->use_empty()) {
253      Value::use_iterator UI = Placeholder->use_begin();
254
255      // If the using object isn't uniqued, just update the operands.  This
256      // handles instructions and initializers for global variables.
257      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
258        UI.getUse().set(RealVal);
259        continue;
260      }
261
262      // Otherwise, we have a constant that uses the placeholder.  Replace that
263      // constant with a new constant that has *all* placeholder uses updated.
264      Constant *UserC = cast<Constant>(*UI);
265      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
266           I != E; ++I) {
267        Value *NewOp;
268        if (!isa<ConstantPlaceHolder>(*I)) {
269          // Not a placeholder reference.
270          NewOp = *I;
271        } else if (*I == Placeholder) {
272          // Common case is that it just references this one placeholder.
273          NewOp = RealVal;
274        } else {
275          // Otherwise, look up the placeholder in ResolveConstants.
276          ResolveConstantsTy::iterator It =
277            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
278                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
279                                                            0));
280          assert(It != ResolveConstants.end() && It->first == *I);
281          NewOp = operator[](It->second);
282        }
283
284        NewOps.push_back(cast<Constant>(NewOp));
285      }
286
287      // Make the new constant.
288      Constant *NewC;
289      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
290        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
291                                        NewOps.size());
292      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
293        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
294                                         UserCS->getType()->isPacked());
295      } else if (isa<ConstantVector>(UserC)) {
296        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
297      } else {
298        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
299        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
300                                                          NewOps.size());
301      }
302
303      UserC->replaceAllUsesWith(NewC);
304      UserC->destroyConstant();
305      NewOps.clear();
306    }
307
308    // Update all ValueHandles, they should be the only users at this point.
309    Placeholder->replaceAllUsesWith(RealVal);
310    delete Placeholder;
311  }
312}
313
314void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
315  if (Idx == size()) {
316    push_back(V);
317    return;
318  }
319
320  if (Idx >= size())
321    resize(Idx+1);
322
323  WeakVH &OldV = MDValuePtrs[Idx];
324  if (OldV == 0) {
325    OldV = V;
326    return;
327  }
328
329  // If there was a forward reference to this value, replace it.
330  Value *PrevVal = OldV;
331  OldV->replaceAllUsesWith(V);
332  delete PrevVal;
333  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
334  // value for Idx.
335  MDValuePtrs[Idx] = V;
336}
337
338Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
339  if (Idx >= size())
340    resize(Idx + 1);
341
342  if (Value *V = MDValuePtrs[Idx]) {
343    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
344    return V;
345  }
346
347  // Create and return a placeholder, which will later be RAUW'd.
348  Value *V = new Argument(Type::getMetadataTy(Context));
349  MDValuePtrs[Idx] = V;
350  return V;
351}
352
353const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
354  // If the TypeID is in range, return it.
355  if (ID < TypeList.size())
356    return TypeList[ID].get();
357  if (!isTypeTable) return 0;
358
359  // The type table allows forward references.  Push as many Opaque types as
360  // needed to get up to ID.
361  while (TypeList.size() <= ID)
362    TypeList.push_back(OpaqueType::get(Context));
363  return TypeList.back().get();
364}
365
366//===----------------------------------------------------------------------===//
367//  Functions for parsing blocks from the bitcode file
368//===----------------------------------------------------------------------===//
369
370bool BitcodeReader::ParseAttributeBlock() {
371  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
372    return Error("Malformed block record");
373
374  if (!MAttributes.empty())
375    return Error("Multiple PARAMATTR blocks found!");
376
377  SmallVector<uint64_t, 64> Record;
378
379  SmallVector<AttributeWithIndex, 8> Attrs;
380
381  // Read all the records.
382  while (1) {
383    unsigned Code = Stream.ReadCode();
384    if (Code == bitc::END_BLOCK) {
385      if (Stream.ReadBlockEnd())
386        return Error("Error at end of PARAMATTR block");
387      return false;
388    }
389
390    if (Code == bitc::ENTER_SUBBLOCK) {
391      // No known subblocks, always skip them.
392      Stream.ReadSubBlockID();
393      if (Stream.SkipBlock())
394        return Error("Malformed block record");
395      continue;
396    }
397
398    if (Code == bitc::DEFINE_ABBREV) {
399      Stream.ReadAbbrevRecord();
400      continue;
401    }
402
403    // Read a record.
404    Record.clear();
405    switch (Stream.ReadRecord(Code, Record)) {
406    default:  // Default behavior: ignore.
407      break;
408    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
409      if (Record.size() & 1)
410        return Error("Invalid ENTRY record");
411
412      // FIXME : Remove this autoupgrade code in LLVM 3.0.
413      // If Function attributes are using index 0 then transfer them
414      // to index ~0. Index 0 is used for return value attributes but used to be
415      // used for function attributes.
416      Attributes RetAttribute = Attribute::None;
417      Attributes FnAttribute = Attribute::None;
418      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
419        // FIXME: remove in LLVM 3.0
420        // The alignment is stored as a 16-bit raw value from bits 31--16.
421        // We shift the bits above 31 down by 11 bits.
422
423        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
424        if (Alignment && !isPowerOf2_32(Alignment))
425          return Error("Alignment is not a power of two.");
426
427        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
428        if (Alignment)
429          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
430        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
431        Record[i+1] = ReconstitutedAttr;
432
433        if (Record[i] == 0)
434          RetAttribute = Record[i+1];
435        else if (Record[i] == ~0U)
436          FnAttribute = Record[i+1];
437      }
438
439      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
440                              Attribute::ReadOnly|Attribute::ReadNone);
441
442      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
443          (RetAttribute & OldRetAttrs) != 0) {
444        if (FnAttribute == Attribute::None) { // add a slot so they get added.
445          Record.push_back(~0U);
446          Record.push_back(0);
447        }
448
449        FnAttribute  |= RetAttribute & OldRetAttrs;
450        RetAttribute &= ~OldRetAttrs;
451      }
452
453      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
454        if (Record[i] == 0) {
455          if (RetAttribute != Attribute::None)
456            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
457        } else if (Record[i] == ~0U) {
458          if (FnAttribute != Attribute::None)
459            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
460        } else if (Record[i+1] != Attribute::None)
461          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
462      }
463
464      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
465      Attrs.clear();
466      break;
467    }
468    }
469  }
470}
471
472
473bool BitcodeReader::ParseTypeTable() {
474  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
475    return Error("Malformed block record");
476
477  if (!TypeList.empty())
478    return Error("Multiple TYPE_BLOCKs found!");
479
480  SmallVector<uint64_t, 64> Record;
481  unsigned NumRecords = 0;
482
483  // Read all the records for this type table.
484  while (1) {
485    unsigned Code = Stream.ReadCode();
486    if (Code == bitc::END_BLOCK) {
487      if (NumRecords != TypeList.size())
488        return Error("Invalid type forward reference in TYPE_BLOCK");
489      if (Stream.ReadBlockEnd())
490        return Error("Error at end of type table block");
491      return false;
492    }
493
494    if (Code == bitc::ENTER_SUBBLOCK) {
495      // No known subblocks, always skip them.
496      Stream.ReadSubBlockID();
497      if (Stream.SkipBlock())
498        return Error("Malformed block record");
499      continue;
500    }
501
502    if (Code == bitc::DEFINE_ABBREV) {
503      Stream.ReadAbbrevRecord();
504      continue;
505    }
506
507    // Read a record.
508    Record.clear();
509    const Type *ResultTy = 0;
510    switch (Stream.ReadRecord(Code, Record)) {
511    default:  // Default behavior: unknown type.
512      ResultTy = 0;
513      break;
514    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
515      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
516      // type list.  This allows us to reserve space.
