BitcodeReader.cpp revision 24e64df7ec25b55aa872c2ef33728dfbb8c353c4
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  delete Buffer;
32  Buffer = 0;
33  std::vector<PATypeHolder>().swap(TypeList);
34  ValueList.clear();
35  MDValueList.clear();
36
37  std::vector<AttrListPtr>().swap(MAttributes);
38  std::vector<BasicBlock*>().swap(FunctionBBs);
39  std::vector<Function*>().swap(FunctionsWithBodies);
40  DeferredFunctionInfo.clear();
41}
42
43//===----------------------------------------------------------------------===//
44//  Helper functions to implement forward reference resolution, etc.
45//===----------------------------------------------------------------------===//
46
47/// ConvertToString - Convert a string from a record into an std::string, return
48/// true on failure.
49template<typename StrTy>
50static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
51                            StrTy &Result) {
52  if (Idx > Record.size())
53    return true;
54
55  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
56    Result += (char)Record[i];
57  return false;
58}
59
60static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
61  switch (Val) {
62  default: // Map unknown/new linkages to external
63  case 0:  return GlobalValue::ExternalLinkage;
64  case 1:  return GlobalValue::WeakAnyLinkage;
65  case 2:  return GlobalValue::AppendingLinkage;
66  case 3:  return GlobalValue::InternalLinkage;
67  case 4:  return GlobalValue::LinkOnceAnyLinkage;
68  case 5:  return GlobalValue::DLLImportLinkage;
69  case 6:  return GlobalValue::DLLExportLinkage;
70  case 7:  return GlobalValue::ExternalWeakLinkage;
71  case 8:  return GlobalValue::CommonLinkage;
72  case 9:  return GlobalValue::PrivateLinkage;
73  case 10: return GlobalValue::WeakODRLinkage;
74  case 11: return GlobalValue::LinkOnceODRLinkage;
75  case 12: return GlobalValue::AvailableExternallyLinkage;
76  case 13: return GlobalValue::LinkerPrivateLinkage;
77  }
78}
79
80static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
81  switch (Val) {
82  default: // Map unknown visibilities to default.
83  case 0: return GlobalValue::DefaultVisibility;
84  case 1: return GlobalValue::HiddenVisibility;
85  case 2: return GlobalValue::ProtectedVisibility;
86  }
87}
88
89static int GetDecodedCastOpcode(unsigned Val) {
90  switch (Val) {
91  default: return -1;
92  case bitc::CAST_TRUNC   : return Instruction::Trunc;
93  case bitc::CAST_ZEXT    : return Instruction::ZExt;
94  case bitc::CAST_SEXT    : return Instruction::SExt;
95  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
96  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
97  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
98  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
99  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
100  case bitc::CAST_FPEXT   : return Instruction::FPExt;
101  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
102  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
103  case bitc::CAST_BITCAST : return Instruction::BitCast;
104  }
105}
106static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
107  switch (Val) {
108  default: return -1;
109  case bitc::BINOP_ADD:
110    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
111  case bitc::BINOP_SUB:
112    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
113  case bitc::BINOP_MUL:
114    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
115  case bitc::BINOP_UDIV: return Instruction::UDiv;
116  case bitc::BINOP_SDIV:
117    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
118  case bitc::BINOP_UREM: return Instruction::URem;
119  case bitc::BINOP_SREM:
120    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
121  case bitc::BINOP_SHL:  return Instruction::Shl;
122  case bitc::BINOP_LSHR: return Instruction::LShr;
123  case bitc::BINOP_ASHR: return Instruction::AShr;
124  case bitc::BINOP_AND:  return Instruction::And;
125  case bitc::BINOP_OR:   return Instruction::Or;
126  case bitc::BINOP_XOR:  return Instruction::Xor;
127  }
128}
129
130namespace llvm {
131namespace {
132  /// @brief A class for maintaining the slot number definition
133  /// as a placeholder for the actual definition for forward constants defs.
134  class ConstantPlaceHolder : public ConstantExpr {
135    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
136    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
137  public:
138    // allocate space for exactly one operand
139    void *operator new(size_t s) {
140      return User::operator new(s, 1);
141    }
142    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
143      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
144      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
145    }
146
147    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
148    static inline bool classof(const ConstantPlaceHolder *) { return true; }
149    static bool classof(const Value *V) {
150      return isa<ConstantExpr>(V) &&
151             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
152    }
153
154
155    /// Provide fast operand accessors
156    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
157  };
158}
159
160// FIXME: can we inherit this from ConstantExpr?
161template <>
162struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
163};
164}
165
166
167void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
168  if (Idx == size()) {
169    push_back(V);
170    return;
171  }
172
173  if (Idx >= size())
174    resize(Idx+1);
175
176  WeakVH &OldV = ValuePtrs[Idx];
177  if (OldV == 0) {
178    OldV = V;
179    return;
180  }
181
182  // Handle constants and non-constants (e.g. instrs) differently for
183  // efficiency.
184  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
185    ResolveConstants.push_back(std::make_pair(PHC, Idx));
186    OldV = V;
187  } else {
188    // If there was a forward reference to this value, replace it.
189    Value *PrevVal = OldV;
190    OldV->replaceAllUsesWith(V);
191    delete PrevVal;
192  }
193}
194
195
196Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
197                                                    const Type *Ty) {
198  if (Idx >= size())
199    resize(Idx + 1);
200
201  if (Value *V = ValuePtrs[Idx]) {
202    assert(Ty == V->getType() && "Type mismatch in constant table!");
203    return cast<Constant>(V);
204  }
205
206  // Create and return a placeholder, which will later be RAUW'd.
207  Constant *C = new ConstantPlaceHolder(Ty, Context);
208  ValuePtrs[Idx] = C;
209  return C;
210}
211
212Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
213  if (Idx >= size())
214    resize(Idx + 1);
215
216  if (Value *V = ValuePtrs[Idx]) {
217    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
218    return V;
219  }
220
221  // No type specified, must be invalid reference.
222  if (Ty == 0) return 0;
223
224  // Create and return a placeholder, which will later be RAUW'd.
225  Value *V = new Argument(Ty);
226  ValuePtrs[Idx] = V;
227  return V;
228}
229
230/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
231/// resolves any forward references.  The idea behind this is that we sometimes
232/// get constants (such as large arrays) which reference *many* forward ref
233/// constants.  Replacing each of these causes a lot of thrashing when
234/// building/reuniquing the constant.  Instead of doing this, we look at all the
235/// uses and rewrite all the place holders at once for any constant that uses
236/// a placeholder.
237void BitcodeReaderValueList::ResolveConstantForwardRefs() {
238  // Sort the values by-pointer so that they are efficient to look up with a
239  // binary search.
240  std::sort(ResolveConstants.begin(), ResolveConstants.end());
241
242  SmallVector<Constant*, 64> NewOps;
243
244  while (!ResolveConstants.empty()) {
245    Value *RealVal = operator[](ResolveConstants.back().second);
246    Constant *Placeholder = ResolveConstants.back().first;
247    ResolveConstants.pop_back();
248
249    // Loop over all users of the placeholder, updating them to reference the
250    // new value.  If they reference more than one placeholder, update them all
251    // at once.
252    while (!Placeholder->use_empty()) {
253      Value::use_iterator UI = Placeholder->use_begin();
254
255      // If the using object isn't uniqued, just update the operands.  This
256      // handles instructions and initializers for global variables.
257      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
258        UI.getUse().set(RealVal);
259        continue;
260      }
261
262      // Otherwise, we have a constant that uses the placeholder.  Replace that
263      // constant with a new constant that has *all* placeholder uses updated.
264      Constant *UserC = cast<Constant>(*UI);
265      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
266           I != E; ++I) {
267        Value *NewOp;
268        if (!isa<ConstantPlaceHolder>(*I)) {
269          // Not a placeholder reference.
270          NewOp = *I;
271        } else if (*I == Placeholder) {
272          // Common case is that it just references this one placeholder.
273          NewOp = RealVal;
274        } else {
275          // Otherwise, look up the placeholder in ResolveConstants.
276          ResolveConstantsTy::iterator It =
277            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
278                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
279                                                            0));
280          assert(It != ResolveConstants.end() && It->first == *I);
281          NewOp = operator[](It->second);
282        }
283
284        NewOps.push_back(cast<Constant>(NewOp));
285      }
286
287      // Make the new constant.
288      Constant *NewC;
289      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
290        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
291                                        NewOps.size());
292      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
293        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
294                                         UserCS->getType()->isPacked());
295      } else if (isa<ConstantVector>(UserC)) {
296        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
297      } else {
298        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
299        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
300                                                          NewOps.size());
301      }
302
303      UserC->replaceAllUsesWith(NewC);
304      UserC->destroyConstant();
305      NewOps.clear();
306    }
307
308    // Update all ValueHandles, they should be the only users at this point.
309    Placeholder->replaceAllUsesWith(RealVal);
310    delete Placeholder;
311  }
312}
313
314void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
315  if (Idx == size()) {
316    push_back(V);
317    return;
318  }
319
320  if (Idx >= size())
321    resize(Idx+1);
322
323  WeakVH &OldV = MDValuePtrs[Idx];
324  if (OldV == 0) {
325    OldV = V;
326    return;
327  }
328
329  // If there was a forward reference to this value, replace it.
330  Value *PrevVal = OldV;
331  OldV->replaceAllUsesWith(V);
332  delete PrevVal;
333  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
334  // value for Idx.