517      if (Record.size() < 1)
518        return Error("Invalid TYPE_CODE_NUMENTRY record");
519      TypeList.reserve(Record[0]);
520      continue;
521    case bitc::TYPE_CODE_VOID:      // VOID
522      ResultTy = Type::getVoidTy(Context);
523      break;
524    case bitc::TYPE_CODE_FLOAT:     // FLOAT
525      ResultTy = Type::getFloatTy(Context);
526      break;
527    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
528      ResultTy = Type::getDoubleTy(Context);
529      break;
530    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
531      ResultTy = Type::getX86_FP80Ty(Context);
532      break;
533    case bitc::TYPE_CODE_FP128:     // FP128
534      ResultTy = Type::getFP128Ty(Context);
535      break;
536    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
537      ResultTy = Type::getPPC_FP128Ty(Context);
538      break;
539    case bitc::TYPE_CODE_LABEL:     // LABEL
540      ResultTy = Type::getLabelTy(Context);
541      break;
542    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
543      ResultTy = 0;
544      break;
545    case bitc::TYPE_CODE_METADATA:  // METADATA
546      ResultTy = Type::getMetadataTy(Context);
547      break;
548    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
549      if (Record.size() < 1)
550        return Error("Invalid Integer type record");
551
552      ResultTy = IntegerType::get(Context, Record[0]);
553      break;
554    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
555                                    //          [pointee type, address space]
556      if (Record.size() < 1)
557        return Error("Invalid POINTER type record");
558      unsigned AddressSpace = 0;
559      if (Record.size() == 2)
560        AddressSpace = Record[1];
561      ResultTy = PointerType::get(getTypeByID(Record[0], true),
562                                        AddressSpace);
563      break;
564    }
565    case bitc::TYPE_CODE_FUNCTION: {
566      // FIXME: attrid is dead, remove it in LLVM 3.0
567      // FUNCTION: [vararg, attrid, retty, paramty x N]
568      if (Record.size() < 3)
569        return Error("Invalid FUNCTION type record");
570      std::vector<const Type*> ArgTys;
571      for (unsigned i = 3, e = Record.size(); i != e; ++i)
572        ArgTys.push_back(getTypeByID(Record[i], true));
573
574      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
575                                   Record[0]);
576      break;
577    }
578    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
579      if (Record.size() < 1)
580        return Error("Invalid STRUCT type record");
581      std::vector<const Type*> EltTys;
582      for (unsigned i = 1, e = Record.size(); i != e; ++i)
583        EltTys.push_back(getTypeByID(Record[i], true));
584      ResultTy = StructType::get(Context, EltTys, Record[0]);
585      break;
586    }
587    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
588      if (Record.size() < 2)
589        return Error("Invalid ARRAY type record");
590      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
591      break;
592    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
593      if (Record.size() < 2)
594        return Error("Invalid VECTOR type record");
595      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
596      break;
597    }
598
599    if (NumRecords == TypeList.size()) {
600      // If this is a new type slot, just append it.
601      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
602      ++NumRecords;
603    } else if (ResultTy == 0) {
604      // Otherwise, this was forward referenced, so an opaque type was created,
605      // but the result type is actually just an opaque.  Leave the one we
606      // created previously.
607      ++NumRecords;
608    } else {
609      // Otherwise, this was forward referenced, so an opaque type was created.
610      // Resolve the opaque type to the real type now.
611      assert(NumRecords < TypeList.size() && "Typelist imbalance");
612      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
613
614      // Don't directly push the new type on the Tab. Instead we want to replace
615      // the opaque type we previously inserted with the new concrete value. The
616      // refinement from the abstract (opaque) type to the new type causes all
617      // uses of the abstract type to use the concrete type (NewTy). This will
618      // also cause the opaque type to be deleted.
619      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
620
621      // This should have replaced the old opaque type with the new type in the
622      // value table... or with a preexisting type that was already in the
623      // system.  Let's just make sure it did.
624      assert(TypeList[NumRecords-1].get() != OldTy &&
625             "refineAbstractType didn't work!");
626    }
627  }
628}
629
630
631bool BitcodeReader::ParseTypeSymbolTable() {
632  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
633    return Error("Malformed block record");
634
635  SmallVector<uint64_t, 64> Record;
636
637  // Read all the records for this type table.
638  std::string TypeName;
639  while (1) {
640    unsigned Code = Stream.ReadCode();
641    if (Code == bitc::END_BLOCK) {
642      if (Stream.ReadBlockEnd())
643        return Error("Error at end of type symbol table block");
644      return false;
645    }
646
647    if (Code == bitc::ENTER_SUBBLOCK) {
648      // No known subblocks, always skip them.
649      Stream.ReadSubBlockID();
650      if (Stream.SkipBlock())
651        return Error("Malformed block record");
652      continue;
653    }
654
655    if (Code == bitc::DEFINE_ABBREV) {
656      Stream.ReadAbbrevRecord();
657      continue;
658    }
659
660    // Read a record.
661    Record.clear();
662    switch (Stream.ReadRecord(Code, Record)) {
663    default:  // Default behavior: unknown type.
664      break;
665    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
666      if (ConvertToString(Record, 1, TypeName))
667        return Error("Invalid TST_ENTRY record");
668      unsigned TypeID = Record[0];
669      if (TypeID >= TypeList.size())
670        return Error("Invalid Type ID in TST_ENTRY record");
671
672      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
673      TypeName.clear();
674      break;
675    }
676  }
677}
678
679bool BitcodeReader::ParseValueSymbolTable() {
680  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
681    return Error("Malformed block record");
682
683  SmallVector<uint64_t, 64> Record;
684
685  // Read all the records for this value table.
686  SmallString<128> ValueName;
687  while (1) {
688    unsigned Code = Stream.ReadCode();
689    if (Code == bitc::END_BLOCK) {
690      if (Stream.ReadBlockEnd())
691        return Error("Error at end of value symbol table block");
692      return false;
693    }
694    if (Code == bitc::ENTER_SUBBLOCK) {
695      // No known subblocks, always skip them.
696      Stream.ReadSubBlockID();
697      if (Stream.SkipBlock())
698        return Error("Malformed block record");
699      continue;
700    }
701
702    if (Code == bitc::DEFINE_ABBREV) {
703      Stream.ReadAbbrevRecord();
704      continue;
705    }
706
707    // Read a record.
708    Record.clear();
709    switch (Stream.ReadRecord(Code, Record)) {
710    default:  // Default behavior: unknown type.
711      break;
712    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
713      if (ConvertToString(Record, 1, ValueName))
714        return Error("Invalid VST_ENTRY record");
715      unsigned ValueID = Record[0];
716      if (ValueID >= ValueList.size())
717        return Error("Invalid Value ID in VST_ENTRY record");
718      Value *V = ValueList[ValueID];
719
720      V->setName(StringRef(ValueName.data(), ValueName.size()));
721      ValueName.clear();
722      break;
723    }
724    case bitc::VST_CODE_BBENTRY: {
725      if (ConvertToString(Record, 1, ValueName))
726        return Error("Invalid VST_BBENTRY record");
727      BasicBlock *BB = getBasicBlock(Record[0]);
728      if (BB == 0)
729        return Error("Invalid BB ID in VST_BBENTRY record");
730
731      BB->setName(StringRef(ValueName.data(), ValueName.size()));
732      ValueName.clear();
733      break;
734    }
735    }
736  }
737}
738
739bool BitcodeReader::ParseMetadata() {
740  unsigned NextMDValueNo = MDValueList.size();
741
742  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
743    return Error("Malformed block record");
744
745  SmallVector<uint64_t, 64> Record;
746
747  // Read all the records.
748  while (1) {
749    unsigned Code = Stream.ReadCode();
750    if (Code == bitc::END_BLOCK) {
751      if (Stream.ReadBlockEnd())
752        return Error("Error at end of PARAMATTR block");
753      return false;
754    }
755
756    if (Code == bitc::ENTER_SUBBLOCK) {
757      // No known subblocks, always skip them.
758      Stream.ReadSubBlockID();
759      if (Stream.SkipBlock())
760        return Error("Malformed block record");
761      continue;
762    }
763
764    if (Code == bitc::DEFINE_ABBREV) {
765      Stream.ReadAbbrevRecord();
766      continue;
767    }
768
769    bool IsFunctionLocal = false;
770    // Read a record.
771    Record.clear();
772    switch (Stream.ReadRecord(Code, Record)) {
773    default:  // Default behavior: ignore.
774      break;
775    case bitc::METADATA_NAME: {
776      // Read named of the named metadata.
777      unsigned NameLength = Record.size();
778      SmallString<8> Name;
779      Name.resize(NameLength);
780      for (unsigned i = 0; i != NameLength; ++i)
781        Name[i] = Record[i];
782      Record.clear();
783      Code = Stream.ReadCode();
784
785      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
786      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
787        assert ( 0 && "Inavlid Named Metadata record");
788
789      // Read named metadata elements.
790      unsigned Size = Record.size();
791      SmallVector<MDNode *, 8> Elts;
792      for (unsigned i = 0; i != Size; ++i) {
793        if (Record[i] == ~0U) {
794          Elts.push_back(NULL);
795          continue;
796        }
797        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
798        if (MD == 0)
799          return Error("Malformed metadata record");
800        Elts.push_back(MD);
801      }
802      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
803                                     Elts.size(), TheModule);
804      MDValueList.AssignValue(V, NextMDValueNo++);
805      break;
806    }
807    case bitc::METADATA_FN_NODE:
808      IsFunctionLocal = true;
809      // fall-through
810    case bitc::METADATA_NODE: {
811      if (Record.empty() || Record.size() % 2 == 1)
812        return Error("Invalid METADATA_NODE record");
813
814      unsigned Size = Record.size();
815      SmallVector<Value*, 8> Elts;
816      for (unsigned i = 0; i != Size; i += 2) {
817        const Type *Ty = getTypeByID(Record[i], false);
818        if (Ty->isMetadataTy())
819          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
820        else if (!Ty->isVoidTy())
821          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
822        else
823          Elts.push_back(NULL);
824      }
825      Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(),
826                                               IsFunctionLocal);
827      IsFunctionLocal = false;
828      MDValueList.AssignValue(V, NextMDValueNo++);
829      break;
830    }
831    case bitc::METADATA_STRING: {
832      unsigned MDStringLength = Record.size();
833      SmallString<8> String;
834      String.resize(MDStringLength);
835      for (unsigned i = 0; i != MDStringLength; ++i)
836        String[i] = Record[i];
837      Value *V = MDString::get(Context,
838                               StringRef(String.data(), String.size()));
839      MDValueList.AssignValue(V, NextMDValueNo++);
840      break;
841    }
842    case bitc::METADATA_KIND: {
843      unsigned RecordLength = Record.size();
844      if (Record.empty() || RecordLength < 2)
845        return Error("Invalid METADATA_KIND record");
846      SmallString<8> Name;
847      Name.resize(RecordLength-1);
848      unsigned Kind = Record[0];
849      (void) Kind;
850      for (unsigned i = 1; i != RecordLength; ++i)
851        Name[i-1] = Record[i];
852
853      unsigned NewKind = TheModule->getMDKindID(Name.str());
854      assert(Kind == NewKind &&
855             "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
856      break;
857    }
858    }
859  }
860}
861
862/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
863/// the LSB for dense VBR encoding.
864static uint64_t DecodeSignRotatedValue(uint64_t V) {
865  if ((V & 1) == 0)
866    return V >> 1;
867  if (V != 1)
868    return -(V >> 1);
869  // There is no such thing as -0 with integers.  "-0" really means MININT.
870  return 1ULL << 63;
871}
872
873/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
874/// values and aliases that we can.
875bool BitcodeReader::ResolveGlobalAndAliasInits() {
876  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
877  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
878
879  GlobalInitWorklist.swap(GlobalInits);
880  AliasInitWorklist.swap(AliasInits);
881
882  while (!GlobalInitWorklist.empty()) {
883    unsigned ValID = GlobalInitWorklist.back().second;
884    if (ValID >= ValueList.size()) {
885      // Not ready to resolve this yet, it requires something later in the file.
886      GlobalInits.push_back(GlobalInitWorklist.back());
887    } else {
888      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
889        GlobalInitWorklist.back().first->setInitializer(C);
890      else
891        return Error("Global variable initializer is not a constant!");
892    }
893    GlobalInitWorklist.pop_back();
894  }
895
896  while (!AliasInitWorklist.empty()) {
897    unsigned ValID = AliasInitWorklist.back().second;
898    if (ValID >= ValueList.size()) {
899      AliasInits.push_back(AliasInitWorklist.back());
900    } else {
901      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
902        AliasInitWorklist.back().first->setAliasee(C);
903      else
904        return Error("Alias initializer is not a constant!");
905    }
906    AliasInitWorklist.pop_back();
907  }
908  return false;
909}
910
911bool BitcodeReader::ParseConstants() {
912  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
913    return Error("Malformed block record");
914
915  SmallVector<uint64_t, 64> Record;
916
917  // Read all the records for this value table.
918  const Type *CurTy = Type::getInt32Ty(Context);
919  unsigned NextCstNo = ValueList.size();
920  while (1) {
921    unsigned Code = Stream.ReadCode();
922    if (Code == bitc::END_BLOCK)
923      break;
924
925    if (Code == bitc::ENTER_SUBBLOCK) {
926      // No known subblocks, always skip them.
927      Stream.ReadSubBlockID();
928      if (Stream.SkipBlock())
929        return Error("Malformed block record");
930      continue;
931    }
932
933    if (Code == bitc::DEFINE_ABBREV) {
934      Stream.ReadAbbrevRecord();
935      continue;
936    }
937
938    // Read a record.
939    Record.clear();
940    Value *V = 0;
941    unsigned BitCode = Stream.ReadRecord(Code, Record);
942    switch (BitCode) {
943    default:  // Default behavior: unknown constant
944    case bitc::CST_CODE_UNDEF:     // UNDEF
945      V = UndefValue::get(CurTy);
946      break;
947    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
948      if (Record.empty())
949        return Error("Malformed CST_SETTYPE record");
950      if (Record[0] >= TypeList.size())
951        return Error("Invalid Type ID in CST_SETTYPE record");
952      CurTy = TypeList[Record[0]];
953      continue;  // Skip the ValueList manipulation.
954    case bitc::CST_CODE_NULL:      // NULL
955      V = Constant::getNullValue(CurTy);
956      break;
957    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
958      if (!isa<IntegerType>(CurTy) || Record.empty())
959        return Error("Invalid CST_INTEGER record");
960      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
961      break;
962    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
963      if (!isa<IntegerType>(CurTy) || Record.empty())
964        return Error("Invalid WIDE_INTEGER record");
965
966      unsigned NumWords = Record.size();
967      SmallVector<uint64_t, 8> Words;
968      Words.resize(NumWords);
969      for (unsigned i = 0; i != NumWords; ++i)
970        Words[i] = DecodeSignRotatedValue(Record[i]);
971      V = ConstantInt::get(Context,
972                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
973                           NumWords, &Words[0]));
974      break;
975    }
976    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
977      if (Record.empty())
978        return Error("Invalid FLOAT record");
979      if (CurTy->isFloatTy())
980        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
981      else if (CurTy->isDoubleTy())
982        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
983      else if (CurTy->isX86_FP80Ty()) {
984        // Bits are not stored the same way as a normal i80 APInt, compensate.
985        uint64_t Rearrange[2];
986        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
987        Rearrange[1] = Record[0] >> 48;
988        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
989      } else if (CurTy->isFP128Ty())
990        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
991      else if (CurTy->isPPC_FP128Ty())
992        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
993      else
994        V = UndefValue::get(CurTy);
995      break;
996    }
997
998    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
999      if (Record.empty())
1000        return Error("Invalid CST_AGGREGATE record");
1001
1002      unsigned Size = Record.size();
1003      std::vector<Constant*> Elts;
1004
1005      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1006        for (unsigned i = 0; i != Size; ++i)
1007          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1008                                                     STy->getElementType(i)));
1009        V = ConstantStruct::get(STy, Elts);
1010      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1011        const Type *EltTy = ATy->getElementType();
1012        for (unsigned i = 0; i != Size; ++i)
1013          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1014        V = ConstantArray::get(ATy, Elts);
1015      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1016        const Type *EltTy = VTy->getElementType();
1017        for (unsigned i = 0; i != Size; ++i)
1018          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1019        V = ConstantVector::get(Elts);
1020      } else {
1021        V = UndefValue::get(CurTy);
1022      }
1023      break;
1024    }
1025    case bitc::CST_CODE_STRING: { // STRING: [values]
1026      if (Record.empty())
1027        return Error("Invalid CST_AGGREGATE record");
1028
1029      const ArrayType *ATy = cast<ArrayType>(CurTy);
1030      const Type *EltTy = ATy->getElementType();
1031
1032      unsigned Size = Record.size();
1033      std::vector<Constant*> Elts;
1034      for (unsigned i = 0; i != Size; ++i)
1035        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1036      V = ConstantArray::get(ATy, Elts);
1037      break;
1038    }
1039    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1040      if (Record.empty())
1041        return Error("Invalid CST_AGGREGATE record");
1042
1043      const ArrayType *ATy = cast<ArrayType>(CurTy);
1044      const Type *EltTy = ATy->getElementType();
1045
1046      unsigned Size = Record.size();
1047      std::vector<Constant*> Elts;
1048      for (unsigned i = 0; i != Size; ++i)
1049        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1050      Elts.push_back(Constant::getNullValue(EltTy));
1051      V = ConstantArray::get(ATy, Elts);
1052      break;
1053    }
1054    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1055      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1056      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1057      if (Opc < 0) {