335  MDValuePtrs[Idx] = V;
336}
337
338Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
339  if (Idx >= size())
340    resize(Idx + 1);
341
342  if (Value *V = MDValuePtrs[Idx]) {
343    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
344    return V;
345  }
346
347  // Create and return a placeholder, which will later be RAUW'd.
348  Value *V = new Argument(Type::getMetadataTy(Context));
349  MDValuePtrs[Idx] = V;
350  return V;
351}
352
353const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
354  // If the TypeID is in range, return it.
355  if (ID < TypeList.size())
356    return TypeList[ID].get();
357  if (!isTypeTable) return 0;
358
359  // The type table allows forward references.  Push as many Opaque types as
360  // needed to get up to ID.
361  while (TypeList.size() <= ID)
362    TypeList.push_back(OpaqueType::get(Context));
363  return TypeList.back().get();
364}
365
366//===----------------------------------------------------------------------===//
367//  Functions for parsing blocks from the bitcode file
368//===----------------------------------------------------------------------===//
369
370bool BitcodeReader::ParseAttributeBlock() {
371  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
372    return Error("Malformed block record");
373
374  if (!MAttributes.empty())
375    return Error("Multiple PARAMATTR blocks found!");
376
377  SmallVector<uint64_t, 64> Record;
378
379  SmallVector<AttributeWithIndex, 8> Attrs;
380
381  // Read all the records.
382  while (1) {
383    unsigned Code = Stream.ReadCode();
384    if (Code == bitc::END_BLOCK) {
385      if (Stream.ReadBlockEnd())
386        return Error("Error at end of PARAMATTR block");
387      return false;
388    }
389
390    if (Code == bitc::ENTER_SUBBLOCK) {
391      // No known subblocks, always skip them.
392      Stream.ReadSubBlockID();
393      if (Stream.SkipBlock())
394        return Error("Malformed block record");
395      continue;
396    }
397
398    if (Code == bitc::DEFINE_ABBREV) {
399      Stream.ReadAbbrevRecord();
400      continue;
401    }
402
403    // Read a record.
404    Record.clear();
405    switch (Stream.ReadRecord(Code, Record)) {
406    default:  // Default behavior: ignore.
407      break;
408    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
409      if (Record.size() & 1)
410        return Error("Invalid ENTRY record");
411
412      // FIXME : Remove this autoupgrade code in LLVM 3.0.
413      // If Function attributes are using index 0 then transfer them
414      // to index ~0. Index 0 is used for return value attributes but used to be
415      // used for function attributes.
416      Attributes RetAttribute = Attribute::None;
417      Attributes FnAttribute = Attribute::None;
418      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
419        // FIXME: remove in LLVM 3.0
420        // The alignment is stored as a 16-bit raw value from bits 31--16.
421        // We shift the bits above 31 down by 11 bits.
422
423        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
424        if (Alignment && !isPowerOf2_32(Alignment))
425          return Error("Alignment is not a power of two.");
426
427        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
428        if (Alignment)
429          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
430        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
431        Record[i+1] = ReconstitutedAttr;
432
433        if (Record[i] == 0)
434          RetAttribute = Record[i+1];
435        else if (Record[i] == ~0U)
436          FnAttribute = Record[i+1];
437      }
438
439      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
440                              Attribute::ReadOnly|Attribute::ReadNone);
441
442      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
443          (RetAttribute & OldRetAttrs) != 0) {
444        if (FnAttribute == Attribute::None) { // add a slot so they get added.
445          Record.push_back(~0U);
446          Record.push_back(0);
447        }
448
449        FnAttribute  |= RetAttribute & OldRetAttrs;
450        RetAttribute &= ~OldRetAttrs;
451      }
452
453      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
454        if (Record[i] == 0) {
455          if (RetAttribute != Attribute::None)
456            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
457        } else if (Record[i] == ~0U) {
458          if (FnAttribute != Attribute::None)
459            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
460        } else if (Record[i+1] != Attribute::None)
461          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
462      }
463
464      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
465      Attrs.clear();
466      break;
467    }
468    }
469  }
470}
471
472
473bool BitcodeReader::ParseTypeTable() {
474  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
475    return Error("Malformed block record");
476
477  if (!TypeList.empty())
478    return Error("Multiple TYPE_BLOCKs found!");
479
480  SmallVector<uint64_t, 64> Record;
481  unsigned NumRecords = 0;
482
483  // Read all the records for this type table.
484  while (1) {
485    unsigned Code = Stream.ReadCode();
486    if (Code == bitc::END_BLOCK) {
487      if (NumRecords != TypeList.size())
488        return Error("Invalid type forward reference in TYPE_BLOCK");
489      if (Stream.ReadBlockEnd())
490        return Error("Error at end of type table block");
491      return false;
492    }
493
494    if (Code == bitc::ENTER_SUBBLOCK) {
495      // No known subblocks, always skip them.
496      Stream.ReadSubBlockID();
497      if (Stream.SkipBlock())
498        return Error("Malformed block record");
499      continue;
500    }
501
502    if (Code == bitc::DEFINE_ABBREV) {
503      Stream.ReadAbbrevRecord();
504      continue;
505    }
506
507    // Read a record.
508    Record.clear();
509    const Type *ResultTy = 0;
510    switch (Stream.ReadRecord(Code, Record)) {
511    default:  // Default behavior: unknown type.
512      ResultTy = 0;
513      break;
514    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
515      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
516      // type list.  This allows us to reserve space.
517      if (Record.size() < 1)
518        return Error("Invalid TYPE_CODE_NUMENTRY record");
519      TypeList.reserve(Record[0]);
520      continue;
521    case bitc::TYPE_CODE_VOID:      // VOID
522      ResultTy = Type::getVoidTy(Context);
523      break;
524    case bitc::TYPE_CODE_FLOAT:     // FLOAT
525      ResultTy = Type::getFloatTy(Context);
526      break;
527    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
528      ResultTy = Type::getDoubleTy(Context);
529      break;
530    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
531      ResultTy = Type::getX86_FP80Ty(Context);
532      break;
533    case bitc::TYPE_CODE_FP128:     // FP128
534      ResultTy = Type::getFP128Ty(Context);
535      break;
536    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
537      ResultTy = Type::getPPC_FP128Ty(Context);
538      break;
539    case bitc::TYPE_CODE_LABEL:     // LABEL
540      ResultTy = Type::getLabelTy(Context);
541      break;
542    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
543      ResultTy = 0;
544      break;
545    case bitc::TYPE_CODE_METADATA:  // METADATA
546      ResultTy = Type::getMetadataTy(Context);
547      break;
548    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
549      if (Record.size() < 1)
550        return Error("Invalid Integer type record");
551
552      ResultTy = IntegerType::get(Context, Record[0]);
553      break;
554    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
555                                    //          [pointee type, address space]
556      if (Record.size() < 1)
557        return Error("Invalid POINTER type record");
558      unsigned AddressSpace = 0;
559      if (Record.size() == 2)
560        AddressSpace = Record[1];
561      ResultTy = PointerType::get(getTypeByID(Record[0], true),
562                                        AddressSpace);
563      break;
564    }
565    case bitc::TYPE_CODE_FUNCTION: {
566      // FIXME: attrid is dead, remove it in LLVM 3.0
567      // FUNCTION: [vararg, attrid, retty, paramty x N]
568      if (Record.size() < 3)
569        return Error("Invalid FUNCTION type record");
570      std::vector<const Type*> ArgTys;
571      for (unsigned i = 3, e = Record.size(); i != e; ++i)
572        ArgTys.push_back(getTypeByID(Record[i], true));
573
574      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
575                                   Record[0]);
576      break;
577    }
578    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
579      if (Record.size() < 1)
580        return Error("Invalid STRUCT type record");
581      std::vector<const Type*> EltTys;
582      for (unsigned i = 1, e = Record.size(); i != e; ++i)
583        EltTys.push_back(getTypeByID(Record[i], true));
584      ResultTy = StructType::get(Context, EltTys, Record[0]);
585      break;
586    }
587    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
588      if (Record.size() < 2)
589        return Error("Invalid ARRAY type record");
590      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
591      break;
592    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
593      if (Record.size() < 2)
594        return Error("Invalid VECTOR type record");
595      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
596      break;
597    }
598
599    if (NumRecords == TypeList.size()) {
600      // If this is a new type slot, just append it.
601      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
602      ++NumRecords;
603    } else if (ResultTy == 0) {
604      // Otherwise, this was forward referenced, so an opaque type was created,
605      // but the result type is actually just an opaque.  Leave the one we
606      // created previously.
607      ++NumRecords;
608    } else {
609      // Otherwise, this was forward referenced, so an opaque type was created.
610      // Resolve the opaque type to the real type now.
611      assert(NumRecords < TypeList.size() && "Typelist imbalance");
612      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
613
614      // Don't directly push the new type on the Tab. Instead we want to replace
615      // the opaque type we previously inserted with the new concrete value. The
616      // refinement from the abstract (opaque) type to the new type causes all
617      // uses of the abstract type to use the concrete type (NewTy). This will
618      // also cause the opaque type to be deleted.
619      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
620
621      // This should have replaced the old opaque type with the new type in the
622      // value table... or with a preexisting type that was already in the
623      // system.  Let's just make sure it did.
624      assert(TypeList[NumRecords-1].get() != OldTy &&
625             "refineAbstractType didn't work!");
626    }
627  }
628}
629
630
631bool BitcodeReader::ParseTypeSymbolTable() {
632  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
633    return Error("Malformed block record");
634
635  SmallVector<uint64_t, 64> Record;
636
637  // Read all the records for this type table.
638  std::string TypeName;
639  while (1) {
640    unsigned Code = Stream.ReadCode();
641    if (Code == bitc::END_BLOCK) {
642      if (Stream.ReadBlockEnd())
643        return Error("Error at end of type symbol table block");
644      return false;
645    }
646
647    if (Code == bitc::ENTER_SUBBLOCK) {
648      // No known subblocks, always skip them.
649      Stream.ReadSubBlockID();
650      if (Stream.SkipBlock())
651        return Error("Malformed block record");
652      continue;
653    }
654
655    if (Code == bitc::DEFINE_ABBREV) {
656      Stream.ReadAbbrevRecord();
657      continue;
658    }
659
660    // Read a record.
661    Record.clear();
662    switch (Stream.ReadRecord(Code, Record)) {
663    default:  // Default behavior: unknown type.
664      break;
665    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
666      if (ConvertToString(Record, 1, TypeName))
667        return Error("Invalid TST_ENTRY record");
668      unsigned TypeID = Record[0];
669      if (TypeID >= TypeList.size())
670        return Error("Invalid Type ID in TST_ENTRY record");
671
672      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
673      TypeName.clear();
674      break;
675    }
676  }
677}
678
679bool BitcodeReader::ParseValueSymbolTable() {
680  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
681    return Error("Malformed block record");
682
683  SmallVector<uint64_t, 64> Record;
684
685  // Read all the records for this value table.
686  SmallString<128> ValueName;
687  while (1) {
688    unsigned Code = Stream.ReadCode();
689    if (Code == bitc::END_BLOCK) {
690      if (Stream.ReadBlockEnd())
691        return Error("Error at end of value symbol table block");
692      return false;
693    }
694    if (Code == bitc::ENTER_SUBBLOCK) {
695      // No known subblocks, always skip them.
696      Stream.ReadSubBlockID();
697      if (Stream.SkipBlock())
698        return Error("Malformed block record");
699      continue;
700    }
701
702    if (Code == bitc::DEFINE_ABBREV) {
703      Stream.ReadAbbrevRecord();
704      continue;
705    }
706
707    // Read a record.
708    Record.clear();
709    switch (Stream.ReadRecord(Code, Record)) {
710    default:  // Default behavior: unknown type.
711      break;
712    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
713      if (ConvertToString(Record, 1, ValueName))
714        return Error("Invalid VST_ENTRY record");
715      unsigned ValueID = Record[0];
716      if (ValueID >= ValueList.size())
717        return Error("Invalid Value ID in VST_ENTRY record");
718      Value *V = ValueList[ValueID];
719
720      V->setName(StringRef(ValueName.data(), ValueName.size()));
721      ValueName.clear();
722      break;
723    }
724    case bitc::VST_CODE_BBENTRY: {
725      if (ConvertToString(Record, 1, ValueName))
726        return Error("Invalid VST_BBENTRY record");
727      BasicBlock *BB = getBasicBlock(Record[0]);
728      if (BB == 0)
729        return Error("Invalid BB ID in VST_BBENTRY record");
730
731      BB->setName(StringRef(ValueName.data(), ValueName.size()));
732      ValueName.clear();
733      break;
734    }
735    }
736  }
737}
738
739bool BitcodeReader::ParseMetadata() {
740  unsigned NextValueNo = MDValueList.size();
741
742  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
743    return Error("Malformed block record");
744
745  SmallVector<uint64_t, 64> Record;
746
747  // Read all the records.
748  while (1) {
749    unsigned Code = Stream.ReadCode();
750    if (Code == bitc::END_BLOCK) {
751      if (Stream.ReadBlockEnd())
752        return Error("Error at end of PARAMATTR block");
753      return false;
754    }
755
756    if (Code == bitc::ENTER_SUBBLOCK) {
757      // No known subblocks, always skip them.
758      Stream.ReadSubBlockID();
759      if (Stream.SkipBlock())
760        return Error("Malformed block record");
761      continue;
762    }
763
764    if (Code == bitc::DEFINE_ABBREV) {
765      Stream.ReadAbbrevRecord();
766      continue;
767    }
768
769    bool IsFunctionLocal = false;
770    // Read a record.
771    Record.clear();
772    switch (Stream.ReadRecord(Code, Record)) {
773    default:  // Default behavior: ignore.
774      break;
775    case bitc::METADATA_NAME: {
776      // Read named of the named metadata.
777      unsigned NameLength = Record.size();
778      SmallString<8> Name;
779      Name.resize(NameLength);
780      for (unsigned i = 0; i != NameLength; ++i)
781        Name[i] = Record[i];
782      Record.clear();
783      Code = Stream.ReadCode();
784
785      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
786      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
787        assert ( 0 && "Inavlid Named Metadata record");
788
789      // Read named metadata elements.
790      unsigned Size = Record.size();
791      SmallVector<MDNode *, 8> Elts;
792      for (unsigned i = 0; i != Size; ++i) {
793        if (Record[i] == ~0U) {
794          Elts.push_back(NULL);
795          continue;
796        }
797        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
798        if (MD == 0)
799          return Error("Malformed metadata record");
800        Elts.push_back(MD);
801      }
802      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
803                                     Elts.size(), TheModule);
804      // FIXME: This shouldn't poke NextValueNo?
805      MDValueList.AssignValue(V, NextValueNo++);
806      break;
807    }
808    case bitc::METADATA_FN_NODE:
809      IsFunctionLocal = true;
810      // fall-through
811    case bitc::METADATA_NODE: {
812      if (Record.empty() || Record.size() % 2 == 1)
813        return Error("Invalid METADATA_NODE record");
814
815      unsigned Size = Record.size();
816      SmallVector<Value*, 8> Elts;
817      for (unsigned i = 0; i != Size; i += 2) {
818        const Type *Ty = getTypeByID(Record[i], false);
819        if (Ty->isMetadataTy())
820          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
821        else if (!Ty->isVoidTy())
822          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
823        else
824          Elts.push_back(NULL);
825      }
826      Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(),
827                                               IsFunctionLocal);
828      IsFunctionLocal = false;
829      MDValueList.AssignValue(V, NextValueNo++);
830      break;
831    }
832    case bitc::METADATA_STRING: {
833      unsigned MDStringLength = Record.size();
834      SmallString<8> String;
835      String.resize(MDStringLength);
836      for (unsigned i = 0; i != MDStringLength; ++i)
837        String[i] = Record[i];
838      Value *V = MDString::get(Context,
839                               StringRef(String.data(), String.size()));
840      MDValueList.AssignValue(V, NextValueNo++);
841      break;
842    }
843    case bitc::METADATA_KIND: {
844      unsigned RecordLength = Record.size();
845      if (Record.empty() || RecordLength < 2)
846        return Error("Invalid METADATA_KIND record");
847      SmallString<8> Name;
848      Name.resize(RecordLength-1);
849      unsigned Kind = Record[0];
850      (void) Kind;
851      for (unsigned i = 1; i != RecordLength; ++i)
852        Name[i-1] = Record[i];
853
854      unsigned NewKind = TheModule->getMDKindID(Name.str());
855      assert(Kind == NewKind &&
856             "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
857      break;
858    }
859    }
860  }
861}
862
863/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
864/// the LSB for dense VBR encoding.
865static uint64_t DecodeSignRotatedValue(uint64_t V) {
866  if ((V & 1) == 0)
867    return V >> 1;
868  if (V != 1)
869    return -(V >> 1);
870  // There is no such thing as -0 with integers.  "-0" really means MININT.
871  return 1ULL << 63;
872}
873
874/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
875/// values and aliases that we can.
876bool BitcodeReader::ResolveGlobalAndAliasInits() {
877  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
878  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
879
880  GlobalInitWorklist.swap(GlobalInits);
881  AliasInitWorklist.swap(AliasInits);
882
883  while (!GlobalInitWorklist.empty()) {
884    unsigned ValID = GlobalInitWorklist.back().second;
885    if (ValID >= ValueList.size()) {
886      // Not ready to resolve this yet, it requires something later in the file.
887      GlobalInits.push_back(GlobalInitWorklist.back());
888    } else {
889      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
890        GlobalInitWorklist.back().first->setInitializer(C);
891      else
892        return Error("Global variable initializer is not a constant!");
893    }
894    GlobalInitWorklist.pop_back();
895  }
896
897  while (!AliasInitWorklist.empty()) {
898    unsigned ValID = AliasInitWorklist.back().second;
899    if (ValID >= ValueList.size()) {
900      AliasInits.push_back(AliasInitWorklist.back());
901    } else {
902      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
903        AliasInitWorklist.back().first->setAliasee(C);
904      else
905        return Error("Alias initializer is not a constant!");
906    }
907    AliasInitWorklist.pop_back();
908  }
909  return false;
910}
911
912bool BitcodeReader::ParseConstants() {
913  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
914    return Error("Malformed block record");
915
916  SmallVector<uint64_t, 64> Record;
917
918  // Read all the records for this value table.
919  const Type *CurTy = Type::getInt32Ty(Context);
920  unsigned NextCstNo = ValueList.size();
921  while (1) {
922    unsigned Code = Stream.ReadCode();
923    if (Code == bitc::END_BLOCK)
924      break;
925
926    if (Code == bitc::ENTER_SUBBLOCK) {
927      // No known subblocks, always skip them.
928      Stream.ReadSubBlockID();
929      if (Stream.SkipBlock())
930        return Error("Malformed block record");
931      continue;
932    }
933
934    if (Code == bitc::DEFINE_ABBREV) {
935      Stream.ReadAbbrevRecord();
936      continue;
937    }
938
939    // Read a record.