1058        V = UndefValue::get(CurTy);  // Unknown binop.
1059      } else {
1060        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1061        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1062        unsigned Flags = 0;
1063        if (Record.size() >= 4) {
1064          if (Opc == Instruction::Add ||
1065              Opc == Instruction::Sub ||
1066              Opc == Instruction::Mul) {
1067            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1068              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1069            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1070              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1071          } else if (Opc == Instruction::SDiv) {
1072            if (Record[3] & (1 << bitc::SDIV_EXACT))
1073              Flags |= SDivOperator::IsExact;
1074          }
1075        }
1076        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1077      }
1078      break;
1079    }
1080    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1081      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1082      int Opc = GetDecodedCastOpcode(Record[0]);
1083      if (Opc < 0) {
1084        V = UndefValue::get(CurTy);  // Unknown cast.
1085      } else {
1086        const Type *OpTy = getTypeByID(Record[1]);
1087        if (!OpTy) return Error("Invalid CE_CAST record");
1088        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1089        V = ConstantExpr::getCast(Opc, Op, CurTy);
1090      }
1091      break;
1092    }
1093    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1094    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1095      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1096      SmallVector<Constant*, 16> Elts;
1097      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1098        const Type *ElTy = getTypeByID(Record[i]);
1099        if (!ElTy) return Error("Invalid CE_GEP record");
1100        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1101      }
1102      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1103        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1104                                                   Elts.size()-1);
1105      else
1106        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1107                                           Elts.size()-1);
1108      break;
1109    }
1110    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1111      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1112      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1113                                                              Type::getInt1Ty(Context)),
1114                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1115                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1116      break;
1117    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1118      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1119      const VectorType *OpTy =
1120        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1121      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1122      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1123      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1124      V = ConstantExpr::getExtractElement(Op0, Op1);
1125      break;
1126    }
1127    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1128      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1129      if (Record.size() < 3 || OpTy == 0)
1130        return Error("Invalid CE_INSERTELT record");
1131      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1132      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1133                                                  OpTy->getElementType());
1134      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1135      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1136      break;
1137    }
1138    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1139      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1140      if (Record.size() < 3 || OpTy == 0)
1141        return Error("Invalid CE_SHUFFLEVEC record");
1142      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1143      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1144      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1145                                                 OpTy->getNumElements());
1146      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1147      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1148      break;
1149    }
1150    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1151      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1152      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1153      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1154        return Error("Invalid CE_SHUFVEC_EX record");
1155      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1156      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1157      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1158                                                 RTy->getNumElements());
1159      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1160      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1161      break;
1162    }
1163    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1164      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1165      const Type *OpTy = getTypeByID(Record[0]);
1166      if (OpTy == 0) return Error("Invalid CE_CMP record");
1167      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1168      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1169
1170      if (OpTy->isFloatingPoint())
1171        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1172      else
1173        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1174      break;
1175    }
1176    case bitc::CST_CODE_INLINEASM: {
1177      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1178      std::string AsmStr, ConstrStr;
1179      bool HasSideEffects = Record[0] & 1;
1180      bool IsAlignStack = Record[0] >> 1;
1181      unsigned AsmStrSize = Record[1];
1182      if (2+AsmStrSize >= Record.size())
1183        return Error("Invalid INLINEASM record");
1184      unsigned ConstStrSize = Record[2+AsmStrSize];
1185      if (3+AsmStrSize+ConstStrSize > Record.size())
1186        return Error("Invalid INLINEASM record");
1187
1188      for (unsigned i = 0; i != AsmStrSize; ++i)
1189        AsmStr += (char)Record[2+i];
1190      for (unsigned i = 0; i != ConstStrSize; ++i)
1191        ConstrStr += (char)Record[3+AsmStrSize+i];
1192      const PointerType *PTy = cast<PointerType>(CurTy);
1193      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1194                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1195      break;
1196    }
1197    case bitc::CST_CODE_BLOCKADDRESS:{
1198      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1199      const Type *FnTy = getTypeByID(Record[0]);
1200      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1201      Function *Fn =
1202        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1203      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1204
1205      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1206                                                  Type::getInt8Ty(Context),
1207                                            false, GlobalValue::InternalLinkage,
1208                                                  0, "");
1209      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1210      V = FwdRef;
1211      break;
1212    }
1213    }
1214
1215    ValueList.AssignValue(V, NextCstNo);
1216    ++NextCstNo;
1217  }
1218
1219  if (NextCstNo != ValueList.size())
1220    return Error("Invalid constant reference!");
1221
1222  if (Stream.ReadBlockEnd())
1223    return Error("Error at end of constants block");
1224
1225  // Once all the constants have been read, go through and resolve forward
1226  // references.
1227  ValueList.ResolveConstantForwardRefs();
1228  return false;
1229}
1230
1231/// RememberAndSkipFunctionBody - When we see the block for a function body,
1232/// remember where it is and then skip it.  This lets us lazily deserialize the
1233/// functions.
1234bool BitcodeReader::RememberAndSkipFunctionBody() {
1235  // Get the function we are talking about.
1236  if (FunctionsWithBodies.empty())
1237    return Error("Insufficient function protos");
1238
1239  Function *Fn = FunctionsWithBodies.back();
1240  FunctionsWithBodies.pop_back();
1241
1242  // Save the current stream state.
1243  uint64_t CurBit = Stream.GetCurrentBitNo();
1244  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1245
1246  // Set the functions linkage to GhostLinkage so we know it is lazily
1247  // deserialized.
1248  Fn->setLinkage(GlobalValue::GhostLinkage);
1249
1250  // Skip over the function block for now.
1251  if (Stream.SkipBlock())
1252    return Error("Malformed block record");
1253  return false;
1254}
1255
1256bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1257  // Reject multiple MODULE_BLOCK's in a single bitstream.
1258  if (TheModule)
1259    return Error("Multiple MODULE_BLOCKs in same stream");
1260
1261  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1262    return Error("Malformed block record");
1263
1264  // Otherwise, create the module.
1265  TheModule = new Module(ModuleID, Context);
1266
1267  SmallVector<uint64_t, 64> Record;
1268  std::vector<std::string> SectionTable;
1269  std::vector<std::string> GCTable;
1270
1271  // Read all the records for this module.
1272  while (!Stream.AtEndOfStream()) {
1273    unsigned Code = Stream.ReadCode();
1274    if (Code == bitc::END_BLOCK) {
1275      if (Stream.ReadBlockEnd())
1276        return Error("Error at end of module block");
1277
1278      // Patch the initializers for globals and aliases up.
1279      ResolveGlobalAndAliasInits();
1280      if (!GlobalInits.empty() || !AliasInits.empty())
1281        return Error("Malformed global initializer set");
1282      if (!FunctionsWithBodies.empty())
1283        return Error("Too few function bodies found");
1284
1285      // Look for intrinsic functions which need to be upgraded at some point
1286      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1287           FI != FE; ++FI) {
1288        Function* NewFn;
1289        if (UpgradeIntrinsicFunction(FI, NewFn))
1290          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1291      }
1292
1293      // Force deallocation of memory for these vectors to favor the client that
1294      // want lazy deserialization.
1295      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1296      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1297      std::vector<Function*>().swap(FunctionsWithBodies);
1298      return false;
1299    }
1300
1301    if (Code == bitc::ENTER_SUBBLOCK) {
1302      switch (Stream.ReadSubBlockID()) {
1303      default:  // Skip unknown content.
1304        if (Stream.SkipBlock())
1305          return Error("Malformed block record");
1306        break;
1307      case bitc::BLOCKINFO_BLOCK_ID:
1308        if (Stream.ReadBlockInfoBlock())
1309          return Error("Malformed BlockInfoBlock");
1310        break;
1311      case bitc::PARAMATTR_BLOCK_ID:
1312        if (ParseAttributeBlock())
1313          return true;
1314        break;
1315      case bitc::TYPE_BLOCK_ID:
1316        if (ParseTypeTable())
1317          return true;
1318        break;
1319      case bitc::TYPE_SYMTAB_BLOCK_ID:
1320        if (ParseTypeSymbolTable())
1321          return true;
1322        break;
1323      case bitc::VALUE_SYMTAB_BLOCK_ID:
1324        if (ParseValueSymbolTable())
1325          return true;
1326        break;
1327      case bitc::CONSTANTS_BLOCK_ID:
1328        if (ParseConstants() || ResolveGlobalAndAliasInits())
1329          return true;
1330        break;
1331      case bitc::METADATA_BLOCK_ID:
1332        if (ParseMetadata())
1333          return true;
1334        break;
1335      case bitc::FUNCTION_BLOCK_ID:
1336        // If this is the first function body we've seen, reverse the
1337        // FunctionsWithBodies list.
1338        if (!HasReversedFunctionsWithBodies) {
1339          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1340          HasReversedFunctionsWithBodies = true;
1341        }
1342
1343        if (RememberAndSkipFunctionBody())
1344          return true;
1345        break;
1346      }
1347      continue;
1348    }
1349
1350    if (Code == bitc::DEFINE_ABBREV) {
1351      Stream.ReadAbbrevRecord();
1352      continue;
1353    }
1354
1355    // Read a record.