940    Record.clear();
941    Value *V = 0;
942    unsigned BitCode = Stream.ReadRecord(Code, Record);
943    switch (BitCode) {
944    default:  // Default behavior: unknown constant
945    case bitc::CST_CODE_UNDEF:     // UNDEF
946      V = UndefValue::get(CurTy);
947      break;
948    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
949      if (Record.empty())
950        return Error("Malformed CST_SETTYPE record");
951      if (Record[0] >= TypeList.size())
952        return Error("Invalid Type ID in CST_SETTYPE record");
953      CurTy = TypeList[Record[0]];
954      continue;  // Skip the ValueList manipulation.
955    case bitc::CST_CODE_NULL:      // NULL
956      V = Constant::getNullValue(CurTy);
957      break;
958    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
959      if (!isa<IntegerType>(CurTy) || Record.empty())
960        return Error("Invalid CST_INTEGER record");
961      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
962      break;
963    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
964      if (!isa<IntegerType>(CurTy) || Record.empty())
965        return Error("Invalid WIDE_INTEGER record");
966
967      unsigned NumWords = Record.size();
968      SmallVector<uint64_t, 8> Words;
969      Words.resize(NumWords);
970      for (unsigned i = 0; i != NumWords; ++i)
971        Words[i] = DecodeSignRotatedValue(Record[i]);
972      V = ConstantInt::get(Context,
973                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
974                           NumWords, &Words[0]));
975      break;
976    }
977    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
978      if (Record.empty())
979        return Error("Invalid FLOAT record");
980      if (CurTy->isFloatTy())
981        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
982      else if (CurTy->isDoubleTy())
983        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
984      else if (CurTy->isX86_FP80Ty()) {
985        // Bits are not stored the same way as a normal i80 APInt, compensate.
986        uint64_t Rearrange[2];
987        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
988        Rearrange[1] = Record[0] >> 48;
989        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
990      } else if (CurTy->isFP128Ty())
991        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
992      else if (CurTy->isPPC_FP128Ty())
993        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
994      else
995        V = UndefValue::get(CurTy);
996      break;
997    }
998
999    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1000      if (Record.empty())
1001        return Error("Invalid CST_AGGREGATE record");
1002
1003      unsigned Size = Record.size();
1004      std::vector<Constant*> Elts;
1005
1006      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1007        for (unsigned i = 0; i != Size; ++i)
1008          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1009                                                     STy->getElementType(i)));
1010        V = ConstantStruct::get(STy, Elts);
1011      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1012        const Type *EltTy = ATy->getElementType();
1013        for (unsigned i = 0; i != Size; ++i)
1014          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1015        V = ConstantArray::get(ATy, Elts);
1016      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1017        const Type *EltTy = VTy->getElementType();
1018        for (unsigned i = 0; i != Size; ++i)
1019          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1020        V = ConstantVector::get(Elts);
1021      } else {
1022        V = UndefValue::get(CurTy);
1023      }
1024      break;
1025    }
1026    case bitc::CST_CODE_STRING: { // STRING: [values]
1027      if (Record.empty())
1028        return Error("Invalid CST_AGGREGATE record");
1029
1030      const ArrayType *ATy = cast<ArrayType>(CurTy);
1031      const Type *EltTy = ATy->getElementType();
1032
1033      unsigned Size = Record.size();
1034      std::vector<Constant*> Elts;
1035      for (unsigned i = 0; i != Size; ++i)
1036        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1037      V = ConstantArray::get(ATy, Elts);
1038      break;
1039    }
1040    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1041      if (Record.empty())
1042        return Error("Invalid CST_AGGREGATE record");
1043
1044      const ArrayType *ATy = cast<ArrayType>(CurTy);
1045      const Type *EltTy = ATy->getElementType();
1046
1047      unsigned Size = Record.size();
1048      std::vector<Constant*> Elts;
1049      for (unsigned i = 0; i != Size; ++i)
1050        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1051      Elts.push_back(Constant::getNullValue(EltTy));
1052      V = ConstantArray::get(ATy, Elts);
1053      break;
1054    }
1055    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1056      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1057      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1058      if (Opc < 0) {
1059        V = UndefValue::get(CurTy);  // Unknown binop.
1060      } else {
1061        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1062        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1063        unsigned Flags = 0;
1064        if (Record.size() >= 4) {
1065          if (Opc == Instruction::Add ||
1066              Opc == Instruction::Sub ||
1067              Opc == Instruction::Mul) {
1068            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1069              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1070            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1071              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1072          } else if (Opc == Instruction::SDiv) {
1073            if (Record[3] & (1 << bitc::SDIV_EXACT))
1074              Flags |= SDivOperator::IsExact;
1075          }
1076        }
1077        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1078      }
1079      break;
1080    }
1081    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1082      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1083      int Opc = GetDecodedCastOpcode(Record[0]);
1084      if (Opc < 0) {
1085        V = UndefValue::get(CurTy);  // Unknown cast.
1086      } else {
1087        const Type *OpTy = getTypeByID(Record[1]);
1088        if (!OpTy) return Error("Invalid CE_CAST record");
1089        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1090        V = ConstantExpr::getCast(Opc, Op, CurTy);
1091      }
1092      break;
1093    }
1094    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1095    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1096      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1097      SmallVector<Constant*, 16> Elts;
1098      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1099        const Type *ElTy = getTypeByID(Record[i]);
1100        if (!ElTy) return Error("Invalid CE_GEP record");
1101        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1102      }
1103      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1104        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1105                                                   Elts.size()-1);
1106      else
1107        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1108                                           Elts.size()-1);
1109      break;
1110    }
1111    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1112      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1113      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1114                                                              Type::getInt1Ty(Context)),
1115                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1116                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1117      break;
1118    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1119      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1120      const VectorType *OpTy =
1121        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1122      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1123      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1124      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1125      V = ConstantExpr::getExtractElement(Op0, Op1);
1126      break;
1127    }
1128    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1129      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1130      if (Record.size() < 3 || OpTy == 0)
1131        return Error("Invalid CE_INSERTELT record");
1132      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1133      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1134                                                  OpTy->getElementType());
1135      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1136      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1137      break;
1138    }
1139    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1140      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1141      if (Record.size() < 3 || OpTy == 0)
1142        return Error("Invalid CE_SHUFFLEVEC record");
1143      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1144      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1145      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1146                                                 OpTy->getNumElements());
1147      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1148      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1149      break;
1150    }
1151    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1152      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1153      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1154      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1155        return Error("Invalid CE_SHUFVEC_EX record");
1156      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1157      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1158      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1159                                                 RTy->getNumElements());
1160      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1161      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1162      break;
1163    }
1164    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1165      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1166      const Type *OpTy = getTypeByID(Record[0]);
1167      if (OpTy == 0) return Error("Invalid CE_CMP record");
1168      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1169      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1170
1171      if (OpTy->isFloatingPoint())
1172        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1173      else
1174        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1175      break;
1176    }
1177    case bitc::CST_CODE_INLINEASM: {
1178      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1179      std::string AsmStr, ConstrStr;
1180      bool HasSideEffects = Record[0] & 1;
1181      bool IsAlignStack = Record[0] >> 1;
1182      unsigned AsmStrSize = Record[1];
1183      if (2+AsmStrSize >= Record.size())
1184        return Error("Invalid INLINEASM record");
1185      unsigned ConstStrSize = Record[2+AsmStrSize];
1186      if (3+AsmStrSize+ConstStrSize > Record.size())
1187        return Error("Invalid INLINEASM record");
1188
1189      for (unsigned i = 0; i != AsmStrSize; ++i)
1190        AsmStr += (char)Record[2+i];
1191      for (unsigned i = 0; i != ConstStrSize; ++i)
1192        ConstrStr += (char)Record[3+AsmStrSize+i];
1193      const PointerType *PTy = cast<PointerType>(CurTy);
1194      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1195                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1196      break;
1197    }
1198    case bitc::CST_CODE_BLOCKADDRESS:{
1199      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1200      const Type *FnTy = getTypeByID(Record[0]);
1201      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1202      Function *Fn =
1203        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1204      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1205
1206      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1207                                                  Type::getInt8Ty(Context),
1208                                            false, GlobalValue::InternalLinkage,
1209                                                  0, "");
1210      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1211      V = FwdRef;
1212      break;
1213    }
1214    }
1215
1216    ValueList.AssignValue(V, NextCstNo);
1217    ++NextCstNo;
1218  }
1219
1220  if (NextCstNo != ValueList.size())
1221    return Error("Invalid constant reference!");
1222
1223  if (Stream.ReadBlockEnd())
1224    return Error("Error at end of constants block");
1225
1226  // Once all the constants have been read, go through and resolve forward
1227  // references.
1228  ValueList.ResolveConstantForwardRefs();
1229  return false;
1230}
1231
1232/// RememberAndSkipFunctionBody - When we see the block for a function body,
1233/// remember where it is and then skip it.  This lets us lazily deserialize the
1234/// functions.
1235bool BitcodeReader::RememberAndSkipFunctionBody() {
1236  // Get the function we are talking about.
1237  if (FunctionsWithBodies.empty())
1238    return Error("Insufficient function protos");
1239
1240  Function *Fn = FunctionsWithBodies.back();
1241  FunctionsWithBodies.pop_back();
1242
1243  // Save the current stream state.
1244  uint64_t CurBit = Stream.GetCurrentBitNo();
1245  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1246
1247  // Set the functions linkage to GhostLinkage so we know it is lazily
1248  // deserialized.
1249  Fn->setLinkage(GlobalValue::GhostLinkage);
1250
1251  // Skip over the function block for now.
1252  if (Stream.SkipBlock())
1253    return Error("Malformed block record");
1254  return false;
1255}
1256
1257bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1258  // Reject multiple MODULE_BLOCK's in a single bitstream.
1259  if (TheModule)
1260    return Error("Multiple MODULE_BLOCKs in same stream");
1261
1262  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1263    return Error("Malformed block record");
1264
1265  // Otherwise, create the module.
1266  TheModule = new Module(ModuleID, Context);
1267
1268  SmallVector<uint64_t, 64> Record;
1269  std::vector<std::string> SectionTable;
1270  std::vector<std::string> GCTable;
1271
1272  // Read all the records for this module.
1273  while (!Stream.AtEndOfStream()) {
1274    unsigned Code = Stream.ReadCode();
1275    if (Code == bitc::END_BLOCK) {
1276      if (Stream.ReadBlockEnd())
1277        return Error("Error at end of module block");
1278
1279      // Patch the initializers for globals and aliases up.
1280      ResolveGlobalAndAliasInits();
1281      if (!GlobalInits.empty() || !AliasInits.empty())
1282        return Error("Malformed global initializer set");
1283      if (!FunctionsWithBodies.empty())
1284        return Error("Too few function bodies found");
1285
1286      // Look for intrinsic functions which need to be upgraded at some point
1287      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1288           FI != FE; ++FI) {
1289        Function* NewFn;
1290        if (UpgradeIntrinsicFunction(FI, NewFn))
1291          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1292      }
1293
1294      // Force deallocation of memory for these vectors to favor the client that
1295      // want lazy deserialization.
1296      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1297      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1298      std::vector<Function*>().swap(FunctionsWithBodies);
1299      return false;
1300    }
1301
1302    if (Code == bitc::ENTER_SUBBLOCK) {
1303      switch (Stream.ReadSubBlockID()) {
1304      default:  // Skip unknown content.
1305        if (Stream.SkipBlock())
1306          return Error("Malformed block record");
1307        break;
1308      case bitc::BLOCKINFO_BLOCK_ID:
1309        if (Stream.ReadBlockInfoBlock())
1310          return Error("Malformed BlockInfoBlock");
1311        break;
1312      case bitc::PARAMATTR_BLOCK_ID:
1313        if (ParseAttributeBlock())
1314          return true;
1315        break;
1316      case bitc::TYPE_BLOCK_ID:
1317        if (ParseTypeTable())
1318          return true;
1319        break;
1320      case bitc::TYPE_SYMTAB_BLOCK_ID:
1321        if (ParseTypeSymbolTable())
1322          return true;
1323        break;
1324      case bitc::VALUE_SYMTAB_BLOCK_ID:
1325        if (ParseValueSymbolTable())
1326          return true;
1327        break;
1328      case bitc::CONSTANTS_BLOCK_ID:
1329        if (ParseConstants() || ResolveGlobalAndAliasInits())
1330          return true;
1331        break;
1332      case bitc::METADATA_BLOCK_ID:
1333        if (ParseMetadata())
1334          return true;
1335        break;
1336      case bitc::FUNCTION_BLOCK_ID:
1337        // If this is the first function body we've seen, reverse the
1338        // FunctionsWithBodies list.
1339        if (!HasReversedFunctionsWithBodies) {
1340          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1341          HasReversedFunctionsWithBodies = true;
1342        }
1343
1344        if (RememberAndSkipFunctionBody())
1345          return true;
1346        break;
1347      }
1348      continue;
1349    }
1350
1351    if (Code == bitc::DEFINE_ABBREV) {
1352      Stream.ReadAbbrevRecord();
1353      continue;
1354    }
1355
1356    // Read a record.
1357    switch (Stream.ReadRecord(Code, Record)) {
1358    default: break;  // Default behavior, ignore unknown content.
1359    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1360      if (Record.size() < 1)
1361        return Error("Malformed MODULE_CODE_VERSION");
1362      // Only version #0 is supported so far.
1363      if (Record[0] != 0)
1364        return Error("Unknown bitstream version!");
1365      break;
1366    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1367      std::string S;
1368      if (ConvertToString(Record, 0, S))
1369        return Error("Invalid MODULE_CODE_TRIPLE record");
1370      TheModule->setTargetTriple(S);
1371      break;
1372    }
1373    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1374      std::string S;
1375      if (ConvertToString(Record, 0, S))
1376        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1377      TheModule->setDataLayout(S);
1378      break;
1379    }
1380    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1381      std::string S;
1382      if (ConvertToString(Record, 0, S))
1383        return Error("Invalid MODULE_CODE_ASM record");
1384      TheModule->setModuleInlineAsm(S);
1385      break;
1386    }
1387    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1388      std::string S;
1389      if (ConvertToString(Record, 0, S))
1390        return Error("Invalid MODULE_CODE_DEPLIB record");
1391      TheModule->addLibrary(S);
1392      break;
1393    }
1394    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1395      std::string S;
1396      if (ConvertToString(Record, 0, S))
1397        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1398      SectionTable.push_back(S);
1399      break;
1400    }
1401    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1402      std::string S;
1403      if (ConvertToString(Record, 0, S))
1404        return Error("Invalid MODULE_CODE_GCNAME record");
1405      GCTable.push_back(S);
1406      break;
1407    }
1408    // GLOBALVAR: [pointer type, isconst, initid,
1409    //             linkage, alignment, section, visibility, threadlocal]
1410    case bitc::MODULE_CODE_GLOBALVAR: {
1411      if (Record.size() < 6)
1412        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1413      const Type *Ty = getTypeByID(Record[0]);
1414      if (!isa<PointerType>(Ty))
1415        return Error("Global not a pointer type!");
1416      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1417      Ty = cast<PointerType>(Ty)->getElementType();
1418
1419      bool isConstant = Record[1];
1420      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1421      unsigned Alignment = (1 << Record[4]) >> 1;
1422      std::string Section;
1423      if (Record[5]) {
1424        if (Record[5]-1 >= SectionTable.size())
1425          return Error("Invalid section ID");
1426        Section = SectionTable[Record[5]-1];
1427      }
1428      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1429      if (Record.size() > 6)
1430        Visibility = GetDecodedVisibility(Record[6]);
1431      bool isThreadLocal = false;
1432      if (Record.size() > 7)
1433        isThreadLocal = Record[7];
1434
1435      GlobalVariable *NewGV =
1436        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1437                           isThreadLocal, AddressSpace);
1438      NewGV->setAlignment(Alignment);
1439      if (!Section.empty())
1440        NewGV->setSection(Section);
1441      NewGV->setVisibility(Visibility);
1442      NewGV->setThreadLocal(isThreadLocal);
1443
1444      ValueList.push_back(NewGV);
1445
1446      // Remember which value to use for the global initializer.
1447      if (unsigned InitID = Record[2])
1448        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1449      break;
1450    }
1451    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1452    //             alignment, section, visibility, gc]
1453    case bitc::MODULE_CODE_FUNCTION: {
1454      if (Record.size() < 8)
1455        return Error("Invalid MODULE_CODE_FUNCTION record");
1456      const Type *Ty = getTypeByID(Record[0]);
1457      if (!isa<PointerType>(Ty))
1458        return Error("Function not a pointer type!");
1459      const FunctionType *FTy =
1460        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1461      if (!FTy)
1462        return Error("Function not a pointer to function type!");
1463
1464      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1465                                        "", TheModule);
1466
1467      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1468      bool isProto = Record[2];
1469      Func->setLinkage(GetDecodedLinkage(Record[3]));
1470      Func->setAttributes(getAttributes(Record[4]));
1471
1472      Func->setAlignment((1 << Record[5]) >> 1);
1473      if (Record[6]) {
1474        if (Record[6]-1 >= SectionTable.size())
1475          return Error("Invalid section ID");
1476        Func->setSection(SectionTable[Record[6]-1]);
1477      }
1478      Func->setVisibility(GetDecodedVisibility(Record[7]));
1479      if (Record.size() > 8 && Record[8]) {
1480        if (Record[8]-1 > GCTable.size())
1481          return Error("Invalid GC ID");
1482        Func->setGC(GCTable[Record[8]-1].c_str());
1483      }
1484      ValueList.push_back(Func);
1485
1486      // If this is a function with a body, remember the prototype we are
1487      // creating now, so that we can match up the body with them later.
1488      if (!isProto)
1489        FunctionsWithBodies.push_back(Func);
1490      break;
1491    }
1492    // ALIAS: [alias type, aliasee val#, linkage]
1493    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1494    case bitc::MODULE_CODE_ALIAS: {
1495      if (Record.size() < 3)
1496        return Error("Invalid MODULE_ALIAS record");
1497      const Type *Ty = getTypeByID(Record[0]);
1498      if (!isa<PointerType>(Ty))
1499        return Error("Function not a pointer type!");
1500
1501      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1502                                           "", 0, TheModule);
1503      // Old bitcode files didn't have visibility field.
1504      if (Record.size() > 3)
1505        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1506      ValueList.push_back(NewGA);
1507      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1508      break;
1509    }
1510    /// MODULE_CODE_PURGEVALS: [numvals]
1511    case bitc::MODULE_CODE_PURGEVALS:
1512      // Trim down the value list to the specified size.