1356    switch (Stream.ReadRecord(Code, Record)) {
1357    default: break;  // Default behavior, ignore unknown content.
1358    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1359      if (Record.size() < 1)
1360        return Error("Malformed MODULE_CODE_VERSION");
1361      // Only version #0 is supported so far.
1362      if (Record[0] != 0)
1363        return Error("Unknown bitstream version!");
1364      break;
1365    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1366      std::string S;
1367      if (ConvertToString(Record, 0, S))
1368        return Error("Invalid MODULE_CODE_TRIPLE record");
1369      TheModule->setTargetTriple(S);
1370      break;
1371    }
1372    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1373      std::string S;
1374      if (ConvertToString(Record, 0, S))
1375        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1376      TheModule->setDataLayout(S);
1377      break;
1378    }
1379    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1380      std::string S;
1381      if (ConvertToString(Record, 0, S))
1382        return Error("Invalid MODULE_CODE_ASM record");
1383      TheModule->setModuleInlineAsm(S);
1384      break;
1385    }
1386    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1387      std::string S;
1388      if (ConvertToString(Record, 0, S))
1389        return Error("Invalid MODULE_CODE_DEPLIB record");
1390      TheModule->addLibrary(S);
1391      break;
1392    }
1393    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1394      std::string S;
1395      if (ConvertToString(Record, 0, S))
1396        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1397      SectionTable.push_back(S);
1398      break;
1399    }
1400    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1401      std::string S;
1402      if (ConvertToString(Record, 0, S))
1403        return Error("Invalid MODULE_CODE_GCNAME record");
1404      GCTable.push_back(S);
1405      break;
1406    }
1407    // GLOBALVAR: [pointer type, isconst, initid,
1408    //             linkage, alignment, section, visibility, threadlocal]
1409    case bitc::MODULE_CODE_GLOBALVAR: {
1410      if (Record.size() < 6)
1411        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1412      const Type *Ty = getTypeByID(Record[0]);
1413      if (!isa<PointerType>(Ty))
1414        return Error("Global not a pointer type!");
1415      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1416      Ty = cast<PointerType>(Ty)->getElementType();
1417
1418      bool isConstant = Record[1];
1419      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1420      unsigned Alignment = (1 << Record[4]) >> 1;
1421      std::string Section;
1422      if (Record[5]) {
1423        if (Record[5]-1 >= SectionTable.size())
1424          return Error("Invalid section ID");
1425        Section = SectionTable[Record[5]-1];
1426      }
1427      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1428      if (Record.size() > 6)
1429        Visibility = GetDecodedVisibility(Record[6]);
1430      bool isThreadLocal = false;
1431      if (Record.size() > 7)
1432        isThreadLocal = Record[7];
1433
1434      GlobalVariable *NewGV =
1435        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1436                           isThreadLocal, AddressSpace);
1437      NewGV->setAlignment(Alignment);
1438      if (!Section.empty())
1439        NewGV->setSection(Section);
1440      NewGV->setVisibility(Visibility);
1441      NewGV->setThreadLocal(isThreadLocal);
1442
1443      ValueList.push_back(NewGV);
1444
1445      // Remember which value to use for the global initializer.
1446      if (unsigned InitID = Record[2])
1447        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1448      break;
1449    }
1450    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1451    //             alignment, section, visibility, gc]
1452    case bitc::MODULE_CODE_FUNCTION: {
1453      if (Record.size() < 8)
1454        return Error("Invalid MODULE_CODE_FUNCTION record");
1455      const Type *Ty = getTypeByID(Record[0]);
1456      if (!isa<PointerType>(Ty))
1457        return Error("Function not a pointer type!");
1458      const FunctionType *FTy =
1459        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1460      if (!FTy)
1461        return Error("Function not a pointer to function type!");
1462
1463      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1464                                        "", TheModule);
1465
1466      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1467      bool isProto = Record[2];
1468      Func->setLinkage(GetDecodedLinkage(Record[3]));
1469      Func->setAttributes(getAttributes(Record[4]));
1470
1471      Func->setAlignment((1 << Record[5]) >> 1);
1472      if (Record[6]) {
1473        if (Record[6]-1 >= SectionTable.size())
1474          return Error("Invalid section ID");
1475        Func->setSection(SectionTable[Record[6]-1]);
1476      }
1477      Func->setVisibility(GetDecodedVisibility(Record[7]));
1478      if (Record.size() > 8 && Record[8]) {
1479        if (Record[8]-1 > GCTable.size())
1480          return Error("Invalid GC ID");
1481        Func->setGC(GCTable[Record[8]-1].c_str());
1482      }
1483      ValueList.push_back(Func);
1484
1485      // If this is a function with a body, remember the prototype we are
1486      // creating now, so that we can match up the body with them later.
1487      if (!isProto)
1488        FunctionsWithBodies.push_back(Func);
1489      break;
1490    }
1491    // ALIAS: [alias type, aliasee val#, linkage]
1492    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1493    case bitc::MODULE_CODE_ALIAS: {
1494      if (Record.size() < 3)
1495        return Error("Invalid MODULE_ALIAS record");
1496      const Type *Ty = getTypeByID(Record[0]);
1497      if (!isa<PointerType>(Ty))
1498        return Error("Function not a pointer type!");
1499
1500      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1501                                           "", 0, TheModule);
1502      // Old bitcode files didn't have visibility field.
1503      if (Record.size() > 3)
1504        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1505      ValueList.push_back(NewGA);
1506      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1507      break;
1508    }
1509    /// MODULE_CODE_PURGEVALS: [numvals]
1510    case bitc::MODULE_CODE_PURGEVALS:
1511      // Trim down the value list to the specified size.
1512      if (Record.size() < 1 || Record[0] > ValueList.size())
1513        return Error("Invalid MODULE_PURGEVALS record");
1514      ValueList.shrinkTo(Record[0]);
1515      break;
1516    }
1517    Record.clear();
1518  }
1519
1520  return Error("Premature end of bitstream");
1521}
1522
1523bool BitcodeReader::ParseBitcode() {
1524  TheModule = 0;
1525
1526  if (Buffer->getBufferSize() & 3)
1527    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1528
1529  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1530  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1531
1532  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1533  // The magic number is 0x0B17C0DE stored in little endian.
1534  if (isBitcodeWrapper(BufPtr, BufEnd))
1535    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1536      return Error("Invalid bitcode wrapper header");
1537
1538  StreamFile.init(BufPtr, BufEnd);
1539  Stream.init(StreamFile);
1540
1541  // Sniff for the signature.
1542  if (Stream.Read(8) != 'B' ||
1543      Stream.Read(8) != 'C' ||
1544      Stream.Read(4) != 0x0 ||
1545      Stream.Read(4) != 0xC ||
1546      Stream.Read(4) != 0xE ||
1547      Stream.Read(4) != 0xD)
1548    return Error("Invalid bitcode signature");
1549
1550  // We expect a number of well-defined blocks, though we don't necessarily
1551  // need to understand them all.
1552  while (!Stream.AtEndOfStream()) {
1553    unsigned Code = Stream.ReadCode();
1554
1555    if (Code != bitc::ENTER_SUBBLOCK)
1556      return Error("Invalid record at top-level");
1557
1558    unsigned BlockID = Stream.ReadSubBlockID();
1559
1560    // We only know the MODULE subblock ID.
1561    switch (BlockID) {
1562    case bitc::BLOCKINFO_BLOCK_ID:
1563      if (Stream.ReadBlockInfoBlock())
1564        return Error("Malformed BlockInfoBlock");
1565      break;
1566    case bitc::MODULE_BLOCK_ID:
1567      if (ParseModule(Buffer->getBufferIdentifier()))
1568        return true;
1569      break;
1570    default:
1571      if (Stream.SkipBlock())
1572        return Error("Malformed block record");
1573      break;
1574    }
1575  }
1576
1577  return false;
1578}
1579
1580/// ParseMetadataAttachment - Parse metadata attachments.
1581bool BitcodeReader::ParseMetadataAttachment() {
1582  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1583    return Error("Malformed block record");
1584
1585  SmallVector<uint64_t, 64> Record;
1586  while(1) {
1587    unsigned Code = Stream.ReadCode();
1588    if (Code == bitc::END_BLOCK) {
1589      if (Stream.ReadBlockEnd())
1590        return Error("Error at end of PARAMATTR block");
1591      break;
1592    }
1593    if (Code == bitc::DEFINE_ABBREV) {
1594      Stream.ReadAbbrevRecord();
1595      continue;
1596    }
1597    // Read a metadata attachment record.