1513      if (Record.size() < 1 || Record[0] > ValueList.size())
1514        return Error("Invalid MODULE_PURGEVALS record");
1515      ValueList.shrinkTo(Record[0]);
1516      break;
1517    }
1518    Record.clear();
1519  }
1520
1521  return Error("Premature end of bitstream");
1522}
1523
1524bool BitcodeReader::ParseBitcode() {
1525  TheModule = 0;
1526
1527  if (Buffer->getBufferSize() & 3)
1528    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1529
1530  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1531  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1532
1533  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1534  // The magic number is 0x0B17C0DE stored in little endian.
1535  if (isBitcodeWrapper(BufPtr, BufEnd))
1536    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1537      return Error("Invalid bitcode wrapper header");
1538
1539  StreamFile.init(BufPtr, BufEnd);
1540  Stream.init(StreamFile);
1541
1542  // Sniff for the signature.
1543  if (Stream.Read(8) != 'B' ||
1544      Stream.Read(8) != 'C' ||
1545      Stream.Read(4) != 0x0 ||
1546      Stream.Read(4) != 0xC ||
1547      Stream.Read(4) != 0xE ||
1548      Stream.Read(4) != 0xD)
1549    return Error("Invalid bitcode signature");
1550
1551  // We expect a number of well-defined blocks, though we don't necessarily
1552  // need to understand them all.
1553  while (!Stream.AtEndOfStream()) {
1554    unsigned Code = Stream.ReadCode();
1555
1556    if (Code != bitc::ENTER_SUBBLOCK)
1557      return Error("Invalid record at top-level");
1558
1559    unsigned BlockID = Stream.ReadSubBlockID();
1560
1561    // We only know the MODULE subblock ID.
1562    switch (BlockID) {
1563    case bitc::BLOCKINFO_BLOCK_ID:
1564      if (Stream.ReadBlockInfoBlock())
1565        return Error("Malformed BlockInfoBlock");
1566      break;
1567    case bitc::MODULE_BLOCK_ID:
1568      if (ParseModule(Buffer->getBufferIdentifier()))
1569        return true;
1570      break;
1571    default:
1572      if (Stream.SkipBlock())
1573        return Error("Malformed block record");
1574      break;
1575    }
1576  }
1577
1578  return false;
1579}
1580
1581/// ParseMetadataAttachment - Parse metadata attachments.
1582bool BitcodeReader::ParseMetadataAttachment() {
1583  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1584    return Error("Malformed block record");
1585
1586  SmallVector<uint64_t, 64> Record;
1587  while(1) {
1588    unsigned Code = Stream.ReadCode();
1589    if (Code == bitc::END_BLOCK) {
1590      if (Stream.ReadBlockEnd())
1591        return Error("Error at end of PARAMATTR block");
1592      break;
1593    }
1594    if (Code == bitc::DEFINE_ABBREV) {
1595      Stream.ReadAbbrevRecord();
1596      continue;
1597    }
1598    // Read a metadata attachment record.
1599    Record.clear();
1600    switch (Stream.ReadRecord(Code, Record)) {
1601    default:  // Default behavior: ignore.
1602      break;
1603    case bitc::METADATA_ATTACHMENT: {
1604      unsigned RecordLength = Record.size();
1605      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1606        return Error ("Invalid METADATA_ATTACHMENT reader!");
1607      Instruction *Inst = InstructionList[Record[0]];
1608      for (unsigned i = 1; i != RecordLength; i = i+2) {
1609        unsigned Kind = Record[i];
1610        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1611        Inst->setMetadata(Kind, cast<MDNode>(Node));
1612      }
1613      break;
1614    }
1615    }
1616  }
1617  return false;
1618}
1619
1620/// ParseFunctionBody - Lazily parse the specified function body block.
1621bool BitcodeReader::ParseFunctionBody(Function *F) {
1622  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1623    return Error("Malformed block record");
1624
1625  unsigned ModuleValueListSize = ValueList.size();
1626
1627  // Add all the function arguments to the value table.
1628  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1629    ValueList.push_back(I);
1630
1631  unsigned NextValueNo = ValueList.size();
1632  BasicBlock *CurBB = 0;
1633  unsigned CurBBNo = 0;
1634
1635  // Read all the records.
1636  SmallVector<uint64_t, 64> Record;
1637  while (1) {
1638    unsigned Code = Stream.ReadCode();
1639    if (Code == bitc::END_BLOCK) {
1640      if (Stream.ReadBlockEnd())
1641        return Error("Error at end of function block");
1642      break;
1643    }
1644
1645    if (Code == bitc::ENTER_SUBBLOCK) {
1646      switch (Stream.ReadSubBlockID()) {
1647      default:  // Skip unknown content.
1648        if (Stream.SkipBlock())
1649          return Error("Malformed block record");
1650        break;
1651      case bitc::CONSTANTS_BLOCK_ID:
1652        if (ParseConstants()) return true;
1653        NextValueNo = ValueList.size();
1654        break;
1655      case bitc::VALUE_SYMTAB_BLOCK_ID:
1656        if (ParseValueSymbolTable()) return true;
1657        break;
1658      case bitc::METADATA_ATTACHMENT_ID:
1659        if (ParseMetadataAttachment()) return true;
1660        break;
1661      }
1662      continue;
1663    }
1664
1665    if (Code == bitc::DEFINE_ABBREV) {
1666      Stream.ReadAbbrevRecord();
1667      continue;
1668    }
1669
1670    // Read a record.
1671    Record.clear();
1672    Instruction *I = 0;
1673    unsigned BitCode = Stream.ReadRecord(Code, Record);
1674    switch (BitCode) {
1675    default: // Default behavior: reject
1676      return Error("Unknown instruction");
1677    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1678      if (Record.size() < 1 || Record[0] == 0)
1679        return Error("Invalid DECLAREBLOCKS record");
1680      // Create all the basic blocks for the function.
1681      FunctionBBs.resize(Record[0]);
1682      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1683        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1684      CurBB = FunctionBBs[0];
1685      continue;
1686
1687    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1688      unsigned OpNum = 0;
1689      Value *LHS, *RHS;
1690      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1691          getValue(Record, OpNum, LHS->getType(), RHS) ||
1692          OpNum+1 > Record.size())
1693        return Error("Invalid BINOP record");
1694
1695      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1696      if (Opc == -1) return Error("Invalid BINOP record");
1697      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1698      InstructionList.push_back(I);
1699      if (OpNum < Record.size()) {
1700        if (Opc == Instruction::Add ||
1701            Opc == Instruction::Sub ||
1702            Opc == Instruction::Mul) {
1703          if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1704            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1705          if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1706            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1707        } else if (Opc == Instruction::SDiv) {
1708          if (Record[3] & (1 << bitc::SDIV_EXACT))
1709            cast<BinaryOperator>(I)->setIsExact(true);
1710        }
1711      }
1712      break;
1713    }
1714    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1715      unsigned OpNum = 0;
1716      Value *Op;
1717      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1718          OpNum+2 != Record.size())
1719        return Error("Invalid CAST record");
1720
1721      const Type *ResTy = getTypeByID(Record[OpNum]);
1722      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1723      if (Opc == -1 || ResTy == 0)
1724        return Error("Invalid CAST record");
1725      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1726      InstructionList.push_back(I);
1727      break;
1728    }
1729    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1730    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1731      unsigned OpNum = 0;
1732      Value *BasePtr;
1733      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1734        return Error("Invalid GEP record");
1735
1736      SmallVector<Value*, 16> GEPIdx;
1737      while (OpNum != Record.size()) {
1738        Value *Op;
1739        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1740          return Error("Invalid GEP record");
1741        GEPIdx.push_back(Op);
1742      }
1743
1744      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1745      InstructionList.push_back(I);
1746      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1747        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1748      break;
1749    }
1750
1751    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1752                                       // EXTRACTVAL: [opty, opval, n x indices]
1753      unsigned OpNum = 0;
1754      Value *Agg;
1755      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1756        return Error("Invalid EXTRACTVAL record");
1757
1758      SmallVector<unsigned, 4> EXTRACTVALIdx;
1759      for (unsigned RecSize = Record.size();
1760           OpNum != RecSize; ++OpNum) {
1761        uint64_t Index = Record[OpNum];
1762        if ((unsigned)Index != Index)
1763          return Error("Invalid EXTRACTVAL index");
1764        EXTRACTVALIdx.push_back((unsigned)Index);
1765      }
1766
1767      I = ExtractValueInst::Create(Agg,
1768                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1769      InstructionList.push_back(I);
1770      break;
1771    }
1772
1773    case bitc::FUNC_CODE_INST_INSERTVAL: {
1774                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1775      unsigned OpNum = 0;
1776      Value *Agg;
1777      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1778        return Error("Invalid INSERTVAL record");
1779      Value *Val;
1780      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1781        return Error("Invalid INSERTVAL record");
1782
1783      SmallVector<unsigned, 4> INSERTVALIdx;
1784      for (unsigned RecSize = Record.size();
1785           OpNum != RecSize; ++OpNum) {
1786        uint64_t Index = Record[OpNum];
1787        if ((unsigned)Index != Index)
1788          return Error("Invalid INSERTVAL index");
1789        INSERTVALIdx.push_back((unsigned)Index);
1790      }
1791
1792      I = InsertValueInst::Create(Agg, Val,
1793                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1794      InstructionList.push_back(I);
1795      break;
1796    }
1797
1798    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1799      // obsolete form of select
1800      // handles select i1 ... in old bitcode
1801      unsigned OpNum = 0;
1802      Value *TrueVal, *FalseVal, *Cond;
1803      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1804          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1805          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1806        return Error("Invalid SELECT record");
1807
1808      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1809      InstructionList.push_back(I);
1810      break;
1811    }
1812
1813    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1814      // new form of select
1815      // handles select i1 or select [N x i1]
1816      unsigned OpNum = 0;
1817      Value *TrueVal, *FalseVal, *Cond;
1818      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1819          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1820          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1821        return Error("Invalid SELECT record");
1822
1823      // select condition can be either i1 or [N x i1]
1824      if (const VectorType* vector_type =
1825          dyn_cast<const VectorType>(Cond->getType())) {
1826        // expect <n x i1>
1827        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1828          return Error("Invalid SELECT condition type");
1829      } else {
1830        // expect i1
1831        if (Cond->getType() != Type::getInt1Ty(Context))
1832          return Error("Invalid SELECT condition type");
1833      }
1834
1835      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1836      InstructionList.push_back(I);
1837      break;
1838    }
1839
1840    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1841      unsigned OpNum = 0;
1842      Value *Vec, *Idx;
1843      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1844          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1845        return Error("Invalid EXTRACTELT record");
1846      I = ExtractElementInst::Create(Vec, Idx);
1847      InstructionList.push_back(I);
1848      break;
1849    }
1850
1851    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1852      unsigned OpNum = 0;
1853      Value *Vec, *Elt, *Idx;
1854      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1855          getValue(Record, OpNum,
1856                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1857          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1858        return Error("Invalid INSERTELT record");
1859      I = InsertElementInst::Create(Vec, Elt, Idx);
1860      InstructionList.push_back(I);
1861      break;
1862    }
1863
1864    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1865      unsigned OpNum = 0;
1866      Value *Vec1, *Vec2, *Mask;
1867      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1868          getValue(Record, OpNum, Vec1->getType(), Vec2))
1869        return Error("Invalid SHUFFLEVEC record");
1870
1871      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1872        return Error("Invalid SHUFFLEVEC record");
1873      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1874      InstructionList.push_back(I);
1875      break;
1876    }
1877
1878    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1879      // Old form of ICmp/FCmp returning bool
1880      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1881      // both legal on vectors but had different behaviour.