1598    Record.clear();
1599    switch (Stream.ReadRecord(Code, Record)) {
1600    default:  // Default behavior: ignore.
1601      break;
1602    case bitc::METADATA_ATTACHMENT: {
1603      unsigned RecordLength = Record.size();
1604      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1605        return Error ("Invalid METADATA_ATTACHMENT reader!");
1606      Instruction *Inst = InstructionList[Record[0]];
1607      for (unsigned i = 1; i != RecordLength; i = i+2) {
1608        unsigned Kind = Record[i];
1609        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1610        Inst->setMetadata(Kind, cast<MDNode>(Node));
1611      }
1612      break;
1613    }
1614    }
1615  }
1616  return false;
1617}
1618
1619/// ParseFunctionBody - Lazily parse the specified function body block.
1620bool BitcodeReader::ParseFunctionBody(Function *F) {
1621  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1622    return Error("Malformed block record");
1623
1624  unsigned ModuleValueListSize = ValueList.size();
1625
1626  // Add all the function arguments to the value table.
1627  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1628    ValueList.push_back(I);
1629
1630  unsigned NextValueNo = ValueList.size();
1631  BasicBlock *CurBB = 0;
1632  unsigned CurBBNo = 0;
1633
1634  // Read all the records.
1635  SmallVector<uint64_t, 64> Record;
1636  while (1) {
1637    unsigned Code = Stream.ReadCode();
1638    if (Code == bitc::END_BLOCK) {
1639      if (Stream.ReadBlockEnd())
1640        return Error("Error at end of function block");
1641      break;
1642    }
1643
1644    if (Code == bitc::ENTER_SUBBLOCK) {
1645      switch (Stream.ReadSubBlockID()) {
1646      default:  // Skip unknown content.
1647        if (Stream.SkipBlock())
1648          return Error("Malformed block record");
1649        break;
1650      case bitc::CONSTANTS_BLOCK_ID:
1651        if (ParseConstants()) return true;
1652        NextValueNo = ValueList.size();
1653        break;
1654      case bitc::VALUE_SYMTAB_BLOCK_ID:
1655        if (ParseValueSymbolTable()) return true;
1656        break;
1657      case bitc::METADATA_ATTACHMENT_ID:
1658        if (ParseMetadataAttachment()) return true;
1659        break;
1660      }
1661      continue;
1662    }
1663
1664    if (Code == bitc::DEFINE_ABBREV) {
1665      Stream.ReadAbbrevRecord();
1666      continue;
1667    }
1668
1669    // Read a record.
1670    Record.clear();
1671    Instruction *I = 0;
1672    unsigned BitCode = Stream.ReadRecord(Code, Record);
1673    switch (BitCode) {
1674    default: // Default behavior: reject
1675      return Error("Unknown instruction");
1676    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1677      if (Record.size() < 1 || Record[0] == 0)
1678        return Error("Invalid DECLAREBLOCKS record");
1679      // Create all the basic blocks for the function.
1680      FunctionBBs.resize(Record[0]);
1681      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1682        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1683      CurBB = FunctionBBs[0];
1684      continue;
1685
1686    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1687      unsigned OpNum = 0;
1688      Value *LHS, *RHS;
1689      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1690          getValue(Record, OpNum, LHS->getType(), RHS) ||
1691          OpNum+1 > Record.size())
1692        return Error("Invalid BINOP record");
1693
1694      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1695      if (Opc == -1) return Error("Invalid BINOP record");
1696      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1697      InstructionList.push_back(I);
1698      if (OpNum < Record.size()) {
1699        if (Opc == Instruction::Add ||
1700            Opc == Instruction::Sub ||
1701            Opc == Instruction::Mul) {
1702          if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1703            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1704          if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1705            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1706        } else if (Opc == Instruction::SDiv) {
1707          if (Record[3] & (1 << bitc::SDIV_EXACT))
1708            cast<BinaryOperator>(I)->setIsExact(true);
1709        }
1710      }
1711      break;
1712    }
1713    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1714      unsigned OpNum = 0;
1715      Value *Op;
1716      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1717          OpNum+2 != Record.size())
1718        return Error("Invalid CAST record");
1719
1720      const Type *ResTy = getTypeByID(Record[OpNum]);
1721      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1722      if (Opc == -1 || ResTy == 0)
1723        return Error("Invalid CAST record");
1724      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1725      InstructionList.push_back(I);
1726      break;
1727    }
1728    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1729    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1730      unsigned OpNum = 0;
1731      Value *BasePtr;
1732      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1733        return Error("Invalid GEP record");
1734
1735      SmallVector<Value*, 16> GEPIdx;
1736      while (OpNum != Record.size()) {
1737        Value *Op;
1738        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1739          return Error("Invalid GEP record");
1740        GEPIdx.push_back(Op);
1741      }
1742
1743      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1744      InstructionList.push_back(I);
1745      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1746        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1747      break;
1748    }
1749
1750    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1751                                       // EXTRACTVAL: [opty, opval, n x indices]
1752      unsigned OpNum = 0;
1753      Value *Agg;
1754      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1755        return Error("Invalid EXTRACTVAL record");
1756
1757      SmallVector<unsigned, 4> EXTRACTVALIdx;
1758      for (unsigned RecSize = Record.size();
1759           OpNum != RecSize; ++OpNum) {
1760        uint64_t Index = Record[OpNum];
1761        if ((unsigned)Index != Index)
1762          return Error("Invalid EXTRACTVAL index");
1763        EXTRACTVALIdx.push_back((unsigned)Index);
1764      }
1765
1766      I = ExtractValueInst::Create(Agg,
1767                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1768      InstructionList.push_back(I);
1769      break;
1770    }
1771
1772    case bitc::FUNC_CODE_INST_INSERTVAL: {
1773                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1774      unsigned OpNum = 0;
1775      Value *Agg;
1776      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1777        return Error("Invalid INSERTVAL record");
1778      Value *Val;
1779      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1780        return Error("Invalid INSERTVAL record");
1781
1782      SmallVector<unsigned, 4> INSERTVALIdx;
1783      for (unsigned RecSize = Record.size();
1784           OpNum != RecSize; ++OpNum) {
1785        uint64_t Index = Record[OpNum];
1786        if ((unsigned)Index != Index)
1787          return Error("Invalid INSERTVAL index");
1788        INSERTVALIdx.push_back((unsigned)Index);
1789      }
1790
1791      I = InsertValueInst::Create(Agg, Val,
1792                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1793      InstructionList.push_back(I);
1794      break;
1795    }
1796
1797    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1798      // obsolete form of select
1799      // handles select i1 ... in old bitcode
1800      unsigned OpNum = 0;
1801      Value *TrueVal, *FalseVal, *Cond;
1802      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1803          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1804          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1805        return Error("Invalid SELECT record");
1806
1807      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1808      InstructionList.push_back(I);
1809      break;
1810    }
1811
1812    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1813      // new form of select
1814      // handles select i1 or select [N x i1]
1815      unsigned OpNum = 0;
1816      Value *TrueVal, *FalseVal, *Cond;
1817      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1818          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1819          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1820        return Error("Invalid SELECT record");
1821
1822      // select condition can be either i1 or [N x i1]
1823      if (const VectorType* vector_type =
1824          dyn_cast<const VectorType>(Cond->getType())) {
1825        // expect <n x i1>
1826        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1827          return Error("Invalid SELECT condition type");
1828      } else {
1829        // expect i1
1830        if (Cond->getType() != Type::getInt1Ty(Context))
1831          return Error("Invalid SELECT condition type");
1832      }
1833
1834      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1835      InstructionList.push_back(I);
1836      break;
1837    }
1838
1839    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1840      unsigned OpNum = 0;
1841      Value *Vec, *Idx;
1842      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1843          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1844        return Error("Invalid EXTRACTELT record");
1845      I = ExtractElementInst::Create(Vec, Idx);
1846      InstructionList.push_back(I);
1847      break;
1848    }
1849
1850    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1851      unsigned OpNum = 0;
1852      Value *Vec, *Elt, *Idx;
1853      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1854          getValue(Record, OpNum,
1855                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1856          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1857        return Error("Invalid INSERTELT record");
1858      I = InsertElementInst::Create(Vec, Elt, Idx);
1859      InstructionList.push_back(I);
1860      break;
1861    }
1862
1863    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1864      unsigned OpNum = 0;
1865      Value *Vec1, *Vec2, *Mask;
1866      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1867          getValue(Record, OpNum, Vec1->getType(), Vec2))
1868        return Error("Invalid SHUFFLEVEC record");
1869
1870      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1871        return Error("Invalid SHUFFLEVEC record");
1872      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1873      InstructionList.push_back(I);
1874      break;
1875    }
1876
1877    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1878      // Old form of ICmp/FCmp returning bool
1879      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1880      // both legal on vectors but had different behaviour.
1881    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1882      // FCmp/ICmp returning bool or vector of bool
1883
1884      unsigned OpNum = 0;
1885      Value *LHS, *RHS;
1886      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1887          getValue(Record, OpNum, LHS->getType(), RHS) ||
1888          OpNum+1 != Record.size())
1889        return Error("Invalid CMP record");
1890
1891      if (LHS->getType()->isFPOrFPVector())
1892        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1893      else
1894        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1895      InstructionList.push_back(I);
1896      break;
1897    }
1898
1899    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1900      if (Record.size() != 2)
1901        return Error("Invalid GETRESULT record");
1902      unsigned OpNum = 0;
1903      Value *Op;
1904      getValueTypePair(Record, OpNum, NextValueNo, Op);
1905      unsigned Index = Record[1];
1906      I = ExtractValueInst::Create(Op, Index);
1907      InstructionList.push_back(I);
1908      break;
1909    }
1910
1911    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1912      {
1913        unsigned Size = Record.size();
1914        if (Size == 0) {
1915          I = ReturnInst::Create(Context);
1916          InstructionList.push_back(I);
1917          break;
1918        }
1919
1920        unsigned OpNum = 0;
1921        SmallVector<Value *,4> Vs;
1922        do {
1923          Value *Op = NULL;
1924          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1925            return Error("Invalid RET record");
1926          Vs.push_back(Op);
1927        } while(OpNum != Record.size());
1928
1929        const Type *ReturnType = F->getReturnType();
1930        if (Vs.size() > 1 ||
1931            (isa<StructType>(ReturnType) &&
1932             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1933          Value *RV = UndefValue::get(ReturnType);
1934          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1935            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1936            InstructionList.push_back(I);
1937            CurBB->getInstList().push_back(I);
1938            ValueList.AssignValue(I, NextValueNo++);
1939            RV = I;
1940          }
1941          I = ReturnInst::Create(Context, RV);
1942          InstructionList.push_back(I);
1943          break;
1944        }
1945
1946        I = ReturnInst::Create(Context, Vs[0]);
1947        InstructionList.push_back(I);
1948        break;
1949      }
1950    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1951      if (Record.size() != 1 && Record.size() != 3)
1952        return Error("Invalid BR record");
1953      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1954      if (TrueDest == 0)
1955        return Error("Invalid BR record");
1956
1957      if (Record.size() == 1) {
1958        I = BranchInst::Create(TrueDest);
1959        InstructionList.push_back(I);
1960      }
1961      else {
1962        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1963        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1964        if (FalseDest == 0 || Cond == 0)
1965          return Error("Invalid BR record");
1966        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1967        InstructionList.push_back(I);
1968      }
1969      break;
1970    }
1971    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1972      if (Record.size() < 3 || (Record.size() & 1) == 0)
1973        return Error("Invalid SWITCH record");
1974      const Type *OpTy = getTypeByID(Record[0]);
1975      Value *Cond = getFnValueByID(Record[1], OpTy);
1976      BasicBlock *Default = getBasicBlock(Record[2]);
1977      if (OpTy == 0 || Cond == 0 || Default == 0)
1978        return Error("Invalid SWITCH record");
1979      unsigned NumCases = (Record.size()-3)/2;
1980      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1981      InstructionList.push_back(SI);
1982      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1983        ConstantInt *CaseVal =
1984          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1985        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1986        if (CaseVal == 0 || DestBB == 0) {
1987          delete SI;
1988          return Error("Invalid SWITCH record!");
1989        }
1990        SI->addCase(CaseVal, DestBB);
1991      }
1992      I = SI;
1993      break;
1994    }
1995    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1996      if (Record.size() < 2)
1997        return Error("Invalid INDIRECTBR record");
1998      const Type *OpTy = getTypeByID(Record[0]);
1999      Value *Address = getFnValueByID(Record[1], OpTy);
2000      if (OpTy == 0 || Address == 0)
2001        return Error("Invalid INDIRECTBR record");
2002      unsigned NumDests = Record.size()-2;
2003      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2004      InstructionList.push_back(IBI);
2005      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2006        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2007          IBI->addDestination(DestBB);
2008        } else {
2009          delete IBI;
2010          return Error("Invalid INDIRECTBR record!");
2011        }
2012      }
2013      I = IBI;
2014      break;
2015    }
2016
2017    case bitc::FUNC_CODE_INST_INVOKE: {
2018      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2019      if (Record.size() < 4) return Error("Invalid INVOKE record");
2020      AttrListPtr PAL = getAttributes(Record[0]);
2021      unsigned CCInfo = Record[1];
2022      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2023      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2024
2025      unsigned OpNum = 4;
2026      Value *Callee;
2027      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2028        return Error("Invalid INVOKE record");
2029
2030      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2031      const FunctionType *FTy = !CalleeTy ? 0 :
2032        dyn_cast<FunctionType>(CalleeTy->getElementType());
2033
2034      // Check that the right number of fixed parameters are here.
2035      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2036          Record.size() < OpNum+FTy->getNumParams())
2037        return Error("Invalid INVOKE record");
2038
2039      SmallVector<Value*, 16> Ops;
2040      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2041        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2042        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2043      }
2044
2045      if (!FTy->isVarArg()) {
2046        if (Record.size() != OpNum)
2047          return Error("Invalid INVOKE record");
2048      } else {
2049        // Read type/value pairs for varargs params.
2050        while (OpNum != Record.size()) {
2051          Value *Op;
2052          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2053            return Error("Invalid INVOKE record");
2054          Ops.push_back(Op);
2055        }
2056      }
2057
2058      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2059                             Ops.begin(), Ops.end());
2060      InstructionList.push_back(I);
2061      cast<InvokeInst>(I)->setCallingConv(
2062        static_cast<CallingConv::ID>(CCInfo));
2063      cast<InvokeInst>(I)->setAttributes(PAL);
2064      break;
2065    }
2066    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2067      I = new UnwindInst(Context);
2068      InstructionList.push_back(I);
2069      break;
2070    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2071      I = new UnreachableInst(Context);
2072      InstructionList.push_back(I);
2073      break;
2074    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2075      if (Record.size() < 1 || ((Record.size()-1)&1))
2076        return Error("Invalid PHI record");
2077      const Type *Ty = getTypeByID(Record[0]);
2078      if (!Ty) return Error("Invalid PHI record");
2079
2080      PHINode *PN = PHINode::Create(Ty);
2081      InstructionList.push_back(PN);
2082      PN->reserveOperandSpace((Record.size()-1)/2);
2083
2084      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2085        Value *V = getFnValueByID(Record[1+i], Ty);
2086        BasicBlock *BB = getBasicBlock(Record[2+i]);
2087        if (!V || !BB) return Error("Invalid PHI record");
2088        PN->addIncoming(V, BB);
2089      }
2090      I = PN;
2091      break;
2092    }
2093
2094    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2095      // Autoupgrade malloc instruction to malloc call.
2096      // FIXME: Remove in LLVM 3.0.
2097      if (Record.size() < 3)
2098        return Error("Invalid MALLOC record");
2099      const PointerType *Ty =
2100        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2101      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2102      if (!Ty || !Size) return Error("Invalid MALLOC record");
2103      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2104      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2105      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2106      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2107      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2108                                 AllocSize, Size, NULL);
2109      InstructionList.push_back(I);
2110      break;
2111    }
2112    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2113      unsigned OpNum = 0;
2114      Value *Op;
2115      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2116          OpNum != Record.size())
2117        return Error("Invalid FREE record");
2118      if (!CurBB) return Error("Invalid free instruction with no BB");
2119      I = CallInst::CreateFree(Op, CurBB);
2120      InstructionList.push_back(I);
2121      break;
2122    }
2123    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2124      if (Record.size() < 3)
2125        return Error("Invalid ALLOCA record");
2126      const PointerType *Ty =
2127        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2128      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2129      unsigned Align = Record[2];
2130      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2131      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2132      InstructionList.push_back(I);
2133      break;
2134    }
2135    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2136      unsigned OpNum = 0;
2137      Value *Op;
2138      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2139          OpNum+2 != Record.size())
2140        return Error("Invalid LOAD record");
2141
2142      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2143      InstructionList.push_back(I);
2144      break;
2145    }
2146    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2147      unsigned OpNum = 0;
2148      Value *Val, *Ptr;
2149      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2150          getValue(Record, OpNum,
2151                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2152          OpNum+2 != Record.size())
2153        return Error("Invalid STORE record");
2154
2155      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2156      InstructionList.push_back(I);
2157      break;
2158    }
2159    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2160      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2161      unsigned OpNum = 0;
2162      Value *Val, *Ptr;
2163      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2164          getValue(Record, OpNum,
2165                   PointerType::getUnqual(Val->getType()), Ptr)||
2166          OpNum+2 != Record.size())
2167        return Error("Invalid STORE record");
2168
2169      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2170      InstructionList.push_back(I);
2171      break;
2172    }
2173    case bitc::FUNC_CODE_INST_CALL: {
2174      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2175      if (Record.size() < 3)
2176        return Error("Invalid CALL record");
2177
2178      AttrListPtr PAL = getAttributes(Record[0]);
2179      unsigned CCInfo = Record[1];
2180
2181      unsigned OpNum = 2;
2182      Value *Callee;
2183      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2184        return Error("Invalid CALL record");
2185
2186      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2187      const FunctionType *FTy = 0;
2188      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2189      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2190        return Error("Invalid CALL record");
2191
2192      SmallVector<Value*, 16> Args;
2193      // Read the fixed params.