1882    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1883      // FCmp/ICmp returning bool or vector of bool
1884
1885      unsigned OpNum = 0;
1886      Value *LHS, *RHS;
1887      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1888          getValue(Record, OpNum, LHS->getType(), RHS) ||
1889          OpNum+1 != Record.size())
1890        return Error("Invalid CMP record");
1891
1892      if (LHS->getType()->isFPOrFPVector())
1893        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1894      else
1895        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1896      InstructionList.push_back(I);
1897      break;
1898    }
1899
1900    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1901      if (Record.size() != 2)
1902        return Error("Invalid GETRESULT record");
1903      unsigned OpNum = 0;
1904      Value *Op;
1905      getValueTypePair(Record, OpNum, NextValueNo, Op);
1906      unsigned Index = Record[1];
1907      I = ExtractValueInst::Create(Op, Index);
1908      InstructionList.push_back(I);
1909      break;
1910    }
1911
1912    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1913      {
1914        unsigned Size = Record.size();
1915        if (Size == 0) {
1916          I = ReturnInst::Create(Context);
1917          InstructionList.push_back(I);
1918          break;
1919        }
1920
1921        unsigned OpNum = 0;
1922        SmallVector<Value *,4> Vs;
1923        do {
1924          Value *Op = NULL;
1925          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1926            return Error("Invalid RET record");
1927          Vs.push_back(Op);
1928        } while(OpNum != Record.size());
1929
1930        const Type *ReturnType = F->getReturnType();
1931        if (Vs.size() > 1 ||
1932            (isa<StructType>(ReturnType) &&
1933             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1934          Value *RV = UndefValue::get(ReturnType);
1935          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1936            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1937            InstructionList.push_back(I);
1938            CurBB->getInstList().push_back(I);
1939            ValueList.AssignValue(I, NextValueNo++);
1940            RV = I;
1941          }
1942          I = ReturnInst::Create(Context, RV);
1943          InstructionList.push_back(I);
1944          break;
1945        }
1946
1947        I = ReturnInst::Create(Context, Vs[0]);
1948        InstructionList.push_back(I);
1949        break;
1950      }
1951    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1952      if (Record.size() != 1 && Record.size() != 3)
1953        return Error("Invalid BR record");
1954      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1955      if (TrueDest == 0)
1956        return Error("Invalid BR record");
1957
1958      if (Record.size() == 1) {
1959        I = BranchInst::Create(TrueDest);
1960        InstructionList.push_back(I);
1961      }
1962      else {
1963        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1964        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1965        if (FalseDest == 0 || Cond == 0)
1966          return Error("Invalid BR record");
1967        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1968        InstructionList.push_back(I);
1969      }
1970      break;
1971    }
1972    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1973      if (Record.size() < 3 || (Record.size() & 1) == 0)
1974        return Error("Invalid SWITCH record");
1975      const Type *OpTy = getTypeByID(Record[0]);
1976      Value *Cond = getFnValueByID(Record[1], OpTy);
1977      BasicBlock *Default = getBasicBlock(Record[2]);
1978      if (OpTy == 0 || Cond == 0 || Default == 0)
1979        return Error("Invalid SWITCH record");
1980      unsigned NumCases = (Record.size()-3)/2;
1981      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1982      InstructionList.push_back(SI);
1983      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1984        ConstantInt *CaseVal =
1985          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1986        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1987        if (CaseVal == 0 || DestBB == 0) {
1988          delete SI;
1989          return Error("Invalid SWITCH record!");
1990        }
1991        SI->addCase(CaseVal, DestBB);
1992      }
1993      I = SI;
1994      break;
1995    }
1996    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1997      if (Record.size() < 2)
1998        return Error("Invalid INDIRECTBR record");
1999      const Type *OpTy = getTypeByID(Record[0]);
2000      Value *Address = getFnValueByID(Record[1], OpTy);
2001      if (OpTy == 0 || Address == 0)
2002        return Error("Invalid INDIRECTBR record");
2003      unsigned NumDests = Record.size()-2;
2004      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2005      InstructionList.push_back(IBI);
2006      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2007        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2008          IBI->addDestination(DestBB);
2009        } else {
2010          delete IBI;
2011          return Error("Invalid INDIRECTBR record!");
2012        }
2013      }
2014      I = IBI;
2015      break;
2016    }
2017
2018    case bitc::FUNC_CODE_INST_INVOKE: {
2019      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2020      if (Record.size() < 4) return Error("Invalid INVOKE record");
2021      AttrListPtr PAL = getAttributes(Record[0]);
2022      unsigned CCInfo = Record[1];
2023      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2024      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2025
2026      unsigned OpNum = 4;
2027      Value *Callee;
2028      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2029        return Error("Invalid INVOKE record");
2030
2031      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2032      const FunctionType *FTy = !CalleeTy ? 0 :
2033        dyn_cast<FunctionType>(CalleeTy->getElementType());
2034
2035      // Check that the right number of fixed parameters are here.
2036      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2037          Record.size() < OpNum+FTy->getNumParams())
2038        return Error("Invalid INVOKE record");
2039
2040      SmallVector<Value*, 16> Ops;
2041      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2042        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2043        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2044      }
2045
2046      if (!FTy->isVarArg()) {
2047        if (Record.size() != OpNum)
2048          return Error("Invalid INVOKE record");
2049      } else {
2050        // Read type/value pairs for varargs params.
2051        while (OpNum != Record.size()) {
2052          Value *Op;
2053          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2054            return Error("Invalid INVOKE record");
2055          Ops.push_back(Op);
2056        }
2057      }
2058
2059      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2060                             Ops.begin(), Ops.end());
2061      InstructionList.push_back(I);
2062      cast<InvokeInst>(I)->setCallingConv(
2063        static_cast<CallingConv::ID>(CCInfo));
2064      cast<InvokeInst>(I)->setAttributes(PAL);
2065      break;
2066    }
2067    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2068      I = new UnwindInst(Context);
2069      InstructionList.push_back(I);
2070      break;
2071    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2072      I = new UnreachableInst(Context);
2073      InstructionList.push_back(I);
2074      break;
2075    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2076      if (Record.size() < 1 || ((Record.size()-1)&1))
2077        return Error("Invalid PHI record");
2078      const Type *Ty = getTypeByID(Record[0]);
2079      if (!Ty) return Error("Invalid PHI record");
2080
2081      PHINode *PN = PHINode::Create(Ty);
2082      InstructionList.push_back(PN);
2083      PN->reserveOperandSpace((Record.size()-1)/2);
2084
2085      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2086        Value *V = getFnValueByID(Record[1+i], Ty);
2087        BasicBlock *BB = getBasicBlock(Record[2+i]);
2088        if (!V || !BB) return Error("Invalid PHI record");
2089        PN->addIncoming(V, BB);
2090      }
2091      I = PN;
2092      break;
2093    }
2094
2095    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2096      // Autoupgrade malloc instruction to malloc call.
2097      // FIXME: Remove in LLVM 3.0.
2098      if (Record.size() < 3)
2099        return Error("Invalid MALLOC record");
2100      const PointerType *Ty =
2101        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2102      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2103      if (!Ty || !Size) return Error("Invalid MALLOC record");
2104      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2105      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2106      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2107      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2108      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2109                                 AllocSize, Size, NULL);
2110      InstructionList.push_back(I);
2111      break;
2112    }
2113    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2114      unsigned OpNum = 0;
2115      Value *Op;
2116      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2117          OpNum != Record.size())
2118        return Error("Invalid FREE record");
2119      if (!CurBB) return Error("Invalid free instruction with no BB");
2120      I = CallInst::CreateFree(Op, CurBB);
2121      InstructionList.push_back(I);
2122      break;
2123    }
2124    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2125      if (Record.size() < 3)
2126        return Error("Invalid ALLOCA record");
2127      const PointerType *Ty =
2128        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2129      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2130      unsigned Align = Record[2];
2131      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2132      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2133      InstructionList.push_back(I);
2134      break;
2135    }
2136    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2137      unsigned OpNum = 0;
2138      Value *Op;
2139      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2140          OpNum+2 != Record.size())
2141        return Error("Invalid LOAD record");
2142
2143      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2144      InstructionList.push_back(I);
2145      break;
2146    }
2147    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2148      unsigned OpNum = 0;
2149      Value *Val, *Ptr;
2150      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2151          getValue(Record, OpNum,
2152                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2153          OpNum+2 != Record.size())
2154        return Error("Invalid STORE record");
2155
2156      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2157      InstructionList.push_back(I);
2158      break;
2159    }
2160    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2161      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2162      unsigned OpNum = 0;
2163      Value *Val, *Ptr;
2164      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2165          getValue(Record, OpNum,
2166                   PointerType::getUnqual(Val->getType()), Ptr)||
2167          OpNum+2 != Record.size())
2168        return Error("Invalid STORE record");
2169
2170      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2171      InstructionList.push_back(I);
2172      break;
2173    }
2174    case bitc::FUNC_CODE_INST_CALL: {
2175      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2176      if (Record.size() < 3)
2177        return Error("Invalid CALL record");
2178
2179      AttrListPtr PAL = getAttributes(Record[0]);
2180      unsigned CCInfo = Record[1];
2181
2182      unsigned OpNum = 2;
2183      Value *Callee;
2184      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2185        return Error("Invalid CALL record");
2186
2187      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2188      const FunctionType *FTy = 0;
2189      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2190      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2191        return Error("Invalid CALL record");
2192
2193      SmallVector<Value*, 16> Args;
2194      // Read the fixed params.
2195      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2196        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2197          Args.push_back(getBasicBlock(Record[OpNum]));
2198        else
2199          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2200        if (Args.back() == 0) return Error("Invalid CALL record");
2201      }
2202
2203      // Read type/value pairs for varargs params.
2204      if (!FTy->isVarArg()) {
2205        if (OpNum != Record.size())
2206          return Error("Invalid CALL record");
2207      } else {
2208        while (OpNum != Record.size()) {
2209          Value *Op;
2210          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2211            return Error("Invalid CALL record");
2212          Args.push_back(Op);
2213        }
2214      }
2215
2216      I = CallInst::Create(Callee, Args.begin(), Args.end());
2217      InstructionList.push_back(I);
2218      cast<CallInst>(I)->setCallingConv(
2219        static_cast<CallingConv::ID>(CCInfo>>1));
2220      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2221      cast<CallInst>(I)->setAttributes(PAL);
2222      break;
2223    }
2224    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2225      if (Record.size() < 3)
2226        return Error("Invalid VAARG record");
2227      const Type *OpTy = getTypeByID(Record[0]);
2228      Value *Op = getFnValueByID(Record[1], OpTy);
2229      const Type *ResTy = getTypeByID(Record[2]);
2230      if (!OpTy || !Op || !ResTy)
2231        return Error("Invalid VAARG record");
2232      I = new VAArgInst(Op, ResTy);
2233      InstructionList.push_back(I);
2234      break;
2235    }
2236    }
2237
2238    // Add instruction to end of current BB.  If there is no current BB, reject
2239    // this file.
2240    if (CurBB == 0) {
2241      delete I;
2242      return Error("Invalid instruction with no BB");
2243    }
2244    CurBB->getInstList().push_back(I);
2245
2246    // If this was a terminator instruction, move to the next block.
2247    if (isa<TerminatorInst>(I)) {
2248      ++CurBBNo;
2249      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2250    }
2251
2252    // Non-void values get registered in the value table for future use.
2253    if (I && !I->getType()->isVoidTy())
2254      ValueList.AssignValue(I, NextValueNo++);
2255  }
2256
2257  // Check the function list for unresolved values.
2258  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2259    if (A->getParent() == 0) {
2260      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2261      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2262        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2263          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2264          delete A;
2265        }
2266      }
2267      return Error("Never resolved value found in function!");
2268    }
2269  }
2270
2271  // See if anything took the address of blocks in this function.  If so,
2272  // resolve them now.
2273  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2274  /// are resolved lazily when functions are loaded.
2275  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2276    BlockAddrFwdRefs.find(F);
2277  if (BAFRI != BlockAddrFwdRefs.end()) {
2278    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2279    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2280      unsigned BlockIdx = RefList[i].first;
2281      if (BlockIdx >= FunctionBBs.size())
2282        return Error("Invalid blockaddress block #");
2283
2284      GlobalVariable *FwdRef = RefList[i].second;
2285      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2286      FwdRef->eraseFromParent();
2287    }
2288
2289    BlockAddrFwdRefs.erase(BAFRI);
2290  }
2291
2292  // Trim the value list down to the size it was before we parsed this function.
2293  ValueList.shrinkTo(ModuleValueListSize);
2294  std::vector<BasicBlock*>().swap(FunctionBBs);
2295
2296  return false;
2297}
2298
2299//===----------------------------------------------------------------------===//
2300// ModuleProvider implementation
2301//===----------------------------------------------------------------------===//
2302
2303
2304bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2305  // If it already is material, ignore the request.
2306  if (!F->hasNotBeenReadFromBitcode()) return false;
2307
2308  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2309    DeferredFunctionInfo.find(F);
2310  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2311
2312  // Move the bit stream to the saved position of the deferred function body and
2313  // restore the real linkage type for the function.
2314  Stream.JumpToBit(DFII->second.first);
2315  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2316
2317  if (ParseFunctionBody(F)) {
2318    if (ErrInfo) *ErrInfo = ErrorString;
2319    return true;
2320  }
2321
2322  // Upgrade any old intrinsic calls in the function.
2323  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2324       E = UpgradedIntrinsics.end(); I != E; ++I) {
2325    if (I->first != I->second) {
2326      for (Value::use_iterator UI = I->first->use_begin(),
2327           UE = I->first->use_end(); UI != UE; ) {
2328        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2329          UpgradeIntrinsicCall(CI, I->second);
2330      }
2331    }
2332  }
2333
2334  return false;
2335}
2336
2337void BitcodeReader::dematerializeFunction(Function *F) {
2338  // If this function isn't materialized, or if it is a proto, this is a noop.
2339  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2340    return;
2341
2342  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2343
2344  // Just forget the function body, we can remat it later.
2345  F->deleteBody();
2346  F->setLinkage(GlobalValue::GhostLinkage);
2347}
2348
2349
2350Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2351  // Iterate over the module, deserializing any functions that are still on
2352  // disk.
2353  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2354       F != E; ++F)
2355    if (F->hasNotBeenReadFromBitcode() &&
2356        materializeFunction(F, ErrInfo))
2357      return 0;
2358
2359  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2360  // delete the old functions to clean up. We can't do this unless the entire
2361  // module is materialized because there could always be another function body
2362  // with calls to the old function.
2363  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2364       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2365    if (I->first != I->second) {
2366      for (Value::use_iterator UI = I->first->use_begin(),
2367           UE = I->first->use_end(); UI != UE; ) {
2368        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2369          UpgradeIntrinsicCall(CI, I->second);
2370      }
2371      if (!I->first->use_empty())
2372        I->first->replaceAllUsesWith(I->second);
2373      I->first->eraseFromParent();
2374    }
2375  }
2376  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2377
2378  // Check debug info intrinsics.
2379  CheckDebugInfoIntrinsics(TheModule);
2380
2381  return TheModule;
2382}
2383
2384
2385/// This method is provided by the parent ModuleProvde class and overriden
2386/// here. It simply releases the module from its provided and frees up our
2387/// state.
2388/// @brief Release our hold on the generated module
2389Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2390  // Since we're losing control of this Module, we must hand it back complete
2391  Module *M = ModuleProvider::releaseModule(ErrInfo);
2392  FreeState();
2393  return M;
2394}
2395
2396
2397//===----------------------------------------------------------------------===//
2398// External interface
2399//===----------------------------------------------------------------------===//
2400
2401/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2402///
2403ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2404                                               LLVMContext& Context,
2405                                               std::string *ErrMsg) {
2406  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2407  if (R->ParseBitcode()) {
2408    if (ErrMsg)
2409      *ErrMsg = R->getErrorString();
2410
2411    // Don't let the BitcodeReader dtor delete 'Buffer'.
2412    R->releaseMemoryBuffer();
2413    delete R;
2414    return 0;
2415  }
2416  return R;
2417}
2418
2419/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2420/// If an error occurs, return null and fill in *ErrMsg if non-null.
2421Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2422                               std::string *ErrMsg){
2423  BitcodeReader *R;
2424  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2425                                                           ErrMsg));
2426  if (!R) return 0;
2427
2428  // Read in the entire module.
2429  Module *M = R->materializeModule(ErrMsg);
2430
2431  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2432  // there was an error.
2433  R->releaseMemoryBuffer();
2434
2435  // If there was no error, tell ModuleProvider not to delete it when its dtor
2436  // is run.
2437  if (M)
2438    M = R->releaseModule(ErrMsg);
2439
2440  delete R;
2441  return M;
2442}
2443