2194      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2195        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2196          Args.push_back(getBasicBlock(Record[OpNum]));
2197        else
2198          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2199        if (Args.back() == 0) return Error("Invalid CALL record");
2200      }
2201
2202      // Read type/value pairs for varargs params.
2203      if (!FTy->isVarArg()) {
2204        if (OpNum != Record.size())
2205          return Error("Invalid CALL record");
2206      } else {
2207        while (OpNum != Record.size()) {
2208          Value *Op;
2209          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2210            return Error("Invalid CALL record");
2211          Args.push_back(Op);
2212        }
2213      }
2214
2215      I = CallInst::Create(Callee, Args.begin(), Args.end());
2216      InstructionList.push_back(I);
2217      cast<CallInst>(I)->setCallingConv(
2218        static_cast<CallingConv::ID>(CCInfo>>1));
2219      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2220      cast<CallInst>(I)->setAttributes(PAL);
2221      break;
2222    }
2223    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2224      if (Record.size() < 3)
2225        return Error("Invalid VAARG record");
2226      const Type *OpTy = getTypeByID(Record[0]);
2227      Value *Op = getFnValueByID(Record[1], OpTy);
2228      const Type *ResTy = getTypeByID(Record[2]);
2229      if (!OpTy || !Op || !ResTy)
2230        return Error("Invalid VAARG record");
2231      I = new VAArgInst(Op, ResTy);
2232      InstructionList.push_back(I);
2233      break;
2234    }
2235    }
2236
2237    // Add instruction to end of current BB.  If there is no current BB, reject
2238    // this file.
2239    if (CurBB == 0) {
2240      delete I;
2241      return Error("Invalid instruction with no BB");
2242    }
2243    CurBB->getInstList().push_back(I);
2244
2245    // If this was a terminator instruction, move to the next block.
2246    if (isa<TerminatorInst>(I)) {
2247      ++CurBBNo;
2248      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2249    }
2250
2251    // Non-void values get registered in the value table for future use.
2252    if (I && !I->getType()->isVoidTy())
2253      ValueList.AssignValue(I, NextValueNo++);
2254  }
2255
2256  // Check the function list for unresolved values.
2257  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2258    if (A->getParent() == 0) {
2259      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2260      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2261        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2262          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2263          delete A;
2264        }
2265      }
2266      return Error("Never resolved value found in function!");
2267    }
2268  }
2269
2270  // See if anything took the address of blocks in this function.  If so,
2271  // resolve them now.
2272  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2273  /// are resolved lazily when functions are loaded.
2274  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2275    BlockAddrFwdRefs.find(F);
2276  if (BAFRI != BlockAddrFwdRefs.end()) {
2277    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2278    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2279      unsigned BlockIdx = RefList[i].first;
2280      if (BlockIdx >= FunctionBBs.size())
2281        return Error("Invalid blockaddress block #");
2282
2283      GlobalVariable *FwdRef = RefList[i].second;
2284      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2285      FwdRef->eraseFromParent();
2286    }
2287
2288    BlockAddrFwdRefs.erase(BAFRI);
2289  }
2290
2291  // Trim the value list down to the size it was before we parsed this function.
2292  ValueList.shrinkTo(ModuleValueListSize);
2293  std::vector<BasicBlock*>().swap(FunctionBBs);
2294
2295  return false;
2296}
2297
2298//===----------------------------------------------------------------------===//
2299// ModuleProvider implementation
2300//===----------------------------------------------------------------------===//
2301
2302
2303bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2304  // If it already is material, ignore the request.
2305  if (!F->hasNotBeenReadFromBitcode()) return false;
2306
2307  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2308    DeferredFunctionInfo.find(F);
2309  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2310
2311  // Move the bit stream to the saved position of the deferred function body and
2312  // restore the real linkage type for the function.
2313  Stream.JumpToBit(DFII->second.first);
2314  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2315
2316  if (ParseFunctionBody(F)) {
2317    if (ErrInfo) *ErrInfo = ErrorString;
2318    return true;
2319  }
2320
2321  // Upgrade any old intrinsic calls in the function.
2322  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2323       E = UpgradedIntrinsics.end(); I != E; ++I) {
2324    if (I->first != I->second) {
2325      for (Value::use_iterator UI = I->first->use_begin(),
2326           UE = I->first->use_end(); UI != UE; ) {
2327        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2328          UpgradeIntrinsicCall(CI, I->second);
2329      }
2330    }
2331  }
2332
2333  return false;
2334}
2335
2336void BitcodeReader::dematerializeFunction(Function *F) {
2337  // If this function isn't materialized, or if it is a proto, this is a noop.
2338  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2339    return;
2340
2341  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2342
2343  // Just forget the function body, we can remat it later.
2344  F->deleteBody();
2345  F->setLinkage(GlobalValue::GhostLinkage);
2346}
2347
2348
2349Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2350  // Iterate over the module, deserializing any functions that are still on
2351  // disk.
2352  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2353       F != E; ++F)
2354    if (F->hasNotBeenReadFromBitcode() &&
2355        materializeFunction(F, ErrInfo))
2356      return 0;
2357
2358  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2359  // delete the old functions to clean up. We can't do this unless the entire
2360  // module is materialized because there could always be another function body
2361  // with calls to the old function.
2362  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2363       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2364    if (I->first != I->second) {
2365      for (Value::use_iterator UI = I->first->use_begin(),
2366           UE = I->first->use_end(); UI != UE; ) {
2367        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2368          UpgradeIntrinsicCall(CI, I->second);
2369      }
2370      if (!I->first->use_empty())
2371        I->first->replaceAllUsesWith(I->second);
2372      I->first->eraseFromParent();
2373    }
2374  }
2375  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2376
2377  // Check debug info intrinsics.
2378  CheckDebugInfoIntrinsics(TheModule);
2379
2380  return TheModule;
2381}
2382
2383
2384/// This method is provided by the parent ModuleProvde class and overriden
2385/// here. It simply releases the module from its provided and frees up our
2386/// state.
2387/// @brief Release our hold on the generated module
2388Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2389  // Since we're losing control of this Module, we must hand it back complete
2390  Module *M = ModuleProvider::releaseModule(ErrInfo);
2391  FreeState();
2392  return M;
2393}
2394
2395
2396//===----------------------------------------------------------------------===//
2397// External interface
2398//===----------------------------------------------------------------------===//
2399
2400/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2401///
2402ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2403                                               LLVMContext& Context,
2404                                               std::string *ErrMsg) {
2405  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2406  if (R->ParseBitcode()) {
2407    if (ErrMsg)
2408      *ErrMsg = R->getErrorString();
2409
2410    // Don't let the BitcodeReader dtor delete 'Buffer'.
2411    R->releaseMemoryBuffer();
2412    delete R;
2413    return 0;
2414  }
2415  return R;
2416}
2417
2418/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2419/// If an error occurs, return null and fill in *ErrMsg if non-null.
2420Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2421                               std::string *ErrMsg){
2422  BitcodeReader *R;
2423  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2424                                                           ErrMsg));
2425  if (!R) return 0;
2426
2427  // Read in the entire module.
2428  Module *M = R->materializeModule(ErrMsg);
2429
2430  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2431  // there was an error.
2432  R->releaseMemoryBuffer();
2433
2434  // If there was no error, tell ModuleProvider not to delete it when its dtor
2435  // is run.
2436  if (M)
2437    M = R->releaseModule(ErrMsg);
2438
2439  delete R;
2440  return M;
2441}
2442